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Abstract: We present a mortality model where future stochastic changes in population-wide mortality 1

are driven by a finite-state hierarchical Markov chain. A baseline mortality in an initial ‘Alive’ state 2

is calculated as the average logarithm of observed mortality rates. There are several more ‘Alive’ 3

states and a jump to the next ‘Alive’ state leads to a change (typically, an improvement) in mortality. 4

In order to estimate the model parameters, we minimize a weighted average quadratic distance 5

between observed mortality rates and expected mortality rates. A two-step estimation procedure 6

is used, and a closed-form solution for the optimal estimates of model parameters is derived in the 7

first step, which means that the model can be parameterized very fast and efficiently. The model 8

is then extended to allow for age effects whereby stochastic mortality improvements also depend 9

on age. Forecasting relies on state space augmentation and an innovations state space time series 10

model. We show that, in terms of forecasting, our model outperforms a naïve model of static mortality 11

within a few years. The Markov approach also permits an exact computation of mortality indices like 12

the complete expectation of life and annuity present values which are key in the life insurance and 13

pensions industry. 14

Keywords: mortality forecasting; Markov chain; model calibration; life insurance; pensions 15

1. Introduction 16

Mathematical modeling of mortality trends is becoming a central concern for re- 17

searchers and practitioners due to its importance for public health planning, social insur- 18

ance, private life insurance, and pension systems. Accurate mortality forecasts are critical 19

to allocate resources in a timely manner for forward planning. In this context, prolonged 20

life expectancy, also known as longevity risk, poses challenges for the pricing, advance 21

funding and reserving of life insurance and pension schemes, which may require forecasts 22

up to 50 years ahead. Generally, it is difficult to measure and hedge the effects of mortality 23

improvement on retirement planning. Ideally, the difference between observed mortality 24

and mortality estimates should be negligible. However, over the last several decades, 25

old-age mortality projections have underestimated mortality improvement. The aim of this 26

study is to introduce a new method for population-wide mortality modeling that is driven 27

by a finite-state hierarchical Markov chain. 28

The literature on stochastic mortality models has been developing rapidly over the 29

past 25 to 30 years. Mortality forecasting approaches can be classified into three main 30

categories: extrapolative, explanatory, expectation. The extrapolative approach applies 31

simple extrapolation to measures like life expectancy considering that observed age patterns 32

and trends exhibit regularity over time. One example of this approach is the seminal Lee- 33

Carter model [1], which is a discrete-time model that is driven by a time series component. 34

The explanatory approach makes use of epidemiological or structural models to forecast 35

mortality by cause of death, where exogenous variables are measurable and known. The 36

expectation-based models set the parameters of mortality by fitting deterministic functions 37
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to recent trends or by consultation with demographers and other experts. Such models 38

are only useful for short-term forecasting, as they do not capture the stochastic features of 39

mortality 40

Recent reviews of mainstream mortality forecasting models can be found in [2–9] 41

and the references therein. The vast majority of mortality models are extrapolative and 42

are easier to apply and are more accurate than the other approaches [10]. Over the last 43

few decades, the most prevalent mortality forecasting method has been the Lee-Carter 44

model and its variants. The Lee-Carter model decomposes age-specific mortality into an 45

overall time trend over a certain time period. The model extrapolates the overall time trend 46

using past time series to forecast the underlying factors of force of mortality [1]. The main 47

advantage of the Lee-Carter model is its robustness in the case of linear past trend and a 48

simple stochastic model is able to forecast age pattern of mortality with one time-varying 49

parameter. 50

More recently, various modifications in estimation methods have been made to the 51

original Lee-Carter model by Lee and Miller [11], Booth et al. [12] and Brouhns et al. [13] 52

and Hatzopoulos and Haberman [14]. In some other extensions, nonparametric smoothing, 53

Kalman Filtering and multiple principal components are included: see Hyndman and Ullah 54

[15] and De Jong and Tickle [16]. Booth et al. [17] compare the performance of five different 55

extensions of the Lee-Carter model. The Cairns-Blake-Dowd (CBD) model introduces the 56

use of logit of the death probabilities as a linear or quadratic function of age to better 57

capture mortality at older age [2,18,19]. Furthermore, for non-linear trends, the cohort 58

parameter was included to improve mortality prediction by Renshaw and Haberman 59

[20], Plat [21], Cairns et al. [22] and Reither et al. [23]. Other related studies include the 60

application of machine learning in standard stochastic mortality models to identify the 61

patterns and calibrate parameters to improve the goodness of fit [24]. Atance et al. [25] 62

compare the Lee–Carter model and its extended two-factor version to predict dynamic life 63

tables and conclude that the Lee-Carter model projects mortality better than other versions. 64

This paper introduces a new model of stochastic mortality based on a time-homogeneous 65

continuous-time Markov chain of mortality changes. The model allows for age effects 66

whereby mortality improvements differentially impact individuals of different ages. To 67

forecast mortality rates, states are added to the Markov chain and an innovations state 68

space time series model is employed. To the best of our knowledge, such models have not 69

been employed in the mortality forecasting literature. Our model is inspired by the one 70

discussed by Norberg [26] except that, rather than involving specific causes of death which 71

may diminish over time, we look at mortality in aggregate terms. Markov models have 72

also been applied to human mortality by Lin and Liu [27] and Liu and Lin [28], although 73

in a different way from what we propose in this article. Both of these papers employ a 74

finite-state Markov model to capture the human ageing process. In Liu and Lin [28], the 75

Markov model is subordinated by a gamma process to allow for stochastic mortality. By 76

contrast, in our paper, the Markov model itself drives the stochastic mortality. 77

Our model has three major advantages. First, it is flexible: one can create as many 78

states in the Markov model as one sees fit. Even with 200 states, say, the computations 79

are still fast, and transparency is not compromised. Second, the calibration part is easy 80

to implement and can even be performed on a spreadsheet. Finally, once the forecasting 81

part has been completed, i.e. projections have been made of future changes in mortality, 82

it is straightforward to calculate the exact distributions of key quantities like (future) 83

expectancies of life and fixed-rate annuity present values. These can be obtained by solving 84

Thiele’s differential equation (Dickson et al. [29, p. 211]). 85

The setup of this paper is as follows. Section 2 introduces the model while section 3 86

describes the mortality data, from the well-known Human Mortality Database, which is 87

used to calibrate the model. The calibration procedure and its results are described in 88

section 4. In section 5, the innovations state space time series model as in Hyndman et al. 89

[30] is introduced and applied to forecasting mortality rates. The forecasting power of the 90

model, as compared with a naïve model of static mortality, is also discussed. Applications 91
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in life insurance and pensions are briefly presented in section 6, and section 7 concludes. 92

The technical details of the innovations state space model are left to Appendix A. 93

2. The model 94

Markov processes have found their applications in life insurance mathematics for 95

more than 50 years. Amsler [31] gave a seminal lecture at the 18th International Congress 96

of Actuaries, while a publication by Hoem [32] introduced the Markov model in the ac- 97

tuarial literature. Of the many publications about Markov processes, the textbooks by 98

Haberman and Pitacco [33] (in particular the applications in disability insurance), Wolthuis 99

[34] and Dickson et al. [29, ch. 8] are noteworthy. 100

A basic survival model that is used in elementary life insurance mathematics is the
Markov process which involves only two states: an initial ‘Alive’ state and a terminal
‘Dead’ state, denoted by a and d respectively. The instantaneous transition intensity from
‘Alive’ to ‘Dead’ is then an instantaneous mortality rate which depends on age. For an
x-year old individual, the instantaneous mortality rate is denoted by µ(x). Let pjk(s, t),
with j, k ∈ {a, d} and for 0 ≤ s ≤ t, be the transition probability of a life being in state k at
time t given that the life is in state j at time s. Since the ‘dead’ state is an absorbing state, it
follows that

pdd(s, t) = 1 − pda(s, t) = 1,

paa(s, t) = 1 − pad(s, t) = e−
∫ t

s µx+udu.

Our model extends the basic 2-state model above by augmenting the state space to 101

allow for mortality improvements. We consider a continuous-time, time-homogeneous 102

hierarchical Markov process consisting of N + 2 states, i.e. N + 1 strongly transient ‘Alive’ 103

states and one ‘Dead’ state, the latter denoted by D. This is depicted in Figure 1. Each 104

individual aged x starts in ‘Alive’ state 0 with age-dependent instantaneous rate of mortality 105

µ
(0)
x specified as µ

(0)
x = µs

x exp(γ(0)), where µs
x denotes the standard (or benchmark or 106

baseline) rate of mortality, while exp(γ(0)) reflects the relative difference between the 107

initial mortality and the standard mortality. From ‘Alive’ state i ∈ [0, N), an individual can 108

only make a transition either to (a) the next ‘Alive’ state i + 1 with intensity λ(i), which is 109

independent of time but allowed to depend on the state of sojourn, or to (b) the ‘Dead’ state 110

with rate of mortality µ
(i)
x . Thus, µ

(i)
x denotes the instantaneous rate of mortality for an 111

x-year old in state i, with i ∈ {0, .., N − 1}. In the last ‘Alive’ state N, only a transition to the 112

‘Dead’ state, with mortality rate µ
(N)
x is possible. This implies that any life can experience 113

at most N age-independent changes in mortality. 114

We first set up a preliminary model where improvements in population-wide mortality 115

proceed as follows. A transition from state i to state i + 1 entails a relative improvement in 116

mortality of 100(1 − exp(γ(i + 1)))% at all ages, so µ
(i+1)
x = exp(γ(i + 1))µ(i)

x for all age x. 117

Thus, γ(i + 1) is the log-change in instantaneous mortality rate from state i to state i + 1. It 118

is also useful to define Γ(i) = ∑i
j=0 γ(j) as the cumulative log-change in mortality rate by 119

state i. 120

Notice that the transition intensities do not depend on time. The transition intensity 121

λ(i) from one ‘Alive’ state i to the next ‘Alive’ state i + 1 depends only on state i. The 122

mortality rate µ
(i)
x depends on the age x of an individual, but not on clock time t for 123

the population as a whole. The Markov chain is therefore a time-homogeneous process 124

capturing population-wide mortality improvements. 125

For this hierarchical Markov chain, using the same definition as above for the transition
probability pjk(s, t), but now with j, k ∈ {0, 1, ..., N, D}, we have the following expressions:

pik(s, t) = 0, for i ∈ {1, . . . , N} and k < i,

pii(s, t) = e−
∫ t

s

(
λ(i)+µ

(i)
x+u

)
du, for i ∈ {0, . . . , N − 1},



Version March 30, 2022 submitted to Mathematics 4 of 18

Figure 1. Transition diagram for the Markov chain model of population-wide mortality changes.
Instantaneous transition intensities are shown for each allowable transition. There are N + 1 "Alive"
states and one "Dead" state. Age is denoted by x and, in the preliminary model, there are no age
effects (bx = 1).

pNN(s, t) = e−
∫ t

s µ
(N)
x+udu.

In reality, when population-wide mortality improvements occur, they will be of a dif- 126

ferent magnitude at different ages. Our full model therefore extends the preliminary model 127

by allowing for age effects, which are captured by the factor bx for an individual aged x. 128

In the ‘Alive’ state 0, the mortality rate for an individual aged x is µ
(0)
x = µs

x exp(bxγ(0)). 129

For any x-year old, a transition from state i to state i + 1 entails a relative improvement in 130

mortality of 100(1 − exp(bxγ(i + 1)))%, so that µ
(i+1)
x = µ

(i)
x exp(bxγ(i + 1)). 131

3. Mortality data 132

We consider a life insurer, at the end of year 2000, which has mortality data for several 133

years until the year 2000. The data pertains to female policyholders of ages varying from 20 134

to a limiting age, which is assumed to be 105. We choose female mortality data purely for 135

illustrative purposes, and could equally have chosen male mortality data. (Most mortality 136

forecasting studies use either male or female data, unless a gender-comparative analysis is 137

being undertaken, e.g. Chiou and Müller [35] use female data whereas Cairns et al. [2] use 138

male data.) The life insurer is in charge of devising a sound model of stochastic mortality, 139

using the available mortality statistics which we assume are drawn from the Human 140

Mortality Database (2020) [36]. 141

At present, the Human Mortality Database (HMD) [36] contains detailed population 142

and mortality data for 41 countries or areas. This includes input data like death counts, 143

census counts, birth counts and population estimates. Such input data enable the calculation 144

of key quantities like exposure to risk, death rates and life tables of national populations, 145

which can also be found in the HMD [36]. The period of time for which complete data is 146

available varies across countries or areas but usually involves at least a couple of decades. 147

Most countries or areas are highly industrialized and relatively wealthy. 148

Two further points are noteworthy. First, we disregard ages younger than 20 years old 149

to avoid unnecessary complexity. As pointed out by Jarner and Kryger [37], the pattern of 150

infant and child mortality is different from adult mortality. Furthermore, in most developed 151

countries, current levels of young-age mortality are very low. 152

Second, we will fit the model on 51 years of in-sample annual mortality rates from 153

year 1950 to 2000. We will use the mortality rates from 2001 onwards as out-of-sample data 154

to assess the forecast error of our model. We also have mortality data at ages 20 to 104 for 155

each year of in-sample data, giving 51 × 85 = 4, 335 data points. This is far greater than the 156
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number of parameters to estimate in our model (provided that the number of states in the 157

Markov model is not excessively large), and there is therefore no danger of overfitting the 158

model to the available data. 159

4. Model calibration to mortality data 160

4.1. Outline of calibration procedure 161

For a given value of N, we fit our model to the mortality data by minimizing the 162

weighted average quadratic distance (WAQD) between expected log-mortality and observed 163

log-mortality. The WAQD is defined precisely below, for both the preliminary model and 164

the full model with age effects. In the full model, there are 2N + 86 parameters: transition 165

intensities λ(0), . . . , λ(N − 1); mortality improvement factors γ(0), . . . , γ(N); age effect 166

factors b20, . . . , b104 at ages 20, . . . , 104 respectively. Ideally, all these parameter values would 167

be found by simultaneously minimizing the WAQD wrt all the parameters. Unfortunately, 168

this is either not computationally feasible or very time-consuming, unless N is small. 169

We proceed using a pragmatic approach instead. Consider first the preliminary model 170

where age effects are not included. We fix the transition intensities between the various 171

‘Alive’ states to be constant across all the states, λ(k) ≡ λ for k ∈ [0, N), and we then derive 172

mathematically an expression for the optimal estimates of the mortality improvement 173

factors by minimizing the WAQD wrt {γ(k), k ∈ [0, N]}. We then perform a grid search 174

for the minimum WAQD on a grid spanned by λ, refining the grid at any local minimum. 175

For reasonably small N, this is feasible because we have an easily and quickly calculated 176

closed-form expression for the optimal {γ(k), k ∈ [0, N]}. 177

Fixing λ and then minimizing the WAQD wrt {γ(k), k ∈ [0, N]} might at first sight 178

appear to be an implausible shortcut. It is, in fact, perfectly justifiable. A direct analogy 179

is to Girsanov’s change-of-measure theorem (Itô [38], p. 1535): one can change the prob- 180

ability measure underlying a standard Brownian motion, but then distort its state space 181

by imposing a local drift which reverses the change in measure. In financial mathematics, 182

this underpins the pricing of securities in complete markets when an artificial risk-neutral 183

probability measure is used along with a risk-free rate to discount the security payoffs in 184

the state space (Shreve [39], p. 216). 185

Thus armed with the optimal estimates of λ and {γ(k), k ∈ [0, N]} in the preliminary 186

model, we turn to estimating all the parameters, including the age effect factors {bx, x ∈ 187

[20, 104]}, in the full model. We will show that we can use the preliminary model parameters 188

as the input or first-stage values to a recursive scheme which minimizes the WAQD. 189

Repeated substitution leads to numerical convergence to our final estimates of all the 190

parameter values. 191

In the next sections, we describe in greater detail the procedure that we use for 192

estimation, first for the preliminary model and then for the full model. 193

4.2. Preliminary model without age effects 194

Denote the state of the Markov chain at time t by Xt. Let p0k(t) be the transition 195

probability of a life being in state k in the middle of year t given that the life starts in 196

state 0 at time 0, i.e. p0k(t) = P[Xt+1/2 = k | X0 = 0]. (The observed instantaneous rate of 197

mortality for a given year estimates the rate of mortality at the midpoint of the year.) 198

The observed rate of mortality µ̂x,t at age x in year t is calculated as µ̂x,t = dx,t/Ec
x,t.

Here, dx,t is the number of deaths recorded at age x last birthday during calendar year t.
Furthermore, Ec

x,t is the exposure-to-risk at age x last birthday during year t (that is, the
total time lived by people aged x last birthday in calendar year t) [40, p. 95-96]. This data
is obtained from the HMD [36]. Similar to Lee and Carter [1], the log of the estimated
mortality rate µ(x) at age x is then obtained as a weighted average of the log of the observed
mortality rates across the years of observation:

ln[µ(x)] =
∑2000−Y

t=0 wx,t ln µ̂x,t

∑2000−Y
t=0 wx,t

, (1)
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with Y being the starting year of the period of observation and the year 2000 being the last 199

year. The estimated mortality rate at age x from the mortality data in the HMD [36] is then 200

taken to be the standard or baseline mortality at age x in the Markov model, i.e. in Fig- 201

ure 1, µs
x = µ(x). In equation (1) above, wx,t denotes the weight assigned to the exposure 202

in year t at age x. It is common to use wx,t = (Var[µ̂x,t])
−1, which can be estimated by 203

wx,t =
(
Ec

x,t
)2/dx,t [41, p. 321-322]. 204

The WAQD pertaining to calendar year t is defined as

Wt =
N

∑
k=0

p0k(t)
104

∑
x=20

wx,t

(
k

∑
j=0

γ(j) + ln µ(x)− ln µ̂x,t

)2

. (2)

This is similar to the objective functions used by Lee and Carter [1] and Pitacco et al. [40, 205

p. 190]. The term in parentheses on the r.h.s. of equation (2) is evidently the difference 206

between the estimated log-mortality rate and the observed log-mortality rate plus the 207

cumulative log-change in mortality rates by state k which is reached at time t, at a given 208

age x. Because we may have more observations at certain ages than at other ages (e.g. 209

there are more younger individuals than older individuals in the population), the quadratic 210

deviation is then weighted by exposure weights. An expectation is then computed by 211

summing the preceding quantity over the whole state space weighted by the probability of 212

reaching state k by time t, given the starting state 0 at time 0. The total WAQD is then found 213

by summing the right hand side of equation (2) over the years from the start of observation 214

in year Y to the end in year 2000, i.e. W = ∑2000−Y
t=0 Wt. 215

As explained in section 4.1, the first step in our calibration procedure is to minimize the 216

WAQD wrt {γ(k), k ∈ [0, N]}. Proposition 1 sets this out below. It is helpful to recall and 217

introduce some notation ahead of the statement and proof of Proposition 1. From section 2, 218

Γ(k) = ∑k
j=0 γ(j), for k = 0, . . . , N, is the cumulative log-change in mortality rate by state k 219

of the Markov chain, i.e. the log-change in mortality rate from state 0 to state k. Recall also 220

that p0k(t) = P[Xt = k | X0 = 0] is the transition probability of being in state k at time t 221

given the starting state 0 at time 0. Let the transition probability vector from state 0 over 222

time t be p(t) = (p00(t), p01(t), . . . , p0N(t))
T, and let P(t) = diag(p(t)) ∈ R(N+1)×(N+1), 223

i.e. P(t) is a diagonal matrix whose leading diagonal is made up of elements of p(t). 224

Proposition 1. The values of γ(k) which minimize the weighted average quadratic distance
(WAQD) between expected and observed mortality are given by

γ(k) = ıT
k+1A−1c − ıT

k A−1c (3)

for k = 1, . . . , N, and γ(0) = ıT
1 A−1c. 225

In the above, ık is a column vector of zeros except for 1 in row k. Further, A = ∑2000−Y
t=0 h1(t) P(t),226

with h1(t) = ∑104
x=20 wx,t. Also, c = ∑2000−Y

t=0 h2(t) p(t), with h2(t) = ∑104
x=20 wx,t(ln µ̂x,t − 227

ln µ(x)). 228

Proof. [Proof of Proposition 1] The total WAQD is

W =
2000−Y

∑
t=0

N

∑
k=0

p0k(t)
104

∑
x=20

wx,t[Γ(k) + ln µ(x)− ln µ̂x,t]
2. (4)

Expanding the term in square brackets in the equation above, and using h1(t) and h2(t) as
defined in Proposition 1, as well as h3(t) = ∑104

x=20 wx,t(ln µ̂x,t − ln µ(x))2, we can simplify
the WAQD to

W =
2000−Y

∑
t=0

N

∑
k=0

p0k(t)
[
Γ(k)2h1(t) − 2Γ(k)h2(t) + h3(t)

]
. (5)
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Now, h1(t), h2(t) and h3(t) can be taken out of the inner summation. Let Γ =

(Γ(0), Γ(1), . . . , Γ(N))T. Using p(t) and P(t) as defined just before Proposition 1, we obtain

W =
2000−Y

∑
t=0

[
h1(t)ΓTPΓ − 2h2(t)pTΓ + h3(t)pT1

]
, (6)

where 1 = (1, . . . , 1)T ∈ RN+1. Note that we suppress the dependence of p(t) and P(t) on 229

t in the notation hereinafter, for the sake of clarity. 230

The elements of the diagonal matrix P are positive, hence P is positive definite. (The
elements in the leading diagonal of P are the non-zero transition probabilities to the various
‘Alive’ states of the Markov chain. The eigenvalues of the diagonal matrix P are positive.
By a well-known theorem of matrices—see, for example, Theorem 2 of Johnson [42], or Itô
[38], p. 996— P is therefore positive definite.) Furthermore, h1(t) = ∑104

x=20 wx,t > 0 since
wx,t > 0. From the quadratic form in equation (6), we conclude that the existence and
uniqueness of a minimum in W wrt. Γ are guaranteed.

∂W
∂Γ

=
2000−Y

∑
t=0

[2h1(t)PΓ − 2h2(t)p] = 2AΓ − 2c, (7)

where A and c are defined in the Proposition. To minimize W, we solve ∂W/∂Γ = 0, where 231

0 ∈ RN+1 is a column vector of zeros, giving Γ = A−1c. Note that A = ∑2000−Y
t=0 h1(t) P(t) 232

is invertible since h1(t) ̸= 0, and P is non-singular. (P is non-singular since its leading 233

diagonal elements are non-zero, as discussed above. By a well-known theorem of matrices— 234

see for example Perlis [43], p. 72—the determinant of P, a diagonal matrix, is the product 235

of these non-zero elements, and is therefore non-zero.) 236

Finally, since Γ(k) = ∑k
j=0 γ(j), it follows that γ(0) = Γ(0) = ıT

1 Γ and γ(k) = Γ(k)− 237

Γ(k − 1) =
(

ıT
k+1Γ

)
−
(
ıT
k Γ
)

for k = 1, . . . , N. 238

As explained in the outline of our calibration procedure in section 4.1, we make some
simplifying assumptions for the sake of parsimonious modelling and to keep the estimation
as straightforward as possible. First, we assume that the exposure weights wx,t at age x and
time t, as introduced in equation (1) and used in the WAQD in equation (2), are set equal
to one, wx,t ≡ 1, for the sake of simplicity. As argued by Pitacco et al. [40, p. 190], using
weights that are not exogenous, in that they depend on the random number of deaths, is
questionable, especially for stochastic mortality models in contrast to the static ‘life tables’
used for insurance pricing purposes. Second, we assume henceforth that the transition
intensity λ > 0, from one ‘Alive’ state to the next, is constant not just in time but also
over the state space. We still require a numerical search procedure for λ when minimizing
the WAQD, but the overall estimation procedure is simplified. In particular, p0k(t) can be
expressed simply as:

p0k(t) =
1
k!
(λt)ke−λt, for k = 0, . . . , N. (8)

Equation (8) above follows from the fact that, conditional on no death occurring, the 239

transitions out of any ‘Alive’ state k < N + 1 in the Markov process are restricted to those 240

of a time-homogeneous pure birth process with rate λ. 241

Since p0k(t) in equation (8) features a maximum wrt λ (at λ = k/t provided k > 0, 242

t > 0) and no minimum, it is worth investigating whether W can indeed be minimized wrt 243

λ, i.e. it is worth investigating the existence of an optimal estimate of λ using WAQD. 244
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Denoting by H(k, t) the expression in the square brackets in equation (5), we can ex-
press the WAQD in a compact fashion: W = ∑2000−Y

t=0 ∑N
k=0 p0k(t)H(k, t). Since ∂p0k(t)/∂λ =

(λt)ke−λt(k − λt)/(λk!), it follows that

∂W
∂λ

=
2000−Y

∑
t=0

N

∑
k=0

1
λk!

(λt)ke−λt (k − λt) H(k, t). (9)

An analytical expression for λ in the solution of ∂W/∂λ = 0 is difficult to find, especially 245

for a Markov chain with a large state space (large N), but numerical estimates can easily be 246

computed. 247

As for the existence of a minimum in W wrt λ, we note that ∂2 p0k(t)/∂λ2 = (λt)ke−λt[(k−
λt)2 − k]/(λ2k!), so that

∂2W
∂λ2 =

2000−Y

∑
t=0

N

∑
k=0

1
λ2k!

(λt)ke−λt [(k − λt)2 − k] H(k, t). (10)

For k ≥ 0 and t > 1, it is easy to see that, disregarding the term in square brackets in 248

equation (10), the summand inside the double summation in equation (10) is positive. 249

In particular, H(k, t) > 0 since it is identical to the innermost summand in equation (4). 250

Whether W is convex wrt λ therefore rests on a weighted sum of terms in [(k − λt)2 − k]. 251

We cannot formally show the existence of a minimum, but the above analysis serves two 252

purposes. First, it reassures us that the absence of a minimum in p0k(t) does not rule out 253

a minimum in W. Second, it illustrates the difficulty in deriving the optimal parameter 254

estimates analytically, thereby justifying our two-step estimation procedure. 255

4.3. Full model with age effects 256

For the more comprehensive model allowing for age effects, i.e. with structure µ
(i+1)
x =

µ
(i)
x exp(bxγ(i)) as spelled out in section 2, the WAQD pertaining to calendar year t is

W̃t =
N

∑
k=0

p0k(t)
104

∑
x=20

wx,t

(
bx

k

∑
j=0

γ(j) + ln µ(x)− ln µ̂x,t

)2

. (11)

As before, the total WAQD from year Y to year 2000 is then W̃ = ∑2000−Y
t=0 W̃t. 257

The WAQD then needs to be optimized with respect to the mortality improvement
factors γ(k) for k = 0, . . . , N, as well as the age effects bx for x = 20, . . . , 104. As in
the proof of Proposition 1, let the cumulative sum of the mortality improvements be
Γ(k) = ∑k

j=0 γ(j), for k = 0, . . . , N, and let Γ = (Γ(0), Γ(1), . . . , Γ(N))T. Furthermore,

define b = (b20, b21, . . . , b104)
T. The following system of equations has to be solved:

∂W̃
∂Γ

= 0 ⇔ Γ(k) = ıT
k+1Ã−1c̃, (12a)

∂W̃
∂b

= 0 ⇔ bx = ıT
x−19B−1d. (12b)

In equation (12a), Ã and c̃ are, respectively, versions of A and c (as defined above 258

in Proposition 1) which are modified to allow for the age effects. Specifically, Ã = 259

∑2000−Y
t=0 h̃1(t)P(t) with h̃1(t) = ∑104

x=20 wx,tb2
x, while c̃ = ∑2000−Y

t=0 h̃2(t)p(t) with h̃2(t) = 260

∑104
x=20 wx,tbx(ln µ̂x,t − ln µ(x)). The vector p(t) and the matrix P(t) are unchanged from 261

Proposition 1. 262

In equation (12b), B = ∑2000−Y
t=0 h4(t)V(t). Here, h4(t) = ∑N

k=0 p0k(t)Γ(k)2. We 263

observe that h4(t) is the second moment of Γ(Xt) where Xt is the random state of the 264

Markov chain at time t, i.e. h4(t) = E
[
Γ(Xt)2]. Furthermore, V(t) = diag(w(t)), i.e. 265
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N N/50 λ̂

25 0.5 0.77
50 1 1.42
100 2 2.69
150 3 3.91
200 4 5.06
300 6 7.27
400 8 9.45

Table 1. Optimal parameter values for the transition intensity from one ‘Alive’ state to the next in the
preliminary Markov model, for different values of N, i.e. for different number of states in the Markov
chain. 51 years of observations are used from starting year Y = 1950.

V(t) is a diagonal matrix whose leading diagonal is made up of elements of w(t) = 266

(w20,t, w21,t, . . . , w104,t)
T. 267

Finally, in equation (12b), we also have d = ∑2000−Y
t=0 h5(t)z(t). Here, h5(t) = ∑N

k=0 p0k(t) 268

Γ(k), and we observe that h5(t) is the first moment of Γ(Xt) (compare with h4(t) above 269

which was the second moment). Furthermore, z(t) = (z20,t, z21,t, . . . , z104,t)
T where zj,t = 270

wj,t(ln µ̂j,t − ln µ(x)) for j ∈ [20, 104]. 271

The system of equations (12a)–(12b) can be solved numerically by successive substitu- 272

tion as follows. At the first stage, start with the preliminary model wihout age effects, i.e. 273

bx = 1 at all ages x ∈ [20, 104]. Cumulative changes to mortality Γ(k) in all states k ∈ [0, N] 274

can then be calculated using Proposition 1. These are then substituted into the r.h.s. of 275

equation (12b) yielding second-stage values for bx at all ages x ∈ [20, 104]. In turn, these 276

are substituted into the r.h.s. of equation (12a), leading to second-stage values for Γ(k) in 277

all states k ∈ [0, N], and so on, until convergence is reached. 278

4.4. Results of calibration 279

Our calibration procedure generates estimates for all the parameters of our Markov 280

model, but it does not tell us what the size of the Markov chain should be, i.e. the number 281

of states. We suggest that this can be determined by numerical experimentation. For the 282

preliminary model, the calibration has been run with several values of N. 283

We find that, as N increases, the minimum WAQD decreases. This is as anticipated 284

because the more states there are, the more parameters are involved, and the better the 285

fit. We also find that, as N increases, our (WAQD-minimizing) estimate of λ increases. 286

This is illustrated in Table 1, where we have 51 years of annual mortality data, from 1950 287

onwards, on which the model is calibrated and we choose N to be equal to 50 times 0.5, 1, 288

2. . . Adding states without changing λ means that the probability of eventually entering 289

the last few “Alive” states will become smaller and eventually negligible. In order to 290

significantly improve the fit, these probabilities need to be sufficiently different from zero, 291

which is achieved by increasing λ so that the process traverses as much of the state space 292

as possible. 293

Finally we also find that, as N increases, the estimated log-changes to mortality rates, 294

γ(k), k ∈ [0, N], decrease (results not shown here for economy of space). More states lead 295

to more transitions if the transition intensity λ increases. To compensate for this, the impact 296

of each transition should be smaller. 297

For the full Markov model with N = 50, parameterized from 51 years of mortality 298

data from 1950, we estimate λ = 1.29. Tables 2 and 3 show the optimal parameter values for 299

Γ(k), k ∈ [0, N] and bx, x ∈ [20, 104] respectively. We observe from Table 2 that Γ(0) = γ(0) 300

is strongly positive, indicating that mortality in the initial state is much higher than the 301

average mortality across the period of investigation. This is self-evidence since mortality 302

rates decrease during the period. For the same reason, it is unsurprising that Γ decreases 303

as a function of state, reaching negative values upon reaching state 33. At that point, 304
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State k Γ(k) State k Γ(k) State k Γ(k)

0 37.21046234 17 10.16128483 34 −1.282926153
1 34.89110164 18 9.43041363 35 −2.123815014
2 31.30856332 19 8.708274309 36 −2.999173623
3 27.90632886 20 8.001132141 37 −3.904036891
4 25.19136301 21 7.314907495 38 −4.831988911
5 23.04653425 22 6.653009452 39 −5.775537066
6 21.28096167 23 6.015309668 40 −6.726552135
7 19.7463605 24 5.398173284 41 −7.676727809
8 18.36637132 25 4.79519957 42 −8.618012162
9 17.11439091 26 4.19826336 43 −9.542970976
10 15.98204253 27 3.598533779 44 −10.44505611
11 14.96112827 28 2.987293383 45 −11.31876798
12 14.0375066 29 2.356516698 46 −12.15971639
13 13.19117416 30 1.699253023 47 −12.96459607
14 12.39925669 31 1.009887793 48 −13.7311004
15 11.64013218 32 0.284343793 49 −14.45779864
16 10.89723104 33 −0.479749777 50 −19.13930163

Table 2. Optimal parameter values for Γ(k) = ∑k
i=0 γ(i) at each state k ∈ [0, 50] for the full Markov

model with λ = 1.29, N = 50, parameterized from 51 years of mortality data from 1950.

mortality is below average and will reduce further. The values in Table 3 follow a less 305

monotone pattern. However, we can observe that bx is relatively high, and therefore 306

mortality improvements more pronounced, for young ages, up to age 45, say, compared 307

to later ages. Also note that the values for bx are small for x ≥ 90, so for very high ages 308

mortality improvements do not have a very significant impact. This suggests the possible 309

existence of an upper limit to lifespan. This is in line with expectation-based methods, 310

where mortality reductions are observed to be greater for younger ages, see e.g. [44]. 311

5. Forecasting 312

5.1. Forecasting procedure 313

To test the forecasting power of our Markov model, we calibrate it on (in-sample) 314

mortality data from 1950 until 2000, and then forecast mortality from 2001 onwards. We 315

can then compare our forecast mortality rates to (out-of-sample) mortality data from 2001. 316

In order to create the forecasts, the Markov model must be augmented by new ‘Alive’ 317

states. This is akin to forecasting a Markov counting process and adding integer states. 318

Whilst we can use the estimated transition intensity λ̂ and the estimated age effect factors 319

b̂x, x ∈ [20, 104] from the model calibration stage, the mortality change factors {γ(k)} over 320

the augmented states must themselves be forecast. 321

In order to project the mortality change factors, we employ an innovations state space 322

model (Hyndman et al. [30]). This is a richer class of models than the classical Holt-Winters 323

exponential smoothing model (Hyndman et al. [45]). Trends and seasonal components, 324

which may be of either additive or multiplicative form, are simultaneously estimated 325

(Ord et al. [46]). We use the bias-corrected Akaike Information Criterion (cAIC) to select 326

the best model in the class of innnovations state space models: this turns out to be the 327

so-called “damped trend” model (McKenzie and Gardner [47]; Hyndman et al. [30], p. 48), 328

which is reported to be highly successful in terms of forecast accuracy when applied to 329

different types of data (Makridakis and Hibon [48]; Gardner and McKenzie [49]; Fildes 330

[50]). Parameter estimation is performed via maximum likelihood estimation, and both 331

point forecasts and prediction intervals can be generated. Refer to Appendix A for details. 332

For the full model with age effects and N = 50, a plot of Γ(k), along with forecasts 333

and confidence intervals, is shown in Figure 2. 334
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Age x bx Age x bx Age x bx Age x bx

20 0.014261355 42 0.014812453 64 0.009601416 86 0.011695384
21 0.015866235 43 0.014119139 65 0.009402891 87 0.010812765
22 0.017292544 44 0.013620313 66 0.00894529 88 0.010131609
23 0.018935807 45 0.013317686 67 0.009874399 89 0.00983736
24 0.018301737 46 0.013626309 68 0.010134124 90 0.008982384
25 0.01955903 47 0.013238125 69 0.010570269 91 0.0078466
26 0.019086171 48 0.013587528 70 0.010295663 92 0.007807907
27 0.018720848 49 0.013508995 71 0.009893928 93 0.007240778
28 0.018955846 50 0.012225902 72 0.011135998 94 0.006614019
29 0.019767372 51 0.011260071 73 0.01159652 95 0.00612189
30 0.019052062 52 0.011779514 74 0.012122628 96 0.005999284
31 0.017292291 53 0.011757458 75 0.012241192 97 0.005087022
32 0.018619477 54 0.011429729 76 0.012617455 98 0.005715154
33 0.016869444 55 0.009619608 77 0.012072695 99 0.004075368
34 0.017544975 56 0.010643902 78 0.012779524 100 0.004026139
35 0.016240706 57 0.009609826 79 0.012945643 101 0.004006924
36 0.015965233 58 0.010172365 80 0.012194586 102 0.00183354
37 0.016163254 59 0.009579479 81 0.011769632 103 0.003193209
38 0.016294748 60 0.008964135 82 0.012136992 104 −0.00459685
39 0.015642919 61 0.00845602 83 0.0122118
40 0.015160679 62 0.009601562 84 0.012377463
41 0.014380544 63 0.010045288 85 0.011700719

Table 3. Optimal parameter values for bx, x ∈ [20, 104] for the full Markov model with λ = 1.29,
N = 50, parameterized from 51 years of mortality data from 1950.

Figure 2. Plot of cumulative mortality change factor Γ(k) for the full model with age effects and
N = 50. Calibrated values from in-sample mortality data (starting year Y = 1950) are shown up to
state 50, and forecasts and confidence intervals are shown for later states.
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5.2. Forecast accuracy 335

The forecast accuracy of our Markov model may be assessed by comparing the actual 336

mortality rates in the out-of-sample years from 2001 onwards to the forecast mortality 337

rates in these out-of-sample years according to our model. As in the seminal Lee-Carter 338

stochastic mortality model [1], we wish to compare the log of the instantaneous mortality 339

rates. 340

Let µ̃(x, t) be a random variable denoting the instantaneous mortality rate at age x in
an out-of-sample year t according to our model. Our central forecast of the log-mortality
rate is E[ln µ̃(x, t)]. By summing the squared deviation between our central forecast and
the observed log-mortality over all ages, the forecast error in an out-of-sample year t can
therefore be measured as:

104

∑
x=20

(
E[ln µ̃(x, t)]− ln µ̂x,t

)2
. (13)

In the Markov model, from Figure 1, the log-mortality rate at age x when in state k is

ln µ
(k)
x = ln µ

(k−1)
x + bxγ(k) = ln µs

x +
k

∑
j=0

bxγ(j), (14)

where the standard or baseline mortality is estimated from the mortality data in the HND
[36], µs

x = µ(x), as explained near equation (1). Thus, the expected log-mortality at age x
and time t in the Markov process is the log-mortality at age x when in state k in equa-
tion (14), weighted by the probability that the process is in state k after t years given the
starting state 0, summed over all possible values of state k:

E[ln µ̃(x, t)] = ∑
k

p0k(t)

(
k

∑
j=0

bxγ(j) + ln µ(x)

)
. (15)

Substituting the expected log-mortality in equation (15) above into equation (13) gives the
forecast error in an out-of-sample year t:

104

∑
x=20

[(
bx ∑

k
p0k(t)

k

∑
j=0

γ(j)

)
+ ln µ(x)− ln µ̂x,t

]2

, (16)

noting that ∑k p0k(t) = 1. Note that the error calculated in equation (16) above for fore- 341

casting purposes is subtly different from the WAQD in equation (11) used for calibration 342

purposes. Note also that the forecast error can be readily and exactly calculated without 343

need for simulations or approximations. 344

Table 4 lists the forecast errors at different out-of-sample years for three models: a 345

naïve model where mortality is static and remains as in year 2000; the Markov model 346

calibrated with N = 50 and Y = 1950 and the Markov model calibrated with N = 10 and 347

Y = 1990. Recall from section 2 that there are N + 2 states in total: an initial ‘Alive’ state 348

with preliminary mortality, a terminal ‘Dead’ state, and N ‘Alive’ states with improved 349

mortality. So the second and third Markov models in Table 4 have 52 and 12 states in total 350

respectively. Note also that these models are the full Markov models which allow for age 351

effects. 352

We observe from Table 4 that the forecast errors for all three models generally increase 353

the further out one is in the out-of-sample period, as one might anticipate. Judging by the 354

total forecast errors over all the out-of-sample years (in the bottom row of Table 4), the 355

Markov models clearly outperform the naïve model. This lends credibility to our Markov 356

modelling approach. 357

Somewhat surprisingly, the Markov model with fewer states outperforms the other 358

Markov model in Table 4. However, our initial investigations show that it is not clear-cut 359



Version March 30, 2022 submitted to Mathematics 13 of 18

Year Naïve N = 50 N = 10

2001 0.348 1.054 0.349
2002 0.341 1.150 0.299
2003 0.511 1.443 0.387
2004 0.743 1.718 0.545
2005 1.147 1.568 0.685
2006 1.530 2.013 0.955
2007 1.870 2.069 1.079
2008 1.761 2.427 0.992
2009 3.008 3.149 1.767
2010 3.641 2.972 1.927
2011 4.207 3.390 2.116
2012 4.985 2.868 2.412
2013 5.140 3.171 2.334
2014 5.421 3.701 2.269
2015 5.110 3.332 2.406
2016 4.642 3.574 2.192
Total 44.405 39.599 22.714

Table 4. Forecast errors at different out-of-sample years and total forecast error for three models:
a naïve model with static mortality, the Markov model with N = 50, and the Markov model with
N = 10. The Markov models are the full model incorporating age effects, and N determines the size
of the state space of the model.

that fewer states lead to better forecasts. Further research will be required to be more 360

conclusive. The results in Table 4 serve mainly to illustrate that the Markov model is a 361

viable model that can perform well in terms of forecasting mortality. 362

6. Applications in life insurance and pensions 363

In the life insurance and pensions business, models of mortality are of critical im- 364

portance. Commonly adopted measures of mortality changes include distributions of 365

expectation of life and distributions of present values of annuities at future durations and 366

ages. A key advantage of the Markov approach in this paper is that such indices can be 367

calculated exactly by solving Thiele’s differential equations (Dickson et al. [29, p. 266]), 368

These differential equations enable an insurer to calculate the reserves that it needs to hold 369

when it sells a portfolio of life insurance policies. With the Markov chain approach, we can 370

add the different states directly to Thiele’s differential equations and solve the differential 371

equations numerically at multiple durations. This does not require any simulations, unlike 372

other models of stochastic mortality such as the Lee-Carter model [1]. 373

We give a brief example to illustrate this. If ē(j)
x denotes the complete expectation of

life of an x year old in state j, the appropriate Thiele’s differential equation would be for
j ∈ {0, . . . , N}:

d
dt

ē(j)
x+t = −1 −

N+1

∑
k=j+1

λ
(

ē(k)x+t − ē(j)
x+t

)
+ µ

(s)
x+t exp[bx+tΓ(j)]ē(j)

x+t. (17)

For j = N + 1, this equation reduces to

d
dt

ē(N+1)
x+t = −1 + µ

(s)
x+t exp[bx+tΓ(N + 1)]ē(N+1)

x+t , (18)

while
d
dt

ē(N+2)
x+t = 0. (19)
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Figure 3. Cumulative distribution function of complete expectation of life for a 50-year old at
durations 25 (blue), 40 (orange) and 55 (green).

The appropriate boundary conditions are ē(j)
ω = 0 for j ∈ {0, .., N + 2}, where ω denotes 374

the limiting age of a life. In addition, µ(s)and b are defined for non-integer ages by applying 375

polynomial interpolation between integer ages. 376

For durations 25, 40 and 55 (so calendar years 2000, 2015 and 2030), the cumulative 377

distribution functions (CDFs) of complete expectation of life are displayed for ages 50 and 378

80 in Figures 3 and 4, respectively. For a 50-year old, the mean life expectancies are 34.77, 379

36.73 and 38.50, respectively. For an 80-year old, they are 8.97, 10.03 and 11.05, respectively. 380

From Figures 3 and 4, we notice that the CDFs move to the right as duration goes up. 381

This is not surprising, when we consider the extrapolative nature of forecasting. Mortality 382

improvements have been observed during the periods of observation, so we would expect 383

mortality improvements to continue in future years. The variability of remaining lifetime 384

is for age 80 than for age 50, due to the more limited remaining life span. Figures 3 and 4 385

capture the variability of future remaining lifetimes, and therefore the number of years that 386

annuities or pensions will remain payable. They can therefore help pension and annuity 387

providers to determine the amount of capital to hold to cover longevity risk. The CDFs 388

can also help national local governments with future general public planning (health care 389

needs, etc.). 390

7. Conclusion 391

In this paper, we introduce a Markov chain model for stochastic mortality based on 392

time-homogeneous continuous-time mortality changes, and we demonstrate its advantages 393

in terms of flexibility and ease of calibration. We model age-independent changes in 394

mortality by means of transitions across several ‘Alive’ states, along with a terminal ‘Dead’ 395

state. Our preliminary model considers mortality improvements in population-wide 396

mortality, whereas our full model allows for age effects in mortality improvements. 397

We use female mortality statistics drawn from the Human Mortality Database to 398

calibrate our models using a two-step estimation procedure. In the first step, we obtain a 399

closed-form solution to the minimization of a weighted average quadratic distance (WAQD) 400

with respect to the cumulative log-change in mortality rates, and we then numerically 401

estimate the transition intensities. Our investigation shows that the choice of total number 402

of ’Alive’ states is critical. On the one hand, the greater the number of states, the better 403

the fit to the data. One the other hand, a model with a higher number of states means that 404

more mortality change factors are to be estimated and may lead to overfitting. 405
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Figure 4. Cumulative distribution function of complete expectation of life for an 80-year old at
durations 25 (blue), 40 (orange) and 55 (green).

We calibrate the models on in-sample mortality data from 1950 until 2000, and then 406

forecast mortality from 2001 onwards. Our forecast can then be compared with the out- 407

of-sample data. We employ an innovations state space model, in particular the damped 408

trend model, to project the mortality change factors. We use these forecasts along with 409

the estimated transition intensity and age effect factors for forecasting. We compare the 410

actual mortality rates to the forecast mortality rates for out-of-sample data to find the 411

forecast error for three models: naïve (with static mortality rates), full Markov model with 412

50 states and starting year 1950, and full Markov model with 10 states and starting year 413

1990. The Markov models exhibit a lower forecast error than the static model. As expected, 414

the forecast error increases as we move further out of sample. 415

Finally, we present an application of our Markov approach to life insurance and pen- 416

sions. Key mortality change indicators like the distributions of life expectancy and expected 417

present values of annuities are easily calculated using Thiele’s differential equations. This 418

should facilitate the estimation and management of longevity risk by life insurers, pension 419

providers and others. 420

The main novelty of our model is the application of both Markov chains and innova- 421

tions state space models to the mortality forecasting problem. Our method has many advan- 422

tages including flexibility and ease of parameterisation. With regard to flexibility, as many 423

mortality improvement states as required can be added to the model. As demonstrated 424

in this work, the model can be easily calibrated to real mortality data. Life expectancies 425

and reserves required for life insurance and pensions are also easily computed, without 426

recourse to simulations. Therefore, our model can help practitioners forecast mortality and 427

manage longevity risk more easily. 428

Our work has some limitations that require further investigation and exploration. Our 429

model is fitted by minimizing the WAQD, but other criteria could be used for this purpose. 430

In addition, the transition intensities are assumed to be constant between the various ’Alive’ 431

states. Furthermore, our estimation method has a limitation due to the two-step method 432

that we utilize, whereby mortality rates are first estimated and then an innovations state 433

space model is used for projection. The model also disregards idiosyncratic shocks to 434

mortality such as Covid mortality. 435

For future work, we intend to undertake a more rigorous and systematic investigation 436

into the combination of factors, such as the number of states, period of investigation and 437

transition intensities in the model, that delivers the best forecast accuracy. This will also 438

enable us to compare the performance of our model with that of a mainstream one like 439

the Lee-Carter model. In this paper, only point forecasts have been used in judging the 440
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forecasting power of our model. Another topic for future research would involve using also 441

information about prediction intervals, reflecting the parameter uncertainty of the model. 442
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Appendix A. Innovations state space model 452

In order to forecast the coefficients {γ(k)}, we assume that they are realizations of a 453

stochastic process indexed by the stage k ∈ N of mortality improvement. The stochastic 454

process is described by an innovations state space model, which is described briefly here. 455

For details, see Hyndman et al. [30]. 456

The innovations state space model can be written by means of an observation equation

γ(k) = ℓk−1 + ϕbk−1 + εk, (A1)

and two state equations

ℓk = ℓk−1 + ϕbk−1 + αεk, (A2)

bk = ϕbk−1 + βεk. (A3)

Here, ℓk denotes the level of the data, superposed on a trend bk, along with additive noise εk 457

which is identically Normally distributed with zero mean and variance σ2
ε . The parameters 458

α and β are smoothing parameters for the level and trend respectively, whilst ϕ controls the 459

speed at which the trend flattens out. 460

Three basic specifications exist, depending on the values of the three parameters: 461

{α ∈ (0, 1), β ≡ ϕ ≡ 0} or {α, β ∈ (0, 1), ϕ ≡ 1} or {α, β, ϕ ∈ (0, 1)}. This is extended 462

to a total of 10 specifications by allowing one or both of the trend and the error to enter 463

multiplicatively into the observation and state equations: for details, see Hyndman et al. 464

[30]. (Seasonal components can also be incorporated, but visual inspection does not reveal 465

any seasonality, so this is ignored here.) 466

We omit the last estimated value of γ(k), pertaining to the terminal state of our 467

Markov model. Since this last state is an absorbing state, γN is an outlier as a result of 468

boundary effects. We then choose the best model by minimizing the bias-corrected Akaike 469

Information Criterion (cAIC). 470

Parameter values are found by maximizing likelihood, as described by Hyndman et al. 471

[30]. Initial values of the state variables are chosen according to a heuristic scheme which is 472

empirically verified by Hyndman et al. [45]. Parameter estimates, along with initialization 473

values and cAIC values, are displayed in Table A1. (If a parameter value appears as 0 or 474

1, this means that the model specification is such that the parameter is identical to 0 or 1, 475

respectively.) 476

Point forecasts are readily calculated by substitution and iteration in the observation 477

and state equations (A1)–(A3), with the error term replaced by its mean of zero. Confidence 478

levels can also be calculated since closed-form expressions for conditional variances are 479

known for the cAIC-minimizing models that are specified for our data (see Hyndman et al. 480

[30]). A plot of Γ(k), with forecasts and confidence intervals, is shown in Figure 2. 481

https://www.mortality.org/
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Y N α̂ β̂ ϕ̂ ℓ0 b0 σε cAIC

1950 50 0.9983 0.9983 1 39.55 -2.3105 0.2439 61.69
1990 10 0.0001 0.0001 1 4.4896 -0.5626 0.3163 18.08

Table A1. MLE parameter estimates (α̂, β̂, ϕ̂), initialization values (ℓ0, b0), standard error σε of
innovations, and bias-corrected Akaike Information Criterion (cAIC) for innovations state space
model fitted to Γ(k) for the two Markov models described in section 5.2.
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