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We describe how simple machine learning methods successfully predict geometric properties from 
Hilbert series (HS). Regressors predict embedding weights in projective space to ∼1 mean absolute error, 
whilst classifiers predict dimension and Gorenstein index to > 90% accuracy with ∼0.5% standard error. 
Binary random forest classifiers managed to distinguish whether the underlying HS describes a complete 
intersection with high accuracies exceeding 95%. Neural networks (NNs) exhibited success identifying HS 
from a Gorenstein ring to the same order of accuracy, whilst generation of “fake” HS proved trivial 
for NNs to distinguish from those associated to the three-dimensional Fano varieties considered.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction and summary

The Hilbert series (HS) is an important invariant in the study 
of modern geometry. In physics, HS have recently become a pow-
erful tool in high energy theory, appearing, for example, in the 
study of: Bogomol’nyi–Prasad–Sommerfield (BPS) operators of su-
persymmetric gauge theories [1,2]; supersymmetric quantum chro-
modynamics (SQCDs) [3–6] and instanton moduli spaces [7–9]; 
invariants of the standard model [10,11]; polytopes which arise in 
string compactifications [12]; and explicit constructions of effective 
Lagrangians [13–18].

In parallel, a programme to use machine learning (ML) tech-
niques to study mathematical structures has recently been pro-
posed [19–21]. The initial studies were inspired by timely and 
independent works [19,22–25]. In these, the effectiveness of ML re-
gressor and classifier techniques in various branches of mathemat-
ics and mathematical physics has been investigated. Applications 
of ML include: finding bundle cohomology on varieties [24,26,27]; 
distinguishing elliptic fibrations [28] and invariants of Calabi–Yau 
threefolds [29]; the Donaldson algorithm for numerical Calabi–Yau 
metrics [30]; the algebraic structures of groups and rings [31]; 
arithmetic geometry and number theory [32–34]; quiver gauge 
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theories and cluster algebras [35]; patterns in particle masses [36]; 
statistical predictions and model-building in string theory [37–39]; 
and classifying combinatorial properties of finite graphs [40]. Here 
we apply ML techniques to the plethystic programme of using 
Hilbert series to understand structures of quantum field theory. 
The physical motivation for this work has two primary applica-
tions. First, when considering a generic supersymmetric quantum 
field theory the number of BPS operators at each order is given by 
the initial terms in the Hilbert series. Computing these operator 
frequencies requires significant computational power, particularly 
for higher order terms (for the multi-trace case the growth is expo-
nential). In this work the goal for the machine learning techniques 
implemented is to return information about the full series’ closed 
form, which can then directly provide the higher order informa-
tion, hence bypassing the need for order-by-order computation. 
Second, from a string perspective the geometry of the moduli 
space has an array of physical applications and if these techniques 
can return the underlying variety’s geometric properties directly 
the vacuum can be analysed without need for complete informa-
tion about the theory.

We examined databases of HS arising in geometry – see [41,42]
and the Graded Ring Database (GRDB) [43] – and “fake” HS gen-
erated to imitate the “real” geometric HS. Simple ML methods 
were able to successfully predict several geometric quantities as-
sociated to the HS, and were able to accurately distinguish real 
from fake HS.

Depending on the form of the HS, simple regression neural 
networks (NNs) managed to learn the embedding weights in pro-
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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jective space to mean absolute error (MAE) ∼1; whilst classifi-
cation NNs predicted the dimension and Gorenstein index with 
both accuracy and Matthews correlation coefficient (MCC) in ex-
cess of 0.9.

Motivated by the question of whether ML can detect when a HS 
comes from a Gorenstein ring, we found that binary classifiers 
identified whether a fake HS had a palindromic numerator to accu-
racy and MCC greater than 0.9. Binary classifiers were easily able 
to distinguish the fake generated data from the dataset of HS asso-
ciated to three-dimensional Fano varieties obtained from [43,44].

A random forest classifier correctly predicted whether the HS 
described a complete intersection (CI): this was achieved with ac-
curacy 0.9 and MCC 0.8 when the numerator (padded with 0’s) of 
the HS was used as input; and with accuracy 0.95 and MCC greater 
than 0.9 when the Taylor series (to order 100) of the HS was used.

Code scripts for these investigations, along with the datasets 
generated and analysed, are available from:

https://github .com /edhirst /HilbertSeriesML .git

2. Hilbert series and physics

The HS is an important quantity that encodes numerical prop-
erties of a projective algebraic variety. It is not a topological invari-
ant in that it depends on the embedding under consideration [45, 
Example 13.4]. We work throughout with varieties defined over C.

Given a complex projective variety X and ample divisor D
there exists a natural embedding in a weighted projective space 
(w.p.s.) PC(p0, . . . , pk). We denote its homogeneous coordinate 
ring by R , i.e. R = C[X0, . . . , Xk]/I where the variables Xi have 
weights pi , and I is the homogeneous ideal generated by the poly-
nomials defining X . We write PC(pq0

0 , . . . , pqs
s ) as shorthand to 

indicate that the weight pi appears qi times. The embedding of X
into the w.p.s. induces a grading on R = ⊕

i≥0 Ri . We refer to [46]
for details.

The HS is the generating function for the dimensions of the 
graded pieces of R:

H(t; X) =
∞∑

i=0

(dimC Ri)t
i

where dimC Ri , the dimension of the i-th graded piece of the 
ring R , can be thought of as the number of independent degree i
polynomials on the variety X . The map i �→ dimC Ri is called 
the Hilbert function.

By the Hilbert–Serre Theorem (see for example [47, Theorem 
11.1]) there exists P ∈Z[t] such that

H(t; X) = P (t)
s∏

i=0
(1 − t pi )qi

. (1)

Let j be the smallest positive multiple such that jD is very ample. 
We call j the Gorenstein index, and can rewrite (1) in the form:

H(t; X) = P̃ (t)

(1 − t j)dim +1
(2)

Here dim is the dimension of X , and P̃ ∈Z[t]. If R is a Gorenstein 
graded ring then the numerator is a palindromic polynomial (by 
Serre duality). Recall that a polynomial

∑d
i=1 aiti is called palin-

dromic if ai = ad−i [48].
For example, consider the complex line M = C (regarded as 

the affine cone over a point) parameterised by a single complex 
variable x. Then the i-th graded piece Ri is generated by the single 
monomial xi . Thus, dimC Ri = 1 for all i ∈ Z≥0 so that the HS 
becomes H(t; C) = (1 − t)−1. In general, we have that H(t; Cn) =
(1 − t)−n .
2

The plethystic programme In supersymmetric gauge theories, when 
the vevs of scalars in different supermultiplets are turned on, the 
(vacuum) moduli spaces are non-trivial algebraic varieties [49–51]
such as hyperkähler cones and (closures of) symplectic leaves. In 
this case HS are a powerful tool to enumerate gauge invariant op-
erators (GIOs) at different orders.

A particularly useful application of HS to theoretical physics is 
the plethystic programme, which reveals more information of the 
moduli spaces. We leave a detailed summary of the key formulae 
to Appendix A.

The multi-graded HS, i.e. the multi-variate series

H(t1, . . . , tk; X) =
∞∑

	i=0

dimC(X	i)t
i1
1 . . . tik

k

obtained by considering multi-graded rings with pieces X	i for 	i =
(i1, . . . , ik), could fully determine how the GIOs transform under 
symmetry groups of gauge theories.

Duality and moduli spaces HS have been well-studied in the con-
text of quiver gauge theories. For Higgs branches in low dimen-
sions, HS obtained from the Molien–Weyl integral enable us to 
systematically study the geometry of SQCDs [3]. Such methods can 
also be used to study the instanton moduli spaces [7,8,52]. As the 
spaces of dressed monopole operators, i.e. the Coulomb branches, 
receive quantum corrections, monopole formula [53] and Hall–
Littlewood formula [54] are used to obtain the HS. This not only 
unveils the geometry of moduli spaces, but also provides tools and 
evidences to study three-dimensional mirror symmetry and duality 
including theories in higher dimensions.

Standard model Phenomenologically, HS have been applied to lep-
ton and quark flavour invariants for the Standard Model in [10] as 
well as to the minimal supersymmetric Standard Model in [55,56].

3. Machine learning

In this section we describe our approaches to ML properties 
of the rational representations (1) and (2) by feeding in coeffi-
cients of the corresponding HS. Keras with the TensorFlow
backend [57] was used for the investigations. In §3.1, “real” HS 
associated to certain three-dimensional Fano varieties are intro-
duced and analysed. In §3.2, “fake” HS, i.e. rational functions of 
the form (1) and (2), were generated and properties of them were 
machine-learnt. In §3.3 and §3.4, binary classifiers were used to 
determine whether fake HS of the form (2) had palindromic nu-
merator, and to determine fake HS from real HS, all with great 
success. Finally, in §3.5 we use ML to determine if a HS is associ-
ated to a complete intersection.

3.1. Acquiring HS

Example HS associated to algebraic varieties were retrieved 
from the GRDB [43,44]. We use a database of candidate HS conjec-
turally associated to three-dimensional Q-Fano varieties with Fano 
index one, as constructed in [41,42]. Such varieties come with a 
natural choice of ample divisor D = −K , the anti-canonical divi-
sor. We call these HS “real”. See Appendix B for the distributions 
of the parameters d, {ai}, s, {p�}, {q�} for this set of data. Here we 
are using notation as in (1), and write P (t) = 1 + ∑d

i=1 aiti for the 
numerator polynomial.

Example 1. Consider the three-dimensional Q-Fano variety X ⊂
P (13,22, 32) (number 11122 in the GRDB). This is of codimen-
sion 3, with B = { 1 (1, 1, 1), 2 × 1 (1, 1, 2)} isolated orbifold points, 
2 3
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and hence has Gorenstein index j = 6. Writing the HS in the 
form (1) gives:

H(t; X) = P (t)

(1 − t)3(1 − t2)2(1 − t3)2

where P (t) = 1 − 2t4 − 2t5+2t7 + 2t8 − t12.

Rewriting this in the form (2) gives:

H(t; X) = P̃ (t)

(1 − t6)4

where P̃ (t) = 1+3t + 8t2 + . . . + 8t21 + 3t22 + t23.

For the HS of this dataset, there are two competing phenomena 
that contribute to its coefficients: the initial part P ini that coincides 
with the HS in small degrees and the “correction terms” Porb(Q )

for each isolated orbifold point Q = 1
r (b1, . . . , bdim) of X . More 

precisely, we have [58]

H(t; X) = P ini +
∑
Q ∈B

Porb(Q )

where the sum is taken over the set B of isolated orbifold points 
of X . P ini and Porb(Q ) (Q = 1

r (b1, . . . , bdim)) satisfy

P ini = A(t)

(1 − t)dim +1
, Porb(Q ) = B Q (t)

(1 − t)dim(1 − tr)

where A(t), B Q (t) are integral palindromic polynomials with de-
grees related via deg B Q (t) − deg A(t) = r − 1. The coefficients 
(called plurigenera) of the HS of H coincide with P ini in de-
grees ≤ �deg A(t)/2
, whilst in higher degrees the orbifold points 
start to contribute to the plurigenera. Because of this phenomenon, 
extra care must be taken when computing parameters for the rep-
resentations (1) and (2) from a finite set of coefficients of the HS. 
Our investigations show that ML can cope with this behaviour.

3.2. Generating and ML fake HS

The “fake” HS generated take the forms (1) and (2), with nu-
merators of the form 1 + ∑d

i=1 aiti . The numerator P̃ (t) of (2)
is required to be palindromic (and, as a consequence, ad = 1). 
Coefficient sets consisting of the parameters d, {ai}, s, {p�}, {q�}, 
where 1 ≤ i ≤ d and 1 ≤ � ≤ s, were randomly generated and the 
Taylor expansions of the resulting fake HS were computed to or-
der ∼1000. If the parameters did not satisfy

∑
� p�q� > d, if there 

were negative coefficients in the resulting Taylor expansion, or if 
they matched a real Hilbert series then the parameters were dis-
carded.

The resulting data were fed into a NN to learn the desired prop-
erties of the fake HS. The input was a vector of Taylor expansion 
coefficients: either a vector of coefficients for low-order terms 0
to 100; or for high-orders terms 1000 to 1009. Although coeffi-
cients of low-order terms are easier to calculate, predictions based 
on those inputs are more error-prone as contributions from orb-
ifold points take effect only for high-order terms (see §3.1).

Fewer coefficients were required when learning from coeffi-
cients deeper in the Taylor expansion; geometric data are more 
readily extracted from larger plurigenera. We found the following 
analogy from toric geometry insightful. When counting the num-
ber of lattice points cm = ∣∣m� ∩Zdim

∣∣ in the m-th dilation of a 
polytope � then, for m � 0, cm ∼ Vol(m�) = mdimVol(�). (This is 
a toric rephrasing of the HS, with � the polytope associated with 
an ample divisor D and cm = h0(mD).)

The first investigation used supervised regressor NNs to learn 
{p�} for fake HS in the form (1). Supervised classifier NNs were 
3

Fig. 1. PCA for HS Taylor expansion coefficients coming from the GRDB, ‘Real’, or 
those randomly generated, ‘Fake’.

trained to predict the Gorenstein index j and the dimension dim of 
fake HS in the form (2). Classifiers were used since the NN outputs 
were single numbers and hence associated well to classifier data 
structures.

We conclude with a comparison of the collected fake HS data 
with the real HS data from the GRDB. We use the unsuper-
vised method of principal component analysis (PCA) to project the 
classes onto the highest variance linear component (see Fig. 1). 
The PCA was performed on the vectors of the first 100 coefficients, 
with prior scalar transformation. The explained variance ratios give 
the normalised eigenvalues for the covariance matrix, sorted into 
a decreasing order. For the fake to real HS comparison the first 
eigenvalue (0.78) was significantly larger than the second (0.16) 
and subsequent 98 eigenvalues (< 0.04). This indicates that one 
principal component is sufficient for description of the data dis-
tribution, and this principal component pays linearly progressively 
more attention to coefficients throughout the input HS vector up 
to the 24th where it then considers equal contributions from the 
remaining coefficients.

The projection shows a separation between the classes, indicat-
ing that there is linear structure in the data. Despite great efforts 
we were unable to break this separation. This raises the following 
question, to which we do not currently know the answer: what 
additional properties do fake HS need to satisfy to better approxi-
mate the GRDB HS data?

HS regressor investigations For this investigation ∼10 000 fake HS 
of the form (1) were uniformly drawn from a sample space given 
by d = 3, s = 3, |ai | ≤ 10, p� ≤ 10. This space was chosen to pro-
vide a sufficiently large range of fake HS whilst ensuring that its 
size was still feasible for ML training. The goal was to predict the 
values {p�} and {q�} of the form (1) from a given (finite) range 
of HS coefficients. This information was encoded into a single vec-
tor where each p� was repeated q� times, and the entries were 
given in increasing order.

A 5-fold cross-validation (in the sense of [59]) was performed 
for a feed-forward regressor NN with 4 hidden dense layers 
of 1024 neurons each, using LeakyReLU activation (with α = 0.01), 
in batches of 32 for 20 epochs over the full dataset. The NN had 
a final dense layer with as many neurons as p� ’s (counting multi-
plicities). Dropout layers between the dense layers reduced the risk 
of overfitting (dropout factor 0.05). The NN was trained with the 
Adam optimiser [60] using a log(cosh) loss function and the train-
ing performance was measured via MAE. log(cosh) is a continuous 
version of MAE used as the loss function such that training per-
formance would be improved for gradient descent near the MAE 
discontinuity, however MAE provides a more interpretable metric 
of learning performance so is used as the metric on the indepen-
dent test data.

Table I summarises the averaged MAE, with standard error, over 
the 5-fold cross validation for two ranges of HS coefficients: the 
first 101 coefficients; and the coefficients of order 1000 to 1009. 
In both cases the MAE is below 2, i.e. the true denominator of the 
form (1) of the underlying HS could be extracted with reasonably 
good accuracy from the HS coefficients alone.
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Table I
Averaged MAE, with standard error, of the 5-fold 
cross-validation of the NN learning the weights p�

(with multiplicity) of the form (1) of the HS from in-
put vectors of HS coefficients to the specified orders.

Orders of Input MAE

0 to 100 1.94 ± 0.11
1000 to 1009 1.04 ± 0.12

Table II
Averaged accuracy and MCC, with standard error, of the 5-fold cross-validation of 
the NN learning the Gorenstein index j, the dimension dim, and the form (2)
with HS coefficients in the specified ranges of degrees as input.

Parameter 
Learnt

Orders 
of Input

Performance Measures

Accuracy MCC

j 0 to 100 0.934 ± 0.008 0.916 ± 0.010
1000 to 1009 0.780 ± 0.018 0.727 ± 0.022

dim 0 to 100 0.995 ± 0.005 0.993 ± 0.006
1000 to 1009 0.865 ± 0.024 0.822 ± 0.031

HS classification investigations In this investigation a 5-fold cross-
validation for a feed-forward classifier NN with the same layer 
structure as before was trained. We again used an Adam optimiser, 
but now with sparse categorical cross entropy loss to reflect the 
classification question. Training performance was measured with 
accuracy and MCC. The final dense layer now had as many neu-
rons as classes in the investigation (5 in both cases), with softmax 
activation, and neurons representing the values the learnt parame-
ters could take.

This time ∼10 000 HS of the form (2) were uniformly drawn 
from a sample space given by d = 5, |ai | ≤ 50, j ≤ 5, dim ≤ 5. The 
goal this time was to train an NN to predict the Gorenstein index j, 
the dimension dim, and the form (2) from the HS coefficients in 
the same orders of degrees.

Note if coefficients in larger degrees were used as input, the 
larger values caused problems with the loss function. This issue 
was mitigated by log-normalising the HS coefficients, i.e. by taking 
the natural logarithm input values were scaled down to ranges the 
loss function and optimiser could handle. However some fake HS 
contained 0 coefficients and were therefore omitted, hence result-
ing in a full dataset of 8711 HS for the training with HS coefficients 
of larger degree. Note also that log-normalisation was only used in 
this case and in no other investigations.

Table II summarises the averaged accuracies and MCCs, with 
standard error, over the 5-fold cross-validation of the NN. These 
results show almost perfect classification of both the Goren-
stein index, j, and the dimension, dim, from HS coefficients in 
low degrees. Interestingly the performance is worse when using 
terms deeper in the HS, presumably due to the required log-
normalisation of the coefficients removing the finer structure of 
the coefficients required to determine the exact parameter value 
being learnt.

3.3. Identifying the Gorenstein property

In this section we investigate the effectiveness of binary classi-
fiers to detect if the numerator of form (2) of an HS is palindromic. 
Recall from Section 2 that the numerator is palindromic if the 
ring R is Gorenstein (by Serre duality). Then the numerator of 
form (1) is palindromic too (possibly up to a sign); see Example 1
for an illustration. The goal was to use a NN to distinguish whether 
a HS is coming from a Gorenstein ring, i.e. the numerator polyno-
mial of form (2) is palindromic. As before the NN’s input were HS 
coefficients from the same ranges of degrees.
4

Table III
Averaged accuracy and MCC, with standard error, of the 5-fold cross-
validation of a NN learning whether the HS has palindromic numerator 
in form (2) from HS coefficients to the specified orders as input.

Orders 
of Input

Performance Measures

Accuracy MCC

0 to 100 0.844 ± 0.087 0.717 ± 0.155
1000 to 1009 0.954 ± 0.043 0.919 ± 0.073

Fig. 2. The PCA for HS Taylor expansion coefficients corresponding to HS defined 
over Gorenstein rings or non-Gorenstein rings.

For the investigation two equally sized sets of fake HS, one 
with and the other without palindromic numerators, were uni-
formly drawn from a sample space given by d = 9, |ai | ≤ 50, j =
5, dim+1 = 6. The same reasons as before apply for this choice of 
space. The HS in each of the two sets were then labelled and to-
gether comprised the full dataset for a 5-fold cross-validation to be 
performed using a feed-forward classifier NN with the same layer 
structure as in the previous investigation. Also the same Adam op-
timiser was used for training, but now with binary cross-entropy
loss to reflect the classification question. Training performance was 
measured with accuracy and MCC. The final dense layer of the NN 
now had 2 neurons corresponding to whether the HS comes from 
a Gorenstein ring or not.

Table III summarises the averaged accuracies and MCCs, with 
standard error, over the 5-fold cross-validation of the NN. The 
results show good success in detecting if a HS comes from a 
Gorenstein ring using HS coefficients alone. The classifier per-
formed better on coefficients in larger degrees indicating that the 
palindromicity property is more readily evident from plurigenera 
deeper in the HS (possibly because of the bigger variation).

In addition, PCA was also applied to the data in this binary 
classification problem, as seen in Fig. 2, with similar behaviour for 
both low and high orders of input. This figure (for the low order 
inputs) highlights a lack of linear structure which the architecture 
could take advantage of. The PCA explained variance ratios for the 
101 low order inputs show equal importance of the first two prin-
cipal components (0.29, 0.27), lower importance for the next three 
components (0.19, 0.11, 0.10), minimal importance of the next four 
components (∼ 0.01), then negligible contribution from the re-
maining 92 (� 10−30). Equivalently for the high order inputs the 
first two components are dominant (0.30,0.26), with the next three 
less important (0.20,0.12,0.10), and the remaining five negligible 
(� 10−10). In both cases the two dominant principal components 
have a mix of contributions from components with no discernible 
pattern across the HS vector of coefficients. The full outputs can be 
observed in this paper’s respective GitHub scripts.
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3.4. Differentiating real and fake HS

This investigation examined the success of a binary classifier in 
distinguishing whether a HS, represented by a finite set of HS co-
efficients, corresponds to a real HS from the GRDB, or a randomly 
generated fake HS. The dataset consisted of HS candidates conjec-
turally associated to 3-dimensional Fano polytopes from the GRDB, 
amounting to ∼29 000 HS, along with as many fake HS with the 
same structure which were randomly generated.

A 5-fold cross-validation for a feed-forward classifier NN with 
the same layer structure as in the previous investigations was 
performed. For training an Adam optimiser with a binary cross-
entropy loss with the same parameters as before was used. Train-
ing performance was measured with accuracy and MCC. The fi-
nal dense layer had 2 neurons corresponding to whether the in-
putted HS coefficients were associated to a real or fake HS.

The ∼29 000 fake HS were generated randomly using form (1)
parameters drawn from probability distributions reflecting the 
real HS data as given in Appendix B. An equal number of real HS 
were taken from the GRDB to produce the full dataset, and as be-
fore HS coefficients to the same order of degrees were used as NN 
inputs.

In this investigation the averaged accuracies and MCCs ex-
ceeded 0.99 for both ranges of degrees of HS coefficients. Fur-
ther analysis of the data showed that coefficients of fake HS were 
orders of magnitudes different to the real case which possibly 
made this classification far easier. Resampling such that the co-
efficients were more comparable, although improving this investi-
gations complexity, would make the fake data less representative 
with respect to the underlying variety’s properties. Hence we chose 
to use the same data throughout all investigations despite this bi-
nary classification becoming more trivial; as corroborated by the 
1d PCA separation in Fig. 1. This also highlights the uniqueness of 
real HS which come with a wealth of further impactful structure, 
e.g. on the parameters of the corresponding forms (1) and (2).

3.5. Detecting complete intersection

An important application of the plethystic logarithm (see Ap-
pendix A for details and references) is that it detects whether the 
underlying variety is a complete intersection (CI), i.e. the defining 
ideal (the ideal of polynomials vanishing on the variety) is gen-
erated by exactly codimension many polynomials. Such optimal 
intersection has been widely used in the physics literature, e.g. in 
string model-building [61,62]. As can be seen from the definition, 
the PE−1 involves the number-theoretic μ-function, making the 
computation non-trivial. A natural question arises as to whether 
a trained classifier can identify whether X is CI, i.e. when PE−1

terminates as a Taylor series, by only “looking” at the shape of 
the HS.

Suppose X = { f1 = 0, . . . , fc = 0} defines a complete inter-
section in Pk

C where each f i is a homogeneous polynomial 
of degree mi in a standard graded polynomial ring Rk+1 =
C[X0, . . . , Xk], such that each variable Xi has degree 1. Then 
the HS of X takes the form(

1 − tm1
)
. . .

(
1 − tmc

)
(1 − t)n

= 1 + a1t + · · · + adtd

(1 − t)n
. (3)

This follows by induction on the f i using the additivity of HS and 
the exact sequences

0 → R[mi ]
k

· f i−→ Rk → Rk+1 → 0

where R[mi ]
k denotes a standard graded polynomial ring with de-

grees shifted by mi so that the first map becomes a morphism 
5

Table IV
Averaged accuracy and MCC, with standard error, of the 10-fold 
cross-validation of the PCA+random forest (resp. of the PCA+NN) 
learning complete intersections in the form (3) with fake HS 
coefficients in the specified ranges of degrees as input.

ML 
algorithm

Orders 
of Input

Performance Measures

Accuracy MCC

PCA+NN 0 to 100 0.762 ± 0.010 0.544 ± 0.030
0 to 300 0.951 ± 0.005 0.902 ± 0.010

PCA+RF 0 to 100 0.806 ± 0.016 0.615 ± 0.031
0 to 300 0.965 ± 0.003 0.930 ± 0.005

of graded rings. Notice X is a projective variety of codimension c
in Pk

C , i.e. has dimension dim = k − c.
This time 10 000 fake HS of the form (3) representing CIs were 

uniformly drawn from a sample space given by c = 1, . . . , 10, mi =
2, . . . , 10 and 1 ≤ n − ∑

i mi ≤ 11. The fake HS representing non-CI 
were generated by drawing fake CI HS f from the sample space 
above and then adding or subtracting a binomial to the numerator 
preventing the result to factor as in (3). More precisely, the fake 
non-CI HS were computed by

f + (−1)ε · tk0 + (−1)c · td−k0

(1 − t)n

where ε = 0, 1 and k0 = 1, . . . , d − 1 was randomly chosen. This 
procedure ensured that learning is non-trivial, because the result-
ing fake non-CI HS have a similar shape to the form (3), but 
do not correspond to fake HS of CI. The full dataset was com-
prised by 10 000 fake CI HS and 10 000 fake non-CI HS, i.e. a total 
of 20 000 samples.

We use quotients of successive coefficients in the Taylor expan-
sion of the fake HS as input to see if the machine could identify 
complete intersections, i.e. we use

{hi/hi+1 | i = 0, . . . ,n}
where hi denotes the i-th coefficient in the Taylor expansion of 
the fake HS and n is the number of coefficients used. We use PCA 
to reduce the dimension followed by a random forest classifier or 
a NN. Table IV summarises the averaged accuracies and MCCs, with 
standard error, over 10-fold cross-validations (training performed 
on the 10% chunks).

If we truncate the Taylor series at order 100 and train on 10%
of the data, the accuracy is ∼0.80 with MCC ∼0.61. However, in-
cluding higher and higher orders of coefficients results into more 
and more improved results (where the increase in improvement 
stagnates for sufficiently high orders). For example, if we use 
Taylor expansions to order 300 and train on 10% of the data, 
the PCA+random forest model could give over 0.95 accuracy and 
over 0.9 MCC. More precisely, a 10-fold cross validation (with 
training performed on the 10% chunks) would give 0.965(±0.002)

accuracy (with 95% confidence interval). We can reproduce these 
results by using PCA and a feed-forward NN with 4 hidden dense 
layers of 32 neurons each, dropout layers between the dense layers 
(dropout factor 0.05), LeakyReLU activation (with α = 0.01), binary 
cross-entropy loss function and Adam optimiser. A 10-fold cross 
validation with the same input (training performed on the 10%
chunks) yields 0.951(±0.004) accuracy (with 95% confidence in-
terval).

PCA shows a clear separation of CIs and non-CIs (see Fig. 3). 
The explained variance ratios show one dominant component with 
eigenvalue 0.98, where this component has roughly equal contribu-
tions from all the series coefficients. This raises the question if this 
implies that PCA can efficiently separate CI from non-CI (real) HS 
or if this is an artefact of our data generation. With 20000 sam-
ples of CIs and real non-CIs, we find that a random forest could 
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Fig. 3. PCA for complete and non-complete intersections (with successive quotients 
of Taylor coefficients).

give ∼ 0.8 accuracy and ∼ 0.6 MCC for a 10-fold cross validation. 
Although this is a decent result, it would be natural to investigate 
in future whether there could be better techniques/algorithms to 
improve such performance. Further study is also necessary to con-
firm that PCA is an effective discriminator between CI and non-CI 
in this case.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Acknowledgements

JB is supported by a CSC scholarship. YHH would like to thank 
STFC for grant ST/J00037X/1. EH would like to thank STFC for a PhD 
studentship. JH is supported by a Nottingham Research Fellowship. 
AK is supported by EPSRC Fellowship EP/N022513/1. SM is funded 
by a City School of Mathematics, Computer Science, and Engineer-
ing Doctoral Studentship. This collaboration was made possible by 
a Focused Research Workshop grant from the Heilbronn Institute 
for Mathematical Research.

Appendix A. The plethystic programme

For a function f (t) =
∞∑

n=0
antn , we can define the plethystic expo-

nential (sometimes known as the Euler transform) as

PE[ f (t)] := exp

( ∞∑
n=1

f (tn) − f (0)

n

)
=

∞∏
n=1

(1 − tn)−an .

For instance, the mesonic BPS operators fall into two cate-
gories: single- and multi-trace. Then the HS is the generating 
function for counting the basic single-trace invariants. Moreover, 
the HS of the N-th symmetric product is given by gN (t; M) =
f (t; symN (X)), symN (X) := MN/SN , where the “grand-canonical” 
partition function is given by the fugacity-inserted plethystic ex-

ponential of the Hilbert series: PEν[ f (t)] :=
∞∏

n=0
(1 − ν tn)−an =

∞∑
N=0

gN(t)νN . In gauge theory, this is considered to be at finite N

and the expansion gN (t) =
∞∑

n=0
bntn gives the number bn of opera-

tors of charge n.
There is also an analytic inverse function to PE, which is 

the plethystic logarithm, given by
6

Fig. 4. Histogram of distribution of real HS numerator degrees d, with Gaussian fit-
ting.

Fig. 5. Histogram of distribution of real HS numerator coefficient values ai , with 
Gaussian fitting.

PE−1[g(t)] =
∞∑

k=1

μ(k)

k
log(g(tk)),

where μ(k) is the Möbius function. The first positive terms in the 
Taylor expansion of PE−1 encodes generators at different degrees, 
and the first negative terms give the relations among them. Higher 
order terms are known as the syzygies. In particular, if X is a 
complete intersection, then PE−1[H(t)] is a polynomial of t (i.e. 
terminates at a finite order).

Appendix B. Real HS parameter distributions

The dataset of real HS associated to 3-dimensional Fano vari-
eties considered in this paper [43] that was analysed to produce 
distributions of the HS function form parameters d, {ai}, s, {p�}, {q�}
as shown in Figs. 4-8. These distributions, and their respective fit-
tings were used to make fake HS generation more representative 
of the real HS data.

Fittings used sums of Gaussian distributions, reflecting a Cen-
tral Limit Theorem motivation in analysis of this large dataset 
of ∼54 000 HS. In all cases the sum of 2 independent Gaussian 
distributions sufficed in making a visually accurate fit. Thus, using 
these distribution in fake HS generation would ideally produce HS 
of the same form. Interestingly, the fake HS still had quite differ-
ent coefficient growth rates to the real HS, stabilising deeper in the 
series. This phenomena is further discussed in §3.4.
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Fig. 6. Histogram of distribution of real HS number of denominator factors s, with 
Gaussian fitting.

Fig. 7. Histogram of distribution of real HS denominator internal powers (i.e. de-
nominator weights) p� , with Gaussian fitting.

Fig. 8. Histogram of distribution of real HS denominator external powers (i.e. num-
ber of repetitions of each denominator weight) q� , with Gaussian fitting.
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