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ABSTRACT
An increasing number of researchers work in computational
auditory scene analysis (CASA). However, a set of tasks,
each with a well-defined evaluation framework and com-
monly used datasets do not yet exist. Thus, it is difficult
for results and algorithms to be compared fairly, which hin-
ders research on the field. In this paper we will introduce a
newly-launched public evaluation challenge dealing with two
closely related tasks of the field: acoustic scene classifica-
tion and event detection. We give an overview of the tasks
involved; describe the processes of creating the dataset; and
define the evaluation metrics. Finally, illustrations on results
for both tasks using baseline methods applied on this dataset
are presented, accompanied by open-source code.

Index Terms— Computational auditory scene analysis,
acoustic scene classification, acoustic event detection

1. INTRODUCTION

Computational auditory scene analysis (CASA) includes a
wide set of algorithms and “machine listening” systems that
deal with the analysis of acoustic scenes. Most of them model
to some extent the human auditory system and its mechanisms
and aim to detect, identify, separate and segregate sounds in
the same way that humans do [1].

Certain practical applications that fall under the umbrella
of CASA, such as noise-robust automatic speech recogni-
tion and automatic music transcription, have seen a high
amount of research over the last decades, and state-of-the-art
approaches for both are able to achieve satisfactory per-
formance, comparable to that of humans (see the MIREX
evaluation1 and the CHiME challenge2). However, the field

This work has been partly supported by ESPRC Leadership Fellowship
EP/G007144/1, by EPSRC Grant EP/H043101/1 for QMUL, and by ANR-
11-JS03-005-01 for IRCAM. D.G. is funded by a Queen Mary University of
London CDTA Research Studentship. E.B. is supported by a City University
London Research Fellowship.

1http://music-ir.org/mirexwiki/
2http://spandh.dcs.shef.ac.uk/projects/chime/

challenge.html

of CASA involves a much wider set of tasks and “machine
listening” systems, many of which are far from being fully
explored at a research level yet.

Over the last few years the tasks of identifying auditory
scenes, and that of attempting to detect and classify individ-
ual sound events within a scene, have seen a particular rise in
research, mainly due to them being interdependent with other
tasks of high interest such as blind source separation. De-
spite an increasing number of attempts by the community for
code dissemination and public evaluation of proposed meth-
ods [2, 3, 4], it is evident that there is not yet a coordinated,
established, international challenge in this particular area with
a thorough set of evaluation metrics that fully define the two
tasks. By organising the present “IEEE AASP Challenge on
Detection and Classification of Acoustic Scenes and Events”
[5] we aim to do exactly that. In the rest of the paper, we
present the datasets created, the evaluation metrics used, and
provide evaluation results using two baseline methods.

2. BACKGROUND

Acoustic scene classification aims to characterize the environ-
ment of an audio stream by providing a semantic label [6]. It
can be conceived of as a standard classification task in ma-
chine learning: given a relatively short clip of audio, the task
is to select the most appropriate of a set of scene labels. There
are two main methodologies found in the literature. One is
to use a set of low-level features under a bag-of-frames ap-
proach. This approach treats the scene as a single object and
aims at representing it as the long-term statistical distribution
of some set of local spectral features. Prevailing among dif-
ferent features for the approach is the Mel-frequency Cepstral
Coefficients (MFCCs) that have been found to perform quite
well [6]. The other is to use an intermediate representation
prior to classification that models the scene using a set of
higher level features that are usually captured by a vocabu-
lary or dictionary of “acoustic atoms”. These atoms usually
represent acoustic events or streams within the scene which
are not necessarily known a priori and therefore are learned



in an unsupervised manner from the data. Sparsity or other
constraints can be adopted to lead to more discriminative rep-
resentations that subsequently ease the classification process.
An example is the use of non-negative matrix factorization
(NMF) to extract bases that are subsequently converted into
MFCCs for compactness and used to classify a dataset of train
station scenes [7]. Building upon this approach, the authors
in [8] used shift-invariant probabilistic latent component anal-
ysis (SIPLCA) with temporal constrains via hidden Markov
models (HMMs) that led to improvement in performance. In
[9] a system is proposed that uses the matching pursuit algo-
rithm to obtain an effective time-frequency feature selection
that are afterwards used as supplement to MFCCs to perform
environmental sound classification.

The goal of acoustic event detection is to label tempo-
ral regions, such that each represents a single event of a spe-
cific class. Early work in event detection treated the sound
signal as monophonic, with only one event detectable at a
time [10]. Events in a typical sound scene may co-occur,
and so polyphonic event detection, with overlapping event re-
gions, is desirable. However, salient events may occur rel-
atively sparsely and there is value even in monophonic de-
tection. There has been some work on extending systems to
polyphonic detection [11]. Event detection is perhaps a more
demanding task than scene classification, but at the same time
heavily intertwined. For example, information from scene
classification can provide supplementary contextual informa-
tion for event detection [12]. Many proposed approaches can
be found in the literature among which spectrogram factor-
ization techniques tend to be a regular choice. In [13] a prob-
abilistic latent semantic analysis (PLSA) system, a closely re-
lated approach to NMF, was proposed to detect overlapping
sound events. In [14] a convolutive NMF algorithm applied
on a Mel-frequency spectrum was tested on detecting non-
overlapping sound events. Finally, a number of proposed
systems focus on the detection and classification of specific
sound events from environmental audio scenes such as speech
[15], birdsong [16], musical instrument and other harmonic
sounds [17] or pornographic sounds [18].

3. CHALLENGE

This section presents the proposed IEEE-sponsored chal-
lenge in acoustic scene classification and event detection [5].
Firstly, the datasets for the two aforementioned tasks are de-
scribed, followed by definitions on the employed evaluation
metrics.

3.1. Scene classification datasets

In order to evaluate Scene Classification systems we created
a dataset across a pre-selected list of scene types, represent-
ing an equal balance of indoor/outdoor scenes in the London
area: bus, busystreet, office, openairmarket, park, quietstreet,

restaurant, supermarket, tube, tubestation. To enable partic-
ipants to further explore whether machine recognition could
benefit from the stereo field information available to human
listeners [1, Chapter 5], we recorded in binaural stereo format
using a Soundman OKM II microphone.

For each scene type, three different recordists (DG, DS,
EB) visited a wide variety of locations in Greater London over
a period of months (Summer and Autumn 2012), and in each
scene recorded a few minutes of audio. We ensured that no
systematic variations in the recordings covaried with scene
type: all recordings were made in moderate weather condi-
tions, and varying times of day and week, and each recordist
recorded each scene type.

We then reviewed the recordings to select 30-second seg-
ments that were free of issues such as mobile phone interfer-
ence or microphone handling noise, and collated these seg-
ments into two separate datasets: one for public release, and
one private set for evaluating submissions. The segments are
30-second WAV files (16 bit, stereo, 44.1 kHz), with scene
labels given in the filenames. Each dataset contains 10 exam-
ples each from 10 scene types. The public dataset is published
on the C4DM Research Data Repository (accessible through
[5]).

3.2. Event detection (office) datasets

For the Event Detection task, we addressed the problem of
detecting acoustic events in an office enviromnent. In order
to control the degree of polyphony in the dataset, so that
algorithms’ performance can be evaluated using different
polyphony levels, we followed two related approaches: we
recorded live, scripted, monophonic sequences in real office
environments; and we also recorded isolated events as well
as background ambience, and artificially composed these into
scenes with controllable polyphony.

For the scripted recordings, we created scripts by random
ordering of event types, and then recruited a variety of paid
participants to perform the scripts in various office rooms
within QMUL. For each script, multiple takes were used, and
we selected the best take as the one having the least amount
of unscripted background interference. Event types used
were: alert (short alert (beep) sound), clearthroat (clearing
throat), cough, doorslam (door slam), drawer, keyboard (key-
board clicks), keys (keys put on table), knock (door knock),
laughter, mouse (mouse click), pageturn, (page turning), pen-
drop (pen, pencil, or marker touching table surfaces), phone,
printer, speech, switch. To capture the spatial layout of the
acoustic environment, recordings were made in first order
B-format with a Soundfield model SPS422B microphone
placed in an open space in the room, with events spatially
distributed around the room. Recordings were mixed down
to stereo (using the common “Blumlein pair” configuration).
The challenge is conducted using the stereo files, with scope
for future challenges to be extended to full B-format and take



into account spatial information for event detection.
Since there is inherent ambiguity in the annotation pro-

cess, we recruited two human annotators to annotate the onset
and offset times of events in the recordings. Annotators were
trained in Sonic Visualiser3 to use a combination of listen-
ing and inspecting waveforms/spectrograms to refine the lo-
cations. We then inspected the two annotations per recording
for any large discrepancies, which allowed us to detect any
instances of error. The remaining small deviations between
the annotations reflect the ambiguity in event boundaries.

For the second approach, we designed a scene synthesizer
able to easily create a large set of acoustic scenes from many
recorded instances of individual events. The synthetic scenes
are generated by randomly selecting for each occurrence of
each event we wish to include in the scene one representative
excerpt from the natural scenes, then mixing all those sam-
ples over a background noise. The distribution of events in
the scene is also random, following high-level directives that
specify the desired density of events. The average SNR of
events over background noise is also specified and, unlike
in the natural scenes, is the same for all event types (this
is a deliberate decision). The synthesized scenes are mixed
down to mono in order to avoid having spatialization incon-
sistencies between successive occurrences of a same event;
spatialization including room reverberation is left for future
work. The resulting development and testing datasets consist
of scripted/synthetic sequences with varying durations, with
accompanying ground-truth annotations. The development
dataset is published on the C4DM Research Data Repository
(accessible through [5]).

3.3. Challenge evaluation metrics

For the scene classification task, participating algorithms will
be evaluated with 5-fold stratified cross validation. The raw
classification (identification) accuracy, standard deviation and
a confusion matrix for each algorithm will be computed.

For the event detection tasks, in order to provide a thor-
ough assessment of the various systems three types of eval-
uations will take place, namely a frame-based, event-based,
and class-wise event-based evaluation. Frame-based evalu-
ation is performed using a 10ms step and metrics are aver-
aged over the duration of the recording. The main metric used
for the frame-based evaluation is the acoustic event error rate
(AEER) used in the CLEAR evaluations [19]:

AEER =
D + I + S

N
(1)

where N is the number of events to detect for that specific
frame, D is the number of deletions (missing events), I is the
number of insertions (extra events), and S is the number of
event substitutions, defined as S = min{D, I}. Additional
metrics include the Precision, Recall, and F-measure (P-R-F).

3http://www.sonicvisualiser.org/

By denoting as r, e, and c the number of ground truth, esti-
mated and correct events for a given 10ms frame, the afore-
mentioned metrics are defined as:

P =
c

e
, R =

c

r
, F =

2PR

P + R
. (2)

For the event-based metrics, two types of evaluation will
take place, an onset-only and an onset-offset-based evalua-
tion. For the onset-only evaluation, each event is considered
to be correctly detected if the onset is within a 100ms toler-
ance. For the onset-offset evaluation, each event is correctly
detected if its onset is within a 100ms tolerance and its offset
is within 50% range of the ground truth event’s offset w.r.t.
the duration of the event. Duplicate events are counted as
false alarms. The AEER and P-R-F metrics for both the onset-
only and the onset-offset cases are utilised.

Finally, in order to ensure that that repetitive events do
not dominate the accuracy of an algorithm, class-wise event-
based evaluations are also performed. Compared with the
event-based evaluation, the AEER and P-R-F metrics will be
computed for each class separately within a recording and
then averaged across classes. For example, the class-wise F-
measure is defined as:

F ′ =
1

K

∑
k

Fk (3)

where Fk is the F-measure for events of class k.

4. BASELINE SYSTEMS

4.1. Scene classification

The widespread standard approach to audio classification is
the “bag-of-frames” model discussed above. Its modelling
assumptions imply among other things that the sequence or-
dering of frames is ignored [20, 6]. Foote [20] is an early
example, comparing MFCC distributions via vector quantisa-
tion. Since then, the standard approach to compare distribu-
tions is by constructing a Gaussian Mixture Model for each
instance or for each class [6, 21].

The MFCC+GMM approach to audio classification is rel-
atively simple, and has been criticised for the assumptions it
incurs [22]. However, it is quite widely applicable in a va-
riety of audio classification tasks. Aucouturier and Pachet
[6] specifically claim that the MFCC+GMM approach is suf-
ficient for recognising urban soundscapes but not for poly-
phonic music (due to the importance of temporal structure
in music). It has been widely used for scene classification
among other recognition tasks, and has served as a basis for
further modifications [9]. The model is therefore an ideal
baseline for the Scene Classification task.

Code for the bag-of-frames model has previously been
made available for Matlab.4 However, for maximum repro-

4http://www.jj-aucouturier.info/projects/mir/
boflib.zip



ducibility we wished to provide simple and readable code in a
widely-used programming language. The Python language is
very widely used, freely available on all common platforms,
and is notable for its emphasis on producing code that is read-
able by others. Hence we created a Python script embodying
the MFCC+GMM classification workflow, publicly available
under an open-source licence,5 and designed for simplicity
and ease of adaptation.

4.2. Event detection

As mentioned in Sec. 2, the NMF framework is a useful one
for event detection as it can deal with polyphonic content and
the low-rank approximation it provides can efficiently model
the underlying spectral characteristics of sources hidden in
an acoustic scene. Therefore, we chose to provide an NMF-
based baseline system6 that performs event detection in a su-
pervised manner, using a pre-trained dictionary.

Our algorithm is based on NMF using the β-divergence as
a cost function [23]. As a time-frequency representation, we
used the constant-Q transform (CQT) with a log-frequency
resolution of 60 bins per octave [24]. The training data
were normalized to unity variance and NMF with Kullback-
Leibler (KL) divergence (β = 1) was used to learn a set
of N bases for each class. The numbers of bases we tested
was 5, 8, 10, 12, 15, 20 and 20i, the latter corresponding to
learning individually one basis per training sample, for all
20 samples. Putting together the sets for all classes we built
a “fixed” dictionary of bases used subsequently to factorize
the normalized development set audio streams. Afterwards,
we summed together the activations per class obtained from
the factorization. We tested the use of median filtering for
smoothing purposes but this did not improve the classifi-
cation. Finally a threshold T was chosen to be applied in
order to give us the final class activations. The optimal N
and T values were chosen empirically by maximizing the
F -measure for the two annotations on the development set.

5. RESULTS

The two baseline systems were tested using the public
datasets of the challenge described in Sec. 3. In scene
classification, where chance performance is 10%, our base-
line system attained 52 ± 13% (95% confidence interval).
Table 1 breaks down these results as a confusion matrix.
It shows, for example, that supermarket was the true class
most often mislabelled, most commonly as openairmarket or
tubestation.

Results for the event detection system are shown in Ta-
ble 2. These include the computed metrics as presented in
Sec. 3.3, as well as the optimal system parameters determined

5http://code.soundsoftware.ac.uk/projects/smacpy
6http://code.soundsoftware.ac.uk/projects/
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bus 9 - - - - - - - 1 -
busystreet - 5 - 2 - - 1 - - 2
office - - 8 - 1 - - 1 - -
openairmarket - - - 8 - - 1 1 - -
park - - 2 1 3 3 - 1 - -
quietstreet - - - 2 2 4 - 2 - -
restaurant - - - 2 - - 3 3 - 2
supermarket 1 - 1 2 1 - 1 2 - 2
tube - - - - - - 2 - 6 2
tubestation - - - 2 - - - 2 2 4

Table 1. Confusion matrix for scene classification with base-
line MFCC+GMM classifier. Rows are ground-truth labels.

Evaluation Method

Metrics Event Class-Wise Frame
Parameters Based Event Based Based

R 16.8 21.7 16.0
P 15.9 11.6 29.1

F -measure 15.4 13.5 20.6
AEER* 2.51 2.94 1.62

Offset R 4.4 7.1 -
Offset P 4.5 3.6 -

Offset F -meas. 4.2 4.0 -
Offset AEER* 2.88 3.37 -

Optimal N 20i 20i 20-20i
Optimal T 750-650 400-700 400-550

* Not measured in (%)

Table 2. Detection accuracy (%) of the NMF system for the
Event Detection task for the monophonic Office Live Dataset.

separately for both annotations (1-2), calculated as mentioned
in Sec.4.2. We found that learning basis vectors from individ-
ual sounds resulted in better performance. It is also worth
highlighting that the event-based metrics lead to lower re-
ported performance than the frame-based metric.

Finally, not all classes were detected equally well. The
Fk was 0% for certain classes, which were: keyboard, keys,
mouse, printer, and switch. All these sounds are characterised
by a short-lived and highly transient nature and very low SNR
levels that might be potential reasons for failing to be detected
by the system. A further set of sounds with an overall poor Fk

were: alert, laughter, and pageturn. We believe that the big
variation that characterises these sounds could be the reason
behind the low performance of the baseline system.



6. CONCLUSIONS

In this paper, we presented a newly launched public evalua-
tion challenge for the classification of acoustic scenes and the
detection of acoustic events. We presented the datasets, eval-
uation metrics, and finally offered evaluation results using an
MFCC+GMM system for scene classification and an NMF-
based system for event detection. The challenge datasets and
the code for both systems are available online and third parties
are welcome to use it as the basis for challenge submissions
as well as for future research in the CASA field.

Possible extensions for the scene classification system
may include a wider set of features, addition of temporal
features (such as ∆MFCC) or the use of HMMs to model the
various acoustic scenes. For event detection, possible exten-
sions could be to remove or de-emphasize lower frequencies
that mainly capture ambient background noise, to try different
β values, or to add constrains in the NMF algorithm such as
sparsity on the activation matrices. Of course, these baseline
systems are just examples, and we welcome approaches to
the tasks that differ radically from the baseline systems we
have implemented.

At the time of writing, the challenge is still running; re-
sults and descriptions of submitted systems will be made
available online [5]. In the future, we aim to release detailed
challenge results and create a code repository for all open-
source submissions, which can serve as a point of reference
for the advancement of CASA research.
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