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Abstract

When a pandemic is developing then data collection is chaotic and the most
important data one week might come from a completely different place the next week.
Therefore, it is important that both input and output are easy to understand. This
paper provides a dynamic approach to monitoring the most important transitions in
a pandemic. The data used are simple reflecting the type of data almost every news
reading person learned to know during the Covid-19 pandemic. The simplicity of
the data is a challenge and new missing data methodology has to be developed. The
methodology is illustrated via the case of Covid-19 developing in France.
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1 Introduction

Balancing complexity is at heart of mathematical statistics. When plenty of data are

available it is possible to work with complicated mathematical statistical models; reduced

complexity is necessary when data are sparse. This trade-off has many names, but it is often

referred to as balancing signal to noise. There is another aspect of balancing complexity

and simplicity that has been given less attention in mathematical statistics. In this aspect

it is the complexity of the data gathered that is considered rather than the complexity of

the statistical model itself. When trying to monitor a developing pandemic, data collection

time, communication and knowledge sharing across communities, quick data processing

and easily understood output are all extremely important. A global pandemic is likely to

develop in a chaotic way and where information and knowledge have to be collected within

different environments on an almost daily basis. One day the outbreak of the pandemic

might be in China, the next week in Italy and then moving to all other countries from there.

In other words: both input and output of the methodology used should be standardized and

easily exchanged. The new methodology of this paper is introducing a dynamic extension

in various directions of the recent paper Gamiz et al. (2022). These generalizations enable

us to monitor a developing pandemic with available data. Gamiz et al. (2022) provides

a new technique solving a new missing link data problem for survival analysis and uses

it on Covid-19 pandemic data. The missing link is between information of arrivals and

information on leavers in a dynamic system. Available Covid-19 pandemic data counted

arrivals and leavers, but were missing the link between the arrivals and the leavers, so

when someone left the hospital for example, information was not registered on time spent

in hospital before leaving. This paper works with the same type of data and therefore

has a similar missing data problem. However, it turns out that the statistical methodology

derived in Gamiz et al. (2022) almost immediately extends to a dynamic setting considered

in this paper.
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2 The Dynamic Missing Link Survival Model and the

Dynamic Missing Inhomogenous Poisson Model

In this Section a formal definition of the dynamic mathematical statistical model is given.

In Section 2.1 and Section 2.2 the formal model is described in the mathematical tractable

situation where continuous data are available. It is easy to follow the problem of missing

information in this setting.

In Section 2.1 the framework is such that any arrival gives rise to a random number

of future events and there might not be a direct link between the arrivals and the future

events. The arrivals almost play the role as a covariate or as exposure and every arrival

gives rise to one independent inhomogenous Poisson process of future events. The model

in Section 2.1 is useful when modelling the stochastic nature of infections.

Section 2.2 is only about the situation where there is connected exactly one leave to

one arrival. We call this the survival model setting. This model formulation is useful when

considering duration of time in hospital during a pandemic for example.

In Section 2.3 and Section 2.4 we provide a discrete approach that is very similar to the

approach in Section 2.1 and 2.2 but that can be used when only daily data are available as

in our available Covid-19 pandemic data.

2.1 The Dynamic Missing Link Inhomogeneous Poisson Model

Let us assume that subjects (from a population of size N ) arrive to a system at random

times modelled by a counting process Ñ1. Specifically Ñ1(t) counts the number of subjects

that enter the system during the interval (0, t] and associated to the ith subject a stochastic

process {Z1,i(t), t ≥ 0} is defined, where Z1,i(t) takes value 1 when the subject enters the

system at any time in the interval (0, t], and 0 otherwise. In Section 8 this process will be

considered as a covariate or marker process. Then Ñ1(t) =
∑N

i=1 Z1,i(t).

Each subject entering the system gives rise to a new counting process N1,i that can

take values in the set {0, 1, 2, . . .}. This counting process starts at the time of arrival and

has a jump of size 1 each time the event under study is happening. The event of interest

is considered a recurrent event in the sense more than one occurrence can be registered
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Figure 1: The missing data problem with inhomogeneous Poisson modelling.

(for example a repairable failure) associated to a particular subject that enters the system.

Then N1,i is assumed to be an inhomogeneous Poisson process. The situation is as in Figure

1.

Figure 1 gives a simple graphical description. The available data are the counting

processes Ñ1 and Ñ2. The arrivals are represented on the horizontal axis Figure 1 by the

counting process Ñ1(t). More than one event of interest can be recorded related to each

subject entering the system, then the total counts of final events registered by calendar

time are represented on the vertical axis of the plot by the counting process Ñ2(t).

We assume that the intensity function of the process N1,i can be written λ1,i(s) =

α1(s, Z1,i(s)), where α1(·, ·) is an unknown (deterministic) hazard function. When full

information is available of the stochastic processes Z1,i and N1,i, one could estimate the

hazard function α1, by the marker dependent estimator that will be defined later in Section

3.1. However we do not observe the stochastic process N1,i directly. Instead, we observe the

counting process Ñ1 =
∑N

i=1 Z1,i above counting arrivals and the counting process Ñ2(t)

defined as follows

Ñ2(t) =
∑

{i:Z1,i(t)=1}

N1,i(t− ti)

where ti = inf{t : Z1,i(t) = 1}, for the i-th subject.
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Figure 2: Missing data problem with non-recurrent events.

2.2 The Dynamic Missing Link Survival Model

Similarly to the situation in Section 2.1, let us assume that subjects (from a population of

size N ) arrive to a system at random times modelled by a counting process N̄1. That is,

N̄1(t) counts the number of subjects that enter the system during the interval (0, t]. Again,

associated to the ith subject we define a stochastic process {Z2,i(t), t ≥ 0}, where Z2,i(t)

takes value 1 when the subject enters the system at any time in the interval (0, t], and 0

otherwise. We introduce a different notation for the covariate process to highlight that the

arrivals of this type originate events inside the system which are of a very different nature

compared to the ones described in the previous section. Then N̄1(t) =
∑N

i=1 Z2,i(t).

Each subject entering the system gives rise to a new counting process N2,i that can

only take values in {0, 1}. This counting process starts at the time of arrival jumping to

one when the event under study is happening (if this event is happening at all). After the

occurrence of the event of interest, the subject is supposed not to be at risk any further and

then no more occurrences associated to this particular subject are registered (for example,

a non-repairable failure). The situation is as in Figure 2. In this case, a survival model is

considered. N2,i is the counting process associated to the survival time of the i-th subject,

and the corresponding risk process Y2,i taking value 1 when the subject is at risk and 0

otherwise, is defined.
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Figure 2 is a graphical simplification of the real situation. The available data are two

counting processes N̄1 and N̄2. The arrivals are represented on the horizontal axis of Figure

2 by the counting process N̄1(t). There is at most one occurrence of the final event for each

subject entering the system, then we interpret it as a departure from the system. The total

counts of departures by calendar time are represented on the vertical axis by the counting

process N̄2(t).

We assume that the intensity function of the process N2,i can be written λ2,i(s) =

α2(s, Z2,i(s))Y2,i(s), where Y2,i is a predictable process taking value 1 when the subject i

is at risk (inside the system) and 0 otherwise, and α2(·, ·) is an unknown (deterministic)

hazard function.

When full information is available of the stochastic processes Z2,i, N2,i and Y2,i, one

could estimate the hazard function α2, by the marker dependent estimator given in Nielsen

(1998) and detailed in Section 3.2. We do not observe the stochastic processes N2,i and Y2,i

directly. Instead, we observe the counting process N̄1 =
∑N

i=1 Z2,i above counting arrivals

and the counting process N̄2(t) defined as follows

N̄2(t) =
∑

{i:Z2,i(t)=1}

N2,i(t− ti)

where ti = inf{t : Z2,i(t) = 1}, for the i-th subject.

2.3 The Dynamic Missing Link Inhomogeneous Poisson Model

with discrete data

Often occurrences and exposures are not observed continuously and the only data available

is discretely collected during pre-specified time intervals. In the following we introduce

discretized observed versions of the above continuous counting processes: Ñ1(t), for the

arrivals of subjects to the system; and, Ñ2(t), for the number of occurrences of the event

of interest until time t, when observed, not continuously, but on a discrete grid of time

points. This grid not necessarily has to be equidistant, but for simplicity in the notation

and without any loss of generality, we consider the set {1, 2, . . . ,M}.
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Let us define, for x = 1, 2, . . . ,M ,

Ex,1 =

∫ x

x−1

dÑ1(u);

the total number of subjects entering the system in the interval (x− 1, x]; and,

Ox =

∫ x

x−1

dÑ2(u);

are the total number of occurrences registered in the system in the interval (x− 1, x].

As mentioned above, each subject that enters the system originates a Poisson process

associated to its arrival in the system, i.e. N1,i for the ith subject arriving at time ti. Let

N1,x be the aggregated counting process for all subjects arriving in the interval (x− 1, x],

that is

N1,x(s) =
∑

{i:ti∈(x−1,x]}

N1,i(s)

for s > 0. When the processes N1,i are observed (full information), we can also define

Ox,d =

∫ d

d−1

dN1,x−d+1(s)

for 1 ≤ d ≤ x ≤ M , which are the total number of events registered at time x from all

individual Poisson processes that started at time x− d+ 1.

It is satisfied that Ox =
∑x

d=1Ox,d, for all 1 ≤ x ≤ M .

When full information is available, these counts are of course directly observable. However,

our missing link data problem implies that full data information is not available, and we

are left to do our analysis with occurrence counts data like Ox above together with discrete

exposure data like Ex =
∑x

r=1Er,1, for x = 1, 2, . . . ,M . The size of the exposure at time

x with a duration in the system exactly equal to d is Ex,d = Ex−d+1,1 for 1 ≤ d ≤ x ≤ M ,

and it can be checked that that Ex =
∑x

d=1 Ex,d.

2.4 The Dynamic Missing Link Survival Model with discrete data

In this section we introduce notation for discretized observed versions of the above contin-

uous counting processes: N̄1(t), for the arrivals of subjects to the system; and, N̄2(t), for

the number of occurrences of the event of interest, when observed, not continuously, but
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on a discrete grid of time points. Again this grid not necessarily has to be equidistant, but

for simplicity, we consider the set {1, 2, . . . ,M}.

Let us define, for x = 1, 2, . . . ,M ,

Ex,1 =

∫ x

x−1

dN̄1(u);

the total number of subjects entering the system in the interval (x− 1, x]; and,

Ox =

∫ x

x−1

dN̄2(u);

are the total number of departures from the system registered in the interval (x− 1, x].

Each subject that enters the system originates a counting process associated with its sur-

vival time inside the system, N2,i for the ith subject arriving at time ti. Let N2,x be the

aggregated counting process for all subjects arriving in the interval (x− 1, x], that is

N2,x(s) =
∑

{i:ti∈(x−1,x]}

N2,i(s)

for s > 0. When the processes N2,i are observed (full information), we can also define the

following counts

Ox,d =

∫ d

d−1

dN2,x−d+1(s)

for 1 ≤ d ≤ x ≤ M , which are the total number of events registered at time x from all

individual survival counting processes that started at time x− d+ 1.

As can be seen in Gamiz et al. (2022) we have that Ox =
∑x

d=1Ox,d, for all 1 ≤ x ≤ M .

When full information is available, these counts are of course directly observable. However,

our missing link data problem implies that full data information is not available, and we

are left to do our analysis with occurrence counts data like Ox above together with discrete

exposure data like Ex below.

Ex =
x∑

r=1

Er,1 −
x−1∑
r=1

Or

for x = 1, 2, . . . ,M .

The number of subjects still at risk at time x and that have stayed in the system for a

time exactly equal to d is

Ex,d = Ex−d+1,1 −
d−1∑
s=1

Ox−s,d−s

for 1 ≤ d ≤ x ≤ M . We have that Ex =
∑x

d=1Ex,d.
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3 Estimation of the two-dimensional intensities for

transition function when full information is avail-

able

In this section we provide the two-dimensional intensity estimators we will use when we

have full information. The estimator was defined in Nielsen (1998) for the survival model

and we consider an adaptation for the intensity of the inhomogeneous Poisson process.

Let {(N1, Z1, Y1), . . . , (Nn, Zn, Yn)} be independent and identically distributed processes,

where Ni is counting process with respect to an increasing, right continuous, complete

filtration Ft , t ∈ (0, τ); Zi is a covariate process; and, Yi is a predictable risk process. The

random intensity of the process Ni is modelled as

λi(t) = α(Zi(t), t)Yi(t), (1)

with t ∈ (0, τ) and no restriction on the functional form of α(·, ·).

For simplicity we denote Wi(s) = (Zi(s), s). Let K be a two-dimensional kernel and b̄ =

(b1, b2) a bandwidth vector. Let Kb̄(x−y) = K1,b1(x1−y1)K2,b2(x2−y2), where x = (x1, x2)

and y = (y1, y2) and Kj,bj(·) = Kj(·)/bj, with Kj a general univariate kernel, j = 1, 2.

Let us define the following moments. A scalar function

A0(x) =
∑n

i=1

∫ τ

0

Kb̄{x−Wi(s)}Yi(s)ds; (2)

A1(x) is a vector function whose jth component is

A1,j(x) =
∑n

i=1

∫ τ

0

Kb̄{x−Wi(s)} (xj −Wij(s))Yi(s)ds, (3)

for j = 1, 2; and a matrix function A2(x) with dimension 2×2 whose (j, k)-element is given

by

A2,jk(x) =
∑n

i=1

∫ τ

0

Kb̄{x−Wi(s)} (xj −Wij(s)) (xk −Wik(s))Yi(s)ds, (4)

for j, k = 1, 2.
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3.1 The two-dimensional intensity estimator of the inhomoge-

neous Poisson model

In this subsection, we define the adjustment of the two-dimensional local linear intensity

estimator of Nielsen (1998) to the inhomogeneous Poisson case we need for the transitions

defined in Subsection 8.1 and Subsection 8.2 below.

Let N1, . . . , Nn be n independent inhomogeneous Poisson processes. For each individual

i, the process Ni has intensity λi(t) = α(Zi(t), t), which is a special case of expression (1)

for Yi = 1, for all i = 1, 2, . . . , n. The moments defined in (2)-(4) simplify in this particular

case and the local linear estimator of α given in Nielsen (1998) can be adapted and written

as

α̂K,b̄(x) =
n∑

i=1

∫ τ

0

{1− utA2(x)
−1A1(x)}

A0(x)− A1(x)tA2(x)−1A1(x)
Kb̄{x−Wi(s)}dNi(s). (5)

3.2 The two-dimensional hazard estimator of the survival model

In this subsection, we describe the original local linear marker dependent hazard estimator

of Nielsen (1998) that we need for the transitions defined in Subsections 8.1, 8.2 and 8.3

below.

In this case, Yi(t) is a random variable taking value 1 when the subject i is at risk and

under observation at time t, and 0 otherwise. We only take moments A1(x) and A2(x),

defined in (3)-(4). The local linear estimator of α is given by

α̂K,b̄(x) =

∑n
i=1

∫ τ

0
{1− utA2(x)

−1A1(x)}Kx,b̄{x−Wi(s)}dNi(s)∑n
i=1

∫ τ

0
{1− utA2(x)−1A1(x)}Kx,b̄{x−Wi(s)}Yi(s)ds

. (6)

3.3 The two-dimensional intensity estimator of the inhomoge-

neous Poisson model with discrete data

(To be written)1

1Should we write the entire discrete data approach in an Appendix?
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3.4 The two-dimensional hazard estimator of the survival model

with discrete data

(To be written)

4 Generating exposure and occurrences with available

data from an initial guess

4.1 Generating occurrences from an initial guess of the inhomo-

geneous Poisson process

Following the notation in Section 2.1, given that the subject i arrives in the system at time

zi, an inhomogeneous Poisson process starts N1,i with intensity rate λ1,i(s) = α(zi, s), for

i = 1, . . . , n.2 Since no observations of the processes (N1,i, Z1,i) are available we cannot

directly estimate the intensity α(·, ·). In this section we present a procedure to generate

this necessary information to obtain the two-dimensional estimator, defined in Section 3.1,

given that we observe the process Ñ1(t) counting the new arrivals in the system in the

interval (0, t], as well as the process Ñ2(t) counting all the events that occur inside the

system in the interval (0, t]. To do it we start with a prior guess about the unknown

intensity, α0(·, ·), which we take as if it were the true rate of the process N1,i.

Let us denote ε1 the intensity rate of new arrivals and Ft the σ-algebra containing all

the history of events occurring in the system in the interval (0, t]. Then

E
[
dÑ2(t)|Ft

]
=

(∫ t

0

α0(t− s, s)dÑ1(t− s)

)
dt,

or, noticing that dÑ1(t− s) ≈ ε1(t− s)ds,

E
[
dÑ2(t)|Ft

]
=

(∫ t

0

α0(t− s, s)ε1(t− s)ds

)
dt.

2In Section 3.1 we write the intensity as α(Zi(s), s), that is, depending on Zi(s) which is a 0-1 process

that indicates the time at which the i-th subject arrives in the system. Now we use the time zi = min{s :

Zi(s) = 1} as the first argument of α instead of Zi(s).
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After some calculations, we can write, for 0 < s < t arbitrary though fixed,

E
[
dÑ2(t)|Ft

]
=

α0(t− s, s)ε1(t− s)dt
α(t−s,s)ε1(t−s,s)

(
∫ t
0 α0(t−s,s)ε1(t−s)ds)

.

We define the following function

q(t, s) =
α0(t− s, s)ε1(t− s)(∫ t

0
α0(t− u, u)ε1(t− u)du

)
and then

E
[
dÑ2(t)|Ft

]
q(t, s) = α0(t− s, s)ε1(t− s, s)dt. (7)

As we know, each arrival generates a Poisson process so that the size of the exposure at

time t due to subjects arriving at as small interval around t− s only depends on the total

number of arrivals at that time, that is dÑ1(t− s) ≈ ε1(t− s)ds. Then the instantaneous

probability of an event occurring inside the system at time t which is associated to subjects

entering at time t− s is given by

E [dN1,t−s(s)|Ft] = α0(t− s, s)ε1(t− s)ds

This expression together with (7) motivates the following

E [dN1,t−s(s)|Ft] dt = E
[
dÑ2(t)|Ft

]
q(t, s)ds. (8)

Finally, for a subject i entering the system at a small interval around time t− s we denote

N1,i(s) = N1,t−s(s). Then we can approximate dN1,i(s) ≈ E [dN1,t−s(s)|Ft], which, based

on equation (8), can be obtained from available data thus providing the information needed

to get an estimator of the intensity α̂K,b̄ as described in (5).

4.2 Generating exposure and occurrences from an initial guess

of the survival model

Following the definitions in Section 2.2, let us denote (Z2,i, N2,i, Y2,i) the model associated

to the survival time inside the system spent by the i-th subject. We assume that N2,i is a

counting process with intensity λ2,i(s) = α(zi, s)Y2,i(s). Since no observations of this model

are available we cannot directly estimate the hazard α(·, ·). We consider a prior candidate

12



for the hazard function, i.e. α0, which is treated as the true model. In this section we present

a procedure to generate the information necessary to obtain the two-dimensional hazard

estimator given in Section 3.2, from the observation of processes N̄1(t) =
∑N

i=1 Z2,i(t)

counting the arrivals in the system; and N̄2(t) =
∑

{i:Z2,i(t)=1}N2,i(t− zi), with zi = inf{t :

Z2,i(t) = 1}. Let us denote ε1 the intensity of N̄1, and Ft is the σ-algebra that contains all

the history of the two processes until time t.

Again we have dN̄1(t− s) ≈ ε1(t− s)ds and then

E
[
dN̄2(t)|Ft

]
=

(∫ t

0

α0(t− s, s)S0(t− s, s)ε1(t− s)ds

)
dt, (9)

with S0(z, s) = exp
{
−
∫ s

0
α0(z, u)du

}
, for all z, s > 0.

After some manipulation in equation (9) we get

E
[
dN̄2(t)|Ft

]
q(t, s) = α0(t− s, s)S0(t− s, s)ε1(t− s)dt, (10)

where, we denote

q(t, s) =
α0(t− s, s)S0(t− s, s)ε1(t− s)∫ t

0
α0(t− u, u)S0(t− u, u)ε1(t− u)du

.

The expected number of subjects remaining in the system at time t among those who

entered at a small interval around t−s can be calculated as E [Yt−s,2(s)] = S0(t−s, s)ε1(t−

s), then the instantaneous probability of a subject leaving the system immediately after t

can be approximated as E [dN2,t−s(s)|Ft] ≈ α0(t− s, s)S0(t− s, s)ε1(t− s)ds. Then, from

equation (10) we obtain

E [dN2,t−s(s)|Ft] dt = E
[
dN̄2(t)|Ft

]
q(t, s)ds. (11)

The number of subjects at risk at time t, regardless how long they have remained in the

system, is Ȳ2(t) =
∑

{i:zi≤t} Y2,i(t − zi) and the total expected exposure at time t can be

calculated

E
[
Ȳ2(t)

]
=

∫ t

0

S0(t− s, s)ε1(t− s)ds. (12)

Some transformations in this equation lead to

E
[
Ȳ2(t)

]
h(t, s) = S0(t− s, s)ε1(t− s). (13)
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where

h(t, s) =
S0(t− s, s)ε1(t− s)∫ t

0
S0(t− u, u)ε1(t− u)du

,

and then

E [Y2,t−s(s)] = E
[
Ȳ2(t)

]
h(t, s). (14)

Finally, for a subject i entering the system at a time in a small interval around t − s

we denote N2,i(s) = N2,t−s(s) and Y2,i(s) = Y2,t−s(s). Then we can approximate dN2,i(s) ≈

E [dN2,t−s(s)|Ft] and Y2,i(s) ≈ E [Y2,t−s(s)]. Using equations (11)and (14) we can generate

this information from available data which allows us to obtain an estimator of the hazard

α̂K,b̄ as described in (6).

4.3 Generating occurrences from an initial guess of the inhomo-

geneous Poisson process with discrete data

(To be written)

4.4 Generating exposure and occurrences from an initial guess

of the survival model with discrete data

(To be written)

5 General considerations when monitoring and fore-

casting in a dynamic environment

Our dynamic modelling is broadly speaking based on two types of transitions. One type

where the number of individuals are well defined and a follow-up type survival analysis is

possible. And then another type of transition where the number of individuals involved

are biased by dynamic definitions and underestimation. We use two different mathematical

approaches to describe these two types of transitions.
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5.1 A transition where the number of individuals involved are

well known

In a confusing pandemic where definitions and measurements and other things are changes

by the hour, there are stable components. It is for example often well defined what it means

to be hospitalized even though the criteria for hospitalized might develop dynamically. And

the daily number of hospitalized people can be expected to be recorded quite well in many

countries. Death is also well defined of course even though death-by-the-pandemic can

have a dynamic definition changing with a developing dynamic. We there decide to model

transitions from individual transitions from number of hospitalized to death-in-hospital or

recovery-from-hospital via something that looks like standard survival analysis.

Hospitalization

Recovery

Death

Figure 3: Transition from hospital to death or recovery.

Technically speaking we cannot use standard survival analysis on the above transition

when dealing with what we call ”available data”. Our available data contain information of

number of hospitalized every day, numbers of deaths-in-hospital every day and number of

recovery-in-hospital every day. But available data does not contain information on the link

between these events. We therefore do not know directly from data which hospital-durations

died or recovered hospitalized had on one particular day of measurement. However, this

statistical problem can be overcome by introducing some new survival techniques on missing

data introduced by this paper and discussed in the methodological section.
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5.2 Another type of transition where the number of individuals

involved are biased by dynamic definitions

There is another type of transition where the number of individuals involved are based on

some subsample of the population and even with a dynamic criteria for selecting this sub-

sample. Such a transition is the transition from number of infected individuals to number

of hospitalized.

Infection Hospitalization

Figure 4: Transition into the hospitalized state.

We model such a system in another way via an inhomogeneous poison process inter-

preting the number of infected as a dynamic indicator or covariate rather than as a number

of individuals.

5.3 Constructing a statistical transition system using the two

above type of transitions

When defining a statistical transition system using the above two transition options, then

the exercise is to use the first type of transition as much as possible and also to try to

use transitions that are short and easy to estimate. In other words, it might be better to

estimate a transition from infected to hospitalized and combine it with a transition from

hospitalized to death, than to go directly from number of infected to death.

5.4 Principles of forecasting in a dynamic environment

Forecasting is of course always tricky. Let us define and indicator called Ct indicating at

any point in time t whether the future will be different or equal to the immediate past.
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If Ct equals one then we can forecast the immediate future based on the immediate past.

However, in a pandemic there are many change-points of severity. There are long periods

where little is being done (and Ct might have a tendency to increase slowly) and there

might be few but very important change-points where there measures (e.g. lock down)

are introduced to minimize future infections (and Ct might drop dramatically in a matter

of days). The point of our approach to forecasting in this paper is that we can monitor

and forecast the pandemic when Ct equals one. In that situation a dynamic statistical

methodology as introduced in this paper can do the job via a surprisingly simple data

collection reflecting what can be considered “available data” in many countries. Therefore,

the only thing left to monitor and forecast well is to have a dynamic point of view and the

constant Ct. That work needs expert advice specific to countries or local regions within

countries. This important work cannot be dismissed via a statistical analysis based on

simplified available data. But it is important that the experts involved should only consider

forecasting and understand the Ct rather than being responsible for a full statistical model.

6 Estimating with available data. The case of France

In this section we present our main ideas on monitoring a developing pandemic based on

available data. We use the recent Covid-19 pandemic and the country France as our case

study. We walk through our modelling principles and the new mathematical statistical in-

ventions necessary to implement our new approach. However, we do defer all mathematical

definitions and theorems and proofs till later sections and the appendix.

6.1 Time in hospital

As mentioned in Section 5.3 it is important to construct the statistical modelling of the

developing pandemic such that robust components get as much weight as possible.

Time spent in hospital is such a robust component and we have decided to start our

analysis here and build the rest of the dynamic system around this important central com-

ponent. When analysing time spent in hospital, the exact number of individuals entering

and leaving hospitals are assumed to be observed every day together with the additional
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information on how many die at hospital every day. Notice that the collected data is ag-

gregated in nature and individual follow-up data is not collected. We do not assume to

observe which exact individuals who are leaving or recovering at one particular day. This

implies that standard survival methodology does not apply and we have had to introduce a

new missing data methodology to the tool-box of survival analysis. The mathematical and

methodological details of this new survival analysis technique is deferred to Section A.1 in

the Appendix.

The most easy way to follow our idea is to look at an example. Consider the transition

from being-in-hospital to dying-in-hospital or recovering-from-hospital displayed in Figure

3 of Section 1.1.

6.1.1 Examples of concrete hospital transitions, the Covid-19 case of France

Time spent in hospital is a dynamic concept in the sense that it depends on the particular

date an individual is admitted to hospital. Figure 5 displays the estimations of the hazard

function of time in hospital until recovery (left panel) or death (right panel) for individuals

entering at different dates. We have used a two-dimensional hazard estimator. One dimen-

sion being the date of admission and the other the duration-time-in-hospital. For example,

the solid black line in the left panel represents the hazard function of the duration until

recovery for patients who enter the hospital on 30-September. The hazard function can be

interpreted as the probability a patient leaves the hospital due to recovery conditioned on

the duration of his/her stay. The solid black line shows a decreasing tendency as time in

hospital for these patients passes. In concrete, we see that the about 6.5% of patients that

enter the hospital on the 30-September receive clinical discharge on the same day. Also,

we can say that after a stay of 10 days, a person who was admitted to hospital on the

30-September has a probability about 0.06 of recovery, while the probability of recovery

was barely of 0.035 on the 10-May for patients admitted on the 30-April and with a stay

of 10 days (see dashed red line). Finally, for people entering the hospital on the 31-July,

the probability of recovering at any date later does not depend on the length of the stay.

That is, a person who enter the hospital on the 31-July and still remains in hospital on

the 5-August has probability of leaving with clinical discharge of about 0.046; if he/she

18



still remains in hospital by the 20 of August again has a probability of leaving with clinical

discharge of about 0.046. That is, for patients entering the hospital on the 31-July, the

time until recovery shows a constant hazard rate, at least during the first 35 days of stay.
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Figure 5: Hazard rate of time spent in hospital for individuals entering the hospital at

different dates in the period from March to November in 2020. Left panel: Hazard rate

for time since admission until hospital discharge. Right panel: Hazard rate of time since

admission until death.

The first victim caused by SARS-Cov-2 in Europe was officially reported in France on 24

of January 2020. On 11 of March 2020 the WHO declared COVID-19 as a world pandemic

and from that time on many countries started to introduce contention measures aimed at

controlling the spread of the virus. In particular on 16 March 2020, French authorities

implemented strict measures such as closing schools, universities and non-essential services

as well as mobility restrictions and isolation. The efficiency of the measures was proven

by a significant descent of the number of cases in the following weeks with the consequent

relief of the national sanitary system directly implying a significant improvement of the

healthcare. This can be seen on the right panel of Figure 5, where the hazard mortality

rate for new hospitalized is represented for different admission date. The graph in Figure

5 (right panel) shows that for people just arriving on the 30 of April the risk of death is

below 1% and decreases as time in hospital passes. This risk is half this figure for people

arriving to the hospital one month later. This can be an indicator of the collapse of the
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hospitals in the months immediately after the pandemic outbreak (March and April). It

is changing dynamically what it means to be a hospitalized patient during a pandemic.

Political decisions, available hospital resources, fatigue of hospital employees, and many

other things play a dynamic role together with the changing character of the way the

pandemic itself develop in the population. Therefore, any definition in this paper is meant

to be time dependent. What it means to be hospitalized or recover or even dying-as-

infected might be different for two different calendar times. Our mathematical formulation

given below fully accommodate such dynamics. The calendar time dependency of our two-

dimensional marker dependent hazard is the key tool to achieve our fully flexible dynamic

modelling of a developing pandemic. When it comes to our specific example of Covid-19

in France it seems evident that there is an improvement in the clinical experience and a

perhaps also a better understanding of the disease from the first wave of the pandemic in

the spring till the second wave of the pandemic in the fall.

We can see this looking at the left panel of Figure 5. From May to October, the

conditional probability for a person to receive hospital discharge, given he/she has been in

hospital for d days, shows an increasing tendency as a function of admission date, for any

value of d. For example, for patients just arrived, d = 1, the probability of leaving hospital

due to recovery ranges from 3% on the 31-May to almost 7% on the 30-September.

The average daily number of new hospitalizations was around four times as high in

May 2020 compared to October 2020. This dynamics implied a significant pressure on

hospitals in October changing the overall chances of recovering from the infection while

in hospital. When studying recoveries and deaths while in hospital in Figure 5 and the

age-dependent version in Figure 6, it seems very clear that the probability of getting out of

hospital alive is changing with the dynamics of the pandemic. We therefore conclude that

any modelling of a developing pandemic has to be able to work with dynamic definitions

of the stages involved in the pandemic as well as with dynamically developing underlying

statistical parameters as we do in this paper.

There are different dynamics depending on age groups. Figure 6 shows the variations in

instantaneous calendar time dependent probability of death given duration in hospital (the

time dependent hazard rate) for patients across different age groups.
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Figure 6: Hazard rate of time spent in hospital for individuals entering the hospital at

different dates in the period from March to November in 2020. Left panel: Hazard rate

for time since admission until hospital discharge. Right panel: Hazard rate of time since

admission until death

The above hazard rate estimators provide us with sufficient information to calculate the

expected time in hospital for a given individual patient admitted to hospital at some given

date. See Figure 7 where the information is disaggregated by age groups. A prominent

peak for people hospitalized by the end of May (shown by all age groups) highlights the

fact of the changing behaviour of covid on distinct times of the calendar since the pan-

demic outbreak. As can be seen, age is an important covariate, and, among other things,

while the different conditions under which the pandemic has evolved (variants of the virus

and different restrictions regimes) do not have apparently serious impact on the younger

population, it seems to strongly affect people in the oldest groups for which the date of

infection is key.
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Figure 7: Expected time in hospital by admission date from March to November in 2020.

Left panel: Expected time since admission until hospital discharge. Right panel: Expected

time since admission until death

Variations over time of durations of stays in hospital until recovery or death are partly

explained by changes in the age of patients. In short, it can be said that the length of stays

in hospital for recoveries has decreased from the first wave in about five days for the full

sample. The reduction is bigger for people between 60 and 80 years and less significant

for ages below 40. The length of stays for deaths has also decreased from about 150 days

during the first wave until less than 100 days in the second wave, for the full sample, being

the reduction is less significant for the younger patients.

Figure 8 helps answer the following question: What is the probability that a subject

who has been in hospital for d days can leave it alive?
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Figure 8: Probability of outcome by cause specific from March to November in 2020. Left

panel: Probability of leaving the hospital due to recovery. Right panel: Probability of

leaving the hospital due to death

The probability of getting out alive slightly increases with hospitalization time. This

increase is more substantial for people above 80 years in the first month in hospital. The

probability of dying in hospital decreases with hospitalization time. In the first day in

hospital almost 40% of the older people (above 80) will die, this percentage is about 20%

for people between 60 and 80 years, and below 10% for the younger.

6.2 From infected to being in hospital

The next transition we consider is the transition from being infected to entering hospital.

We do not know the number of infected people and we do not have follow up data of

individuals infected (see Figure 4). What we do have is a vague indicator of infected

individuals. An indicator that is changing over time. This indicator is the number of

individuals tested positive in the pandemic. Clearly this indicator is higher when there

is more testing and lower when there is little testing activity. And also the composition

of individuals being tested might change over time, where for example, as we saw in the

Covid-19 pandemic, elderly people get tested relatively much in the beginning where testing
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in general is low, while then younger people get tested much more later in the pandemic

where testing is more frequent and young people might need a negative test to socialize in

the weekend. In other words, we cannot make a direct connection between our infection

indicator and the number of infected, we only have a dynamic indicator that is changing

in its nature over time. But we can assume that this change is smooth and gradual over

time and we can therefore do something by introducing a dynamic smooth system that is

changing over time with the changing indicator.

6.2.1 Examples of concrete transitions from infected to hospital, the Covid-19

case of France

Because of the vague nature of the definition of the infection-indicator we have to use

transition methodology exposed in Section 1.2 when investigating the transition from being

infected to entering hospital. While the input is a vague indicator of infections in the

population, the output is more direct, namely number of people entering hospital.

After the first months of the pandemic, it was estimated that 70% of infected individuals

manifested the disease, and for around a 30% of these, the illness progression was so serious

that they needed hospitalization. This means that the hospitalization rate was roughly

estimated by a 0.21, considering all the patients until that moment and regardless the

exact time they were infected (citation). As far as the pandemic has lasted over time

several mutations of the virus have arisen causing different implications in patients. For

example, some mutations may spread more easily or show signs of resistance to existing

treatment. Conditions change and it is natural to understand the number of hospitalized

per unit time as a dynamic concept. The more spread of the virus the more infected people

and, in principle, the more people needing to go to hospital. But the mean age of cases

has decreased in the second wave compared to the period March-April, probably due to

the massive screening rolled out later, so incrementing the number of detected patients

asymptomatic or with mild symptoms who do not need special healthcare. In fact, we have

seen from data that during the month of October the hospitalized supposed only 4.4% of

all positive tested during this month while it was 24.5% in June, even when the number of

cases has increased a tenfold in October.
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Figure 9: Dynamic estimation of the rate of hospitalization.

Figure 9 illustrates the use of our methodology to estimate the rate of hospitalization

in a dynamic context. We introduce below a new local linear two-dimensional estimator

for the intensity rate of an inhomogeneous Poisson process. While the local linear marker

dependent hazard estimator has been known for a while, see Nielsen(1999), then it seems

that our paper is the first to introduce the local linear marker dependent hazard estimator

for an inhomogenous Poisson process, see Section 4 for more details. We now assume

that, starting from a particular day z the future number of hospitalized arrive following

an inhomogeneous Poisson process whose intensity rate depends on the number of infected

detected on the day z and use our new local linear estimator to quantify and visualize the

dynamics of the infection of the French Covid-19 pandemic. For example, the red dashed

line is the rate of hospitalizations starting on the 31 of May while the black solid line is

the corresponding to those starting on the 31 of September. At first sight, Figure 9 shows

a perhaps surprising issue: a sharp descending trend of the hospitalization rates when are

seen as a function of the date of onset. That is, almost 5% of new cases is estimated to be

hospitalized on the 31 of May; on the 30 of June, there will be around 2%; and, this figure is

below 0.5% on the 31 of September. This might suggest a slowdown in the speed of arrivals

to hospital with time which may be strange given the dramatic increase in number of cases

in the last period, but can be explained due to a loss of capacity of the hospitals as the

pandemic continues with time and patients accumulate so that less of them enter hospital

and also because the variation of the virus that circulated during the second wave was
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spreading faster but was not more lethal. It is important to note that the age of patients

was significantly lower in the second wave.

6.3 Examples of concrete transitions from infected to infected,

the Covid-19 case of France

When it comes to the relationship between infections in the population at one point in time

and then infections in the population at a later point in time, then it is perhaps surprising

that the methodology described in Section 1.2 can be used once again. Now both the input

and the output are vague indicators of number of infections.

Infection Infection

Figure 10: Transition from Infected to Infected.

The number of observed infected in a developing pandemic vary significantly in response

to, among other things, the implementation of unprecedented interventions (lockdowns, so-

cial distance, etc.). Besides, the same number of observed infected might have completely

different interpretation in the beginning of the pandemic and after say a year of the pan-

demic, when testing has become more available and is perhaps also more accurate. The

number of observed infected is of course only a fraction of the total number of infected, so

it underestimate the spread of the pandemic, especially at the time of the outbreak. But

the observed number of infected is a time-dependent indicator of how serious the pandemic

is at the moment. This is the reason our model is using number of infected as a fun-

damental measure of the size of an inhomogeneous Poisson process starting at this time.

We use again a two-dimensional marker dependent rate to capture the dynamics of the

infection process. More specifically, new positives reported on a particular day give rise

to new infected in the future. Then, every day of the calendar a stochastic process that

26



counts the new infected from that day on is originated, so that we have a family of Poisson

processes. Each process of he family is indexed (marked) by the date at which it starts and

the corresponding intensity function is obtained using a two-dimensional estimator.

Dynamic rate of infection

Date of Notification

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

2020−05−31 2020−06−30 2020−07−30 2020−08−29 2020−09−28 2020−10−28 2020−11−27

Starting on date:
2020−05−31
2020−06−30
2020−07−31
2020−08−31
2020−09−30
2020−10−31

Figure 11: Dynamic estimation of the rate of infection.

Figure 11 is a demonstration of how the virus has spread from May to November.

The intensities of the processes that start at some particular dates are represented. It is

noticeable the steep decline in the number of cases in both May and November as a result

of the severe measures imposed in France at those moments in time.

6.4 Relationship between dying in hospital and dying outside

hospital , the Covid-19 case of France

Based on the above transitions, we are now able to understand transitions from infected

to infected, and from infected to hospital and from hospital to recovery or death. Even

though we are only using available data. However, we are still not able to say anything

about the total number of deaths in the population due to the pandemic. To do this we

need as available data the additional information on the daily number of people dying

outside the hospital due the pandemic. We then operate with a dynamic ratio between

number of people dying in hospital at a given date and number of people dying outside

hospital at a given data.
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6.4.1 Examples of smooth developments of number of deaths in hospital, the

Covid-19 case of France

The curve in Figure 12 is a smooth estimation of the density of the number of the deaths

reported by some hospital in France. The curve has been obtained using a local linear

kernel density estimator that additionally considers a bias correction. It can be seen that

the days with highest number of deaths was reported during the first wave, in early April.

However, the second wave that far more affected younger populations, caused higher mor-

tality among these age groups, that is, the deaths were more frequent inside the hospitals

than in residences for the oldest. With the implementation of vaccination plans, the curve

showed a clear descent later in February.
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Figure 12: Smooth density estimation of the number of deaths-inside-hospital from April-

2020 to February-2021.

6.4.2 Examples of smooth developments of number of deaths outside hospital,

the Covid-19 case of France

The curve in Figure 13 is a smooth estimation of the density of number of reported deaths

occurred in social medical establishments for the elderly (denominated EHPAD and EMS

in France), that is, deaths that are not registered in hospitals. Again we have used a

local linear kernel density estimator with a bias correction to obtain the curve. As can be
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deduced from the curve, the number of deaths occurred was very high at the beginning of the

pandemic, in the month of April, then these establishments were put under the surveillance

and very strict lockdowns were implemented in these centres until the situation was under

control. Although a slight rise in deaths can be seen at the end of 2020, just after, it is

also noticeable the effect of the vaccination rolled out in France in January 2021 precisely

with the oldest people.
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Figure 13: Smooth density estimation of the number of deaths-outside-hospital from April-

2020 to February-2021.

6.4.3 Examples of smooth developments of ratio of number of deaths inside

versus outside hospital, the Covid-19 case of France

When quantifying the number of deaths outside hospital to be able to find the total number

of deaths from the pandemic, then we simply follow the dynamic development of the ratio

of people dying inside the hospital versus outside the hospital respectively. We know from

similar studies in survival analysis, see Nielsen and Tanggaard (2001), that it is more robust

to estimate the numerator and the denominator separately and then divide to get the ratio,

then it is to smooth the ratio directly. In Figure 14 we provide the final result of this

procedure and we see that while the ratio has stabilized with a little higher probability for

dying in hospital compared to outside hospital, then also this ratio has changed significantly

during the dynamics of the developing pandemic. In the very beginning double as many
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people died outside hospital compared to inside hospitals, and this might be down to some

of the early problems with keeping care homes free of the infection.
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Figure 14: Smooth density estimation of the number of deaths-outside-hospital from April-

2020 to February-2021.

6.5 The full system chosen in the Covid-19 case of France

In this section we describe the full system chosen in the Covid-19 case of France (see the

full theoretical model in Section 4).The dynamic model will be very dynamic indeed. Even

the definition of what we observe might change as the pandemic develops. Our model can

be illustrated via the stages represented in Figure 15.
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Recovery
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Figure 15: Transition diagram.

In a developing pandemic the first thing that happens is that a few people get infected,
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further infections are higher when there are many infected, therefore there is a feedback

loop from the infected stage to its own stage. The definition of an infected might vary

over time. A practical version would be to define infected as those people in the society

that have been tested positive for the infection. In the beginning of a pandemic testing is

perhaps very limited and one positive test means more than later in the pandemic when

testing facilities might be widely available. Also, there might be dynamic in hospitalized.

There might be varying decisions over time (also due to seasonal impact) of when a person

is hospitalized. Even definition of death might vary over time. While the definition of death

itself is robust, it might vary over time what it takes to define one particular death to be

due to the pandemic. There is also dynamic in the likelihood of transition from one stage to

another. We have used two-dimensional local linear marker dependent hazards, see Nielsen

(1998), to capture the transition dynamic between stages. This marker dependent hazard

estimator has been manipulated to work for inhomogeneous Poisson processes additional to

the independent identically distributed counting process that it was originally designed for.

As it has been already mentioned, the two dimensions are duration-in-stage and calendar-

time. It is the dependency on calendar-time that provides us with the sought after dynamic.

7 Principles of forecasting. The Covid-19 case of

France

The main view of forecasting taken in this paper is related to the considerations of Section

5.3. We want the robust and understandable transitions to play as big a role as possible.

When looking at the full system described in Section 3 for the Covid-19 case of France, one

can take that point of view that all transitions except that one from the infection indicator

to the infection indicator can be described via slowly moving continuous development over

time. In other words: except for this one transition, it makes sense - at any given date - to

forecast the immediate future structure of these transitions from the immediate past. We

are therefore left with the challenge of forecasting the transition from infection indicator

to infection indicator. Here we use the Ct explained in Section 5.4.
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7.1 Forecasting the infection indicator

It is not an easy task to forecast the infection indicator. Here is a graph of the optimal

chosen Ct values for the period may till December 2020.
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Figure 16: Optimal estimated values of the forecasting constant for one-week predictions

It is clear that Ct = 1 is often not a good chose for forecasting the immediate future (see

Figures 17 and 18). In other words: the immediate future cannot be forecasted from the

immediate past. The point of view taken in this paper is that more information including

expert opinion is necessary to make a good chose of Ct at any given date. Notice that

Ct is closely related to the much published reproduction number Rt (citation?) on how

many new infected one infected individual cause in any given time period. It is reasonable

accurate to assume that if the reproduction number Rt is constant then this corresponds to

Ct equal to one. If Rt is expected to be bigger in the immediate future then one would need

a Ct bigger than one, and vice versa if Rt is expected to be smaller in the immediate future

then one would need a Ct smaller than one. We do not have data on the actual Rt and the

expected future Rt for France for the period considered. But we think that a reasonable

good model for the Ct to use for forecasting could result from a simple regression of best

possible Ct down on the actual and the predicted Rt. This is clearly an approach we would

recommend during a developing pandemic.
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The value of Ct that is plotted on the 7-Sept is the optimal value for predicting new

infections in the week 1-Sept to 7-Sept. It is calculated based on the information until

7-Sept. The Rt that is notified on 14-Sept is calculated with information until 7-Sept.

Although it is published one week later. We are plotting the Rt series not against the date

the have been published, but against the date one week earlier. According to the official

website, this number reflects the epidemiological situation one week before notification.

That is the number reported on 14-Sept is calculated based on to the information on 7-

Sept. In conclusion, every Ct is close to the reported value of R but 7 days later, that is

Rt+7. There is high correlation between the two indicators.

7.2 Forecasting the 31th of October 2021. The Covid-19 case of

France

Figure 17 gives a graphical representation of daily new infected detected since 15-May

until 31-October. The black dots give the reported daily numbers until 30-September. The

aim in this case is to forecast the number of new infections during the month of October

from the information until 30-September. Taking the value Ct = 1 we are assuming that

the immediate future will behave as the immediate past, then we assume that the rate of

infection at the end of the prediction period (31-October) is exactly the same as it was at the

end of the observation period (30-Sept). Then we obtain the dash blue line as a forecasting

of the number of infected during the month of October. Taking the true number of infected

reported in October (grey dots), we can obtain the (infeasible in practice) optimal value

of Ct to estimate the infection rate at the end of the prediction period. And then we have

estimated that the rate of infection on 31-October is 1.542 times the value of the rate on

30-September. Using linear interpolation we get the infection rate for the whole prediction

period which allows to obtain the daily new positives in October (blue dashed line) that

best fit the true values. As can be seen, a Ct = 1, that is, when no changes are assumed

in the behaviour of the infection rate in October with respect to what we had at the end

of September, the number of infected will increase as shown by the trend of the red dotted

line. However, as we find out when we get the true numbers, the speed of growth of this

curve is not sufficient to reproduce the real situation.
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Figure 17: Number of new positives predicted in October using Ct = 1 (red dotted line)

and using the optimal chosen value for October Ct = 1.542 (blue dashed line).

Figure 18 presents a similar study as in Figure 17 but considering this time the problem

of predicting the number of new hospitalizations in October on the basis of historical data

until September. To obtain the optimal Ct value we do similarly to the previous case.

We consider that the rate of infection at the end of the forecasting period is Ct times the

value of the infection rate we had estimated for the 30-September. In this case we take

the optimal value of Ct by minimizing the error of prediction with respect to the number

of hospitalized during the month of October, instead of the number of infected. Then the

optimal chosen Ct leads us to a rate of infection on 31-October is 1.783 times the rate of

infection on 30-September (blue dashed line). As can be seen, taking Ct = 1 in this case

leads us to a situation with respect to number of new hospitalized which is very farther from

the true situation (red dotted line). To obtain the number of new hospitalized in October

we need an additional step, that is, also need to extrapolate the rate of hospitalization

estimated with data until 30-September to the month of October. We assume that the

hospitalization rate at the end of the forecasting period is exactly the hospitalization rate
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at the end of the estimation period. Finally, we include in this graph the results obtained

considering Ct = 1.542 (green dot-dash line), which is the value of the C-constant that

minimizes the error with respect to the number of infections in the forecasting period. We

pay special attention to this criterion because of its relation with the popular R-number,

as it has been discussed in Section 7.1.
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Figure 18: Number of new hospitalized predicted in October using Ct = 1 (red dotted line)

and using the optimal chosen value with respect to the number of hospitalized in October

Ct = 1.783 (blue dashed line), and using the optimal chosen value with respect to the

number of positives reported in October Ct = 1.542 (green dot-dash line).

8 Model formulation

Suppose we are observing n individuals in a time interval (0, τ).
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8.1 Modelling the feedback loop from infected to infected

When modelling the feedback loop from infected to infected we assume that every individ-

ual infected give rise to an inhomogeneous Poisson process defined via a two-dimensional

forward reaching marker dependent intensity function.

For the ith individual (i = 1, . . . , n) and for each t ∈ (0, τ), let Z1,i(t) denote the time-

dependent covariate taking value 1 when the ith individual has been tested positive for

an infectious disease3 at any time in the interval (0, t]; and, 0, otherwise. Z1,i is a one-

dimensional marker process with support on the interval (0, τ).

In general the time-dependent covariate or marker process will be a d-dimensional pre-

dictable process. In our case we have d = 1, because Z1,i(t) is a process indicating only

the date when patient i has tested positive. The marker dependent process Z1,i can be

generalized to higher dimensions (d > 1) in case other relevant information on patients is

incorporated to the model. The marker process Z1i is a predictable, CADLAG covariate

and let F1,s(z) = Pr(Z1,i(s) ≤ z) denote its conditional distribution function at time s.

Each positive tested patient is likely to be responsible for many other infections in the

future. Let N11,i(t) denote the total number of new infections generated by individ-

ual i, then, {N11,1, . . . , N11,n} are n independent inhomogeneous Poisson processes and

{(N11,1, Z1,1), . . . , (N11,n, Z1,n)} are independent and identically distributed processes. For

each individual i, the intensity of the process N11,i, λ11,i(t), is modelled as depending on

the marker process Z1,i(t), by

λ11,i(t) = α11(Z1,i(t), t), t ∈ (0, τ),

where α11(·, ·) is a deterministic hazard function with no restriction on its functional form.

8.2 Modelling the transition from infected to hospital

When modelling the transition from being infected to entering the hospital, we use the

same approach as in Section 8.1 above and use an inhomogeneous Poisson process based

on a two-dimensional marker dependent intensity.

3The practical application of this paper is focused on COVID-19, but we provide a general methodology.
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For the ith individual (i = 1, . . . , n) and for each t ∈ (0, τ), let Z1,i(t) denote the marker

process associated to the positive test date as in the previous section.

Let N12,i(t) counting the number of hospitalizations of individual i in the interval (0, t).

We assume that {N12,1, . . . , N12,n} are n independent inhomogeneous Poisson processes and

that {(N12,1, Z1,1), . . . , (N12,n, Z1,n)} are independent and identically distributed processes.

For each individual i, the intensity of the process N12,i, λ12,i(t), is modelled as depending

on the marker process Z1,i(t), by

λ12,i(t) = α12(Z1,i(t), t), t ∈ (0, τ),

where α12(·, ·) is a deterministic hazard function with no restriction on its functional form.

8.3 Modelling transition from hospitalized to death or hospital-

ized to recovered

When modelling transition from hospitalized to death or hospitalized to recovered, we use

the standard counting process set-up as defined in Nielsen (1998). Then we work with

duration modelling from entering hospital to leaving hospital either as recovered or a dead

by infection.

For the ith individual (i = 1, . . . , n) and for each t ∈ (0, τ), let Z2,i(t) denote the variable

taking value 1 when the ith individual has been hospitalized on a date prior or equal to

t; and, 0, otherwise. Let N2,i(t) take value 1 if the ith individual leaves the hospital (due

to death or recovery, whichever comes first) in the interval (0, t]; and, 0 otherwise. We

assume that N2,i is a one-dimensional counting process with respect to an increasing, right

continuous, complete filtration F2,t, t ∈ (0, τ), i.e. it obeys les conditions habituelles; and

again we assume Aalen’s multiplicative model for the intensity function, that is,

λ2,i(t) = α2(Z2,i(t), t)Y2,i(t), t ∈ (0, τ),

where α2(·, ·) is a deterministic hazard with no restriction on its functional form. Y2,i

is a predictable process taking values in {0, 1}, indicating (by the value 1) when the ith
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individual is in the hospital and at risk. We assume that E[Y2,i(s)] = γ2(s), where γ2(·) is

continuous and the marker Z2,i(s) is only observed for those s where Y2,i(s) = 1.

We assume that {(N2,1, Z2,1, Y2,1), . . . , (N2,n, Z2,n, Y2,n)} are independent and identically

distributed and F2,t = σ(N2(s),Z2(s),Y2(s); s ≤ t), where N2 = (N2,1, . . . , N2,n); Y2 =

(Y2,1, . . . , Y2,n) and Z2 = (Z2,1 . . . , Z2,n).

One individual might leave hospital due to death or recovery, whichever occurs first. Then

we can define the corresponding intensity of leaving the hospital by one specific cause as it

is represented in Figure 15. Then it can be written

λ23,i(t) = α23(Z2,i(t), t)Y2,i(t), and,

λ24,i(t) = α24(Z2,i(t), t)Y2,i(t),

for t ∈ (0, τ) and with α2 = α23 + α24.

Appendix A. The algorithm

Assume we observe daily counts of occurrences and exposures in a grid of time points

{1, 2, . . . ,M}. Denote by z the day of onset, x the day of outcome (non-recurrent or

recurrent event) and d = x−z+1 the number of days until an outcome is registered. Define

Ox,d as the number of subjects that entered the system at time z = x−d+1 and have been

there for a time equal to d, with 1 ≤ z < x ≤ M . Denote by Ex,d the number of arrivals

registered at time z = x− d+1 and have been there for exactly d days. Assume that there

are no observations before day 1. The sequence {Ox,d, Ex,d; 1 ≤ z ≤ M, 1 ≤ d ≤ M −z+1}

is observable when full information is available. We consider the case of partial information

when only the marginal counts Ox =
∑x

d=1Ox,d for occurrences, and Ex =
∑x

d=1 Ex,d are

available, where x denotes the outcome notification day.

The algorithm is closely related to that of Gamiz et al. (2022) and consists of estimating

α(z, d) by an iterative procedure.

We consider to different situations.
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1. Survival model: Subjects abandon the system at the occurrence of the (non-recurrent)

final event.

In this first situation of survival analysis, we consider two different types of departures

for the subjects entering the system. In our practical application, an arrival means

a patient entering the hospital and the outcome can be the death of the patient

or hospital discharge due to recovery, whichever occurs first. Then, the algorithm

consists of two main steps.

Get initial values Ô
(0)
x,d and Ê

(0)
x,d from an initial choice for α̂(0)(z, d), e.g. α̂(0)(z, d) ≡

α̂(0)(d) from an Exponential distribution, with 1 ≤ z, d ≤ M , x = z + d− 1.

The r-th iteration cycle of the first step of the algorithm consists of the following

steps:

(i) Put d = 1 (x = z + d − 1). Define Ô
(r)
x,d as the mean value of a Binomial

distribution with parameters Ê
(r)
x,d and probability α̂(r)(z, d).

(ii) Define Ê
(r)
x+1,d+1 = Ê

(r)
x,d − Ô

(r)
x,d, and then define Ô

(r)
x+1,d+1 as the mean value of a

Binomial with parameters Ê
(r)
x+1,d+1 and α̂(r)(z, d+ 1), repeat for d = 3, . . ..

The following sequences of occurrences and exposure are obtained:{(
Ô

(r)
x,1, Ê

(r)
x,1

)
, . . . ,

(
Ô

(r)
M,M−x+1, Ê

(r)
M,M−x+1

)}
(iii) Define

q
(r)
x,d =

Ô
(r)
x,d∑M

d′=1 Ô
(r)
x,d′

and h
(r)
x,d =

Ê
(r)
x,d∑M

d′=1 Ê
(r)
x,d′

(iv) Put r = r + 1 and update the occurrences and exposures:

Ô
(r)
x,d = q

(r−1)
x,d Ox, and Ê

(r)
x,d = h

(r−1)
x,d Ex.

(v) Re-arrange the estimated exposure and occurrences in a matrix where rows

correspond to entry day (z) and columns to duration (d), that is, for 1 ≤ z ≤ M

and 1 ≤ d ≤ M − z + 1 define Ô∗
z,d = Ôz+d−1,d, and Ê∗

z,d = Êz+d−1,d, and
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use these matrices to estimate the two-dimensional local-linear hazard (Nielsen

(1998), Gamiz et al.(2013):

α̂b(z0, d0) =

∑M
z=1

∑M−z+1
d=1 K̄b(z0 − z, d0 − d)Ô∗

z,d∑M
z=1

∑M−z+1
d=1 K̄b(z0 − z, d0 − d)Ê∗

z,d

where b is a two-dimensional bandwidth, and K̄, is the generalization of the

one-dimensional local-linear kernel as described in Section 3.

(vi) Repeat until convergence.

In the second step, the final hazard estimator for duration, α̂, is split into hazards

for duration due to one of two possible types of outcome, for example hazards due to

death (α̂D) and hazards due to recovery (α̂R), as follows: For deaths we have

α̂D
b (z0, d0) =

∑M
z=1

∑M−z+1
d=1 K̄b(z0 − z, d0 − d)Ô∗D

z,d∑M
z=1

∑M−z+1
d=1 K̄b(z0 − z, d0 − d)Ê∗

z,d

,

where Ô∗D
z,d = ÔD

z+d−1,d, with ÔD
x,d = q̂x,d O

D
x , and OD

x being the total number of deaths

registered on the day x. And for recoveries we have

α̂R
b (z0, d0) =

∑M
z=1

∑M−z+1
d=1 K̄b(z0 − z, d0 − d)Ô∗R

z,d∑M
z=1

∑M−z+1
d=1 K̄b(z0 − z, d0 − d)Ê∗

z,d

,

where Ô∗D
z,d = ÔD

z+d−1,d, with ÔD
x,d = q̂x,d O

D
x , and OR

x is the total number of recoveries

observed on the day x, 1 ≤ x ≤ M .

2. The inhomogeneous Poisson model: recurrent events.
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Appendix B. Simulations
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