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Restrictions of characters in p-solvable groups

Damiano Rossi∗ and Benjamin Sambale†

July 23, 2021

Abstract

Let G be a p-solvable group, P ≤ G a p-subgroup and χ ∈ Irr(G) such that χ(1)p ≥ |G : P |p.
We prove that the restriction χP is a sum of characters induced from subgroups Q ≤ P such that

χ(1)p = |G : Q|p. This generalizes previous results by Giannelli–Navarro and Giannelli–Sambale on

the number of linear constituents of χP . Although this statement does not hold for arbitrary groups,

we conjecture a weaker version which can be seen as an extension of Brauer–Nesbitt’s theorem on

characters of p-defect zero. It also extends a conjecture of Wilde.

Keywords: p-solvable groups; character restriction; linear constituents
AMS classification: 20C15, 20D20

1 Introduction

Let p be a prime and let G be a finite group whose order is divisible by pn, but not by pn+1. Recall that
an irreducible character χ ∈ Irr(G) has p-defect 0, if the degree χ(1) is divisible by pn. A well-known
theorem by Brauer and Nesbitt [3, Theorem 1] asserts that χ vanishes on all elements g ∈ G of order
divisible by p. Equivalently, the restriction of χ to a Sylow p-subgroup P of G is a multiple of the
regular character of P . In particular, all irreducible characters θ ∈ Irr(P ) appear as constituents of
χP with multiplicity at least θ(1) in this case. In [7, 8, 9], Giannelli and Navarro investigated a more
general situation where χ(1) is divisible by p and χP has at least one linear constituent λ ∈ Irr(P ).
They conjectured (and proved in many cases) that χP has at least p distinct linear constituents. For
p-solvable groups G, they actually showed the stronger statement that (λQ)

P is a summand of χP for
some subgroup Q ≤ P with index |P : Q| = p.

In a subsequent paper [10], Giannelli and the second author studied the following blockwise version of
the conjecture. Let B be a p-block of G with defect group D. Let χ ∈ Irr(B) be of positive height and
assume that χD has a linear constituent. Then χD has at least p distinct linear constituents. Although
we proved this conjecture in some cases, the p-solvable group case was left open at that time.

Meanwhile we realized that the restriction to Sylow subgroups or to defect groups was unnecessary
and perhaps misleading in the latter case. The aim of the present paper is to prove the following more
general theorem and its corollary for p-solvable groups.
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Theorem 1. Let P be a Sylow p-subgroup of a finite p-solvable group G. If χ ∈ Irr(G), then χP is a
sum of characters induced from subgroups Q ≤ P such that χ(1)p = |P : Q|.

The statement of Theorem 1 was of course inspired by [9, Theorems B and C]. By using the Mackey
formula, we can extend the above result to arbitrary p-subgroups.

Corollary 2. Let P be a p-subgroup of a finite p-solvable group G. Let χ ∈ Irr(G) such that χ(1)p ≥
|G : P |p. Then χP is a sum of characters induced from subgroups Q ≤ P such that χ(1)p = |G : Q|p.

In fact, under certain circumstances, p-solvable groups can be replaced by π-separable groups where
π is a set of primes. The details are outlined after the proof of Theorem 1 below. If G = P , then
Theorem 1 is the well-known fact that characters of p-groups are monomial.

The following consequence of Theorem 1 was originally proven by Navarro (private communication).

Corollary 3. Let P be a Sylow p-subgroup of a p-solvable group G. Then for every χ ∈ Irr(G) there
exist Q ≤ P and a linear character λ ∈ Irr(Q) such that χ(1)p = |P : Q| and λP is a summand of χP .

Using Kessar–Malle’s theorem [14] on the height zero conjecture, Giannelli–Navarro [9, Theorem C]
have shown that Corollary 3 remains true for arbitrary groups G whenever P is abelian (here Q can
be chosen as a defect group of the block containing χ). The next corollary settles the open question in
[10] mentioned above.

Corollary 4. Let B be a p-block of a p-solvable group G with defect group D. Let χ ∈ Irr(B) be of
positive height such that χD has a linear constituent. Then χD has at least p distinct linear constituents.

Initially, we believed that the statement of Theorem 1 could hold for arbitrary groups, until we found
the counterexample PSU(5, 2) for p = 2. Nevertheless, we did not find any counterexamples to the
following weaker version (which is algorithmically much easier to check).

Conjecture 5. Let P be a Sylow p-subgroup of a finite group G and let χ ∈ Irr(G). Then χP is an
integral linear combination of characters induced from subgroups Q ≤ P such that χ(1)p = |P : Q|.

Just like Corollary 2, the conjecture implies an analogue statement for arbitrary p-subgroups.

Conjecture 5 relates to a strong form of Brauer’s induction theorem due to Willems [21]. If χ is
realized by a module with vertex Q ≤ P , then Willems’ theorem implies that χP is an integral linear
combination of characters induced from subgroups of the form P ∩Qg where g ∈ G. In particular, if χ
has height 0, then |P : P ∩Qg| ≥ |P : Q| ≥ χ(1)p. Therefore, Conjecture 5 holds whenever P is abelian
by Kessar–Malle [14]. In general we cannot expect to find a vertex Q such that χ(1)p ≤ |P : Q| (see
[4]).

If P = 〈g〉 ≤ G is an arbitrary cyclic p-subgroup, then there is only one choice for Q. In this case
Conjecture 5 implies that χ(g) = 0 as long as χ(1)p > |G : P |p. This is a special case of Wilde’s Con-
jecture [20, Conjecture 1.1] (for p-elements). Apart from p-solvable groups, Wilde proved his conjecture
also for symmetric groups. If true, Conjecture 5 would also generalize the Brauer–Nesbitt theorem on
characters of p-defect 0.

In the next section we prove Theorem 1 and its corollaries. Then, we study minimal counterexamples
to Conjecture 5. Among other results, we prove Conjecture 5 whenever G is one of the simple groups
PSL(2, q) or Sz(q) as well as if P is a dihedral or quaternion 2-group. In these cases the integral linear
combination has positive coefficients so that the statement of Theorem 1 remains true.
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2 Proofs

Our notation is standard and follows Huppert’s book [13] and Navarro’s books [15, 16]. We will make
use of π-special characters where π is a set of primes (in fact, π = {p} or π = p′). Although the
definition of a π-special character χ is somewhat technical, the reader only needs to know that every
prime divisor of χ(1) lies in π.

Lemma 6. Let P be a Sylow p-subgroup of a finite group G. If χ ∈ Irr(G) is imprimitive and Theorem 1
holds for every proper subgroup of G, then Theorem 1 holds for χ.

Proof. Since χ is imprimitive, there exist H < G and ψ ∈ Irr(H) such that χ = ψG. We may choose
P such that S := H ∩ P is a Sylow p-subgroup of H. Since Theorem 1 holds for H, we may write
ψS =

∑n
i=1 λ

S
i where λi ∈ Irr(Qi) and Qi ≤ S such that ψ(1)p = |S : Qi| for i = 1, . . . , n. By

Sylow’s theorem, there exist representatives g1, . . . , gk ∈ G for the double cosets H\G/P such that
Si := Hgi ∩ P ≤ Sgi for i = 1, . . . , k. The Mackey formula (see [13, Theorem 17.4]) yields

χP = (ψG)P =

k
∑

i=1

(

(ψgi)Si

)P
=

k
∑

i=1

(

((ψS)
gi)Si

)P
=

k
∑

i=1

n
∑

j=1

(

((λgij )
Sgi )Si

)P
.

Here,
(

(λgij )
Sgi

)

Si
is a sum of characters induced from Qgix

j ∩ Si for some x ∈ Sgi . Since

χ(1)p = |G : H|pψ(1)p = |G : Qj|p ≤ |P : Qgix
j ∩ Si|,

we can find Qgix
j ∩ Si ≤ T

(x)
ij ≤ P such that χ(1)p = |P : T

(x)
ij |. Hence, the claim holds for χ.

By using Lemma 6 and Isaacs’ theory of π-special characters, we can now prove Theorem 1.

Proof of Theorem 1. We proceed by induction on the order of G. By Lemma 6, we can assume χ to
be primitive. By a theorem of Isaacs (see [13, Theorem 40.8]), ψ = αβ where α is p-special and β is
p′-special. Thus, χ(1)p = α(1). By a theorem of Gajendragadkar (see [13, Theorem 40.11]), we deduce
that αP ∈ Irr(P ). Since P is an M-group, there exists T ≤ P and a linear character µ ∈ Irr(T ) such
that µP = αP . It follows that

χP = αPβP = µPβP = (µβT )
P ,

where the last equality follows by [13, Theorem 17.3]. Since χ(1)p = α(1) = |P : T | the result
follows.

Given the proof above, it is natural to ask whether we can replace p by an arbitrary set of primes π
and p-solvable groups by π-separable groups. The only additional hypotheses we require is that every

π-subgroup of G is an M-group and we can always find the groups T
(x)
ij in the proof of Lemma 6. Both

requirements are true whenever G has nilpotent π-Hall subgroups.

Next, we obtain Corollary 2 from Theorem 1 via an application of the Mackey formula.

Proof of Corollary 2. Let P be a p-subgroup of G and χ ∈ Irr(G) with χ(1)p ≥ |G : P |p. Consider
S ∈ Sylp(G) such that P ≤ S. By Theorem 1 there exist Qi ≤ S and characters λi of Qi such

that χ(1)p = |S : Qi| and χS =
∑

i λ
S
i . By the Mackey formula χP is a sum of the characters

(λSi )P =
∑

((λxi )Qx
i
∩P )

P , for some x ∈ S. For every such x, we find Qx
i ∩ P ≤ Ri,x ≤ P such that

χ(1)p = |G : Ri,x|p. Set µi,x := ((λxi )Qx
i
∩P )

Ri,x . Now χP is a sum of the characters µPi,x.

3



Proof of Corollary 3. By Theorem 1, there exist subgroups Qi ≤ P and characters λi ∈ Irr(Qi) such
that χ(1)p = |P : Qi| and χP =

∑

i λ
P
i . Then χ(1)p = χ(1)p

∑

i λi(1) and hence there exists j such
that λj is linear. Since λPj is a summand of χP the result follows.

Proof of Corollary 4. We apply Corollary 2 with P = D. Let θ ∈ Irr(D) be a linear constituent of
χD. Then there exist Q ≤ D and λ ∈ Irr(Q) such that χ(1)p = |G : Q|p, θ occurs in λD and λD is a
summand of χD. By Frobenius reciprocity, this yields λ = θQ and (θQ)

D is a summand of χD. Since χ
has positive height, χ(1)p > |G : D|p and therefore Q < D. Choose Q ≤ R ≤ D such that |D : R| = p.
By Gallagher’s theorem (see [13, Theorem 19.5]), (θR)

D is a sum of p distinct linear characters and
they all appear in χD since θR is a constituent of (θQ)

R.

3 Evidence for Conjecture 5

In this section we collect some evidence for Conjecture 5. We start with an analysis of minimal coun-
terexamples.

Theorem 7. Let G be a minimal counterexample to Conjecture 5 subject to (|G : Z(G)|, |G|). Then
the following holds:

(a) G = Op′(G).

(b) G is not a direct product of proper subgroups.

(c) χ is primitive.

(d) χ is faithful.

(e) Every abelian normal subgroup of G is cyclic and central.

(f) Op′(G) ≤ Z(G) ∩G′.

Proof. First note that Conjecture 5 holds for all proper subgroups H < G and all proper quotients
G/N since

|H : Z(H)| ≤ |H : H ∩ Z(G)| = |HZ(G) : Z(G)| ≤ |G : Z(G)|,
|G/N : Z(G/N)| ≤ |G : Z(G)N | ≤ |G : Z(G)|.

(a) Suppose that N := Op′(G) < G. Then P ≤ N . By Clifford theory, χN is a sum of characters
ψ ∈ Irr(N) such that χ(1)p = ψ(1)p. Since Conjecture 5 holds for ψ, it must also hold for χ
contradicting the choice of G. Consequently, N = G.

(b) Suppose that G = G1 × G2 for proper subgroups G1 and G2. Let P = P1 × P2 and χ = χ1 × χ2

with Pi ∈ Sylp(Gi) and χi ∈ Irr(Gi) for i = 1, 2. By hypothesis, we can write (χi)Pi
=

∑ni

k=1 aikλ
Pi

ik
with aik ∈ Z and λik ∈ Irr(Qik) where Qik ≤ Pi and χi(1)p = |Pi : Qik|. Then

χP = (χ1)P1
× (χ2)P2

=

n1
∑

k=1

n2
∑

l=1

a1kλ
P1

1k × a2lλ
P2

2l =
∑

k,l

a1ka2l(λ1k × λ2l)
P

and χ(1)p = χ1(1)pχ2(1)p = |P1 : Q1k||P2 : Q2l| = |P : Q1k × Q2l|p for all k, l. This means
that Conjecture 5 holds for G, a contradiction. Consequently, G is not a direct product of proper
subgroups.
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(c) This can be shown as in Lemma 6.

(d) Suppose that N := Ker(χ) 6= 1. We may regard χ as a character of G := G/N . Since P := PN/N

is a Sylow p-subgroup of G, there exist Qi ≤ P and λi ∈ Irr(Qi) such that χP =
∑n

i=1 aiλ
P
i for

some ai ∈ Z. Choose Qi ≤ P such that Qi = QiN/N and Qi = QiN ∩P for i = 1, . . . , n. Note that
P ∩N = Qi ∩N . Using the canonical isomorphism Qi/Qi ∩N → Qi, we can identify λi with the
corresponding character of Qi. This allow us to write χP =

∑

i aiλ
P
i . Since |QiN : Qi| = |QiN :

QiN ∩ P | = |PN : P |, Qi is a Sylow p-subgroup of QiN . It follows that

χ(1)p = |G : Qi|p = |G : QiN |p = |P : Qi|.

Hence, the claim would hold for G. Consequently, χ must be faithful.

(e) Let N EG be abelian. By (c), χN = χ(1)θ for some linear θ ∈ Irr(N). By (d), χ is faithful and so
must be θ. Hence, N ∼= θ(N) ≤ C× is cyclic. As θ is G-invariant, we obtain N ≤ Z(G).

(f) By (a) we have N := Op′(G) ≤ G′. By (c), there is a unique θ ∈ Irr(N) under χ. Suppose that N *
Z(G). By [16, Problem (6.3)], there exists a character triple isomorphism (G,N, θ) ∼= (G∗, N∗, θ∗)
such that N∗ is a central p′-subgroup of G∗ and θ∗ is linear. Since Op′(G

∗/N∗) ∼= Op′(G/N) = 1,
we have N∗ = Op′(G

∗). It is easy to see that Z(G∗/N∗) = Z(G∗)/N∗. In particular,

|G∗ : Z(G∗)| = |G/N : Z(G/N)| ≤ |G : Z(G)N | < |G : Z(G)|,

and so the claim holds for χ∗. Also notice that χ(1) = χ∗(1)θ(1) and χ(1)p = χ∗(1)p (see [16, p.
87]). Let P ∗ be a Sylow p-subgroup of G∗ such that (PN/N)∗ = P ∗N/N . Then (χ∗)P ∗ =

∑

i aiµ
P ∗

i

with µi ∈ Irr(Q∗
i ), Q

∗
i ≤ P ∗ and χ∗(1)p = |G∗ : Q∗

i |p. Choose Qi ≤ P and λi ∈ Irr(QiN |θ) such
that (QiN/N)∗ = Q∗

iN
∗/N∗ and λ∗i = µi × θ∗. Now by [16, p. 87],

(χPN )∗ = (χ∗)P ∗N∗ = (χ∗)P ∗ × θ∗ =
∑

i

aiµ
P ∗

i × θ∗

=
∑

i

ai(µi × θ∗)P
∗N∗

=
∑

i

ai(λ
∗
i )

P ∗N∗

=
∑

i

(aiλ
PN
i )∗.

Since ψ 7→ ψ∗ is a bijection between Z Irr(PN |θ) and Z Irr(P ∗N∗|θ∗), we obtain

χP = (χPN )P =
∑

i

(aiλ
PN
i )P =

∑

i

ai(λQ)
P .

Moreover, χ(1)p = χ∗(1)p = |G∗ : Q∗|p = |G : Q|p. This contradiction finally shows that N is
central.

Our next goal, as mentioned in the introduction, is to prove the statement of Theorem 1 for the simple
groups PSL(2, q) and Sz(q). We refer to this statement as the strong form of Conjecture 5 (we remind
the reader that there are counterexamples to this stronger claim). The advantage of working with the
strong form of the conjecture is that the claim carries over to quotients.

Proposition 8. Let N EG. If the strong form of Conjecture 5 holds for G, then the same is true for
G/N .

Proof. We use the bar convention H := HN/N for H ≤ G. Let P be a Sylow p-subgroup of G, so
that P is a Sylow p-subgroup of G. We identify the characters χ ∈ Irr(G) with their inflation to G.
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By hypothesis, χP is a sum of characters λP where λ ∈ Irr(Q) and Q ≤ P such that χ(1)p = |G : Q|p.
Since

P ∩N ≤ Ker(χP ) ≤ Ker(λP ) =
⋂

x∈P

Ker(λ)x ≤ Ker(λ),

we can consider λ as a character of Q ∼= Q/Q ∩N . Moreover P ∩N = Q ∩N . For x ∈ P we compute

λP (xN) =
1

|Q|
∑

yN∈P
xyN∈Q

λ(xyN) =
|Q ∩N |

|Q|
∑

y(P∩N)∈P/P∩N
xy∈Q

λ(xy)

=
|Q ∩N |

|Q||P ∩N |
∑

y∈P
xy∈Q

λ(xy) =
1

|Q|
∑

y∈P
xy∈Q

λ(xy) = λP (x).

Hence, χP is the sum of the induced characters λP . Since Q∩N = P ∩N is a Sylow p-subgroup of N ,
we also obtain χ(1)p = |G : Q|p = |G : QN |p = |G : Q|p.

In the introduction we explained how Conjecture 5 follows from Kessar–Malle [14] when P is abelian.
If P is cyclic, the strong form of Conjecture 5 can be shown without using the classification of finite
simple groups.

Proposition 9. If P is cyclic, then the strong form of Conjecture 5 holds for G.

Proof. Let B be the p-block of G containing χ. Let D ≤ P be a defect group of B. Since the elements
of P \ D are not conjugate to elements of D, χP vanishes outside D by [15, Corollary 5.9]. By the
definition of character induction, it follows that

χP =
1

|P : D|(χD)
P .

Let λ ∈ Irr(D) be a constituent of χD. Then λ extends to a (linear) character λ̂ ∈ Irr(P ). By Frobenius
reciprocity,

[λ, χD] = [λ̂, (χD)
P ] = |P : D|[λ̂, χP ]

is divisible by |P : D|. Hence, 1
|P :D|χD is a proper character of D. Since χ has height zero in B (this

was known to Brauer [2, 6C] and does not require [14]), we have χ(1)p = |G : D|p.

We can now prove the claimed result for the groups PSL(2, q) and Sz(q).

Proposition 10. The strong form of Conjecture 5 holds for G = SL(2, q), PSL(2, q) and Sz(22n+1),
where q is a prime power and n ≥ 1.

Proof. By Proposition 8 it is enough to consider G = SL(2, q) and Sz(22n+1). We start by considering
G = SL(2, q). If 2 < p ∤ q, thenG has cyclic Sylow p-subgroups and the claim follows from Proposition 9.
Let p | q. The Steinberg character χ ∈ Irr(G) has p-defect zero and fulfills the claim with Q = 1 by
Brauer–Nesbitt’s theorem mentioned in the introduction. Every other character χ ∈ Irr(G) has p′-
degree and fulfills the claim for trivial reasons. Finally, let p = 2 ∤ q. The Sylow 2-subgroup

P = 〈x, y | x2n = y4 = 1, xy = x−1〉

6



is a quaternion group of order 2n+1 = (q2− 1)2 (recall that |G| = q3− q). Let X := 〈x〉 and λ ∈ Irr(X)
be faithful. Then Irr(P ) consists of four linear characters and the induced characters (λk)P of degree
2 for k = 1, . . . , 2n−1 − 1. The character table of G depends on q ≡ ±1 (mod 4) (equivalently q ≡ ±1
(mod 2n)). It suffices to consider χ ∈ Irr(G) with even degree. Since y is conjugate to x2

n−2

in G, the
restrictions χP are determined by the following values:

1 z xj

χk q ± 1 (−1)k(q ± 1) ±(λk)P (xj)
ψ1 q ∓ 1 −(q ∓ 1) 0

ψ2
q∓1
2 − q∓1

2 0

where z = x2
n−1

and 1 ≤ j, k ≤ 2n−1 − 1. Let Z := 〈z〉 = Z(P ) = Z(G) and W := 〈x2n−2〉 ∼= C4.
Then ψ1 =

q∓1
2n (λZ)

P and ψ2 =
q∓1
2n (λW )P fulfill the claim since ψ1(1)2 = (q ∓ 1)2 = 2n = |P : Z| and

ψ2(1)2 = 2n−1 = |P : W |. Now suppose that k is odd, so that (χk)Z = (q ± 1)λZ . Then χk has no
linear constituents, since those lie over 1Z . Hence, χk is a sum of characters induced from subgroups
of index 2 = (q ± 1)2 = χk(1)2.

The case k ≡ 0 (mod 2) is more complicated. Here χk(y) = ±(−1)k/22 =: (−1)s2. Let Y1 := 〈x2, y〉 ∼=
Q2n , Y2 := 〈x2, xy〉 ∼= Q2n and µi ∈ Irr(Yi) such that µi(x

2) = 1 and µ1(y) = µ2(xy) = −1. We
compute

χk =
q ∓ 1

2n
(

1Z
)P ± (λk)P + (µs1)

P + (µs2)
P − (1P ′)P ,

where we recall that P ′ = 〈x2〉. Since k is even, λk lies over 1Z and so does 1P ′ . On the other hand,
λk does not lie over 1P ′ since k < 2n−1. It follows that (1Z)

X ± λk − 1XP ′ is a proper character of X
and χk is a sum of characters induced from X, Y1 and Y2. All have index 2 = χk(1)2 in P .

Now let G = Sz(q) where q = 22n+1 and n ≥ 1. The Sylow p-subgroups for p > 2 are cyclic by [18,
Theorem 9]. Thus, again we restrict to p = 2. The Sylow 2-subgroup P is a so-called Suzuki 2-group of
order q2 such that Z := Z(P ) = P ′ = Φ(P ) is elementary abelian of order q and contains all involutions
of P (see [18, Theorem 7]). The character table of G is given in [18, Theorem 13]. It can be seen that
there are only two characters χ, χ ∈ Irr(G) of even degree and not of 2-defect 0. The values on P are
χ(1) = 2n(q − 1), χ(z) = −2n and χ(x) = 2n

√
−1 where z ∈ Z \ {1} and x ∈ P \ Z. This implies

χZ = 2n(ρZ − 1Z) where ρZ is the regular character of Z. Therefore, χP has no linear constituents,
because those must lie over 1P ′ = 1Z . On the other hand, it has been shown in [17] that all non-linear
characters of P have degree 2n. Hence, χP is a sum of characters induced from subgroups of index
2n = χ(1)2.

As a final result we verify the strong form of Conjecture 5 if P is a dihedral or quaternion 2-group.
Notice that the proof of Theorem 7 applies verbatim to the strong form. This remark will be used in
the following.

Proposition 11. Let P be a Sylow p-subgroup of G and suppose that P is a dihedral or quaternion
2-group including the Klein four-group. Then the strong form of Conjecture 5 holds for G.

Proof. Let G be a finite group with dihedral or quaternion Sylow 2-subgroup P . By Theorem 1, we may
assume that G is non-solvable. We argue by induction on (|G : Z(G)|, |G|). Since every subgroup and
every quotient of P is a cyclic, dihedral or quaternion group, we may apply the reduction methods from
Theorem 7 (the character triple isomorphism in Theorem 7(f) preserves P ). Specifically, we assume that
O2′(G) ≤ Z(G)∩G′, G = O2′(G) and χ is primitive (but not necessarily faithful). Now the Gorenstein–
Walter theorem shows that G is a Schur cover of A7, PSL(2, q) or of PGL(2, q) where q > 3 is an odd

7



prime power (see [19, Theorems 6.8.7 and 6.8.9]). The first case and the exceptional cover 3.PSL(2, 9) =
3.A7 can be checked by computer while PSL(2, q) has been considered in Proposition 10. It remains
to prove the claim for PGL(2, q). Thanks to Proposition 8 it suffices to consider G = GL(2, q). The
reader can find the following well-known facts in [5, §5.2], for instance.

Case 1: G = GL(2, q) with q ≡ −1 (mod 4).
Here P = 〈x, y | x2n = y2 = 1, xy = x2

n−1−1〉 is a semidihedral group of order 2n+1 where 2n =
(q2 − 1)2. Let z := x2

n−1

be the central involution in G. All non-central involutions are conjugate to
y and all elements of order 4 are conjugate to x2

n−2

in G. The characters of degree q + 1 are induced
from proper subgroups. There remains only one family of characters to consider. Let X := 〈x〉 and
λ ∈ Irr(X) be faithful. The restrictions χP assume the following values

1 z xj y

χk q − 1 (−1)k(q − 1) −(λk)P (xj) 0

where k 6≡ 0 (mod 2n−1). If k is odd, then χk does not have linear constituents and the claim follows
since χk(1)2 = (q − 1)2 = 2. If on the other hand k ≡ 0 (mod 2), then

χk =
q + 1

2n−1
(λW )P − λP =

(q + 1

2n−1
(λW )X − λ

)P

where W := 〈x2n−2〉 ∼= C4. The claim follows as before.

Case 2: G = GL(2, q) with q ≡ 1 (mod 4).
In this case

P = 〈x, y, z | x2n = y2
n

= z2 = [x, y] = 1, xz = y〉 ∼= C2n ≀ C2,

where 2n = (q − 1)2. This group can be realized conveniently by x = diag(ζ, 1), y = diag(1, ζ) and
z =

(

0 1
1 0

)

where ζ ∈ F×
q has order 2n. Note that xy ∈ Z(P ) ≤ Z(G) and z is conjugate to x2

n−1

in G. Moreover, xz has order 2n+1 and is conjugate to (xz)2
n+1 = −xz. Also, P/Z ∼= D2n+1 . Let

λ ∈ Irr(〈xz〉) be faithful. The values of χP are

1 (xy)i xiyj (xz)k

χl q − 1 (q − 1)λl(xy)i 0 −(λl)P ((xz)k)

where i 6≡ j (mod 2n), k ≡ 1 (mod 2) and l 6≡ 0 (mod 2n−1). If l is odd, then χl vanishes on (xz)k.
Thus, χl =

q−1
2n (λl)P and χl(1)2 = (q − 1)2 = 2n = |P : 〈xz〉|. If l is even, then χl(xz) = −2λl(xz) =

(λl+2n)P (xz) and

χl =
q − 1− 2n

2n+1
(λl)P +

q − 1 + 2n

2n+1
(λl+2n)P .

By analyzing the Ree groups G = 2G2(q) and making use of Walter’s theorem, the strong form of
Conjecture 5 can be shown for all groups with abelian Sylow 2-subgroups. Since Conjecture 5 holds
for abelian P , we omit the details.

Using GAP [6], 4ti2 [1] and its GAP interface [11], we checked the strong form of Conjecture 5 for all
groups of order at most 2000. Moreover, none of the perfect groups of order at most 106 are minimal
counterexamples in the sense of Theorem 7. Additionally, the stated form of Conjecture 5 has been
verified for all simple groups up to PSL(3, 13) and all sporadic groups up to Co3 (with respect to the
group order).
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