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Abstract

Modern developments in population dynamics emphasize the role of the

turnover of individuals. In the new approaches stable population size is a

dynamic equilibrium between different mortality and fecundity factors in-

stead of an arbitrary fixed carrying capacity. The latest replicator dynamics

models assume that regulation of the population size acts through feedback

driven by density dependent juvenile mortality. Here, we consider a sim-

plified model to extract the properties of this approach. We show that at

the stable population size, the structure of the frequency dependent evolu-

tionary game emerges. Turnover of individuals induces a lottery mechanism

where for each nest site released by a dead adult individual a single newborn

is drawn from the pool of newborn candidates. This frequency dependent

selection leads toward the strategy maximizing the number of newborns per

adult death. However, multiple strategies can maximize this value. Among

them, the strategy with the greatest mortality (which implies the great-

est instantaneous growth rate) is selected. This result is important for the

discussion about universal fitness measures and which parameters are maxi-

mized by natural selection. This is related to the fitness measures R0 and r,

because the number of newborns per single dead individual equals lifetime

production of newborn R0 in models without ageing. We thus have a two-

stage procedure, instead of a single fitness measure, which is a combination

of R0 and r. According to the nest site lottery mechanism, at stable pop-

ulation size, selection favours strategies with the greatest r, i.e. those with

the highest turnover, from those with the greatest R0.
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1. Introduction

In the modern theory of evolutionary ecology (Post and Palkovacs 2009,

Pelletier et al. 2009, Morris 2011, Schoener 2011) the problem of eco-

evolutionary feedback is of special interest. One of the major theoretical

problems in the modelling of population dynamics, and in general of evo-

lutionary biology and ecology, is the limit of population growth and its

selection consequences. This topic is very important in many disciplines

such as evolutionary game theory and life history theory.

The earliest attempt to solve this problem for populations with overlap-

ping generations is the continuous logistic equation introduced by Verhulst

in the 19th century (Verhulst, 1838), which can be found in every textbook

on ecology and mathematical biology. It inspired the idea of r and K selec-

tion (McArthur and Wilson 1967), that selection favours different strategies

at low densities and near the stable population size, and is still applied in

modelling (Cressman et al. 2004, Cressman and Krivan 2006, Cressman

and Krivan 2010). This concept states that there is some arbitrary maximal

population size at which growth is suppressed and the population remains

stable. However, this approach produces some unusual predictions which

provoked a wide discussion (Koz lowski 1980,  Lomnicki 1988, Kuno 1991,

Ginzburg 1992, Gabriel 2005, Hui 2006, Argasinski and Koz lowski 2008)

presented in the next section.
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The problem of the limits to growth is important not only for ecological

population growth models but also for the modelling of natural selection.

There is huge discussion on what is maximized by natural selection and

what happens when a population reaches the limit to growth (Metz et al.

1992, Koz lowski 1993, Mylius and Diekmann 1995, Brommer 2000, Dieck-

mann and Metz 2006, Metz et al. 2008, Roff 2008). However in these

attempts density dependence is represented by some abstract unspecified

factors. Thus the proposed solutions are very general and abstract. A

concrete mechanistic interpretation should be helpful in the interpretation

of the mathematical notions. In the modification of the logistic equation

(Koz lowski 1980, Hui 2006) which was applied to game-theoretic modelling

(Argasinski and Koz lowski 2008, Argasinski and Broom 2012) there is an

example of a mechanism responsible for strategically neutral density depen-

dence called in this paper a ”nest site lottery”. The underlying assumption

is that there is a limited number of nest sites in the environment and that ev-

ery newborn must find a nest site to survive. Thus all newborns produced at

some moment in time form a pool of candidates to be drawn from to replace

the dead individuals in their nest sites. The difference is that in this case

there is an arbitrary maximal population size described by a carrying capac-

ity indicating the number of available nest sites (mechanistically interpreted

as nests or holes, where individual can settle, as in Hui 2006). However,

the stable population size is not the carrying capacity, as in the classical

logistic equation, but the dynamic equilibrium between different factors of

mortality and fecundity (Koz lowski 1980, Ginzburg 1992, Hui 2006), which
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can be affected by the dynamics of the population state (Argasinski and

Broom 2012). The advantage of this approach is that it considers a realistic

turnover of individuals (Argasinski and Koz lowski 2008). In this paper we

will more rigorously analyze the properties of the nest site lottery mechanism

in a simpler model than in the previous papers (Argasinski and Koz lowski

2008, Argasinski and Broom 2012).

Below we give the mathematical details of this approach (sections 2 and

3). Section 4 starts the development of the selection model and in section

5 the important notion of the turnover coefficient is introduced. Section 6

contains the presentation of the selection dynamics. In section 7 the rela-

tionships between the nest site lottery mechanism and the invasion fitness

concept are presented. Section 8 contains the main results which are the

equations (14, 15) and their analysis describing the nest site lottery mech-

anism (intuitively depicted in fig. 1). We see that, eventually, selection

favours the strategy with the highest turnover coefficient out of those with

the greatest value of lifetime reproduction. The mechanistic reasoning from

section 8 is completed by Theorem 1 describing the quantitative character-

ization of the restpoints of the system (14, 15). The importance of the ob-

tained results and the general ideas inspired by them is discussed in section

9 (the last subsection contains a discussion on the two-stage maximization

procedure, substituting for the single-step fitness measure, obtained by our

results).
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2. Density dependence

The cornerstone of mathematical ecology is the Malthusian equation de-

scribing exponential population growth,

(1)
dn

dt
= nr = nb− nd = n (b− d) ,

where b is the birth rate and d is the death rate. However, in Argasin-

ski and Broom (2012, see Appendix 1 there for details) it was shown that

with respect to the multiplicative proportionality constant (which can be

removed using a change of timescale) acting as the rate of interaction oc-

currence, these parameters can be interpreted as demographic parameters

describing the outcomes of the average interaction with elements of the en-

vironment or other individuals. Then b ∈ [0,∞) can be interpreted as the

number of newborns produced during an interaction event and d ∈ [0, 1]

as the probability of death during an interaction event. We will assume

this mechanistic interpretation in our model. Thus the Malthusian coeffi-

cient r can be interpreted as the balance between mortality d and fertility

b. The above model is not realistic, because it allows for infinite popula-

tion growth. The classical solution of this problem is the use of the logistic

equation, which is equation (2),

(2)
dn

dt
= nr

(
1− n

K

)
.

However, this relies on a problematic assumption which has very serious

consequences. Equation (2) produces artifacts in population growth mod-

els (Kuno 1991, Gabriel 2005) and selection models related to replicator

dynamics (Argasinski and Koz lowski 2008). For example, it suppresses the
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selection dynamics in the replicator dynamics by setting the right hand sides

of the strategy dynamics equations to 0 (Argasinski and Koz lowski 2008),

the trajectory escapes to infinity for r < 0 (i.e. b < d) and initial popula-

tion size greater than K (known as Levins’ paradox, (Gabriel 2005)) or the

trajectory decreases with increasing rate for r < 0 and initial population

size slightly smaller than K (Kuno 1991). This is caused by the fact that

the term r is multiplied by the suppression coefficient, which implies that

with population growth, both mortality and fertility decrease, and mortality

decreasing with increasing population size and reaching zero at equilibrium

is biologically counterintuitive. Mortality should not decrease with popula-

tion growth and individuals cannot be immortal at equilibrium. The above

problems suggest that models should rely on clear and mechanistic assump-

tions (Geritz and Kisdi 2012). Thus, density dependent suppression should

act only on the number of juveniles recruited to the population (Koz lowski

1980, Ginzburg 1992) and the initial population size should be smaller than

the carrying capacity (Hui 2006, Argasinski and Koz lowski 2008, Argasinski

and Broom 2012) leading to

(3) ṅ = n
(
b
(

1− n

K

)
− d
)
,

where the suppression term (1− n/K) describes newborns’ survival prob-

ability. This provides an important distinction between newborn candidates

introduced to the environment (described by per capita number b) and re-

cruited newborns, survivors of the density dependent stage (described by

b
(

1− n

K

)
).
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This problem was emphasized by Koz lowski (1980) for the first time, but

surprisingly this paper did not get as wide an appreciation as it deserved.

Then it was reinvented by Ginzburg (1992), but (3) was rejected there as it

“disagrees with our intuition about unchanging equilibrium ”. Hui (2006)

argued, against Ginsburg’s claim, that (3) is the proper approach and should

be substituted for (2). The discussion started by Ginzburg also did not re-

ceive wide attention. Argasinski and Koz lowski (2008) then applied equation

(3) to avoid the suppression of selection that occurs after the equilibrium size

is reached caused by equation (2) without knowledge of this discussion, and

(3) is a cornerstone of the ecologically realistic approach to dynamic evolu-

tionary games (Argasinski and Broom 2012). Then (3) was mentioned as an

example of the proper mechanistic approach (Geritz and Kisdi 2012), but

not as the general alternative to (2). However, we believe that (3) deserves

much stronger attention from a general audience.

Although (3) has been applied in complex selection models (Argasinski

and Koz lowski 2008, Zhang and Hui 2011, Argasinski and Broom 2012),

the selection consequences of this approach have not been rigorously ana-

lyzed, since previous papers (Kuno 1991, Ginzburg 1992, Gabriel 2005, Hui

2006) focused on population density dynamics and ecological aspects. This

distinction between adults and newborn candidates is very important for

ecological and evolutionary reasoning, because differences between juvenile

and adult mortality can have serious selection consequences. For exam-

ple, a lack of mortality differences means that a small fecundity advantage

can favour evolution of semelparity over iteroparity (this problem is known
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as Coles Paradox, Cole 1954), while mortality differences can significantly

change the situation (Charnov and Shaffer 1973). The selection mechanism

induced by (3) is thus very interesting and will be analyzed in later sections.

3. The population in equilibrium

We can calculate equilibrium size, by setting the right hand side of Equa-

tion (3) to be equal to 0, which gives either n = 0 or

(4) ñ =

(
1− d

b

)
K.

Note that for positive ñ, the condition b > d should be satisfied. After

substitution of ñ into the logistic coefficient (1− n/K), we obtain the equi-

librium newborn survival probability d/b. This is reasonable; due to the

turnover of individuals, in any short time interval for every nb newborns we

have nd dead individuals. Thus nd/nb describes the number of newborns

competing for each single nest site vacated by a dead individual. Only

one newborn can settle in a single place, thus each newborn can survive

with probability d/b. This newborn survival should be valid for any density

dependent mortality acting on juveniles, not only for logistic suppression,

because only in this case does fertility equal overall mortality.

4. The case of multiple individual strategies

Assume that there are different individual phenotypes i = 1, . . . ,H each

characterized by per capita reproduction bi and mortality di. Thus every

strategy is described by a two dimensional vector vi = [bi, di] ∈ ([0,∞)× [0, 1])

describing demographic parameters interpreted as in (1). Note that K de-

scribes the number of nest sites and is the same for all phenotypes. Denoting
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n =
∑

i ni and qi =
ni
n

, we can describe the following dynamics:

(5)
dni
dt

= ni

(
bi

(
1− n

K

)
− di

)
.

The value ni increases with time if

(6) n <

(
1− di

bi

)
K

and decreases in the opposite case. Thus for every strategy there is a critical

population size which is a threshold between regions of growth and decline.

Above the population size critical for a particular strategy, the effective

fertility bi

(
1− n

K

)
will be smaller than the mortality di. Thus the dynamics

of the population size plays an important role, which is described by the

equation

dn

dt
=

∑
i

ṅi =
∑
i

ni

(
bi

(
1− n

K

)
− di

)

= n

((
1− n

K

)∑
i

qibi −
∑
i

qidi

)
,

giving

(7)
dn

dt
= n

((
1− n

K

)
b̄− d̄

)
,

where b̄(q) =
∑

i qibi and d̄(q) =
∑

i qidi. We can easily calculate that

in this case, instead of reaching the stable equilibrium, the population size

converges to the stationary density manifold (Cressman et al 2001,Cressman

and Garay 2003a and b)

(8) ñ =

(
1− d̄

b̄

)
K,
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the form of which is conditional on the strategy frequencies. Thus we in-

troduced diversity among individual strategies to our model. In our model,

in the general case, newborn survival
(

1− n

K

)
is a phenomenological func-

tion, linear with respect to the fraction of free nest sites. Thus in this

approach the recruitment probability equals the probability of finding a free

nest site in a single trial. This is a very specific mechanism which will not

be suitable for many species. However, similar mechanisms will work for

any density dependent factor u(n) acting on births that is monotonically

decreasing with respect to n. Then for growth rate biu(n)− di, the critical

population size will be n = u−1
(
di
bi

)
. The newly produced offspring of

the carriers of the different strategies form a pool of candidates from which

randomly drawn individuals will be recruited to settle in the available nest

sites. This is the core of the ”nest site lottery” mechanism which will be

analyzed in the following sections. Note that equations (5) and (7) suggest

the importance of the factors
di
bi

and
d̄

b̄
. This will be analyzed in the next

section.

5. The turnover coefficient L

Here we will introduce an important characterization of population dy-

namics. We shall define the function L(v) = b/d for a single strategy v.

L describes the number of newborns per single dead individual, which we

shall refer to as the turnover coefficient (for the relationship of the turnover

coefficient with lifetime reproduction, see the Discussion). Surprisingly, a

similar coefficient describing the energy allocated to reproduction divided

by mortality can be found in life history papers (Taylor and Williams 1984,
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Koz lowski 1992, Koz lowski 1996, Werner and Anholt 1993, Perrin and Sibly

1993, for an overview see Koz lowski 2006). Analogously, for a mixture of

strategies where v̄(q) =
∑

i qivi = [b̄, d̄] is the average strategy contained in

the convex hull of the strategies vi (see fig. 1), we define L(v̄(q)) = b̄/d̄.

Thus

(9)

L(v̄(q)) =
b̄

d̄
=

∑
qibi∑
qidi

=

∑
qidiL(vi)∑
qidi

=
∑ qidi∑

qjdj
L(vi) =

∑
yiL(vi),

which is a weighted average of the L(vi)s and yi = qidi/
∑
qjdj describes

the fraction of i strategists among individuals dying during a small time

interval ∆t (according to Appendix A, A.2). L(v̄(q)) is thus the average L

among dead adult individuals. The L-function can be useful in describing

the multiplicative newborn survival (recruitment probability) because after

substitution of the stable population size ñ into the logistic suppression

coefficient we obtain:

(10)

(
1− ñ

K

)
= d̄/b̄,

which can be denoted as 1/L(v̄(q)).

If there is any variation in the L(vi)s, then we have that b̄/d̄ lies strictly

between the smallest and largest values of L, Lmin < b̄/d̄ < Lmax. L(v)

describes the number of newborn candidates produced per single dead indi-

vidual for the strategy v = [b, d], during ∆t. When the strategic argument

is the averaged vector, describing a population with a mixture of strategies,

then the value of L is the average number of newborn candidates produced

per single dead individual in this population. When the population is in size
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equilibrium (at the stationary density manifold), then the newborn survival

component can be described by the value of L of the average population

strategy; thus it becomes frequency dependent.

6. Selection dynamics

The behaviour of equation (5) suggests frequency dependent self-regulation

of the population state. Equation (7) shows attraction to the stable size

manifold (8), which suggests that the dynamics on this manifold should be

analyzed. To describe the frequency dependent selection associated with the

system we have presented, tools appropriate to game dynamics are required.

Thus we should describe the population in terms of the strategy frequencies

qi and the population size n. However, at the stable size manifold the pop-

ulation size is given by (10). We can assume that the strategies are close

enough to each other that a separation of timescales between fast n dynam-

ics and q dynamics occurs. Then we can assume that selection occurs on the

stationary size manifold. Now we can describe the selection process realized

by the ”nest site lottery” mechanism. Thus using (10), we can write the

selection dynamics from (5) as

(11)
dni
dt

= ni

(
bi
d̄(q)

b̄(q)
− di

)
.

Because the average growth rate on the stable size manifold is zero then

the equation (11) can be replaced by the replicator dynamics (see Appendix

A)

(12)
dqi
dt

= qi

(
bi
d̄(q)

b̄(q)
− di

)
= qidi

(
L(vi)

L(v̄(q))
− 1

)
.
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Therefore the growth rate of the i-th strategy becomes a function of the

strategy frequencies q (frequency dependent):

M(vi, q) = bi
d̄ (q)

b̄ (q)
− di = di

(
L(vi)

L(v̄(q))
− 1

)
,

and by equation (7) the population size manifold is described by

ñ =

(
1− d̄ (q)

b̄ (q)

)
K =

(
1− 1

L(v̄(q))

)
K.

Note that the growth rate function M describes a mixture of all mortality

and fecundity components, not only the density independent mortality d and

fecundity b as in the Malthusian parameter r. The growth rate is positive

when L(vi) > L(v̄(q)), which implies that

(13)
bi
di
>

∑
j qjbj∑
j qjdj

.

Thus there is a threshold between regions of growth (strategies with repro-

ductive surplus) and reduction (strategies with death rate exceeding birth

rate) which has the linear form bi = L(
∑

j qjvj)di (see Figure 1). The thresh-

old describes the set of strategies for which the growth rate M(vi, qi) equals

0. Frequencies qi of strategies vi with a greater value of L than the aver-

age strategy
∑

j qjvj will increase under the replicator dynamics. In effect

the averaged strategy shifts towards those strategies because it is a linear

combination of the strategies present in the population. This implies an

increase of L of the average strategy (see Figure 1). However, among grow-

ing strategies, the greatest growth rate is by the strategy with the greatest

Malthusian parameter M(vi, qi). Because in this case the dynamics is on the

stationary density manifold, the current population size is very close to (8)
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and (13) is equivalent to satisfying inequality (6) (passing the critical popu-

lation size). Thus at the stationary size manifold the threshold between the

growth and decline of the strategy frequency is equivalent to the threshold

between the growth and decline of the number of carriers of that strategy

(this may not be satisfied far from the stationary size manifold). Frequency

dependence induces an increase of the slope of the threshold which eventu-

ally leads to the selection of the strategy with the greatest L, which confirms

the result of Mylius and Diekmann (1995). Note that their second result,

that density dependent adult mortality leads simply to r maximization as

in unlimited growth models, directly comes from the independence of the

replicator dynamics from background fitness.

7. The monomorphic resident-mutant case

We can simplify the above model by assuming a monomorphic population

invaded by a rare mutant; thus this resembles the classical ESS approach

(Maynard Smith 1982) in the context of life history evolution (Charlesworth

& Leon 1976, Mylius and Diekmann 1995). In the limiting case where the

strategy trait tends to zero, we approach the method known as invasion

analysis which is the cornerstone of adaptive dynamics (Dieckmann and

Law 1996, Metz et al. 1996, Geritz et al. 1998, Dercole and Rinaldi 2008).

Using Equation (12), the resident Malthusian parameter is zero and the

rare mutant Malthusian parameter is (bmut/bres)dres − dmut which must be

positive to invade the population. Thus the equilibrium population size

increases.
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To be an ESS itself, the “mutant” population should be stable against

the previous resident, and thus:

bres
bmut

dmut − dres < 0⇒ bres
dres

<
bmut

dmut
,

which is the same condition. Thus in both cases we obtain Lres < Lmut.

Note that, when we consider only the death component of the Malthusian

equation then we obtain the equation ṅ = −nd; thus this is an exponential

decay with decay constant d, and so the average lifetime of the individual

is κ = 1/d. In any short time interval of length ∆t, for every nb newborns

we have nd dead individuals. We can change the timescale to set ∆t as

the new time unit. Then initial rates, and thus respective births and deaths

numbers, should be multiplied by some timescale specific constant. However

this constant cancels out in L(v). Thus L(v) is the lifetime reproduction

R0. Therefore we have obtained for the ”nest site lottery” mechanism,

the classical result that under limited growth only lifetime reproduction

is maximized and there is no selection pressure on the lifespan. However

this occurs only in a monomorphic resident-mutant model. The case of a

population composed of an arbitrary number of individual strategies is more

interesting.

8. Multiple strategies with L = Lmax

We have seen that evolution leads to the fixation of the strategy with the

largest value of L, Lmax. What if there is more than one such strategy?

The following question arises: is there selection between strategies with the
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same L? We can show this by applying a multipopulation game-theoretic

approach (Appendix A and Argasinski 2006) and divide strategies present

in the population among subpopulations with the same L, but different

ds (Appendix B). Assume than we have m such classes with Hj different

strategies in the j-th L-class (then the lower strategy index descxribes the

number within the particular L-class and the upper strategy index describes

the L-class). Then for all strategies (for all i) from the same L-class L(vji ) =

Lj . When we assume that the dynamics is on the stable density manifold,

we obtain the following equations

dqji
dt

= qji

(
Lj

L(v̄(q))
− 1

)(
dji −

∑
w

qjwd
j
w

)
,(14)

dgj
dt

= gj

(
Lj

L(v̄(q))
− 1

)∑
w

qjwd
j
w,(15)

describing the changes of the proportion of the i-th strategy within the

j-th L-class (Equation 14) described by qji and related frequencies between

L-classes (15) described by gj . Thus selection between L-classes is driven

by the first bracketed term from Equation (14) and affects both intra- and

inter-group dynamics. However, there is selection inside each L-class toward

greater d. When suboptimal L-classes are outcompeted, the intrinsic selec-

tion driven by the bracket
(
dji −

∑
qjwd

j
w

)
is also suppressed. The form of

Equation (15) shows that among growing L-classes, those with smaller L

can grow faster than those with larger, due to a greater
∑
qjwd

j
w, until they

fall under the L-selection threshold.
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We are interested in analyzing which strategy (strategies) will dominate

the population in the long term. In particular, q̇i in Equation (12) is al-

ways positive if strategy i has L(vi) = Lmax, whenever there is variation

in the L values in the population. Thus the proportions of such strategies

increase; but also, following Equation (14), the strategies out of these with

the largest values of di increase the fastest. Thus if there is either repeated

small mutations involving strategies with L(vi) < Lmax or a constant low

level of mutation involving a mix of strategies making L(v̄(q)) < Lmax,

the population will evolve to the strategy out of those with L(vi) = Lmax

such that di takes the largest value. Thus repeated mutations or invasions

of suboptimal strategies induce selection towards maximal d among Lmax

strategists. It is easy to show that in the absence of density dependent

suppression, this strategy has the greatest r but only among Lmax strate-

gies, since bi = diLmax. The strategies from other L-classes can have even

greater r, but they will be outcompeted by the mechanism described by the

bracketed term in equation (12). In the case when the population consists

only of the Lmax individuals, the same outcome can be caused by repeated

ecological catastrophes leading to a decrease of the population size. Then

the strategy with the greatest di will have the greatest growth rate during

the growth phase of the population.

However, let us focus on the evolution of the system under the repli-

cator dynamics in a single particular “turn”, during which no mutation

occurs. Suppose that there are precisely I strategies in the Lmax-class,
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and assume that the initial state of the Lmax-class is described by vector

q = (qmax
1 (0), . . . , qmax

I (0)) and initial relative size gmax.

Theorem 1

The replicator dynamics converges to the vector

q = (qmax
1 (0)gmax(0)λd1 , . . . , qmax

I (0)gmax(0)λdI ),

where λ is a constant that satisfies the equation gmax(0)
∑I

i=1 qi(0)λdi = 1.

For the proof see Appendix C.

Theorem 1 shows that the restpoint describing the frequencies among

Lmax strategists is fully determined by the initial state of the Lmax-class and

its initial relative size qmax
1 (0). Despite frequency dependence, this occurs

independently of the initial frequencies of the other strategies (note that

in our model there are no direct interactions between individuals). Thus

calculation of q reduces to the finding of the appropriate value of λ. Note

that the rest point q can be interpreted as the state of the whole population

in general coordinates and the final state of the Lmax-class (then gmax = 1).

Note that if initially gmax(0) = 1, then obviously λ = 1. The parameter λ

can be described as the inflation coefficient because it inflates the frequencies

to sum them to one and compensate the impact of gmax(0).

9. Discussion

9.1. How the nest site lottery works? We started from the basic popu-

lation growth equation which is the cornerstone of the framework underlying

evolutionary game theory and replicator dynamics (Maynard Smith 1982,
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Cressman 1992, Hofbauer and Sigmund 1988 and 1998) and its more eco-

logically realistic extensions (Cressman and Garay 2004, Argasinski 2006,

Argasinski and Koz lowski 2008, Argasinski and Broom 2012). We presented

an analysis of the dynamics of the mechanism inducing frequency dependent

selection toward the strategy maximizing the turnover coefficient L(vi).

This phenomenon can be explained mechanistically. All newborns in-

troduced into the population at the same moment in time form a pool of

candidates. Each newborn has equal probability to survive (find a nest

place), thus the strategy maximizing the number of newborns (trials) max-

imizes the fraction in the pool of candidates and in effect the amount of

survivors. However, every dead adult can be substituted by an individual

with any other strategy, thus each death is an additional free place in the

lottery. Thus it is profitable for the strategy carried by some subpopulation

to maximize the number of trials (newborns) per single offered place (dead

adult). In addition, we have shown that among strategies with the largest

value of the turnover coefficient Lmax there is a selection pressure toward the

strategy with the greatest d. This is intuitive from equation (12), because

for strategies with the maximal number of newborn candidates produced per

dead adult (i.e. maximizing the bracketed term in equation 12), the growth

rate will increase with the number of dead adults (described by the fraction

qidi in equation 12) since each of them will be exchanged for Lmax newborns

in the pool of candidates. Note that this provides a gene centered mecha-

nistic explanation of the phenomenon which can be naively interpreted in

terms of group selection and an altruistic ”sacrifice” of adults, to release the
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nest sites for juveniles.However, our model shows that it is an outcome of

”selfish” fitness maximization at the individual level. In addition our model

suggests a possible tradeoff in resource allocation between maximization of

the number of candidates in the nest site lottery and survival of the parental

individual.

9.2. Importance of the nest site lottery mechanism. The model pre-

sented in this paper is as simple as possible, to emphasize the mechanistic

aspects of the analyzed phenomenon. For example, there are no direct in-

teractions between individuals as in game-theoretic models. Our model has

an extremely simplified age structure consisting only of juveniles and adults

(more on the limitations of pure age-dependent models can be found in

Metz and Diekmann 1986). However, it was shown that the impact of den-

sity dependent factors (thus also the mechanism described in this paper and

its generalizations) can significantly affect and alter the outcomes of game-

theoretic models (Argasinski and Koz lowski 2008, Argasinski and Broom

2012). This is caused by the feedback driven by the fact that when popu-

lation size is on the stable size manifold every newborn should find a new

nest site vacated by a dead adult. Our model is the simple case example

of a one-dimensional monotone density dependence acting on the effective

birth rate (more on this and other general cases can be found in Metz et al

2008). However, as was shown at the end of section 4, our results can be

extrapolated to other factors that are monotonically decreasing with respect

to the population size, acting like juvenile survival. It is possible that other
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environmental feedback loops of the same type to those in our model may

induce similar selection mechanisms.

The mechanism shown in this paper supports the intuition underlying r

and K selection theory (McArthur and Wilson 1967), that natural selection

favours different strategies in growing populations than in populations with

suppressed growth. The theoretical and methodological aspects of this ap-

proach were criticized (Barbault 1987, Getz 1993, Stearns 1977), however

as an intuition it still seems to be relevant (for modern approaches see for

example Metz et al. 2008). An alternative to the r and K approach is life

history theory (Roff 1992, Stearns 1992), where the problem of different se-

lection mechanisms in limited and unlimited populations also exists. Maybe

phenomena similar to those revealed by our simple model can be found in

other, more general or different specific models related to general population

dynamics, life history evolution, adaptive dynamics or population genetics.

This can be the subject of future research.

9.3. What is maximized by natural selection, and when? The exact

meaning of “fitness” is a subject of endless discussion (Metz et al. 1992,

Koz lowski 1993, Mylius and Diekmann 1995, Brommer 2000, Dieckmann

and Metz 2006, Metz et al. 2008, Roff 2008). Basically ”fitness” can be

defined as the instantaneous growth rate or invasion exponent (Metz 2008).

However, if eco-evolutionary feedback is of a particulary simple kind, the

optimization approach can be applied (Metz et al 2008, Gyllenberg et al

2011) where some ”fitness measures” or ”proxies” are maximized. There is

a widely known fact in life history theory that in a population with unlimited
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growth, the Malthusian parameter r is a proper fitness measure, while on

the stable size manifold, lifetime production of newborns (before juvenile

mortality selection) R0 is the correct measure. In Mylius and Diekmann

(1995) there is a statement that the invasion fitness method (Metz et al.

1992) suggests that R0 and r are necessarily both maximal at the ESS

(although this statement is unclear since some strategies can maximize R0

and others can maximize r). Our results support this claim, and show that

an analogous mechanism can act in population dynamic and game-theoretic

models.

Here an important claim is that of Brommer and Kokko (2002), who say

that R0 is a rate independent reproductive measure which does not depend

on the timing of reproductive events. This is because R0 is described on

the lifespan timescale, not the population dynamic timescale like r. Despite

its simplified form our model can be a useful illustrative example for this

problem. How can we use a lifespan perspective in our approach? At first,

assume that population growth is unlimited (every newborn candidate can

find a nest site). Then demographic parameters b and d are constant and

the average lifetime of the individual is κ = 1/d (as in section 7). Then

r = (L− 1) /κ and L(v) is the lifetime reproduction R0 (or the average R0

among individuals dying during ∆t in a population described by v). There-

fore, the formula r = (L− 1) /κ shows how the growth rate is affected by

lifetime reproduction in the case of a non-age structured population with un-

limited growth. It shows that an individual should basically replace itself,

but for the strategy growth rate to be positive requires a reproductive surplus
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during a lifetime. Now introduce the limitation of the nest sites causing den-

sity dependent selection. Our results show that under density dependence,

the growth rates of the strategies are affected by the frequency dependent

surplus reducing mechanism, described by newborn survival 1/L(v̄) which

is the function of the other strategies present in the population. In effect

r(v) = (L(v)/L(v̄)− 1) /κ and R0 = L(v)/L(v̄). Thus the strategy maxi-

mizing the lifetime production of newborn candidates L(v) will maximize

R0 and the bracketed term of r(v).

9.4. Conclusion. Our simple model suggests an insight into the mechanis-

tic nature of selection under limited growth and has serious interpretational

consequences. It clearly shows that this problem should not be formulated

as the alternative: evolution maximizes r OR R0. In our simple model, when

the population reaches a stable size manifold, then a mechanism that mod-

ifies the r’s of competing strategies, which are no longer constants, emerges

to select the strategy with maximal R0, or with maximal r, among multiple

strategies with maximal R0. Thus, our model suggests the existence of an-

other fitness measure which is the combination of R0 and r, if our reasoning

holds in age structured and other more complex models. However, it will be

not a function which should be maximized, but a two staged procedure. The

first stage should identify the strategies maximizing the turnover coefficient,

while the second stage should find strategies with the greatest r from strate-

gies chosen in the first stage. We note that our analysis is a simplification,

and whereas R0 = L(vi) in the models without age structure as presented
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in this paper, this is not necessarily satisfied in age structured models. This

should be the subject of future research.
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Appendix A Multipopulation replicator dynamics.

Assume that we have u individual strategies. Standard replicator dynam-

ics can be derived by rescaling the Malthusian growth equation dni
dt = niMi

to the related frequencies qi = ni/
∑

j nj which leads to the equation dqi
dt =

qi
[
Mi − M̄

]
(where M̄ =

∑
j qjMj). This equation describes the evolution

of strategy frequencies in the unstructured population. However, we might

be interested in the modelling of the structured population divided into

subpopulations such as different sexes, species etc. Assume that we want to

decompose an entire population into z subpopulations. Define

(A.1) kj = [kj1, ..., k
j
uj

]

as a vector of indices of strategies exhibited by individuals from the i-th

subpopulation (kji ∈ {1, ..., u}, and uj is the number of strategies in the

i-th subpopulation). For example the notation k2 = [1, 3, 5] means that,

in the second subpopulation there are (only) individuals with strategies 1, 3
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and 5. Every strategy should belong to a single unique subpopulation. Then

according to Argasinski (2006), by the following change of coordinates

(A.2) qj = [qj1, ..., q
j
ui

] =

[
q
kj1∑uj

i=1 qkji

, ...,
q
kjuj∑uj

i=1 qkji

]
j = 1, ..., z

we obtain a distribution of relative frequencies of strategies in the i-th

subpopulation. The distribution of proportions between subpopulations has

the form

(A.3) g = [g1, ..., gz] =

[
u1∑
i=1

qk1i
, ...,

uz∑
i=1

qkzi

]
,

where gj is the proportion of the j-th subpopulation. Every decomposition

into subpopulations can be reduced again to a single population model by

the opposite change of coordinates q(g, q1, ..., qz) where

(A.4) q
kji

= gjq
j
i .

When we apply the above transformations to the replicator equations,

we obtain a set of equations that describes the dynamics inside the sub-

populations (intraspecific dynamics). When the set of strategies in each

subpopulation is characterized by the vector of indices kj , then the system

of replicator equations will be:

(A.5)
dqji
dt

= qji

[
M j

i − M̄
j
]

i = 1, ..., uj − 1, j = 1, ..., z

(A.6)
dgs
dt

= gs
[
M̄ s − M̄

]
s = 1, ..., z − 1
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where M̄ s =
∑us

i=1 q
s
iM

s
i is the mean fitness in the s-th subpopulation

and M̄ =
∑z

s=1 gsM̄
s. In practical applications of this method to the mod-

elling of biological problems, the replicator equations can be defined on the

decomposed population. This will simplify the formulation of the model,

because when strategies are initially assigned to subpopulations, there is

then no need to change their indices. The choice of subpopulations is ar-

bitrary and depends on the biological assumptions underlying the analyzed

problem. For example, the entire population may be divided into two com-

peting subpopulations of hosts and parasites or prey and predators. On the

other hand, it may be divided into two subpopulations of males and females,

when interspecific dynamics will describe the evolution of the secondary sex

ratio, and intraspecific dynamics will describe changes of the frequencies of

strategies inside the male and female subpopulations. The subpopulations

can be divided into subsubpopulations, and the entire population may be

transformed into a complex multilevel cluster structure. However, all these

structures are equivalent to a single population replicator dynamics model.

Appendix B Derivation of equations (14) and (15) describing

selection strategies inside L-classes and change of sizes of

L-classes

Let us assume than we have m such classes with Hj different strategies

in the j-th L-class. In addition, assume that the dynamics is on the stable

size manifold. Then the initial system of the replicator equations can be
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transformed into two sets of differential equations. Firstly, the within L-

class dynamics (according to A.5):

(B.1)
dqji
dt

= qji

(
M(vji )− M̄

j
)
,

where qji is the proportion of the i-th strategy in the j-th L-class and M̄ j =∑
w q

j
wM(vjw) =

∑
w q

j
wdi

(
L(vjw)/L(v̄(q))− 1

)
. Secondly, the between L-

class dynamics (according to A.6):

(B.2)
dgj

dt
= gj

(
M̄ j − M̄

)
,

where gj is the proportion of the j-th L-class and M̄ = 0, since the

population is on the stable size manifold. Since for all strategies (for all

i) from the same L-class L(vji ) = Lj , after substitution of the respective

formulae into Equations (B.1) and (B.2), we obtain the equations (14) and

(15):

dqji
dt

= qji

(
di

(
L(vji )

L(v̄(q))
− 1

)
−
∑
w

qjwdi

(
L(vjw)

L(v̄(q))
− 1

))
(B.3)

= qji

(
Lj

L(v̄(q))
− 1

)(
dji −

∑
w

qjwd
j
w

)
, (B.4)

dgj
dt

= gj

(
Lj

L(v̄(q))
− 1

)∑
w

qjwd
j
w. (B.5)

Appendix C: Proof of Theorem 1

From (12) we have that

dqi
dt

= diqi

(
L(vi)

L(v̄(q))
− 1

)

and so

(C.1)

(
L(vi)

L(v̄(q))
− 1

)
=

1

diqi

dqi
dt
.
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Consider any pair of strategies vi = [bi, di] and vj = [bj , dj ] from the same

L-class (i.e. L (vi) = L (vj)). Using (C.1) we obtain

1

diqi

dqi
dt

=
1

djqj

dqj
dt
⇒

∫
1

djqj
dqi =

∫
1

djqj
dqj + C ⇒

(C.2)
ln qi(t)

di
=

ln qj(t)

dj
+ C.

Considering t = 0 in equation (C.2) we obtain

(C.3) C =
ln qi(0)

di
− ln qj(0)

dj
.

Combining (C.3) with (C.2) we obtain

ln qi(t)− ln qi(0)

di
=

ln qj(t)− ln qj(0)

dj
⇒

(C.4)

(
qi(t)

q0(t)

)1/di

=

(
qj(t)

q0(t)

)1/dj

.

Equation (C.4) holds for any pair i, j from the same L-class, so that

(
qi(t)

q0(t)

)1/di

= λ(t)⇒

qi(t) = qi(0)λ(t)di i = 1, . . . I,

for some λ(t). It is clear from equation (12) and the fact that L(v̄(q)) is

increasing whenever there is heterogeneity of L values within the population

that for the Lmax-class the corresponding value λ(t) is always increasing and

for any other class it is either always decreasing, or starts by increasing and

then eventually switches to decreasing, when the population size passes the

corresponding threshold (6). Since λ(t) is bounded above and below, and
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a monotonic function (decreasing or increasing) then it converges. Letting

λ = limt→∞ λ(t) gives

(C.5) qi = lim
t→∞

qi(t) = qi(0)λdi .

We know that
∑

i qi = 1, thus for at least one L-class the corresponding

λ(t) should not converge to 0. The system (14),(15) shows that it will be

Lmax-class. However, the above reasoning used coordinates describing the

strategy frequencies in the whole population (a metasimplex coordinates,

Argasinski 2006). According to (A.4), qu(0) can be described in the coor-

dinates of the system (14) and (15) and after change of the indices u = kla

where l is the index of the L-class and a is the index of the strategy within

this L-class, we have qkla = glq
l
a. Thus the rest-point will contain only the L-

maximizing strategies, so that the state of the Lmax-class will be equivalent

to the state of the whole population (i.e according to (A.4) gmax = 1 and

qkmax
i

= qmax
i ), but frequencies qkmax

i
(0) will not sum to 1. However, from

(A.4) we have qkmax
a

(0) = gmax(0)qmax
a (0). Then (C.5) for the Lmax-class can

be presented as:

(16) qmax
a = qmax

a (0)gmax(0)λda .
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Figure legends:

Figure 1

The figure shows the plot of the L-surface over the strategy space. The

individual strategies and L-classes are shown on the strategy space. The

L-class of the populations average strategy is the border between regions of

growth and decline. The growth of the frequencies of the strategies from the

growth area induce counterclockwise movement of the L-class of the aver-

age strategy, leading to the selection of L-maximizing strategies. However,

among L-maximizers, selection for greater mortality d can be induced by

the introduction of sub-optimal mutants. In this case the strategy lying on

the maximal L-class line, farthest from zero, wins.


