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Abstract— In this paper, automatic musical instrument
identification using a variety of classifiers is addressed.
Experiments are performed on a large set of recordings
that stem from 20 instrument classes. Several features from
general audio data classification applications as well as
MPEG-7 descriptors are measured for 1000 recordings.
Branch-and-bound feature selection is applied in order
to select the most discriminating features for instrument
classification. The first classifier is based on non-negative
matrix factorization (NMF) techniques, where training is
performed for each audio class individually. A novel NMF
testing method is proposed, where each recording is pro-
jected onto several training matrices, which have been
Gram-Schmidt orthogonalized. Several NMF variants are
utilized besides the standard NMF method, such as the
local NMF and the sparse NMF. In addition, 3-layered
multilayer perceptrons, normalized Gaussian radial basis
function networks, and support vector machines employing
a polynomial kernel have also been tested as classifiers. The
classification accuracy is high, ranging between 88.7% to
95.3%, outperforming the state-of-the-art techniques tested
in the aforementioned experiment.

Keywords— Musical instrument identification, Non-
negative matrix factorization, MPEG-7 audio descriptors.

I. INTRODUCTION

Automatic instrument recognition is a subtask of mu-
sical content identification. It could be treated as the
first step in developing automatic musical transcription
systems and multimedia database annotation. The use of
real world recordings should be encouraged in instrument
recognition experiments, instead of using synthesized
instrument sounds, where noise is absent.

The problems addressed so far in musical instrument
identification can be broadly classified into two cate-
gories: classification of isolated instrument tones and
classification of sound segments. Classifiers using isolated
tones have a limited use in practical applications, while
sound segment classifiers could be effectively used in
music information retrieval (MIR) systems. Using sound
segments, an identification accuracy between 42% and
57% was reported for 20 classes of instruments using
Fast Artificial Neural Networks (FANN), a variant of mul-
tilayer perceptrons for classification [6]. Time encoded
signal processing and recognition, which is a time-domain
specific feature extraction, was employed to recordings
extracted from the Musical Instrument Samples Database
of UIOWA [1]. The same database is used in this paper
as well. A Gaussian mixture model (GMM) classifier
for instrument recognition in monophonic and polyphonic
audio was proposed [7]. The reported average instrument

identification accuracy for 5 classes of the UIOWA sam-
ples is 62%.

In this paper, the problem of automatic identification
of musical instrument segments is addressed. Recordings
from the UIOWA database are used that form 20 instru-
ment classes covering almost all types of orchestral in-
struments. We extend our previously reported results that
were limited to six instruments [8]. A total number of 13
audio features are extracted, including sound description
features used in general audio data (GAD) classification
experiments as well as descriptors defined by the MPEG-7
audio standard. The first-order and second-order statistics
of the features are considered, creating a feature set of 187
dimensions, as explained in Section Il. Feature selection
using branch-and-bound search strategy is employed in
order to select the subset of the most discriminative fea-
tures [11]. 70% of the available data are used for training
and the remaining 30% for testing. Several classifiers have
been assessed for musical instrument identification.

The first classifier is based on non-negative matrix
factorization (NMF), a subspace method for basis decom-
position [2]. The proposed novel NMF classifier trains
each class individually and performs Gram-Schmidt or-
thogonalization to each trained class basis matrix. Orthog-
onalization has not been employed in the context of NMF,
although it is essential because the basis vectors extracted
by NMF are not orthogonal. Afterwards, the test data
are projected onto each trained class matrix. The class
label of each test vector is determined by using the cosine
similarity measure (CSM). Several extensions of the NMF
method are also tested, such as the standard NMF, the
local NMF (LNMF), and the sparse NMF (SNMF), en-
abling thus a comparative study of algorithms” efficiency.
Moreover, multilayer perceptrons (MLPs), radial basis
functions (RBF) networks and support vector machines
(SVMs) have also been employed for classification and
their performance is evaluated. The results indicate that
identification accuracy is high for all classifiers, ranging
from 88.7% for the LNMF classifier to 95.3% for the
SNMF classifier. Performance differences of the several
classifiers are examined if they are statistically significant.
Experimental results indicate that the employed classifiers
outperform traditional unsupervised NMF classifiers and
FANN classifiers in the same experiment [6] [8].

The outline of the paper is organized as follows. The
set of extracted features is discussed in Section 1. Section
111 is devoted to the NMF method, its variants, and the
proposed supervised NMF classifier. The various neural
network classifiers employed are presented in Section
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IV. Section V describes the data set used, the feature
selection strategy, the experimental procedure, and the
results. Finally, conclusions are drawn in Section VI.

Il. FEATURE EXTRACTION

A careful selection of sound description features is
essential in classification experiments. In our approach,
a combination of features originating from GAD classifi-
cation and the MPEG-7 audio framework is used [5]. The
complete list of extracted features is presented in Table I.

TABLE |
FEATURE SET.

Feature # values/frame
MPEG-7 AudioPower 1
MPEG-7 AudioFundamentalFrequency
Total Loudness
Specific Loudness Sensation
MPEG-7 AudioSpectrumCentroid
Spectrum Rolloff Frequency
MPEG-7 AudioSpectrumSpread
AudioSpectrumFlattness
9 Mel-frequency Cepstral Coefficients
10 AutoCorrelation Values
11 MPEG-7 Log Attack Time
12 MPEG-7 Temporal Centroid
13 Zero Crossing Rate
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Apart from features 10-12, the 1st and 2nd moments
of features computed on a frame basis, as well as their
derivatives, are computed. This results in 187 features
in total. The 1st feature describes the energy of the
audio signal. Feature 2 is computed using maximum
likelihood harmonic matching. Features 3 and 4 refer to a
perceptual modeling of the human auditory system [10]. A
description of the spectral shape of the signal is offered
by features 5-9. Temporal properties of the signals are
extracted in features 10-13. It should be noted that for
each audio frame of 10 msec duration, 24 Mel-frequency
cepstral coefficients and 8 specific loudness sensation
(SONE) coefficients are used. All features are linearly
normalized into the [0,1] range.

I11. NON-NEGATIVE MATRIX FACTORIZATION (NMF)

NMF is a subspace method able to obtain a parts-
based representation of objects by imposing non-negative
constraints [2]. The problem addressed by NMF is as
follows. Given a non-negative n x m data matrix V
(consisting of m vectors of dimensions n x 1), find
the non-negative matrix factors W and H in order to
approximate the original matrix as:

V ~ WH, 1)

where the n x r matrix W contains the basis vectors and
the columns of the r x m matrix H contain the weights
needed to properly approximate the corresponding column
of matrix V as a linear combination of the columns of W.
Usually, the number of components r is chosen so that
(n +m)r < nm, thus resulting in a compressed version
of the original data matrix.

To find an approximate factorization in (1), a suitable
objective function has to be defined. The generalized
Kullback-Leibler divergence between V and WH is the
most frequently used objective function:

>3l log

i=1 j=1

D(V||WH) = — — v + Yij] )

where WH =Y = [y;;]. Frequently, additional con-
straints are incorporated to the objective function (2).

A. NMF Variants

The standard NMF method enforces non-negativity
constraints on matrices W and H. The standard NMF
factorization is defined as the solution of the optimization
problem:

n
st W,H >0, wi; =1V (3)
i=1
The optimization problem (2) can be solved by using the
iterative multiplicative rules [2].

Aiming to impose spatial locality in the solution and
consequently to reveal local features in the data matrix
V, LNMF incorporates 3 additional constraints into the
standard NMF problem: 1) Minimize the number of basis
components representing V. 2) Make the different bases as
orthogonal as possible. 3) Retain the components giving
the most important information. A local solution can be
found by using 3 update rules [3].

Inspired by NMF and sparse coding, the aim of SNMF
is to impose constraints that can reveal local sparse
features in data matrix V. The following cost function
is optimized for SNMF:

EZE:vuk% vu+wj+x§:nmul

i=1 j=1 j=1

(4)
where X is a positive constant and ||h;||; the /-norm of
the j-th column of H. An SNMF factorization is defined
as in (3), including also that ||w;||; = 1,Vi. In SNMF,
the sparseness is measured by the minimum [-norm of
the column of H. A local solution of the minimization
problem (4) can be obtained by the update rules proposed
in [4].

B. Supervised NMF Classification

The major drawback of unsupervised NMF classifica-
tion is the manner of learning parts-based patterns from
the data, since no information about the class discrimi-
nation is incorporated into the NMF training procedure.
In addition, the initial values of matrices W and H can
affect the convergence of the algorithm, as the value of
NMF objective function defined in (2) may be trapped in
a local minimum.

The creation of a supervised classifier where the NMF
training procedure is performed for each data class indi-
vidually is proposed in [8]. It results in a pair of matrices
W and H for each class:

V; = W;H;,

min  D(V||WH)
W,H

D(V||WH) =

i:172:"'7N (5)
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where N is the number of different classes and V; the
data matrix of class i. The number of components used
for training each class is given by:

= { nim; J ©)

n; +m;

where n; and m; are the dimensions of matrix V;.
However, the basis defined by the columns of matrix W;
is not orthogonal. Thus the proposed classifier performs
Gram-Schmidt orthogonalization on W; by utilizing QR
decomposition:

Wl:QzRZ7 Z:172,,N (7)

where the n x r matrix Q; is orthogonal and the r x r

matrix R; is upper triangular. Consequently, the orthog-

onal basis matrix for each class is now Q; and the new
encoding matrix is:

H. = R;H;, 1=1,2,--+ N (8)

During test procedure, each test recording is repre-

sented by the feature vector vi.,. Afterwards, Vies IS
projected onto each class basis matrix Q;, yielding:

ht(eis)t = QI *Viest- 9)

where QI is the pseudo-inverse of Q,. For each class,
the vector h;(els)t is compared to each column of H} using
the CSM. The vector that maximizes the CSM for H; is
calculated as a measure of similarity for the class:
h;(i)tTh,-(i)
CSM; = max {,637],} (10)
N Ll
where hlj(’) represents the j-th column of matrix H.
Finally, the class label of the recording is determined by
the maximum C'SM;, i.e.:

- .
I'= argizlrnaia.}.(.’N{CSMz}. (11)
A block diagram of the testing procedure using the
proposed NMF classification method is sketched in Figure
1.

(1) CcSM
» Q ——h > H .
Vi— > Q, —»h—p| H) | CSI
. arg
: max
SEe h’i(N) H'y CSMA}
h;(i) = Q,T Vi
Fig. 1. Testing using the proposed NMF classifier (h} and v stand
for hj_,, and viess respectively).

IV. NEURAL NETWORK CLASSIFIERS

Several types of artificial neural networks (ANNSs) have
been employed for classification. Firstly, a 3-layered MLP
with a logistic activation function is utilized. The learning
technique used is the back-propagation algorithm, with
learning rate equal to 0.3. Moreover, a normalized Gaus-
sian RBF network is considered. The k-means clustering
algorithm provides the basis functions and the logistic
regression model is employed for learning. Finally, an
SVM classifier with a 1st order polynomial kernel is used.
The multi-class problem described in Section V is solved
using pairwise classification.

V. EXPERIMENTAL RESULTS
A. Dataset

Audio files extracted from the Musical Instrument
Samples database collected by the university of lowa [1]
were used. Overall 1000 audio files were extracted that
belong to 20 different instrument classes: alto flute, alto
saxophone, double bass, bass clarinet, bass flute, bass
trombone, bassoon, Bb clarinet, cello, Eb clarinet, horn,
piano, soprano saxophone, tenor trombone, trombone,
tuba, viola, violin, flute, and oboe. The recordings are
partitioned into a training set of 700 recordings and a test
set of 300 recordings, preserving a 70%/30% proportion
between the two sets, which is typical for classification
experiments. All recordings have a duration of about 20
sec and are sampled at 44.1 kHz sampling rate.

B. Feature selection

In order to reduce the feature vector dimension, a
suitable feature subset for classification has to be selected.
The optimal feature subset should maximize the ratio of
the inter-class dispersion over the intra-class dispersion:

J =1tr(S,"'Sp) (12)

where tr(-) stands for the trace of a matrix, S,, is the
within-class scatter matrix, and S, is the between-class
scatter matrix. Because the number of distinct subsets
is (1871_873)!1)!, where D is the desired subset size, the
branch-and-bound search strategy is considered for com-
plexity reduction. In this strategy, a tree structure of
(187 — D + 1) levels is created, where every node corre-
sponds to a subset. The highest level corresponds to the
full set, while each node corresponds to a D-dimensional
subset at the lowest level. The branch-and-bound search
strategy traverses the structure using depth-first search
with backtracking [11]. After selecting subsets of sizes
10, 20, 40, and 80, the set of 40 best features is considered
most suitable for musical instrument identification.

C. Performance Evaluation

Experiments are carried out using 3-fold cross val-
idation. About 200 iterations for the NMF classifiers
are needed for convergence during training, while the
MLP classifier requires about 500 epochs. Testing for
all classifiers is an almost instantaneous procedure. The
mean value of the classification accuracy and its standard
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deviation for the three NMF algorithms and the 3 ANN
classifiers is shown in Figure 2. The SNMF algorithm is
tested using two different values for the parameter A (0.1
and 0.001). The highest mean classification accuracy of
95.3% is achieved by the SNMF algorithm when A =
0.001. The achieved result by far outperforms the recog-
nition accuracy for the 20-class recognition experiment in
[6]. In addition, this application outperforms the results
from the 6-class recognition experiment in [8], which used
unsupervised and supervised NMF classifiers without
basis orthogonalization. It should be noted, however, that
the performance of the SNMF algorithm depends on the
selection of A. The lowest accuracy of 88.7% is achieved
by the LNMF classifier, while the 3 ANN classifiers
display very good recognition rates ranging from 93.21%
to 93.88%.

Consequently, the statistical significance of the recogni-
tion rates between the SNMF classifier and the remaining
classifiers is addressed. The method described in [9]
is employed, where an assumption is made that the
errors of all classifiers are distributed according to the
binomial law. It is shown that the performance gains
of the SNMF 2 classifier are statistically significant up
against the performance of the NMF, LNMF and SNMF
1 classifiers with 95% confidence (a = 0.05). Conversely,
the difference in the performance of the SNMF 2 classifier
and that of SVM, RBF, and MLP classifiers is found to
be statistically insignificant. Insight to the performance
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Fig. 2. Mean and standard deviation of the classification accuracy for

the supervised NMF classifiers and the neural network ones.

of the SNMF algorithm with A = 0.001 is provided
in Table 1l, where the confusion matrix for one run of
the experiment is detailed. The columns of the confusion
matrix correspond to the predicted musical instrument and
the rows to the actual one. The indices of the instruments
correspond to their order of presentation in Section V-A.
It is worth mentioning that 4 instances of bass clarinet
were misclassified as Bb clarinet. In addition, 3 instances
of bass flute were misclassified as alto flute. As far as
the SVM classifier is concerned, misclassifications occur

between the Alto Saxophone and the Soprano Saxophone.
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TABLE I
CONFUSION MATRIX FOR 1 RUN OF SNMF CLASSIFIER (A = 0.001).

VI. CONCLUSIONS

In this paper, musical instrument recognition experi-
ments have been performed on a large set of recordings
with a variety of sound description features. A novel
classifier using non-negative matrix factorization with
basis orthogonalization was employed and tested against
several machine learning classifiers. Future work will
focus on classification using several sound collections.
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