

City, University of London Institutional Repository

Citation: Altamimi, F., Asift, W. & Rajarajan, M. (2020). DADS: Decentralized (Mobile)

Applications Deployment System Using Blockchain. Paper presented at the 2020
International Conference on Computer, Information and Telecommunication Systems
(CITS), 5-7 Oct 2020, Hangzhou, China. doi: 10.1109/CITS49457.2020.9232506

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/27850/

Link to published version: https://doi.org/10.1109/CITS49457.2020.9232506

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

DADS: Decentralized (Mobile) Applications
Deployment System Using Blockchain

*Secured Decentralized Applications Store

Faiez Altamimi ∗, Waqar Asif† and Muttukrishnan Rajarajan∗
∗Dept. of Electrical and Electronic Engineering, City University of London, UK.

{Faiez.Altamimi | r.muttukrishnan }@city.ac.uk
†Dept. of Computing and Engineering, University of West London, UK.

waqar.asif@uwl.ac.uk

Abstract—This paper proposes a comprehensive framework us-
ing blockchain architecture to create a decentralized applications
store, in order to reduce the approval time for apps that are to
be deployed on deployment systems i.e. applications stores, and
specially for mobile platforms e.g. Apple and Google play stores.
This work potentially can solve some of the existing challenges
with the current centralized application approval process by
Apple and Google. These companies currently charge a flat
commission rate of 30% [1] of the total applications revenues
from the applications owners. This commission is considered to
be very high, especially for applications with revenues in the
order of few million dollars. In addition, the length of the review
period prior to deployment for any new or revised apps delays
the release to the marketplace hence costing economic losses to
the app owners. Currently, Apple and Google stores takes around
two days and two hours respectively to review and approve the
apps on their stores. However, by using decentralized technologies
such as the blockchain, the time to review and publish a new or
a revised app can be significantly reduced from few days to few
minutes.

In this paper a novel framework is proposed based on the
blockchain architecture incorporating the Ethereum network,
Interplanetary Files System (IPFS), VueJS, and a backend
database. The framework is experimentally validated, and the
results show the reduction in terms of the number of minutes to
approve apps by the app stores.

Index Terms—Smart Contracts, Blockchain, IPFS, Secured
and Decentralized Applications, Ethereum Ropsten and Rinkeby
testnets, Vuejs, web3js, and Graphql

I. INTRODUCTION

The number of smartphone users has increased significantly
in the past couple of years. These figures have increased from
2.5 billion to approximately 3.5 billion from 2016 to 2020.
This translates as an estimated 45% of world’s population
having smart phone devices. This increase in device sale is
attributed to the proliferation of applications and the way in
which the underline operating systems are built. Currently, the
smart phone market realises two main operating systems (OS)
namely Android and iOS. Despite the fact that both of them
are built in complete isolation from one another, the underline
phenomenon behind both these OS remains the same. Both
of them rely heavily on providing the users the flexibility of

Identify applicable funding agency here. If none, delete this.

installing applications on their devices. This as a result makes
the app development community a big asset for both the OSs.

On one side, where app development is a key asset when
defining the success of an OS, allowing third party applications
can also pose security and privacy risk, both for the device user
and the OS developer. In order to maintain control over the
allowable third party applications, both OS developers have
formulated a set of predefined steps that a developer has to go
through before an app is made available for installation. These
steps are defined using a marketplace interface where Android
uses a Google Play store and iOS uses an Apple App store.
The time and resources used in analysing the functionality
of a third party application is charged by the OS developer
in terms of a subscription fee and a 30% profit share from
the app developer [1]. Alongside this, an app that is being
pushed to the marketplace interface is thoroughly checked for
bugs or flaws. If the reviewer finds a bug, the app is declined
publishing and a feedback is provided for improvement and
re-submission. This process is repeated until and unless the
reviewer is satisfied. This process is also triggered every time
an update or a new version is pushed for the application. This
review process, though key, imposes a delay factor that might
not be necessary every time. The delay factor differs from
one authority to another and depends heavily on the available
capacity of the reviewer. Apple used to take up to four weeks
before an publishing an app and this time could be longer if
the app had to go through multiple review iterations. Since
then, Apple has improved its review process with apps being
approved in just two days [1]. Similarly, Google play store app
can be approved in a few hours. Despite this improvement, the
development community is pushing for a quicker app approval
process with the added feature of reduced payable charges [2]
[3]. At current, the review time and app publishing charges are
lower bounded by the centralised nature of the process, where
all requests are handled in a queue by designated authorities.

Structure of this paper. Section II shows the motivation
and contribution of this work. In sections III and IV, of this
paper includes a run through current knowledge and survey
over relevant works, while explaining what has been added
and improved in this paper. Then in section V, the components

for system are shown and their selections are justified in
each part. After that in section VI, the details of the system
implementations are given and highlighting the key features of
this work. Next, section VII contains the test results and their
comparisions. Last and not least, section VIII will conclude
this work and discuss potential future works.

II. MOTIVATION

In this work, the limitations of the centralised approach are
overcome by the introduction of a distributed solution based
around Ethereum Blockchain architecture. The proposed
solution exploits the well known characteristics of Blockchain
such as, faster transaction time, greater security and effective
cost to automate the verification and validation process in
an application development environment. The Blockchain
architecture is coupled with Inter-planetary File System
(IPFS) architecture to overcome the limitation of handling
large file sizes in a Blockchain. IPFS system is used to
store all files and it allows the exchange between peers [4].
The blockchain uses smart contracts to store files hashes
associated information about an app. As a result, the combined
solutions reduce the burden with a centralised architecture
and improves the app acceptance time.

The contribution and novelty of this paper consist
of the following:

• The proposed solution reduces app approval time and
eliminates the need of a centralised app review process.

• The proposed system reduces the hefty review fees by
automating the process with minimal human intervention.

• The use of a Blockchain architecture allows the possibil-
ity of having a distributed ledger maintaining developers
information across all OS platforms and thus introducing
the prospect of developers ranking and ratings.

• The system allows developers and reviewers to keep a
track of who developed an app and who is sending an
update, thus ensuring data authenticity and provenance.

III. BACKGROUND

The two major decentralized platforms used in this work are
IPFS, and Ethereum blockchain using smart contracts. Inter-
planetary File System is built on Linked-Data and Ontologies
science focusing on identifying files based on the content
rather than the location. The ability to have a performant
link between data is achieved by using Direct Acyclic Graphs
(DAGs), or more specifically Merkle-DAGs. This approach is
different than the Unified Resource Identifiers (URI), which is
incorporated by HTTP web protocols. The difference is that
URIs identify a resource based on its location, while Merkle-
DAGs identify a resource based on its content. The Merkle-
DAGS create unique hashes according to the files’ contents,
and those hashes are translated back using the Content Identi-
fiers (CIDs) on nodes. CIDs are used by some Big repository-
based systems e.g. Git system, that optimized the efficacy of
CIDs. After that, decentralization is then enabled on IPFS
environment by using Distributed Hash Tables (DHTs), to act

as a distributed mapper on nodes, which leads to a peer-to-peer
(P2P) files distribution. This distribution mechanism is poten-
tially on par with the current centralized web mechanisms i.e.
URIs used in web protocols, that is considered to be cumber-
some with the advancement demands from users. IPFS is one
of the proposed solutions to this looming issue. The history of
blockchain goes way back before the name blockchain itself
becomes the official name for this technology; All the efforts
precedent to 2002, were focused on how to achieve fully
distributed ledgers technologies (DLTs). After various attempts
on making several DLTs, many different classifications were
created. One of those specialized classifications laid down the
ground for blockchain [5]. Thence, blockchain is an improved
categorized form of DLTs, where it focuses more on creating
decentralized trust and a linked timestamp between blocks to
preserve data provenance. Moreover, a second generation of
blockchains raised with the advent of smart contracts, which
was initiated on Ethereum blockchain.

Ethereum is currently using Proof-of-Work (PoW) consen-
sus mechanism, and having other consensus mechanisms in
the testnets. In this work, we tested on two testnets. The
first one is Ropsten testnet, which is the most used testnet
simulating the mainnet, with PoW. And, the second testnet is
Rinkeby testnet, with the Proof of Authority. There are many
other consensus mechanisms such as Proof of Stake (PoS),
which is based on staking rather than using resources for
computational power. The blockchain from Facebook i.e. Libra
is based on Proof of Stake, and Ethereum is also upgrading
to PoS to enhance the system performance and scalability.
Secondly, there is Delegated Proof of Stake (DPoS), and its
main purpose is to keep Proof of Stake more decentralized
as Proof of Work by delegating votes, and Delegated Proof
of Stake is considered to be an intermediate solution between
Proof of Work and Proof of Stake that contains best of those
two consensus mechanisms. Last and not least, there is the
Zero Knowledge Proof (ZKP), the most promising consensus
mechanism, that aims to provide a mean for light weight
devices to be able to participate in a blockchain network
consent process by implementing a method of verification
without the need for the actual knowledge of data. Hence,
named Zero Knowledge Proof (ZKP). It is worth mentioning
that the Ethereum community has acknowledged ZKP, and
applied an implementation for it on Ethereum, by using a plug-
in called Zokrates for Ethereum smart contracts. Recently,
this enables a room for future work to enhance our system
by implementing the Zokrates component. Smart Contracts
are simply a distributed code between participants, and it is
following blockchain consensus mechanisms to verify data and
interactions in separated nodes. The decentralization benefits
of blockchain and its characterizations of Smart Contracts
opened a new field to solve many problems.

IV. RELATED WORKS

In the last few years and especially after the big escalation of
Bitcoin, a lot of research were conducted on decentralization
security and blockchain to synthesize new capabilities, and to

Fig. 1: System Design Overview

enhance the available structures. Some of those latest novice
works contributed in founding and forming good progression
for more opportunities. In the following, we will examine some
of those key researches, their laid groundwork, their results
and contributions.

In the first place, the authors in [6] provided a decentral-
ized system, to handle packages management systems. Our
proposed work system design corresponds a little to their
system design, since development packages are close to soft-
ware applications; Applications are divided between phases
i.e. application development phase that includes development
packages as in [6], and application deployment phase as a
closed bundle. Which means that any software can mainly
be divided into two sections. The programming section during
development, and the production section. Thus in [6] the work
is proposing to manage packages, during the development
phase. While, the second phase, the deployment for production
phase is used as our primary focus in this proposed work.
Additionally, the system design in our proposed work is
more complicated than the system design in [6]. Our smart
contract is more programmatically advanced, has a deeper
data structure, and miscellaneous sophisticated components are
integrated in the system to enhance the structure.

Since blockchain storage is a major issue for many sys-
tems, many previous works used IPFS as a complementary
component along with blockchain in their design [7], [8], and
[9]. In [7], the author has used IPFS to store the transactions
of the blockchain as images in order to reduce the storage
size of those transactions on blockchain. The authors focused
on reducing the storage size on the blockchain. However, this
work is addressing the challenge of storing large files as the

blockchain does not provide this capability. In [8], the authors
are focused on integrating Internet of Things (IoT) with IPFS
to apply a decentralized storage to address the lack of storage
space in IoT. However, they focused on the issues in the
storage only by using IPFS, while the performance was not
addressed by using a technology like blockchain. In [9], the
authors are using blockchain and IPFS to manage education
documents such as certificates in a secure manner. However,
the data saved on the blockchain are basically the files’
hashes, which are very simple data. In the proposed system,
a more complex data structure is saved on the smart contract
to handle applications version, with address-based roles and
access control providing additional security measures against
unauthorized access. In addition to providing the functionality
to create data, view data, upgrade, and delete data, a proper
check is in place to allow only the authorized users for
those actions. The authorities on the network with the right
credentials, can approve or deny the transactions on Ethereum
network, and in this work adding as well as modifying apps
data to the smart contract during the approval process. This
gives the end-user the necessary security at a lower cost, and
also a quicker time for developers to release any new apps.
Last and not least, in the mean time the idea of distributed
and decntralized application store is unprecedented in other
works.

V. SYSTEM DESIGN

This section will explain the detailed architecture and the
associated technologies that are used in the proposed work.

Figure 1 shows the overall system that is proposed in this
work. It consists of:

• Front end application
• Blockchain
• Storage
• Back end database
It is notable that the most complex sub-systems with several

components, while interacting together with other components,
are present in the first two sections.

A. FrontEnd Application

As shown in Figure 1, the VueJS framework programming
language was chosen for the frontend development against
ReactJS due to its simple implementation. In addition, the
Truffle framework was adopted due to its compatibility with
the Ethereum environment. In order to manage the applica-
tion’s state and to keep all the data in VueJS synced, the
Drizzle plugin was added as shown in the diagram. We have
used IPFS-JS client library to communicate with IPFS by
its protocol. To connect to the backend database server, the
Apollo client library is used. The backend is based on Graphql
interface and Apollo client library is designed to interact with
Graphql APIs Additionally, a wallet has to be used when
working with blockchain platforms to envelop the accounts,
and their private/public keys. The default choice for this setup
was the MetaMask wallet to interact with Truffle framework,
VueJS framework, and blockchain.

B. Blockchain (Ethereum Platform)

The blockchain is the first major part to acheive a very
fast secured system for applications approval. Ethereum was
chosen as the blockchain platform for this work. The most
significant reason of this selection is that Ethereum has
blockchain developers on its network equal to at least four
times any other blockchain network [10]. Thus, the majority
of smart contracts are built on Ethereum using the Solidity
programming language, which is now the most used language
for blockchain. In addition, Ethereum is the most matured
blockchain platform for smart contracts and is supported by
miscellaneous communities.

C. IPFS (Decentralized Storage Platform)

One of the major shortfalls of blockchain is storing large
amounts of data on its network. Therefore, a separate storage
platform is required and preferably decentralized to keep the
intrinsic objective of this work. Hence, the reason in choosing
the IPFS, which is the second major part in the system, for
this project as shown in Figure 1. The interoperability between
IPFS and blockchain will be based on storing the files on IPFS
while keeping the hash of the file on the blockchain as a key.
IPFS is a decentralized system, and inherently uses the hash
schema to point to the files on the platform [11]. There are
two competitive platforms that can replace IPFS i.e. Storj, and
FileCoin. However, currently, those platforms are still not fully
released and yet to come into the real-world applications.

IPFS does not allow for files to be redundant on their
network by generating a hash uniquely to the content of the file
[11]. In addition, IPFS is a peer-to-peer network that during

Fig. 2: Application Flowchart

downloading a file from the network will divide the files into
chunks so that they can be downloaded from different nodes
in parallel. Once the chunks are downloaded the whole file
can be accumulated.

D. Backend Database (Monitoring Performance)

In order to evaluate the performance improvements a
database is created to record the time of the transactions
on the used Ethereum testnets. as a performance indicator.
If desirable, other performance indicators can be added to
the backend database as extensions. The database used is a
relational database i.e. PostgreSQL. Adding to this database,
GraphQL layer, which is application programming interfaces
(APIs) layer, was selected against Restful APIs layer and XML
Soap layer. The graphQL is a latest promising technology
emerged recently [12]. The transmitted data format is, as well,
different from the XML, and JSON formats, even though it
was originally derived from the JSON format.

VI. SYSTEM IMPLEMENTATION

Figure 2 shows the flowchart for the implementation of the
overall framework.

A. Frontend Application

The front end application is built using VueJS. VueJS is
a single page application development framework based on
JavaScript, and it focuses mainly in separating the logic into
components for reusability. The division of business logic into
dedicated components is known as a separation of concerns,
and is considered to be a best practice. In addition, as shown

Fig. 3: Smart Contract Defensive Condition

in Figure 2, to keep the app state and memory in sync, the
drizzle plugin is used, and this is achieved specifically due to
its compatibility with Web3JS functionalities and VueJS state
management.

B. Testnets

Interaction with the mainnet will cost real Ether (ETH), and
the mainnet is not available for testing purposes. Therefore, the
initial development was evaluated on a local test environment
using Ganache application that simulates the blockchain en-
vironment and its necessary computations. Then, at a certain
point, a testnet be used for proper testing, and Ethereum has
many different testnets. MetaMask wallet was used in this
work to allow access to those testnets.

There are four testnets that are accessible in Metamask,
namely are Ropsten, Rinkeby, Kovan, and Goerli testnets.
These are mainly the most popular testnets on Ethereum. The
consensus mechanism in Ropsten is PoW, while in the other
three is PoA.

C. Smart Contract and Solidity Language

In order to write smart contracts on Ethereum blockchain,
the two main widely available programming languages are
Solidity and Vyper. Solidity is the most developed language
and is used mainly on other popular blockchain platforms.
Hence, in this proposed work the smart contract was developed
using the Solidity language.

Many of the smart contracts attacks are focused on program-
ming flaws [13], and on the simplicity of Solidity language.
We ensured appropriate mechanisms accordingly in our pro-
posed system. In the proposed implementation, a condition is
added in the smart contract to prevent other smart contracts
from calling our smart contract. This condition, by using the
assembly language which is an option in Solidity for advanced
coding, is shown in Figure 3. This condition checks during
a trasanction if the sender address has an actual code size
or if the size is equal to zero. If the address has code size
bigger than zero, then this the address belongs to a smart
contract, and the condition will not permit such an address.
By stopping other smart contracts from interacting with the

smart contract, the smart contract is preserved safe from
major security attacks e.g. reentrancy attack [13]. This type
of protection can stop other automated machine based passive
attacks on the smart contract. However, since this condition
stops only other smart contract request, this means that an
attack can still be automated using a client address from client
sources e.g. web applications. To avoid any client application
misuse or attack, in the proposed work a control was added
to the smart contract to allow only for one transaction at any
specific time from any client. As shown in Figure 4 , this
control adds a flag for every client to indicate whether a client
is still processing a transaction and if he is being locked or
not. After a transaction is finalized, the flag will get reset
to allow the client to perform another action. On one hand,
we handled attacks from other smart contracts with the first
condition. And on the other hand, we stopped clients from
misusing the system with the second method.

Many of the blockachain security attacks are from the
smart contract implementation and from the exploitation of
the Solidity programming language.

1) Access Control : In this proposed work, some access
control measures is applied to the smart contract by using fea-
tures available in the Solidity programming language. Solidity
is a complete Turing machine based programming language,
which means programmatically it is capable of incubating any
intended logic. In order to protect the access rights on the
smart contracts, manually some authentication mechanisms
were implemented on the code to validate the user privileges.

Figure 5 represents the access control work flow for the
smart contract.

2) Code: In this work modifiers are used. This is a feature
that is available in Solidity to lower the calculated gas of the
deployed opcodes, i.e. operation codes.

As shown in Figure 5, three different user types are created
based on their addresses. The first user type is based on the
main administrator address, and in the proposed work, is the
creator of the smart contract. The second type of addresses are
sub-admins, that resembles authorities in the store. The final
type are the regular users addresses. Simply, the data saved on

Fig. 4: Smart Contract Transactions Control

Fig. 5: Smart Contract Work Flow

the smart contracts constitutes of arrays of application details.
In each application details, there are the name of the app,
the address of the owner, a hash key for the app image that is
saved on IPFS, and an array of versions of the app as different
files.Two types of methods are used, methods that manage the
users’ roles, and methods that manage the application data
in the smart contract. Accordingly, any call or transaction
going to the smart contract undergoes a small check, through
modifiers, to evaluate the request. If the request passes, the
dedicated method will send the required results back.

D. Backend Recording

In order to estimate the actual time of each transaction,
a backend database is created. The start and end times for
each transaction will be saved in the database to calculate
the transaction time to measure the performance. The average
value of those records or readings will give an indication of
the time that was taken for the various tasks such as the add,
modify and delete actions on the smart contracts.

VII. RESULTS

Two testnets were used, namely Ropsten and Rinkeby. We
tested the speed of verifications of transactions and the cost
those transaction requires i.e. gas cost, which is the internal
unit used in Ethereum. There is a difference between the
Rinkeby and Ropsten in the transaction verification time, since
each one is using a different consensus mechanism. And the
smart contract handles five kinds of transactions, which are
adding a new app, adding an updated version, editing an app,
deleting a version, and deleting an app.

First for the gas estimate, as shown from Figure 6, both
testnets have close results. While in general, by comaprison
from Table I, Ropsten is being little higher in cost than
Rinkeby network. In both of them, adding new app information
to the blockchain do cost the most, and following is the app
editing. The least cost is when removing an app version and
deleting the whole app. It is also shown that Rinkeby is not
only lower in cost, but also has more stable results. Also from
Figure 6. the transactions times are shown for both networks.
Again by comparing the results as shown in Table II, Ropsten

network was the slower one. This was due to Ropsten using
the PoW mechanism which is computationally costly since
the conducted trust and votings are being based on intensive
computations from the participants. In addition Ropsten results
are more unstable as they are based on PoW which suffers
from high variance of validations performance because the
contributors in those validations are in continuous competition
to get the reward. From these observations, a blockchain will
be more stable if based on PoA or similarily PoS.

VIII. CONCLUSION AND FUTURE WORKS

A. Conclusion

Using IPFS decentralized storage as a method to allow
users to download applications will give a better performance
than depending on the clients and servers method. Instead of
downloading the application from a dedicated server, which
can be in some cases located far away from the user, down-
loading divided chunks from different users will optimize
the network utilization and the download time will be much
less for the user. Moreover, the availability and capacity will
be improved with minimum costs. Secondly, implementing
blockchain in the system, improves several security aspects for
applications deployment systems, and allows a room for more
contributions and delegations between different authorities to
handle the platform in a consensus mechanism. In this use case
particularly, it will be ideal to use Proof of Authority, since
it has a better performance and suits the scenario to authorize
partners in the validation process. Moreover, Proof of Work
in Ethereum is getting really slow with growing drawbacks
on the applications [14]. Overall, the system proposed in this
work demonstrates the promise of the decentralized systems
in enhancing the time to deploy a mobile application. The
cost required in most of those platforms will be significantly
decreased e.g.in App and Google Play stores. It will satisfy
the ongoing demand from the users and provide the flexibility
required by the community to increase the speed to deploy
new apps and also reduce the commission costs the app owners
have to pay to the app stores.

B. Future Works

It is observed that working on software deployment systems
is considered to be relatively a rudimentary field without
much experienced work involved in it. And decentralization
is still a novel discipline while under-going a lot of rapid
contributions and development recently. Hence, there are lot
of rooms for improvements. We plan to extend this work
to integrate different proprietary consensus mechanisms. The
first most likely one to be Zero Knowledge Proof due to its
lightweight nature. Furthermore, with the exponential increase
of applications numbers in stores, a systematic decentralized
way to scan any software for malicious code, as a prece-
dent phase before deployment, will lubricate the objective of
complete automation process. By the same token, checking
copy rights and data provenance is also a favorable add-
on for the system, and this can be a great prospect and
empirical case for machine learning usability. Last and but

Fig. 6: Ropsten & Rinkeby Transactions Comparision

2 4 6 8 10
0

2

4

6
·10−4

(5
)D

el
et

in
g

A
pp

s

2 4 6 8 10
0
20
40
60
80
100

2 4 6 8 10
0

2

4

6
·10−4

(4
)

D
el

et
in

g
V

er
si

on
s

2 4 6 8 10
0
20
40
60
80
100

2 4 6 8 10
0

2

4

6
·10−4

(3
)E

di
tti

ng
A

pp
s

2 4 6 8 10
0
20
40
60
80
100

2 4 6 8 10
0

2

4

6
·10−4

(2
)A

dd
in

g
V

er
si

on
s

2 4 6 8 10
0
20
40
60
80
100

2 4 6 8 10
0

2

4

6
·10−4

(a) Gas Cost

(1
)A

dd
in

g
A

pp
s

2 4 6 8 10
0
20
40
60
80
100

(b) Transactions Time

Tr
an

sa
ct

io
ns

Ty
pe

Ropsten Rinkeby

TABLE I: Transactions Gas Costs Comparison
Transaction Network 1 2 3 4 5 6 7 8 9 10

Adding an App ropsten 3.590 2.636 4.003 3.590 5.379 5.606 5.382 3.587 5.606 3.585
Rinkeby 3.588 3.586 3.585 2.6365 4.002 3.590 3.589 3.588 3.588 3.590

Adding a version ropsten 3.053 3.040 3.054 3.043 3.050 3.053 3.040 3.054 3.043 3.050
Rinkeby 2.465 2.031 2.0465 2.055 2.463 2.031 2.047 2.049 2.029 2.029

Editting an App ropsten 2.75 2.409 2.459 0.599 3.014 2.458 2.460 2.460 0.600 2.411
Rinkeby 0.484 1.501 1.467 1.417 1.501 1.468 0.484 1.500 1.386 0.0484

Deleting a Version ropsten 0.0579 0.663 0.603 0.522 0.719 0553 0.663 0.695 0.740 0.904
Rinkeby 1.160 2.028 0.746 0.745 0.716 0.605 0.603 0.605 0.661 0.661

Deleting an App ropsten 0.643 0.502 0.502 0.511 0.0502 0.501 0.500 0.064 0.501 0.502
Rinkeby 0.501 0.502 0.502 0.646 0.511 0.502 0.501 0.508 0.512 1.005

TABLE II: Transactions times Comparison
Transaction Network 1 2 3 4 5 6 7 8 9 10

Adding an App ropsten 37 52 56 21 30 51 88 36 17 35
Rinkeby 22 33 32 35 21 31 37 30 18 17

Adding a version ropsten 21 36 37 30 71 57 16 48 30 61
Rinkeby 19 13 18 17 33 19 22 17 20 35

Editting an App ropsten 99 18 34 34 33 25 28 56 12 28
Rinkeby 22 22 18 22 36 22 13 21 14 33

Deleting a Version ropsten 53 26 30 79 35 68 54 31 31 22
Rinkeby 18 28 38 16 16 14 14 34 31 21

Deleting an App ropsten 32 37 27 34 46 68 46 53 45 34
Rinkeby 25 15 36 25 17 15 14 23 12 31

not least, integrating a robust authentication module for users,
with a second component, will supply users with authorization
capabilities in smart contracts, and will wrap up the security
of blockchain communications with web applications. One of
the best authentications is JWT based authentication, and there
is a plausible sense to decompose JWT based authentication
methodology to employ it in a decentralized platform and
fine-tune its advantages. Overall, decentralization direction is
evolving with several future possibilities.

REFERENCES

[1] P. Roma and D. Ragaglia, “Revenue models, in-app purchase, and the
app performance: Evidence from Apple’s App Store and Google Play,”
Electronic Commerce Research and Applications, vol. 17, pp. 173–190,
may 2016.

[2] N. Statt, “Tinder is now bypassing the Play Store on Android
to avoid Google’s 30 percent cut - The Verge,” jul 2019. [On-
line]. Available: https://www.theverge.com/2019/7/19/20701256/tinder-
google-play-store-android-bypass-30-percent-cut-avoid-self-install

[3] J. Padhiyar, “Why Apple’s App Store is Charging 30%
Fees and How is it Justified?” jul 2018. [Online].
Available: https://www.igeeksblog.com/why-app-store-is-charging-30-
percent-commission/

[4] Y. Xu, “Section-blockchain: A storage reduced blockchain protocol,
the foundation of an autotrophic decentralized storage architecture,” in
Proceedings of the IEEE International Conference on Engineering of
Complex Computer Systems, ICECCS, vol. 2018-Decem. Institute of
Electrical and Electronics Engineers Inc., dec 2018, pp. 115–125.

[5] Serokell, “Blockchain vs. Distributed Ledger Technol-
ogy - What’s the difference?” jan 2020. [On-
line]. Available: https://medium.com/better-programming/blockchain-
vs-distributed-ledger-technology-whats-the-difference-2587d9780c99

[6] G. D’mello and H. González-Vélez, “Distributed Software Dependency
Management Using Blockchain,” in Proceedings - 27th Euromicro
International Conference on Parallel, Distributed and Network-Based
Processing, PDP 2019. Institute of Electrical and Electronics Engineers
Inc., mar 2019, pp. 132–139.

[7] R. Kumar and R. Tripathi, “Implementation of Distributed File
Storage and Access Framework using IPFS and Blockchain,” in
2019 Fifth International Conference on Image Information Processing
(ICIIP). IEEE, nov 2019, pp. 246–251. [Online]. Available:
https://ieeexplore.ieee.org/document/8985677/

[8] S. Muralidharan and H. Ko, “An InterPlanetary File System (IPFS) based
IoT framework,” in 2019 IEEE International Conference on Consumer
Electronics, ICCE 2019. Institute of Electrical and Electronics Engi-
neers Inc., mar 2019.

[9] A. K. Shrivastava, C. Vashistth, A. Rajak, and A. K. Tripathi, “A
Decentralized Way to Store and Authenticate Educational Documents
on Private Blockchain,” 2019 International Conference on Issues and
Challenges in Intelligent Computing Techniques (ICICT), pp. 1–6, 2019.
[Online]. Available: https://ieeexplore.ieee.org/document/8977633/

[10] ConsenSys, “Ethereum Has 4x More Developers Than
Any Other Crypto Ecosystem,” 8. [Online]. Avail-
able: https://consensys.net/blog/blockchain-development/ethereum-has-
4x-more-developers-than-any-other-crypto-ecosystem/

[11] J. Benet, “IPFS - Content Addressed, Versioned, P2P File System,” jul
2014. [Online]. Available: http://arxiv.org/abs/1407.3561

[12] G. Brito, T. Mombach, and M. T. Valente, “Migrating to GraphQL:
A Practical Assessment,” in SANER 2019 - Proceedings of the 2019
IEEE 26th International Conference on Software Analysis, Evolution,
and Reengineering. Institute of Electrical and Electronics Engineers
Inc., mar 2019, pp. 140–150.

[13] A. Dika and M. Nowostawski, “Security Vulnerabilities in Ethereum
Smart Contracts,” in Proceedings - IEEE 2018 International Congress
on Cybermatics: 2018 IEEE Conferences on Internet of Things, Green
Computing and Communications, Cyber, Physical and Social Comput-
ing, Smart Data, Blockchain, Computer and Information Technology,
iThings/Gree, 2018.

[14] X. Liu, G. Zhao, X. Wang, Y. Lin, Z. Zhou, H. Tang, and B. Chen,
“MDP-based quantitative analysis framework for proof of authority,” in
Proceedings - 2019 International Conference on Cyber-Enabled Dis-
tributed Computing and Knowledge Discovery, CyberC 2019. Institute
of Electrical and Electronics Engineers Inc., oct 2019, pp. 227–236.

