
              

City, University of London Institutional Repository

Citation: Spreng, L. & Urga, G. (2023). Combining p-values for Multivariate Predictive 

Ability Testing. Journal of Business and Economic Statistics, 41(3), pp. 765-777. doi: 
10.1080/07350015.2022.2067545 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/27987/

Link to published version: https://doi.org/10.1080/07350015.2022.2067545

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Combining p-values for Multivariate Predictive Ability
Testing

Lars Spreng∗ and Giovanni Urga†

March 24, 2022

Abstract

In this paper, we propose an intersection-union test for multivariate forecast
accuracy based on the combination of a sequence of univariate tests. The testing
framework evaluates a global null hypothesis of equal predictive ability using any
number of univariate forecast accuracy tests under arbitrary dependence structures,
without specifying the underlying multivariate distribution. An extensive Monte-
Carlo simulation exercise shows that our proposed test has very good size and power
properties under several relevant scenarios, and performs well in both low- and high-
dimensional settings. We illustrate the empirical validity of our testing procedure
using a large dataset of 84 daily exchange rates running from 1 January 2011 to 1
April 2021. We show that our proposed test addresses inconclusive results that often
arise in practice.
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1 Introduction

In this paper, we propose a computationally efficient test for multivariate predictive ability

that is valid for any number of univariate forecast accuracy tests and arbitrary dependence

structures, without specifying the underlying multivariate distribution.

One of the main goals of econometric analysis is to make accurate predictions of a large range

of variables such as inflation, exchange rates, stock returns, or volatility to name only a few.

To this purpose, there exist a large number of candidate models and the main challenge is to

select the one with the best predictive ability. Thus far, the literature has proposed a variety

of testing procedures, most of which are univariate and evaluate two competing forecasts of a

single variable. Important examples include Diebold and Mariano (1995, DM) and Giacomini

and White (2006, GW). [See Clark and McCracken (2013) for a comprehensive overview of

existing testing procedures.] However, researchers are often interested in evaluating more

than two forecasts, either because multivariate models are used (e.g. Laurent et al., 2013)

or multiple variables are forecast (e.g. Carriero et al., 2019). In such cases, independence

between variables and forecasting models seldom holds true. Consequently, univariate

test statistics and their p-values can also exhibit dependencies, which means they cannot

necessarily be evaluated individually. This motivates the development of multivariate

forecast tests that account for dependence. Notably, the joint distribution of dependent

variables is difficult or impossible to obtain analytically without several assumptions. The

existing literature approaches this issue by evaluating a set of forecasts directly with a single

test that adequately captures dependencies. For instance, Qu et al. (2022) condition on a

common factor within forecast errors to capture any common components. Mariano and

Preve (2012) extend the DM test into a multivariate setting without directly addressing

the dependence structure. However, approaches that evaluate forecasts jointly suffer from

drawbacks that may render them infeasible in certain situations. First, their limiting
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framework is valid only under either a large or a small cross-section, restricting their

applicability. That is, one cannot use the same test with datasets of considerably different

dimensions. Second, the design of the forecasting scenario can require the use of multiple

different tests, e.g. because one compares nested and non-nested model or uses different

estimation windows that affect the asymptotic properties of tests. Third, it is not always

obvious when a test rejects in a multivariate setting in the sense that it is undefined how

many individual forecasts must be equally accurate for the null to be sustained.

The testing framework we propose combines univariate tests, taking advantage of both

recent advances in the statistical literature on combining dependent p-values as well as in

the econometric literature on multivariate forecast evaluation. The resulting test allows

researchers to estimate any number of univariate forecast accuracy tests – provided they

fulfill some nonrestrictive assumptions – and corrects for dependence in a subsequent step

that combines their p-values. Thus, one can implement tests that are most appropriate

in a given scenario and examine whether predictive ability holds in the cross-section. We

specify a global null hypothesis that is clearly defined as the intersection of all individual

null hypotheses, accounting for false discovery and dependence. Furthermore, our method

can be applied to p-values from different tests, meaning that when faced with mixed or

inconclusive evidence, one can obtain a more conclusive result. Hence, our test can be used

in a plethora of, if not all, forecasting scenarios. To the best of our knowledge, we are the

first to propose such a test.

Specifically, we propose an intersection-union (IU) test by applying the theoretical results

in Vovk and Wang (2020). We show that one can construct a global hypothesis test, based

on a single or several of the existing univariate tests for forecast accuracy, that is level-α

under any form of dependence. Crucially, our global test does not require knowledge of the

joint distribution of the p-values of the individual test statistics which cannot be derived

analytically. In addition, we study the power properties of the test and show under what
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conditions Type I and II errors vanish. We demonstrate the good size and power properties

of the test through a battery of Monte-Carlo simulations. For this purpose, we use three

benchmark tests: DM, GW, and Clark and West (2007, CW). The three tests are widely

used and suitable in different scenarios. However, we emphasize that our method is not

restricted to these tests, meaning it can be deployed in a range of forecasting situations.

The simulations evaluate the performance of our test in low-dimensional as well as high-

dimensional scenarios. We compare our method to the Mariano and Preve (2012) test, a

multivariate GW test, and methods that do not account for dependence between p-values.

The simulations show that these procedures display considerable size distortions, effectively

rendering them inapplicable in practical scenarios. When investigating their rejection

accuracy, we find that contrary to our test, the other multivariate procedures, which are

both of Wald-type, exhibit distinctly different rejection rates when dimensions change. This

highlights how the interpretation of test results can benefit from our intersection null in

practice. We illustrate the empirical validity of our testing procedure via an application

involving a large dataset of 84 daily exchange rates, running from 1 January 2011 to 1

April 2021, quoted against the US-Dollar, the British Pound, and the Euro. The empirical

illustration highlights the wide-ranging applicability of our test both in small and high

dimensional cases. Moreover, it exemplifies how our test addresses inconclusive results that

arise often in practice.

The remainder of the paper is structured as follows: Section 2 describes the forecasting

setup, introduces the IU testing framework, and also reports a way to apply the GW test

in a multivariate setting. Section 3 analyzes the size and power properties of the test in

various simulations and Section 4 provides an empirical illustration of the test. Section 5

concludes.
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2 Theory

This section presents our theoretical contribution. First, we outline a general framework for

univariate forecast evaluation that is consistent with our test. Second, we propose treating

univariate tests as sub-tests of a global null hypothesis and discuss the assumptions imposed

upon them. Third, we introduce our methodology for multivariate forecast comparison

which is based on the intersection of the sub-tests. Finally, we show how the Wald-type

GW test can be applied in a multivariate setting and serve as a benchmark for our IU test.

2.1 Forecasting Setup

Suppose we observe the vector Vt ≡ (Y ′t , X
′
t)
′, where Y = {Yt : Y 7→ Rn, n ∈ N} are the

variables one wishes to forecast and X = {Xt : X 7→ Rs, s ∈ N} are predictor variables.

Define Ft as the σ-field generated by the infinite history of V ≡ {Vt : Ω 7→ Rs+n} and

Y ∪ X = Ω such that V is defined on the complete probability space (Ω,F , P ). The

forecasting equation for Yt takes the form of an Ft-measurable function ψ : Ω 7→ F ⊂ R.

The function can include lagged values of Yt as well as Xt and can be parametric or non-

parametric. It produces τ -step-ahead forecasts Ŷ = {Ŷt+τ : F 7→ Rn} of Y based on the

information set Ft. Notation-wise, we define the estimation window of the parameters as R

and place no restrictions on whether R is a fixed, rolling, or expanding estimation window.

Further, we define the out-of-sample forecasting window as p such that T = R+ p+ τ is the

total sample the forecaster observes. Multiple procedures to evaluate the resulting forecasts

have been introduced, most of which rely on a forecast loss function. The forecast loss

function is defined as L(Ŷ , Y,X) : F × Ω 7→ Λ. In many cases, the loss function is defined

such that Λ ⊂ R+, with the most common type being the quadratic loss:

Li,R,t+τ =
(
Yi,t+τ − Ŷi,t+τ

)2
, i ∈ {1, ..., n}.
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The function can take many other forms and gives a vector {LR,t+τ}Tt=R. One can assess

forecasts based on a single loss function by testing whether it is statistically different

from zero. For two forecasts, Ŷ (1) and Ŷ (2), one can define a loss differential, ∆L ≡

L(Ŷ (1), Y,X)− L(Ŷ (2), Y,X). That is, in the quadratic case we have

∆Li,R,t+τ =
(
Yi,t+τ − Ŷ (1)

i,t+τ

)2
−
(
Yi,t+τ − Ŷ (2)

i,t+τ

)2
, i ∈ {1, ..., n}.

The vector ∆LR,t+1 then stacks the n univariate loss differentials. Note that one can use

several different loss functions to evaluate the same forecasts. However, the majority of

existing forecast accuracy tests evaluate forecasts based on one single loss differential. Most

commonly, by either formulating the unconditional null hypothesis Hi,0 : E[∆Li,R,t+τ ] = µi,0

or the conditional null Hi,0 : E[∆Li,R,t+τ | Ft] = µi,0. The parameter µi,0 is known and set

to be zero when testing for equal predictive ability. The second type of tests is then called

conditional equal predictive ability test and can ascertain if a particular model has superior

forecasting abilities. This is a notable difference to unconditional tests that only assess if

there are statistically significant differences between two forecasts. We use the notation of

GW, E[∆Li,R,t+τ | Gt] = µi, where Gt corresponds to either the natural filtration Ft or the

trivial σ-field {∅,Ω}, thereby referring to either of the two test types. The parameter µi

characterizes either the unconditional or the conditional mean of the loss differential of the

two forecasts. In this paper we consider the global null hypothesis:

H0 : E[∆LR,t+τ | Gt] = µ0.

Constructing a test for this hypothesis is less straightforward. One approach is to construct a

single test, based on the entire sample space Λ that jointly evaluates all elements in ∆LR,t+τ .

Dependencies between these elements pose an analytical and computational obstacle in
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the construction of a valid test. Therefore, we propose to test the intersection of the local

hypotheses Hi,0. Our methodology is compatible with all univariate test types that fulfill

the assumptions outlined in the next section.

2.2 Univariate Sub-Tests

Consider a series of n forecast accuracy tests, each of which is based on the random variables

Yi,t and Xt. The tests all examine the local hypothesis Hi,0, i.e. compare the accuracy

of two forecasts of the variable Yi,t. We treat these tests as sub-test for the global null

hypothesis that all forecasts exhibit equal accuracy. Each univariate sub-test evaluates the

sub-hypothesis:

Hi,0 : µi ∈ Mi,0, for i ∈ {1, ..., n},

against the alternative

Hi,A : µi ∈ Mi,A, for i ∈ {1, ..., n},

where Mi,0 is the set of admissible values for µi under the sub-hypothesis, Mi,A is the set of

admissible values for µi under the alternative hypothesis. Suppose the tests construct a test

statistic Si = si(V) with realization ŝi which, under Hi,0, has a density fi(x). Then, the

p-value of the test statistic corresponds to:

pi ≡ Pµi [{V ∈ Ω : si(V) > ŝi}] = 1− Fi(ŝi), for all µi ∈ M0,i,

for the cumulative distribution of fi(·), Fi(·). One rejects the sub-hypothesis if Pµi [ŝi ≥ ci] ≤

α, i.e. pi ≤ α, where α is the significance level chosen by the researcher and ci = F−1i (1−α).

To be consistent with our methodology, the sub-tests must satisfy the following assumptions:
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Assumption 1. (i) Under each sub-hypothesis, the choice for Mi,0 is Mi,0 = {µi,0} for

some known parameter value µi,0 ∈ R and for all i ∈ {1, ..., n}. (ii) Under each alternative,

the choice for Mi,A is Mi,A = {µi;µi 6∈ M∗i,A ∪ Mi,0} where M∗i,A represents the set of all

parameters that are local alternatives to the sub-hypothesis Hi,0.

Assumption 2. fi : R→ [0,∞], and Pµi [a ≤ X ≤ b] =
∫ b
a
fi(x)dx for all i ∈ {1, .., n}.

Assumption 3. (i) Under each sub-hypothesis Hi,0, supPµi [ŝi ≥ ci] ≤ α. (ii) Under each

alternative Hi,A, Pµi [ŝi ≥ ci]→ 1 for all i ∈ {1, ..., n}.

Assumption 1 (i) imposes that the parameter values for the null hypothesis of each

sub-test consist of a single value, i.e. they are not composite, while (ii) ensures the sub-

hypotheses are not tested against local alternatives that are too close to the null to be

detected [see Van der Vaart (2000, Ch. 7)]. Assumption 2 imposes that the density of the

test statistic is absolutely continuous, as is the case for most econometric tests. It ensures

that for any µi ∈ Mi,0, Pµi [{V ∈ Ω : si(V) > ŝi}] is known for all x ∈ R and i ∈ {1, ..., n}.

It is easy to see that both assumptions together imply that the p-values be uniform over

[0, 1]: pi ∼ Un[0, 1] under Hi,0. In this context, Assumption 1 is crucial as Robins et al.

(2000, p.1144) show that p-values are not necessarily uniform if the null hypothesis of a test

is composite. This is important as it implies our method is not applicable for tests with a

null of superior predictive ability. Assumption 3 (i) ensures the univariate sub-tests are of

level-α , while (ii) stipulates that their asymptotic power approaches one.

If Assumptions 1 and 2 hold true and we observe n independent p-values p1, ..., pn ∈ [0, 1],

then the variable P = (p1, ..., pn) ∈ [0, 1]n is uniform on the hypercube [0, 1]n. Indeed, under

independence, it is easy to derive the distribution of various possible combinations of the n

p-values. One of the most well known of such methods dates back to Fisher (1934) who

shows that SF = −2
∑

i log(pi) ∼ χ2
2n under H0 [see Heard and Rubin-Delanchy (2018) for

a detailed review of different methods]. Under dependence, however, the distribution does
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not admit an analytical solution (Liu and Xie, 2019; Kost and McDermott, 2002). Notably,

independence rarely holds in practice, particularly when forecasting multiple variables or

comparing related models. To prevent size distortions, multivariate forecast evaluation

methods must take dependence structures into account. As the latter are unknown in

most scenarios, an essential requirement for a multivariate forecast accuracy test is that it

exhibits good size and power properties under arbitrary forms of dependence.

In the next section, we develop a testing framework to address these important features

encountered in most economic and financial applications.

2.3 An Intersection-Union Test of Multivariate Forecast Accu-

racy

Consider a scenario where one has conducted a total of n sub-tests. Each test i ∈ {1, ..., n}

constructs a statistic ŝi, yielding a p-value pi, both stacked in the vectors S = (ŝ1, ..., ŝn)

and P = (p1, ..., pn)∈ Pn, where P is the set of all p-values. We do not assume that ŝi and

ŝj are independent for i 6= j ∈ {1, ..., n}. The previous section discussed the properties

of the sub-tests in detail. Now suppose we are interested in the global null hypothesis

H0 : E[∆LR,t+1 | G ] = µ0. Rather than developing a statistic that tests H0 directly, we

formulate the global null as the intersection of the sub-hypotheses Hi,0. That is, if we

define the set R = {i ∈ {1, ..., n} : µi ∈ Mi,A} with cardinality R0, we wish to test if R = ∅.

Formally, the intersection null hypothesis can be defined as

H0 =
⋂
i∈N

Hi,0 : µ ∈
⋂
i∈N

Mi,0, (1)

with the index set N = {1, ..., n}. It is tested against the alternative

HA =
⋃
i∈N

Hi,A : µ ∈
⋃
i∈N

Mi,A.
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We can write M0 = ∩i∈NMi,0 and MA = ∪i∈NMi,A. To test for equal predictive ability, we

can set µi,0 = 0 for all i ∈ N. In that case, the global null hypothesis H0 is that equal

predictive ability holds for each of the n pairs of forecasts and it is rejected if any of the n

sub-hypotheses is false. One can select whichever sub-test is most appropriate to examine

each sub-hypothesis Hi,0. This is a decisive advantage if one analyzes characteristically

different datasets or models. The clearly defined rejection set of our IU test stands in

contrast to other Wald-type tests of multivariate predictive ability whose rejection set is

undefined. We demonstrate this in our Monte-Carlo simulations. When the test statistics

are not independent, the global Type I error of the tests depends on the joint distribution of

S which is unknown. The obvious implication is that one cannot simply consider the p-values

individually to test H0. If one consults a statistic that assumes p-values are independent,

one is, in fact, not testing H0 but rather a composite of H0 and A0 := {pi ⊥⊥ pj for all

i 6= j ∈ N}, where ⊥⊥ denotes independence between variables. This can lead to considerable

size distortions, as a rejection may simply be due to a false independence assumption – a

point illustrated in our Monte-Carlo simulations. The main complication to testing H0 is

finding a test statistic s(P) for which it can be shown that

Pκ(·)

[
s(P) ∈ Cκ(·)

∣∣∣∣∣ ⋂
i∈N

pi ∼ Un[0, 1]

]
≤ α.

Here, κ(p) denotes an unknown reference density for the joint distribution of the p-values

under the intersection null hypothesis and Cκ(·) is a critical region for the significance level

α. Note that we do not condition on A0. In what follows, we propose a simple, widely

applicable, and computationally convenient methodology to circumvent the problem of

defining κ(·).

Based on recent results on the precision of merging functions for p-values of Vovk and Wang
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(2020), we define the following test statistic:

Pr,n = n−1

(
n∑
i=1

p−ri

)1/r

, for any r ∈ (1,∞). (2)

Unlike methods of minimum p-values like the Bonferroni correction, the statistic above

incorporates p-values of all sub-tests. The negative exponent ensures small p-values increase

the statistic by more relative to large values. It can be seen that the statistic is permutation

invariant, i.e. the order in which the individual tests are conducted does not change the

outcome of the IU test. We apply Proposition 5 in Vovk and Wang (2020) to study the

properties of the test both in a finite sample environment and asymptotically. The results

are formulated in the following theorem:

Theorem 1. Suppose Assumptions 1 (i), 2, and 3 (i) hold. Let {s1, ..., sn} be test statis-

tics from level-α tests of {H1,0, ...,Hn,0} with unknown dependence structure and p-values

{p1, ..., pn}. Under the intersection null hypothesis H0, for the test statistic Pr,n in (2) we

obtain the finite sample result:

P

[
Pr,n ∈ Cr,n

∣∣∣∣∣ ⋂
i∈N

pi ∼ Un[0, 1]

]
≤ α, (3)

and the asymptotic result:

lim sup
n→∞

P

[
Pr,n ∈ Cr,n

∣∣∣∣∣ ⋂
i∈N

pi ∼ Un[0, 1]

]
= α, ∀ (p1, ..., pn) ∈ Pn, (4)

for all α ∈ (0, 1), any r ∈ (1,∞), and the critical region Cr,n =
{
cr,n ≥ r

α(r−1)

}
.

Theorem 1 shows that the statistic is level-α for finite n and size-α for n→∞. Note

that the asymptotic result holds irrespective of whether the sub-tests are size-α or level-α.

The size properties follow as it can be shown the test statistic (2) falls into the category
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of increasing Borel functions F : [0, 1]n → [0,∞) for which Vovk and Wang (2020) show

sup[P{F (U) ≤ ε} | U ∈ [0, 1]n] ≤ ε for any ε ∈ (0, 1), regardless of the joint distribution of

U. To construct and analyze the statistic, we do not need to impose any assumptions about

the degree of dependence on the individual p-values. Nor does the computation require

knowledge of the joint distribution of P, as long as the uniformity of the p-values under

their individual null hypotheses is satisfied. Indeed, this is a decisive advantage of our

approach as it allows researchers to compare the accuracy of dependent forecasts without

making restrictive assumptions about the joint distribution of their tests statistics and

p-values, respectively. Importantly, if one decides to compare multiple forecasts through

individual tests without our procedure (or a comparable method) one is implicitly assuming

independence. Thereby, one is also testing the independence assumption which can increase

the Type I error. Furthermore, our methodology controls the False Discovery Rate (FDR)

which is defined as: FDR = E[FP/(FP + TP )1{FP+TP≥1}], where FP are false positives

and TP are true positives. It can be seen that Theorem 1 keeps the FDR lower or equal to

α. Notice also that we do not impose any restrictions on n relative to T . One implication

of Theorem 1 is that, in finite samples, under H0 the statistic has size smaller or equal to

the minimum size of any of the individual tests under the global null hypothesis:

π(µ) ≤
∧
i∈N

πi(µ), µ ∈ M0, (5)

where πi(µ) = Pi[Si ∈ Ci | µi] is the power function for each sub-test, ∧i∈N denotes the

minimum over all πi(µ) for all i ∈ N, and π(µ) = P[Pr,n ∈ Cr,n | µ] is the power function

for the global test. In the next theorem, we turn to the behavior of the test statistic under

the alternative hypothesis HA.

Theorem 2. Suppose Assumptions 1-3 hold. Let {s1, ..., sn} be a sequence of test statis-

tics from level-α tests of {H1,0, ...,Hn,0} with unknown dependence structure and p-values
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{p1, ..., pn}. Then under the alternative HA:

P [Pr,n ∈ Cr,n | µ ∈ MA]→ 1,

for all α ∈ (0, 1), any r ∈ (1,∞), and the critical region Cr,n =
{
cr,n ≥ r

α(r−1)

}
.

Theorem 2 presents a general finite sample case that shows the test rejects with probability

approaching 1 if the intersection null hypothesis is false. It is not necessary, and often

impossible, to impose a particular distribution on the p-values under the alternative and

analyze the finite sample power of the test. However, we can derive a specific asymptotic

result if the test statistics are jointly normally distributed and the global null hypothesis is

tested against sparse alternatives. This necessitates the following assumption:

Assumption 4. (i) S = (s1, ..., sn) ∼ N (µ,Σ), where Σ has off diagonal elements σi,j = 0

for any |i − j| > 1, (ii) R0 = nγ for γ ∈ [0, 0.5], (iii) Mi,0 = {i ∈ N : µi,0 = 0} and

Mi,A = {i ∈ N : µi =
√

2δ log n} for all δ > −2
√
γ(2r − 1)/r + γ − 1/r + 2.

Assumption 4 (i) imposes the vector of test statistics be multivariate normal with banded

correlation matrix, (ii) ensures only a relatively small number of tests rejects, by restricting

the number of rejected sub-tests to be a function nγ of the total number of sub-tests,

while (iii) replaces the conditions imposed on local alternatives in Assumption 1. Since the

parameter δ, which controls the magnitude of µi under the alternatives, depends negatively

on γ, the magnitude of µi for which the test rejects decreases in the relative number of

rejected sub-tests. The choice of µi,0 = 0 is standard in most forecast accuracy tests. This

setup follows Liu and Xie (2020) and Donoho and Jin (2004) and embeds our test in the

existing literature on combining p-values. In addition, we can define a specific range for δ

that maximizes the power of our test. Under Assumption 4, Liu and Xie (2020, Theorem 3)

show that the power of the statistic
∑n

i=1 ωi tan{(0.5−pi)π} converges to 1 for non-negative

ωi, with
∑

i ωi = 1. The following proposition extends their result to our IU test:
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Proposition 1. Suppose Assumptions 3 (i), 4 (i)-(iii) hold and we observe S = (s1, ..., sn)

as well as P = (p1, ..., pn). Then under the alternative HA:

lim
n→∞

P [Pr,n ∈ Cr,n | µ ∈ MA] = 1, (6)

for all α ∈ (0, 1), any r ∈ (1,∞), and the critical region Cr,n =
{
cr,n ≥ r

α(r−1)

}
.

Proposition 1 represents a special case of our test for normally distributed sub-tests. If

Assumption 4 holds and the magnitude of µi under the alternative is known, we can derive

a more explicit lower bound for r that ensures the power of the test equals 1 asymptotically:

Corollary 1. Suppose Assumptions 3 (i) and 4 (i)-(iii) hold. If δ ∈ (γ − 2
√
γ + 1, γ −

2
√

2
√
γ + 2), then the sum of Type I and II errors vanishes asymptotically for any r ∈

(1, 2− 2
√
γδ − γ − δ)−1).

Corollary 1 places an upper bound on r which depends positively on γ and δ. The result

implies that the larger γ, the larger the range of admissible values for r. In the general

case, we cannot specify a particular joint distribution. Therefore, we cannot simply obtain

a p-value for the statistic as 1− F (Pr,n), where F (·) is any CDF. It is, however, possible to

compute a p-value according to the proposition below:

Proposition 2. Suppose Assumptions 1-3 hold and we observe S = (s1, ..., sn) as well as

P = (p1, ..., pn). Then a p-value for the test statistic in (2) can be computed as

h(Pr,n) =
r

r − 1

1

Pr,n
∧ 1. (7)

Proposition 2 defines a variable h(Pr,n) ∈ [0, 1] that can be interpreted as a p-value to

the test statistic. Notably, we do not necessarily obtain h(Pr,n) ∼ Un[0, 1], nor are we able

to analyze the distribution of h(Pr,n).
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Theorems 1 and 2 hold regardless of whether we merge n different or identical tests, as

long as they satisfy Assumptions 1-3. This is an important feature, as data availability and

alternative model specifications, respectively, may render some univariate tests impractical

or change the degrees of freedom of their test statistics. To the best of our knowledge, this

is the first paper to propose an IU framework to test for forecast accuracy. Regarding the

performance of our test, we are interested in (i) how the IU test compares to other methods

of combining p-values, and (ii) how it compares to a test that jointly evaluates all individual

forecasts in a single step. However, there are not many suitable benchmarks to assess the

second point. A requirement in this regard is that the multivariate benchmark displays

similar properties as the univariate sub-tests. One example for such a test is the multivariate

DM extension of Mariano and Preve (2012, MP henceforth) which is comparable to the

IU test based on DM sub-tests. Other multivariate tests, such as Qu et al. (2022), are not

extensions of a univariate test. Thus, they are less suitable as a benchmark: it is possible

that the IU test, based on, say, univariate GW p-values, has high (low) power relative to a

test in Qu et al. (2022), while having relatively low (high) power when combining p-values

from, say, CW tests. In the next subsection, we suggest an additional competitor for our

test in the form of a multivariate GW test.

2.4 A Wald Test for Multivariate Forecast Accuracy

The framework of GW presents a natural point of comparison for our IU test. In what

follows, we discuss how the GW test can be applied in multivariate settings and report details

of the derivation in Appendix B. Like the IU test introduced above, the multivariate GW

test evaluates the global null hypothesis H0 : E[∆LR,t+1 | Gt] = µ0 and takes into account

cross-dependencies between forecasts. We seek to investigate if models have equal predictive

ability relative to a benchmark across different variables, based on the information set Ft.

If this is the case, ∆LR,t+1 is a martingale difference sequence under the null hypothesis.
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Adopting the notation of GW, the global null can be written as a moment condition,

H0 : E[h̃t ⊗∆LR,t+1] = 0 based on a q × 1 dimensional, Ft-measurable vector h̃t. Define

ZR,t+1
qn×1

= h̃t ⊗∆LR,t+1, Z̄R,n = p−1
∑T−1

t=R ZR,t+1, and Ω̂n
qn×qn

= p−1
∑T−1

t=R ZR,t+1Z
′
R,t+1. The

multivariate version of GW is a Wald test:

T hR,n = pZ̄′R,nΩ̂
−1
n Z̄R,n

p−→ χ2
qn, as p→∞. (8)

The crucial difference compared to the univariate version lies in the dimension of the

matrices: both Z̄′R,n and Ω̂n are a multiple n of the dimension of h̃t. Therefore, the degrees

of freedom of the test distributions differ: the univariate test converges to a χ2
q, rather than

a χ2
qn distribution. The test is still consistent against the alternatives in GW, meaning

it is straightforward to implement and its properties are readily available. As the matrix

Ω̂
−1
n includes the covariance between loss differentials, the multivariate test also evaluates

dependence in the cross-section of forecasts, whereas the univariate test only accounts for

serial correlation. However, similarly to the MP test, it quickly encounters inconsistency

problems as the number of variables increases. If one follows the suggestion of GW and uses

lagged values of ∆LR,t+1 as h̃t, Ω̂n is consistent and invertible when n is small. Vice-versa,

tests that rely on n→∞ in the presence of cross-sectional dependence are inconsistent in a

small n environment. In the next section, we compare our IU test to the multivariate GW

and MP Wald tests in high- and low-dimensional settings.

3 Monte-Carlo Simulations

In this section, we report the results of an extensive set of Monte Carlo simulations to

evaluate size and power properties of the test. Most univariate forecast accuracy tests are

only valid asymptotically and we analyze how this affects our IU test. We are interested
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in the question how our test compares to (i) tests that directly evaluate the global null

hypothesis of equal predictive ability across n forecasts and (ii) other methods of combining

p-values. To this end, we construct different simulation designs. We construct actual

forecasting scenarios and illustrate the properties of our method using three different sub-

test: GW, DM, and CW. All three tests are widely used which underlines the relevance of

our simulations for practitioners. Furthermore, they allow us to test for both conditional

as well as unconditional predictive ability. For our small-sample power simulations, we

only use GW and DM as sub-test which allows us to compare the results of the IU test

directly with the multivariate GW test and the MP test. As GW and DM have different

null hypotheses, our simulations also study scenarios where one sub-test will plausible reject

its null while the other will sustain it. In our final, high-dimensional, power-simulation,

we focus on nested models and present results using GW and CW as sub-tests for our

global null. We cannot present results for MP and the multivariate GW test due to the

large number of forecasts we evaluate. In all simulations, we present results from Fisher’s

method of combining p-values for further comparison. All results are generated through

5000 Monte-Carlo iterations.

3.1 The Choice of r

This subsection provides guidance on the choice of r. Theorem 1 shows that any r ∈ (1,∞)

controls the asymptotic size of the test, and suffices to control the level in finite samples.

In practice, one seeks to minimize the difference between empirical and nominal size. In

Appendix C, we conduct an extensive simulation in which we skip the sub-testing step and

simulate p-values directly to analyze the performance of the test under various dependence

structures, and different values of r and n. The simulations confirm that any choice of

r ∈ (1,∞) ensures the test is level-α. However, values of r < 5 result in the test being

undersized, while the empirical size quickly approaches the nominal size for r > 5 and
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declines again for large values of r > 50, depending on the degree of dependence. In

general, a similar analysis for the power of the test can only be conducted on a case-by-case

basis. However, under Assumption 4, Corollary 1 narrows down the optimal range for r

that maximizes the power of the test by providing an upper bound for r based admissible

values for δ and γ. As a rule of thumb, it implies that for a sparse number of rejected

sub-hypotheses, r ∈ (1, 50) maximizes the power of the test. On that basis, we suggest to

implement our test with any r ∈ (5, 50). In the following sections, we set r = 20 and study

the size and power of our test in detail.

3.2 Size Properties

This section analyzes the size of the test. We conduct univariate sub-tests using GW, DM,

and CW tests by simulating different forecasting scenarios. We show results for low and

high dimensions and compare them to other p-value combination methods. We also include

results from the multivariate GW test as a reference but emphasize that the high-dimensional

scenarios we consider are expected to result in size distortions.

We are interested in analyzing the size of our test in small n and large n settings. To this

purpose, we proceed as follows: First, we generate an n× T matrix Z of cross-sectionally

dependent Gaussian random variables. Each column of Z is drawn from a multivariate

normal distribution with covariance matrix computed as described in Appendix C. The

parameter σa describes the degree of dependence between variables, i.e. the higher σa the

more dependent are the forecasts. We use the i-th column of Z to construct n variables

Yi,t = φ1Yi,t−1 + Zi,t. We set φ = 0.5 and generate two one-step-ahead rolling window

forecasts of each Yi = (Y1, ..., Yn) according to

Ŷ
(1)
i,t+1 = β̂i,1Yi,t,

Ŷ
(2)
i,t+1 = µ̂+ β̂i,2Yi,t.
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Table 1. Test Size

α = 1% α = 5% α = 10%

n: 10 50 100 200 10 50 100 200 10 50 100 200

Panel A: σa = 0

Pr,n

CW 0.002 0.004 0.004 0.005 0.023 0.021 0.013 0.019 0.035 0.030 0.049 0.050
DM 0.009 0.015 0.008 0.011 0.043 0.049 0.050 0.044 0.077 0.081 0.102 0.112
GW 0.012 0.009 0.003 0.009 0.058 0.047 0.045 0.043 0.103 0.096 0.095 0.106

SF

CW 0.008 0.004 0.002 0.000 0.044 0.016 0.002 0.000 0.059 0.023 0.014 0.001
DM 0.300 0.975 1.000 1.000 0.546 0.996 1.000 1.000 0.720 0.999 1.000 1.000
GW 0.075 0.332 0.563 0.875 0.215 0.546 0.777 0.962 0.311 0.671 0.865 0.979

MGW 0.116 0.747 0.991 1.000 0.357 0.912 0.998 1.000 0.551 0.972 1.000 1.000

Panel B: σa = 0.5

Pr,n

CW 0.002 0.004 0.004 0.005 0.023 0.021 0.013 0.019 0.035 0.030 0.049 0.050
DM 0.009 0.015 0.008 0.011 0.043 0.049 0.050 0.044 0.077 0.081 0.102 0.112
GW 0.012 0.009 0.003 0.009 0.058 0.047 0.045 0.043 0.103 0.096 0.095 0.106

SF

CW 0.008 0.004 0.002 0.000 0.044 0.016 0.002 0.000 0.059 0.023 0.014 0.001
DM 0.300 0.975 1.000 1.000 0.546 0.996 1.000 1.000 0.720 0.999 1.000 1.000
GW 0.075 0.332 0.563 0.875 0.215 0.546 0.777 0.962 0.311 0.671 0.865 0.979

MGW 0.116 0.747 0.991 1.000 0.357 0.912 0.998 1.000 0.551 0.972 1.000 1.000

Panel C: σa = 2

Pr,n

CW 0.005 0.003 0.006 0.003 0.029 0.022 0.018 0.019 0.051 0.031 0.045 0.035
DM 0.010 0.014 0.004 0.012 0.049 0.053 0.049 0.033 0.078 0.083 0.071 0.092
GW 0.005 0.002 0.008 0.004 0.059 0.040 0.044 0.034 0.129 0.091 0.069 0.102

SF

CW 0.019 0.029 0.038 0.063 0.041 0.051 0.062 0.077 0.077 0.067 0.072 0.092
DM 0.290 0.940 0.999 1.000 0.540 0.990 1.000 1.000 0.701 0.998 1.000 1.000
GW 0.083 0.346 0.487 0.668 0.223 0.496 0.675 0.806 0.327 0.625 0.730 0.834

MGW 0.190 0.891 0.998 1.000 0.474 0.973 1.000 1.000 0.636 0.994 1.000 1.000

Panel D: σa = 5

Pr,n

CW 0.005 0.004 0.007 0.002 0.019 0.018 0.019 0.019 0.034 0.035 0.031 0.014
DM 0.009 0.012 0.009 0.005 0.027 0.033 0.030 0.023 0.052 0.064 0.051 0.043
GW 0.009 0.006 0.010 0.002 0.058 0.038 0.040 0.031 0.093 0.090 0.067 0.054

SF

CW 0.051 0.122 0.130 0.154 0.084 0.138 0.158 0.178 0.121 0.155 0.189 0.182
DM 0.285 0.710 0.919 0.997 0.489 0.885 0.976 1.000 0.581 0.952 1.000 1.000
GW 0.125 0.365 0.448 0.507 0.261 0.471 0.511 0.581 0.326 0.508 0.556 0.609

MGW 0.665 0.992 1.000 1.000 0.844 1.000 1.000 1.000 0.925 1.000 1.000 1.000

Notes: The table reports the size of intersection-union test (Pr,n) for different sub-tests (CW, DM,
GW) and different degrees of dependence (σa). The Fisher statistic (SF ) is provided as a comparison.
Results obtained through 5000 Monte Carlo iterations. CW stands for Clark and West (2007), DM for
Diebold and Mariano (1995), GW for Giacomini and White (2006), and MGW for the multivariate GW
test. To compute the latter, loss differentials were averaged in higher dimensions, as described in the
supplementary material, to make the covariance matrix invertible.
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The estimation window is set to be of length h = 100 and the out-of-sample window p = 300.

The loss differential is specified to be ∆Li,t+1 = {(Yi,t+1 − Ŷ (1)
i,t+1)

2 − (Yi,t+1 − Ŷ (2)
i,t+1)

2}ni=1.

For the DM test, we set ∆Li,t+1 = {Zi,t}ni=1 as its denominator is limiting to zero under

the null for nested models. We compute the size at significance levels α = (0.01, 0.05, 0.1)

for n = (10, 50, 100, 200) and for different degrees of dependence σa = (0, 0.5, 2, 5). We

compare the results to the Fisher statistic, denoted by SF . The results are reported in Table

1. The size properties of our IU test are good across the different sub-tests, albeit slightly

undersized for CW’s test. The size appears stable across different values of n with the global

tests based on GW sub-tests being slightly oversized for small n at a nominal level of 10%.

As we increase dependence up to σa = 2, there are no notable differences in the size of our

statistic, although the size increases by some tenth of a percentage point. When dependence

is increased further to very high levels (σa = 5), the test is noticeably more undersized.

This indicates the test is conservative in the presence of strong dependence. In contrast,

the Fisher statistic displays a high degree of variation in size paired with high distortions.

What is more, there are stark differences across the underlying tests and for different values

of n. For CW sub-test, the Fisher statistic is undersized for some n and oversized for others.

As dependence increases, the size distortions of the Fisher statistic become greater; for DM

and GW sub-tests the size reaches 1 for large n. Clearly, dependence renders the Fisher

test impractical. The simulations also highlight the size distortions of the multivariate

GW test, mirrored by other Wald-type tests whose results are corrupted by inconsistent

high-dimensional covariance matrices. In contrast, these simulations demonstrate that our

test has good size properties in small and high-dimensional settings and for different degrees

of dependence.
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3.3 Power Properties

We investigate the power of our test in three different settings, each designed with a specific

purpose. The first scenario entertains a low dimensional, small n environment with changing

cross-dependence. The second analyzes the rejection accuracy of the test by simulating

combinations of true and false null models. The third scenario considers the performance

of the test in a high dimensional, large n case. Throughout, we evaluate the global null

hypothesis in (1) against the alternative HA = ∪i∈NHi,A.

3.3.1 Low Dimensions

In the first Monte-Carlo study, we simulate the loss differentials directly as a VAR(1) process

to ensure both cross- and serial correlation:

∆Lt+1 = Ψ∆Lt + εt+1, ε ∼ N (0, 1),

where ∆Lt+1 = (∆L1,t+1, ...,∆Ln,t+1)
′ and t = 1, ..., p. The coefficients in the n× n matrix

Ψ, ψi,j ∈ [ψl, ψu], are drawn randomly from a truncated standard normal distribution with

upper and lower bounds ψu and ψl. We ensure the roots of Ψ lie inside the unit circle by

conditioning that its eigenvalues are smaller than one in absolute value. Additionally, to

generate differences in test statistics, we impose Ψ be lower triangular. The number of

forecasts is set to n = (5, 10) with p = 200 periods each. The bounds are parameterized as

ψl = (0,−0.05, ...,−1) and ψu = (0, 0.05, ..., 1). We then conduct GW and DM sub-tests for

each of the n loss differentials. Notably, as soon as ψl < 0 and ψu > 0, the sub-hypothesis of

all GW tests is no longer true. In contrast, the sub-hypothesis of the DM test, E[∆Li,t+1] = 0,

remains true on average. Based on the p-values of the individual tests, we compute the

global test statistic Pr,n and its power function. In addition, we conduct the multivariate

GW test as well as the adjusted MP test jointly for all n loss differentials. For further
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Figure 1. Power Functions IU Test Low Dimensions

(a) GW Sub-Test: n = 5
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(b) GW Sub-Test: n = 10
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(c) DM Sub-Test: n = 5
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(d) DM Sub-Test: n = 10

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
o
w

e
r

P
r,n

MP

Fisher

DM

Note: The figure reports the conditional predictive ability test of Giacomini and White (2006), GW,

the multivariate GW test, MGW, the Diebold and Mariano (1995) test, DM, the Mariano and Preve

(2012) test, MP, and the Fisher (1934) test. The x-axis reports the absolute values of the boundaries

imposed on the distribution of Ψ.

comparison, we also report the Fisher statistic. The results are shown in Figure 1. The solid

red line is the power function of the intersection union test. The black diamonds represent

the power with which each sub-test rejects its sub-hypothesis, the blue line corresponds

to the multivariate GW and DM test, and the green line plots the Fisher test. We first

consider the case of GW sub-tests. The power of our combined p-value statistic, is high

regardless of n and higher than the power of individual GW tests. Its size also corresponds
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to the nominal level. The multivariate GW test performs well when n is small. However,

it becomes increasingly undersized as n increases. Unreported simulations show that for

n > 10, the covariance matrix of the multivariate GW test will be close to singular when

p ≤ 200, meaning it is no longer consistent. The Fisher statistic exhibits slightly greater

power than our test, and also greater power than the multivariate GW test for n = 10.

Moving to the DM sub-test, however, the Fisher statistic is extremely oversized. The MP

and our test have roughly equal size for n = 5, but the former shows greater size distortions

for n = 10. This simulation illustrates that, overall, our test has the best performance in a

small dimensional scenario, regardless of the test type.

3.3.2 Rejection Accuracy

The second scenario we consider is one where I = (0, 1, .., n) sub-hypotheses Hi,0 are true,

while n − I sub-hypotheses are false. More precisely, we increase the number of true

sub-hypotheses from 0 to n and are interested in the question how accurately our test rejects

in each case and in comparison to the multivariate GW test and the MP test. We use the

same benchmarks as in the previous subsection. Specifically, we simulate

∆Li,t+1 = εt+1, for i = 0, ..., I,

∆Lj,t+1 = Ft+1 + ψ∆Lj,t + νt+1, for j = I + 1, ..., n,

Ft+1 = µ+ ψFt + ηt+1

Here, εt, νt, ηt ∼ N (0, 1). The coefficient ψ is fixed at 0.3 and µ is set to be 0.5. We ran

unreported simulations with different values for the coefficients which did not change the

overall picture of the results. Ft, the common factor across loss differentials, is the source of

dependence. We set n = (5, 10), noting that the ratio of n and p will impact the power of

the multivariate GW and MP tests. The results are reported in Figure 2. The top panel
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Figure 2. Power Functions IU Test Rejection Accuracy

(a) GW Sub-Tests: n = 5
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(b) GW Sub-Tests: n = 10

0 2 4 6 8 10

i
 H

i,0
 = true

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
o

w
e

r

P
r,n

MGW

Fisher

GW

(c) DM Sub-Test: n = 5
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(d) DM Sub-Tests: n = 10
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Note: The figure reports the conditional predictive ability test of Giacomini and White (2006), GW,

the multivariate GW test, MGW, the Diebold and Mariano (1995) test, DM, the Mariano and Preve

(2012) test, MP, and the Fisher (1934) test. The x-axis reports the absolute number of the true null

hypotheses.

shows the power functions based on GW sub-tests. Our test has consistently greater power

than the multivariate GW test as well as the Fisher test. Indeed, for n = 10, the rejection

pattern of the multivariate GW test looks remarkably different. The bottom two figures

consider DM sub-tests. The MP test has lower power than our test and appears oversized

when all null hypotheses are true for n = 10. Its power curve has steepened slightly, albeit

less than the multivariate GW test. Although the Fisher test has slightly higher power than
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our test, it has a high likelihood of incorrectly rejecting the global null hypothesis when it

is, in fact, true. Overall, the IU test exhibits the highest rejection accuracy. This simulation

highlights that it is not obvious when the multivariate DM and GW tests reject their null

hypotheses, obscuring the interpretability of their results.

3.3.3 High Dimensions

Figure 3. Power Functions IU Test High Dimensions

(a) GW Sub-Test: n = 50
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(b) GW Sub-Test: n = 100
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(c) CW Sub-Test: n = 50
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(d) CW Sub-Test: n = 100
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Note: The figure reports the conditional predictive ability test of Giacomini and White (2006), GW the

Clark and West (2007) test, CW, and the Fisher (1934) test. The x-axis reports the mean of the first

DGP.

In the third scenario, we consider a large n× T framework and generate artificial rolling-
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window one-step-ahead forecasts instead of simulating the loss differential directly. we

simulating nested models and therefore report results for GW and the CW sub-tests. Define

the estimation window as h and the out-of-sample window as p such that T = h+p+1 equals

the total number of observations. First, we generate a random matrix U whose elements are

uniform on [−0.5, 0.5] which can easily be transformed into a symmetric positive definite

matrix Σ = UU′. This, in turn, can be used to generate a random n × T matrix with

dependent rows, Zi = N (0,Σ), such that Z = (Z1,Z2, ...,Zn), where Zi are T × 1. The Z

matrices are used to generate n× 1 vectors Xt = φXt−1 + Zt, with φ = 0.3. We summarize

the information in X in form of a common factor using the principal components estimator

laid out in Bai (2003) and specify the process Yt = µ+ Xt, for t = 1, ..., T, and generate

two different forecasts for each of the n variables in Yt:

Ŷ
(1)
i,t+1 = µ̂+ β̂1,iF̃1,t+1,

Ŷ
(2)
i,t+1 = β̂2,iF̃1,t+1,

for i = 1, ..., n. The coefficients are estimated using OLS over a rolling window of size h.

The total number of forecasts for each model is p. F̃1,t is the first principal component

estimate of X and for simplicity its value in t+ 1 is assumed known. The forecast loss is

specified to be quadratic, i.e. L
(1)
i,t+1 = (Yi,t+1 − Ŷ (1)

i,t+1)
2. We parameterize µ such that each

µi = (0, 0.1, ..., 1). That is, for µi = 0, the sub-hypothesis is true for both GW and the CW

sub-test. The number of variables is set to n = (50, 100), the estimation window to h = 100

and p = 200 such that T = 301. In a large n framework, the consistent computation of the

multivariate GW and MP tests is no longer feasible. Therefore, we only present the results

of the Fisher test. The power functions are depicted in Figure 3. Considering first the GW

sub-tests, the top figures bear out the fact that Fisher’s statistic exhibits considerable size

distortions – exemplifying the need for appropriate corrections when considering dependent

p-values. On the other hand, the IU test has low power for smaller values of µ, in line with
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the individual GW tests. As µ increases, however, the power of our test surpasses that

of GW sub-tests. In contrast, for the CW test, it is slightly oversized and the divergence

relative to the power of the individual tests is even more visible. Fisher’s method displays

moderately greater power.

The simulations highlight that the IU test we propose in this paper is a very reliable test for

forecast accuracy in the presence of dependence. Whilst other tests may have higher power

in some scenarios, they exhibit large Type I errors in others. We are able to confirm that

our test most accurately rejects (sustains) the false (true) global null hypothesis of equal

predictive ability across forecasts. The simulations substantiate that the intersection union

test has good size and power properties regardless of dependence structures or dimensions.

4 Empirical Illustration

This section provides an empirical illustration of the test. As interdependencies are ubiqui-

tous in financial data, exchange rate forecasts are well suited to apply our test. If a currency

appreciates against the US-Dollar (USD) following the release of positive macroeconomic

data, we would expect to see similar movements in its exchange rate against, say, the Euro

(EUR). Dependencies are also reflected in common factors that explain currency variations,

for example carry, momentum, or value factors. As such factors affect multiple currencies

simultaneously, one can expect a model that is able to predict these elements for one FX

rate to have an elevated likelihood of predicting them for others. Likewise, if a test only

indicates predictive ability in a single instance out of many, this may well be a false positive

(Harvey et al., 2016). Altogether, this strengthens the argument that one cannot disregard

dependencies in the evaluation of exchange rate forecasts.

We compile a large daily dataset of 84 exchange rates, consisting of 39 currencies vis-a-vis

the USD, 23 currencies against the EUR, and 22 currencies against the Great British Pound
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(GBP). The three exchange rates USD-GBP, USD-EUR, and GBP-EUR are only included

once. USD currency pairs are obtained from the Bank for International Settlements (BIS),

EUR currency pairs from the European Central Bank (ECB), and GBP currency pairs from

the Bank of England (BoE). The dataset spans from January 4, 2011 to April 1, 2021, a

total number of 2558 observations for the USD, 2590 for the GBP, and 2622 for the EUR.

We use the dataset to generate out-of-sample forecasts for each exchange rate and compare

the performance of different models across currencies and tests. The aim is to show the

main characteristics of the test in a scenario where some, but not all, individual tests reject

for some models. Thereby, we illustrate how our test addresses mixed evidence problems.

Moreover, we demonstrate how the test can be applied to different combinations of exchange

rates, models, and individual tests. To this end, we estimate three models for each of the

84 exchange rates in our sample, a constant coefficients (CC) AR(1) model, and AR(2)

model as well as a time-varying parameter (TVP) AR(1) model, estimated via maximum

likelihood:

∆ei,t = βi,1∆ei,t−1 + νi,t,

∆ei,t = βi,2∆ei,t−1 + βi,3∆ei,t−2 + ηi,t,

∆ei,t = γi,t∆ei,t−1 + εi,t,

γi,t = ρiγi,t−1 + εi,t.

Here, i = 1, 2, ..., 84 and ∆ei,t is the first difference of the log-FX rate. For each model,

we generate one-step-ahead rolling window forecasts with an estimation window R of 750

for all exchange rates. We rely on the simulations of CW that show their MSPE-adjusted

statistic performs well if p/R converges to a finite constant. The GW test requires p→∞

whilst R remains fixed. However, their simulations show the test statistic exhibits excellent

properties for the p/R ratios used here. This yields a total of 3× 84 forecasts. We compare
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both the TVP-AR(1) and CC-AR(2) forecasts with the CC-AR(1) forecasts using GW,

CW, and DM sub-test. The latter is not designed for nested models (Diebold, 2015);

however, as it remains one of the most widely used tests, we include it nonetheless for

illustrative purposes, emphasizing that its results should be taken with a grain of salt. For

both GW and DM sub-test we use the loss differentials ∆L
(1)
i,t+1 = {LAR(1)

i,t+1 − L
AR(2)
i,t+1 } and

∆L
(2)
i,t+1 = {LAR(1)

i,t+1 − LTV Pi,t+1}, where L
(m)
i,t+1 is the quadratic loss function of model m. This

results in 3 different forecast accuracy tests being applied to compare the predictive ability

of 2 models relative to a CC-AR(1) process for 84 exchange rates (USD + EUR + GBP), i.e.

3× 2× 84 = 504 test statistics and p-values, respectively. Table 2 fleshes out the absolute

Table 2. Rejections for each individual test

USD EUR GBP

AR(2) (%) TVP (%) AR(2) (%) TVP (%) AR(2) (%) TVP (%)

CW 1 2.6 16 41.0 0 0 5 21.7 1 4.5 6 27.3
DM 1 2.6 3 7.7 4 17.4 1 4.3 6 27.3 1 4.5
GW 2 5.1 4 10.3 0 0 1 4.3 4 18.2 0 0

Note: The table contains the total number of rejections for each test as well as the number of rejections
in percent of the total number of forecasts. AR(2) refers to CC-AR(2) compared to CC-AR(1) forecasts,
while TVP refers to TVP-AR(1) forecasts compared to CC-AR(1) forecasts.

number of rejections of each sub-hypothesis at the 5%-level per model and currency. In

addition, the table reports the number of rejections relative to the total number of tests

conducted in each category. For instance, the GW sub-test rejects the null hypothesis that

the CC-AR(2) and CC-AR(1) model display equal predictive ability twice for USD currency

pairs. We have performed this test for each USD exchange rate in the dataset, i.e. 39 times,

and only rejected in 5.1% of all cases. In several cases, the rejection rate is below 5%, i.e.

in a range one would expect given a false discovery rate equal to the nominal size of the

tests. The null hypothesis of equal predictive accuracy between TVP-AR(1) and CC-AR(1)

is rejected more frequently, especially by the CW sub-test.

We proceed by demonstrating that combining the individual p-values through our test is a
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convenient way to compute a global test statistic both when looking at USD, EUR, or GBP

in isolation (small n) and for combinations of the three currencies or tests (large n). Panel

A in Table 3 reports the test statistic of the IU test for USD, EUR, and GBP. The first

three rows display the IU test statistic combining the p-values from each of the sub-tests:

GW, CW, and DM. The first two columns CC-AR(2) and TVP-AR(1) contain the results

combining the p-values of each sub-test, comparing the CC-AR(2) and TVP-AR(1) forecasts,

respectively, with the CC-AR(1) forecasts for exchange rates against the USD. The statistics

in these columns indicate whether there is evidence against the global null hypothesis of

equal predictive ability between the two forecasts and a CC-AR(1) across all exchange rates

in the sample that are quoted against the USD. The third column, Combined (Comb.),

combines the p-values of the two preceding columns. The global null hypothesis is now

that there is equal predictive ability between either of the two forecasts and a CC-AR(1),

put differently, no available model produced better or worse forecasts than an CC-AR(1).

In the fifth row, the p-values of the three sub-tests are combined together to ascertain

whether there is evidence for predictive accuracy across different test types. The results for

exchange rates quoted against EUR and GBP are reported analogously in the subsequent

columns. It is common to use different individual tests to assess forecasting performance,

hence we view this as an important application for our methodology, as the sub-tests may

yield conflicting results. Our methodology allows researchers to formulate and evaluate a

global null hypothesis of equal predictive accuracy across different types of sub-tests.

Panel A presents scenarios with small to medium n which are reported in the respective

rows. Stars indicate the significance level at which the test rejects. Starting with USD

exchange rates, the global null hypothesis that the CC-AR(2) and the CC-AR(1) forecasts

exhibit equal predictive ability across exchange rates is sustained for all test types for all

three currencies. In contrast, the same global null hypothesis for the TVP-AR(1) forecasts is

rejected when combining the individual p-values of both GW and DM test (the CW test only
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rejects at the 10% level). When combining the p-values from all three tests, the global null

hypothesis of equal predictive ability across exchange rates against the USD is also rejected.

Likewise, the global null that neither model under- or outperforms a CC-AR(1) is rejected

using the p-values of GW and DM test as a basis as well as for all three tests combined. On

the contrary, the same global null hypotheses can only be rejected at the 10%-level for CW

tests considering GBP exchange rates. Barring a 5%-level rejection of the CW test for the

TVP-AR(1) model in case of the GBP, and a 10%-level rejection for the EUR, no other

global null is rejected. Suppose one faces the decision whether to use the TVP model or not.

The findings give rise to the question whether evidence against equal predictive ability exists

only for the USD or also for combinations of the three currencies. Our test can analyze the

null hypothesis of equal predictive ability across such combinations, and thereby provide an

indication on whether a model can be deemed suitable for USD modeling or also in more

general scenarios. Panel B presents the results for currency combinations, with n taking

medium to large values. The first three columns combine the p-values of USD and EUR

with the three corresponding sub-columns defined as in Panel A. That is, the values in the

first column reflect the global null that there is equal predictive ability between CC-AR(2)

and CC-AR(1) across exchange rates vis-a-vis USD and EUR. The second column, which

reports the results for an analogous null hypothesis for the TVP-AR(1), shows that the

latter is rejected at the 1% level according to both GW and DM test (and the CW test at

the 10% level) as well as for all three tests combined. The same holds true for the global null

that no model under- or outperforms a CC-AR(1) for USD and EUR combined. The results

are the identical for USD and GBP combined. On the contrary, there is no evidence that

any or both models perform differently than a CC-AR(1) when only considering p-values of

EUR and GBP. The results should be interpreted bearing in mind that there are several

rejections by the underlying individual tests, as reported in Table 2. However, this does not

translate into an automatic rejection of the global null hypothesis, as the IU test accounts
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for dependence and false discovery. Finally, in the last column, we combine the p-values

of all three currencies. The global null of equal predictive ability of TVP- and CC-AR(1)

across USD, EUR, and GBP is rejected when combining the p-values of GW and DM test.

The global null that no forecast is better or worse than a CC-AR(1) forecast is rejected

by both GW and DM test at the 1% and 5% level. Next, we combine the p-values of

all three tests, leading to the global null hypothesis that there is equal predictive ability

across all currencies regardless of the underlying test. When tested for the TVP forecasts

(penultimate column, fifth row) and for all forecasts (final column, fifth row), the global

null is rejected at the 1% level. That is, there is evidence that, across all currencies, and all

tests the TVP-AR(1) forecasts differ significantly from the CC-AR(1) forecasts. What is

more, there is evidence that across currencies, and tests, forecasts of either model differ

significantly from CC-AR(1) forecasts. To summarize, the set of univariate tests conducted

presents mixed evidence with generally few rejections. Through our IU test, we are able to

formulate a range of global null hypotheses, based on different combinations of univariate

tests. Thereby, we can present statistically significant evidence that a time-varying AR(1)

model is able to produce superior forecasts compared to a constant coefficients model for

currencies quoted against the USD. These results continue to hold when considering USD

together with EUR or GBP exchange rates.

5 Conclusions

In this paper, we proposed an intersection-union multivariate forecasting accuracy test. The

test is constructed using p-values of existing univariate tests that are treated as sub-tests

and combined to evaluate a global null hypothesis of equal predictive ability across forecasts.

Our test does not require any assumptions on the dependence structure between tests, and

has a clearly defined rejection set. This is an important feature, as independence rarely
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Table 3. Test statistic for combined p-values

Panel A: Individual Currencies

USD EUR GBP

AR(2) TVP Comb. AR(2) TVP Comb. AR(2) TVP Comb.

CW 0.9 17.9* 8.9 0.1 12.2* 6.1 2.6 26.9** 13.4*
DM 0.9 2923.2*** 1461.6*** 4.3 1.3 2.2 6.9 1.5 3.4
GW 4.7 374.2*** 187.1*** 0.7 2.3 1.1 2.3 0.3 1.1

n 39 39 78 23 23 46 22 22 44

All 1.6 974.4*** 487.2*** 1.4 4.1 2.0 2.3 9.0 4.5

n 117 117 234 69 69 138 66 66 132

Panel B: Combined Currencies

USD-EUR USD-GBP EUR-GBP All

AR(2) TVP Comb. AR(2) TVP Comb. AR(2) TVP Comb. AR(1) TVP Comb.

CW 1.0 11.4* 5.7 0.5 11.2* 5.6 1.3 13.1* 6.6 0.7 8.3 4.2
DM 2.5 1869*** 934.5*** 1.6 1838.8***919.4*** 3.4 0.8 1.7 1.8 1357.2***678.6***
GW 3.0 239.3*** 119.6*** 2.9 235.4*** 117.7*** 1.1 1.2 0.6 2.2 173.7*** 86.9**

n 62 62 124 61 61 122 45 45 90 84 84 168

All 1.0 612.9*** 306.5*** 1.0 623.0*** 311.5*** 1.1 4.4 2.2 0.7 452.4*** 226.2***

n 186 186 372 183 183 366 135 135 270 252 252 504

Note: AR(2) refers to CC-AR(2) compared to CC-AR(1) forecasts, while TVP refers to TVP-AR(1)
forecasts compared to CC-AR(1) forecasts. Panel A contains results from IU test for. GW stands for
Giacomini-White test, CW for Clark-West test, and DM for Diebold-Mariano test. First two columns
and first three rows contain test statistic of combined p-values from each tests for USD for each model.
Third column contains test statistic for both models. Forth row contains test statistic for combined
p-values from all tests for each model and for both models. Panel B contain test statistic for combined
p-values from currency combinations for each test for each model and for both models as well as p-values
from all tests combined for each model and for both models. Test rejects if statistic exceeds the critical
values, obtained as r/(α(r − 1)): α = 1%: 105.263, denoted by ***, α = 5%: 21.053, denoted by **,
α = 10%: 10.526, denoted by *.

holds in most forecasting exercises, and assuming independence may lead to considerable

size distortions. In contrast, we proved that our test is level-α and consistent under the

alternative. An extensive Monte Carlo simulation showed very good size properties of

our test compared to conventional procedures of combining p-values, by conducting the

intersection-union test using three popular univariate sub-tests of predictive ability. We

showed that the properties of our multivariate procedure are unaffected by the number

of sub-tests. To examine the power of the test, we simulated three different forecasting

scenarios: a low dimensional scenario with changing cross-dependence, one that illustrated

the rejection accuracy of our test, and, finally, a high-dimensional scenario. Our test showed

high power in all cases. We compared our test to alternative benchmark procedures, each
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of which exhibited considerable limitations. An empirical illustration underpinned the wide

applicability of our test. We compiled a large dataset of 84 daily exchange rates, quoted

against USD, GBP, and EUR, to examine whether a time-varying AR(1) or a constant

coefficients AR(2) model delivered different forecasts with respect to a constant coefficients

AR(1) model. We also analyzed this across various combinations of currency pairs. While

the results of the sub-tests themselves were mixed, our intersection-union test provided

statistically significant evidence that the time-varying parameter model outperformed both

of the constant coefficient models across combinations of currencies.
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