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Abstract
Viruses causing flu or milder coronavirus colds are often
referred to as ‘seasonal viruses’ as they tend to subside
in warmer months. In other words, meteorological con-
ditions tend to impact the activity of viruses, and this
information can be exploited for the operational man-
agement of hospitals. In this study, we use 3 years of
daily data from one of the biggest hospitals in Switzer-
land and focus on modelling the extremes of hospital
visits from patients showing flu-like symptoms and the
number of positive flu cases. We propose employing a
discrete generalized Pareto distribution for the number
of positive and negative cases. Our modelling frame-
work allows for the parameters of these distributions to
be linked to covariate effects, and for outlying observa-
tions to be dealt with via a robust estimation approach.
Because meteorological conditions may vary over time,
we use meteorological and not calendar variations to
explain hospital charge extremes, and our empirical
findings highlight their significance. We propose a mea-
sure of hospital congestion and a related tool to estimate
the resulting CaRe (Charge-at-Risk-estimation) under
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different meteorological conditions. The relevant
numerical computations can be easily carried out using
the freely available GJRM R package. The empiri-
cal effectiveness of the proposed method is assessed
through a simulation study.

K E Y W O R D S

distributional regression, extreme values, flu outbreak, outliers

1 INTRODUCTION

As demonstrated by the current health crisis with the new virus SARS-CoV-2 and its COVID-19
disease, which is currently wreaking havoc worldwide, congestion is of paramount concern for
most large size hospitals. At the time of writing, hospitals across the world are experiencing con-
gestion due to the coronavirus pandemic. There is a necessity to assist in hospitals operational
management. Ideally this can be achieved by the understanding of the dynamic nature of the
phenomena, such as the propagation of an infectious disease and the dynamic needs of hospital
management. Once a patient is tested he/she may or may not stay in the hospital, impacting the
hospital resources in terms of bed occupation and staff load. Predicting both the number of visits
to the hospital and potential pandemic considerably helps the operational management of hospi-
tals. On one hand, contrarily to the flu, historical data of hospital visits for COVID-19 are rather
short and their reliability is still questionable. On the other hand, like for the flu, there are rea-
sons to think that the COVID-19 follows a seasonal pattern with many fewer cases in the warm
months. Therefore, we use flu data to address these operational management questions.

In this paper, we concentrate on the ‘number of positive’ and the ‘number of negative’ flu
cases recorded at the Lausanne University Hospital1 (CHUV). The operational motivations in
studying the number of positive cases is that it indicates the hospital congestion. Alerts regarding
potential congestion will help hospitals to increase capacity by different means and avoid public
health hazards related to the shortage of resources. On the other hand the operational reasons
behind analysing the number of negative tests are twofold. First, there is a high cost related to flu
testing (approximately 180 CHF per test at CHUV). Second, there is a risk related to the possible
congestion this extra unnecessary load can cause in the laboratory, which would imply that those
who are truly positive have to wait longer to get their test results and be treated. This was the
case in the beginning of the COVID pandemic, when running the tests was long and therefore
potentially infected individuals would go around and infect others, before knowing they were
positive.

Empirical evidence suggests that the flu virus is more vulnerable in warm weather, hence
making it more common for epidemics to proliferate in fall and winter months in the northern
hemisphere. The role of weather in the spread of flu is not yet fully understood and researchers
have attempted to address this question. Roussel et al. (2016) studied the impact of six cli-
mate variables (related to temperature, humidity and sunshine) on flu spread, whereas Towers
et al. (2013) analysed waves of influenza and climate patterns. Davis et al. (2012) examined the

1https://www.lausanneuniversityhospital.com/home
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hypothesis that cold and/or dry weather enhances human pneumonia and influenza mortality,
whereas Firestone et al. (2012) quantified the association between the hazard of flu infection and
air temperature, humidity, rainfall and wind velocity. It has been generally found that flu trans-
mission is mostly dependent on humidity and temperature (Lowen & Steel, 2014), with cold and
dry weather making flu more active. In this paper, we approach the problem from the point of
view of hospitals facing the risk of congestion and hence the need for assessing the efficiency
of the flu testing process. Specifically, we aim at understanding and quantifying the impact of
weather related variables on the probability of obtaining: a high number of positive flu tested
patients (epidemic), a high number of negative flu tested patients (inefficiency).

We use 3 years (2016/2017, 2017/2018 and 2018/2019) of daily data2 from 1 July 2016 to 21
June 2019 which give us n = 1086 observations on the number of visits and positive cases for flu
at CHUV, one of the largest hospitals in Switzerland, with a capacity of 1000 somatic beds.

Figure 1 shows the number of positive cases for the 3 years considered in this study. Recording
a case of flu is per se an extreme event in the sense that there are generally no flu cases regis-
tered on a ‘normal’ day. This justifies the use of exceedances of positive cases over the threshold
of 1, and then to model these 290 exceedances (above or equal to this threshold) using extreme
value theory. Although flu positive cases are registered roughly between November and May, the
epidemic appears at a different time each year, with patterns that differ across the years. Similar
considerations apply to the negative cases shown in Figure 2, where the chosen threshold is 15,
which gives us 230 exceedances. The choice of threshold corresponds to a certain level of ineffi-
ciency of the flu testing process (each test is expensive and costs 180 CHF). The different patterns
observed across years suggest that the calendar day variable is not a good predictor for use within
the framework of hospital management of flu (positive or negative) cases. This may be in part
due to meteorological variation across years and perhaps also to climate change. As for the latter,
we do not have enough data to test for a long-term effect. Regarding the meteorological aspect,
we propose to build a model for non-identically distributed discrete extremes where covariate
effects can be accounted for. The discrete generalized Pareto distribution (D-GPD) provides a
theoretically justified law for discrete extremes (Hitz et al., 2017), whereas, in the same spirit of
generalized additive models for location, scale and shape (Rigby & Stasinopoulos, 2005), distribu-
tional parameters are made dependent on meteorological effects. The estimation approach needs
to account for outlying observations as elaborated further in the next paragraph.

It is important to stress that testing patients for flu in hospital is a process that requires
human intervention. As such, the recording process on certain days (e.g. 31 December) will be
different as compared to that of other days. This contaminates the underlying distribution of
the data by creating outliers which have to be dealt with. Dealing with outliers does not sim-
ply amount to truncating the distribution or cutting the largest observations. Rather, it consists
in down-weighting the observations that are not compliant with the assumed (here the D-GPD)
distribution, which are not necessarily the largest ones. This is also the case in the extreme val-
ues setting, as confirmed in the paper by Dell’Aquila and Embrechts (2006) who discusses the
seemingly contradiction of using robust methods for extremes. Their Message 1 says that “Ro-
bust methods do not downweight ‘extreme’ observations if they conform to the majority of the
data”. Other papers have considered robust approaches to model extremes, confirming the needs
of such an approach: see, for example, Dupuis and Field (1998), Dupuis and Victoria-Feser (2006),

2The dataset has been provided by the CHUV Institute of Microbiology. The access was acquired by one of our
co-authors (Dr. Jaton-Ogay) who works at the Institute of Microbiology. The anonymized dataset includes all the visits
to the Institute laboratory for the flu test. Then the data were aggregated on a daily basis for our analysis.
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F I G U R E 1 Daily number of flu positive cases tested patients from 1 July 2016 to 21 June 2019. The red line
shows the threshold defining exceedances

0

10

20

30

40

1 Jul 1 Oct 1 Jan 1 Apt
Date

N
um

be
r o

f n
eg

at
iv

e 
te

st
 re

su
lts

Year

2016−2017
2017−2018
2018−2019

CHUV data

F I G U R E 2 Daily number of flu negative tested patients from 1 July 2016 to 21 June 2019. The red line
shows the threshold defining exceedances

Dell’Aquila and Embrechts (2006) and La Vecchia et al. (2012). This is also well exemplified in our
application (see for instance, Figure 7, and related comment). We adapt the methodology intro-
duced by Aeberhard et al. (2021) to the specific context of this paper. Although robust models for
extremes have been developed in the literature, to the best of our knowledge no previous work has
attempted to build extreme value models based on D-GPD, where the distributional parameters
are allowed to be specified as functions of covariates and the presence of outlying observations is
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accounted for by using a theoretically founded robust estimation approach of the type discussed
in this paper.

The newly introduced models are available through the GJRM R package (Marra & Radice,
2021) which greatly simplifies the implementation of our approach, making it as simple as a
canned procedure.

When we apply our proposed approach to the hospital data, we find that our two responses
of interest depend on meteorological conditions. Specifically, our results suggest that the risk of
congestion (extreme positive cases) increases when temperatures go down, and in periods of no
sun and no rain. The risk of testing inefficiently (extreme negative cases) significantly increases
in periods of no sun and no rain. We quantify these results in Section 3.

In Section 2, we describe the proposed robust regression methodology for extremes. Section 3
reports the results of the empirical analysis for the flu hospital data while Section 4 presents the
findings from a simulation study. We conclude in Section 5.

2 ROBUST REGRESSION METHODOLOGY FOR DISCRETE
PEAKS- OVER-THRESHOLD

Extreme value theory is the field of statistics dedicated to the study of events with low occurrence
frequencies and large amplitudes. Such events are rare in relation to the bulk of a population,
which makes them hard to model and difficult to predict. Section 2.1 discusses the concepts of
peaks-over-threshold and Charge-at-Risk-estimation (CaRe), and describes the approach used to
derive the extreme distribution used to analyse the discrete outcomes of this paper. Section 2.2
discusses the robust approach used to estimate D-GPD model whose distributional parameters
are allowed to depend on covariate effects.

2.1 D-GPD and CaRe

One of the classical theories of extremes for a common continuous random variable is based on the
probabilistic limit result for exceedances of high thresholds. The so-called peaks-over-threshold
(POT) consists of a limiting result for the times and sizes of exceedances over some high level.
Letting (Yi)i≥1 be a sequence of independent and identically distributed (iid) random variables in
[0, yF), with common continuous distribution F, we concentrate on the sizes of exceedances over
some high threshold. In other words, the focus is on the right tail of the distribution F. The result
in Balkema and de Haan (1974) allows for the approximation of the conditional distribution of
the exceedances above a high threshold u. If there exist normalizing sequences {an > 0} and {bn}
such that for u → yF ,

a−1
n (Y − u)|Y ≥ u

d
−→ Z (1)

for some Z following a non-degenerate probability distribution on [0, ∞), where
d
−→ denotes weak

convergence, then it is possible to model the limiting distribution of the exceedances Y − u|Y > u
with a generalized Pareto distribution (GPD), that is,

Pr(Y > u + y|Y > u) →
u→yF

G(𝜎,𝜉)(y) =

{
(1 + 𝜉y∕𝜎)−1∕𝜉

+ , 𝜉 ≠ 0,
exp(−y∕𝜎), 𝜉 = 0,

(2)
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where 𝜉 ∈ IR is the shape parameter and 𝜎 > 0 the scale parameter. The case 𝜉 = 0 is interpreted
as the limit. Parameter 𝜉 provides information about the heaviness of the tail of the underlying
distribution F. More formally, condition (1) means that Y belongs to the maximum domain of
attraction of an extreme value distribution with shape parameter 𝜉 and we write Y ∈MDA(𝜉).
Some examples are the Pareto distribution,

F(y) = 1 −
(

𝜅

𝜅 + y

)𝛼

, 𝛼, 𝜅 > 0, x ≥ 0,

for which we take an = 𝜅n1∕𝛼∕𝛼, bn = 𝜅n1∕𝛼 − 𝜅, and is in MDA(1/𝛼) (Fréchet case). The expo-
nential distribution, F(y) = 1 − e−𝜆y, 𝜆 > 0, y ≥ 0, for which we take an = 1∕𝜆, bn = (log n)∕𝜆, and
is in MDA(0) (Gumbel case).

Essentially all commonly encountered continuous distributions are in the maximum domain
of attraction of an extreme value distribution. If the tail of F decays like a power function then F
is in MDA(𝜉) with 𝜉 > 0. Distributions such as Burr, log-gamma, Cauchy, Pareto and Student-t as
well as various mixture models are heavy tailed. The Gumbel class characterized by 𝜉 = 0 contains
light-tailed distributions such as the Gaussian, log-normal, exponential and gamma whose tails
decay roughly exponentially. The so-called Weibull class, defined by 𝜉 < 0, contains distributions
that are bounded above (e.g. uniform and Beta distributions). In other words, for a wide class of
distributions, the distribution of the excesses over a high threshold can be approximated by the
GPD. This result suggests that if we choose u high enough then we can assume that result (2) holds
for some parameters 𝜉 and 𝜎. In practice, such parameters are estimated by fitting a GPD to the
excess amounts over the threshold u, relying on the standard properties of maximum likelihood
estimators for 𝜉 > −0.5.

Now consider a discrete random variable R. The use of the GPD to approximate the distribu-
tion’s tail behaviour can be inappropriate. As pointed out by Hitz et al. (2017), many common
distributions such as the Poisson, geometric and negative binomial are not in any maximum
domain of attraction. Hitz et al. (2017) proposed two methods for modelling the tails of discrete
observations from distributions with infinite support. In this paper, we briefly recall one of them.
Defining the discrete maximum domain of attraction as D-MDA, we write R ∈ D-MDA(𝜉) with
𝜉 ≥ 0 if there exists a continuous random variable Y such that P(R≥ r)= P(Y ≥ r) for r = 0, 1, 2, …
Then, for large integers u, we have P(R−u= r|R≥u)=P(Y −u≥ r|Y ≥u)−P(Y −u≥ r + 1|Y ≥u),
which, from (2), tends to a discrete generalized Pareto distribution (D-GPD) defined by

DG(𝜎,𝜉)(r) = G(𝜎,𝜉)(r) − G(𝜎,𝜉)(r + 1), (3)

for r = 0, 1, 2, … (see Hitz et al. (2017) and references therein). The limiting case where 𝜉 = 0
will be referred as D-GP0 here after. The constraint 𝜉 ≥ 0 comes from the fact that the discrete
random variable R ∈ D-MDA(𝜉) for some 𝜉 ≥ 0 if and only if R ∈ D-MDA(𝜉) and R is long-tailed
(Shimura, 2012).

Taking the point of view of the hospital’s risk management, an important quantity is the quan-
tile of R given that R > u because it quantifies the information about the charge load the hospital
has to be ready for under different scenarios of congestion. In practice, for a fixed threshold u,
given that R> u, and a horizon of h days, the p-quantity, called Charge-at-Risk-estimation (CaRe),
is the value of R that might be exceeded one time in h days. This definition, however, assumes sta-
tionarity and in our case it is better to use the alternative definition of the p%-CaRe as the value
which on any single day is exceeded with probability 1/h. In what follows, we derive such an
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expression for the D-GPD. Let p ∈ (0, 1) be the probability for which we seek a quantile We then
solve for cases where 𝜉 ≠ 0

p =
q∑

r=0

(
1 + 𝜉r

𝜎

)(−1∕𝜉)

−
q∑

r=0

(
1 + 𝜉(1 + r)

𝜎

)(−1∕𝜉)

= 1 +
q∑

r=1

(
1 + 𝜉r

𝜎

)(−1∕𝜉)

−
1+q∑
z=1

(
1 + 𝜉z

𝜎

)(−1∕𝜉)

= 1 −
(

1 +
𝜉(1 + q)

𝜎

)(−1∕𝜉)

,

and the following where 𝜉 = 0

p =
q∑

r=0

{
exp

(−r
𝜎

)}
−

q∑
r=0

[
exp

{
−(r + 1)

𝜎

}]
= 1 − exp

(
−(1 + q)

𝜎

)
.

The p%-CaRe for the discrete D-GPD is

CaRe(p)D−GPD =
⎧⎪⎨⎪⎩
⌈

u + 𝜎

𝜉

{
(1 − p)(−𝜉) − 1

}⌉
− 1, 𝜉 ≠ 0,⌈u − 𝜎 log(1 − p)⌉ − 1, 𝜉 = 0,

(4)

where ⌈ ⌉ denotes the ceiling function (the smallest integer greater than or equal to) and we have
h= 1/(1− p). In a financial (and continuous) context, a related value is the co-called Value-at-Risk
imposed by the Basel committee and used, for instance, to measure the risk of loss on a specific
portfolio of financial assets.

The next section provides details on the robust estimation approach employed to fit extreme
value models based on the D-GPD, where 𝜎 and 𝜉 can be specified as functions of covariate effects.

2.2 Covariate effects and parameter estimation

In the context of POT models for continuous variables through GPD excess size approximations,
techniques that allow for flexible forms of dependence on covariates are very attractive in empir-
ical applications (Davison & Smith, 1990). To this end, Chavez-Demoulin and Davison (2005)
employed the framework of generalized additive models (Hastie & Tibshirani, 1990; Wood, 2017)
to flexibly estimate the shape and scale parameters of an orthogonal reparametrization of the
GPD. Yee and Stephenson (2007) proposed, instead, the use of vector generalized additive mod-
els. These modelling strategies are philosophically consistent with generalized additive models
for location, scale and shape (Rigby & Stasinopoulos, 2005), where, for any continuous or dis-
crete distribution F𝜽, with 𝜽 being a d-dimensional parameter vector with virtually any d > 0,
all distributional parameters are allowed to depend on covariate effects. This type of modelling
has received a great deal of interest since its introduction and some researchers also refer to it as
distributional or multi-parameter regression. The classical and perhaps most commonly known
software implementation of such models is the gamlss R package (Rigby & Stasinopoulos,
2005). Another implementation is available via the gamlss() function from the GJRM R pack-
age (Marra & Radice, 2021) which has been extended to incorporate the models developed in this
paper.



8 RANJBAR et al.

For i = 1, … , n, where n denotes the sample size, let Yi be independently sampled from F𝜽i

(with density or probability function f𝜽i ), where 𝜽i = (𝜃i1, … , 𝜃id) and xi is a vector of covariates of
dimension p (which can include binary, categorical and continuous variables, for instance). The
distributional assumption of Yi is understood to be conditional on all covariates. This is achieved
by assuming for each parameter 𝜃ij, for j = 1, … , d, that

gj
(
𝜃ij
)
= 𝛽j0 + fj1(xij1) + · · · + fjk(xijk) + · · · + fjKj(xijKj), (5)

where the gj are one-to-one transformations or link functions (ensuring that the parameters range
restrictions are met), 𝛽j0 ∈ R are overall intercepts, xijk denotes the kth sub-vector of covariates
pertaining to term j and observation i, and the Kj functions fjk(⋅) represent generic covariate
effects (which can be of any pre-specified parametric form such as linear or quadratic, or can
be non-parametric). Each of these functions are approximated by a linear combination of Jkj

basis functions bkjl(xikj) and regression coefficients 𝛽kjl ∈ R, that is, fjk(xijk) ≈
∑Jkj

l=1𝛽dkjbkjl(xikj).
This (regression spline) approach allows for a vast variety of covariate effects. We refer the
reader to Wood (2017) for all the options available and that are supported by our imple-
mentation. Note that, in our case study, a forward stepwise procedure based on RAIC found
that linear specifications were sufficient to model the variation in the response variables
of interest.

For D-GDP, we have that 𝜽i = (𝜃i1, 𝜃i2) = (𝜉i, 𝜎i), hence d = 2. The choices of one-to-one trans-
formations have to guarantee that the parameters lie in their admissible definition spaces. For
D-GDP, with probability function given by Equation (3), we employ

g1(𝜉i) = log(𝜉i) and g2(𝜎i) = log (𝜎i) .

The above choice ensures 𝜉i > 0, which is more restrictive than the constraint 𝜉i ≥ 0 stated in Hitz
et al. (2017) for the D-GPD. The cases where 𝜉 = 0 will result in an estimated value for 𝜉 very close
to zero, when fitted with the D-GPD. The data analyst will then have the choice of reverting to the
fit of the limiting D-GDP0 distribution. We illustrate this way of proceeding in our application.

Let 𝜹 be the vector of the model’s parameters to be estimated. This includes the coefficients
associated with (5). Model fitting is performed by maximizing the log-likelihood function 𝓁(𝜹) =∑n

i=1𝓁(𝜹)i =
∑n

i=1 log f (yi|𝜽i). Note that, although not required for our case study, our implemen-
tation supports the presence of non-parametric components. In this case, the objective function
is augmented by a penalty term usually defined as 1∕2𝜹′S𝜹, where S is a matrix that depends on
the choice of basis functions for the non-parametric terms, and on a set of smoothing parameters
that controls the trade-off between fit and smoothness.

If outlying observations occur in the data, classical model fitting will suffer from a lack of
robustness, which will adversely affect parameter estimates. To deal with this, we adopt Aeber-
hard et al. (2021) methodology which essentially consists of reducing the likelihood contributions
of low log-likelihood values while leaving large log-likelihood evaluations essentially unchanged.
This is achieved through a function 𝜌c applied to the log-likelihood components, so that the
objective function becomes �̃�(𝜹) =

∑n
i=1𝜌c(𝓁(𝜹)i) − b𝜌(𝜹), where

b𝜌(𝜹) =
n∑

i=1
b𝜌(𝜹)i =

n∑
i=1

∫ 𝜌⋆c (log f (y|𝜹)) dy



RANJBAR et al. 9

is a correction factor ensuring Fisher consistency, and 𝜌⋆c is directly derived from the specified
𝜌c through 𝜌⋆c (z) = ∫ z

−∞ exp(s)𝜌′c(s)ds with 𝜌′c(s) = 𝜕𝜌c(s)∕𝜕s. For brevity, we use integrals in the
preceding lines, but those are sums when y is discrete.

The tuning constant c > 0 in 𝜌c regulates the trade-off between loss of estimation efficiency
(should the data exactly come from the assumed model) and the magnitude of the maximum esti-
mation bias (should the data not come from the postulated model). For any given c, 𝜌c is assumed
to be convex, monotonically increasing and twice continuously differentiable over R, and to have
bounded first derivative 𝜌′c within [0, 1]. The latter can be interpreted as a multiplicative robust-
ness weight, as one would add when weighting the estimating equations in robust M-estimation.
An advantage of the approach is that it leads to a natural definition of robust information criteria.

Regarding the choice of 𝜌c, Aeberhard et al. (2021) recommend using the log-logistic func-
tion first proposed by Eguchi and Kano (2001): 𝜌c(z) = log 1+exp(z+c)

1+exp(c)
, for c > 0, with corresponding

𝜌⋆c (z) = exp(z) − exp(c) log(1 + exp(z + c)) and first derivative 𝜌′c(z) = exp(z + c)∕(1 + exp(z + c)).
It holds that limc→∞ 𝜌c(z) = z so that an increasingly large c value leads to the (non-robust) origi-
nal𝓁(𝜹). The value of c is tuned via a simulation based procedure that controls how the robustness
weights at the score level (represented by 𝜌′c) behave under data generated from the assumed
model. The proportion of down-weighting can be thought of as a proxy for efficiency. The user
can decide the level of down-weighting to be achieved with respect to maximum likelihood and
subsequently find the value of c that meets this target. The exact error-and-trial simulation pro-
cedure is fully described in Steps 1.-4. in section 3.5 of Aeberhard et al. (2021). In our simulation
and real data analyses we have targeted 95%, because this is the gold standard in the robust statis-
tics literature. A sensitivity analysis (not shown) has confirmed that results are stable across a
reasonable range of efficiencies.

Aeberhard et al. (2021) established the Fisher consistency of �̂� as well as its asymptotic Gaus-
sian distribution and asymptotic variance–covariance matrix which can be used to construct
confidence intervals. The authors also discussed a Bayesian inferential result. This is advan-
tageous because such a result does not rely on asymptotic considerations, and intervals for
non-linear functions of the model’s parameters (e.g. CaRe) can be reliably and efficiently obtained
via posterior simulation. The adopted estimation framework allows for the elegant construction
of robust information criteria such as the robust AIC, that is,

RAIC(𝝀) = −2�̃�(𝜹) + 2edf, (6)

where edf denotes the effective degrees of freedom which provided by the trace of a matrix that
depends on components of the asymptotic variance–covariance matrix of �̂� (Aeberhard et al.,
2021).

In order to estimate the model’s coefficients, we have extended the efficient and stable trust
region algorithm proposed by Marra and Radice (2020) to our context. One of the many advan-
tages of such an algorithm is that it does not require the orthogonality of the distributional
parameters (in this case, 𝜉 and 𝜎). The implementation of the trust region approach required the
analytical score and Hessian of the model’s log-likelihood which were derived and are reported
in Supplementary Section A.

While the construction and estimation of the proposed model rely on the infrastructure and
modelling framework ofGJRM, extending the software to accommodate the developments needed
to address the challenges of our case study required a great deal of work. Supplementary Section
B provides details on the usage of function gamlss() from the GJRM R package.
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3 MODELLING FLU EXTREMES

Flu is contagious and it can spread by airborne respiratory droplets, saliva or skin-to-skin contact
and by touching a contaminated surface. In Switzerland, a sentinel surveillance system and a
mandatory reporting system are used to register flu data. Flu monitoring in hospitalized patients
has also been in a testing phase since 2018. From a health care managerial point of view, the
number of negative cases among tested patients showing flu-like symptoms is as important as the
number of positive cases.

As shown in Figures 1 and 2, the annual calendar variable does not seem to provide important
insights into managing and/or preventing congestion due to a flu epidemic. Based on the literature
on flu transmission (see, for instance, Roussel et al., 2016), we use meteorological variables for
modelling the extremes of positive flu cases and negative cases (visiting the hospital for a flu
check). The meteorological variables are represented by L3Xt = Xt−3, where L is the usual lag
operator and Xt can be each of the variables in Table 1 at day t. For each meteorological factor,
we consider the respective L3Xt value, because, for flu, the incubation time is usually between 24
and 48 h, and sometimes 72 h. When discussing the models used for the analyses, extension L3
at the end of each covariate’s name refers to L3Xt values.

As for the flu data, the meteorological variables were measured in Lausanne (Switzerland)
from 1 July 2016 to 21 June 2019 and are available at https://gate.meteoswiss.ch/idaweb/. Figure 3
shows a correlation plot between the meteorological variables, highlighting, as expected, that
humidity and radiation are highly and negatively correlated, whereas radiation and minimum
temperature are positively correlated. Recall that the aim is to quantify the effect of meteorological
factors on the extremes of positive and negative cases. For these discrete responses, we specify two
different models (estimated using the approach described in Section 2.2) based on the D-GPD.
The models’ robustness tuning constants c were set to 6.1 and 6.7, respectively, to achieve a level
of down-weighting of 95% (see the description of the procedure in Section 2.2).

Forward variable stepwise selection based on the RAIC defined in Equation (6) was performed
for the two models. We first added the covariates sequentially to model 𝜎 while keeping 𝜉 con-
stant and then proceeded similarly with the covariates selection to model 𝜉. In both processes, the
considered covariate was added if it decreased the RAIC. We checked for linear and non-linear
covariate effects. As already mentioned in Section 2.2, linear specifications were found to be ade-
quate for the modelling purposes of our dataset. For the two responses, a constant model was
selected for the shape parameter 𝜉 with estimated value close to 0 meaning an underlying light
tail that in fact many common discrete distributions, including geometric, Poisson and negative
binomial distributions have (Hitz et al., 2017). Since for both responses, the estimated value for

T A B L E 1 Potential meteorological covariates

Name Definition Unit

Mintemp Daily minimum temperature at 2 m above ground level ◦C

Radiation Daily mean radiation W/m2

Humidity Daily mean relative air humidity at 2 m from the ground %

Wind Daily maximum wind (integration 1 s) m∕s

Precipitation Daily sum of precipitation mm

Pressure Daily mean atmospheric pressure with (QNH) hPa

https://gate.meteoswiss.ch/idaweb/
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F I G U R E 3 Correlation between meteorological covariates

T A B L E 2 Estimated coefficients for the final D-GPD0 model fitted to positive cases

log(�̂�) Estimate Std. error Z-Value p-value Signif.

Intercept 2.037 0.138 14.79 0.000 ***

MintempL3 −0.054 0.021 −2.54 0.011 *

RadiationL3 −0.005 0.001 −3.62 0.000 ***

PrecipitationL3 −0.009 0.004 −2.11 0.035 *

Signif. codes: 0 < p-value < 1e−3: ***, p-value < 0.01: **, p-value < 0.05: *.

the shape parameter 𝜉 was very close to zero, we discarded the D-GPD model and instead fitted
the simplest D-GPD0 one. On the one hand, by assuming a D-GPD0, we ignore the uncertainty
about 𝜉. On the other hand, fitting the D-GPD led to dramatically large confidence intervals for 𝜉.

Number of positive cases
The final stage of model selection in this case, indicates that 𝜉 = 0 and the the final fit is a D-GPD0
model based on the following equations and estimates:

log(�̂�) = 𝛽0 + 𝛽1MintempL3 + 𝛽2RadiationL3 + 𝛽3PrecipitationL3.

The estimated coefficients are reported in Table 2 and their effects graphically shown in Figure
S1 in Supplementary Section C.
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T A B L E 3 Estimated coefficients for the final D-GPD0 model fitted to negative cases

log(�̂�) Estimate Std. error Z-value p-Value Signif.

Intercept 2.483 0.151 16.43 0.000 ***

RadiationL3 −0.003 0.001 −2.15 0.031 *

PrecipitationL3 −0.010 0.005 −2.01 0.045 *

Signif. codes: 0 < p-value < 1e−3: ***, p-value < 0.01: **, p-value < 0.05: *.

The equation for the scale parameter 𝜎 explains both the variable’s variance and mean. A
broad interpretation of the results is that the warmer and nicer the weather, the lower the number
of extreme positive cases, variability and mean. Interestingly, radiation seems to better explain the
response than humidity, which is the factor commonly used to explain flu spread (Lowen & Steel,
2014). As highlighted by Figure 3, radiation and precipitation provide complementary proxies of
humidity.

Number of negative test results
The final stage of model selection in this case, indicates that 𝜉 = 0 and the final fit is a D-GPD0
model based on the following equations and estimates:

log(�̂�) = 𝛽0 + 𝛽1RadiationL3 + 𝛽2PrecipitationL3.

The estimated coefficients are reported in Table 3 and their effects shown in Figure S2 in
Supplementary Section C.

As compared to the previous model, minimum temperature does not seem to explain the
variability and mean of the number of negative extremes. This may be due to the fact that cold
weather activates the virus which in turn leads to more positive cases. Both the effects of radiation
and precipitation are less important than those found when modelling positive cases. This may
be explained by the fact that better meteorological conditions (warmer months and sun) simply
decrease the number of test cases. For positive cases, favourable meteorological conditions also
decrease the probability of catching the flu during the autumn/winter time. In other words, the
evidence suggests that radiation and precipitation, which commonly affect the positive and nega-
tive cases, mostly influence the total number of tests that are carried out. During warmer months,
summer or when the weather is good during winter time, individuals tend not to go the hospital.
The analysis suggests that minimum temperatures influence only the spread of flu.

3.1 Hospital congestion

From a risk management point of view, a quantity of high interest is the CaRe defined in
Equation (4). This value constitutes an important risk measures for the hospital. Intervals are also
crucial as they provide information about the estimates’ uncertainty.

For the positive cases, the p%-CaRe corresponds to the regime of congestion. Figures 4–6 show
some p%-CaRe estimated curves and respective intervals obtained via posterior simulation, based
on different values of the meteorological factors. For instance, the bottom panel of Figure 4 shows
the 86%-CaRe, corresponding to a time horizon of 7 days. This point estimate decreases from 18,
for a minimum temperature of −10◦C, to 11, for 0◦C. The bottom left panel of Figure 5 shows that
the 86%-CaRe decreases from 16, in the case of no sun, to 3, when radiation is at its highest value.
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This evidence should, however, be interpreted bearing in mind the widths of the intervals which
are large.

Supplementary Figures S3 and S4 show the CaRe estimated values with their simulated inter-
vals as a function of meteorological predictors, for different time horizons (or probability levels)
for negative cases. These values convey information on the risk of inefficiency in the flu testing
process, revealed by a very high number of negative cases. The risk of inefficiency considerably
decreases both in sunny and rainy periods. The top panel of Figure S4 shows the estimated num-
ber of negative cases which on any single day is exceeded with probability 1/30 in terms of amount
of precipitation. For the 30-day horizon, CaRe goes from 50, in the scenario of no rain, to 30 when
it rains.

3.2 Outlier detection

The hospital flu testing process depends on managerial and/or decision making instances and
may lead to outlying records; our robust methodology is capable of detecting these abnormal
values. Figures 7 and 8 show the robustness weight w = 𝜌′c (see Section 2.2) for each observation.
These are obtained as a by product of the parameter estimation process. The size of the circles
is proportional to (1 − w). These weights can be used to identify outliers: the lower the weight,
the more likely the observation is to be outlying. We identify the points with the smallest weights
(largest circles), accompanied by their date of occurrence, from the figures. The observations with
the smallest weights are not systematically those with large observed values, and, conversely, the
largest observations are not systematically considered outliers.

Dates such as 2 January 2018 (which is right after Christmas) are typically regarded as special
days in the flu recording process. Days in February 2019 such as 24 February 2019 and 26 February
2019 in Figure 7 relate to positive cases and correspond to school holidays. At school, children are
super-spreaders. This is not the case during holidays when children are with their families. This
and the fact that people are less tested during holidays contribute to a significant slow-down of
the flu epidemic.

4 SIMULATION STUDY

To assess the empirical properties of our proposal in finite samples, we designed a simulation
study inspired by our data analysis in Section 3. We will look at the quality of the estimated param-
eters and CaRe obtained using the proposed approach, under the assumed D-GPD model and
under contamination (i.e. in the presence of observations that deviate from the assumed model).

We generated ‘clean’ datasets from the model

log(𝜉) = 𝛼0 and log(𝜎) = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽3x3, (7)

where the covariates distributions were chosen to mimic the behaviour of MintempL3, Radia-
tionL3 andPrecipitationL3 in the application. More precisely, we simulated the covariates
as follows: x1 ∼  (2.3, 14), x2 ∼ Γ(1.55, 0.02) and x3 ∼ lognormal(0.71, 3.12). These were kept
fixed throughout the simulation replicates. The parameters were set to 𝛼0 = −2 (hence 𝜉 = 0.135),
and 𝜷 = (2,−0.05,−0.005,−0.01)T . Contaminated datasets were obtained by randomly setting 5%
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of the response values to the maximum value observed in the sample. This was inspired by the
empirical application.

The sample size was set to n = 250 (hence consistent with our application) and the number
of replications to 500. We fitted models based on the robust and classical maximum likelihood
estimators. For the robust approach, we choose c = 6 to achieve a down-weighting of 0.95, as per
the tuning procedure described in Section 2.2.

Figure 9 shows the centred estimated parameter estimates for model (7). By looking at the
left boxplots of each panel, corresponding to the clean data setting, we see that both boxplots are
centred around zero suggesting unbiased estimation of the model parameters. We also see that for
the clean data setting the variability of the robust estimator’s estimates are slightly larger than the
variability of those obtained using its classical maximum likelihood counterpart; this is expected
because of the loss of efficiency of the robust estimator with respect to maximum likelihood at
the model. The story is different when looking at the right boxplots of each panel, corresponding
to the contaminated data. All in all, the robust estimator performs much better than the classical
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one. For all the components of 𝜷, the robust estimator shows almost no bias. This is not the case
for the classical estimator, which is influenced by the outliers, sometimes heavily, notably for 𝛽0
and 𝛽3. Also note that contamination affects the variability of the classical estimator, which is
larger than that of the robust estimator for all the components of 𝛽. The estimation of 𝛼0 under
contamination seems more difficult. Both estimators show bias, even though that bias is much
smaller for the robust estimator. It is worth recalling that a robust estimator guarantees that the
bias under contamination does not explode, but it does not guarantee that it will vanish. Had we
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mean values. The true population value is identified by a darker bar. The first two columns correspond to the
clean data setting, whereas the last two columns correspond to the contaminated data setting
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increased the amount of contamination or its strength, we would have expected the bias of the
classical estimator to explode, but not that of the robust approach.

Figure 10 reports the estimated CaRe for h = 7 as a function of x1, with x2 and x3 fixed at
their mean values. CaRe is a discrete positive value (with relatively few different values in our
simulation setting) and we depict it using barplots (histograms) for four representative values
across the range of x1: its minimum (first row), its average (second row), its third quartile (third
row) and its maximum (fourth row). In each panel, the true population value is identified by
the dark bar. The comparison of the first two columns confirms that the robust and classical
estimators perform equally well and their estimates either match the population value or are just
off by one unit, or very rarely two. Looking at the results under contamination and comparing the
last two columns of the figure, we observed that the robust estimator performs much better than
the classical one in that it identifies the true population value more often (more than 95% of the
times, except for min(x1) where this is about 65%). In contrast, the classical CaRe estimator shows
large variability and misses the population target quite often. The quality of the CaRe estimates
is not uniform across the range of x1, with lower values of the covariate being more challenging.

We provide in the supplementary material similar figures for all the other combinations of
horizons h and covariates; the conclusions do not change. Moreover, as expected, we observe that
the performance of both estimators worsens as h increases, and that the CaRe seems to be difficult
to estimate at the lower boundary of the range of the covariates, more particularly so for x3.

To sum up, our simulation study demonstrates that our distributional regression approach is
effective in estimating models with D-GPD responses, and that the robust version of the estimator
can successfully cope with contaminated data.

However, in reality we never know a priori if the data are contaminated or not. Therefore, our
results show that to be always on the safe side it is favourable for the practitioner to use the robust
method. For that reason we only used the robust method in the application.

5 CONCLUSION

Seasonal epidemics may lead to hospital congestion. In this paper, we use extreme value theory
to study the occurrence of large numbers of flu cases in a hospital. We developed and imple-
mented in GJRM a robust regression-type methodology that allows for non-identically distributed
discrete extremes and that deals with outlying data. The response variables of interest (the pos-
itive and negative cases) are statistically explained by meteorological variables. Although the
models selected for this case study are based on parametric covariate effects, our software imple-
mentation allows for very general non-parametric functional forms, which would most likely
be required for larger datasets. Even without asymptotic arguments, the case 𝜉 < 0 for the
D-GPD can be used in practice and is implemented in GJRM. Note also that in our software, the
robust regression-type methodology for non-identically distributed continuous extremes, relying
on the GPD model, is also implemented. An example of its use is given in the Supplementary
material.

Taking the point of view of the hospital, which needs to manage admission capacities, we
introduced the notion of charge-at-risk whose estimation, based on meteorological factors, can
serve as a quantitative tool to alert the hospital and allow time to prepare for a possible congestion.
The introduced approach could be applied to several types of seasonal virus data such as those
deriving from the new virus SARS-CoV-2.
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