IT City Research Online
UNIVEREIST%( ]OggLfNDON

City, University of London Institutional Repository

Citation: Karcanias, N., Vafiadis, D. & Livada, M. (2021). Orientation of Implicit State
Space Models and the Partitioning of Kronecker Structure. IFAC-PapersOnLine, 54(9), pp.
108-113. doi: 10.1016/j.ifacol.2021.06.069 ISSN 2405-8963 doi:
10.1016/j.ifacol.2021.06.069

This is the published version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/27599/

Link to published version: https://doi.org/10.1016/j.ifacol.2021.06.069

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.



City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk



http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Available online at www.sciencedirect.com

IFAC i

CONFERENCE PAPER ARCHIVE

ScienceDirect

IFAC PapersOnLine 54-9 (2021) 108-113

Orientation of Implicit State Space Models
and the Partitioning of Kronecker

Structure
Nicos Karcanias * Dimitris Vafiadis * Maria Livada*

* Systems and Control Research Centre
City University of London, London EC1V 0HB, England

Abstract: Early stages modelling of processes involves issues of classification of variables into
inputs, outputs and internal variables, referred to as Model Orientation Problem (MOP) which
may be addressed on state space implicit, or matrix pencil descriptions. Defining orientation
is equivalent to producing state space models of the regular or singular type. In this paper
we consider autonomous differential descriptions defined by matrix pencils and then search
for strict equivalence transformations which introduce the partitioning of the implicit vector
into states and possible inputs and outputs, referred to as system orientation. The Kronecker
invariant structure of the matrix pencil description is shown to be central to the solution of
system orientation and this is expressed as a problem of classification and partitioning of the
Kronecker invariants. It is shown that the types of Kronecker invariants characterise the nature
of the system orientation solutions. Studying the conditions, under which such oriented models
may be derived, as well as their structural properties in terms of the Kronecker structure, is the

issue considered here.
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1. INTRODUCTION

The problem considered here is an integral parts of “early
design” of processes, Karcanias (1994a), Karcanias (2008),
Karcanias and Livada (2018) and it is considered in the
context of linear systems using results based on the al-
gebraic structure of systems and in particular the Kro-
necker structure of matrix pencils Gantmacher (1959). The
emphasis here is on the characterisation of the desirable
structure and properties of the resulting system. Aspects
of modelling where all possible variables are included
without their classification into control variables (inputs),
command variables (outputs) and other internal variables
form part of the early system design Karcanias (2008).
Heuristics linked to the specific domain of applications, or
methodologies such as graph analysis, Lagrangian method-
ology etc. may be used in specific cases for handling issues
of non-redundancy in representations and classification of
variables. This problem has been studied in Karcanias and
Vafiadis (2002), where the classification of variables has
been introduced not only for state space descriptions, but
also based on autoregressive models. A version of the prob-
lem related to reduction of potential inputs and outputs
has been considered in Karcanias (1994b); Karcanias and
Vafiadis (2001).

A natural system description that makes no distinction as
far as the role of process variables and their dependence,
or independence is for the linear case the matrix pencil
model (first order differential descriptions), or the general
polynomial Rosenbrock (1970), or autoregressive model.
In this paper, we focus on the implicit, or matrix pencil
models, Karcanias and Hayton (1981), Aplevich (1991),

Lewis (1991) which are defined by a matrix pencil. The
classification of the implicit vector into inputs, outputs
and internal variables is a problem that has been defined
as system, or model orientation problem (MOP) Karcanias
and Vafiadis (2002). The solutions to such problems are
systems of the standard state space, or extended state
space type Lewis (1991). The derivation of such oriented
models, the conditions under which MOP is solvable, as
well as characterisation of structural properties of solu-
tions, when solutions exist are the main topics considered
here.

The autonomous differential system defined by a matrix
pencil model provides a natural description for linear Im-
plicit models, when all system variables are included in the
implicit vector, Karcanias and Hayton (1981), Eliopoulou
and Karcanias (1991). The structure of such models is
defined by the Kronecker invariants of the associated ma-
trix pencil. The problem of model orientation is to define
a coordinate transformation on the implicit vector that
allows the identification of the transformed implicit vector
into a form where internal variables and possible inputs
and outputs. Such transformation will permit the linking
of the transformed model (under strict equivalence, Gant-
macher (1959)) to the Kronecker structure of the original
pencil. In the paper we show that the Kronecker invariant
structure is central to the solution of system orientation
and this is expressed as a problem of classification and
partitioning of the Kronecker invariants which result to
system pencil models allowing the establishment of links
between structural invariants and partitioning of the im-
plicit vector. This establishes the link of the different types
of Kronecker invariants and the nature of the system ori-
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entation solutions. Studying the conditions, under which
different types of oriented models may be derived, as well
as their structural properties in terms of the Kronecker
structure, are the issues considered here. Of special interest
is the classification of resulting models and the study of
properties such as McMillan degree, Singular /Regular, no
outputs, output zeroing dynamics etc.

2. PROBLEM STATEMENT

Consider the autonomous differential system

A d
wF-G =0, p2 4L 0
where the pencil (pF — G) € R™¥[p] and £ € R*. We are

interested to find a transformation matrix Q € R¥** such
that

£=Qf £=[x"uy] (2)

where x € R", u € RP, y € R™, n+ p+ m = k, represent
a state, input, output vector respectively and there exists
an R € R™™" such that

pE—A —-B 0
R(F - G)Q = (3)
-C -D —-I

This is referred to as the general state space orientation
problem and it has as subproblems the following;:

Subproblem I: Given the square pencil (pF —G) € R"*"[p],
find the conditions under which the differential system (1),
can represent a regular, or singular system under some
appropriate transformations (R, Q). O

Subproblem II: Given the singular pencil pF — G €

R"**[p], find the conditions under which the differential
system (1), can represent state space descriptions of the

type

pE — A

FE —A— B] or
v 1 »

(4)

having only states and inputs or states and outputs re-
spectively under appropriate transformations (R, Q).

O

The study of the general state space orientation problem
uses the Kronecker invariants of the pencil. A basic lemma
that will be discussed subsequently is stated below:
Lemma 2.1. Let pF—G € R™*[p] and assume that pF—G
has p linear infinite elementary divisors. There always exist
a pair of strict equivalence transformations (R, Q) such
that

where pF — @ has all invariants of pF —G apart from linear
infinite elementary divisors (i.e.d.).

Proof:

There always exists a pair (R’,Q’) that reduces pF — G
(or its Laplace transform) to the form

/ ’ pFw_Gw 0
R(pF - G)Q' = (6)
0 pF — G’

where pF,, — G, is the Wierstrass form that corresponds
to all finite and infinite elementary divisors of pF — G,
and pF’ — G’ is a Kronecker form that corresponds to all
column minimal indices (c.m.i.) and row minimal indices
(rm.i.) of pF — G (see Gantmacher (1959)). The part of
pF,, — Gy, that corresponds to infinite elementary divisors
is of the form (note that the Laplace variable s is used
instead of the differentiation operator p):

[SHC"’ U\, He=diag{H,, - H,)  (7a)
0 I,
where ¢; > 1,4 =1,--- v are the orders of nonlinear i.e.d.
of sF' — G and
(1 -5 0 0 0|
01 —-s O 0
Hy, = (7b)
00 0 1 —s
00 0 0 1]

The above transformations may be extended to the parts
associated with the finite elementary divisors (f.e.d.) the
cm.i and the rm.i of sF — G thus there exist strict
equivalence transformations (R, Q), Gantmacher (1959),
such that

SHoo(8)

R(sF — G)Q =

In the statement of the above result we denote
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@ The number of linear i.e.d.

v : The number of nonlinear i.e.d.

0 : The number of f.e.d.

7 : The number of zero c.m.i. (8)
@ : The number of zero r.m.i.

7 : The number of nonzero c.m.i.

w : The number of nonzero r.m.i.

This notation will be used subsequently. In the following
we will consider the different families of matrix pencils and
examine the nature of the associated different systems. We
examine first the case of matrix pencils with no linear i.e.d.
which will be referred to as normal pencils.

The case of normal regular pencils is considered first.

Case of Square Pencils: If pF' — G is normal and square we
distinguish two cases (pF' — G € R™*"[p])

(i) pF — G is regular pencil and normal
(ii) pF — G is singular and normal

For the normal regular pencil case we have the following
obvious result:

Proposition 2.1. If pF' — G is a normal regular pencil then

(pF—-G){=0 9)

is an autonomous system and £ represents a state vector x.
In particular, if pF' — G has no i.e.d., then this represents
a regular state space system and, if there are i.e.d., then
this is a generalised state space system (singular). O

We consider now the case where pF' — (G is square, but
singular, i.e. rankg(,)(pF' — G) < r. This case is part of
the general state — space orientation and will be considered
there.

Next we consider the case of normal nonsquare pencils
pF — G € R™¥[p] which have full rank. Once more, we
consider two cases

(i) pF — G is of full rank and r < k
(ii) pF — G is of full rank and r > k

Case of nonsquare normal and flat full rank pencils: Such
pencils are characterised only by c.m.i and possibly f.e.d.
and i.e.d. There exist transformations (R, Q) such that

R(pF - G)Q = pF, — G (10)

where pFj — Gy is in Kronecker form i.e.

(11)
L., (p)

pFy — Gy = O
% pM — N

where pM — N is a regular pencil in Weierstrass form.
There are 7 zero c.m.i. and 7 nonzero c.m.i., where L.,
i = 1,---,7 have dimensions &; x (g; + 1). Clearly by
elementary column operations (10) is equivalent to

pFy — Gy, = 7
- L -
LEl (p) 3 3 _gil
L., (p) L —ei”
pM—Ni | 0
- (12a)
where
pl 0 ---0
0Op 1 ---0 0
Le,(p) = € RE>%i[p], ef’ = €R®
: 1 1
0-vv -e- 0 p
(12b)

and thus we may write

pF, — Gy, = [pE—D|—B} L BER™  oc=7+n (12¢)

This analysis leads to the following result:

Theorem 2.1. Given the normal pencil pF — G € R™¥p],
r <k, rankg (pF — G) = r, there always exists a pair
of strict equivalence transformations (R, @) such that

R(pF - G)Q = [pE~D| - B| =pFi —Gr  (13)
where pE, — Gy is defined by condition (8). With the
partitioned form of pFj, — G, we can always associate the
vector £, where

51 B [£] =0 ana

2>

(14)

and x € R?, o = Y7 e+ v, v 2 total number of
finite and infinite elementary divisors and u € R, which
indicates a partitioning of £ into a state and input as
indicated by condition (14). O

The proof of the above result follows from the previous
analysis. Some interesting Corollaries are stated next:
Corollary 2.1. For the pencil pF — G € R™¥[p], r < k ,
rankg(,) (pF' — G) = r, there always exists a linear system
associated with a partitioning of £ of the type [pE— A, — B
such that: B

(i) B is of full rank if and only if pF'—G has no zero c.m.i.

(ii) The matrix F is singular if and only if pF' — G has
i.e.d. O
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Similar results to Theorem 2.1 and Corollary 2.1 may be
stated by using duality for pencils pF'—G € R™¥*[p], r > k,
rankg) (pF' — G) = k. In the following we consider the
case of a general pencil, not necessarily normal, that is
characterised by: The notation introduced in (8), where
rankg) (pF — G) < min(r, k).

There always exists a pair of strict equivalence transforma-
tions (R, @) such that pF' — G is reduced to its Kronecker
form of the type:

where pM — N is in Wierstrass form. Note that by elemen-
tary transformations each of the above blocks L., (p) may
be reduced to

Le,(p) ~ [Le.(p). €5 (15b)

where L., (p),eS’ are defined as in (12b). Similarly for
Ly, (p) we have

i’nj(p):
[p O 0] [p» O 0]
-1 p -1 p 0
0 -1 0 |~]0 -1 0 [Lmngp)]
Cnj

py | - D

L0 0 - 1] [0 0 1]
(15¢)

where f’nj (p) € R [p] and e;’ € R". Similarly for the
regular part of pM — N we have that each block associated
with a nonlinear i.e.d. may be reduced by strict equivalence
transformations to the form indicated below

—1'p O 0 1
0:—=1 p 0
1 17
i -~ ,,gﬂzi,—,l,_]}’f]éil, 15d
1 l 0 et Y
0i0 0 1 p
L 0i0 0 - 0 -1

where H,, is the standard idempotent matrix. From the
(15) expressions we get the following result:

Theorem 2.2. Given the general pencil Given the normal
pencil pF — G € R™*[p|, rankg ) (pF — G) < min(r, k),
there always exists a pair of strict equivalence transforma-
tions (R, @) such that

R(pF — G)Q = pFy, — Gy, (16a)
pFy, — G, =
L) B
L) I
I R R
pl — Jy ! L0
Ooe
- EJ | L
| : Lo
S I N [
S
"~ (16Db)
where

Le(p) = bl — diag{Le,(p),i=1,-- 7}
e.(p) =pl., — H., € RE¥€i[p]
Lo(p) = bl — diag{Ln;(p),i=1,-- ,w}
f’ni(P) =pl,, — H; € R7>X1: p]

~

H,(p) = bl — diag{Hq;(p),i=1,--- ,v}
Hy,(p) = pHL | — I,y € RU—Dx(@=D[p]
Ef =bl — diag{ej' : €' € R i=1,--- 7}

E} = bl — diag{e]" : e} eR"i=1,-- ,w}

Ej = bl —diag{e] " el T eRETL i =1, v}

1x(gi—1)*t

i—1 5
g1 eREti=1--- v}

O

El =l - diag{ggzjt T e

A short way of expressing (16b) is
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ABIO
pFr—Gp=|C1010 (17)
0101,

Based on the above description we have the following
result.

Corollary 2.2. For the pencil pF' — G with a description
pFi — G, we have the following properties:

(i) The square matrix A(p) has dimensions:

Zﬁi +Z771' +Z(Qi -
i=1 i=1 i=1

+7~r>:<p><19

(ii) The matrix B has dimensions:

¢ X (ZQ-FZ(Q -
=1 =1

(iii) The matrix C' has dimensions:

(S Y-

+w> Xp=TXp

O

Corollary 2.3. For the pencil pF' — G with a description
pF, — G, we have the following properties:

(i) If pF — G has no linear i.e.d., then the last block in
(17) does not exist

(ii) If pF — G has no zero c.m.i., then B has full rank

~Ye+ Yl

(iii) If pF — G has no zero r.m.i., then C' has full rank

ZWZ

rank(B

(18a)

rank(C (18b)

O

The description (17) is completely defined by the Kro-
necker invariants of pF’ — G and it is also a canonical form

and can be referred to as the Systems Matrix Kronecker Form

(SMFK).

We now address the Kronecker structure of a pencil that
is in the Systems Matrix Form i.e.

pE—A —B 0
pF — G = (19)

-C -D -1

that characterises the system

(pF - G)¢ =
y

pE—A —-B 0 X

ul=0 (20
-C -D —-I
It is clear that pF' — G may be brought by elementary
column transformations (strict equivalence) to the form

(21)

From the above we have the result

Proposition 2.2. the Kronecker structure of the system
matrix pencil (19) is characterised by linear i.e.d., where
their number is equal to the number of outputs and the
Kronecker invariants of

C(p) =[pE—A|-B] (22)
O
Note that with C(p) we may associate the system
[pE— A —B\O][%}:Q (23a)
and by assuming that y =0 we can have
pE—A -B' 0 | [x
pF—G=|"---"--ZL-||ul=0 (23b)
0 0:i-I|lY

Given that (23b) expresses an output zeroing problem on
the system defined by (22), and using elementary column
operations we are led to the following result:

Proposition 2.3. Given the system defined by the pencil

Clp) =[pE—-A|-B] (22)
then any pencil defined by
pE—A —-B 0
S(p) = (24)
-C -D -1

where C, D, I are of appropriate dimensions, but oth-
erwise arbitraty, defines an output zeroing problem for
the system defined by C(p) and some appropriate vector

€= [xuty]".
O

3. CONCLUSIONS

The problem of model orientation problem (MOP) has
been considered using strict equivalence transformations.
This has established the link between Kronecker invari-
ants, partitioning of the implicit vector and the nature
of the resulted state space model. It is worth noting that
the strict equivalence transformation defining the solution
to model orientation is not necessarily unique. Parame-
terising these families of solutions, investigating whether
there exist physical variable solutions and characterisation
of non—structural properties of the resulting solutions are
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problems under current investigation. Extending the result
to the classification of variables of the implicit vector
of autoregressive system descriptions (polynomial matrix
models) is a topic for further research and it will be
treated within the framework of algebraic system theory
Rosenbrock (1970), Forney (1975).
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