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Abstract.

In this paper a model for the prediction of the ultimate axial compressive capacity of square and rectangular

Concrete Filled Steel Tubes, based on an Atrtificial Neural Network modeling procedure is presented. The model is trained and
tested using an experimental database, compiled for this reason from the literature that amounts to 1193 specimens, including
long, thin-walled and high-strength ones. The proposed model was selected as the optimum from a plethora of alternatives,
employing different activation functions in the context of Artificial Neural Network technique. The performance of the
developed model was compared against existing methodologies from design codes and from proposals in the literature,
employing several performance indices. It was found that the proposed model achieves remarkably improved predictions of the

ultimate axial load.

Keywords:

artificial neural network; CFST column; soft computing; ultimate axial load

1. Introduction

Steel is widely used for various structural components in
the construction industry including civil, industrial, bridge,
hydraulic etc. (Ali et al. 2016, Caprili and Salvatore 2015),
due to its key properties that prove valuable in practice,
such as high tensile and compressive strength, enhanced
ductility, reliability as well as speed of construction (Zhao
et al. 2015). However, the main disadvantage of structural
steel is that it can be susceptible to corrosion and also the
high cost of material (Young 2008). For example, a bare
steel pipe under compression is susceptible to various
instabilities, namely flexural buckling, local buckling etc.
however, filling the pipe with concrete certain advantages
are obtained. The corrosion resistance of the inner surface is
enhanced, the buckling capacity as well as the local stability
of the pipe walls against inward movement are increased
and additionally, an elevated resistance to distortions, due to
impact, is achieved (Khan et al. 2017). For the concrete
core on the other hand, confinement is offered by the steel
pipe, which also serves as formwork.

Steel tubes filled with concrete have shown many
advantages in the literature and are widely used in many
fields (Khanouki et al. 2016, Giakoumelis and Lam 2004).
They are typically called concrete-filled steel tubes
(CFSTs), and offer high strength and stiffness, large energy
absorption capacity, high axial load capacity, attractive
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appearance, increased fire resistance, excellent ductility,
and low strength degradation (Giakoumelis and Lam 2004).
Having these characteristics, CFST components can be
widely applied in many types of structures and loading
conditions (Han and Yang 2001); for example as columns in
high-rise buildings, in bridges (pylons, abutments, arch ribs,
piers), and even in regions of high seismic risk (Tao et al.
2016, Song et al. 2017, Chang et al. 2012, Han et al. 2005,
Baig et al. 2006). Notably, numerous bridges built in China
have been using CFST-type components; for instance, 413
bridges with a span of no less than 50m were built in 2015
(Liu et al. 2019). In particular, CFST structures prove
highly effective when subject to compression (Ren et al.
2019).

The maximum bearing capacity of CFST columns
depends on the properties and behavior of its constituent
materials. In addition, the behavior of columns depends on
the geometric properties of the steel pipe, such as the width-
to-thickness ratio and the confining effect of the steel pipe
on the concrete core. The cross-sectional forms of the
selected column CFST are usually symmetrical, either
circular or square or rectangular (Han et al. 2014). The
CFST columns with square and rectangular shapes are
commonly used in construction, as they provide easier
manufacturing process for the beam to column joints and
achieve higher bending stiffness (Ren et al. 2019, Zhao et
al. 2015). However, when compared to circular CFST
columns, they do not offer the same confinement conditions
and the potential for delamination of the concrete from the
steel tube, under working loads, is increased (Krishan et al.
2016, Bradford et al. 2002, Goel and Tiwary 2018). It is
well known that the bond-slip between the concrete core
and the steel tube has a crucial effect on the mechanical

ISSN: 1229-9367 (Print), 1598-6233 (Online)



460 Panagiotis G. Asteris et al.

behavior, failure mode, and the working performance of the
CFST members.

In the past decades, many studies of the bearing capacity
and behavior of the CFST have been performed, focusing
on their mechanical properties under axial compression. In
Schneider (1998), a total of fourteen samples were used to
evaluate the effect of wall thickness and the steel tube shape
on the composite column ultimate strength, considering the
parameters of the ratio of depth to tube wall thickness and
the shape of the steel tube. The experimental results
suggested that current design specifications are not
sufficient for predicting the yield load for various structural
shapes. Fam et al. (2004) carried out experimental work and
analytical modeling of CFSTs subject to concentric axial
compressive as well as lateral cyclic loading. Ten samples
were tested; five short CFST column samples and five
CFST beam-column samples. The results indicated that the
bond and the end loading conditions had no significant
influence on the flexural strength of beam-column
members. Other studies also performed experimental tests
focusing on the behavior of the CFST columns under the
axial load (e.g., Ibanez et al. 2021, Yu et al. 2007, Han et al.
2012, Asteris et al. 2021c¢).

In addition, numerical simulations have been developed
and widely applied in investigating the behavior of CFST
columns under axial compression. For example, Dai et al.
(2010) utilized Finite Element Modeling (FEM), to simulate
the elliptical CFST columns under axial compression. Choi
et al. (2009) described a numerical program for analyzing
the behavior of the tubular CFST columns and predicting
different modes of lateral interactions between the concrete
and the steel tube under axial compression. It is worth
noting that in such numerical simulations, it is laborious to
take into account all material properties and interactions, in
order for the models to be able to predict the behavior of the
CFST columns, under various loading conditions and with a
reasonable precision (Sarir et al. 2019b). From previous
studies, many well-known national standards and
recommendations proposed various practical design
formulas in order to characterize the behavior of the CFST
columns, namely Chinese code DBJ 13-51-2010 (2010),
Australian code AS5100 (2004), American code AISC 360
(2016), Japanese code AIJ (1997), and European code
EN1994 (2004). Moreover, other simplified calculation
formulas have also been proposed, for instance, Yu et al.
(2013) proposed a unified formula to calculate the axial
load-bearing capacity of the circular or polygonal CFST
columns. However, most simplified methodologies suffer
from limited application scope and/or accuracy, preventing
them from widespread use. Therefore, the development of
robust and accurate methods for multiple applications are
required to be able to calculate with confidence the final
load-bearing capacity of the CFST columns.

Artificial Intelligence (AI) and machine learning have
been developed and applied in many different fields with
high precision and effectiveness (Ahmadi et al. 2017,
Psyllaki et al. 2018, Kechagias et al. 2018, Huang et al.
2019, Apostolopoulou et al. 2019, 2020, Armaghani et al.
2020, Armaghani and Asteris 2021, Asteris et al. 2021a,
2021b, Zeng et al. 2021, Zhang et al. 2021). Out of these,

Table 1 Field of application of examined design codes
regarding CFST axial compressive strength

Code Limits
235 < f, < 460
25 < f/ <50
H/t < 52V(235/f,)
f, <525
21<f <69
H/t < SV(E/f,)

EN1994 (2004)

AISC 360 (2016)

235 < f, <355
18<f.' <60

H/t <1102.5/ /min £ 0.7£,)
f, <350
25 < f.' <65
H/tV(f,/250) < a

where a depends on tube manufacturing

AlJ (1997)

AS5100 (2004)

Artificial Neural Network (ANN), which uses existing
experimental data to train neural networks in order to study
the behavior of the materials and structures under various
testing conditions, has become the most commonly used
machine learning algorithm (Jegadesh and Jayalekshmi
2015, 2015b). Many studies related to ANN on the behavior
of steel-concrete pipe columns, subject to different types of
loads have been conducted, such as the estimation of fire
resistance of tubular CFST columns (Al-Khaleefi et al.
2002); study of biaxial bending behavior of steel-concrete
composite beam-columns (Behnam and Esfahani 2018) and
ultrasonic testing CFST (Xiao 2012). Du et al. (2017)
utilized ANN to estimate the axial bearing capacity of
rectangular CFST columns, considering various input
parameters, namely sectional width, length and thickness,
steel and concrete strength. In such a study, a total of 305
experimental samples were collected, and the results
showed that the predicted values are more accurate
compared to ACI-318 (2014) and EN1994 (2004). Focusing
on the same problem, a growing number of works employs
soft computing techniques, including Duong et al. (2020),
Ly et al. (2021), Asteris et al. (2021a), Ho and Le (2021).
An in-depth state-of-the-art review on the behavior of CFST
columns has been recently published by Sarir et al. (2019a),
where two ANN-based hybrid metaheuristic models were
presented, optimized by whale optimization algorithm
(WOA) and particle swarm optimization (PSO). Validation
and comparison results confirmed the effective role of the
WOA in optimization of the proposed hybrid model (ANN-
WOA) to predict the bearing capacity of CFST columns.

In the present study, available experimental results for
the ultimate axial loads of rectangular concrete-filled steel
tubes (CFST) are selected and incorporated within a
database of tested specimens.

2. Research significance

Structural engineers spend significant amount of time in
preliminary design stage and optimization. Artificial Neural
Network (ANN) has been emerging quickly in the research
field, but more practical examples are required to increase
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Table 2 Expressions in the literature for the CFST axial compressive strength

Source Formulas Source Formulas
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Fig. 1 Schematic representation of the biological neuron structure (Asteris et al. 2019)

confidence is using it while ANN has becoming popular in
the ACE sector. This study evaluates the feasibility of ANN
in designing CFST columns used in the building
construction sector to help increase the efficiency in design
stages. ANN has been selected as it has the ability to learn
and model non-linear and complex relationship which fits to
most structural design problems. The evaluation of the
feasibility to utilize ANN is important for the future of
structural design as Artificial Intelligence (AI) models can
optimize and predict, as well as increase the efficiency at
preliminary design stage.

3. Brief literature review on available proposals

Many steel and composite codes cover the design of
CFST columns subject to axial compression. These include
the European code EN1994 (2004), the American codes
AISC 360 (2016) and ACI-318 (2014), the Japanese code
AlJ (1997), the Australian code AS5100 (2004), and the
Chinese code DBJ 13-51-2010 (2010). All codes limit their
field of application, typically in regard to steel strength fy,
concrete strength f.” and steel section slenderness. Table 1
presents these limits for EN1994 (2004), AISC-360 (2016),
AlJ (1997) and AS5100 (2004), that will be utilized in this

N
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Fig. 2 Rectangular CFST under uniaxial compressive load

Axial shortening

work for comparison against the proposed ANN
methodology, later in the text. It can be seen that a
significant range of high strength steels and concretes is not
covered by the codes. AISC-360 (2016) is the most
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Table 3 Data from experiments published in literature

Nr Reference Number of Samples Axial Load
’ Tested Inverted Total (kN)
1 Zhang 1984 50 50 660,00-2800,00
2 Lu et al. 1999 6 6 2061,00-4872,00
3 Guo 2006 6 6 347,00-1785,00
4 Liu and Gho 2005 14 6 20 1566,00-3996,00
5 Liu et al. 2003 6 6 12 1490,00-4210,00
6 Liu Dalin 2005 10 2 12 1657,00-2828,00
7 Ye Zaili 2001 45 21 66 1150,00-2700,00
8 Guo et al. 2006 8 8 635,00-1785,00
9 Wei and Han 2000 20 20 882,00-2058,00
10 Zhang and Zhou 2000 36 36 588,00-1323,00
11 Tomii and Sakino 1979 8 8 497,40-667,00
12 Inai and Sakino 1996 46 46 1153,00-7780,00
13 Nakahara and Sakino 1998 4 4 3899,00-6645,00
14 Lu and Kennedy 1992 4 2 6 1906,00-4208,00
15 Yamamoto 2000 16 16 411,00-6494,00
16 Lam and Williams 2004 15 15 680,00-2000,00
17 Han and Yao 2004 6 6 2284,00-2594,00
18 Matsui et al. 1995 5 5 1143,00-1598,00
19 Wei and Han 2000 8 8 754,20-2082,50
20 Furlong 1967 10 10 488,00-1601,36
21 Grauers 1993 14 14 1440,00-2680,00
22 Schnider 1998 11 9 20 819,00-2069,00
23 Chung et al. 2001 5 5 1144,00-1598,00
24 Han 2002 4 4 8 740,00-880,00
25 Ghannam 2004 14 12 26 491,00-1248,00
26 Han and Yao 2004 5 5 1986,00-2280,00
27 Guo et al. 2005 10 4 14 1558,00-2636,00
28 Luo 1986 28 28 600,00-1740,00
29 Liu and Gho 2005 12 12 24 1725,00-2291,00
30 Liu et al. 2003 15 15 30 1425,00-2970,00
31 Liu 2005 12 12 24 1735,00-2124,00
32 Ye 2001 23 23 46 1068,00-2700,00
33 Knowles and Park 1969 6 6 355,86-511,55
34 Lin 1988 12 6 18 558,00-1268,00
35 Shakir-Khalil and Mouli 1990 14 14 28 850,00-1370,00
36 Matsui and Tsuda 1996 5 5 1143,46-1597,50
37 Han and Yao 2003a 19 15 34 552,00-1140,00
38 Han and Yang 2003 4 4 8 490,00-825,00
39 Han and Yao 2003b 6 6 640,00-816,00
40 Ghannam et al. 2004 24 12 36 240,00-1248,00
41 Han and Yao 2004 11 11 1986,00-2594,00
42 Sakino et al. 2004 46 46 1153,00-7780,00
43 Yu et al. 2008 10 10 466,00-1220,00
44 Aslani et al. 2015 12 12 1367,00-3882,00
45 Du et al 2016a 6 5 11 3090,00-3575,00
46 Du et al. 2016b 8 8 16 1960,00-3150,00
47 Dundu 2016 27 27 105,40-1516,26
48 Khan et al. 2017a 39 39 286,00-6329,00
49 Khan et al. 2017b 16 16 1636,00-7506,00
50 Mursi and Uy 2004 4 4 1835,00-3950,00
51 Vrcelj and Uy 2002 8 5 13 269,00-684,00
52 Xiong et al. 2017 5 5 6536,00-7276,00
53 Zhu et al. 2017 6 6 2730,00-3980,00
54 Lue et al. 2007 22 22 44 1281,30-2196,40
55 Liew et al. 2016 5 5 6536,00-7276,00
56 Chen et al. 2018 9 9 987,00-2051,00
57 Ibanez et al. 2018 6 2 8 824,50-1882,50
58 Zhu and Chan 2018 7 7 3452,00-6298,00
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N Reference Number of Samples Axial Load
Tested Inverted Total (kN)
59 Uy 1998 5 5 950,00-2519,00
60 Uy 2000 8 8 1114,00-4581,00
61 Tao et al. 2009 4 4 1993,00-3190,00
62 Tao et al. 2008 6 6 2140,00-4080,00
63 Cederwall et al. 1990 14 14 1380,00-2680,00
64 Chen and Jin 2010 6 5 11 1980,00-2360,00
65 Han et al. 2005 24 24 318,00-3400,00
66 Lu et al. 2021 4 4 7246,00-9057,00
67 Yan et al. 2020 6 6 12 1000,00-1314,00
68 Ibanez et al. 2021 8 4 12 824,50-1882,50
69 Hossain and Chu 2019 13 3 16 176,00-1535,00
70 Huang et al. 2020 10 10 20 3203,80-4250,10
71 Zhou et al. 2020 4 4 5322,00-7945,00
72 Islam et al. 2021 13 13 770,00-1384,00
73 Nguyen et al. 2021 6 6 2216,00-3154,00
Total 944 249 1193 105,40-9057,00
Table 4 The input and output parameters used in the development of BPNNs
. . Data in NN Models
Variable Symbol Units Category Min Average Max STD
Width of Tubes Section B mm Input 50.00 142.48 400.00 51.50
Height of Tubes Section H mm Input 50.00 142.48 400.00 51.50
Thickness of Tubes t mm Input 0.70 4.28 10.30 1.68
Effective Length of Column Le mm Input 60.00 906.03 3600.00 791.60
Steel Yield Strength fy MPa Input 176.30 406.02 1030.60 172.28
Co““"tsetgggﬁress‘ve fic MPa Tnput 8.50 51.95 150.97 28.87
Axial Load N KN Output 105.40 2003.27 9057.00 1502.36
Table 5 Correlation matrix of the input and output variables
. Input Output
Variables B i : Lo fy fe N
B 1.00
H 0.75 1.00
Input t 0.10 0.10 1.00
Le 0.01 0.01 -0.08 1.00
fy -0.02 -0.02 0.38 0.11 1.00
fc' -0.06 -0.06 0.19 0.03 0.27 1.00
Output N 0.65 0.65 0.50 -0.10 0.51 0.32 1.00

inclusive one, particularly regarding steel.

All examined codes provide procedures for validating
the squash load of CFST using a combination of the plastic
strengths of the steel and concrete parts. For slender steel
sections however, the ultimate compressive capacity is
restricted by the local buckling phenomena of the tube
walls. On the other hand, for long columns, the ultimate
load is probably determined by member buckling. axial
compressive  load. The selected codes provide
methodologies for the characterization of local or global
buckling phenomena. Taking into account that the
specimens in our experimental database, that will be
presented later in the text, contain both long tubes and thin-
walled ones, this remark is considered crucial for a fair
comparison between the design codes. Safety factors are not

included in the presented formulas. Appendix presents the
relevant formulas available in the four selected design codes
for the calculation of the CFST capacity, under.

A significant number of proposals is also available in
the literature for the estimation of the axial ultimate load of
square and rectangular CFSTs. Among others, Sakino et al.
(2004) proposed a strength reduction factor, for square
shaped tubes, accounting for local instabilities. Han et al.
(2005), provided an expression for the squash load of
square and circular CFSTs. Wang et al. (2017) proposed a
simplified model for the prediction of the ultimate axial
load of circular and rectangular CFST columns, accounting
for concrete confinement and tube slenderness. Also, for
high strength steel, Du et al. (2016) calibrated an expression
for the ultimate load of CFSTs. Table 2 summarizes these
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expressions available in the literature, in the case of
rectangular tubes, that is the scope of this work.

4. Materials and methods
4.1 Brief review on artificial neural networks

Artificial neural networks (ANNs) are based on the
concept of the biological neural network of the human
brain. The basic building block of ANNs is the artificial
neuron, which is a mathematical model aiming to mimic the
behavior of the biological neuron (Fig. 1). Information is
passed into the artificial neuron as input and is processed
with a mathematical function leading to an output that
determines the behavior of the neuron (similar to fire-or-not
situation for the biological neuron). Before the information
enters the neuron, it is weighted in order to approximate the
random nature of the biological neuron. A group of such
neurons consists of an ANN, in a manner similar to
biological neural networks. In order to set up an ANN, one
needs to define: (i) the architecture of the ANN; (ii) the
training algorithm, which will be used for the ANN’s
learning phase; and (iii) the mathematical functions
describing the mathematical model.

The architecture or topology of the ANN describes the
manner in which the artificial neurons are organized in the
group and how information flows within the network. For
example, if the neurons are organized in more than one
layer, then the network is called a multilayer ANN. The
training phase can be considered as a function minimization
problem, in which the optimum values of weights need to
be determined by minimizing an error function. Depending
on the optimization algorithms used for this purpose,
different types of ANNs exist.

The gradient descent (GD) method is employed mainly
in the back-propagation (BP) stage of the training process
of the ANN model (Rumelhart et al. 1986). The main
working principle of the GD is to adjust the weights of the
ANN model iteratively while minimizing the error between
the actual output and target (Du and Swamy 2013).
However, using GD may results to convergence problems
(Gupta et al. 2013) (i.e., time-consuming training process).
Many more training algorithms have been proposed to
enhance the effectiveness of ANN training, one of them is
the Levenberg-Marquardt (LM) method (Marquardt 1963),
which has been commonly used in various studies of
different fields (Raghuwanshi et al. 2006, Aqil et al. 2007,
de Vos and Rientjes 2008, Taormina et al. 2012). The speed
of convergence when using the LM technique has been
improved due to the method that was developed by
combining the GD and Gauss-Newton (GN) algorithms
(Marquardt 1963). More recently, a number of training
algorithms that use the second derivative have been
proposed in the literature. These are the One-Step Secant
(OSS) (Battiti 1992), the Gradient Descent with Adaptive
Learning Rate (GDA) (Kayacan and Khanesar 2015), the
Scaled Conjugate Gradient (SCG) (Meller 1993), and the
Conjugate Gradient Backpropagation with Powell-Beale
Restarts (CGB) (Powell 1977). However, second-order

learning techniques require to be used in a batch mode due
to the sensitivity of the numerical computation of second-
order gradients (Akbar et al. 2011, Du and Swamy 2013). In
addition, learning algorithms based on the first and second-
order derivative may not have the required convergence
ability if the starting point is located outside of the search
domain (Brownlee 2016). The foresaid learning algorithms
contributed to the progress in training ANN methods, for
better performance of the prediction models.

4.2 Performance Indices

Three different statistical parameters were employed to
evaluate the performance of the derived computational model
as well as the available in the literature formulae, including the
root mean square error (RMSE), the mean absolute percentage
error (MAPE), and the Pearson Correlation Coefficient R% The
lower RMSE and MAPE values represent the more accurate
prediction results. The higher R? values represent the greater fit
between the analytical and predicted values. The
aforementioned statistical parameters have been calculated by
the following expressions (Alavi and Gandomi 2012):

1 n
RMSE = ;Z(xi —y;)? 9]
MAPE = li |u| ?)
n = XL-
2 _ z:‘::l=1('xl' - yi)z
=1 (565 g

where n denotes the total number of datasets, and x; and y;
represent the predicted and target values, respectively.

The reliability and accuracy of the developed neural
networks were evaluated wusing Pearson’s correlation
coefficient R and the root mean square error (RMSE). RMSE
presents information on the short-term efficiency which is a
benchmark of the difference of predicted values in relation to
the experimental values. The lower the RMSE, the more
accurate is the evaluation. The Pearson’s correlation coefficient
R measures the variance that is interpreted by the model, which
is the reduction of variance when using the model. R values
range from O to 1, however the model has healthy predictive
ability when it is near to 1 and it is not predicting when near to
0. These performance metrics are a good measure of the
overall predictive accuracy.

Furthermore, the following new engineering index, called
a20-index, has been proposed for the reliability assessment of
the developed ANN models (Asteris ef al. 2019, Asteris and
Mokos 2020, Asteris et al. 2021d):

m20
A20-index = ™ 4

where M is the number of dataset sample and m20 is the
number of samples with value of rate Experimental
value/Predicted value between 0.80 and 1.20. Note that for a
perfect predictive model, the values of a20-index values are
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expected to be unity. The proposed a20-index has the
advantage that their value has a physical engineering meaning.
It declares the amount of the samples that satisfies predicted
values with a margin +20% compared to experimental values.

4.3 Data used and selection of variables
It should be noted that the term “sufficient amount of

data” does not necessarily imply a high amount of data, but
rather datasets that cover a wide range of combinations of

input parameter values, thus assisting in the model
capability to simulate the problem. The demand for a
reliable database is particularly crucial in the case of
experimental databases, which are databases compiled
using experimental results. In this case, significant
deviations between experimental values are frequently
noticed, not only between experiments conducted by
different research teams and laboratories, but even between
datasets derived from experiments conducted on specimens
of the same synthesis, produced by the same technicians,
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cured under the same conditions and tested implementing
the same standards and the same testing instruments.

In light of the above discussion, an experimental
database comprising 1193 datasets was compiled from
research papers reported in the literature dealing with the
behavior of rectangular concrete-filled steel tubes under
axial load without any eccentricity (Fig. 2).

Table 3 presents in detail the number of samples and the
range of ultimate axial load for each one of the 73
experimental works used for the compilation of the database
which will be used for the development and training of the
soft computing model in the context of the artificial neural
network technique. Each dataset comprises of six input
parameters (Width of Tube Section (B), Height of Tube
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Section (H), Thickness of Tube (t), Effective Length of
Column (Le), Steel Yield Strength (fy) and Concrete
Compressive Strength (f'c)) and the ultimate axial load (N)
as the output parameter. Table 4 shows the minimum
average and maximum values, as well as the standard
deviation of the input and output parameters respectively,
while Table 5 presents the correlation matrix of the input
and output parameters. The histograms for each of the input
and output parameters are presented in Figs. 3 to 5.

4.4 Sensitivity analysis

In general, sensitivity analysis (SA) of a numerical model
is a technique used to determine if the output of the model is
affected by changes in the input parameters. This provides
feedback regarding which input parameters are the most
significant, and thus, by removing the insignificant ones, the
input space will be reduced and subsequently the complexity
of the model, as well as the time required for its training, will
be also reduced. In order to identify the effects of model inputs
on the outputs, the SA can be conducted on the database.
Sometimes, the results of SA help researchers/designers to
remove one or more input parameters from the database to
obtain better analyses with a higher level of performance
prediction. To perform the SA, the cosine amplitude method
(CAM), is employed, which has been used by many
researchers (Armaghani and Asteris 2021, Armaghani et al.
2015, 2020, Momeni et al. 2015, Asteris et al. 2021). In
CAM, data pairs may be used to construct a data array, X,
as follows:

X = {X1,X2,X3, e, Xjy ooe) X } %)
Variable x; in array, X, is a length vector of m as:
Xi = {Xi1, Xiz, Xiz) -+ Xim} (6)
The relationship between R;; (strength of the relation) and
datasets of X; and X; is presented by the following equation:
k=1 XikXjk

N, ZE:l X%k ZE:l X%

Rij =

@)

fc

fy

Le

0.00 0.20 040 060 0.80 1.00
Relative Strength of Effect (RSE)

Fig. 6 Sensitivity analysis of Axial Load Capacity of
Rectangular Concrete-filled Steel Tube Columns

The Rjj values between the Axial Load Capacity of
Rectangular Concrete-filled Steel Tube Columns and the input
parameters are shown in Fig. 6. This analysis reveals that, the
width and the height of the steel tube cross section have the
greatest influence on axial load capacity values, with strength
values of 0.8841, followed by steel yield strength, f, (0.8550),
thickness of tube walls, t (0.8540), concrete compressive
strength, f.' (0.7852). The parameter with the lowest
influence on axial load capacity seems to be the effective
column length, L, (0.5614).

5. Results and discussion
5.1. Development of ANN models

Based on the above, different architecture ANNs were
developed and trained. More specifically, during the
development and training of the ANN models the following
steps (which are summarized in Table 6 was followed:

» The 1193 datasets in the database, used for the training
and development of the ANN models, were divided into three
separate sets. Specifically, 796 of 1193 (66.72%) datasets were
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Table 6 Training parameters of ANN models
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Parameter Value Matlab function
Training Algorithm Levenberg-Marquardt Algorithm trainlm
Normalization Minmax in the range [0.10 — 0.90] and [-1.00-1.00] Zscore Mapminmax zscore
Number of Hidden Layers 1
Number of Neurons per
Hidden Layer b 11030 by step 1
Control random number 10 different random generation rand(seed, generator), where generator
generation range from 1 to 10 by step 1
Training Goal 0
Epochs 200
. Mean Square Error (MSE mse
Cost Function Sum Sguare Error ESSE)) sse
Hyperbolic Tangent Sigmoid transfer function (HTS) tansig
Log-sigmoid transfer function (LS) logsig
Linear transfer function (Li) purelin
Positive linear transfer function (PLi) poslin
Transfer Functions Symmetric saturating linear transfer function (SSL) satlins
Soft max transfer function (SM) softmax
Competitive transfer function (Co) compet
Triangular basis transfer function (TB) tribas
Radial basis transfer function (RB) radbas
Normalized radial basis transfer function (NRB) radbasn
Table 7 Best twenty optimum architectures of ANN models based on Testing datasets RMSE index
Transfer Function Datasets
Ranking  Normalization Technique Fui(c)tsiton Input Output  Architecture  Epochs Testing
Layer Layer R RMSE
1 Zscore MSE satlins purelin 6-30-1 24 0.9923 186.12
2 Minmax [-1.00, 1.00] MSE logsig tansig 6-24-1 16 0.9923 186.66
3 Minmax [-1.00, 1.00] MSE tansig tansig 6-16-1 52 0.9923 186.76
4 Zscore MSE tansig purelin 6-27-1 10 0.9922 188.31
5 Minmax [-1.00, 1.00] SSE satlins satlins 6-25-1 52 0.9920 190.08
6 Minmax [-1.00, 1.00] SSE logsig tansig 6-24-1 16 0.9919 190.59
7 Minmax [0.10, 0.90] SSE satlins logsig 6-20-1 24 0.9919 190.84
8 Minmax [-1.00, 1.00] MSE tansig tansig 6-24-1 52 0.9919 191.21
9 Minmax [-1.00, 1.00] SSE tansig tansig 6-24-1 52 0.9919 191.35
10 Zscore SSE softmax  purelin 6-20-1 10 0.9919 191.62
11 Minmax [0.10, 0.90] SSE radbasn  logsig 6-29-1 24 0.9919 191.69
12 Zscore MSE logsig purelin 6-28-1 10 0.9918 192.23
13 Minmax [-1.00, 1.00] MSE radbasn  tansig 6-23-1 16 0.9918 192.36
14 Zscore MSE tansig purelin 6-23-1 26 0.9918 192.55
15 Minmax [0.10, 0.90] SSE radbas logsig 6-19-1 56 0.9918 192.58
16 Minmax [0.10, 0.90] MSE radbasn  logsig 6-21-1 56 0.9917 193.70
17 Minmax [-1.00, 1.00] SSE logsig  purelin 6-16-1 12 0.9917 193.85
18 Minmax [-1.00, 1.00] MSE tribas satlins 6-26-1 12 0.9916 193.86
19 Minmax [0.10, 0.90] MSE radbasn  purelin 6-24-1 24 0.9917 193.86
20 Minmax [0.10, 0.90] SSE radbasn  radbas 6-29-1 56 0.9917 194.01

designated as Training datasets, 199 (16.68%) as Validation
datasets, while 198 (16.60%) datasets were used as Testing
datasets.

* During the training of the ANNSs, the above datasets were
used with and without normalization. When normalization of
the data was conducted, the minmax normalization technique
in the range [0.10, 0.90] and [-1.00, 100) as well as the Zscore
were implemented.

* The Levenberg—Marquardt algorithm (Lourakis 2005)
was used for the training of the ANNS.

* 10 different initial values of weights and biases were

applied for each architecture (Table 6).

* ANNs with only one hidden layer were developed and
trained.

* The Number of Neurons per Hidden Layer ranged from 1
to 30, by an increment step of 1.

» Two functions, the Mean Square Error (MSE) and Sum
Square Error (SSE) functions were used as cost functions,
during the training and validation process.

* 10 functions, as presented in Table, were used as transfer
or activation functions

The above steps resulted in the development of 240.000
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Table 8 Summary of prediction capability of the optimum BPNN 6-30-1 model against existing methodologies

Performance Indices

Model Datasets a20-index R RMSE MAPE VAF

Training 0.9209 0.9888 227.37 0.1100 97.78

! BPNN 6-30-1 Test 0.9246 0.9923 186.12 0.0888 98.47
2 Wang et al. (2017) Test 0.7638 0.9704 382.82 0.1475 93.51
3 EN1994 (2004) Test 0.7588 0.9697 400.86 0.1731 93.72
4 A1J (1997) Test 0.6533 0.9669 421.48 0.2011 93.49
5 Sakino et al. (2004) Test 0.6884 0.9639 421.53 0.1840 92.88
6 AS5100 (2004) Test 0.7688 0.9628 43591 0.1929 92.14
7 AISC360 (2016) Test 0.5779 0.9691 479.52 0.2426 93.85
8 Han et al. (2005) Test 0.7136 0.9588 615.84 0.1945 86.25
9 Du et al. (2016) Test 0.6432 0.9565 640.80 0.1984 85.35

different ANNs. It is worth noting that only the use of 10
different transfer function results in 100 different ANNs, for
each architecture with the same number of neurons, as a result
of 100 (=10?) different dual combinations of the 10 transfer
functions investigated.

The above developed 240.000 ANNs were ranked based on
the value of the RMSE performance index, for the case of
Testing Datasets, and the top 20 architectures are presented in
Table 7. Among them, the optimum ANN model, based on the
value of RMSE of Testing Datasets, is the BPNN 6-30-1 model
that corresponds to a NN structure with 30 neurons, and use of
zscore normalization technique, while the transfer functions are
the Symmetric saturating linear transfer function (SSL)
(satlins) for the hidden layer and the Linear transfer function
(Li) (purelin) for the output layer.

5.2. Evaluation

Table 8 summarizes the prediction capability of the
optimum BPNN 6-30-1 both for training and testing
datasets for the five used performance indices (a20-index,
R, RMSE, MAPE and VAF). A remarkably high a20-index,
over 0.92, indicates that 92% of the specimens were predicted
with a margin of error 20%. In the same table, the performance
indices of existing methodologies in the design codes and the
literature, that were described in a previous section, are also
presented, for the Testing datasets. The methodologies are
sorted according to their RMSE index. It can be observed that
the developed ANN model outperforms existing
methodologies for all examined performance indices. Taking
into account the Testing Dataset for the comparison, the BPNN
6-30-1 achieves more than 50% reduction of RMSE,
compared to the best existing methodology in this regard,
which is the proposed by Wang et al. (2017). Also, the
proposed ANN model records a 20% increase of the a20-index,
compared to the Australian AS5100 (2004) code, which
performs better among existing methodologies in this index.

Among the design codes, the best RMSE index is achieved
by the European EN1994 (2004) code, closely followed by the
Japanese AlJ (1997) and Australian AS5100 (2004) ones. In
terms of a20-index the AS5100 (2004) and EN1994 (2004)
perform quite similar, with a small improvement maintained by
the former. American AISC 360 (2016) code achieves the best
VAF index among the examined codes however, the remaining
indices are worst. Comparing between the methodologies from

the literature, the model form Wang et al. (2017) achieves the
best indices overall. The model from Sakino et al. (2004)
follows in terms of RMSE index while the model from Han et
al. (2005) achieves the second best a20-index. The models
from Han et al. (2005) and Du et al. (2016), which feature
simpler formulations, present quite lower RMSE indices.

6. Conclusions

In this paper, a new model for the prediction of the
ultimate load of square and rectangular CFSTs under axial
compression was presented. The model is based on the
ANN technique and employs a number of 30 neurons in a
single hidden layer. Its development employed a number of
different activation functions and normalization techniques
and it was selected as the optimum from 240000 alternative
configurations tested and compared with several
performance indices. The following points are the main
conclusions from the development procedure:

* The proposed model predicts the ultimate axial load in
a quite satisfactory manner offering 20% error margin for
92% of the specimens. Against existing methodologies from
the literature and design codes the improvement proves
quite significant.

* For the optimum ANN model, it was found that the
zscore transfer function provided the better prediction
capability compared to liner scaling in a predetermined
value ranges that is typically employed. Regarding transfer
activation functions the Symmetric Saturating Linear transfer
function (SSL) proved more effective for the hidden layer and
the Linear transfer function (Li) for the output layer.

* According to results from sensitivity analysis, among
the several input variables, the most influencing ones
proved the tube dimensions followed by the steel yield
limit.

The effective range of input parameters used for the
development of the proposed ANN model also defines its
valid field of application. Regarding member slenderness,
ratios of L/min{B;H} up to 24 have been effectively used,
whereas for section slenderness, ratios of max{B;H}/t up to
110. Regarding material properties, steel yield limits up to
820 MPa and concrete strengths up to 115MPa have been
effectively used.

An ANN model, even though time consuming to
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successfully train, requiring a certain level of expertise in its
development, once developed it can be quite valuable in its
predictions since it is directly correlated to experimental
results. In this context its reliability is always controlled by
the range of values of the input variables, available in the
experimental database used for its training. Therefore, it is
always useful to continually enrich the experimental
database with new specimens, so that the reliability of the
developed model is furtherly extended and improved.

Nomenclature

ANN(s) Artificial Neural Network(s)
A, Area of Concrete Core Section
A Area of Steel Tube Section
A Area of Composite Section
B Width of Tubes Section
BPNN Back Propagation Neural Network
CFST Concrete Filled Steel Tube
Co Competitive transfer function
E. Concrete Modulus of Elasticity
E, Steel Modulus of Elasticity
f Concrete Compressive Strength
fy Steel Yield Limit
fu Steel Ultimate Strength
GP Genetic Programming
GUI Graphical User Interface
H Height of Tubes Section
HTS Hyperbolic Tangent Sigmoid transfer function
I Moment of Inertia of Steel Tube Section
I, Moment of Inertia of Concete Core Section
L Length of Column
L. Effective Length of Column
Li Linear transfer function
LS Log-Sigmoid transfer function
MAPE Mean Absolute Percentage Error
MSE Mean Square Error
N Axial Load Capacity
Nb Buckling Capacity of Column
Ner Elastic Critical Bucking Load
Npi Squash Load
NRB Normalized Radial Basis transfer function
PLi Positive Linear transfer function
R Pearson correlation coefficient
RB Radial Basis transfer function
SM Soft Max transfer function
SSE Sum Square Error
SP Superplasticizer
SSL Symmetric Saturating Linear transfer function
t Wall Thickness of Steel Tubes
TB Triangular Basis transfer function
13 Confinement Factor

Concrete Density

Npredicted Prediction of axial load of CFST columns

[Iw] Weight matrix of the hidden layer
[bi] Bias matrix of the hidden layer
[LW] Weight matrix of the output layer
[bo] Bias matrix of the output layer
Buin, Bnax Min and max values of width of tubes sections

Hunin, Hinax Min and max values of height of tubes sections

Min and max values of thickness of tubes sections

tmin, Tmax

Lemin, Lemax Min and max values of effective length of column

fymin, Tymax Min and max values of steel yield limit

feminy cmax Min and max values of concrete strength
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Appendix

In Table 9 the expressions provided by the design codes
that were utilized in this work are presented, omitting safety

factors.

Table 9 Expressions in design codes for the CFST axial

Ultimate axial load of rectangular concrete-filled steel tubes using multiple ANN activation functions

compressive strength

Code

Formulas for axial compressive strength

EN1994
(2004)

AISC
360
(2016)

Al
(1997)

AS5100
(2004)

NEC* = yN,

pl’
Where:

x depending on A and imperfections, y <1,

- Npl = f;lAs + fc’Ac
- A= WV Npl/Ncr
- N, = w?(EI) 5/ L,?
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Where:
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 Ap<A<A,

- Ny, = f,As+ 0.85f. A,

- Ny = f, A +0.7f. A,
- A=(H-20)/t

- A, =226,/EJf, A =3.00JE/f,

- (El)eﬂf: Egls + CGE .
- C; = 045+ 34,/A, < 0.9
(Asfy +0.854cf; (= Ny) A<4
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N = izvpl -5 (Npy = Np)(A—4) ,4<a <12
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Where:
- A=1L.,/B
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- As = (As/m)\/fy/Es
- €5 = 0.00093(0.85£/)025
- C, = 0.568 + 0.00612f

N30 = g N, with a, <1

Where:

- Ny = fAs + )‘6;45
— Ncr = TTZ(ESIS + Eclc)/l‘e2
_ a. =¢&[1—1-(90/&1)?

- A =904, +a,a,
- Ar = Npl/NCT

_ (A/90)2+147
- §= 2(1/90)2
_ 2100(902,-13.5)
@ ™ 81004,-2-1377,+2050
_ 7 = 0.00326(13.5—1) = 0
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