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Executive Summary

This document proposes a Roadmap for Music Information Research with the aim to expand the context of this
research �eld from the perspectives of technological advances, user behaviour, social and cultural aspects, and ex-
ploitation methods. The Roadmap embraces the themes of multimodality, multidisciplinarity and multiculturalism,
and promotes ideas of personalisation, interpretation, embodiment, �ndability and community.

From the perspective of technological advances, the Roadmap de�nes Music Information Research as a
research �eld which focuses on the processing of digital data related to music, including gathering and organisation
of machine-readable musical data, development of data representations, and methodologies to process and
understand that data. More speci�cally, this section of the Roadmap examines (i) musically relevant data; (ii)
music representations; (iii) data processing methodologies; (iv) knowledge-driven methodologies; (v) estimation
of elements related to musical concepts; and (vi) evaluation methodologies. A series of challenges are identi�ed,
related to each of these research subjects, including: (i) identifying all relevant types of data sources describing
music, ensuring quality of data, and addressing legal and ethical issues concerning data; (ii) investigating more
meaningful features and representations, unifying formats and extending the scope of ontologies; (iii) enabling
cross-disciplinary transfer of methodologies, integrating multiple modalities of data, and adopting recent machine
learning techniques; (iv) integrating insights from relevant disciplines, incorporating musicological knowledge and
strengthening links to music psychology and neurology; (v) separating the various sources of an audio signal,
developing style-speci�c musical representations and considering non-Western notation systems; (vi) promoting
best practice evaluation methodology, de�ning meaningful evaluation methodologies and targeting long-term
sustainability of MIR. Further challenges can be found by referring to the �Speci�c Challenges� section under
each subject in the Roadmap.

In terms of user behaviour, the Roadmap addresses the user perspective, both in order to understand the user
roles within the music communication chain and to develop technologies for the interaction of these users with
music data. User behaviour is examined by identifying the types of users related to listening, performing or creating
music. User interaction is analysed by addressing established Human Computer Interaction methodologies, and
novel methods of Tangible and Tabletop Interaction. Challenges derived from these investigations include
analysing user needs and behaviour carefully, identifying new user roles related to music activities; developing
tools and open systems which automatically adapt to the user; designing MIR-based systems more holistically;
addressing collaborative, co-creative and sharing multi-user applications, and expanding MIR interaction beyond
the multi-touch paradigm.

Social and cultural aspects de�ne music as a social phenomenon centering on communication and on the
context in whichmusic is created. Within this context, Music Information Research aims at processingmusical data
that captures the social and cultural context and at developing data processing methodologies with which to model
the whole musical phenomenon. The Roadmap analyses speci�cally music-related collective in�uences, trends and
behaviours, and multiculturalism. Identi�ed challenges include promoting methodologies for modeling music-
related social and collective behavior, adapting complex networks and dynamic systems, analysing interaction and
activity in social music networks, identifying music cultures that can be studied from a data driven perspective,
gathering culturally relevant data for different music cultures, and identifying speci�c music characteristics for
each culture.

The exploitation perspective considers Music Information Research as relevant for producing exploitable
technologies for organising, discovering, retrieving, delivering, and tracking information related to music, in order
to enable improved user experience and commercially viable applications and services for digital media stake-
holders. This section of the Roadmap focuses speci�cally on music distribution applications, creative tools, and
other exploitation areas such as applications in musicology, digital libraries, education and eHealth. Challenges
include demonstrating better exploitation possibilities of MIR technologies, developing systems that go beyond



recommendation and towards discovery, developing music similarity methods for particular applications and con-
texts, developing methodologies of MIR for artistic applications, developing real-time MIR tools for performance,
developing creative tools for commercial environments, producing descriptors based on musicological concepts,
facilitating seamless access to distributed data in digital libraries, overcoming barriers to uptake of technology in
music pedagogy and expanding the scope of MIR applications in eHealth. For a full list of challenges, please refer
to the relevant sections of the Roadmap.

The Music Information Research Roadmap thus identi�es current opportunities and challenges and re�ects
a variety of stakeholder views, in order to inspire novel research directions for the MIR community, and further
inform policy makers in establishing key future funding strategies for this expanding research �eld.



Contents

1 Introduction 2

2 Technological perspective 5

2.1 Musically relevant data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Music representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Data processing methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Knowledge-driven methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Estimation of elements related to musical concepts . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6 Evaluation methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 User perspective 36

3.1 User behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 User interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Socio-cultural perspective 47

4.1 Music-related collective in�uences, trends and behaviors . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Multiculturality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Exploitation perspective 56

5.1 Music distribution applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 Creative tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3 Other exploitation areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6 Conclusions 78





CHAPTER 1

Introduction

For the purpose of this Roadmap we consider Music Information Research (MIR) as a �eld that covers all
the research topics involved in the understanding and modelling of music and that use information processing
methodologies. We view this research to be very much within the �eld of Information Technologies thus with
the major aim of developing methods and technologies with which to process musically relevant data and develop
products and services with which to create, distribute and interact with music information.

This Roadmap aims at identifying research challenges of relevance to the MIR community. The document
should also be of relevance to the policy makers that need to understand the �eld of information technologies,
identifying the state of the art in music information technology research and the relevant research problems that
should be worked on.

The Roadmap has been elaborated by the researchers involved in the MIReS project. They have been
responsible to get input and feedback from the different MIR stakeholders. Many events have been organised to
gather information from experts throughout the elaboration of the Roadmap. This document is the result of a
very participative process in which many people have been involved. The task of the writers of the document has
mainly been an editorial one, trying to capture and summarise what the different stakeholders expressed as being
relevant for the future of the �eld.

There have been some European initiatives with similar aims. It is specially relevant to mention the S2S2

Coordination Action, within which a Roadmap was elaborated and published in 2007 1. That Roadmap covered
the whole Sound and Music Computing �eld, thus it had a broader perspective than MIR and it also went beyond
research issues. A more recent and also relevant document has been the discussion paper entitled �Musicology
(Re-) Mapped� promoted by the European Science Foundation and published in 2012 2. This paper covered the
�eld of Musicology from a modern perspective and discussed some of the current research trends, some of which
overlap with MIR. It is also relevant to mention the report on the 3rd CHORUS+ Think-Tank that took place at
MIDEM 2011 and addressed the future of music search, access and consumption from an industrial perspective 3.

This Roadmap focuses on presenting and discussing research challenges, thus it does not aim to cover
organisational, industrial, or educational aspects. No attempt is made to predict the future of research in MIR;
we believe that this is not possible. The challenges have been identi�ed by studying and using the current state
of the art in MIR and related disciplines. We are very much aware that many of the great technological and
scienti�c discoveries result from disruptive changes and developments, and these are impossible to predict using
this approach.

The challenges have been grouped into four sections, each one re�ecting a different emphasis and perspective:
technological, user, sociocultural, and exploitation. The technological perspective is the more traditional one used
in MIR, re�ecting the core scienti�c and technical challenges. The other three sections aim to examine the �eld
from non-traditional perspectives, thus emphasising important, though often ignored views, which can give us
important insights into our research. Figure 1 shows the structure of the document in the form of a diagram
indicating the relationships between the document sections and perspectives.

1http://smcnetwork.org/roadmap
2http://www.esf.org/human
3http://avmediasearch.eu/public/�les/Chorus+_MusicThinkTank-Report_TheFutureOfMusicSearchAccessAndConsumption_�nal.
pdf

2

http://smcnetwork.org/roadmap
http://www.esf.org/human
http://avmediasearch.eu/public/files/Chorus+_MusicThinkTank-Report_TheFutureOfMusicSearchAccessAndConsumption_final.pdf
http://avmediasearch.eu/public/files/Chorus+_MusicThinkTank-Report_TheFutureOfMusicSearchAccessAndConsumption_final.pdf


1 Introduction

TECHNOLOGICAL PERSPECTIVE

2.1 
Musically 

relevant data

2.2 
Music 

representations
Models

2.3 
Data processing 
methdologies

2.4 
Knowledge-driven

methdologies

2.5
 Estimation of 

elements related to 
musical concepts

Estimated 
musical

concepts

Other 
estimated
concepts

2.6
Evaluation

methodologies

SOCIO-CULTURAL PERSPECTIVE

4.1
Social aspects

4.2
Multiculturality

USER PERSPECTIVE

3.1
User behaviour

3.2
User interaction

EXPLOITATION PERSPECTIVE

5.1 
Music distribution 

applications

5.2
Creative tools

5.3
Other exploitation areas

Figure 1: Diagram showing the relations between the different sections of the documents and MIR topics
discussed in them.

3





CHAPTER 2

Technological perspective

Music Information Research focuses on the processing of digital data

related to music. This includes gathering and organisation of machine-

readable musical data, development of data representations, and method-

ologies to process and understand that data, taking into account domain

knowledge and bringing expertise from relevant scienti�c and engineering

disciplines.
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2 Technological perspective

2.1 MUSICALLY RELEVANT DATA

We de�ne �musically relevant data� as any type of machine-readable data that can be analysed by algorithms and
that can give us relevant information for the development of musical applications. The main challenge is to gather
musically relevant data of suf�cient quantity and quality to enable music information research that respects the
broad multi-modality of music. After all, music today is an all-encompassing experience that is an important part
of videos, computer games, Web applications, mobile apps and services, specialised blogs, artistic applications,
etc. Therefore we should be concerned with the identi�cation of all sources of musically relevant data, the proper
documentation of the process of data assembly and resolving of all legal and ethical issues concerning the data.
Suf�cient quantity and quality of data is of course the prerequisite for any kind of music information research.
To make progress in this direction it is necessary that the research community works together with the owners of
data, be they copyright holders in the form of companies or individual persons sharing their data. Since music
information research is by de�nition a data intensive science, any progress in these directions will have immediate
impact on the �eld. It will enable a fostering and maturing of our research and, with the availability of new kinds
of musically relevant data, open up possibilities for new kinds of research and applications.

2.1.1 State of the art

Music Information Research (MIR) is so far to a large degree concerned with audio, neglecting many of the other
forms of media where music also plays an important role. As recently as ten years ago, the main media concerned
with music were represented by audio recordings on CDs, terrestrial radio broadcasts, music videos on TV, and
printed text in music magazines. Today music is an all-encompassing experience that is an important part of
videos, computer games, Web applications, mobile apps and services, artistic applications, etc. In addition to
printed text on music there exist a vast range of web-sites, blogs and specialised communities caring and publishing
about music. Therefore it is necessary for MIR to broaden its horizons and include a multitude of yet untapped
data sources in its research agenda. Data that is relevant for Music Information Research can be categorised
into four different subgroups: (i) audio-content is any kind of information computed directly from the audio
signal; (ii) music scores is any type of symbolic notation that is normally used for music performance and that
captures the musical intention of a composer; (iii) music-context is all information relevant to music which is not
directly computable from the audio itself or the score, e.g. cover artwork, lyrics, but also artists' background and
collaborative tags connected to the music; (iv) user-context is any kind of data that allows us to model the users
in speci�c usage settings.

Let us start with the most prevalent source of data: audio content and any kind of information computed
directly from the audio. Such information is commonly referred to as �features�, with a certain consensus on
distinguishing between low-level and high-level features (see e.g. [4]). Please see section 2.2 for an overview of
different kinds of features. It is obvious that audio content data is by far the most widely used and researched form
of information in our community. This can e.g. be seen by looking at the tasks of the recent �Music Information
Retrieval Evaluation eXchange� (MIREX 2012 1). MIREX is the foremost yearly community-based framework for
formal evaluation of MIR algorithms and systems. Out of the 16 tasks, all but one (Symbolic Melodic Similarity)
deal with audio analysis including challenges like: Audio Classi�cation, Audio Melody Extraction, Cover Song
Identi�cation, Audio Key Detection, Structural Segmentation and Audio Tempo Estimation. Concerning the
availability of audio content data there are several legal and copyright issues. Just to give an example, the by far
largest data set in MIR, the �Million Songs Dataset� 2, does not include any audio, only the derived features.
In case researchers need to compute their own features they have to use services like �7-Digital� to access the
audio. Collections that do contain audio as well are usually very small like e.g. the well known �GTzan� collection
assembled by George Tzanetakis in 2002 consisting of 1000 songs freely available from the Marsyas webpage 3.

1http://www.music-ir.org/mirex/wiki/2012:Main_Page
2http://labrosa.ee.columbia.edu/millionsong
3http://marsyasweb.appspot.com/download/data_sets
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2 Technological perspective

The largest freely downloadable audio data set is the �1517 Artists� collection 4 consisting of 3180 songs from
1517 artists. There also exist alternative collaborative databases of Creative Commons Licensed sounds like
Freesound 5.

An important source of information to start with is of course symbolic data, thus the score of a piece of music
if it is available in a machine readable format, like MIDI, Music XML, sequencer data or other kinds of abstract
representations of music. Such music representations can be very close to audio content like e.g. the score to one
speci�c audio rendering but they are usually not fully isomorphic. Going beyond more traditional annotations,
recent work in MIR [17] turned its attention to machine readable tablatures and chord sequences, which are a
form of hand annotated scores available in non-standardised text �les (e.g. �ultimate guitar� 6 contains more
than 2.5 million guitar tabs). At the �rst MIR conference 7 a large part of the contributed papers were concerned
with symbolical data. Almost ten years later this imbalance seems to have reversed with authors [8] lamenting
that �ISMIR must rebalance the portfolio of music information types with which it engages� and that �research
exploiting the symbolic aspects of music information has not thrived under ISMIR�. Symbolic annotations of
music present legal and copyright issues just like audio, but substantial collections (e.g. of MIDI �les 8) do exist.

Music context is all information relevant to a music item under consideration that is not extracted from
the respective audio �le itself or the score (see e.g. [22] for an overview). A large part of research on music
context is strongly related to web content mining. Over the last decade, mining the World Wide Web has been
established as another major source of music related information. Music related data mined from the Web can
be distinguished into �editorial� and �cultural� data. Whereas editorial data originates from music experts and
editors often associated with the music distribution industry, cultural data makes use of the wisdom of the crowd
by mining large numbers of music related websites including social networks. Advantages of web based MIR are
the vast amount of available data as well as its potential to access high-level semantic descriptions and subjective
aspects of music not obtainable from audio based analysis alone. Data sources include artist-related Web pages,
published playlists, song lyrics or blogs and twitter data concerned with music. Other data sources of music
context are collaborative tags, mined for example from last.fm [16] or gathered via tagging games [25]. A problem
with information obtained automatically from the Web is that it is inherently noisy and erroneous which requires
special techniques and care for data clean-up. Data about new and lesser known artists in the so-called �long
tail� is usually very sparse which introduces an unwanted popularity bias [5]. A list of data sets frequently used
in Web-based MIR is provided by Markus Schedl 9. The �Million Songs Dataset� 10 contains some web-related
information like e.g. tag information provided by Last.fm.

A possibly very rich source of additional information on music content that has so far received little attention
in our community is music videos. The most prominent source for music videos is YouTube 11, but alternatives
like Vimeo 12 exist. Uploaded material contains anything from amateur clips to video blogs to complete movies,
with a large part of it being music videos. Whereas a lot of the content on YouTube has been uploaded by
individuals which may entail all kinds of copyright and legal issues, some large media companies have lately
decided to also offer some of their content. There exists a lively community around the so-called TRECVid
campaign 13, a forum, framework and conference series on video retrieval evaluation. One of the major tasks
in video information retrieval is automatic labelling of videos, e.g. according to genre, which can be done either
globally or locally [2]. Typical information extracted from videos are visual descriptors like color, its entropy and
variance, hue, as well as temporal cues like cuts, fades, dissolves. Object-based features like the occurrence of faces
or text and motion-based information like motion density and camera movement are also of interest. Text-based

4http://www.seyerlehner.info
5http://www.freesound.org
6http://www.ultimate-guitar.com
7http://ismir2000.ismir.net
8http://www.free-midi.org
9http://www.cp.jku.at/people/schedl/datasets.html
10http://labrosa.ee.columbia.edu/millionsong
11http://www.youtube.com
12http://www.vimeo.com
13http://trecvid.nist.gov
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2 Technological perspective

information derived from sub-titles, transcripts of dialogues, synopsis or user tags is another valuable source.
A potentially very promising approach is the combined analysis of a music video and its corresponding audio,
pooling information from both image and audio signals. Combination of general audio and video information is
an established topic in the literature, see e.g. [26] for an early survey. There already is a limited amount of research
explicitly on music videos exploiting both the visual and audio domain [9]. Although the TRECVid evaluation
framework supports a �Multimedia event detection evaluation track� consisting of both audio and video, to our
knowledge no data set dedicated speci�cally to music videos exists.

Another yet untapped source are machine readable tetxs on musicology that are available online (e.g. via
Google Books 14). Google books is a search engine that searches the full text of books if they have already been
scanned and digitised by Google. This offers the possibility of using Natural Language Processing tools to analyse
text books on music, thereby introducing MIR topics to the new emerging �eld of digital humanities.

As stated above, user-context data is any kind of data that allows us to model a single user in one speci�c
usage setting. In most MIR research and applications so far, the prospective user is seen as a generic being for
whom a generic one-for-all solution is suf�cient. Typical systems aim at modeling a supposedly objective music
similarity function which then drives music recommendation, play-listing and other related services. This however
neglects the very subjective nature of music experience and perception. Not only do different people perceive
music in different ways depending on their likes, dislikes and listening history, but even one and the same person
will exhibit changing tastes and preferences depending on a wide range of factors: time of day, social situation,
current mood, location, etc. Personalising music services can therefore be seen as an important topic of future
MIR research.

Following recent proposals (see e.g. [23]), we distinguish �ve different kinds of user context data: (i)
Environment Context, (ii) Personal Context, (iii) Task Context, (iv) Social Context, (v) Spatio-temporal Context.
The environmental context is de�ned as all entities that can be measured from the surroundings of a user, like
presence of other people and things, climate including temperature and humidity, noise and light. The personal
context can be divided into the physiological context and the mental context. Whereas physiological context
refers to attributes like weight, blood pressure, pulse, or eye color, the mental context is any data describing
a user's psychological aspects like stress level, mood, or expertise. Another important form of physiological
context data are recordings of gestures during musical performances with either traditional instruments or new
interfaces to music. The task content should describe all current activities pursued by the user including actions
and activities like direct user input to smart mobile phones and applications, activities like jogging or driving a car,
but also interaction with diverse messenger and microblogging services. The latter is a valuable source for a user's
social context giving information about relatives, friends, or collaborators. The spatio-temporal context reveals
information about a user's location, place, direction, speed, and time. As a general remark, the recent emergence
of �always on� devices (e.g. smart phones) equipped not only with a permanent Web connection, but also with
various built-in sensors, has remarkably facilitated the logging of user context data from a technical perspective.
Data sets on the user context are still very rare but e.g. the �user - song - play count triplets� and the Last.fm tags
of the �Million Song Dataset� 15 could be said to contain this type of personal information.

The proper documentation of the process of data assembly for all kinds of musically relevant data is a major
issue which has not yet gained suf�cient attention by the MIR community. In [21] an overview is provided
of the different practices of annotating MIR corpora. Currently, several methodologies are used for collecting
these data: - creating an arti�cial corpus [27], recording corpora [10] or sampling the world of music according
to speci�c criteria (Isophonics [19], Salami [24], Billboard [3], MillionSong [1]). The data can then be obtained
using experts (this is the usual manual annotation [19]), using crowd-sourcing [15] or so-called games with a
purpose (Listen-Game [25], TagATune [14], MajorMiner [18]) or by aggregating other content (Guitar-Tab [20]
MusiXMatch, Last.fm in the case of the MillionSong). As opposed to other domains, micro-working (such
as Amazon Mechanical Turk) is not (yet) a common practice in the MIR �eld. These various methodologies
for collecting data involve various costs: from the most expensive (traditional manual annotation) to the less

14http://books.google.com
15http://labrosa.ee.columbia.edu/millionsong
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2 Technological perspective

expensive (aggregation or crowd-sourcing). They also involve various qualities of data. This is related to the
inter-annotator and intra-annotator agreement which is rarely assessed in the case of MIR. Compared to other
�elds, such as natural language processing or speech, music-related data collection or creation does not follow
dedicated protocols. One of the major issues in the MIR �eld will be to better de�ne protocols to make reliable
annotated MIR corpora. Another important aspect is how our research community relates itself to initiatives
aiming at unifying data formats in the world wide web. Initiatives that come to mind are e.g. linked data 16 which
is a collection of best practices for publishing and connecting structured data on the Web and, especially relevant
for MIR, MusicBrainz 17 which strives to become the ultimate source of music information or even the universal
lingua franca of music. It should also be clear that the diverse forms of data important for MIR are very much
�live data�, i.e. many data sets are constantly changing over time and need to be updated accordingly. Additionally
our community should strive to create data repositories which allow open access for the research community and
possibly even the general public.

2.1.2 Speci�c Challenges

• Identify all relevant types of data sources describing music. We have to consider the all-encompassing
experience of music in all its broad multi-modality beyond just audio (video, lyrics, scores, symbolic
annotations, gesture, tags, diverse metadata from web-sites and blogs, etc.). To achieve this it will be
necessary to work together with experts from the full range of the multimedia community and organise the
data gathering process in a more systematic way compared to what has happened so far.

• Guarantee suf�cient quality of data (both audio and meta-data). At the moment data available to
our community stems from a wide range of very different sources obtained with very different methods
often not documented suf�ciently. We will have to come to an agreement concerning uni�ed data formats
and protocols documenting the quality of our data. For this a dialogue within our community is necessary
which should also clarify our relation to more general efforts of unifying data formats.

• Clarify the legal and ethical concerns regarding data availability as well as its use and exploitation.

This applies to the question what data we are allowed to have and what data we should have. The various
copyright issues will make it indispensable to work together with owners of content, copyright and other
stakeholders. All ethical concerns on privacy issues have to be solved. The combination of multiple sources
of data poses additional problems in this sense.

• Ascertain what data users are willing to share. One of the central goals of future MIR will be to model
the tastes, behaviors and needs of individual and not just generic users. Modelling of individual users for
personalisation of MIR services presents a whole range of new privacy issues since it requires handling
of very detailed and possibly controversial information. This is of course closely connected to policies of
diverse on-line systems concerning privacy of user data. This is also a matter of system acceptance going
far beyond mere legal concerns.

• Make available a suf�cient amount of data to the research community allowing easy and legal

access to the data. Even for audio data, which has been used for research right from the beginning of
MIR, availability of suf�cient benchmark data sets usable for evaluation purposes is still not a fully resolved
issue. To allow MIR to grow from an audio-centered to a fully multi-modal science we will need benchmark
data for all these modalities to allow evaluation and comparison of our results. Hence the already existing
problem of data availability will become even more severe.

• Create open access data repositories. It will be of great importance for the advancement of MIR to
create and maintain sustainable repositories of diverse forms of music related data. These repositories
should follow open access licensing schemes.

16http://linkeddata.org
17http://musicbrainz.org
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2.2 MUSIC REPRESENTATIONS

Data representations impact the effectiveness of MIR systems in two ways: algorithms are limited by the types of
input data they receive, and the user experience depends on the way thatMIR systems present music information to
the user. A major challenge is to provide abstractions which enable researchers and industry to develop algorithms
that meet user needs and to present music information in a form that accords with users' understanding of music.
The same challenge applies to content providers, who need to select appropriate abstractions for structuring,
visualising, and sonifying music information. These abstractions include features describing music information,
be it audio, symbolic, textual, or image data; ontologies, taxonomies and folksonomies for structuring music
information; graphical representations of music information; and formats for maintaining and sonifying music
data. The development of standard representations will advance MIR by increasing algorithm and system
interoperability between academia and industry as well as between researchers working on MIR subtasks, and will
provide a satisfactory user experience by means of musically and semantically meaningful representations.

2.2.1 State of the art

While audio recordings capture musical performances with a high level of detail, there is no direct relationship
between the individual audio samples and the experience ofmusic, which involves notes, beats, instruments, phrases
or melodies (the musicological perspective), and which might give rise to memories or emotions associated with
times, places or events where identical or similar music was heard (the user perspective). Although there is a
large body of research investigating the relationship between music and its meaning from the philosophical and
psychological perspectives [e.g. 2, 14, 21], scienti�c research has tended to focus more on bridging the �semantic
gap� between audio recordings and the abstractions that are found in various types of musical scores, such as
pitches, rhythms, melodies and harmonies. This work is known as semantic audio or audio content analysis (see
section 2.5).

In order to facilitate the extraction of useful information from audio recordings, a standard practice is to
compute intermediate representations at various levels of abstraction. At each level, features can describe an
instant in time (e.g. the onset time of a note), a segment or time interval (e.g. the duration of a chord) or the
whole piece (e.g. the key of a piece). Various sets of features and methods for evaluating their appropriateness
have been catalogued in the MIR literature [11, 12, 15, 17, 18].

Low-level features relate directly to signal properties and are computed according to simple formulae.
Examples are the zero-crossing rate, spectral centroid and global energy of the signal. Time-domain features such
as the amplitude envelope and attack time are computed without any frequency transform being applied to the
signal, whereas spectral features such as centroid, spread, �atness, skewness, kurtosis and slope require a time-
frequency representation such as the short time Fourier transform (STFT), the constant-Q transform (CQT) [1]
or the wavelet transform [9] to be applied as a �rst processing step. Auditory model-based representations [13]
are also commonly used as a front-end for MIR research.

Mid-level features (e.g. pitches and onset times of notes) are characterised by more complex computations,
where the algorithms employed are not always successful at producing the intended results. Typically a modelling
step will be performed (e.g. sinusoidal modelling), and the choice of parameters for the model will in�uence
results. For example, in Spectral Modelling Synthesis [24], the signal is explained in terms of sinusoidal partial
tracks created by tracking spectral peaks across analysis frames, plus a residual signal which contains the non-
sinusoidal content. The thresholds and rules used to select and group the spectral peaks determine the amount of
the signal which is interpreted as sinusoidal. This �exibility means that the representation with respect to such a
model is not unique, and the optimal choice of parameters is dependent on the task for which the representation
will be used.

High-level features (e.g. genre, tonality, rhythm, harmony and mood) correspond to the terms and concepts
used by musicians or listeners to describe aspects of music. To generate such features, the models employed tend
to be more complex, and might include a classi�er trained on a relevant data set, or a probabilistic model such as a
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hidden Markov model (HMM) or dynamic Bayesian network (DBN). Automatic extraction of high-level features
is not reliable, which means that in practice there is a tradeoff between the expressiveness of the features (e.g.
number of classes they describe) and the accuracy of the feature computation.

It should also be noted that the classi�cation of features into categories such as �high-level� is not an absolute
judgement, and some shift in usage is apparent, resulting from the search for ever higher levels of abstraction
in signal descriptors. Thus features which might have been described as high-level a decade ago might now
be considered to be mid-level features. Also features are sometimes described in terms of the models used to
compute them, such as psychoacoustic features (e.g. roughness, loudness and sharpness) which are based on
auditory models. Some features have been standardised, e.g. in the MPEG7 standard [7]. Another form of
standardisation is the use of ontologies to capture the semantics of data representations and to support automatic
reasoning about features, such as the Audio Feature Ontology proposed by Fazekas [5].

In addition to the literature discussing feature design for various MIR tasks, another strand of research
investigates the automatic generation of features [e.g. 17]. This is a pragmatic approach to feature generation,
whereby features are generated from combinations of simple operators and tested on the training data in order to
select suitable features. More recently, deep learning techniques have been used for automatic feature learning in
MIR tasks [6], where they have been reported to be superior to the use of hand-crafted feature sets for classi�cation
tasks, although these results have not yet been replicated in MIREX evaluations. It should be noted however that
automatically generated features might not be musically meaningful, which limits their usefulness.

Much music information is not in the form of audio recordings, but rather symbolic representations of the
pitch, timing, dynamics and/or instrumentation of each of the notes. There are various ways such a representation
can arise. First, via the composition process, for example when music notation software is employed, a score can
be created for instructing the musicians how to perform the piece. Alternatively, a score might be created via a
process of transcription (automatic or manual) of a musical performance. For electronic music, the programming
or performance using a sequencer or synthesiser could result in an explicit or implicit score. For example,
electronic dance music can be generated, recorded, edited and mixed in the digital domain using audio editing,
synthesis and sequencing software, and in this case the software's own internal data format(s) can be considered
to be an implicit score representation.

In each of these cases the description (or prescription) of the notes played might be complete or incomplete.
In the Western classical tradition, it is understood that performers have a certain degree of freedom in creating
their rendition of a composition, which may involve the choice of tempo, dynamics and articulation, or also
ornamentation and sometimes even the notes to be played for an entire section of a piece (an improvised
cadenza). Likewise in Western pop and jazz music, a work is often described in terms of a sequence of chord
symbols, the melody and the lyrics; the parts of each instrument are then rehearsed or improvised according to the
intended style of the music. In these cases, the resulting score can be considered to be an abstract representation
of the underlying musical work. One active topic in MIR research is on reducing a music score to a higher-level,
abstract representation [10]. However not all styles of music are based on the traditional Western score. For
example, freely improvised and many non-Western musics might have no score before a performance and no
established language for describing the performance after the fact.

A further type of music information is textual data, which includes both structured data such as catalogue
metadata and unstructured data such as music reviews and tags associated with recordings by listeners. Structured
metadata might describe the composers, performers, musical works, dates and places of recordings, instrument-
ation, as well as key, tempo, and onset times of individual notes. Digital libraries use metadata standards such
as Dublin Core and models such as the Functional Requirements for Bibliographic Records (FRBR) to organise
catalogue and bibliographic databases. To assist interoperability between data formats and promote the possibility
of automatic inference from music metadata, ontologies have been developed such as the Music Ontology [19].

Another source of music information is image data from digitised handwritten or printed music scores.
For preserving, distributing, and analysing such information, systems for optical music recognition (OMR) have
been under development for several years [20]. As in audio recordings, intermediate representations at various
abstraction levels are computed for digitised scores. The lowest-level representation consists of raw pixels from
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a digitised grayscale score, from which low-level features such as staff line thickness and vertical line distance are
computed. Mid-level features include segmented (but not recognised) symbols, while higher-level features include
interpreted symbols and information about connected components or symbol orientation. In order to formalise
these abstractions, grammars are employed to represent allowed combinations of symbols.

Looking beyond the conceptual organisation of the data, we brie�y address its organisation into speci�c �le
formats, and the development and maintenance of software to read, write and translate between these formats.
For audio data, two types of representations are used: uncompressed and compressed. Uncompressed (or pulse
code modulated, PCM) data consists of just the audio samples for each channel, usually prepended by a short
header which speci�es basic metadata such as the �le format, sampling rate, word size and number of channels.
Compression algorithms convert the audio samples into model parameters which describe each block of audio, and
these parameters are stored instead of the audio samples, again with a header containing basic metadata. Common
audio �le formats such as WAV, which is usually associated with PCM data, provide a package allowing a large
variety of audio representations. The MP3 format (formally called MPEG-2 Audio Layer III) uses lossy audio
compression and is common for consumer audio storage; the use of MP3 �les in MIR research has increased
in recent years due to the emergence of large-scale datasets. Standard open source software libraries such as
libsnd�le18 are available for reading and writing common non-proprietary formats, but some �le formats are
dif�cult to support with open source software due to the license required to implement an encoder.

For symbolic music data, a popular �le format is MIDI (musical instrument digital interface), but this is limited
in expressiveness and scope, as it was originally designed for keyboard instrument sequencing. For scores, a richer
format such as MusicXML or MEI (Music Encoding Initiative) is required, which are XML-based representations
including information such as note spelling and layout. For guitar �tabs� (a generic term covering tablature as
well as chord symbols with or without lyrics), free text is still commonly used, with no standard format, although
software has been developed which can parse the majority of such �les [8]. Some tab web sites have developed
their own formats using HTML or XML for markup of the text �les. Other text formats such as the MuseData
and Humdrum kern format [23] have been used extensively for musicological analysis of corpuses of scores.

For structured metadata, formats such as XML are commonly used, and in particular semantic web formats
for linked data such as RDFa, RDF/XML, N3 and Turtle are employed. Since these are intended as machine-
readable formats rather than for human consumption, the particular format chosen is less important than the
underlying ontology which provides the semantics for the data. For image data, OMR systems typically process
sheet music scanned at 300 dpi resolution, producing output in expMIDI (expressive MIDI), MusicXML or NIFF
(Notation Interchange File Format) formats.

Finally, although music exists primarily in the auditory domain, there is a long tradition of representing
music in various graphical formats. Common Western music notation is a primary example, but piano-roll
notation, spectrograms and chromagrams also present musical information in potentially useful formats. Since
music is a time-based phenomenon, it is common to plot the evolution of musical parameters as a function
of time, such as tempo and dynamics curves, which have been used extensively in performance research [3].
Simultaneous representations of two or more temporal parameters have been achieved using animation, for
example the Performance Worm [4], which shows the temporal evolution of tempo and loudness as a trajectory
in a two-dimensional space. Other visualisations include similarity matrices for audio alignment and structural
segmentation [16] and various representations for analysis of harmony and tonality [e.g. 22].

2.2.2 Speci�c Challenges

• Investigate more musically meaningful features and representations. There is still a signi�cant
semantic gap between the representations used in MIR and the concepts and language of musicians and
audiences. In particular, many of the abstractions used in MIR do not make sense to a musically trained
user, as they ignore or are unable to capture essential aspects of musical communication. The challenge of

18http://www.mega-nerd.com/libsnd�le
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designing musically meaningful representations must be overcome in order to build systems that provide a
satisfactory user experience. This is particularly the case for automatically generated features, such as those
utilising deep learning techniques, where the dif�culty is creating features well-suited for MIR tasks which
are still interpretable by humans.

• Develop more �exible and general representations. Many representations are limited in scope and
thus constrained in their expressive possibilities. For example, most representations have been created
speci�cally for describing Western tonal music. Although highly constrained representations might provide
advantages in terms of simplicity and computational complexity, it means that new representations have to
be developed for each new task, which inhibits rapid prototyping and testing of new ideas. Thus there is
a need to create representations and abstractions which are suf�ciently adaptable, �exible and general to
cater for the full range of music styles and cultures, as well as for unforeseen musical tasks and situations.

• Determine the most appropriate representation for each application. For some use cases it is not
bene�cial to use the most general representation, as domain- or task-speci�c knowledge might aid the
analysis and interpretation of data. However, there is no precise methodology for developing or choosing
representations, and existing �best practice� covers only a small proportion of the breadth of musical styles,
creative ideas and contexts for which representations might be required.

• Unify formats and improve system interoperability. The wealth of different standards and formats
creates a dif�culty for service providers who wish to create seamless systems with a high degree of
interoperability with other systems and for researchers who want to experiment with software and data
from disparate sources. By encouraging the use of open standards, common platforms, and formats
that promote semantic as well as syntactic interoperability, system development will be simpler and more
ef�cient.

• Extend the scope of existing ontologies. Existing ontologies cover only a small fraction of musical terms
and concepts, so an important challenge is to extend these ontologies to describe all types of music-related
information, covering diverse music cultures, communities and styles. These ontologies must also be linked
to existing ontologies within and outside of the MIR community in order to gain maximum bene�t from
the data which is structured according to the ontologies.

• Create compact representations that can be ef�ciently used for large-scale music analysis. It is
becoming increasingly important that representations facilitate processing of the vast amounts of music
data that exist in current and future collections, for example, by supporting ef�cient indexing, search and
retrieval of music data.

• Develop and integrate representations for multimodal data. In order to facilitate content-based
retrieval and browsing applications, representations are required that enable comparison and combination
of data from diverse modalities, including audio, video and gesture data.
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2.3 DATA PROCESSING METHODOLOGIES

Since its origins, the MIR community has used and adapted data processing methodologies from related research
�elds like speech processing, text information retrieval, and computer vision. A natural consequential challenge
is to more systematically identify potentially relevant methodologies from data processing disciplines and stay up-
to-date with their latest developments. This exchange of data processing methodologies reduces duplication
of research efforts, and exploits synergies between disciplines which are, at a more abstract level, dealing with
similar data processing problems. It will become even more relevant as MIR embraces the full multi-modality of
music and its full complexity as a cultural phenomenon. This requires a regular involvement and commitment of
researchers from diverse �elds of science as well as an effort of communication across disciplines, and possibly
even the formulation of joint research agendas. Such a more organised form of exchange of methodologies is
likely to have a boosting impact on all participating disciplines due to the joining of forces and combined effort.

2.3.1 State of the art

The origins of Music Information Research were multi-disciplinary in nature. At the �rst edition of the ISMIR
conference series, in 2000 19, although the number of research papers was signi�cantly smaller than in later
editions, papers drew ideas from a relatively large number of disciplines: digital libraries, information retrieval,
musicology and symbolic music analysis, speech processing, signal processing, perception and cognition, image
processing (with applications to optical music recognition), and user modeling. This initial conference also debated
intellectual property matters and systematic evaluations.

Since then, the ISMIR conference has grown tremendously, as illustrated by the number of unique authors
that underwent a 400% increase between 2000 and 2011. In the last 12 years, neighboring �elds of science with
a longer history have in�uenced this growth of the MIR community. From the initial diversity of backgrounds
and disciplines, not all had equal in�uence in the growth of MIR. Looking back on the �rst 12 years of ISMIR
shows a clear predominance of bottom-up methodologies issued from data-intensive disciplines such as Speech
Processing, Text Retrieval and Computer Vision, as opposed to knowledge-based disciplines such as Musicology
or (Music) Psychology. One possible reason for the relatively stronger in�uence of data-intensive disciplines over
knowledge-based ones is that the initial years of ISMIR co-occur with phenomena such as industrial applications
of audio compression research and the explosive growth in the availability of data through the Internet (including
audio �les) [8]. Further, following typical tasks from Speech Processing, Computer Vision and Text Retrieval,
MIR research rapidly focused on a relatively small set of preferential tasks such as local feature extraction, data
modeling for comparison and classi�cation, and ef�cient retrieval. In the following, we will review data processing
methods employed in the three above-mentioned disciplines and relate their domains to the music domain to
point out how MIR could bene�t from further cross-fertilisation with these disciplines.

The discipline of Speech Processing aims at extracting information from speech signals. It has a long history
and has been in�uential in a number of MIR developments, namely transcription, timbre characterisation, source
recognition and source separation.

Musical audio representations have been in�uenced by research in speech transcription and speaker recogni-
tion. It is common-place to start any analysis of musical audio by the extraction of a set of local features, typical of
speech transcription and speaker recognition, such as Mel Frequency Cepstrum Coef�cients (MFCCs) computed
on short-time Fourier transforms. In speech processing, these features make up the basic building blocks of
machine learning algorithms that map patterns of features to individual speakers or likely sequences of words in
multiple stages (i.e. short sequences of features mapped to phones, sequences of phones mapped to words and
sequences of words mapped to sentences). A prevalent technique for mapping from one stage to the next are
Hidden Markov Model (HMMs). Similar schemes have been adapted to music audio data and nowadays form the
basis of music signal classi�cation in genres, tags or particular instruments.

19http://ismir2000.ismir.net

17

http://ismir2000.ismir.net


2 Technological perspective

Research in speech processing has also addressed the problem of separating out a single voice from a
recording of many people speaking simultaneously (known as the �cocktail party� problem). A parallel problem
when dealing with music data is isolating the components of a polyphonic music signal. Source separation is
easier if there are at least as many sensors as sound sources [18]. But in MIR, a typical research problem is
the under-determined source separation of many sound sources in a stereo or mono recording. The most basic
instantiation of the problem assumes that N source signals are linearly mixed into M < N channels, where the task
is to infer the signals and their mixture coef�cients from the mixed signal. To solve it, the space of solutions has
to be restricted by making further assumptions, leading to different methods: Independent Component Analysis
(ICA) assumes the sources to be independent and non-Gaussian, Sparse Component Analysis (SCA) assumes the
sources to be sparse, and Non-negative Matrix Factorisation (NMF) assumes the sources, coef�cients and mixture
to be nonnegative. Given that speech processing and content-based MIR both work in the audio domain, local
features can be directly adopted � and in fact, MFCCs have been used in music similarity estimation from the very
beginning of MIR [10]. HMMs have also been employed for modeling sequences of audio features or symbolic
music [9]. Several attempts have been made to apply source separation techniques to music, utilising domain-
speci�c assumptions on the extracted sources to improve performance: [28] assume signals to be harmonic, [27]
assumes continuity in time, and [3] incorporates instrument timbre models.

Text Retrieval has also had a great in�uence on MIR, particularly the tasks of document retrieval (in a given
collection, �nd documents relevant to a textual query in the form of search terms or an example document) and
document classi�cation (assign a given document to at least one of a given set of classes, e.g., detect the topic of a
news article or �lter spam emails). Both problems require some abstract model for a document. The �rst system
for document classi�cation [17] represented each document as a word count vector over a manually assembled
vocabulary of �clue words�, then applied a Na�'ive Bayes classi�er to derive the document's topic, neither regarding
the order nor co-occurrence of words within the document. Today, documents are still commonly represented as
a word count vector � or Bag of Words (BoW) � for both classi�cation and retrieval, but improvements over [17]
have been proposed on several levels, namely stemming, term weighting [22], topic modeling [7], semantic
hashing [12], word sense disambiguation [19], and N-gram models. Some of these techniques have been applied
to �nd useful abstract representations of music pieces as well, but their use implies that a suitable equivalent to
words can be de�ned for music. Some authors tried to apply vector quantisation (�stemming�) to frame-wise
audio features (�words�) to form a BoW model for similarity search [24]. [21] additionally employ TF/IDF term
weighting of their so-called �audio-words�. [13] successfully applied HDP topic models for similarity estimation,
albeit modeling topics as Gaussian distributions of MFCCs rather than multinomials over discrete words.

Finally, three typical Computer Vision problems have been particularly in�uential in MIR research, namely
scene recognition (classifying images of scenery), multiple object detection (decomposing a complex image into a set
of known entities and their locations) and image retrieval by example. Again, in Computer Vision, all these tasks
require abstract representations of images or image parts to work with, and researchers have developed a wealth
of image-speci�c local features and global descriptors (see [6], pp.17-24 for a review). A common framework
has been inspired by Text Retrieval: [29] regard images as documents composed of �keyblocks�, in analogy to
text composed of keywords. Keyblocks are vector-quantised image patches extracted on a regular grid, forming
a 2-dimensional array of �visual words�, which can be turned into a Bag of Visual Words (BoVW) by building
histograms. Several improvements have since been proposed, namely regarding visual words [26], Pooling [2],
Spatial pyramids [15], Topic modeling [25], Generative image models [14], Learning invariances [11], Semantic
hashing [14]. As for Speech and Text processing, some of these techniques have been adopted for the processing
of music audio features. Examples include [1] who employs sparse coding of short spectrogram excerpts of
harpsichord music, yielding note detectors. [4] use Haar-like feature extractors inspired from object detection
to discriminate speech from music. [20] apply horizontal and vertical edge detectors to identify harmonic and
percussive elements. [16] apply Convolutional RBMs for local feature extraction with some success in genre
classi�cation. [23] learn local image features for music similarity estimation. Additionally, as music pieces can
be represented directly as images by using e.g. images of spectrograms, several authors directly applied image
processing techniques to music: [5] extract features for genre classi�cation with oriented difference of Gaussian
�lters. Recent improvements on using image features for music classi�cation can be found in [5].
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2.3.2 Speci�c Challenges

• Systematise cross-disciplinary transfer of methodologies. Early breakthroughs in MIR came from
a relatively limited number of external �elds, mainly through the contributions of individual researchers
working in neighboring �elds -e.g. Speech Processing- and applying their methodologies to music. Being
more systematic about this implies two challenges for the MIR community: �rst, to stay up-to-date with
latest developments in disciplines that were in�uential in some points of MIR evolution, and second to
de�ne ways to systematically identify potentially relevant methodologies from neighboring disciplines.

• Take advantage of the multiple modalities of music data. Music exists in many diverse modalities
(audio, text, video, score, etc.) which in turn call for different processing methodologies. Given a particular
modality of interest -e.g. audio-, in addition to identifying promising processing methodologies from
neighboring �elds dealing with the same modality -e.g. speech processing-, an effort will have to be made
to apply methodologies across modalities. Further, as music exists simultaneously in diverse modalities,
another challenge for MIR will be to include methodologies from cross-modal processing, i.e. using joint
representations/models for data that exists, and can be represented, simultaneously in diverse modalities.

• Adopt recent Machine Learning techniques. As exempli�ed above, MIR makes a great use of machine
learning methodologies, in particular many tasks are formulated according to a batch learning approach
where a �xed amount of annotated training data is used to learn models which can then be evaluated with
similar data. However, music data can now be found in very large amounts (e.g. in the scale of hundreds of
thousands of items for music pieces in diverse modalities, or in the scale of tens of millions in the case of e.g.
tags), music is increasingly existing in data streams rather than in data sets, and the characterisation of music
data can evolve with time (e.g. tag annotations are constantly evolving, sometimes even in an adverse way).
These data characteristics (i.e. very large amounts, streaming, non-stationarity) -Big Data characteristics-
imply a number of challenges for MIR, such as data acquisition, dealing with weakly structured data formats,
scalability, online (and real-time) learning, semi-supervised learning, iterative learning and model updates,
learning from sparse data, learning with only positive examples, learning with uncertainty, etc. (see e.g.
Yahoo! Labs �key scienti�c challenges� in Machine Learning 20 and the White Paper �Challenges and
Opportunities with Big Data� published by the Computing Community Consortium 21).
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2.4 KNOWLEDGE-DRIVEN METHODOLOGIES

For a long time, the MIR community has been focusing on a range of bottom-up approaches, addressing the kinds
of data we use and the types of algorithms we apply to it. A major challenge is to complement this focus and
explore other methodologies and �elds of science which approach music in a more integrated way. After all, music
information research is just one of many sciences that centre on and care about music, which include musicology,
psychology, sociology and neuroscience. Over decades of research, each of these �elds has aggregated knowledge
concerning music which can inform the process of music information research. The focus here is on gaining
domain knowledge from outside of MIR as opposed to borrowing methodologies or algorithms. This will require
that researchers from different disciplines engage in a dialogue on all aspects of music. The potential impact is
that all participating disciplines bene�t from the diverse and differing views on the phenomenon of music, in all
its aspects and forms.

2.4.1 State of the art

In what follows, we brie�y review the already existing and potential relations between MIR and musicology,
psychology, sociology and neuroscience, which we identi�ed as particularly relevant for our �eld of research.

Musicology

Musicology is fundamental to MIR, and building bridges between disciplines is at the very core of research in
musicology [4]. Musicologists have taken an active role in the ISMIR community, for instance, musicology has
always been considered a key topic in the ISMIR call for papers (see, e.g. research areas related to computational
musicology, computational ethnomusicology explicitly considered at ISMIR 2012 22). Moreover, the conference
on Interdisciplinary Musicology (CIM 23) has included papers on computational modeling in the program, and
there is a special edition of this conference on the topic of �Technology� that is planned for 2014 24. There
are also some relevant journals in this intersection (e.g. Journal of Mathematics and Music 25) and the Special
Issue on Computational Ethnomusicology in the Journal of New Music Research 26. An overview on the
relationship between MIR and musicology is provided in the Musicology tutorial presented at ISMIR 2011 by
Volk & Wiering 27, and a guide to the use of MIR technology in musicology is given in [11].

Although musicological studies in MIR have traditionally focused on the symbolic domain, recent develop-
ments in music transcription and feature extraction technologies from audio signals have opened new research
paths at the intersection of musicology and signal processing. Key research topics in this area have been, among
others, melodic similarity, key estimation and chord tracking. Musicological and MIR research have been con-
trasted 28 in terms of, among others, data sources, repertoires and methodologies, and some opportunities for
future research have been pointed out. MIR technologies can contribute with tools and data that are useful
for musicological purposes, and Musicology can provide relevant research problems and use cases that can be
addressed through MIR technologies. A mutual in�uence is starting to take place, although there is still a need
for more collaboration between musicologists and technicians to create a truly interdisciplinary research area and
contribute with truly music-rooted models and technologies. Only by this collaboration can we address the cur-
rent gap between feature extractors and expert analyses and make signi�cant contributions to existing application
needs, e.g. version identi�cation, plagiarism detection, music recommendation, and to study how the relationship
between people and music changes with the use of technology (e.g. �Musicology for the Masses� project 29).

22http://ismir2012.ismir.net/authors/call-for-participation
23http://www.uni-graz.at/~parncutt/cim
24http://www.sim.spk-berlin.de/cim14_919.html
25http://www.tandfonline.com/toc/tmam20/current
26http://www.tandfonline.com/toc/nnmr20/current
27http://ismir2011.ismir.net/tutorials/ISMIR2011-Tutorial-Musicology.pdf
28http://ismir2011.ismir.net/tutorials/ISMIR2011-Tutorial-Musicology.pdf
29http://www.elec.qmul.ac.uk/digitalmusic/m4m
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Psychology of Music

Music is created and experienced by humans, and the ultimate goal of MIR is to produce results that are helpful and
interesting for humans. Therefore it is only natural to care about how humans perceive and create music. Music
psychology tries to explain both musical behavior and musical experience with psychological methods. Its main
instrument therefore is careful experimentation involving human subjects engaged in some kind of musical activity.
Research areas span the whole spectrum fromperception tomusical interaction in large groups. Research questions
concern the perception of sound or sound patterns, as well as perception of more musically meaningful concepts
like harmony, pitch, rhythm, melody and tonality. The emotions associated with personal music experience are a
part of music psychology, as are personal musical preferences and how they are in�uenced through peer groups
and family, and musical behaviors from dancing to instrument playing to the most sophisticated interaction within
whole orchestras.

Therefore music psychology should be able to provide valuable knowledge for MIR researchers in a whole
range of sub-�elds. Indeed there already is a certain exchange of knowledge between music psychology and MIR.
Just to give a few examples, Carol L. Krumhansl, an eminent �gure in music psychology, was an invited speaker
at the Eleventh International Society for Music Information Retrieval Conference (ISMIR 2010), in Utrecht,
Netherlands 30 talking about �Music and Cognition: Links at Many Levels�. Her monograph on �cognitive
foundations of musical pitch� [10] is still seen as one of the standard texts on the subject. Gerhard Widmer,
who has been an important contributor to MIR early on, was a keynote speaker at the �12th International
Conference on Music Perception and Cognition (ICMPC)� 31, which is one of the most important conferences
in the �eld of music psychology. At last year's major conference in the MIR �eld (ISMIR 2012 32) there was a
joint presentation of an MIR researcher and a psychologist elaborating on the sometimes complicated dialog of
the two disciplines [1, 2].

Sociology of Music

Social psychology and the sociology of music focus on individuals as members of groups and on how groups and
shared cultural codes in�uence music-related attitudes and activities. This point of view allows one to ask and
answer important questions like: How do individuals and groups use music? How is the collective production of
music made possible? How does music relate to broader social distinctions, especially class, race, and gender?

Although it is evident that such a sociology of music should be able to provide important insights not only
for the �eld of MIR, many authors have suggested that research over recent decades has largely ignored the
social functions of music at the expense of its cognitive and emotional functions (see e.g. [8]). [7] concluded that
music serves three social functions: it is used by individuals to help manage their moods, self-identity [5], and
interpersonal relationships. [14] elaborated this idea, showing that a sample of 13- to 14-year-olds listened to music
to portray a social image to others, and to ful�ll their emotional needs. Similarly, [16] showed that American
and English adolescents listened to music to satisfy both emotional and social needs, as well as for reasons of
self-actualisation. [12] remarked that listening to music was �a social activity�, which offered an opportunity for
participants �to socialise with friends� (e.g., dancing, sharing live music). Music has a stronger social component
for teenagers and young people than for seniors but it still keeps some powers to strengthen social bonds and to
provide memory aids when brain functions decline. In this respect, life-span and elderly-centred applications are
yet to be fully explored and exploited [13]. How MIR can bene�t from these and other results concerning the
sociology of music is still a largely open question which opens up new and promising areas of research.

Neuroscience

All music psychological questions raised above could of course also be examined with neuroscienti�c methods.
Instead of measuring the subject's behavior in music psychological experiments or directly asking subjects about
their experiences concerning music it is possible to measure various signals from the human brain during such
experiments. Possible signals range from electro-encephalography (EEG) to magneto-encephalography (MEG)

30http://ismir2010.ismir.net
31http://icmpc-escom2012.web.auth.gr
32http://ismir2012.ismir.net
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or functional magnetic resonance imaging (fMRI). Each of the signals has its own characteristic strengths and
weaknesses. E.g. EEG has a very good temporal but poor spatial resolution where fMRI is just the opposite. No
matter what brain signals are being used, the fundamental question is always what parts of the brain contribute in
what way to a subject's experience or creation ofmusic. It is not immediately clear whatMIR could gain from such a
knowledge about brain structures involved in perception and production of music that could go beyond knowledge
obtained from psychological experiments not utilising neuroscienti�c methods. The biggest contribution might
concern problems where humans have dif�culty self-assessing their performance and experience. One example
is the experience of emotions when listening to music. Neuroscienti�c methods might be able to provide a
more quantitative and maybe more accurate picture than human self-assessment (see e.g. [3], [15]). Differences
in brain structure and function between skilled musicians and non-musicians is another well researched subject
(see e.g. [6], [9]). The same holds for the study of the neuronal processes during performance of music where the
sensorimotor interplay is at the center of interest (see [17] for a recent review).

2.4.2 Speci�c Challenges

• Integrate insights from disciplines relevant to MIR and make them useful for our research. This
requires mutual understanding and exchange of results and researchers. The challenge is to integrate
research agendas through the formulation of common interests and goals as well as a common vocabulary
and dedicated communication paths. This will be important for both MIR and all other disciplines caring
about music since there is a mutual bene�t to be gained from this.

• Develop richer musical models incorporating musicological knowledge. MIR has been focusing on
a limited number of musical concepts, which are modelled at a shallower depth than they are treated by
musicologists. Enriching these concepts will help bridge the gap between low-level MIR representations
and higher-level semantic concepts.

• Extend and strengthen existing links tomusic psychology. An example for a joint interest is the clearer
formulation and understanding of the notion of �music similarity� with the help of music psychological
results and proper experimentation. This requires that music psychologists be informed about MIR models
and methods to compute music similarity and that MIR researchers are being educated about how music
psychologists access subjective notions and cognitive aspects of music similarity in humans. Expected
outcomes are improved models and algorithms to compute music similarity as well as computer aided
selection of research stimuli for the psychological experiments.

• Give due attention to the social function of music in our research. This makes it necessary that MIR
cares about groups of individuals and their interaction instead of about disconnected individuals. Taste
formation, preference and music selection are a combined function of personal and group variables, and
we currently do not know how to weight both aspects to achieve good predictive models. Research and
technologies that help to understand, modify, increase or make possible group cohesion, improvements on
self-image, or strengthen collective bonds could have a strong impact, especially on disfavoured, problem-
prone and marginal groups. The �nal challenge here would be to be able to shift the increasing trend of
enjoying music as an individual, isolated, activity, making social ways to search, share, listen to, and re-create
the otherwise �personal� collections of music possible.

• Learn, understand and eventually integrate neuro-scienti�c results concerningmusic. The question
of howmusic in�uences emotions of listeners is a good example which is of great interest to MIR and where
a growing body of neuro-scienti�c results on the basics of emotional experience exists. Comprehension
of these results could enable better and richer MIR models of emotion in music. On the other hand,
education of neuroscience researchers in MIR technology might help design of brain studies on music (e.g.
in producing generative musical research stimuli).
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2.5 ESTIMATION OF ELEMENTS RELATED TO MUSICAL CONCEPTS

By musical concept extraction we refer to the estimation of the elements of a notation system from the audio
signal and the estimation of higher-level semantic information from these elements. These elements belong to a
vocabulary and are assembled according to a grammar speci�c to a culture. The challenge here is to automatically
derive musical concepts from audio signals or from commonly available symbolic data, such as MIDI or scores.
Extracting musical concepts from audio signals is technically a very dif�cult task and new ways to perform
this still need to be found. More speci�cally, we need to develop better source separation algorithms; develop
methodologies for joint estimation of music content parameters; and use symbolic information plus audio data to
extract higher level semantic concepts. For this reason, this challenge does not only involve researchers (in signal
processing, machine learning, cognition and perception, and musicology), but also content providers (record
companies), who could help by delivering material for research (such as the separate audio tracks of multi-track
recordings). Enabling the description of data in terms of musical concepts can help improve the understanding
of the content and hence develop better use or new uses of this content. Having access to separate source
elements or to accurate score information may have a huge impact on the creative industries (game industry,
music e-learning . . . ) and the music distribution industry (better access to music), as well as facilitating large-scale
musicological analyses.

2.5.1 State of the art

In MIR, Audio Content Analysis (ACA) aims at extracting musical concepts using algorithms applied to the audio
signal. One of its goals is to estimate the score of a music track (melody, harmony, rhythm, beat and downbeat
positions, overall structure) from the audio signal. ACA has been a major focus of research in the MIR community
over the past decade. But how can algorithm performance be further improved in this �eld?

Most ACA algorithms aim at estimating two kinds of concepts: subjective or application-oriented concepts
(such as genre, mood, user tags and similarity), and musical concepts (such as pitch, beat, meter, chords and
structure). Whatever the task, ACA algorithms �rst need to extract meaningful information from the signal and
then map it to the concept. ACA therefore involves research related to signal processing (extracting better audio
features or creating better signal models such as the sinusoidal model performing better source separation), and to
knowledge encoding and discovery (how to encode/acquire knowledge in/with an algorithm) including therefore
machine-learning (SVM, AdaBoost, RandomForest). Considering that subjective concepts are hard to de�ne, their
estimation is usually performed using examples, hence using machine-learning to acquire the knowledge from
these examples. Musical concepts can be de�ned explicitly or by example, hence ACA algorithms either acquire
the knowledge through prede�ned models (such as a musical grammar to de�ne chord transition probabilities)
or trained. A last trend concerns the estimation of subjective concepts using estimated musical concepts as
information (for example inferring the genre from the estimated tempo and/or chord progression).

�Musical concepts� denotes the parameters related to written music. Since the MIR community is largely
made up of Western researchers, written music refers to the music notation system originating from European
classical music, consisting of notes with an associated position and duration inside a bar, in the context of a
meter (hence providing beat positions inside the bars), a clef (indicating the octaves assigned to the notes), a key
signature (series of sharps or �ats) organised by instrument (or hands) into parallel staffs, and �nally organised
in a large structure corresponding to musical sections. An extension of common notation summarises groups
of simultaneously occurring notes using chord symbols. ACA aims at retrieving this music notation from the
observation of an audio music track (realisation of a generative music process). Since the audio signal represents
a realisation of the music notation it exhibits variations in terms of interpretation (not all the notes are played,
pitches vary over time, and musicians modify timing). ACA algorithms estimate pitches with associated starting
and ending times which are then mapped to the [pitch-height, clef, key, metrical position and duration] system.
All this makes music transcription a dif�cult problem to solve. Moreover, until recently, from an application
point-of-view, the market place was considered limited (to users with musical training). Today, with the success
of applications such as Melodyne (multi-pitch estimation), Garage-Band, the need for search using Query-by-
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Humming (dominant melody extraction), mobile applications such as Tonara (iPad) and online applications such
as Songs2See 33, information related to music transcription is now reaching everyday people. For the estimation
of music transcription two major trends can be distinguished.

Non-informed estimation (estimation-from-scratch)

These approaches attempt to estimate the various music score concepts from scratch (without any information
such as score or chord-tabs). In this category, approaches have been proposed for estimating the various pitches,
the key, the sequence of chords, the beat and downbeat positions and the global structure.

Multi-pitch estimation is probably the most challenging task since it involves being able to identify the
various pitches occurring simultaneously and estimating the number of sources playing at any time. According
to [37], most multi-pitch algorithms follow three main principles closely related to mechanisms of the auditory
system: harmonicity, spectral smoothness, and synchronous amplitude evolution within a given source. From
these principles a number of approaches are derived: solving the problem using a global optimisation scheme
such as NMF [35], harmonic temporal structured clustering [13], iterative optimisation [14] or a probabilistic
framework [31]. Considering the fact that the performance obtained in the past years in the related MIREX task
( 69% note-accuracy for simple music materials) remains almost constant, it seems that a glass ceiling has been
reached in this domain and that new approaches should be studied. A sub-problem of multi-pitch estimation can
be found in the simpler �melody extraction� problem (which is also related to the �lyric recognition/ alignment�
described below). The principles underlying melody extraction methods [32] are similar, but only one pitch needs
to be estimated, which is usually the most pre-dominant hence easily detected in the signal. Because of this, much
better performance has been achieved for this task (up to 85% in MIREX-2011).

Key and chord estimation are two closely related topics. They both aim at assigning a label chosen from a
dictionary (a �xed set of 24 tonalities, or the various triads with possible extensions) to a segment of time. Given
that the estimation of key and chords from estimated multi-pitch data is still unreliable algorithms rely for the
most part on the extraction of Chroma or Harmonic Pitch Class Pro�les [8] possibly including harmonic/pitch-
enhancement or spectrum whitening. Then, a model (either resulting from perceptual experiments, trained using
data or inspired by music theory) is used to map the observations to the labels. In this domain, the modeling of
dependencies (with HMMs or Bayesian networks) between the various musical parameters is a common practice:
dependencies between chords and key [26] between successive chords, between chord, metrical position and
bass-note [20], or between chord and downbeat [23]. Key and chord estimation is the research topic that relies
the most on music theory.

While music scores de�ne the temporal grid at multiple metrical levels, most research focuses on the beat
level (named tactus). In this �eld, methods can be roughly subdivided into a) audio-to-symbolic or onset-based
methods and b) energy-variation-based methods [33]. The periodicities can then be used to infer the tempo
directly or to infer the whole metrical structure (tatum, tactus, measure, systematic time deviations such as swing
factor [16]) through probabilistic or multi-agent models. Other sorts of front-ends have also been used to provide
higher-level context information (chroma-variation, spectral balance [15] [28]). Given the importance of correct
estimation of the musical time-grid provided by beat and downbeat information, this �eld will remain active for
some time. A good overview can be found in [9].

Research on the estimation of Music Structure from audio started at the end of the '90s with the work
of Foote [6] (co-occurrence matrix) and Logan [18]. By �structure� the various works mean detection of
homogeneous parts (state approach [27]) or repetitions of sequences of events, possibly including transpositions
or time-stretching (sequence approach [27]). Both methods share the use of low-level features such as MFCC
or Chroma/PCP as front-end. In the �rst case, methods are usually based on time-segmentation and various
clustering or HMM techniques [17]. Sequence approaches usually �rst detect repetitions in a self-similarity matrix
and then infer the structure from the detected repetitions using heuristics or �tness approaches [24]. A good
overview of this topic can be found in [25].

33http://www.songs2see.com
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Informed estimation (alignment and followers)

These approaches use previous information (such as given by a score, a MIDI �le or a text-transcription) and
align it to an audio �le hence providing inherently its estimation. This method is currently applied to two �elds
for which estimation-from-scratch remains very complex: scores and lyrics.

Score alignment and score following are two closely related topics in the sense that the latter is the real-time
version of the �rst. They both consist in �nding a time-synchronisation between a symbolic representation and
an audio signal. Historically, score following was developed �rst with the goal of allowing interactions between a
computer and amusician ([5], [34]) usingMIDI or �ngering information and not audio because of CPU limitations.
This work was later extended by Puckette [29] to take into account pitch estimation from audio and deal with
polyphonic data. Given the imperfect nature of observations, [10] introduced statistical approaches. Since 1999,
Hidden Markov Model/ Viterbi seems to have been chosen as the main model to represent time dependency [30].
The choice of Viterbi decoding, which is also used in dynamic time warping (DTW) algorithms, is the common
point between Alignment and Followers [22]. Since then, the focuses of the two �elds have been different.
Alignment focuses on solving computational issues related to DTW and Follower on anticipation (using tempo
or recurrence information [3]). While formerly being the privilege of a limited number of people, today score
following is now accessible to a large audience through recent applications such as Tonara (iPad) or Songs2See
(web-based).

Automatic transcription of the lyrics of a music track is another complex task. It involves �rst locating
the signal of the singer in the mixed audio track, and then recognising the lyrics conveyed by this signal (large
differences between the characteristics of the singing voice and speech make standard speech transcription systems
unsuitable for the singing voice). Work on alignment started with the isolated singing voice [19] and was later
extended to the singing voice mixed with other sources. Usually systems �rst attempt to isolate the singing voice
(e.g. using the PreFest dominant melody detection algorithm [7], then estimate a Voice Activity Criterion and
then decode the phoneme sequence using a modi�ed HMM topology (�ller model in [7]), adapting the speech
phoneme model to singing. Other systems also exploit the temporal relationships between the text of the lyrics
and the music. For example, the system Lyrically [36] uses the speci�c assumption that lyrics are organised in
paragraphs as the music is organised in segments. The central segment, the chorus, serves as an anchor-point.
Measure positions are used as the anchor-point for lines.

Deriving musical information from symbolic representations

Research related to the extraction of higher-level music elements from symbolic representations has always been
at the heart of MIR, with research centred around systems such as Humdrum [12], MuseData, Guido/MIR [11],
jSymbolic [21], Music21 [4] or projects such as Wedel Music [1] and MUSART [2]. Most of the higher-level
elements are the same as those targeted by audio description (for example, the symbolic tasks run at MIREX:
genre, artist, similarity, cover song, chord, key, melody identi�cation, meter estimation), but some, due to current
limitations of audio processing, are still speci�c to symbolic processing (e.g. recognition of motives and cadences).

2.5.2 Speci�c Challenges

• Separate the various sources of an audio signal. The separation of the various sources of an audio
track (source separation) facilitates its conversion to a symbolic representation (including the score and
the instrument names). Conversely, the prior knowledge of this symbolic information (score and/or
instruments) facilitates the separation of the sources. Despite the efforts made over the last decades,
ef�cient source separation and multi-pitch estimation algorithms are still lacking. Alternative strategies
should therefore be exploited in order to achieve both tasks, such as collaborative estimation.

• Jointly estimate the musical concepts. In a music piece, many of the different parameters are inter-
dependent (notes often start on beat or tatum positions, pitch most likely belongs to the local key).
Holistic/joint estimation should be considered to improve the performance of algorithms and the associated
computational issues should be solved.
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• Develop style-speci�c musical representations and estimation algorithms. Depending on the music
style, different types of representation may be used (e.g. full score for classical music and lead sheets
for jazz). Based on previous knowledge of the music style, a priori information may be used to help the
estimation of the relevant musical concepts.

• Consider non-Western notation systems. Currently, most analyses are performed from the point of
view of Western symbolic notation. Dependence of our algorithms on this system should be made explicit.
Other notation systems, other informative and user-adapted music representations, possibly belonging to
other music cultures, should be considered, and taken into account by our algorithms.

• Compute values for the reliability of musical concept estimation. Many musical concepts (such as
multi-pitch or tempo) are obtained through �estimation� (as opposed to MFCC which is a cascade of
mathematical operators). Therefore the values obtained by these estimations may be wrong. The challenge
is to enable algorithms to compute a measure of the reliability of their estimation (�how much the algorithm
is sure about its estimation�). From a research point of view, this will allow the use of this �uncertainty�
estimation in a higher-level system. From an exploitation point of view, this will allow the use of these
estimations for automatically tagging music without human intervention.

• Take into account reliability in systems. Estimations of musical concepts (such as multi-pitch or beat)
can be used to derive higher-level musical analysis. We should study how the uncertainty of the estimation
of these musical concepts can be taken into account in higher-level algorithms.

• Develop user-assisted systems. If it is not possible to estimate the musical concepts fully automatically,
then a challenge is to study how this can been done interactively with the user (using relevance feedback).
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2.6 EVALUATION METHODOLOGIES

It is paramount to MIR that independent researchers build upon previous research, and an overarching challenge
in MIR is to de�ne and implement research evaluation methodologies that effectively contribute to creation of
knowledge and general improvements in the �eld. In many scienti�c disciplines dealing with data processing,
signi�cant improvements over the long term have been achieved by empirically de�ning evaluation methodologies
via several iterations of an experimental �loop� including formalisation, implementation, experimentation, and
�nally validity analysis. In MIR, evaluation initiatives have played an increasing role in the last 10 years, and the
community is presently facing the validity analysis issue: that is, �nding the most appropriate way to build upon its
own legacy and rede�ne the evaluation methodologies that will better lead to future improvements, the resolution
of which will in turn entail further technical challenges down the line (i.e., down the �loop�). This will require
above all a deeper involvement of more MIR researchers in the very de�nition of the evaluation methodologies,
as they are the individuals with the best understanding of relevant computational issues. Importantly, this will also
require the involvement of the music industry (via e.g. proposing evaluations of relevance to them), and content
providers (in order for researchers to have access to data). Effective MIR evaluations will impact in a fundamental
manner the very way MIR research is done, it will positively affect the width and depth of the MIR research, and
it will increase the relevance of MIR to other research �elds.

2.6.1 State of the art

Many experimental disciplines have witnessed signi�cant improvements over the long term thanks to community-
wide efforts in systematic evaluations. This is the case for instance of (text-based) Information Retrieval with the
TREC initiative (Text REtrieval Conference see 34) and the CLEF initiative (Cross-Language Evaluation Forum 35),
Speech Recognition [8], Machine Learning [5], and Video and Multimedia Retrieval with e.g. the TRECVID 36

and VideoCLEF initiatives (the latter later generalised to the �MediaEval Benchmarking Initiative for Multimedia
Evaluation� 37).

Although evaluation �per se� has not been a traditional focus of pioneering computer music conferences
(such as the ICMC) and journals (e.g. Computer Music Journal), recent attention has been given to the topic.
In 1992, the visionary Marvin Minsky declared: �the most critical thing, in both music research and general AI
research, is to learn how to build a common music database� [6], but it was not until a series of encounters,
workshops and special sessions organised between 1999 and 2003 by researchers from the newly-born Music
Information Retrieval community that the necessity of conducting rigorous and comprehensive evaluations was
recognised [3].

The �rst public international evaluation benchmark took place at the ISMIR Conference 2004 [2], where the
objective was to compare state-of-the-art audio algorithms and systems relevant for some tasks of music content
description. This effort has then been systematised and continued via the yearly Music Information Retrieval
Evaluation eXchange (MIREX). MIREX has widened the scope of the evaluations and now covers a broad range
of tasks, including symbolic data description and retrieval [4].

The number of evaluation endeavors issued from different communities (e.g. Signal Processing, Data Mining,
Information Retrieval), yet relevant to MIR, has recently increased signi�cantly. For instance, the Signal Separation
Evaluation Campaign (SiSEC 38) was started in 2008, and deals with aspects of source separation in signals of
different natures (music, audio, biomedical, etc.). A Data Mining contest was organised at the 19th International
Symposium onMethodologies for Intelligent Systems (ISMIS) with two tracks relevant to MIR research (Tunedit):
Music Genre recognition and Musical Instrument recognition 39. The CLEF initiative (an IR evaluation forum)

34http://trec.nist.gov
35http://www.clef-initiative.eu
36http://www-nlpir.nist.gov/projects/trecvid
37http://multimediaeval.org
38http://sisec.wiki.irisa.fr
39http://tunedit.org/challenge/music-retrieval
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extended its scope to MIR with the MusiCLEF initiative 40 [7]. The ACM Special Interest Group on Knowledge
Discovery and Data Mining organises a yearly competition, the KDD Cup 41, focusing on diverse Data Mining
topics every year, and in 2011, the competition focused on a core MIR topic: Music Recommendation 42. In
2012, the MediaEval Benchmarking Initiative for Multimedia Evaluation 43 organised a music-related task for
the �rst time. Also in 2012, the Million Song Dataset challenge appeared, a music recommendation challenge
incorporating many different sorts of data (user data, tags . . . ) 44.

The establishment of an annual evaluation forum (MIREX), accepted by the community, and the appearance
of relevant satellite forums in neighbouring �elds have undoubtedly been bene�cial to the MIR �eld. However,
a lot of work is still necessary to reach a level where evaluations will have a systematic and traceable positive
impact on the development of MIR systems and on the creation of new knowledge in MIR. For about 10 years,
meta-evaluation methodologies have been instrumental in advancement of the Text Information Retrieval �eld;
they need to be addressed in MIR too [12]. The special panel and late-breaking news session held at ISMIR 2012
addressed the various methodologies used in the MIR �eld and compared those to the ones used in other �elds
such as Media-Eval [9].

Reproducible Research

Much computational science research is conducted without regard to the long-term sustainability of the outcomes
of the research, apart from that which appears in journal and conference publications. Outcomes such as research
data and computer software are often stored on local computers, and can be lost over time as projects end,
students graduate and equipment fails and/or is replaced. Enormous effort is invested in the production of
these outputs, which have great potential value for future research, but the bene�t of this effort is rarely felt
outside of the research group in which it took place. Arguments for sustainability begin with the cost-savings that
result from re-use of software and data, but extend to other issues more fundamental to the scienti�c process.
These are enunciated in the �reproducible research� movement [1, 13], which promotes the idea that, along with
any scienti�c publication, there should be a simultaneous release of all software and data used in generating the
results in the publication, so that results may be veri�ed, comparisons with alternative approaches performed, and
algorithms extended, without the signi�cant overhead of reimplementing published work.

Various practical dif�culties hinder the creation of long-term sustainable research outputs. The research soft-
ware development process is usually gradual and exploratory, rather than following standard software engineering
principles. This makes code less robust, so that it requires greater effort to maintain and adapt. Researchers
have varying levels of coding ability, and may be unwilling to publicise their less-than-perfect efforts. Even when
researchers do make code available, their priority is to move on to other research, rather than undertake the
additional software engineering effort that might make their research more usable. Such software engineering
efforts might be dif�cult to justify in research funding proposals, where funding priority is given to work that
is seen to be �research� over �development� efforts. Also, research career progression tends to be awarded on
the basis of high-impact papers, while software, data and other outputs are rarely considered. Another perceived
dif�culty is that public release of software might compromise later opportunities for commercialisation, although
various licenses exist which allow both to occur [11].

To these general problems we may add several issues speci�c to the music information research community.
The release of data is restricted by copyright regulations, particularly relating to audio recordings, but this is also
relevant for scores, MIDI �les, and other types of data. The laws are complex and vary between countries. Many
researchers, being unsure of the legal rami�cations of the release of data, prefer the safer option of not releasing
data. Reliance on speci�c hardware or software platforms also makes code dif�cult to maintain in the longer
term. One solution for obsolete hardware platforms is the use of software emulation, as addressed by the EU
projects PLANETS and KEEP. For music-related research, such general-purpose emulation platforms might not
be suf�cient to reproduce audio-speci�c hardware [10].

40http://clef2012.org/resources/slides/MusiClef.pdf
41http://www.sigkdd.org/kddcup/index.php
42http://www.kdd.org/kdd2011/kddcup.shtml
43http://www.multimediaeval.org
44http://www.kaggle.com/c/msdchallenge
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In the MIR community, great effort has been expended to provide a framework for the comparison of
music analysis and classi�cation algorithms, via the MIREX evaluations, as well as the more recent MusiClef and
MSD challenges (c.f. section 2.6). More recently, the Mellon-funded NEMA project 45 attempted to develop
a web service to allow researchers to test their algorithms outside of the annual MIREX cycle. Although there
are a growing number of open-access journals and repositories for software and data, there are obstacles such
as publication costs and lack of training which hinder widespread adoption. Addressing the training aspect are
the Sound Software 46 and Sound Data Management Training 47 projects, the SHERPA/RoMEO project, which
contains information on journal self-archiving and open access policies, and the spol initiative 48 for reproducable
research.

2.6.2 Speci�c Challenges

• Promote best practice evaluation methodology within the MIR community. The MIR community
should strive to promote within itself, at the level of individual researchers, the use of proper evaluations,
when appropriate.

• De�ne meaningful evaluation tasks. Speci�c tasks that are part of large-scale international evaluations
de�ne de facto the topics that new contributors to the MIR �eld will work on. The very de�nition of such
tasks is therefore of utmost importance and should be addressed according to some agreed criteria. For
instance, tasks should have a well-de�ned community of users for whom they are relevant, e.g. while audio
onset detection is only marginally relevant for industry, it is very relevant to research. The MIR research
community should also open up to tasks de�ned by the industry, e.g. as the Multimedia community does
with the �Grand Challenges� at the ACM Multimedia conference.

• De�ne meaningful evaluation methodologies. Evaluation of algorithms should effectively contribute
to the creation of knowledge and general improvements in the MIR community. Effectively building upon
MIR legacy and providing meaningful improvements call for a constant questioning of all aspects of the
evaluation methodology (metrics, corpus de�nition, etc.). For instance, evaluation metrics are currently
useful for quantifying each system's performance; a challenge is that they also provide qualitative insights on
how to improve this system. Also, data curation is costly and time-consuming, which implies a challenge
to aggregate, for evaluation purposes, data and metadata with the quality of a curated collection, and to
preserve provenance.

• Evaluate whole MIR systems. While evaluation of basic MIR components (estimators for beat, chords,
fundamental frequency, etc.) is important, the MIR community must dedicate more effort to evaluation of
whole MIR systems, e.g. music recommendation systems, music browsing systems, etc. Such evaluations
will lead to insights with regards to which components are relevant to the system and which not.

• Promote evaluation tasks using multimodal data. Most MIR systems are concerned with audio-only
or symbolic-only scenarios. A particular challenge is to target the evaluation of multimodal systems,
aggregating information from e.g. audio, text, etc.

• Implement sustainable MIR evaluation initiatives. An important challenge for MIR evaluation initiat-
ives is to address their sustainability in time. The MIR community must dedicate more effort to its legacy
in terms of evaluation frameworks. This implies many issues related for example to general funding, data
availability, manpower, infrastructure costs, continuity, reproducibility, etc.

• Target long-term sustainability of Music Information Research. Focusing on the sustainability of
MIR evaluation initiatives is only part of the general challenge to target long-term sustainability of MIR
itself. In particular, consistent efforts should be made to foster reproducible research through papers,

45http://nema.lis.illinois.edu/?q=node/12
46http://www.soundsoftware.ac.uk
47http://rdm.c4dm.eecs.qmul.ac.uk/category/project/sodamat
48spol-discuss@list.ipol.im
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software and data that can be reused to verify or extend published work. Also training will be necessary
to effect the reorientation of the MIR community to adopt research practices for ensuring reproducibility,
from the code, data, and publication perspectives. Any progress towards creating reproducible research will
have an immediate impact not only on the MIR �eld, but also towards the application of MIR technologies
in other research �elds.
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CHAPTER 3

User perspective

Music Information Research considers the user perspective, both in order

to understand the user roles within the music communication chain and

to develop technologies for the interaction of these users with music data.

MIR aims to capture, process and model the data gathered through user

interaction and develop methodologies for the design of new musical devices

in order to enable new interaction possibilities between users and these

devices.
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3 User perspective

3.1 USER BEHAVIOUR

Music is listened to, performed and created by people. It is therefore essential to consider the user as central to
the creation of user scenarios, hence to the development of technologies. Developing user applications involves
analysing the user needs in respect of novel scenarios and the user behaviour in respect of existing ones, thus
enabling the creation of the user-speci�cation-development loop. Taking into account user needs applies to
all stages of the development loop, however the analysis of user behaviour must be carefully conducted by a
specialist. Gathering feedback from users is a research �eld in itself and shouldn't be done without carefully
designed methods. Considering user needs through the analysis of user behaviour will have a great impact on the
usability of the developed MIR technologies.

3.1.1 State of the art

Activities related to music can be roughly grouped into (i) listening (to recorded media or live performances;
review/discussion of what was heard), (ii) performing (interpretation, improvisation, rehearsal, recording, live
performance) and (iii) creating (composition, recording, studio production, improvisation). Other activities are
concerned with researching, studying (education, musicology), sharing, worship and dance (see part 5.3).

Within each group, MI research can relate to the analysis of practices or to the proposal of tools to help the
practice.

Listening.

Among these categories, research presented in conferences such as ISMIR mainly focus on the listening scenario
and propose tools to help people access (listen to) music. But little attention is paid to analysing user practices.
As pointed out by [24], a focus on the user has repeatedly been identi�ed as a key requirement for future MIR
research, yet empirical user studies have been relatively sparse in the literature, the overwhelming research attention
in MIR remaining systems-focused. [13] proposes an overview of user studies performed so far in the MIR �eld
and propose explanation why their impact on the �eld have been weak so far: lack of �ndability, dominance
of small scaled studies that are dif�cult to generalize. Important questions related to the user are: What are its
requirements and information needs? How do people organise their music? How would they like to see, access,
search through digital libraries? What is the in�uence of the listening context? What is the role of social relations?
Given that one of the Grand-Challenges in MIR is the creation of a full-featured system [7], these questions
should be answered in order to make the system useful for users. This is especially true considering that the results
provided by the little research done on this topic yielded unexpected results. For example [12] showed that some
of the users are seeking new music without speci�c goals in mind, possibly just to update and expand their musical
knowledge or for the sheer pleasure of searching. With this in mind, systems should support various browsing
approaches. [3] highlight user needs for use tagging (scenarios in which a given piece of music might be relevant),
a subject currently largely under-studied. [11] identi�es the changes in musical taste according to social factors
and [4] suggest support for collaborative play-list creation. [23] conclude that textual queries for melodic content
are too dif�cult to be used by ordinary users. The various possibilities to design music recommendation systems
that take user into account are summarized in [20]. According to [10], landscape representations or geographic
views of music collections have certain disadvantages and that users seem to have preferences for simple and clean
interfaces. A recent survey made within the Chorus+ EU project [14], also highlights important points such as the
prevalence of YouTube as the most-used music service (among participants to the survey). It also highlights the
fact that most people search using artist, composer, song title, album or genre but the search possibilities enabled
by new technologies (taste, mood or similarity) appear less prevalent.

Performing.

If few papers relate to the listener-behaviour, this is not the case for performers and performances (in terms of
music concerts, opera, theatre, dance) or interactions (interactive installations or instruments). A large community
has been studying the subject of performance from the pioneer works of [21]. In this, a performer is considered
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as the essential mediator between composer and listener. These studies show the impact of the performer,
the performances, the large-structure and micro-structure, and the intentional mood on the choice of tempo,
timing, loudness, timbre and articulation [8, 19]. First experiments were made using piano analysis (for ease of
event-recoding) [18], but today they are extended to saxophone [16], cello [2] and singing voice. Understanding
the process of performance has several goals: a better understanding of what makes a great interpretation
(the Horowitz or Rachmaninov factors [25]); music education; and automatic expressive perfomances (KTH
model of [22] and Rendering Contest (Rencon) 1). Tools to visualise performance interpretation have also
been proposed [6]. According to Delgado [5], different research strategies can be distinguished: (a) analysis-
by-measurement (based on acoustic and statistical analysis of performances); (b) analysis-by-synthesis (based on
interviewing expert musicians); and (c) inductive machine learning applied to large database of performances. An
example of the use of MIR research for inductive machine learning is given by [2]. Considering that performance is
not limited to the instrumentalists, the conductor is also studied [15], and research includes studies on interaction
and gesture ([9], [1]). The large number of related contributions at conferences such as ISPS (International
Symposium on Performance Science) 2 shows that this domain is very active. As another example of the activity
in this �eld, the current SIEMPRE EU 3 project aims at developing new theoretical frameworks, computational
methods and algorithms for the analysis of creative social behaviourwith a focus on ensemblemusical performance.

Composing.

While historical musicology aims at studying composition once published, hence not considering the composition
practice, research groups such as the one of Barry Eaglestone [17] at the Information Systems and the Music
Informatics research groups, or new projects such as MuTec2 4 aim at following composers during their creative
project (using sketches, drafts, composer interviews, and considering composer readings). Related to this new
�eld, the conference TCPM-2011 �Tracking the Creative Process in Music� 5 has been created.

3.1.2 Speci�c Challenges

• Analyse user needs and behaviour carefully. Gathering feedback from users is actually a research �eld
in itself and shouldn't be done without carefully designed methods.

• Develop tools and technologies that take user needs and behaviour into account. Much work in
MIR is technology-driven, rather than being user, context or application driven. Thus the challenge is
to step into the shoes of users and understand their world-view in order to produce useful applications.
User studies must be considered right from the beginning of a research project. Appropriate tools and
technologies must be developed to cater for different types of users who perform the same task in different
contexts.

• Identify and study new user roles related to music activities. The aforementioned user-types (listener,
performer and composer) are prototypes and not orthogonal (guitar-hero involves both listening and
performing). Moreover users can have different expertise for the same role (common people, musicologist).
Development ofMIR toolswill also create newuser-pro�les that need to be identi�ed and taken into account.

• Develop tools that automatically adapt to the user. According to the role, pro�le and context the tools
must be personalised. Those pro�les are therefore dynamic, multidimensional. Those are also fuzzy given
the nature of the input provided by the user. An alternative to the personalisation of tools is the use of a
companion (the �music guru�).

1http://renconmusic.org
2http://www.performancescience.org
3http://siempre.infomus.org
4http://apm.ircam.fr/MUTEC
5http://tcpm2011.meshs.fr/?lang=en
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3.2 USER INTERACTION

The grand challenge of user interaction is how to design MIR systems that put the user at the centre of the system.
This applies to the whole interaction loop, including visualisation, input devices, manipulation metaphors, and
also system adaptation to user behaviour. This challenge is relevant because it contributes to both the user's and
to the researcher's (e.g. system designer's) understanding of the system's features and components, the overall
purpose of the system, and the contribution the system can make to the user's activities. The bene�t to users is
more productive work�ows and systems which better serve the users' needs. The researchers stand to bene�t
from the feedback loop which enables them to �ne-tune and develop systems with greater accuracy. Effective
user-oriented research will have a major impact on the usability of MIR systems and their wider deployment.

3.2.1 State of the art

In the last decade, HumanComputer Interaction (HCI) research has witnessed a change in focus from conventional
ways to control and communicate with computers (keyboards, joysticks, mice, knobs, levers, buttons, etc.) to more
intuitive uses of non-conventional devices such as gloves, speech recognition, eye trackers, cameras, and tangible
user interfaces. As a result of technological advances and the desire to surpass the WIMP (window, icon, menu,
pointing device) limitations, interaction research has progressed beyond the desktop and the ubiquitous graphical
user interface (GUI) into new physical and social contexts. Since terms such as �multi-touch� and gestures like
�two-�nger pinch and zoom� have become part of the users' daily life, novel research areas such as �tangible
interaction� have �nally entered the mainstream. However, aside from the ongoing research explicitly focused
towards real-time musical performance which typically falls under the New Interfaces for Musical Expression
(NIME6) discipline, not much of this research has yet been devoted to novel interface and interaction concepts in
the �eld of MIR.

The use of HCI and related methodologies in MIR

The Association for Computing Machinery de�nes human-computer interaction (HCI) as �a discipline concerned
with the design, evaluation and implementation of interactive computing systems for human use and with the
study of major phenomena surrounding them.�7 HCI involves the study, planning, and design of the interaction
between people (users) and computers. It is often regarded as the intersection of computer science, behavioural
sciences, design and several other �elds of study. Interaction between users and computers occurs at the interface
which is the result of particular affordances of a given combination of software and hardware. The basic and
initial goal of HCI is therefore to improve the interactions between users and computers by making computers
more usable and responsive to the user's needs. For decades HCI has mostly focused on making interaction more
ef�cient, though more recently the emphasis has shifted to the user's Quality of Experience, highlighting the bene�ts
of beauty and fun, and the intrinsic values of the experience and its outcomes [e.g. 24, 27]. The human component
in HCI is therefore highly relevant from the cultural, psychological and physiological perspectives.

MIR could bene�t from knowledge inherited fromHCI and other related disciplines such as User Experience
(UX), and Interface and Interaction Design studies. These methodologies could bring bene�ts not only to the
conception of MIR systems at earlier design stages, but also for the evaluation and subsequent iterative re�nement
of these systems. While the evaluation of MIR systems is traditionally and historically conceived to provide
categorically correct answers (e.g �nding or identifying a known target song), new evaluation challenges are
presented by open systems which leave users room for interpretation [e.g. 30], include more subjective aspects
(e.g. the users' emotions, perceptions and internal states [e.g. 10]), or encourage contextual engagement [e.g. 9]9.
Furthermore, beyond the evaluation of User Experience, another MIR component that would directly bene�t
from HCI-related knowledge would be research into open and holistic systems for the creation of MIR systems
and tools.

6http://www.nime.org
7ACM SIGCHI Curricula for Human-Computer Interaction: 8
9The current SOA in MIR evaluation of research results is covered in section 2.6
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Music Search Interaction

Over the past 12 years a few projects from the MIR community have contributed to the development of interfaces
for music search and discovery. In the �eld of data visualisation, there is an extensive bibliography on the
representation of auditory data. In the particular case of the visual organisation of musical data, solutions often
consist of extracting feature descriptors from data �les, and creating a multidimensional feature space that will
be projected onto a 2D surface, using dimensionality reduction techniques (e.g. Islands of Music [28]; SOM: Self
Organizing Map [17]; SOMeJB [19] and [5]). Beyond 2D views, the advantage of a topological metaphor has been
applied to facilitate users' exploration of big data collections in nepTune, an interactively explorable 3D version of
Islands of Music, which supports spatialised sound playback [16], and the Globe of Music which places a collection
on a spherical surface to avoid any edges or discontinuities [18]. More recently, MusicGalaxy [32] implements an
adaptive zoomable interface for exploration that makes use of a complex non-linear multi-focal zoom lens and
introduces the concept of facet distances representing different aspects of music similarity. Musicream [7] uses the
�search by example� paradigm, representing the songs with dynamic coloured circles which fall from the top of
the screen and when selected show their title and can be used to '�sh' for similar ones.

In terms of developing a user-oriented visual language for screen-based music searches, the interactive aspect
of most commercial library music applications has resorted to the metaphor of spreadsheets (e.g. iTunes) or has
relied on searching for music by �lling a set of forms and radio buttons (e.g. SynchTank). Innovative approaches
from theMIR community suggested visuallymapping sound clusters into abstract �islands� (e.g. [28]); collaborative
mapping onto real geographical visual references (e.g. Freesound 10); and tangible tabletop abstract symbols (e.g.
SongExplorer [14]). Visual references have included control panels used in engineering (e.g. MusicBox [20]); gaming
platforms (Musicream [7]); lines of notation (e.g. Sonaris and mHashup [23]); or turntables (Songle [8]).

A few MIR-driven search interfaces have addressed different user contexts. Mediasquare [4] addresses social
interaction in 3D virtual space where users are impersonated by avatars enabling them to browse and experience
multimedia content by literally walking through it. decibel 151 [22] enables multi-user social interaction in physical
space by turning each user into a �walking playlist�, creating search environments for social networking in real time.
Special visual interfaces have addressed poorly described or less familiar music to the user (e.g. �eld recordings;
ethnomusicological collections) to both educate and allow music discovery in an entertaining way (e.g. Songlines
2010 and [21]). User contexts however remain vastly under-researched and remain a major challenge for the MIR
community.

Some of the above interfaces have adopted HCI research methods which consider MIR-driven search systems
holistically, not only as visual representations of data, but focusing on the user Quality of Experience. This resulted
from a coherent system design approach which creates a feedback loop for an iterative research and innovation
process between the interactive front end and the data processing back end of the application. Further research
challenges are presented by a holistic approach to MIR user-oriented system design in the context of novel devices
and modalities, real-time networks, collaborative platforms, open systems, physical experiences and tangible
interfaces.

Tangible and Tabletop Interaction

Tangible User Interfaces (TUI), which combine control and representation in a single physical device emphasise
tangibility and materiality, physical embodiment of data, bodily interaction and the embedding of systems in real
spaces and contexts. Although several implementations predate this concept, the term Tangible User Interface
was coined at the MIT MediaLab in 1997 [33] to de�ne interfaces which augment the real physical world by
coupling digital information to everyday physical objects and environments. Such interfaces contribute to the user
experience by fusing the representation and control of digital data with physical artefacts thus allowing users to
literally �grasp data� with their own hands.

Within the domain of Tangible Interaction, Tabletop Interaction constitutes a special research �eld which
uses the paradigm of a horizontal surface meant to be touched and/or manipulated via the objects placed on it.
In contrast to the mouse and keyboard interface model which restricts the user's input to an ordered sequence of

10http://www.freesound.org
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events (click, click, double click, etc.), this type of interface allows multiple input events to enter the system at the
same time, enabling any action at any time or position, by one or several simultaneous users. The implicit ability of
tabletop interfaces to support physical tracked objects with particular volume, shape andweight properties, expands
the bandwidth and richness of the interaction beyond the simple idea of multi-touch. Such objects can represent
abstract concepts or real entities; they can relate to other objects on the surface; they can be moved and turned
around on the table surface, and these spatial changes can affect their internal properties and their relationships
with neighbouring objects. The availability of open-source, cross-platform computer vision frameworks that allow
the tracking of �ducial markers combined with multi-touch �nger tracking (e.g. reacTIVision, which was developed
for the Reactable project [1]), have become widely used among the tabletop developers community (both academic
and industrial), and have increased the development of tabletop applications for educational and creative use
(e.g. [15];[6].

There is a growing interest in applying Tabletop Interfaces to the music domain. From the Audiopad [29]
to the Reactable [13], music performance and creation has become the most popular and successful application
�eld in the entire lifetime of this interaction paradigm. Tabletop interfaces developed using MIR have speci�cally
focused on interacting with large music collections. Musictable [31], takes a visualisation approach similar to
the one chosen in Pampalk's Islands of Music, for creating a two dimensional map that, when projected on a
table, is used to make collaborative decisions to generate playlists. Hitchner [11] uses a SOM to build the map
visually represented by a low-resolution mosaic, enabling the users to redistribute the songs according to their
preferences. Audioscapes is a framework enabling innovative ways of interacting with large audio collections using
touch-based and gestural controllers [26]. The MTG's SongExplorer [14] uses high-level descriptors of musical
songs applied to N-Dimensional navigation on a 2D plane, thus creating a coherent 2D map based on similarity
with specially designed tangible pucks for more intuitive interaction with the tabletop visual interface. Tests
comparing the system with a conventional GUI interface controlling the same music collection, showed that the
tabletop implementation was a much more ef�cient tool for discovering new, valuable music to the users. Thus the
speci�c affordances of tabletop interfaces (support of collaboration and sharing of control; continuous, real-time
interaction with multidimensional data; support of complex, expressive and explorative interaction [12]), together
with the more ubiquitous and easily available individual multi-touch devices, such as tablets and smart-phones,
can bring novel approaches to the �eld of MIR, not only for music browsing but particularly for the more creative
aspects related to MIR music creation and performance.

The physical embodiment of data, bodily interaction and the embedding of systems in real spaces and contexts
is particularly present in recent research into gestural and spatial interaction. The Real-Time Musical Interactions
team at IRCAM has been working with motion sensors embedded within everyday objects to explore concepts
of physical and gestural interaction which integrate performance, gaming and musical experience. Their Interlude
project 11 combined interactivity, multimodal modelling, movement tracking and machine learning to explore
new means for musical expression ([2], [3] and [25]). The results included the Urban Musical Game which breaks
down some of the boundaries between audience and musician by producing a sound environment through the
introduction of a musical ball; Mogees which uses piezo sensors coupled with gesture recognition technology for
music control allowing users to easily transform any surface into a musical interface; and MOs (Modular Musical
Objects) which represent one of the pioneering attempts to answer the challenges of tangible, behaviour-driven
musical objects for music creation. This project has demonstrated the huge potential of research into physical
and gestural interfaces for MIR within the context of future internet applications for the Internet of Things.

3.2.2 Speci�c Challenges

• Develop open systems which adapt to the user. HCI research has shown that systems which leave users
room for interpretation, include more subjective aspects or encourage contextual engagement, contribute
to an improved Quality of Experience for the user.

• DesignMIR-based systemsmore holistically. A SystemDesign approach must include user experience,

11http://interlude.ircam.fr
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and not only focus on the engine or the algorithms of a given system. Front and back-ends cannot be
interchanged without consequences: a given algorithmic mechanism will probably favour a particular type
of interface or interaction methods.

• Develop interfaces to better address collaborative, co-creative and sharing multi-user applications.

Most MIR interfaces have been developed for a single user. In the context of open social networks,
multi-user MIR applications present opportunities for enhanced co-creation and sharing or music.

• Develop interfaces whichmake a broader range ofmusicmore accessible and �edutain� audiences.

Many users �nd that new (to them) styles of music are inaccessible. Interfaces which elucidate structure,
expression, harmony, etc. can contribute to �enhanced listening� offering both education and entertainment
at the same time.

• Expand the MIR systems interaction beyond the multi-touch paradigm. Physical tracked objects
with particular volume, shape and weight properties, can considerably expand the bandwidth and richness
of MIR interaction.

• Consider the context in the design of MIR systems. MIR methods or applications should take into
account the context and device in which they will be used, e.g., a multi-user spatial environment is not
simply an augmented geographic interface; interaction methodologies for a tabletop application cannot be
simply transferred from those used on a smartphone or mobile screen-based device.

• Design MIR system interfaces for existing and novel modalities for music creation. �Real-time
MIR� interface and interaction research can successfully bridge the gap between MIR and NIME (New
Interfaces for Musical Expression). Physical and gestural interaction can integrate performance, gaming
and musical experience.
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CHAPTER 4

Socio-cultural perspective

Music Information Research involves the understanding and modeling of

music-related data in its full contextual complexity. Music is a com-

munication phenomenon that involves people and communities immersed

in speci�c social and cultural context. MIR aims at processing musical

data that captures the social and cultural context and at developing

data processing methodologies with which to model the whole musical

phenomenon.
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4 Socio-cultural perspective

4.1 MUSIC-RELATED COLLECTIVE INFLUENCES, TRENDS AND BEHAVIORS

Music is a social phenomenon, thus its understanding andmodeling requires the inclusion of this dimension. Social
interaction is a driving force of music listening, categorisation, preference, purchasing behavior, etc. Additionally,
teams or crowds are usually able to achieve feats that go beyond what individuals accomplish, and this is especially
relevant for annotation and other collaborative scenarios. Finally, scattered in different virtual places, formats and
time-scales, there is much data available that contains implicit information about music-related social factors, which
could make possible the understanding and prediction of trends and other collective behaviours related to music.
To carry out this research, which would complement the other, more traditional, approaches to music description,
we need to involve people working in Social Computing, Sociologists and experts in Dynamic Systems and
Complex Networks. Social computing will help to gather massive annotations and obtain knowledge on the key
actors and factors of collective-mediated processes in musical choice, interaction and conceptualisation. Human
dynamics will make possible massive-scale predictions about trends, ways and moments to listen to music, and
provide pointers to the best locations and conditions for commercial and marketing activities (e.g., Buzzdeck1).
The main obstacle to promising advances is the scarcity of open data and the privacy issues associated with access
to data. Contrastingly, there are also issues to be solved when managing and analysing extremely large amounts
of data of this kind.

4.1.1 State of the art

Even though most of the XXth Century technologies have made possible different modes of experiencing music
individually, if we consider all the cultures in the world, music is still mostly experienced and valued in a social
context. Even in the Western culture individual listening becomes a social activity as the experience is frequently,
afterwards or simultaneously, interpreted and shared with other people. Hence, the value of music as social
mediator and the social dynamics it makes possible have yet to be properly addressed by researchers. In addition
to a traditional view corresponding to the social psychology of music/sociology of music (see section 2.4) we
consider two research perspectives on social aspects of music: human dynamics and social computing.

How has MIR addressed, supported or capitalised on the social aspects of music? What is still to be done?
As an orientation, the word �social� can be found in more or less 100 papers presented in the past 12 ISMIR
editions but in most of the cases it is just a passing word, or part of a somewhat shallow expression like �social
tags� or �social networks�. In the bunch of papers that really deal with social aspects, social psychology and social
computing are dominant perspectives, whereas human dynamics has been, up to now, absent.

Most basic research on social aspects of music has focused on individuals with relation to signi�cant groups
(i.e., peers, family, gang, nation), as we have summarised above. Alternatively, social behavior can be considered
globally, nearly getting rid of the individual (we cannot avoid the link to Asimov's �psychohistory�2, like researchers
on social animals (especially insects) usually do. A global understanding of the �ow patterns of spread, in�uence
and consumption/enjoyment of a speci�c musical agent or content calls for new techniques such as complex
network analysis or human dynamics [1]. Our knowledge of the interplay between individual activity and social
network is limited, partly due to the dif�culty in collecting large-scale data that record, simultaneously, dynamical
traces of individual behaviors, their contexts and social interactions. This situation is changing rapidly, however,
thanks to the pervasive use of mobile phones and portable computing devices. Indeed, the records of mobile
communications collected by telecommunication carriers provide extensive proxy of individual symbolic and
physical behaviors and social relationships. The high penetration of mobile phones implies that such data captures
a large fraction of the population of an entire country. The availability of these massive CDRs (Call Detail
Records) has made possible, for instance, the empirical validation in a large-scale setting of traditional social
network hypotheses [18]. Taking advantage of them for music-related purposes is still pending because massive
geo-temporally tagged data is still one of the bottlenecks for MIR researchers. We are still lacking knowledge

1http://buzzdeck.com
2http://en.wikipedia.org/wiki/Psychohistory_(�ctional)
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about listening patterns and how they are modulated by interaction with peers, by sharing of musical information
with peers, or by geographical and environmental conditions (e.g., weather, time of the day) [6]. In order to
study massive concurrent behavior patterns we only have available a large dataset of last.fm scrobblings harvested
by òscar Celma 3. It is interesting to note that the most recent �Million Song Dataset� 4 does not include any
geo-temporal information. Telecommunication service companies should then be targeted by researchers and
research project managers in order to make some progress along this line.

The social computing view, on the other hand, addresses either the creation of social conventions and context
by means of technology (i.e., wikis, bookmarking, networking services, blogs), or the creation of data, information
and knowledge in a collective and collaborative way (e.g., by means of collaborative �ltering, reputation assignment
systems, tagging [8], game playing [17], collaborative music creation tools, etc.). It is usually assumed that social
computation, sometimes also called social information processing, will be more effective and ef�cient than
individual or disconnected efforts [16]. When information is created socially, it is not independent of people, but
rather is signi�cant precisely because it links to people, who are in turn associated with other people [3]. Games
with a purpose (GWAP) are a paradigmatic example of social computation for annotation of different knowledge
domains. Major Miner 5, The Listen Game, TagATune 6, MagnaTagATune 7 [9], Moodswings [7], Mooso, HerdIt
[2], etc., have been successfully used for gathering massive ground-truth �annotations� of music excerpts or for
generating data about music preference or relatedness (see above section Collecting music related data). A further
step in generating knowledge consists in building ontologies from tagging and writing behavior inside a delimited
social network [10]; [12]. A uni�ed model of social networks and semantics where social tagging systems can be
modeled as a tripartite graph with actors, concepts and instances (e.g., songs or �les) makes possible, by analysing
the relations between concepts both on the basis of co-occurrence in instances and common usage by actors
(users), the emergence of lightweight ontologies from online communities [11]. A completely different approach
to community knowledge extraction for the design of ontologies is the implementation of Web portals with
collaborative ontology management capabilities [19]. It has been recently reported on these strategies related to
the Freesound community [4]. In addition to games and tag-related activity, collective musical knowledge can be
generated by means of musical activity itself (and not just by tags or texts). Collective generation of playlists has
been studied under different perspectives [14] [15]. Precisely in this category Turntable.fm 8 (unavailable in many
European countries) is one of the recent successful musical apps for the iPhone (but see also Patent US7603352
9, or just the collective playlist creation function as available in Spotify). Mashups [13] are another contemporary
type of music content that bene�ts from music audio and context analysis technologies [5] although it is still
pending to study how collective knowledge emerges inside communities that are focused on them. To conclude,
a proper multidisciplinary forum to discuss music social computation would be the �International Conference on
Social computing, behavioural modeling and prediction� 10 (held since 2008).

4.1.2 Speci�c Challenges

• Promote formal techniques and methodologies for modeling music-related social and collective

behavior. Conference tutorials, keynotes and promotion of special sessions or workshops should be good
vehicles for that.

• Adopt and adapt complex networks and dynamic systems perspectives, techniques and tools.

Temporal sequences of descriptors can be considered as spanning a complex network. Semantic descriptors
of a given �le constitute networks too, so there are some opportunities to reframe existing research with
network methodologies (e.g., diffusion models). In addition, decision processes about music items (in

3http://www.dtic.upf.edu/~ocelma/MusicRecommendationDataset/index.html
4http://labrosa.ee.columbia.edu/millionsong/lastfm
5http://majorminer.org/info/intro
6http://www.gwap.com/gwap/gamesPreview/tagatune
7http://tagatune.org/Magnatagatune.html
8http://blog.turntable.fm/
9http://www.google.com/patents/US7603352
10http://sbp.asu.edu
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playlists or purchases, for example) can be addressed as speci�c cases of burst models.

• Analyse interaction and activity in social music networks. The roles, functions and activities of peers in
digitally-mediated music recommendation and music engagement networks can be formally characterised
by using speci�c analysis techniques. Trends, �infections� and in�uences in groups can be modelled
mathematically and this can provide additional �contextual� information to understand activities related to
music information.

• Characterise the interplay between physical space, time, network structures and musical contents

and context. This requires a big data perspective where many disparate data sources and huge amounts of
data can be integrated and mined (in some cases in real time). As some of these data are only available from
business companies providing music, communication or geolocation services, strategic research coalitions
with them have to be searched for.

• Develop tools for social gaming and social engagement with music. This will provide a �new� way
to experience music and to create new knowledge and awareness about it. Sharing our music learning and
experiencing processes may make them more robust and effective. Can we make typical teenage awe for
music last until the very end of our lives by taking advantage of engaging activities with family, friends and
colleagues? Can we revert the 20th Century trend of making music listening an isolationist activity?

• Develop technologies for collective music-behaviour self-awareness. Collective and simultaneous
awareness/sensing is the target here. Personal tools for self-quanti�cation are to be used to track and
evidence collective synchronicities (e.g. entrainment, synchronous listening from remote places, sharing
mood in a concert). It is easy to see that we, as members of a multitude, are clapping or rocking at the
same time, and this has the ability to modify our external and internal states. In order to intensify such
modi�cations we could use other signals than open behavior, and more contexts than music concerts (e.g.,
games, tweeting, blogging, listening to music . . . ).
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4.2 MULTICULTURALITY

Most music makes very little sense unless we experience it in its proper cultural context, thus the processing of
music information has to take into account this cultural context. Most of MIR has focused on the mainstream
popular Western music of the past few decades and thus most research results and technologies have a cultural bias
towards that particular cultural context. The challenge is to open up our view on music, to develop technologies
that take into account the existing musical diversity and thus the diverse musical cultural contexts. To approach
the multicultural aspects of MIR there is a need to involve researchers from both engineering disciplines (Signal
Processing, Machine Learning) and humanities (Musicology, Cultural Studies), and to involve people belonging
to the speci�c cultures being studied. This approach will offer the possibility to identify new MIR problems
and methodologies that could impact the whole MIR �eld. At the same time the development of Information
Technologies that re�ect diversity should help preserve the cultural richness of our world, which is threatened by
the globalisation and homogenisation of the IT infrastructures. This is a topic that has started to be addressed by
the MIR community but that will require much bigger efforts, not just by the research community but by political
and industrial bodies.

4.2.1 State of the art

MIR uses a variety of methodologies, but the most common approximations are based on using signal processing
and machine learning methods that treat musical data as any other machine readable data, thus without much
domain knowledge. On the other hand the research done within the �elds of Computational Musicology and
Computational Ethnomusicology puts a special emphasis on the musical and cultural aspects, thus incorporating
domain knowledge that we want to emphasise here. These two research areas have been growing in the last few
years and their in�uence in the MIR community has been increasing (see section 2.4.1).

The term Computational Musicology comes from the research tradition of musicology, a �eld that has
focused on the study of the symbolic music representations (scores) of the classical western music tradition [2].
This research perspective takes advantage of the availability of scores in machine-readable format and of all the
musicological research that has been done on this music tradition. Music theoretical models are very much
followed and current research focuses on the understanding and modeling of different musical facets such as
melody, harmony or structure of western classical music. This research can be followed in the yearly journal
Computing in Musicology [16]. From these references it can be observed that this �eld has been opening up,
approaching other types of music, such as popular western music or different world music traditions, and it has
started to use other types of data sources, such as audio recording.

In [15] the concept of Computational Ethnomusicology was introduced to refer to the use of computer
tools to assist in ethnomusicological research. The emphasis is on the study of folk and popular music traditions
that are outside the western classical and pop cultures, thus cultures that tend to be based on oral traditions
and that have been mainly studied through audio recordings. Since the article was published there has been an
increasing number of research articles related to Computational Ethnomusicology. For instance, according to [4],
the percentage of papers on this area at the annual ISMIR conference increased from 4.8% in 2002 to 8.1% in
2008. A year later, in 2009, ISMIR hosted an oral session devoted to the analysis of folk music, sociology and
ethnomusicology. After this event, a group of researchers working on MIR and ethnomusicology started the
EthnoMIR discussion group which has organised a yearly workshop on Folk Music Analysis (2011 in Athens,
2012 in Seville, and 2013 in Amsterdam) with the purpose of gathering researchers who work in the area of
computational music analysis of music from different cultures, using symbolic or signal processing methods, to
present their work, discuss and exchange views on the topic. At the ISMIR 2011 there was a session dedicated to
�non-western music� and at ISMIR 2012 there was a session on �musical cultures� and a larger than ever amount
of contributions related to different musical traditions. In 2011 the European Research Council funded a project
entitled �CompMusic: Computational Models for the discovery of the world's music� 11 that is studying �ve art

11http://compmusic.upf.edu
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music traditions (Hindustani, Carnatic, Turkish-makam, Andalusi, and Beijing Opera) from an MIR perspective.

Recent studies on non-western music show the need to expand or even rethink some of the MIR methodo-
logies. Some papers deal with speci�c musical facets, such as timbre/instrumentation (e.g. [14]), rhythm (e.g. [7]),
motives (e.g. [10] [3]), tuning and scale (e.g. [5] [11]), melody (e.g. [17] [12]), or performance variations (e.g. [13] [6]).
From these references it becomes clear that many of the musical concepts used in MIR need to be rethought
and new approaches developed if we want to take a multicultural perspective. Concepts like tuning, rhythm,
melody, scale, chord, tonic, . . . are very culture speci�c, and need to be treated as such. Among the non-western
music repertoires that have been most studied from this perspective are the Turkish-makam (e.g. [1]) and the art
traditions of India (e.g. [9] [8]).

4.2.2 Speci�c Challenges

• Identify and characterise music cultures that can be studied from a data driven perspective. For
MIR purposes a musical culture can be considered a combination of a user community plus a musical
repertoire that can be characterised computationally. Thus we can extract data from the trace left online
by a user community, such as online social networks, and from different music data repositories created by
that community, especially audio and scores. With this type of data we can then study quite a few aspects
of a given musical culture. The challenge is to identify musical cultures that can be studied like this.

• Gather and make available culturally relevant data for different music cultures. Gather different
data sources (audio, audio descriptors, editorial metadata, expert data, user commentaries, ...) with which
to study and characterise the community+repertoire of the selected cultures. This data has to be made
available to the research community.

• Identify speci�c music characteristics for each culture. Identify particular semantic music concepts
and characteristics that are speci�c to each culture. These should be the aspects that allow us to differentiate
the different musical cultures.

• Develop methodologies for culture speci�c problems. Develop knowledge based data processing
approaches that can take advantage of the speci�cities of each culture, thus modeling the characteristics of
each user community and music repertoire.

• Develop speci�c applications of relevance for each cultural context. The members of each user
community might have speci�c needs and thus the applications to be developed for them should target
their context and interests.

• Carry out comparative studies using computational approaches. These comparative studies should
be done from the research results obtained in the characterisation and modeling of speci�c music traditions
and repertoires.
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CHAPTER 5

Exploitation perspective

Music Information Research is relevant for producing exploitable tech-
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information related to music. These technologies should enable improved
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5.1 MUSIC DISTRIBUTION APPLICATIONS

MIR is fundamental for developing technologies to be used in the music distribution ecosystem. The stakeholders
in the music value chain are music services, record companies, performing rights organisations, music tech
companies, music device and equipment manufacturers, and mobile carriers. The main challenge is to develop
scalable technologies that are relevant to both the services that organise and distribute the music and also those
services that track what is being distributed. These technologies span from music search and recommendation to
audio identi�cation both for recordings and compositions among others. By fully addressing themusic distribution
challenges, the MIR Community will establish closer ties with the industry which will help accessing resources
(such as actual music data) and alternative ways of funding. On its side, the Music Distribution industry will
have access to technologies more targeted to actual end-user scenarios which will give them an edge in the global
market. Incidentally, it will help reducing innovation cycles from research to development and exploitation which,
in turn, will have a clear impact on competitiveness and hence music distribution companies' pro�tability.

5.1.1 State of the art

A number of topics on the future of electronic music distribution have been addressed. This includes music search
and discovery of music catalogues, the music rights industry-related technologies and other more transversal topics
such as scalability and metadata cleaning.

As could be witnessed over the last few years, music is being produced and published at a faster rate than ever
before: estimates range form yearly 11,000 (nonclassical) major label albums averaging some ten songs per album
([16], p. 261) up to 97,751 albums released in the United States in 2009, as reported by Nielsen SoundScan 1. In the
physical world, record shops were de-facto intermediaries that preselected music due to the physical constraints
of storing music records and cd's. Digital technologies have changed this situation in at least two respects: digital
music distribution channels such as iTunes, Amazon or Spotify can provide quick access to millions of music
pieces at very low cost, hence they are less strictly preselected, and, with the abandonment of physical records,
they shifted granularity from albums to single tracks, making it even harder for potential customers to make a
choice. To �ll this gap of missing preselections, automatic music recommendation systems supporting search and
discovery have been developed attempting to provide an improved and manageable access to the music of the
world.

Amazon 2 suggests albums or songs based on what has been purchased in the same order or by the same
customers as items one searched for or bought. This is a form of collaborative �ltering [8], which assumes that
users who have agreed in the past (in their purchase decisions) will also agree in the future (by purchasing the
same items). Collaborative �ltering generally suffers from two related problems: the coldstart problem and the
popularity bias. The coldstart problem is the fact that albums that have not yet been purchased by anybody
can never be suggested. The popularity bias is the problem that for any given item, popular albums are more
likely to have been purchased in conjunction with it than unpopular ones, and so have a better chance of being
recommended. In consequence, collaborative �ltering alone is incapable of suggesting new music releases. An
additional problem speci�c to Amazon is that users may purchase items for somebody else (e.g., as a present),
which might �aw the recommendations generated both for them and for other users of allegedly the same taste.
Spotify 3, a music streaming service, bases its recommendations 4 5 on its users' listening behavior, analysing
which artists are often played by the same listeners. While this may potentially result in better suggestions than
analysing sparse data such as record purchases, it is again subject to the cold-start problem and popularity bias.
Furthermore, Spotify only recommends related artists and not songs, which is rather unspeci�c. Genius is a

1http://www.businesswire.com/news/home/20100106007077/en/2009-U.S.-Music-Purchases-2.1-2008-Music
2http://www.amazon.com
3http://www.spotify.com
4http://vimeo.com/57900625
5http://www.slideshare.net/erikbern/collaborative-�ltering-at-spotify-16182818
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function in Apple iTunes 6 which generates playlists and song recommendations by comparing music libraries,
purchase histories and playlists of all its users, possibly integrating external sources of information. Assuming
such external information does not play a major role, this system is again based mainly on collaborative �ltering.
Last.fm 7 combines information obtained from users' listening behavior and user-supplied tags (words or short
expressions describing a song or artist). Tags can help to make recommendations transparent to users, e.g. a
user listening to a love song may be recommended other tracks that have frequently been tagged as 'slow' and
'romantic'. But they are also inherently erroneous due to the lack of carefulness of some users, and require a
range of counter measures for data cleaning. Tags are also affected by the cold-start problem and popularity bias.
Pandora 8, another music streaming service, recommends songs from its catalogue based on expert reviews of
tracks with respect to a few hundred genre-speci�c criteria. This allows for very accurate suggestions of songs
that sound similar to what a user listens to, including sophisticated explanations for why a song was suggested
(e.g., a track may be recommended because it is in a 'major key', features 'acoustic rhythm guitars', 'a subtle use of
vocal harmony' and exhibits 'punk in�uences'). Such expert reviews incur high costs in terms of time and money
which makes it impossible to extend the catalog at a rate that can keep up with new releases. This has a limiting
effect on the selection of music available to users.

Most approaches described so far rely on some form of meta-information: user's listening or purchasing
behavior, statistics about artists and genres in music collections, user de�ned tags etc. Another option is to
actually analyse the audio content trying to model what is important for the perceived similarity between songs:
instrumentation, tempo, rhythm, melody, harmony, etc. While many research prototypes of recommendation
systems that use content-based audio similarity have been described in the literature (e.g., [12], [11], [10], [9], to
name just a few), very little has been reported about successful adoption of such approaches- without combination
with other methods- to real-life scenarios. Content based recommendation is used to some extent by a number
of music companies like Mu�n 9, echonest 10 or BMAT 11 amongst others. An exhaustive view on Music
Recommendation systems can be found at [5].

In a landscape where the music industry is facing dif�cult times with income from physical sales shrinking,
the music rights revenues are increasing worldwide. According to 12 the author's society royalty collections were
7.5e billion in 2010 (climbing a 5,5% year-on-year) and [1] announced that the global performance rights reached
the 905 US$ millions in 2011 (an increase of 4,9% from the previous year). These positive numbers are due to the
increase of the number of media paying royalties and an improvement of the collecting methods of these societies.
Hence, it is important to address the needs of the music rights business; i.e. the process of paying the owners of
these rights (authors, performers, labels. . . ) for the usage of the music they have created and performed 13.

The rights organisations get most of their revenue not only from television, radio stations and those industries
whose services are based on music, like clubs or venues, but also from a lot of other companies and associations
from shops or dentists to school plays, basically anyone who aims at using somebody else's music creation 14. In
recent years, the music rights revenues coming from the digital world have also grown in importance 15. All this
rights money is collected through the royalty collection societies, which are divided in three kinds depending on
the rights they represent: Authors, Performance and Master. Most of authors' societies worldwide are associated
with the CISAC 16 while the master societies are associated with the IFPI 17. The societies collect music rights and
distribute them among their associates. At this point, a lot of controversy arises due to the different processes

6http://www.apple.com/itunes
7http://last.fm
8http://www.pandora.com
9http://www.mu�n.com
10http://echonest.com
11http://www.bmat.com
12http://www.cisac.org/CisacPortal/initConsultDoc.do?idDoc=22994#pressrelease
13http://ascap.com/licensing/licensingfaq.aspx
14http://www.bmi.com/creators/royalty/how_we_pay_royalties/detail
15http://mediadecoder.blogs.nytimes.com/2012/01/17/digital-notes-royalties-for-streaming-music-grew-17-in-2011
16http://www.cisac.org
17http://www.ifpi.org
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they use for such distribution and questions are raised about how to make this process as fair as possible 18.

Ideally, every right owner should be paid for the use of their music but in practice it is dif�cult and expensive
to control all the media and all potential venues where music could eventually be used. The solutions that have
been found vary depending on the country, the society and the type of source. Some years ago, the societies used
to distribute based on the results of the top selling charts which created huge inequalities between artists. Later
some other systems and technologies appeared:

• Cue sheets: Media companies are obliged to �ll cue sheets, the list of music broadcast, explaining their
use. However, this tends to be inaccurate because, while generating the cue sheets represents lots of work,
media companies don't bene�t from the accuracy of those 19.

• Watermarking: It consists in embedding an extra signal into a digital music work so this signal can be
detected when the work is reproduced. Watermarking requires the use of watermarked audio references
when broadcasting which is very rare. Also, the extra signal can easily be removed from original audio. 20

Fingerprinting: It consists in an algorithm that extracts the main features of an audio piece making a
so-called �ngerprint of the track. This �ngerprint may easily be matched against an audio database which
may comprise recordings from television, radio or internet radio broadcasts. 21 [4] [17]

• Clubs: The collecting societies track music played in all types of venues by sending a specialist who
recognises music and writes down a cue sheet or by installing recording stations in Dj boards. 22

• Online: Some of the most used music channels on the Internet as streaming or peer-to-peer services are
extremely dif�cult to monitor. Nowadays the music monitored online is based on crawling millions of webs
pages to detect their music usage. 23

• Social Networks: A particular case of online music tracking is �nding phylogenetic relationships between
music objects spread on social networks. The type of relationships may include: �is the same song as�,
�contains snippet of �, �includes�, �remixes�, �similar�, �are the same song with different durations�, �is
the live version of �, �is a cover version�, �is a radio edit of � and so forth. This hasn't been addressed by
MIR but is documented in other �elds. [7] [6]

• Music vs Non Music discrimination: TV channels have normally blanket fees contracts with performing
rights organisations according to which they pay royalties proportionally to the percentage of music
broadcast. As this data is usually inaccurate, the PROs tend to outsource statistical estimation of this
percentage which is also inaccurate. Although there has been quite some research on speech/music
discrimination [13][14], generic music vs non music discrimination- robust to speech overlap- is a challenge
for the industry.

While the research and engineering problems of simple audio identi�cation use cases have practically been
solved; for other real industry use cases, such as background music detection (over voice), in noisy backgrounds
and with edited music, there are no robust technical solutions. In this business niche, a number of players share
the market: Tunesat 24 in the USA, BMAT 25 in Spain, kollector 26 in Europe, Monitec 27 in Southamerica,
Soundmouse 28 in the UK and yacast 29 in France.

18http://www.younison.eu/downloads/get/23
19http://www.editorsguild.com/v2/magazine/Newsletter/SepOct03/sepoct03_music_cue_sheets.html
20http://www.musictrace.de/technologies/watermarking.en.htm
21http://www.musictrace.de/technologies/�ngerprinting.en.htm
22http://www.bemuso.com/musicbiz/musicroyaltycollectionsocieties.html
23http://www.musicrow.com/2012/01/tunesat-debuts-exclusive-internet-monitoring-technology
24http://tunesat.com/
25http://www.bmat.com
26http://www.kollector.com
27http://www.monitec.com
28http://www.soundmouse.com/aboutus/about_us.html
29http://www.yacast.fr/fr/index.html
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A major challenge a new technology must face when it is to be applied in viable commercial products is
scalability; i.e. the ability of the technology to handle massive amounts of data and the ability to handle that
data's eventual growth in a cost effective manner. The problem is twofold. Firstly, some techniques are simply
neither deployed nor tested since it's computationally impossible due to the size of datasets. Secondly, assuming
the technique is scalable from a non-functional point of view, applying it to multi-million datasets may reveal
problems which were not obvious in the �rst place. Beyond the problem of handling �big data�, granting research
access to huge music-related datasets may generate bene�cial by-products for the music information research
world. First, in large collections, certain phenomena may become discernible and lead to novel discoveries.
Secondly, a large dataset can be relatively comprehensive, encompassing various more specialised subsets. By
having all subsets within a single universe, we can have standardised data �elds, features, etc. Lastly, a big dataset
available to academia greatly promotes the interchange of ideas and results leading to, yet again, novel discoveries.
A good example here is the �Million Songs Dataset� [2], which contains user tags provided by Last.Fm.

Systems that are able to automatically recommendmusic (as described above) are one of themost commercially
relevant outcomes from the MIR community. For such recommender systems it is especially important to be
able to cope with very large - and growing - collections of music. The core technique driving automatic music
recommendation systems is the modelling of music similarity which is one of the central notions of MIR. Proper
modelling of music similarity is at the heart of every application allowing automatic organisation and processing of
music databases. Scaling up sublinearly the computation of music similarity to the millions is therefore an essential
concern of MIR. Scalable music recommendation systems have been the subject of a number of publications.
Probably one of the �rst content-basedmusic recommendation systems working on large collections (over 200.000
songs) was published by [3]. Although latest results (see e.g. [15]) enable systems to answer music similarity queries
in about half a second on a standard desktop CPU on a collection of 2.5 million music tracks yet, the system
performs in a linear fashion.

The issue of scalability clearly also affects other areas of MIR: music identi�cation meaning both pure
�ngerprinting technologies and cover detection, multimodal music recommendation and personalisation (using
contextual and collaborative �ltering Information).

5.1.2 Speci�c Challenges

• Demonstrate better exploitation possibilities of MIR technologies. The challenge is to convince
stakeholders of the value of the technology provided by the MIR community and help them �nd new
revenue streams from their digital assets which are additive and non-cannibalising to existing revenue
channels. For these technologies to be relevant they should re-valorise the digital music product, help
reduce piracy, streamline industry processes, and reduce inef�ciencies.

• Develop systems that go beyond recommendation, towards discovery. Systems have to go beyond
simple recommendation and playlisting by supporting discovery and novelty as opposed to predictability
and familiarity. This should be one way of making our systems interesting and engaging for prospective
users.

• Develop music similarity methods for particular applications and contexts. This means that results
produced by computers have to be consistent with human experience of music similarity. Therefore it will
be necessary to research methods of personalising our systems to individual users in particular contexts
instead of providing one-for-all services.

• Develop systems which cater to the scale of Big Data. The data sets might be songs, users or any other
music related elements. From a non-functional perspective, the algorithms and tools themselves should be
fast enough to run with sublinear performance on very large datasets so they can easily enable solutions for
streaming and subscription services. Beyond raw performance such as processing speed, from a functional
view, the algorithms have to be designed to handle the organisation of large music catalogues and the
relevance weighting of rapidly increasing quantities of music data mined from crowd-sourced tagging and
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social networks. Applying algorithms to those big datasets may reveal problems and new research scenarios
which were not obvious in the �rst place.

• Develop large scale robust identi�cation methods for recordings and works. Performing rights
organisations and record companies are shifting towards �ngerprinting technologies for complete solutions
for tracking their af�liates'/partners' music and for managing their music catalogues. While music �nger-
printing has been around for years and it has been widely used, new use cases which require extensive R&D
are arising: copyright enforcement for songs and compositions in noisy and live environments and music
metadata autotagging among others. Also, �nding phylogenetic relationships between songs/performances
available on the web, such as �is a remix of � or �is the live version of �, may unlock new application
scenarios based on music object relationship graphs such as multimodal trust and in�uence metering in
social networks.

• Develop music metadata cleaning techniques. One common feedback from all industry stakeholders
such as record companies, music services, music distributor and PROs is the lack of so-called �clean music
databases�. The absence of clean music databases causes broken links between data from different systems
and incorrect editorial metadata tagging formusic recordings, which ultimately affects the perceived end-user
quality of the applications and services relying on MIR technologies. We encourage the MIR community
to address music metadata cleaning by using music analysis and �ngerprinting methods as well as text-
based techniques borrowed from neighbouring research �elds such as text information retrieval and data
management among others.

• Develop music detection technology for broadcast audio streams. The media industry is lacking the
means for accurately detecting when music (including background music) has been broadcast, in order
to transparently handle music royalty payments. This technology should go beyond music vs speech
discrimination and address real life use cases such as properly discriminating music vs generic noise.
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5.2 CREATIVE TOOLS

Creative practitioners produce, transform and reuse music materials. The MIR challenge is how to develop
tools that process music information in a way that enhances creative production. Tools for automatically
extracting relevant information from audio materials could be developed for purposes such as content-based
manipulation, generativity, synchronisation with other media, or real-time processing. Moreover, the large volume
of available data requires ef�cient data manipulation systems that enable new methods of manipulation for
creative purposes. This challenge requires collaborative research between music information researchers and
the actors, including artists, performers and creative industries professionals. The impact of this research is
in generating more creative possibilities and enabling production ef�ciency in a variety of creative contexts
including music performance, music and sound production and post-production, sound engineering applications
for audiovisual production, art installations, creative marketing, mobile apps, gaming, commercial installations,
environmental installations, indoor and outdoor events. Collaborative research between creative practitioners and
music information researchers contributes to bridging the gap between the arts and the sciences, and introduces
novel practices and methodologies. It extends the paradigm of user-centred research to creative-input research,
where the feedback loop between creative practitioner and researcher is an iterative, knowledge-building process,
supported by adaptive modelling of research environments and resulting in more versatile creative tools.

5.2.1 State of the art

Music Information Research offers multiple possibilities for supporting musical creation or for inspiring the
creation of multimedia art pieces. The creative possibilities of MIR can be studied and classi�ed according to
many different criteria, such as off-line tools (for composition or editing) vs. real-time tools for interaction, which in
turn can be divided into applications for live performance and for art installations, or categories of tools designed
for professional vs. tools designed for novice end-users, the latter including all type of applications promoting
different models of �active listening�.

Content-based sound processing

Content-based sound processing consists in using high-level information of the audio signal in order to process
it. It includes processes controlled by high-level parameters and processes based on the decomposition of the
audio content, through operations such as segmentation, source separation and transcription, into elements that
can be processed independently. The goal is to provide expert end-users (e.g. musicians, sound designers) with
intuitive tools, controlled through parameters relevant from the viewpoint of human cognition of music and
sound, and also to enhance the quality of existing processes by selecting appropriate processes and parameter sets
according to the nature of the extracted elements. For instance, a better subjective quality for slowing down a
sound by time-stretching is obtained if the transient parts are separated from the sustained ones and preserved in
the time-scale change process [13].

Sound editing: Sound editing refers to of�ine tools using pre-recorded audio contents. Some commercial
products have started to implement such features. These include Celemony's Melodyne 30 and Roland's R-Mix 31,
which provide studio production tools for pitch recognition and correction, tempo and timing alteration and
spectrum visualisation. IRCAM's Audiosculpt 32, targeting expert users, enables to compute various kinds of
analyses (segmentation and beat tracking, pitch and spectral envelope analysis) and use them as inputs for high-
quality audio processes. Apple's GarageBand 33 is a good example of content-based processing application aimed
at mass-market end-users: it automatically processes the content of an AppleLoop imported into a sequence by
adapting its tempo and pitch scale to the sequence musical context. Most existing tools ef�ciently implement
content-based editing for monophonic signals, however they also demonstrate the current limitations of the

30http://www.celemony.com/cms/index.php?id=products_editor
31http://www.rolandconnect.com/product_2011-09.php?p=r-mix
32http://forumnet.ircam.fr/product/audiosculpt
33http://www.apple.com/support/garageband
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state-of-the-art of the research on the analysis of polyphonic recordings. A signi�cant advance in this direction is
the integration of a polyphonic transcription (audio to MIDI) in the Live 9 application by Ableton 34 issued early
2013.

Computer-aided composition: Software environments for computer-aided composition such as OpenMusic 35,
CommonMusic 36 or PWGL 37 are not only used for computing instrumental scores from user-de�ned algorithms,
but also for controlling various kinds of sound syntheses from symbolic music representations [1]. In these
environments the availability of audio analysis modules extracting musical information in the form of symbolic
structures enables composers to elaborate scores with parameters in relation to the content of input sound
�les, and also to control sound synthesis from processing the extracted information at the symbolic level. The
unlimited computing possibilities of these music languages allow expert musicians to adapt all the available analysis
parameters to a broad variety of aesthetic approaches.

Use of audio databases for music and sound production

The advancement of audio database technologies enables new applications for sound and music production, not
only for content-based management of audio samples but also for the development of new methods for sound
synthesis and music composition.

Content-based management of audio samples: MIR techniques can be very convenient for �nding suitable loops
or sound �les to �t a particular composition or mix. TheMuscleFish [18] and Studio Online [17] systems developed
at the end of the 90s were the very �rst applications of content-based search in audio sample databases that have
been further elaborated in the CUIDADO European project [16]. More recently, the availability of large public
and free sound databases and repositories such as Freesound 38 has become mainstream. Using repositories and
APIs such as EchoNest's Remix Python API 39 or MTG's Essentia 40, developers and hackers are creating a panoply
of imaginative remix applications, many of them being developed during Music Hack Day events, which lately
appear to be a very productive place for MIR based creation. However, even though the use of large audio sample
banks is now mainstream in music production, the existing products, such as Native Instrument's Kontakt 41,
MOTU's MachFive 42 or Vienna Symphonic Library 43 are not yet exploiting the full potential of MIR technologies
for the content-based management audio databases.

Corpus-based synthesis and musaicing: One of the most obvious MIR applications for real-time music creation
is that of �concatenative synthesis� [8, 15], �musaicing� [19] or mashup. These three terms approximately relate
to the same idea, creating new music by means of concatenating short fragments of sound or music recordings
to �approximate� the sound of a target piece. More precisely, an existing music piece or musical fragment is
substituted with small, similar sounding music fragments, leading to a similarly structured result. The duration of
these sound units can vary depending on the techniques employed and the desired aesthetic results, but are roughly
in the range of 10 milliseconds up to several seconds or several musical bars. While manual procedures could be
used with longer fragments (i.e. of several seconds), the use of shorter fragments inevitably leads to automatised
MIR analysis and recovery techniques, in which a �target� track or sound is analysed, its descriptors extracted for
every small fragment, and these fragments substituted with the best candidates from a large database of sound
snippets. When using a pre-analysed sound repository and a compact feature representation, these techniques
can be ef�ciently applied in real-time. Janer and de Boer [7] describe a method for real-time voice-driven audio
mosaicing synthesis. BeatJockey [10] is a system aimed at DJs, which integrates audio mosaicing, beat-tracking
and machine learning techniques and brings them into the Reactable musical tabletop. Several commercial tools

34https://www.ableton.com/en/live/new-in-9
35http://forumnet.ircam.fr/product/openmusic
36http://commonmusic.sourceforge.net
37http://www2.siba.�/PWGL
38http://www.freesound.org
39http://echonest.github.com/remix
40http://mtg.upf.edu/technologies/essentia
41http://www.native-instruments.com/#/en/products/producer/kontakt-5
42http://www.motu.com/products/software/mach�ve
43http://www.vsl.co.at
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following this approach (such as Steinberg's LoopmashVST plugin and iOS app 44) are also already available. These
techniques bring new creative possibilities somewhere in between synthesis control and remixing, and open the
path to radically novel control interfaces and interaction modalities for music performance.

Computer-aided orchestration: In comparison to other aspects of musical composition (harmony, rhythm,
counterpoint), orchestration has a speci�c status: intended as the art of selecting and mixing individual instrument
timbres to produce a given �colour�, it relates more closely to the real experience of sound from an orchestra.
The same chord can produce a very different timbre depending on the instruments selected for performing
it, and, despite existing treatises providing recipes for speci�c cases, orchestration has generally remained an
empirical art based on mostly unelicited rules. An original approach recently developed in the framework of
computer-aided composition tools has been to concentrate on the approximation, in terms of sound similarity,
of a given sound target from the combination of elementary note samples from a set of selected instruments,
using multiobjective optimisation, for managing the combinatorial issue of search into sound sample databases of
hundreds of thousands of items. This work has been already used for the composition of numerous contemporary
music works and implemented as the OrchidÈe software [3]. One of its main limitations was however that it only
considered the static properties of the source, and the latest advances in related research have been to design a new
search algorithm, named MultiObjective Time Series, that ef�ciently computes similarity distances from the coding
of the temporal evolution of multiple descriptors of audio samples so that the dynamic properties of the target
and of the original sound samples are taken into account in the approximation [5].

Live performance applications

The applications discussed in the previous parts mainly concern of�ine processes and composition tools. The
process ofmusic information generated in the context of live performance applications imposes speci�c constraints
on the audio analysis algorithms, in terms of causality, latency, and implementation (computing power, distributed
processing vs. real-time performance). Applications not only concern live music, but also theatre, dance and
multimedia. The computer music community has produced numerous software environments dedicated to the
programming and real-time scheduling of algorithms for audio and music information processing, including,
among many others, Max 45, Pd 46, SuperCollider 47, and Chuck 48.

Beat syncing A broad use-case of automatic beat tracking algorithms is live mixing applications for DJs, such
as Native Instrument's Traktor 49, that enable to manage the transition between tracks in a beat-synchronous way,
using time-stretching for managing the tempo evolution between them.

Improvisation and interaction using symbolic sequence models: While musaicing or remixing applications mostly rely
on low-level signal processing analysis, the following examples focus on musical knowledge and understanding.
Assayag et al [2] describe a multi-agent architecture for an improvisation-oriented musician-machine interaction
system that learns in real-time from human performers, and establishes improvisatory dialogues with the per-
formers by recycling their own audio material using an Oracle Factor for coding the multiple relationships of
music symbol subsequences. Recent applications of this model also include interactive arranging and voicing
from a learned musical corpus. The Wekinator [6] is a real-time machine learning toolkit that can be used in the
processes of music composition and performance, as well as to build new musical interfaces. Pachet is working
with Constrained Markov Models (CMM) for studying musical style by analysing musicians, extracting relevant
features and modelling them using CMM [12], an approach that allows systems to improvise in a given style or
along with any other musicians.

Score following and interactive accompaniment: Numerous contemporary music works, named mixed works, rely
on the combination of instrumental parts and electronic sounds produced by real-time synthesis or processing
of the instrument sounds. Different strategies exist for synchronising those various parts live in concert, the

44http://www.steinberg.net/en/products/ios_apps/loopmash.html
45http://cycling74.com/products/max
46http://crca.ucsd.edu/~msp/Pd_documentation/index.htm
47http://supercollider.sourceforge.net
48http://chuck.cs.princeton.edu
49http://www.native-instruments.com/#/en/products/dj/traktor
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most straightforward ones, but least musical, consisting in pre-recording a soundtrack and superimposing the
performers to play with it. Conversely, score following aims to automatically synchronise computer actions with
real-time analysis of performance and to compare them with an internal model of the performed score. The
latest advances of research on this subject, implemented in theAntescofo application 50 include a continuous tempo
tracking of the performance and the de�nition of a language for specifying the real-time processes [4]. Another
use case of the same algorithms is interactive accompaniment or �music minus one�, where a solo performer can
train on a pre-recorded accompaniment sound track that follows his (her) tempo evolutions.

Performance/sound interaction: The NIME community 51 is very active in the design of new performance/sound
interaction systems that extend the traditional notion of musical instruments. The main aspects of the �eld related
to MIR technologies are presented in section 3 and will not be developed here.

Art installations

Sound has featured extensively in art installations since Luigi Russolo's Futurist manifesto �The Art of Noises�
described the sound of the urban industrial landscape and became the source of inspiration for many artists and
composers (e.g. Edgard Varèse, John Cage and Pierre Schaefer) [14]. Recent music technologies offer increased
opportunities for immersive sound art experiences and physical explorations of sound. Art installations offer
novel ways of using these technologies and enable novel experiences particularly through placing the focus on the
audience and their context.

Environmental sound installations: Art installations have increasingly been using data from �eld recordings
or sounds generated through real-time location-based interaction in order to trigger various behaviours (e.g.
Sound Mapping London Tea Houses52). Artists have explored the integration of unfamiliar sounds into new physical
environments (e.g. Bill Fontana's White Sound: An Urban Seascape, 2011 53). Generative music has been used in
response to the environment. For instance Variable 4 54 is an environmental algorithmic weather machine which
generates a unique musical composition which re�ects the changing atmosphere of that particular environment.
Radioactive Orchestra 55 aims to produce a musical sequence from the radioactivity of nuclear isotopes.

Collaborative sound art: Collaborative music making has been expressed through art installations such as
Play.Orchestra 56 which blurs the borders between audience and player, amateur and professional. Atau Tanaka's
Global String 57 metaphorically wraps a musical string around the world and through user engagement creates
a collaborative instrument between world art galleries exploring the idea of communication via non-linguistic
musical interaction and collaboration.

Body generative sound art: Using the human body as an instigator in the generation of sound and music is a
growing research area. Atau Tanaka's Sensorband 58 includes performers wearing a combination of MIDIconductor
machines that send and receive ultrasound signals measuring the hands' rotational positions and relative distance;
gestural interaction with invisible infrared beams; and the BioMuse, a system that tracks neural signals (EMG),
translating electrical signals from the body into digital data. Since around 2006 Daito Manabe has been working
on the project Electric Stimulus 59 which literally plays the body as a sensory network for outputting sound and
expression through the application of shock waves to particular nerve centres. The Serendiptichord Dance 60 focuses
on the act of performing physically with a circular instrument unifying performance and sound.

50http://forumnet.ircam.fr/product/antescofo
51http://www.nime.org
52Sound Mapping London Tea Houses was an installation at the Victoria and Albert Museum in 2011, by the G-Hack group from Queen

Mary, University of London.
53http://www.resoundings.org
54http://www.variable4.org.uk/about/intro
55http://www.nuclear.kth.se/radioactiveorchestra
56http://www.milkandtales.com/playorchestra.htm
57http://www.ataut.net/site/Global-String
58http://www.ataut.net/site/Sensorband
59http://www.creativeapplications.net/maxmsp/electric-stimulus-maxmsp
60http://www.youtube.com/watch?v=lUuCQTgz4Tc
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Public art using MIR: Few examples of public art installations have used MIR to enable physical presence to
interact with music information. Since September 2011 Barcelona's City Council has installed an automatic water
and lights choreographies generator for the Magic Fountain 61 of Montjuic (one of the main tourist attractions of
the city), based on MIR techniques (more concretely on the Essentia engine 62). This system allows the person in
charge of creating a choreography for the fountain to pick up a musical mp3 track, decide among several high-level
parameters' tendencies (such as the average intensity, contrast, speed of change, the amount of repetition, or
the main colour tonalities of the desired choreography), and the system generates automatic, music-controlled
choreographies at the push of a button. Another example, decibel 151 [9] installed at SIGGRAPH 2009, turns
users into �walking playlists� and encourages physical explorations of music. MIR systems can therefore offer
novel art installation experiences and have a profound impact on the way we as human beings understand space,
time and our own bodies. The arts are also uniquely placed, with a degree of freedom from the commercial sector,
to offer test grounds for MIR research into gestural and environmental applications of music data.

Commercial end-user applications

As Mark Mulligan states in his 2011 report �digital and social tools have already transformed the artist-fan
relationship, but even greater change is coming. . . the scene is set for the Mass Customisation of music, heralding
in the era of Agile Music� [11]. Agile Music is a framework for understanding how artist creativity, industry business
models and music products must all undergo a programme of radical, transformational change. In this context
MIR offers new opportunities for creative commercial installations, applications and environments (e.g. creative
marketing tools, mobile apps, gaming, commercial installations, environmental installations, indoor and outdoor
events).

Social music applications: The increased choice of music available to the users is currently being explored
through creative applications engaging with social media (e.g. Coke Music 24 hr challenge 63). As one of the current
market leaders in social recommendation, Spotify has enjoyed an economic growth of 1 million paying users in
March 2011 to 3 million paying users by January 2012 64, partly thanks to its integration with Facebook. The
application Serendip 65 creates a real time social music radio allowing users the opportunity to independently choose
'DJs' from their followers and share songs across a range of social media via a seamless Twitter integration.

Mobile music applications: Application developers are using the range of sensory information available on
mobile devices to create more immersive sonic experiences and music generators (e.g. the Musicity project 66;
RjDj 67). There are many apps which allow smart devices, for example the iPhone, to be transformed into portable
musical instruments which engage with the body and allow for spontaneous performances (e.g. Reactable App 68;
Bloom 69). Together with the advent of the Internet-of-Things (IoT), the communication society is witnessing
the generalisation of ubiquitous communication, the diversi�cation of media (radio, TV, social media, etc.),
the diversi�cation of devices and respective software platforms, and APIs for communities of developers (e.g.,
iPhone, Android, PDAs, but also Arduinos, Open Hardware, sensors and electronic tags) and the multiplicity of
modalities of interaction. This imposes a challenge of facilitating interoperability between devices and facilitating
combinations between diverse modalities.

Gaming music applications: The musical interaction team at IRCAM has been working with motion sensors
embedded within a ball to explore some of the concepts integrating fun, gaming and musical experience in the
Urban Musical Game 70. Joust 71 is a spatial musical gaming system using motion rhythm and pace as the instigator

61http://w3.bcn.es/V01/Serveis/Noticies/V01NoticiesLlistatNoticiesCtl/0,2138,1653_1802_2_1589325361,00.html
62http://mtg.upf.edu/technologies/essentia
63http://www.nexusinteractivearts.com/work/hellicar-lewis/coke-music-24hr-session-with-maroon-5
64http://www.guardian.co.uk/media/2012/jan/29/spotify-facebook-partnership-apps
65http://serendip.me/
66http://musicity.info/home/
67http://rjdj.me
68http://www.reactable.com/products/mobile
69http://www.generativemusic.com
70http://www.youtube.com/watch?v=jXGlvmrGBgY
71http://gutefabrik.com/joust.html
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of the action (Innovation Award: Game Developers Choice Award 2012). Interactive and immersive musical
environments have also been used as a way of making commercial products memorable and fun. By gamifying
their services and producing interactive experiences, innovative companies are working to increase their products'
core values (e.g. Volkswagen's Fun Theory 72 and Wrigleys Augmented Reality Music Mixer 73). The Echo Temple
at Virgin Mobile FreeFest 74 created a shared experience of making music through the use of motion tracking
cameras and fans branded with special symbols. The use of gaming is another developing application for MIR
with various research and commercial possibilities.

5.2.2 Speci�c Challenges

• Develop methodologies to take advantage of MIR for artistic applications in close collaboration

with creators. New possibilities for music content manipulation resulting from MIR research have the
power to transform music creation. The development of tools for artistic applications can only be done
with the involvement of the creators in the whole research and development process.

• Develop tools for sound processing based on high-level concepts. New approaches in MIR-related
research should provide musicians and sound designers with a high-level content-based processing of
sound and music related data. This entails furthering the integration of relevant cognitive models and
representations in the creative tools, and also enabling users to implement their own categories by providing
them with a direct access to machine learning and automatic classi�cation features.

• Enable tools for direct manipulation of sound and musical content. Signi�cant enhancements are
required in polyphonic audio analysis methods (e.g. audio-to-score, blind source separation) in order to
build applications allowing content-based manipulation of sound. This is expected to have a major impact
on professional and end-user markets.

• Develop new computer languages for managing temporal processes. This will provide more adapted
creative tools, not only for music composition and performance, but more generally for temporal media
and interactive multimedia.

• Improve integration of audio database management systems in standard audio production tools.

These should combine online and of�ine access to audio materials, and feature content-based search.

• Develop real-time MIR tools for performance. Research real-time issues beyond the �faster search
engines� in the use ofMIR technologies for music performance, addressing the design of speci�c algorithms
and of potential applications in their entirety, in collaboration with the NIME community.

• Performance modeling and spatial dimensions. The management of sound and music information
in creative tools shall not be limited to basic music categories (such as pitch, intensity and timbre) and
must integrate in particular the dimensions of performance modelling and sound space. Beyond direct
sound/gesture mapping, the design of new electronic instruments requires a better understanding of the
speci�c structures underlying gesture and performance and their relation to the sound content. As for
the spatial dimension of sound, new research advances are expected in the automatic extraction of spatial
features for mono- and multichannel recordings and the simulation of virtual acoustic scenes from high-
level spatial descriptors, with applications in music production, audiovisual post-production, games and
multimedia.

• Develop MIR methods for soundscaping. Immersive music environments and virtual soundscaping
are growth areas in the creative industries, particularly in relation to physical spaces. Research may involve
knowledge gained from collaborations with specialists in building acoustics, architects, and installation
artists.

72http://www.thefuntheory.com
73http://5gum.fr
74http://great-ads.blogspot.co.uk/2011/09/interactive-sound-installation-for.html
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• Use artistic sound installation environments as MIR research test grounds. Immersive discovery
experiences and physical explorations of music presented as art installations can contribute to a better
understanding of the user's Quality of Experience (QoE); the potential of using sound as an aid to narrative
creation and as a non-linguistic means for communication; the use of the the human body as an instigator
of the generation of sound; and active engagement of listeners with their environment.

• Develop creative toolswhich include data useful to commerce. Research areas uncovered by consulting
commercial and industry practices may include e.g. sonic branding, personalisation, interactive media
environments, social platforms, and marketing tools between artists and fans.

• Improve data interoperability between devices An effort is required towards the standardisation of
data protocols for a pan-European exchange of music software and hardware modalities. This is especially
relevant for music, which is a paradigmatic example of multimodal media, with active communities of
developers, working with a rich diversity of devices.

• Develop automatic playlist generation and automatic mixing tools for commercial environments.

Systems which deliver the appropriate atmosphere for purchase or entertainment require music information
research in conjunction with consumer psychology. For example, high level descriptors may be developed
to include relationships between music and certain types of product, and music psychology may include
�eld work in commercial environments.
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5.3 OTHER EXPLOITATION AREAS

MIR can be used in settings outside of music distribution and creation, for example in musicology, digital
libraries, education and eHealth. In computational musicology, MIR tools have become standard �tools of the
trade� for a new generation of empirical musicologists. Likewise, MIR technology is used for content navigation,
visualisation, and retrieval in digital music libraries. MIR also shows promise for educational applications, including
music appreciation, instrument learning, theory and ear training, although many current applications are still at
an experimental stage. eHealth (healthcare practice supported by electronic processes) is also starting to bene�t
from MIR. Thus, the challenge is to better exploit MIR technologies in order to produce useful applications for
other �elds of research and practice. For this, current practices and needs from the related communities should
be carefully studied. The stakeholders include music professionals, musicologists, music students, music teachers,
digital librarians, medical doctors and medical doctors and patients who can bene�t from music therapy.

5.3.1 State of the art

We review here the already existing and potential relations betweenMIR andmusicology, digital libraries, education
and eHealth, which we identi�ed as particularly relevant for our �eld of research.

Applications in musicology

The use of technology in music research has a long history (e.g. see Goebl [19] for a review of measurement
techniques in music performance research). Before MIR tools became available, music analysis was often
performed with hardware or software created for other purposes, such as audio editors or speech analysis tools.
For example, Repp used software to display the time-domain audio signal, and he read the onset times from
this display, using audio playback of short segments to resolve uncertainties [27]. This methodology required a
large amount of human intervention in order to obtain suf�ciently accurate data for the study of performance
interpretation, limiting the size and number of studies that could be undertaken. For larger scale and quantitative
studies, automatic analysis techniques are necessary. An example application of MIR to music analysis is the beat
tracking system BeatRoot [15], which has been used in studies of expressive timing [18, 20, 30]. The SALAMI
(Structural Analysis of Large Amounts of Music Information 75) project is another example of facilitation of
large-scale computational musicology through MIR-based tools. A general framework for visualisation and
annotation of musical recordings is Sonic Visualiser [8], which has an extensible architecture with analysis
algorithms supplied by plug-ins. Such audio analysis systems are becoming part of the standard tools employed
by empirical musicologists [9, 10, 22], although there are still limitations on the aspects of the music that can be
reliably extracted, with details such as tone duration, articulation and the use of the pedals on the piano being
considered beyond the scope of current algorithms [24]. Other software such as GRM Acousmographe, IRCAM
Audiosculpt [5], Praat [4] and the MIRtoolbox 76, which supports the extraction of high-level descriptors suitable
for systematic musicology applications, are also commonly used. For analysing musical scores, the Humdrum
toolkit [21] has been used extensively. It is based on the UNIX operating system's model of providing a large
set of simple tools which can be combined to produce arbitrarily complex operations. Recently, music21 [11] has
provided a more contemporary toolkit, based on the Python programming language.

Applications in digital library

A digital library (DL) is a professionally curated collection of digital resources, which might include audio, video,
scores and books, usually accessed remotely via a computer network. Digital libraries provide software services
for management and access to their content. Music Digital Librarians were among the instigators of the ISMIR
community, and the �rst ISMIR conference (2000) had a strong DL focus. Likewise the contributions from the
MIR community to DL conferences (Joint Conference on Digital Libraries, ACM Conference on Digital Libraries,
IEEE-CS Conference on Advances in Digital Libraries) were numerous. This could be due to the fact that at

75http://ddmal.music.mcgill.ca/research/salami
76https://www.jyu.�/hum/laitokset/musiikki/en/research/coe/materials/mirtoolbox
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the end of 90s, musical libraries moved to digitisation of recordings and to multi-information access (video, score
images, and text documents such as biographies and reviews) to create multimedia libraries [17] [16] [25]. In this
�rst trend, the technological aspects of these libraries relied mainly on the server, database, media digitisation,
text search, and synchronisation (often manual) between media. Today this trend still exists and is accessible
online for a wide audience. Examples of this are the �Live TV� of the Cite de la Musique (large audience) with
synchronisation of video concerts with libretto, scores and comments. A second trend, that appeared in the mid-
2000s, reverses the relationship between Libraries and Music Information Research and Technology. Research
and technology enable content estimation, visualisation, search and synchronisation, which are then used in the
context of Digital Libraries to improve the usability and access of the multi-documents in libraries (online or
not). Examples of this are: inclusion of automatic audio summaries in the IRCAM Library [26], the Bachotheque
to compare automatically synchronised interpretations of a same piece [28], optical score recognition and audio
alignment for the Bavarian State Library [12]. Also, thanks to the development of technologies (Flash, HTML5,
Java-Script), the de-serialisation of media becomes a major theme, along with improved browsing and access to
the temporal aspect of media. New concepts of interfaces to enhance listening have been developed which make
use of time-based musical annotations (Ecoute augmentee/Increased-listening 77, or today's SoundCloud 78).
A third trend concerns the aggregation of content and the use of user-generated annotation. The content of
dedicated libraries can be aggregated to form meta-libraries (e.g. www.musiquecontemporaine.fr) using the shared
protocol OAI-PMH. Content can be distributed over the web or aggregated to a local collection. Using Semantic
Web technologies such as Linked Data and ontologies, web content can be re-purposed (e.g. the BBC's use of
the Music Ontology). This trend is also found in new forms of music access (such as Spotify) which aggregate
content related to the music item (AMG reviews, wikipedia artist biography). Comparing the suggestions of [7]
and the observations of [2] a decade later, it is clear that much work is still to be done before MIR technology
is fully incorporated into traditional libraries. The European ASSETS project 79, working with the Europeana
multi-lingual European cultural collection, aims to improve search and browsing access to the collection, including
multimedia objects.

Applications in education

Dittmar [14] partitionsMIRmethods that are utilised in music education into three categories: music transcription,
solo and accompaniment track creation, and generation of performance instructions. Systems for music education
that exploit MIR technology include video games, music education software (e.g. Songs2See 80), and music-related
apps focused on learning (e.g. Rock Prodigy 81). Regarding instrument learning scenarios, MIR is also seeing
an uptake via provision of feedback to learners in the absence of a teacher [29], interactive ear training exercises
(e.g. the Karajan iPhone apps), automatic accompaniment [13], page turning [1] and enhanced listening (e.g.
iNotes: Orchestral Performance Companion). Research projects focused on music education include IMUTUS
(Interactive Music Tuition System), i-Maestro (Interactive Multimedia Environment for Technology Enhanced
Music Education and Creative Collaborative Composition and Performance) and M4M (Musicology for the
Masses) � for the latter, a web-based tool called Yanno 82, based on automatic chord detection, was proposed
for secondary school music classes. Although much work still remains to be done, large-scale experiments have
already taken place, such as the IRCAM Music Lab 1 and 2 for the French National Education.

Education is one of the most understudied and yet promising application domains for MIR. While Piaget's
constructivism and Papert's constructionism are classics of pedagogy and interaction design relating to children,
mashup, remix and recycling of contents might be considered a much more controversial and radical approach,
especially for their social, ethical and legal implications. However, it is undeniable that young people are embracing
remix en masse, and it is integral to how they make things and express ideas. The cultural practices of mashup
and remix brought to school, will force us to rethink the role of teachers as part of this knowledge-building

77http://apm.ircam.fr
78https://soundcloud.com
79http://www.assets4europeana.eu
80http://www.songs2see.com
81http://www.rockprodigy.com
82http://yanno.eecs.qmul.ac.uk
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process (Erstad, 2008). The development of learning strategies that support such models of creation represents
an ongoing challenge as it de�es the current model of schooling, with students taking a more active role in
developing knowledge. The introduction of MIR-powered tools for musical education and creation among
younger children, combined with recent developments in portable devices, opens a new line of research for
suitable novel interfaces and applications.

Applications in eHealth (healthcare practice supported by electronic processes)

Use of music information research for eHealth is still in its infancy. Its main use to date has been in music
therapy, where it has been employed for quantitative analysis of therapy sessions and selection of musical
material appropriate to the user's ability and taste. Music information technologies have traditionally been used
to characterise one's musical preferences for applications such as music retrieval or recommendation (see for
example the Musical Avatar of [6]). Moreover, there has been much research on technologies for affective analysis
of music, e.g. on music emotion characterisation. These technologies have a great potential for contributing to
music therapy, e.g. providing personalised music tools. For instance, according to E. Bigand, advances in cognitive
neurosciences of music have revealed the potential importance of music for brain and cognitive stimulation [3].
At this ISMIR 2012 keynote speech, he referred to some examples of the relationship between music technologies
and cognitive stimulation (e.g. �Happy Neuron� project 83). Systems making use of MIR for music therapy have
already been proposed inside the MIR community, e.g. the work by the team led by Ye Wang at the National
University of Singapore 84 [23, 31]. In [31], an MIR system is used to automatically recommend music for users
according to their sleep quality in the goal of improving their sleep. In [23] an MIR system that incorporates
tempo, cultural, and beat strength features is proposed to help music therapists to provide appropriate music
for gait training for Parkinson's patients. The Mogat system of [32] is used to help cochlear implant recipients,
especially pre-lingually deafened children. In this system, three musical games on mobile devices are used to train
their pitch perception and intonation skills, and a cloud-based web service allows music therapists to monitor and
design individual training for the children.

5.3.2 Speci�c Challenge

• Produce descriptive content analysis tools based on concepts used by musicologists. Current MIR
tools do not �t many of the needs of musicologists, partly due to their limited scope, and partly due to their
limited accuracy. To �ll the acknowledged gap between the relatively low-level concepts used in MIR and
the concepts of higher levels of abstraction central to music theory and musicology, will call for, on the one
hand, the development of better algorithms for estimating high level concepts from the signal, and on the
other hand, the proper handling of errors and con�dence in such estimation.

• Overcome barriers to uptake of technology in music pedagogy. Generic tutoring applications do not
engage the user, because they ignore the essential fact that users have widely varying musical tastes and
interests, and that the drawing power of music is related to this personal experience. User modelling or
personalisation of MIR systems is an open challenge not just for tutoring but for all MIR applications.
Another issue is that MIR technology is currently not mature or ef�cient enough for many educational
applications, such as those involving real-time processing of multi-instrument polyphonic music. Further
research is required in topics such as polyphonic transcription, instrument identi�cation and source separ-
ation, and in the integration of these techniques, in order to develop more elaborate music education tools
than currently exist.

• Provide diagnosis, analysis and assessment of music performance at any level of expertise. A
further barrier to uptake is that current music education tools have shallow models of music making (e.g.
focusing only on playing the correct notes), and fail to give meaningful feedback to learners or assist in the
development of real musical skills. More advanced tools will need to aid learners in areas such as phrasing,
expressive timing, dynamics, articulation and tone.

83http://www.happy-neuron.com
84http://www.comp.nus.edu.sg/~wangye
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• Develop visualisation tools for music appreciation. The listening experience can be enhanced via
visualisations, but it is a challenge to provide meaningful visualisations, for example those which elucidate
structure, expression and harmony, which inform and stimulate the listener to engage with the music.

• Facilitate seamless access to distributedmusic data. In order to satisfy information needs and promote
the discovery of hidden content in digital music libraries, it is necessary to provide better integration of
distributed data (content and meta-data, regardless of location and format) through the use of standards
facilitating interoperability, uni�ed portals for data access, and better inter-connections between institutional
meta-data repositories, public and private archive collections, and other content. Open source tools for
indexing, linking and aggregation of data will be particularly important in achieving this goal.

• Expand the scope of MIR applications in eHealth. Some preliminary work has demonstrated the value
of MIR technologies in eHealth, for example to assist health professionals in selecting appropriate music
for therapy. However, the full use of MIR in medicine still needs to be deeply explored, and its scope
expanded within and beyond music therapy.
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CHAPTER 6

Conclusions

This document has been conceived in order to identify current opportunities and challenges within the �eld
of Music Information Research. The aim has been to open up the current views that drive the MIR �eld by taking
into account science, industry and society. A review of the state of the art of the �eld has been conducted and
the challenges have been identi�ed by involving a variety of stakeholders. The proposed challenges have great
potential for future impact on both academia and industry. In addition to the scienti�c and engineering points of
view, the challenges have focused on social and industrial perspectives, thus aligning the Roadmap with Horizon
2020, the new EU Framework Programme for Research and Innovation 1.

By involving a variety of experts and points of view we hope to have provided a document of interest to both
the research community and to policy makers. The open discussions that have been organised in diverse forums
have already made a very positive impact upon the MIR community. From here on the success of this initiative
will be re�ected by the number of students and researchers that read and use this document to make decisions
about the direction of their research, especially when deciding which research challenges to address. The proposed
research challenges, as well as the knowledge and the network built during the coordination process should also
be relevant for policy makers, facilitating future gazing and the establishment of key Music Information Research
funding strategies.

1http://ec.europa.eu/research/horizon2020
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