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Abstract  17 

The present paper aims to develop an Artificial Neural Network (ANN) formula to predict the LTB resistance of steel cellular 18 

beams. A finite element model is developed and validated through experimental tests. A parametric study is then conducted. 768 19 

models are employed to train the ANN. The results are compared with the analytical models, as well as the equation predicted by 20 

ANN. The ANN model with seven neurons can accurately predict the LTB resistance of cellular beams as well the LTB combined 21 

with web-post buckling or web distortional buckling modes. Hence, the ANN-based formula can be adopted as design tool.  22 

 23 
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 31 

Notation 32 

The following symbols are used in this paper: 33 

Af the flange area; 

Aw the web area; 

bf the flange width; 

bw the web post width; 

bwe the width end post; 

C1 and C2 the coefficients associated to the bending 

moment diagram and the load at cross-section position 

Cb the modifying factor for the non-uniform bending 

moment diagram; 

Cw the warping constant; 

Do the opening diameter 

d the parent section height; 

dg the cellular beam height; 

E the modulus of elasticity; 

G the shear modulus; 

Iz the moment of inertia about the weak axis; 

J the torsional constant; 

kt the torsional restraint factor;  

kl the factor that considers the position of the load;  

kr the factor that leads to the restriction of rotation 

le the effective length (ktklkrL); 

L the length; 

MA, MB, MC the moments located at Lb/4, Lb/2 and 3Lb/4, 

respectively; 

Mpl the plastification moment; 

p the length between the opening diameter centers; 

tf the flange thickness; 

tw the web thickness; 

zg the distance from the point of load application to the 

shear center; 

Wy the plastic modulus about the strong axis; 

Wel,y the elastic modulus about the strong axis; 

Wel,z the elastic modulus about the weak axis; 

αLT the imperfection factor; 

αm the bending moment diagram modifying factor; 

αs the slenderness reduction factor; 

χLT the reduction factor; 

λLT the non-dimensional slenderness, considering LTB 

resistance; 

λz the non-dimensional slenderness about weak axis, 

considering normal resistance; 

 34 

 35 

 36 

 37 

 38 

1. INTRODUCTION 39 

Steel cellular beams are those with periodical circular web openings. Such beams are manufactured from a parent section 40 

in three stages: two thermal cutting lines, separating of the tee sections and welding. The final result is a cross-section with greater 41 

bending stiffness than the parent section. Advantages in the use of steel cellular beams in structural design can be highlighted, such 42 

as the reduction of the structural system's own weight, the presence of openings favoring the air flow, as well as the passage of ducts 43 
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for the integration of services which results to the reduction of the structural depth per floor, thus the reduction of the floor to ceiling 44 

height. 45 

Authors, such as Ellobody [1], El-Sawy et al. [2] and Ferreira et al. [3], observed that the cellular steel beams are more 46 

susceptible to global and local buckling modes, such as the lateral-torsional (LTB), lateral-distortional (LDB) and the web-post 47 

(WPB), or even the combination of these failure modes. The LTB occurs in steel cellular beams, which are subject to bending about 48 

the strong axis, due to the lack of lateral restraint. The main parameter that favors this type of buckling is the ratio between the 49 

unrestrained length of the beam and the radius of gyration about the weak axis (Lb/r). According to studies carried out by Bradford 50 

[4–7] the LDB is a phenomenon that takes place for slender web sections, a factor that reduces the torsional stiffness. The hypothesis 51 

that the plane section remains plane after deformation, in this case, is not valid. References, such as Kerdal and Nethercot [8], 52 

Tsavdaridis and D’Mello [9], Erdal and Saka [10], Panedpojaman et al. [11] and Grilo et al. [12], verified that the WPB, which is 53 

characterized by lateral displacement combined with torsion, occurs for steel cellular beams with reduced web-post width and web 54 

thickness. Several projects investigated the LTB resistance of cellular steel beams in compared to analytical models, such as EC3 55 

[13], AS 4100-1998 [14], Panedpojaman et al. [15] and Taras and Greiner [16] with Sonck [17]. 56 

In the recent years, researchers have utilized artificial intelligence methods such as fuzzy logic, genetic algorithm and 57 

artificial neural network (ANN) to solve complex engineering problems. Each method has its advantages; however, it has been 58 

stated that ANN is able to provide more accurate predictions [18,19]. ANN is an effective tool that can be used to define nonlinear 59 

relations between the inputs and the corresponding outputs and consists of 3 layers. The input layer and output layer are 60 

interconnected through the hidden layer, which consists of neurons that are dependent on the set up of the model and each neuron 61 

develops a weighted connection between the input and output parameter to define relationships. ANN has been successfully 62 

employed to accurately obtain the plastic buckling resistance of steel structures.  63 

More recently, Limbachiya and Shamass [20] predicted the web-post bucking resistance of cellular beams employing ANN. 64 

A variation in input parameters and the number of neurons in the hidden layer was reviewed to develop the most accurate model. 65 

The experimental and finite element results were used to train the ANN models. It was concluded that ANN provides results that 66 

are more in line with test results than those predicted from SCI P355 [21]. Nguyen et al. [22] used ANN to predict the load-bearing 67 

capacity of castellated steel beams CSB and they concluded that ANN model with 1 hidden layer and 1 neuron was sufficient to 68 

predict the load-carrying capacity of CSB with excellent accuracy in comparison with the experimental results. Hosseinpour et al. 69 

[23] developed reliable ANN model that predicted the ultimate moment capacity of castellated beams subjected to lateral-distortional 70 

buckling mode. Sharifi et al. [24] tested different ANN training algorithms, and several neurons in the hidden layer to predict the 71 

LTB of simply supported cellular steel beams subjected to four-point bending. The authors found that Levenberg–Marquardt training 72 

algorithm provided the best performance. Abambres et al. [25] proposed an ANN-based formula that precisely predicted the elastic 73 

buckling resistance of simply supported cellular beams subjected to uniformly distributed load. They found that ANN accurately 74 

predicted the capacity with maximum and average relative errors of 3.7% and 0.4%, respectively. Sharifi et al. [26] used 99 finite 75 
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element models to train an ANN model that predict the LTB of cellular beam. In this context, the cellular steel beams were 76 

considered to be simply supported and subjected to four-point bending. The predictions of the LTB resistance of steel cellular beams 77 

were compared with the AS 4100-1998 [14]. The results showed that the ANN-based equation proposed by the authors was able to 78 

estimate the behavior of cellular steel beams subjected to LTB. Tohidi and Sharifi [27] employed ANN to predict the inelastic 79 

lateral-torsional buckling capacity of corroded web opening steel beams. The input and output parameters were defined based on 80 

the numerical results from the validated FEM and the data was used for training, validation and testing was 60%, 20% and 20% 81 

respectively. The study concluded that even with a small amount of data, ANN was able to predict the target values to an acceptable 82 

level of accuracy and provided an assessment method that would provide a fast and reliable decision regarding the future of corrosion 83 

damaged I-beam. Gholizadeh et al. [28] developed a back propagation neural network using data from 140 FE models to assess the 84 

load carrying capacity of castellated steel beams. Geometric parameters of the beam were used as the input parameters, and when 85 

altering the number of neurons within the hidden layer, it was stated that best results were obtained by employing 4 neurons. FE 86 

models were also used to develop 140 models that could be used to predict the inelastic distortional buckling capacity assessment 87 

of steel I-beams using ANN [29]. 10 models with 6 input parameters, 1 output parameter, 1-10 neurons in the hidden layer were all 88 

trained using the Levenberg-Marquardt back propagation algorithm. In a comparison between current design rules (AISC/AISC 89 

360-16 [30], AS 4100-1998 [14] and EC3 [13]), the proposed ANN equation and experimental results, it was concluded that the 90 

proposed equation provided more reliable predictions in comparison to the codes. Overall, ANN has many advantages, not only 91 

does it provide reliable and accurate results in comparison to the current codes, but it is also providing a simple method which is 92 

easier and practical for engineers to use and apply when compared to FE modeling. The data is also crucial, as the statistical accuracy 93 

of the model will improve with a greater database and a variability in the input parameters.  94 

As shown so far, there is no application of ANN in post-buckling analysis of steel cellular beams, considering the variation 95 

of the type of loading (neutral and destabilizing effect), as well as the combination of LTB with other buckling modes, such as 96 

LTB+WPB and LTB+WDB. This paper aims to apply an ANN to predict the LTB resistance of steel cellular beams under combined 97 

buckling modes. For this task, a finite element model based on experimental results was developed. A parametric study is carried 98 

out considering three steel profiles for the parent section. Geometric parameters such as unrestrained length (Lb), ratio of web-post 99 

width to opening diameter (p/Do), ratio of opening diameter to parent section height (Do/d), and expansion factor (dg/d) were varied. 100 

Cellular steel beams are usually designed as and herein considered as simply supported and subjected to neutral and destabilizing 101 

effects of loading. Three loading conditions were also considered, pure bending, mid-span concentrated load, and uniformly 102 

distributed load. From the results, 768 models that had the failure mode governed by LTB, LTB+WDB and LTB+WPB were selected 103 

for the development of the ANN model. For the ANN model, the input parameters were defined based on the geometric parameters 104 

of the cellular beams, the hidden layer reviewed several neurons within it to define the most accurate and efficient model that could 105 

be easily used in real practice while the output parameter was the LTB moment resistance. Finally, the resistance prediction model 106 
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developed by ANN is compared with finite element models and analytical procedures to assess the accuracy and define the impact 107 

of input parameters on the output. 108 

 109 

2. BACKGROUND 110 

In this section, the studies, that were developed to investigate the LTB of steel cellular beams, will be presented. In this 111 

context, few experimental studies [17,31–33] and many numerical studies based on the finite element method [1,2,35–112 

41,3,15,24,26,31–34] were published. 113 

Regarding experimental studies, Nseir et al. [33] and Boissonnade et al. [32] presented two tests to evaluate the LTB 114 

resistance. The cellular beams were simply supported and subjected to four-point bending. The cellular sections were fabricated 115 

from HEA340 and IPE330 parent sections, and with total length of 7.5m, and 11m, respectively. Both specimens governed by the 116 

LTB, and their peak load was 1977kN and 176.9kN, for HEA340 and IPE330, respectively. Sonck [17] and Sonck and Belis [31] 117 

conducted three tests, also considering four-point bending. Three lengths were considered, that of 3.15m, 3.99m and 6.09m. All 118 

specimens governed by the LTB, and the maximum peak load was 23.6kN. 119 

Regarding finite element studies, Sweedan [34] performed elastic analyses to investigate the moment-gradient factor, which 120 

is a coefficient that takes into account the non-uniform distribution of bending moment along the beam unrestrained length [42]. 121 

After evaluating three types of loads on the elastic analyses, a new coefficient that takes into account the bending moment 122 

distribution in the unrestrained length was proposed, as well as the geometric parameters of the steel cellular beam. The LTB 123 

phenomenon in elastic regime is written according to Eq. (1) [43]: 124 

2

0cr , z z wM EI GJ EI EC
L L

  
= +  

 
 (1) 

Later, El-Sawy et al. [2] presented the inelastic analyses. In this study, the numerical model responses were evaluated as a 125 

function of a coefficient, the dimensionless lateral-torsional stiffness, and the LTB combined with WDB and WPB. According to 126 

the results, LTB was obtained for ke<0.5, since the smaller the value of ke, the greater will be the ratio between the radius of gyration 127 

about the weak axis and the unrestrained length. Sonck et al. [35] performed a parametric study to investigate the effects of plastic 128 

behavior on steel cellular beams employing finite element method. It was concluded that for short steel cellular beams, the failure 129 

mode was governed by the plastic behavior, that was, no buckling phenomenon was observed such as LTB. In Ellobody [1] a 130 

parametric analysis were developed to study the behavior of steel cellular beams, considering the combination of buckling modes. 131 

In this study, the numerical models results were compared with the AS 4100-1998 [14] specification (Eqs. 2-5) and it concluded 132 

that such specification underestimated the LTB-resistance of steel cellular beams.  133 

Rk m s pl plM M M =   (2) 
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Boissonnade et al. [32] carried out a parametric study to investigate the design recommendations to LTB provided by 134 

ArcelorMittal ACB+ [44]. Such procedure underestimates the resistance of steel cellular beams under LTB, since it only considers 135 

the stiffness of the upper tee. In this context, the authors recommended the EC3 [45] procedure (Eqs. 6-10), using the buckling 136 

curve c to calculate the LTB resistance.  137 

1

LT y y

Rd

M

W f
M




=  (6) 

2 2

1
1 0LT

LT LT LT

.
  

= 
+ −

 (7) 

( ) 20 5 1 0 2LT LT LT LT. .    = + − +   (8) 

y y

LT

cr

W f

M
 =  (9) 

0cr b cr ,M C M=  (10) 

In Sonck and Belis [31], the effect of residual stresses on LTB resistance was investigated. The authors observed that 138 

calculation recommendations that do not consider such effect on the structural behavior of steel cellular beam under LTB may be 139 

unsafe. In this scenario, Sonck [17] based on EC3 [45] proposed a new imperfection factor for the calculation of resistance to LTB. 140 

The use of αLT=0.6 was proposed based on EC3 [45], and according to the formulations of Taras and Greiner [16], two coefficients 141 

were proposed, considering the relations dg/bf>1.2 (Eq. 11) and dg/bf≤ (Eq. 12). 142 

0 18 0 64
el ,y

LT

el ,y

W
. .

W
 =   (11) 

0 25 0 64
el ,y

LT

el ,y

W
. .

W
 =   (12) 
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In Panedpojaman et al. [15] inelastic analyses were developed to investigate the LTB resistance of steel cellular beams. 143 

The authors highlighted the influence of shear stresses for short spans, models for which the resistance can be characterized as WPB 144 

or some plastic mechanism. In this context, the authors proposed a correction coefficient to calculate the LTB resistance, according 145 

to the methodology described in EC3 [45], using the buckling curve b. Eqs. (8-9) present the calculations of the coefficients, 146 

considering the absence and presence of shear loads, respectively. 147 

1

LT y y

Rd LB

M

W f
M k




=  (13) 

1

0 01 1 05
LB

LT

k
. .

=
− +

 (14) 

( )

( ) ( )

0 16 0 66 1 0

0 1 1 13 0 9

f

w

LB

LT

A
min . . , .

A
k

max . . , .

  
+  

  =
− +  

 
(15) 

Ferreira et al. [3] developed a parametric study to investigate the LTB resistance, considering the effect of loading applied 148 

at the upper flange (destabilizing effect) as well as at the shear centre (neutral effect). The results of this study were compared with 149 

calculation models existing in the literature [14–16,31,45]. The work highlighted that the combination of the Taras and Greiner [16] 150 

model with the Sonck factor [17] is a good approximation for the LTB resistance of steel cellular beams. The equations combined 151 

between Taras and Greiner [16] with the Sonck factor [17], considering loads applied at shear centre are described below (Eqs. 16-152 

18). For loads applied at the upper flange, the equation of the three factors (C1, C2 and C3) is used to calculate the critical moment 153 

[46] (Eq. 19). 154 
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2
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2
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 (16) 
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 (19) 

Later, Ferreira et al. [37] investigated the Load and Resistance Factor Design (LRFD), which is based on the ANSI/AISC 155 

360-16 [30] design procedure, for steel cellular beams under LTB. The authors observed that for intermediate spans, the American 156 

standard overestimates the LTB resistance, since the LRFD value is equal to 0.9. In this context, the average LRFD value calculated 157 
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by the authors was 0.83. Komal et al. [36] presented an extensive parametric study of steel cellular beams in which buckling and 158 

post-buckling analyses were performed. The authors showed that the unrestrained length is an important parameter, since the lateral 159 

displacement is directly influenced by the compressed flange, thus causing LTB. Khatri et al. [39] investigated the effect of the load 160 

position on the cross-section by carrying out elastic analyses, considering the effect of stabilizing, neutral and destabilizing on the 161 

moment-gradient factor. In this study, the authors observed the moment-gradient factor variation as a function of the buckling modes 162 

that were governed by the combination of LTB+WDB and for short spans. Bhat and Gupta [40] carried out a parametric study, 163 

considering simply supported cellular beams subjected to four-point bending. The results of this study were compared with the 164 

recommendation of the Indian standard IS 800:2007 [47], that is applied to common steel beams. The authors showed that the Indian 165 

standard was conservative for cellular steel beams with a yield strength of 250 MPa. However, for cellular steel beams with yield 166 

strengths of 350MPa and 450MPa, this comparison was unconservative. Recently, Faria et al. [41] investigated the LTB resistance 167 

in fire situations by performing finite element analyses. The authors presented a procedure to predict the LTB resistance of cellular 168 

steel beams, considering fire and room ambient temperature (Eq. 20) situations. Such calculation methodology is a modification of 169 

the equations presented in EC3 [45]. 170 

( ) 1 90 5 1 0 25 0 2 .

LT LT LT. . .   = + − +   (20) 

As presented so far, few researchers have conducted experimental studies, whereas most of them presented numerical 171 

studies and sought alternatives to calculate the LTB resistance of steel cellular beams. In this case, revisions were made to LTB-172 

resistance calculations for steel beams without web openings. It is important to highlight that the procedures for calculating the LTB 173 

resistance of steel profiles without web openings are very well consolidated. As an example, studies that made EC3 [45] revisions 174 

were highlighted, in order to accurately present the numerical response with the calculation procedures. Finally, although many 175 

alternatives were presented to calculate the LTB resistance of steel cellular beams, it is a complex procedure, since these perforated 176 

beams can fail due to the interaction of buckling modes. Consequently, the present study employs the power of artificial neural 177 

network algorithms, seeking the calculation of LTB resistance while considering the interaction between the buckling modes. 178 

 179 

3. FINITE ELEMENT MODEL: VALIDATION AND PARAMETRIC STUDIES 180 

In this section, the validation results will be briefly presented, as well as the geometric parameters that were considered in 181 

the parametric study. This is because the paper focuses on the artificial neural network.  182 

For the validation study, eight experimental models of steel cellular beams [9,31,32,48,49] were considered. All steel 183 

cellular beams are simply supported. Elastic-perfectly plastic material behavior was considered in the numerical models, and the 184 

cellular beams were modeled with 10mm S4R shell elements, according to the ABAQUS® software library [50]. The models were 185 

processed in two stages: buckling and post-buckling analyses. Many researchers have used this procedure to analyze buckling 186 

problems in steel cellular beams [36,51]. The buckling analysis predict the critical buckling load and its respective buckling mode. 187 
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It is noteworthy that no initial imperfections are considered here. Subsequently, the buckling mode response from the analysis 188 

performed in the first stage is used as an initial geometric imperfection for the subsequent post-buckling analysis (dg/100 if L/dg<10 189 

and L/1000 if L/dg≥10) [3]. Residual stresses were considered [52]. The imperfections are inserted with the commands 190 

*IMPERFECTION and *INITIAL CONDITIONS, TYPE=STRESS for initial geometric imperfection and residual stresses, 191 

respectively. The post-buckling analysis is performed by Static Riks, which uses the arc length method.  192 

Regarding the validation results, the numerical results obtained showed the same failure mode as the experimental models. 193 

In Fig. 1, key examples of the failure modes are presented. Beam 2 test also performed by Surtees and Liu [48] failed by 194 

WDB+WPB. These modes were verified in the final configuration of the numerical model, as shown in Fig. 1a. 4B test, which was 195 

carried out by Warren [49], governed by WPB. This mode was observed in the finite element model presented in Fig. 1b. Tests A1 196 

and B1, which were conducted by Tsavdaridis and D’Mello [9], failed by WPB. Fig.1c, in the same way, depict the failure modes 197 

of the developed finite element models. Boissonnade et al. [32] and Sonck and Belis [31] performed LTB tests; Fig. 1d, Fig. 1e and 198 

Fig. 1f depict the final mode shape of these finite element models for IPE 330, CS2_L3 and CS2_L4, respectively. It is concluded 199 

that the finite element models developed for the validation study were in agreement with the failure modes of the tests. Also, the 200 

force against mid-span vertical displacement relationships were made to compare with the tests (Fig 2), and the results are 201 

summarized in Table 1. 202 

 203 
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(f) CS2_L4 

Fig. 1: Final configuration of finite element models 204 
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Fig. 2: Finite element models vs. experimental results 205 

 206 

Table 1: Validation results 207 

Test Reference Test Finite element model 1-PTest/PFE (%) 

PTest (kN) Failure mode PFE (kN) Failure mode 

Beam 2 Surtees and Liu [48] 188.5 WDB+WPB 184.0 WDB+WPB -2.4 

4B Warren [49] 114.0 WPB 110.5 WPB -3.2 

A1 Tsavdaridis and D’Mello [9] 288.7 WPB 282.5 WPB -2.2 

B1 Tsavdaridis and D’Mello [9] 255.0 WPB 243.1 WPB -4.9 

HEA 340 Boissonnade et al. [32] 1,977.0 LTB 1,838.4 LTB -7.5 

IPE 330 Boissonnade et al. [32] 176.9 LTB 170.7 LTB -3.6 

CS2_L3 Sonck and Belis [31] 22.3 LTB 22.5 LTB 0.9 

CS2_L4 Sonck and Belis [31] 23.6 LTB 23.2 LTB -1.7 
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  208 

In the parametric study, the ASTM A572 Grade 50 steel is considered. Fig. 3 presents the geometrical parameters that were 209 

varied (Table 2). Cellular beams are considered as simply supported and subjected to three types of loadings applied to the shear 210 

centre (i.e., uniform bending, mid-span concentrated load and uniformly distributed loads) considering the neutral effect, and two 211 

types of loading applied to the upper flange (i.e., mid-span concentrated load and uniformly distributed loads) to simulate the 212 

destabilizing effect. 213 

 214 

Fig. 3: Geometrical parameters, adapted from [53] 215 

Table 2: Parameters 216 

Parameter Variation 

p/Do 1.2 and 1.45 

Do/d 0.95 and 1.15 

dg/d 1.3, 1.35, 1.4, 1.45 and 1.5 

Steel sections W200x22.5, W310x32.7 and W530x85 

Loading type 
Neutral effect: uniform bending, mid-span concentrated load and uniformly distributed loads 

Destabilizing effect: mid-span concentrated load and uniformly distributed loads 

 217 

 The parametric study in 768 models allowed to identify the failure mode governed either by LTB (Fig. 4a) or the 218 

combination of this failure mode with other buckling modes, such as LTB+WDB (Fig. 4b) and LTB+WPB (Fig. 4c). The results of 219 

the 768 models are used for the development of a robust ANN formula as described below. 220 

 221 
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(a) Pure LTB 

 
 

(b) LTB+WDB 

 
 

(c) LTB+WPB 

Fig. 4: Failure modes 222 
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4. DEVELOPMENT OF THE ARTIFICIAL NEURAL NETWORK (ANN) 223 

In this section, the development of the artificial neural network is presented. 224 

4.1 NEURAL NETWORK ARCHITECTURE 225 

The general architecture of an ANN includes the input layer, hidden layer, and output layer. The normalized input values 226 

are connected to the hidden layer, which consists of neurons that are dependent on the analysis that is conducted. The connection 227 

between each input and neuron in the hidden layer is weighted and also consists of constant bias value. The hidden layer is thereafter 228 

connected to the output layer. Again, each connection from the hidden layer to the output layer is weighted with a value, a transfer 229 

function and a constant bias value. As input values are normalized, the output value will also be normalized and will require 230 

denormalization to obtain predicted values that can be compared to the target values. To then assess the accuracy of the model, the 231 

errors between the predicted and target values are calculated.  232 

The errors should be minimized by adjusting the weights and bias values of the ANN. This can be achieved by transferring 233 

the information (errors) from the output layer towards the input layer of the ANN [54]. This process is called Back-Propagation of 234 

Multilayer Feed Forward ANN. In addition, the final weights and bias values between the different layers can be used to quantify 235 

the impact of input parameters on the output parameter. The network architecture used in this paper is a Multi-Layer Perceptron 236 

Network (MLPN). The neural network toolbox within MATLAB [55] solves a data fitting problem with a two-layer feedforward 237 

neural network and is the method that has been adopted in this study. 238 

To derive the ANN model, a number of parameters need to be introduced, herein noted as input parameters as well as the 239 

number of neurons within the hidden layer, the activation function, and the output parameter. The input parameters in this study 240 

represent the variable geometric characteristics of cellular beam, including the length (L), overall height of the beam (dg), opening 241 

diameter (Do), distance between opening (bw), flange width (bf), flange thickness (tf), web thickness (tw), distance from the point of 242 

the load application to the shear centre of the section (zg), and the moment-gradient factor (Cb). In this study, the Cb is taken as 243 

presented in DD ENV 1993-1-1 (2002) [46]. For uniformly distributed loading, Cb is equal to 1.132. Considering mid-span 244 

concentrated load, Cb is equal to 1.365 while beams with uniform bending the value Cb is equal to 1.0. The output parameter to be 245 

predicted is the LTB moment resistance (M).  246 

The number of neurons in the hidden layer has influence on the accuracy of the ANN model. The optimal number of 247 

neurons in the hidden layer can be defined by modelling several networks with a different number of the neurons and comparing 248 

the differences in the results. In this paper, the ANN network was modelled with 3, 5, 7, 9 and 11 neurons in the hidden layer. Fig. 5 249 

illustrates an example of an ANN structure consisting of 9 input parameters, 3 neurons in the hidden layer, and 1 output parameter. 250 
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 251 

Fig. 5: ANN Model with 3 neurons in the hidden layer 252 

4.2 INPUT AND OUTPUT NORMALIZATION 253 

The progress of training can be reduced if training data define a region that is relatively narrow in some dimensions and 254 

elongated in others [25]. Therefore, normalization for variables across all data patterns should be implemented to improve the 255 

learning speed, performance, accuracy, and stability of the training process. Both input and target parameters can be normalized 256 

using Eq. (21) [56], where Yact is the actual value of the input/output, Xnorm is the value, Xmin and Xmax are the minimum and maximum 257 

values of the input/output parameters, respectively (Table 3). Ymin is the minimum value for each row of X (default is –1) and Ymax 258 

is the maximum value for each row of X (default is +1). 259 

( )( )
( )

max min min

min

max min

act

norm
Y Y X X

X Y
X X

− −
= +

−
  (21) 

Table 3: Parameters used to normalize input and target values 260 

Input/Target Parameter Xmin Xmax Ymin Ymax 

L (mm) 1500 15000 -1 1 

dg (mm) 268 803 -1 1 

Do (mm) 196 616 -1 1 

bw (mm) 47.6 228.6 -1 1 

bf (mm) 102 166 -1 1 

tf (mm) 8 16.5 -1 1 

tw (mm) 6.2 10.3 -1 1 

zg (mm) 0 401.5 -1 1 

Cb 1 1.365 -1 1 

M (kN.m) 16.71 470.34 -1 1 

 261 
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4.3 LEARNING (TRAINING) ALGORITHM AND TRANSFER FUNCTION 262 

The total number of data sets used in the ANN model was 768. To avoid overfitting the ANN model, the data points are 263 

randomly divided into training set, validation set and testing set, with 70%,15% and 15% of the data, respectively. While the training 264 

set is used to compute the gradient and update the weights and biases, a process of cross validation takes place using the validation 265 

data set so the performance of the network can be generalized. When the optimum network parameters are defined, the test data set 266 

is used to assess the ANN accuracy. The Levenberg-Marquardt back propagation training algorithm is adopted in this study as this 267 

algorithm is fast, has stable convergence and is suitable for training small- and medium-sized problems. Eqs. (22-23) show the 268 

hyperbolic tangent transfer function that is required to determine the normalized output value based on the inputs provided [57]. 269 

,
k

r
ho

s s k l 2H
k 1

2
O B1 w 1

1 e
−

=

 
= + − 

+ 
   (22) 

,

q
ih

k k j k j

j 1

H B2 w I
=

= +    (23) 

Where, Os represents the normalized output value, q is the number of input parameters; r is the number of hidden neurons; 270 

s is the number of output parameters; B1s and B2k are the biases of sth output neuron and kth hidden neuron (Hk), respectively; ,

ih

j kw271 

is the weights of the connection between Ij and Hk; ,

oh

k lw  are the weights of the connection between Hk and Os. 272 

 273 

4.4 ASSESSING THE ACCURACY OF NEURAL NETWORK 274 

To assess the accuracy of the output the Regression values (R2), Root Mean Square Error (RMSE) and Mean Absolute 275 

Error (MAE) are calculated using Eq. (24), Eq. (25) and Eq. (26) respectively, where ti and Oi are the actual and predicted LTB 276 

moment resistance of steel cellular beam, and N is the total number of data points in each set of data. iO  and it  are the average of 277 

the predicted and actual LTB moment resistance. 278 
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4.5 QUANTIFYING INPUT VARIABLE CONTRIBUTIONS IN ANN 279 

 In this section, the methodology for evaluating the contribution of each variable to LTB resistance of steel cellular beams 280 

is presented. 281 

4.5.1 Connection Weight Approach 282 

Olden and Jackson [58] proposed the connection weigh approach that estimates the rank importance of each individual 283 

input in the neural network. The magnitude and sign of the weights between neurons identify the effect of the input parameters on 284 

the output. The advantage with this approach is that it not only provides the impact of each input parameter, but it also shows 285 

whether an increase in the input parameter will increase or decrease the value of the output parameter. A positive value will dictate 286 

that an increase in the input parameter will increase the value of the output parameter and vice versa for a negative value. The impact 287 

of an input (Sx) can be calculated by the product of raw input-hidden and hidden-output connection weights and sum the products 288 

across all hidden neuron [58] as illustrated in the following Eq. (27) [59]: 289 

 290 

E

X XY

Y A

Input Hidden
=

=  

 

(27) 

4.5.2 Garson’s Algorithm 291 

Garson [60] proposed a method to determine the relative importance of each input variable in the network. This approach 292 

has been used in previous studies [57,61–63]. It is important to note that Garson’s algorithm uses the absolute values of the 293 

connection weights when calculating variable contributions, and hence does not provide the direction of the relationship between 294 

the input and output variables [58]. The relative importance of the jth input parameter on the output is presented in Eq. (28), in which 295 

Ni and Nh are the numbers of neurons in the input and hidden layers, respectively; w is connection weights; the subscripts k, m, and 296 

n refer to input, hidden, and output neurons, respectively, and the superscripts i, h, and o refer to input, hidden, and output layers, 297 

respectively. 298 
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 299 

 300 

 301 

5. RESULTS AND DISCUSSION 302 

As stated previously, the number of neurons in the hidden layer will have an influence on the ANN accuracy. Although 303 

utilizing many neurons in the hidden layers increases the accuracy of the ANN prediction, the model gives more complicated explicit 304 

formulas which in practical application create more space for error. Additionally, an increase in the number of neurons may lead to 305 

overtraining [61]. Table 4 provides the R2 and MSE values of the training, validation and testing data that was determined for the 306 

different models. As the number of neurons increase there is a direct correlation with the accuracy of the model. However, it can be 307 

seen that the model with a low number of neurons still has an exceptionally high level of accuracy. As the models with fewer neurons 308 

provide this level of accuracy and will result in a more user-friendly formula for industrial application, it is acceptable that these 309 

can be used instead of those models with a higher level of neurons.  310 

Table 4: Comparison of statistical values to evaluate the accuracy of the ANN models with different neurons 311 

Number of 

neurons 

R2 MSE All data 

Training Validation Testing Training Validation Testing 
RMSE MAE R2 

3 
0.99974 0.99966 0.99973 8.71x10-5 9x10-5 1.41x10-4 2.220 1.510 0.9994 

5 0.99985 0.99985 0.99967 5.01x10-5 7.11x10-5 1.14x10-4 2.037 1.382 0.9996 

7 0.99987 0.99990 0.99842 4.17x10-5 3.67x10-5 6.14x10-5 1.678 1.075 0.9997 

9 
0.99990 0.99987 0.99989 2.79x10-5 3.31x10-5 3.37x10-5 1.232 0.839 0.9998 

11 0.999996 0.99883 0.99992 1.25x10-5 4.39x10-5 3.51x10-5 1.030 0.604 0.9999 

After reviewing the statistical data of the ANN model, the accuracy of the model was assessed based on the overall predicted 312 

values of the ANN model and the actual values. The statistical parameters R2, RMSE and MAE of the network with different neuron 313 

can be seen in Table 4. Fig. 6a and Fig. 6b are examples of the actual against predicted lateral torsional buckling moment for ANN 314 

models with 7 and 9 neurons, respectively.  As expected, that as the number of neurons increase the RMSE and MAE reduced and 315 

there is a slight change in the regression value. For instance, as the number of neurons increase from 7 to 9 the RMSE decreases 316 

from 1.678 to 1.232 and MAE decrease from 1.075 to 0.839 while the regression value slightly improved. Based on these results it 317 



19 

 

 

was concluded that an ANN network model with 7 neurons provides a high level of accuracy, as well as a more practical equation 318 

and this ANN model will be used for further analysis in the following sections. 319 

 

(a) 7 Neurons 

 

(b) 9 Neurons 

Fig. 6: Actual vs. predicted bending moment 320 

In order to further validate the ANN predictions, the impact of input parameters was assessed using the connection weight 321 

approach and Garsons algorithm. Fig. 7 provides the impact that each input parameter within the ANN model has on the lateral 322 

torsional moment capacity of a cellular beam. The connection weight approach shows that input parameters dg, bw, bf, tf, tw and Cb 323 

have direct impact on the strength – increasing in these parameters results in an increase in bending moment capacity. This agrees 324 

with what would have been expected as the greater the height, web-thickness, flange thickness and width and spacing between 325 

openings of cellular beam, the greater the lateral torsional buckling resistance. On the other hand, input parameters L, Do and zg have 326 

negative impact on the resistance as it was anticipated, as increasing the length, and opening diameter, and leads to a decrease in 327 

strength and the destabilizing effect reduces the buckling resistance. Fig. 7 also illustrates the relative importance (S values) of the 328 

nine input parameters. The most important input corresponds to highest absolute S value. It can be observed that the length, flange 329 

width and web thickness of the cellular beams are the significant factors with detrimental effect on the resistance, while the spacing 330 

between opening and opening diameter have less effect on the resistance. It is worth noting that these results do not correlate to the 331 

accuracy of the ANN predictions, and it is providing another form of validation for the ANN model. Fig. 8 shows the contribution 332 

(%) of each input parameter (L, dg, Do, bw, bf, tf, tw, zg, Cb) to output parameter M calculated using Garson algorithm as explained in 333 

section 4.5.2. The contribution of these input parameters is 25.22%, 9.79%, 9.62%, 6.48%, 9.40%, 6.85%, 14.26%, 9.43% and 334 

8.94%, respectively, indicting, again, that the length, and web thickness have significant contribution to the resistance.  In 335 

conclusion, as the ANN model with seven neurons provides predictions with high level of accuracy and the impact of the inputs on 336 

the resistance is as physically expected, it will be used in the following sections. 337 
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 338 

Fig. 7: Impact of input parameters on the resistance 339 

 340 

Fig. 8: Contribution (%) of input parameters to the resistance 341 

6. ANN-BASED FORMULA AND COMPARATIVE ANALYSES 342 

In this section the resistance prediction results developed by ANN are compared with analytical procedures. ANN-based 343 

formula to predict the normalized LTB moment resistance is illustrated in the Eq. (29). The input parameters, which would have to 344 

fall within Xmax and Xmin range stated in Table 3, should be normalized using Eq. (21). In order to calculate the normalized LTB 345 

moment resistance (M)n, the values H1, H2…H7 should be calculated using Eq. (30) and substituted into Eq. (29). In the equations, 346 

(M)n represent the normalised value of the input parameter, w1(i,j) are the connection weights between neuron in the hidden layer 347 

(i) and input (j), as seen in the Table 5, w2(i) are the connection weights between the neuron in the hidden layer (i) and the output, 348 

as seen in the Table 5. B1(i) are the bias for each neuron (i) in the hidden layer, as seen in the Table 5, B2 is the output bias and is 349 

equal to 1.96889. To determine the LTB moment resistance to its original format (i.e., without normalisation), denormalization need 350 

to be conducted. 351 
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Table 5: The connection weight and the bias values 353 

Neuron 

w1(i,j) w2(i) 

B1(i) 
L dg Do bw bf tf tw zg Cb M 

1 -0.2669 0.1919 0.0195 -0.0464 -0.3124 -0.6813 0.9791 1.5399 -0.9908 -0.0504 1.4748 

2 -1.7443 0.2162 -0.6503 -0.3029 -0.7204 -0.1041 -1.2666 -0.1281 -0.3717 -2.1171 -3.2841 

3 0.6228 -0.7600 -0.5885 -0.3327 0.1577 -0.1627 -0.6824 -0.0555 0.1633 -0.1882 -1.1741 

4 -1.0510 0.7635 -0.4885 1.2044 0.0841 -0.1215 0.7132 -1.2802 -1.0535 -0.0020 1.3307 

5 0.8900 -0.2046 0.0635 0.0006 0.1224 -0.3040 -0.2837 0.1261 -0.1031 -2.8734 1.8707 

6 -1.5960 0.2017 -0.6648 -0.3083 0.3822 -0.3031 -0.6035 -0.1166 -0.3515 2.4490 -1.6562 

7 1.2305 -0.5902 0.5826 0.2080 1.1378 0.2109 0.0242 0.1690 0.1394 0.3250 1.5917 

 354 

6.1. LOADS APPLIED AT SHEAR CENTRE  355 

The equation developed by ANN is compared with the EC3 [13], AS 4100-1998 [14], Panedpojaman et al. [15], EC3 [13] 356 

and Sonck [17], Taras and Greiner [16] with Sonck [17] and Faria et al. [41] procedures, considering loads applied at shear center. 357 

It is important to highlight that of the 768 models that were selected for the application of the ANN, 458 models were subjected to 358 

loading applied at shear centre. The comparation results are presented in Fig. 9.  359 

 

(a) ANN vs. EC3 [13] 

 

(b) ANN vs. AS 4100-1998 [14] 

 

(c) ANN vs. Panedpojaman et al. [15] 

 

(d) ANN vs. EC3 [13] and Sonck [17] 
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(e) ANN vs. Taras and Greiner [16] with Sonck [17] 

 

(f) ANN vs. Faria et al. [41] 

Fig. 9: Loads applied at shear centre 360 

According to Fig. 9a, it is possible to notice that most finite element models presented higher moment values 361 

(MFE/MPredicted>1.0) when compared to the EC3 prediction [13]. The maximum and minimum difference (MFE-MPredicted) between 362 

the models in this comparison were 10.74 kN.m and -16.32 kN.m, respectively. It is noteworthy that to calculate the moment, 363 

according to EC3 [13] requirements, for values dg/bf>1.2, the buckling curve b must be used. In this context, EC3 [13] 364 

recommendations may underestimate the LTB resistance of steel cellular beams. One way to reduce these differences is to use the 365 

buckling curve c, as presented in Ferreira et al. [37]. 366 

Regarding the AS 4100-1998 [14], as shown in Fig. 9b, for λLT≤2.0, values of the ratio MFE/MPredicted<1.0 were obtained. 367 

This was due to the drop in resistance of the cellular steel beams as a result of the combination of the LTB with some local buckling 368 

mode, such as web-post buckling or web distortional buckling. On the other hand, for λLT>2.0, the values of the ratio MFE/MPredicted 369 

increase, situation in which the models presented LTB failure. According to Ellobody [1], the Australian standard underestimates 370 

the LTB resistance of steel cellular beams, which is in fact consistent with the analyses carried out in the present study. The 371 

maximum and minimum differences (MFE-MPredicted) between the models, in this case were 32.74 kN.m and -14.26 kN.m, 372 

respectively. 373 

The proposal by Panedpojaman et al.[15], which is based on EC3, underestimates the LTB resistance of steel cellular beams 374 

(Fig. 9c). However, this occurred for λLT>1.5, models in which ratio values were MFE/MPredicted>1.1, were verified. It is noteworthy 375 

that the authors' proposal takes into account a correction factor due to the absence (uniform bending), or the presence (mid-span and 376 

uniformly distributed loads) of the shear effect. The minimum and maximum values calculated through the difference between the 377 

numerical model and the predicted one were -20.93 kN.m and 4.38 kN.m, respectively. 378 

The comparison of finite element models with the predictions of EC3 [13] and Sonck [17], Taras and Greiner [16] with 379 

Sonck [17] are presented in Figs. 9d-e, respectively. These models, developed in accord with EC3, consist of modifying the 380 

imperfection factor which is calculated in function of the ratio between the elastic section modulus in both main strong and weak 381 

axis. Both methods underestimated the LTB resistance of steel cellular beams. In the case of the EC3 [13] with Sonck [17] procedure, 382 

the MFE/MPredicted ratio reached the value of approximately 1.4, while in the proposal by Taras and Greiner [16] with Sonck [17], this 383 

value reached 1.25, approximately. The maximum and minimum differences (MFE-MPredicted), respectively, between the models were 384 
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-4.66 kN.m and -27.16kN.m, for EC3 [13] with Sonck [17], and for Taras and Greiner [16] with Sonck [17] theses values were -385 

0.82 kN.m and -19.78kN.m. 386 

Fig. 9f shows the comparison between finite element models with a proposal developed by por Faria et al. [41]. This model 387 

was the one that least underestimated the LTB resistance of steel cellular beams. However, for values of λLT≤2.0, the predictions 388 

overestimated the resistance of steel cellular beams, especially for the models in which LTB was verified accompanied by local 389 

buckling modes. The minimum and maximum values calculated through the difference between the numerical model and the 390 

predicted one were -20.88 kN.m and -6.33 kN.m, respectively. Table 5 presents the summary of statistical analyses. Fig. 10 shows 391 

the relative error between the 458 models that were compared. 392 

Table 5: Comparison of statistical values to evaluate the accuracy of the ANN models with different procedures for loads 393 

applied at shear centre 394 

Reference [13] [14] [15] [13] and [17] [16] and [17] [41] ANN 

Average  1.099 1.028 1.153 1.233 1.164 0.979 0.998 

S.D. 6.04% 7.57% 5.41% 5.94% 3.86% 4.51% 1.70% 

Var. 0.36% 0.57% 0.29% 0.35% 0.15% 0.20% 0.03% 

Max.  1.195 1.166 1.265 1.373 1.247 1.068 1.046 

Min.  0.903 0.753 0.958 1.049 1.008 0.827 0.921 

R² 0.9935 0.9858 0.9922 0.9964 0.9968 0.9958 0.9998 

RMSE 10.0913 16.7249 16.9338 22.6819 19.1778 14.1996 1.4816 

MAE 7.6783 7.3541 12.1673 17.0621 13.6899 5.9913 0.9703 

 395 



24 

 

 

 396 

 397 

Fig. 10: Relative error (%) between the models considering loads applied at shear centre 398 
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6.2. LOADS APPLIED AT UPPER FLANGE 403 

For loads applied at upper flange, the ANN formula is compared with EC3 [46], AS 4100-1998 [14] and Taras and Greiner 404 

[16] with Sonck [17]. In the latter case, the equation of the three factors (C1, C2 and C3) is used to calculate the critical moment [46]. 405 

In this scenario, in total of 768 selected models, 310 models were subjected to loading applied at upper flange. The comparation 406 

results are shown in Fig. 11.  407 

 

(a) ANN vs. EC3 [46] 

 

(b) ANN vs. AS 4100-1998 [14] 

 

(c) ANN vs. Taras and Greiner [16] and Sonck [17] 

Fig. 11: Loads applied at upper flange 408 

When comparing the finite models with the EC3 [46] (Fig. 11a), for λLT≤1.8 the procedure overestimates the LTB resistance 409 

of steel cellular beams subjected to the destabilizing effect of loading. It is noteworthy that the smaller the value of λLT, the greater 410 

the possibility of the steel cellular beam reaching the LTB mode in the combination with the other buckling modes, such as WPB 411 

or WDB. In this context, the minimum and maximum differences between the finite element model and the predicted by EC3 were 412 

- 13.86 kN.m and 19.84 kN.m, respectively. On the other hand, when the numerical models were compared with the Australian 413 

standards [14] (Fig. 11b), it proved to underestimate the resistance of the cellular beams for λLT>1.5, and the difference could reach, 414 

approximately, 30% more than the resistance of the finite element model. This procedure showed the minimum and maximum 415 

values between the numerical model and the predicted model (MFE-MPredicted) equal -21.96 kN.m and 27.83 kN.m, respectively. 416 

Finally, when comparing finite element models with Taras and Greiner [16] with Sonck [17], considering the equation of 417 

the three factors (C1, C2 and C3) [46], the analytical procedure showed results in which the ratio MFE/MPredicted varied between 1.00 418 

and 1.22, demonstrating that all results are in favor of safety, although in some models the LTB resistance of steel cellular beams 419 

may be underestimated. In this case, the minimum and maximum values between the numerical model and the predicted were -420 
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18.33 kN.m and 0.22 kN.m, respectively. Table 6 presents the summary of the statistical analyses, and Fig. 12 illustrates the relative 421 

error between the 310 models that were compared. Table 6 presents the summary of statistical analyses, and Fig. 12 illustrates the 422 

relative error between the 310 models that were compared. 423 

Table 6: Comparison of statistical values to evaluate the accuracy of the ANN models with different procedures for loads 424 

applied at upper flange 425 

Reference [46] [14] [16] with [17] ANN 

Average 1.064 1.116 1.145 1.001 

S.D. 5.85% 10.75% 3.31% 2.87% 

Var. 0.34% 1.16% 0.11% 0.08% 

Max. 1.161 1.281 1.224 1.157 

Min. 0.834 0.782 1.002 0.891 

R² 0.9921 0.982 0.9973 0.9994 

RMSE 8.3819 12.1456 12.2539 1.9315 

MAE 5.0446 7.9363 9.1867 1.2298 

426 
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Fig. 12: Relative error (%) between the models considering loads applied at upper flange 429 
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CONCLUSION 434 

This paper develops a robust numerical model for predicting the lateral-torsional buckling behavior of steel cellular beams, 435 

also considering the interaction of LTB mode with the web post buckling and web distortional buckling. The finite element model 436 

was calibrated via tests consolidated in the literature and a parametric study which was carried out through post-buckling analysis, 437 

considering physical and geometric imperfections as well as destabilizing loading effects. 768 models were selected to generate the 438 

ANN-based formula while the accuracy of this ANN-based model can be further improved by adding more data from future 439 

experimental and numerical studies, and makes this ANN model flexible enough to improve overtime. The proposed ANN-based 440 

model produces a single output, which is the LTB resistant moment of steel cellular beams, accounting for the length, overall height 441 

of the beam, opening diameter, distance between opening, flange width, flange thickness, web thickness, distance from the point of 442 

the load application to the shear centre of the section, and the moment-gradient factor. The finite element models were compared 443 

with the ANN-based formula and six analytical procedures, considering neutral and destabilizing effects of loads. The Australian 444 

standards underestimated the lateral-torsional buckling resistance of steel cellular beams. Regarding the analytical models based on 445 

EC3, most of them underestimated the resistance prediction of steel cellular beams. Finally, the ANN-based formula showed 446 

agreement with the finite element models. While the entire process of ANN model generation is indeed laborious and requires a 447 

level of expertise on numerical computing, its application for the design of real structures is simple. The model can be easily 448 

implemented in a spreadsheet or any other programming environment, using the provided weights and biases. Compared to the 449 

procedures provided by design guidelines and codes of practices, which often require iterative processes in order to determine the 450 

equilibrium of internal forces inside the cross section under conditions of combined axial force and bending moment, the 451 

implementation of the ANN model instead, could be straightforward while the computational cost is low.  452 

 453 
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