lT City Research Online
UNIVEREI;;{]OSFgLfNDON

City, University of London Institutional Repository

Citation: Andrienko, G., Andrienko, N., Cordero Garcia, J. M., Hecker, D. & Vouros, G.
(2022). Supporting Visual Exploration of Iterative Job Scheduling. IEEE Computer Graphics
and Applications, 42(3), pp. 74-86. doi: 10.1109/mcg.2022.3163437

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/28062/

Link to published version: https://doi.org/10.1109/mcg.2022.3163437

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Department: Head
Editor: Name, xxxx@email

Supporting Visual Exploration
of Iterative Job Scheduling

G. Andrienko
Fraunhofer Institute IAIS, Sankt Augustin, Germany and City, University of London, UK

N. Andrienko
Fraunhofer Institute 1AIS, Sankt Augustin, Germany and City, University of London, UK

J. M. Cordero Garcia
CRIDA, Madrid, Spain

D. Hecker
Fraunhofer Institute 1AIS, Sankt Augustin, Germany

G. A. Vouros
University of Piraeus, Greece

Abstract—We consider the general problem known as job shop scheduling, in which multiple
jobs consist of sequential operations that need to be executed or served by appropriate
machines having limited capacities. For example, train journeys (jobs) consist of moves and
stops (operations) to be served by rail tracks and stations (machines). A schedule is an
assighment of the job operations to machines and times where and when they will be executed.
Developers of computational methods for job scheduling need tools enabling them to explore
how their methods work. At a high level of generality, we define the system of pertinent
exploration tasks and a combination of visualisations capable of supporting the tasks. We
provide general descriptions of the purposes, contents, visual encoding, properties, and
interactive facilities of the visualisations and illustrate them with images from an example
implementation in air traffic management. We justify the design of the visualisations based on
the tasks, principles of creating visualisations for pattern discovery, and scalability
requirements. The outcomes of our research are sufficiently general to be of use in a variety of
applications.

B A PRIMARY GOAL of visual analytics is to behaviours of computer algorithms or models.
enable understanding of phenomena reflected in ~ Developers of automated problem solvers need
data [1]. Among various types of phenomena that to see whether their tools work as expected,
may need to be understood is problem-solving detect possible flaws and inefficiencies, and in-

IT Professional Published by the IEEE Computer Society ©2019 IEEE

Department Head

vestigate situations of unsatisfactory behaviour
for finding reasons and ways to improve. Our
work presented in this paper refers to solvers of
a specific class of optimisation problems called
“job shop scheduling”, which arise in industry,
transportation, economics, and management [2].

Investigation of the process of solution opti-
misation involves consideration of the dynamics
of main indicators of solution quality as well as
examination of solution versions in more detail.
The information to be explored is complex and
multifaceted. We have applied a systematic, prin-
cipled approach to the design of visualisations
aimed to support exploration and understanding
of the process and outcomes of job schedule
optimisation. We defined the system of explo-
ration tasks and used the visualisation principles
to choose appropriate visualisation techniques.
Although we dealt with a specific application of
job shop scheduling, we conducted our research
at a high level of generality, so that the results
presented in this paper can be applied to similar
problems in various domains.

The main contributions of our research are,
first, definition of the system of exploration tasks,
and, second, generic design of visualisation tech-
niques with theory-based substantiation of the
design choices.

BACKGROUND

The goal of our research has been to devise
and develop a combination of techniques to sup-
port visual exploration of the behaviour of an
algorithm or model that solves optimisation prob-
lems of the class known in operations research
as “job shop scheduling problem” (JSSP) [2]. In
the basic formulation of the problem, there is a
set of machines (or services) and a set of jobs
with various predetermined routes through the
machines. The jobs are sequences of operations,
which have to be processed on the machines
under a set of constraints. The objective is to
arrange the jobs in a schedule that minimizes
certain criteria, such as the total duration of the
schedule, maximum lateness, or total tardiness. A
schedule specifies the time when each operation
of each job is performed on the corresponding
machine.

The classical JSSP has many variations [2],
[3] appearing in a number of applications, such

as course scheduling for schools, timetabling for
air and railway traffic, fleet assignment and crew
scheduling for airlines, and others. We deal with
the variant of JSSP in which machines can serve
multiple jobs at the same time, but the number
of such jobs is limited by the capacities of the
machines. For each job, there is a initial plan that
sets the desired times of all operations. However,
it is impossible to fulfill all these job plans due
to emergence of situations when the demand for
a machine (i.e., the number of jobs that need to
be served simultaneously) exceeds the capacity of
this machine. Such a situation is called “hotspot”.
The objective of the optimisation is to eliminate
the hotspots by modifying some of the job plans
while striving to minimise the delays that have
to be introduced. This variant of JSSP exists, in
particular, in air traffic management, where it is
necessary, for safety reasons, to limit the number
of airplanes that are present simultaneously in the
same part of airspace.

All variants of the JSSP are known to be NP-
hard [3], which means that exact optimisation
methods (i.e., methods seeking a globally optimal
solution) do not scale to the sizes of practical
problems. Many of the existing classes of approx-
imate methods, such as simulation annealing [4],
local search [5], and reinforcement learning [6],
[7], work by iteratively improving some initial
solution. This means that some variant of a job
schedule exists at each iteration step. Our goal is
to support visual exploration of the sequence of
changes made by an iterative schedule optimisa-
tion method regardless of the method specifics.

RELATED WORK

An iterative algorithm repeatedly changes the
state of a certain object to which it is applied;
let us call it “algorithm target”. For example,
a sorting algorithm changes the state of an ar-
ray, i.e., the order of its elements. Common ap-
proaches to visualising the behavior of an iterative
algorithm are, quite obviously, animation through
the sequence of images representing the states of
the target and juxtaposition of such images in a
static figure [8]. While these simple approaches
are, perhaps, best suited for education purposes,
they may also be used for analysis and evaluation
of algorithm performance. For example, an evo-
lutionary process of multi-objective optimisation

IT Professional

has been explored with the help of animated
scatterplots [9].

Based on our study of the relevant literature
and discussions with algorithm developers, we
have distilled a set of analysis tasks referring
to different aspects of the algorithm behaviour
and differing in their level of abstraction. At the
highest abstraction level, analysts investigate the
evolution of overall (global) performance indica-
tors, such as deviation of simulated or predicted
states from real data or amount of change of the
target per iteration step (T1). At a lower level,
analysts examine and compare the states of the
algorithm target at different iteration steps (T2).
When the target involves multiple components,
analysts also need to consider the evolution of
local changes for different components (T3).

A common approach to visualising the evo-
lution of numeric indicators of algorithm per-
formance or parameters of components of the
algorithm target is a line chart where one axis
represents the sequence of iteration steps and the
remaining display dimension is used for mapping
numeric values. Such displays have been used
for showing the evolution of a global error of
an image segmentation algorithm [10] and local
changes of parameters of different components
of a simulation model [11]. An alternative to a
line chart is a bar chart with bars corresponding
to iteration steps; we use this technique in our
displays.

When the number of target components is
very large, exploration of the local changes can
be facilitated through aggregation. For example,
changes of the distribution of local uncertainty
indicator values can be shown using 2D his-
tograms [12]. Similar local changes can be clus-
tered and shown in multiple juxtaposed images,
one per cluster [10]. In our work, we group
components in each step based on current values
of their changing parameters and use segmented
bar charts to represent counts of elements by
intervals of parameter values.

What concerns the states of the algorithm
target, the approach to visualisation, obviously,
depends on the nature of the target. Thus, scat-
terplots are used to show non-dominated deci-
sion options in multi-objective optimisation [9],
whereas colouring or graphical marks superim-
posed on a medical image represent states of

May/June 2019

the process of image segmentation [10]. Such
visualisations can usually be viewed in animation
through the sequence of steps as well as statically
for selected steps.

In our work, the target of an iterative opti-
misation algorithm is a job schedule, which is
somehow modified at each step of the iteration.
A schedule consists of job timetables specifying
the times when job operations are executed on
appropriate machines. A well-known visualisa-
tion of job timetables is the chart created by
Etienne-Jules Marey in the 1880s and discussed
in a book by E. Tufte [13]. In this visualisa-
tion, the horizontal axis represents time, and the
stations on the train routes connecting Paris and
Lyon are positioned along the vertical axis. The
train journeys are represented by diagonal lines
running from top left towards bottom right for the
journeys from Paris to Lyon and from bottom left
towards top right for the journeys in the opposite
direction. Horizontal line segments represent train
stops at the stations. The display not only conveys
detailed information about each journey but also
enables an overall view of how the train frequency
changes over time. With respect to the general
formulation of the job shop scheduling problem,
the train journeys correspond to jobs and the
stations and rail tracks between them correspond
to machines.

The design ideas of Marey have been later
used in other applications with “machines” and
“jobs” of different nature. For example, Xu et
al. [14] visualise in this way the work of an as-
sembly line in a manufacturing process. We have
also taken the Marey’s ideas for our visualisation
of job timetables.

Before presenting our visualisations, we dis-
cuss the system of tasks arising in investigation of
the work of a schedule optimisation algorithm and
substantiate the combination of visual displays
that we create for supporting these tasks.

VISUAL EXPLORATION TASKS

As stated earlier, our goal is to support visual
exploration of an iterative process of job schedule
optimisation, i.e., the target of an optimisation al-
gorithm is a job schedule. It consists of timetables
of the jobs. A timetable is an assignment of job
operations to machines and time intervals where
and when the operations are to be performed.

Department Head

Hence, a schedule can be considered as a data
cube with the dimensions jobs X machines X
time and the values specifying machine uses by
jobs at different times.

In the JSSP variant we deal with, the most
important characteristics of a schedule are exis-
tence and severity of hotspots on the machines
and delays of the jobs. It is assumed that there is
an initial version of a schedule without job delays
but with hotspots. The main objective of the
optimisation is to eliminate the hotspots, which
can be achieved at the cost of introducing delays
in the job execution. A secondary objective of the
optimisation is to minimise the delays.

We have earlier mentioned the general analy-
sis tasks T1-T3 required for investigation of algo-
rithm behaviour. These tasks can be re-formulated
in more specific terms for our problem setting:

e TI1: Investigate the evolution of the presence
and severity of the hotspots and delays along
the sequence of the algorithm iteration steps.

e T2: Analyse and compare the states of the job
schedule at different iteration steps.

e T3-M: Examine how the algorithm changes the
demands for individual machines and how this
affects the hotspots.

e T3-J: Investigate how the algorithm changes
the timetables of individual jobs and how job
delays evolve along the optimisation process.

The tasks differ in their levels of abstraction with
regard to the sequence of the iteration steps and
with regard to the sets of entities involved, i.e.,
the machines and the jobs. When a set or a subset
is considered as a whole, it is the synoptic level
of abstraction, whereas consideration of one or
more individual elements belongs to the elemen-
tary level [15]. Since there are three sets (steps,
machines, and jobs) that can be considered at two
levels of abstraction (synoptic and elementary),
the whole space of possible exploration tasks
can be seen as a cube shown in Figure 1. The
abstraction levels of the tasks T1, T2, T3-M, and
T3-J with regard to the three sets are indicated by
referring them to the corners of the cube. As can
be seen, all these tasks are synoptic with regard
to at least two sets.

T2 T1
L) ' N
1 :
M e
P T3-)
£ 3-M
L1 D R —
S
1
1 steps S

Figure 1. The space of possible exploration tasks.
The symbol ‘1’ refers to the elementary level (consid-
eration of individual elements) and the symbols ‘S’,
‘M’, and ‘J’ refer to the synoptic level (consideration of
sets).

VISUALIZATION AND INTERACTION
TECHNIQUES

Visual exploration of complex information
involving diverse components, as in our case,
is inevitably constrained by the available means
of visual representation as well as the human
perceptual and cognitive capabilities. Depending
on the analysis task, it may be necessary to
prioritise some components, i.e., consider them in
full detail, at the cost of reducing or even omitting
other components [20]. For example, task T1 re-
quires the sequence of the steps to be considered
in full detail whereas the characteristics of the
machines and the jobs can be summarised.

Task T2 has the elementary abstraction level
with respect to the set of the steps; however, it
requires consideration of a job schedule, which
is by itself a complex structure with three di-
mensions jobs X machines X time. It is not
possible to represent all these dimensions in full
detail simultaneously; hence, there is a need in
several complementary visualisations prioritising
some dimensions at the cost of others. However,
the time should always be given high priority, as
it is necessary to consider either the times of the
job operations or the time-varying demands for
the machines. The same consideration applies to
the tasks T3-M and T3-J.

Table 1 presents results of our reasoning
about the level of detail for each data component
(Steps, Machines, Jobs, and Time) that is required
for each analysis task. We use the notation intro-
duced in paper [20] to indicate which components

IT Professional

Table 1. Analysis tasks and visualisation techniques

Task | Steps | Machines | Jobs | Time View
Tl ++))) Process
T2 1 ++) ++ Schedule
T2 1 + ++ ++ Timetable

T3-M ++ 1 Py ++ Machine

use
evolution

T3-J ++ + 1 ++ Job

evolution

need to be represented in full detail (++) and
which can appear in reduced detail or can be
limited to subsets (+). The symbol ‘1’ means
representation of selected individual elements of a
component (i.e., elementary level of abstraction),
and the symbol ‘3’ means summarised represen-
tation of a component. Please note that task T2
is supported by two complementary views giving
high priority either to the machines or to the jobs.

The last column of Table 1 lists prototype
visualisations, or views, that we created according
to the task requirements. The views and the cor-
responding interactive operations are described in
the following subsections. A common operation
in all views is access to precise data related to
individual elements of a set that is represented in
detail (++ or + in Table 1). The information ap-
pears in a popup window or in a dedicated screen
section upon pointing on an element. Hence,
the symbols ++ and + corresponding to steps,
machines, or jobs indicate that a display supports
both synoptic and elementary levels with respect
to these components. The symbol 3 means that
the elementary level is not supported.

For illustration purposes, we shall use screen-
shots from an implementation dealing with flight
scheduling in civil aviation. The airspace (partic-
ularly, in Europe) is divided into compartments,
called sectors, the traffic in which is supervised
by air traffic controllers. The sectors have limited
capacities defined as the maximal safely manage-
able number of flights that can cross a sector dur-
ing one hour. Flights are conducted according to
plans. Initial versions of the flight plans are pre-
pared by companies and private persons intending
to conduct the flights. It happens quite often that
the demand for a sector, i.e., the number of flights
that need to cross it within an hour, exceeds the
capacity of this sector and thus creates a hotspot.
For safety reasons, it is necessary to eliminate the

May/June 2019

hotspots by modifying some of the flight plans.
The most usual modification is delaying a flight.
It is sometimes possible to modify a flight route
so that it avoids an overloaded sector while the
route length does not increase significantly. In the
problem of flight scheduling, sectors and flight
plans correspond, respectively, to machines and
to jobs in the general formulation of the JSSP.
In describing the visualisations, we shall use the
general terminology.

The visualisations presented in the following
subsections should be treated as mere examples
of possible approaches to supporting the tasks and
fulfilling the requirements stated in Table 1. Our
design choices are explained in the discussion
section. While various alternatives do exist, the
consideration of the whole design space is beyond
the focus of this paper.

It is important to note that our designs are
not specific to the flight scheduling application.
We encourage the readers to imagine how the
same techniques could be applied, for example,
to the problem of planning the fulfillment of
professional training programmes of multiple ap-
plicants. There is a set of training modules, which
can be treated as machines; their capacity is
the maximal number of simultaneous attendants.
The trainees have their individual training needs,
1.e., different combinations of modules to attend.
There exists logical ordering between modules,
i.e., some modules may require that the atten-
dants have earlier taken certain other modules.
Hence, each trainee has a programme consisting
of a desired sequence of modules to attend. The
training programmes correspond to jobs in the
general formulation of the JSSP. The differences
of this application from the flight scheduling are
the time scale (several weeks vs. a single day)
and temporal resolution (days vs. minutes). These
differences affect the labelling on the time axis
but not the overall display design.

Process view

The purpose of the process view is to show
how the main characteristics of the schedule
change along the sequence of the optimisation
steps, which is represented by one of the display
dimensions, e.g., horizontal, as in Figure 2. The
characteristics are shown by bar charts with the
bars corresponding to the steps. Two bar charts

Department Head

Steps

—_—

N hotspots

e ol

sl N machines with hotspots

Total job delay duration

N jobs by delay duration ranges

Longer delays

Shorter delays

A Selected step

Figure 2. Process view.

show the counts of hotspots and machines having
hotspots. Two other bar charts convey information
about the overall delay of all jobs and the counts
of jobs with different ranges of delay, e.g., 1
to 5 minutes, 6 to 10 minutes, and so on. The
latter information is represented by segmented
bars with segments of different darkness; darker
shades correspond to longer delays.

The bar charts allow analysts to see the trends
of the changes along the optimisation process and
discover unexpected or undesired patterns, such
as an increase of the number of hotspots after a
decrease to nearly zero, or a long period without
any changes (both patterns can be seen in our
example in Figure 2).

Schedule view

This view is intended to show hotspots and
delays involved in selected versions of a schedule.
For example, Figure 3 represents three versions
of a schedule. For each version, it is essential
to show when and on which machines hotspots
exist, and the severity of the existing hotspots.
Accordingly, a display of one schedule uses one
dimension to represent the job execution time
and the other dimension to represent the set of
machines or a selected subset of the machines,
as in Figure 3. The counts of the jobs served
by the machines within the time intervals are
represented by horizontal bars. The bars are fully
shaded in light grey when none of the jobs has a
delay with respect to the initial plan. For showing
counts of jobs with delays, the bars include seg-
ments of varying darkness, as in the process view
(Figure 2). Hotspots, i.e., excesses of machine
capacities, are signified by red lines drawn across
bars at the positions corresponding to the machine
capacities.

Selected step /

In Figure 3, the left section of the display rep-
resents the initial version of the schedule, the final
version is on the right, and the central section
shows an intermediate version from a selected
iteration step #15. The table rows correspond to
time intervals of 20 minutes length. For better
visibility of the bar charts, we have selected a
small subset of the machines. The central sec-
tion shows where the optimisation algorithm has
introduced job delays to resolve the originally
existing hotspots. Delaying job execution may
lead to emergence of new hotspots. Thus, the
initial hotspot in the interval 13:00-14:00 in the
first column has been eliminated in step #15, but
instead a hotspot in the interval 15:00-15:40 has
emerged. The final solution has no hotspots but
has massive job delays.

The schedule view is intended to support
both elementary and synoptic abstraction levels
with respect to the set of machines. Information
concerning a single machine is shown in a corre-
sponding table column. The synoptic abstraction
level is achieved by viewing a table as a whole. To
facilitate finding informative patterns in the dis-
tributions of hotspots and delays, table columns
can be sorted according to various criteria, such
as the initial number of hotspots, the overall
number of hotspots during the whole optimisation
process, or the total job delay. Besides, it is
possible to make various selections, such as all
machines connected to a given machine (two
machines are connected if there are jobs served by
both machines). Through such selection, one can
investigate whether attempts to eliminate hotspots
on some machine lead to appearance of hotspots
on the machines connected to it, or the other way
around.

The schedule view in its static form refers to

IT Professional

Step O

Step 15

Step 144

. +— Machines —

+— Machines —

- «— Machines — © | @ |

Time

<+ Selected machine |

Hotspots

2 N jobs (no delays)

<+ Selected machine

o I
| N jObS by delay duratuon ranges‘

<+ Selected machine

L

| N JObS by delay dupgtlon ranges

——

Figure 3. An example of a schedule view showing three versions of a schedule.

the elementary level with respect to the optimi-
sation step sequence, as it shows only selected
steps. However, the schedule view can be ani-
mated, so that the animation time represents the
step sequence. The animation can reveal overall
patterns of schedule changes along the process.

Machine use evolution view

The machine use evolution view shows how
the planned use of a selected machine changes
over the process of optimisation. The view re-
quires two display dimensions to represent the
sequence of the optimisation steps and the job ex-
ecution time. In the example display in Figure 4,
the horizontal dimension represents the sequence
of the optimisation steps and the vertical dimen-
sion represents the job execution time divided into
intervals, as in Figure 3. The contents of the table
cells is also the same as in the schedule view,
except that the job counts are represented in this
case by vertical bars rather than horizontal. This
orientation is more convenient for considering
changes along the step sequence, i.e., along the
horizontal dimension of the display.

The display supports both elementary and
synoptic levels with respect to the optimisation
step sequence. Focusing on one table column
allows an analyst to investigate characteristics of
a schedule version produced in one step of the
optimisation process. When the table is viewed as
a whole, it is possible to see patterns of hotspots

May/June 2019

moving forward in the job execution time and job
delays increasing as the optimisation process goes
on.

Timetable view

The timetable view refers to a single schedule,
or it can be used for comparing two schedules.
In both cases, it is the elementary abstraction
level with respect to the optimisation steps. The
view shows paths of multiple jobs through the
machines performing job operations. The paths
are shown in relation to the job execution time-
line, which is represented by one of the display
dimensions (horizontal in our implementation).
The machines and the jobs are represented as
distinct entities rather than aggregates. Therefore,
the view can support both elementary (considera-
tion of individual machines or jobs) and synoptic
(joint consideration of multiple machines or jobs)
abstraction levels. The downside of representing
distinct entities is that the display is not scalable
to very large numbers of machines and jobs. That
is why it may be necessary to limit the view to
showing selected subsets of the entities. Thus, we
have to do this for our aviation application, where
the number of machines (i.e., airspace sectors) is
about 280 and the number of jobs (i.e., flights
per day) is around 7,000 (the numbers vary in
different days).

The solution we apply is that the timetable
view shows one focus machine with the jobs it

Department Head

Steps

Time

Hotspots

N jobs by delay duration ranges

Figure 4. A machine use evolution view.

serves plus the machines directly connected to it.
Two machines are directly connected when there
are common jobs served by one machine directly
after the other. For a given machine M, machines
that serve common jobs directly before M are
called upstream with respect to M and machines
serving common jobs directly after M are called
downstream with respect to M. One and the same
machine may be both upstream and downstream
with respect to a given machine.

In the example shown in Figure 5, each
machine is represented by a horizontal band. The
bands are arranged one below another along the
vertical display dimension. The focus machine
receives a larger portion of the vertical display
space than the other machines. The bands above

and below it represent the upstream and down-
stream machines, respectively. If some machine
is both upstream and downstream with respect to
the focus machine, it is represented by two bands
drawn above and below the focus machine band.

Line segments crossing the bands represent
job operations served by the respective machines.
The horizontal positions of the segment starts and
ends correspond to the time intervals when the
operations are executed. Line segments represent-
ing consecutive operations of the same job are
connected by thin dashed lines. Pointing on a
line segment highlights all segments of the cor-
responding job and the connecting lines between
them. In this way, it is possible to trace the path of
the selected job through the machines represented
in the display. As it may not be the full path
of this job, there is an opportunity to switch the
display to showing the full path, i.e., the whole
sequence of operations this job consists of. In this
mode, the display includes all machines the path
goes through (see Figure 6).

Apart from jobs, the timetable view also
shows the temporal distributions of the demands
for the machines present in the view, i.e., the
amounts of the jobs that need to be served by the
machines. The demands are shown in comparison
to the machine capacities. In our implementa-
tion, the demands are represented by bar charts
with overlapping bars. The bars correspond to
overlapping time intervals of a chosen width.
Since the capacities are expressed as job amounts
per time unit, such as one hour, the reasonable
interval width equals this time unit. The bar
heights are proportional to the demands in the
respective time intervals. We vary the shading
of the bars depending on the demand amounts,
with darker shades representing higher demand,
but when demands exceed machine capacities, the
corresponding bars are painted in red to signify
hotspots.

The decision to consider overlapping time
intervals in representing demands is motivated
by the fact that computed demand amounts may
significantly differ depending on the choice of
interval origins. When all intervals are separate,
there is a risk that some hotspots will not be
noticed. For example, when separate one-hour
intervals start at the beginning of each hour, a
hotspot that begins in the middle of an interval

IT Professional

Time

0:00 01:00 A
lLECMDGJ‘L (224 !

LECMPA (4/4)

L‘H”Fa@h I nes

CECWMT 1(3/1U) T

TLECHPAL G773

LECMDGU (216721 6)

LECMPAU (596;

Focus
machine

LECMDGU (104/104)
h L :

I

}_ECMTLl;J (91/91); ¥ g

“LECWPAL (57767) | [

LECMCJU (smm\ | | |

Ecmzez (50/51)

HHI il IHI I <H [IHIHH\II‘ [ITH H

T T T
LECMTER (5/9) | i |

LECMPA| (5/5) | | - =
LECMBLU (4/8) |] I I 0
f.ECMTu"(us)]]) . I T T
1 1 - 1 . . q
n L . 7 n . n Jop hignhighting ‘
LECMCI (1) | i = i \ i | 24 = I i \ i i i

0:00 01:00 0200 0300 0400 0500 06:00 07.00 08:00 0900 10:00 11:00

Figure 5. Timetable view.

T 51909200 0300 0690 080 oeos T GE00 9300 10301140 1200 f3oo 1650 1S 1630 1100 1600 1300 2090 2100 2200 2900 21
=Ry i

(S —
. I
I .

CEBibic T
| h .

Figure 6. A timetable view in the mode of showing
the full path of one selected job through the machines
serving it. In this example, it is the job highlighted in
Figure 5.

may not be revealed if the demand in the first half
of that hour is low and the total demand of the
hour does not exceed the capacity.

May/June 2019

|
1400 1500 16:00 17.00 18:00 1900 20:00 21:00 2200 2300 240

Furthermore, when overlapping time intervals
are considered, the choice of the lag between
consecutive intervals may also affect the chances
to notice hotspots. Therefore, our implementation
allows the user to vary the time lag between the
intervals and observe the effects on the bar charts.
In so doing, the user pays attention to emergence
of red bars. For hotspots that have been revealed,
taking a short time lag , e.g., 5 minutes or even 1
minute, is useful for determining the exact period
of the hotspot existence.

As an example, consider in Figure 7 a display
fragment including the focus machine and three
upstream machines from Figure 5. For better vis-
ibility of the bar charts, the lines of the jobs have
been hidden. The four screenshots correspond to
time lags of 60, 30, 15, and 5 minutes between
the hourly time intervals for which the demands
are computed. With the lag of 60 minutes, i.e.,
when the intervals do not overlap, no hotspots
on the focus machine can be noticed. The lag of

10

Department Head

W‘lag =60 minutes

i rmaE &

‘Time lag = 5 minutes T

Figure 7. Hourly demands and hotspots are repre-
sented by bars with different time lags.

30 minutes reveals one hotspot in the morning of
the day, and the smaller lags reveal two additional
hotspots in the afternoon and evening. The lag of
20 minutes, which is used in Figure 5, reveals
only one hotspot emerging in the evening.

The timetable view can be used to inves-
tigate differences between timetables from two
schedules corresponding to different steps of the
optimisation process. Figure 8 demonstrates how
differences are displayed. Differences between
the machine demands are represented by bars
oriented upward or downward for positive and
negative values, respectively. Differing job plans
are represented by solid and dashed lines corre-
sponding to the first and second chosen steps.
By viewing all lines together, it is possible to
see how many job plans have changed and how
these plans are distributed over the job execution
time. Pointing on a line highlights two lines of
the same job simultaneously; so, it is possible to
see how a particular job plan was modified from
one optimisation step to the other. For example,
the highlighted lines in Figure 8 correspond to a
job that was delayed for 42 minutes. Moreover,
the machine sequence also changed in the second
version of the plan.

Job evolution view

The job evolution view shows different ver-
sions of one selected job plan. Figure 9 demon-
strates an example of how such a view may

appear. For a selected job, the view includes
the machines supposed to serve it in at least
one version of the job plan. The display also
shows the whole sequence of the optimisation
steps (the rectangles at the top of the display) and
indicates the steps when the plan was modified
(the rectangles painted in blue). The machines
and the job plan versions are represented in the
same manner as in the timetable view (Figure 5).
The initial plan is represented by a solid line and
the following versions by dashed lines. Pointing
on a line highlights this line and the rectangle
representing the step when the corresponding
version of the job plan was produced. The whole
set of lines shows how many times the job plan
was modified, the history of job delays, and the
modifications of the initially planned machine
sequence.

Some line segments in Figure 9 are painted
in red. This means that the corresponding oper-
ation of the job is supposed to be served by a
machine having a hotspot at the planned time of
performing the operation. The colour of a solid
line segment on the left of a line indicates whether
a hotspot existed in the previous step of the opti-
misation. This allows the analyst to see whether
a modification of a plan helps to eliminate a
hotspot or, on the opposite, contributes to creating
a new hotspot, or a previously existing hotspot
remains after the modification. In Figure 9, all
these cases can be seen. A solid blue line followed
by a red dashed line means emergence of a new
hotspot (see the leftmost line segment inside the
lowest band in Figure 9), whereas a solid red
line followed by a blue dashed line indicates
elimination of a hotspot (see the fifth line segment
in the same band). When both lines are red, it
means that an existing hotspot still remains.

It should be taken into account that it is not a
single job that makes hotspots appear or disappear
but modifications of multiple job plans. The job
evolution view reveals hotspots related to one job,
allowing the analyst to find out in which opti-
misation steps, on which machines, and at what
times these hotspots existed. To investigate the
appearance and elimination of these hotspots, the
analyst needs to use the timetable view. Table 2
describes how the views are coordinated through
interactive operations.

Using a job evolution view, an analyst can

IT Professional

;00 0700 02:00 0300 U4‘UU UE‘UU UEiUU 07:00 000 UE‘UU 10:00 11iUU

12:00

1300 1400 1500 16:00 .13‘UU 19:.00 20:00 2‘1:UU

‘LECMDd‘L(_MW /1:7+17) : T v %

17:00
\

“W \

22‘UU ZH‘UU

v i I I

‘LECMEL‘U (MMIH) : T T T T

Veram f e o b
RESRELICER

‘LECMTZ\} (7+7 fs+|h) : | | I I

LECMPAL (19+18 j1a+18) | | | | |
| | | |

LECMDGL (21+81/21+81)] ! ! ! !

LECMPAL! (234+2B3)

LECMPAL (55+54 [55+54) | I I 1 1
I I 1 1 I I 1 I

LECMTLU (46+46 /46+46) | T T | |
| | 1 1 | | 1 1

LECMTZI (33+34 /33+34) | 1 I 1 1
I I | | I I | |

I FCMC.IU (19+18,/20+20)
I

ECMDGU (343 (6+0)

{8 B =

‘V\‘ -2

|
1
L
|
‘F CMZGZ (8+/ 1817)

LECMBLO 1 Ab) |]] I !

‘LECMCJ“ (1+0 |2+Ib) T T T T T T T T T

o0 0100 0200 0300 0400 0500 06:00 0700 0800 0800 10:00 11:00

12:00

13:00 1400 1500 16:00 1700 1&00 1800 20000 21:00 2200 2300

Figure 8. A timetable view shows differences between timetables from two schedules.

LECPGOX

“tnitial \

mh wnl:m

Machines

‘Time range: [09:45)

Figure 9. A job evolution view shows all versions of
one job plan and the optimisation steps in which the
versions were created.

also investigate whether the modifications of a
selected job are justifiable. In the example in
Figure 9, the last three shifts of the job forward
in time seem excessive, as there were no hotspots
in which this job was involved. This finding may
be important for the developers of the optimisa-

May/June 2019

tion method: it indicates a possible performance
problem and makes them seek ways to improve.

Coordination between the views

Although each view is intended for a partic-
ular analysis task, it cannot be assumed that the
view are used one by one in a specific sequence.
In exploratory analysis, different tasks are often
intertwined. Switching from one task to another is
supported by display coordination through inter-
active operations. The operations and their results
are described in Table 2.

User feedback

Our work was done in the context of an
international project aiming to test the feasibility
of automated flight scheduling in aviation. We
had two kinds of partners: developers of a sched-
ule optimisation algorithm and aviation domain
experts. The former had no previous experience
in visual exploration of algorithm behaviour and
also no tools for doing that. The latter did not
use any tools for automated flight scheduling

11

12

Department Head

Table 2. Coordination between views

From To Interactive | Result
operation
Process | Schedule | Selection of | The corresponding
view view an iteration | schedule version is
step shown (Figure 3).
Schedule | Timetable | Selection of | The timetable for the

same step as in the first
view is shown; the se-
lected machine is put in
the focus (Figure 5).

view view a machine

Timetable | Machine | Selection of | The evolution of the ma-

view; Job | use a machine chine use is shown (Fig-

evolution | evolution ure 4).

view view

Machine | Timetable | Selection of | The timetable for the se-

use view an iteration | lected step is shown; the

evolution step machine represented in

view the first view is put in
the focus (Figure 5).

Machine | Timetable | Selection of | Differences between two

use view an additional | timetable versions are

evolution iteration step | shown (Figure 8).

view

Machine | Process | Highlighting | The highlighting of

use view; Job | of an | the iteration step is

evolution | evolution | iteration propagated to the

view view step other views. Note: this

operation also works in
the other views.

Timetable | Job Selection of | The history of the mod-

view evolution | a job ifications of the selected

view job is shown (Figure 9).
Job Timetable | Selection of | The timetable for the se-
evolution | view an iteration | lected step is shown; the

full path of the same job
as in the first view is
shown (Figure 6).

view step

before the project. Since it was hard for the
partners to envisage what they might need, we
used the literature to understand the subject and
to identify the analysis tasks. We discussed and
refined the tasks together with the partners. We
also discussed with them our design ideas and
took their remarks and suggestions into account.
The implemented visualisations were first used by
the algorithm developers, who uncovered some
surprising features of the algorithm behaviour.
After debugging and improving the algorithm,
the visualisations were also evaluated by the
domain experts. They were impressed by the
exploration possibilities provided by the displays.
Their verdict was that such visualisations can
be very useful at the stage of algorithm certifi-
cation before adopting it for practical use. The
visual exploratory tools enable domain experts
to comprehensively check if the algorithm works
properly and in this way gain trust to it. However,

such tools would be excessive for end users of the
algorithm.

DISCUSSION AND CONCLUSION

The goal of our work was to devise a combi-
nation of visualisation and interaction techniques
supporting comprehensive investigation of the
work of an iterative procedure solving a variant
of job shop scheduling problems where machines
can serve multiple jobs at once but have limited
capacities, which must not be exceeded. To make
substantiated choices, we characterised the space
of the exploration tasks by considering two possi-
ble levels of abstraction with respect to the inher-
ent components of this class of problems, namely,
machines and jobs, and of the solution process,
namely, optimisation steps and key properties of
the respective schedule versions, i.e., times of
fulfilling job operations, hotspots on machines,
and job delays.

Exploratory tasks of the synoptic abstraction
level aim at discovery of patterns in data [15],
i.e., combinations of interrelated data items that
can be considered as units [16]. To support
pattern discovery, a visual display must comply
with two main principles: correspondence and
unification [16]. The first principle means iso-
morphic representation of relationships existing
among data items by visually perceivable rela-
tionships among corresponding display elements.
The second principle means prompting perceptual
association of multiple data items, mainly as a
result of subconscious application of the Gestalt
laws [17].

According to these principles, the first choice
for representing linearly ordered data compo-
nents, such as the sequence of optimisation steps
and the time of job execution, is the use of display
dimensions, which not only faithfully reflect the
ordering but also enable perceptual unification of
display elements, such as bars, arranged along
these dimensions. Lengths of bars are well suited
for representing quantities and relationships be-
tween quantities [18], [19]. Perceived order of
increasing darkness among shades of grey (i.e.,
the visual variable ‘value’, according to [18])
corresponds to increasing duration of job delays,
and arrangement of bar segments in this order
prompts perceptual unification of the segments
into a single figure with the darkness increasing

IT Professional

slowly or rapidly along the bar length. In the
displays representing individual jobs (Figures 5-6,
8-9), job operations are represented by line seg-
ments positioned in the display according to the
machines executing them and the execution times.
As a result, the arrangement of the line segments
in a display conveys the ordering relationships
between operations within jobs and temporal rela-
tionships among operations of different jobs exe-
cuted on same machines. Perceptual unification of
lines corresponding to same jobs is supported by
connecting lines between them. For line segments
of different jobs, arrangement along the temporal
axis supports perceiving them together as dense
or sparse line patterns conveying variation of the
temporal density of the job operations.

It is not occasional that our principled ap-
proach to designing visualisations for pattern
discovery resulted in choosing well-known and
widely used techniques of visual encoding and
display organisation. It is because these tech-
niques proved to be effective in numerous ap-
plications. The commonality of these techniques
is a good feature for potential users, who will
not have to spend much time for understanding
the representations and learning how to use the
displays.

What concerns the elementary level of ab-
straction, in which individual data items are con-
sidered, it is best supported by interactive query
facilities providing access to exact values [15].
Such facilities preclude perceptual errors and
distortions that are inevitable in estimating values
based on graphical encoding. It is convenient
for users when detailed information is accessible
through direct manipulation of a display. This can
be achieved by showing information in popup
windows when the user points on display ele-
ments and by creating context-sensitive popup
menus with additional functions.

The volumes of information to be explored
may be very large. This is not a problem for vi-
sualisation when it is sufficient to show the infor-
mation in an aggregated form. Thus, the process
view is scalable to large numbers of machines and
jobs. The number of iteration steps that can be
shown is limited by the display size, but aggrega-
tion can be applied also to the sequence of steps.
The views intended to show information referring
to individual machines and/or jobs are, obviously,

May/June 2019

not scalable to large numbers of those; therefore,
they have to be limited to showing selected sub-
sets of machines and/or jobs. This means that the
displays should be complemented with interactive
facilities for selection. For example, machines can
be selected based on the duration and severity
of hotspots or on connections with particular
machines, and jobs can be selected based on the
number of modifications applied to them or on
the total delay. Such selections enable an analyst
to focus on the most critical portions of the whole
information.

We would like to dissuade readers from seeing
our paper as a description of particular implemen-
tations of software tools. Throughout the paper,
we strove to keep a high level of generality in
presenting the visualisation subject, defining ex-
ploratory tasks, and proposing visualisation tech-
niques to support the tasks. For illustration pur-
poses, we used certain implementations of these
techniques, but the specific appearances of the
displays in the included figures should be treated
as insignificant. The content of this paper is also
not limited to a particular optimisation method
but refers to a wide class of methods solving job
shop scheduling problems through iterative im-
provement of a flawed initial solution. We expect
that our paper, due to its high generality, can serve
as a source of useful knowledge for researchers
and practitioners dealing with scheduling prob-
lems and iterative processes. Besides, our paper
provides an example of a principled, theory-based
approach to designing visualisations, which is
applicable to other kinds of problems and data.

Conclusion

Examination of the behaviour of a computer
algorithm or model is an important task required
for achieving correct and efficient performance.
An interactive visual interface supporting this
task can be very helpful for algorithm/model
developers. Such an interface can also help users
to understand how the algorithm works and why
it generates this or that result for the given input.
This understanding is important for developing
users’ trust to the algorithm and adopting it for
practical use [21]. An algorithm behaviour is
often a complex dynamic phenomenon involv-
ing multiple heterogeneous aspects. To make it
comprehensible to humans, the design of a visual

13

14

Department Head

representation must handle these complexities,
e.g., apply aggregation to deal with high amounts
of information items and decomposition to deal
with multiple aspects and relationships. The es-
tablished principles of visualisation and existing
theoretical frameworks can inform and guide the
design process. We have demonstrated how these
general foundations can be used in designing
a combination of interactive visualisations for a
particular class of algorithms. This should be con-
sidered as an example that can be followed when
dealing with other classes of algorithms or other
types of dynamic and multifaceted phenomena
and processes.

ACKNOWLEDGMENTS

This work was supported by Fraunhofer Cen-
ter for Machine Learning within the Fraunhofer
Cluster for Cognitive Internet Technologies, by
EU under project SoBigData++, and by SESAR
under project TAPAS.

B REFERENCES

1. N. Andrienko, T. Lammarsch, G.L. Andrienko, G. Fuchs,
D.A. Keim, S. Miksch, and A. Rind, “Viewing Visual
Analytics as Model Building”, Computer Graphics Forum,
vol. 37, no. 6, pp.275-299, 2018.

2. M. Abdolrazzagh-Nezhad and S. Abdullah, “Job Shop
Scheduling: Classification, Constraints and Objective
Functions”. World Academy of Science, Engineering and
Technology, International Journal of Computer and Infor-
mation Engineering, vol. 11, pp. 429-434, 2017.

3. J. Zhang, G. Ding, Y. Zou, S.-F. Qin and J. Fu, “Review of
job shop scheduling research and its new perspectives
under Industry 4.0”. Journal of Intelligent Manufacturing,
vol. 30, no. 4. pp. 1809-1830, 2019.

4. PJ.M. van Laarhoven, E.H.L. Aarts, and J.K. Lenstra,
“Job Shop Scheduling by Simulated Annealing”, Oper-
ations Research, vol. 40, no. 1 (February 1992), pp.
113-125, 1992.

5. R.J.M. Vaessens, E.H.L. Aarts, and J.K. Lenstra, “Job
Shop Scheduling by Local Search”, INFORMS Journal
on Computing, vol. 8, no. 3, pp. 302-317, 1996.

6. W. Zhang and T.G. Dietterich, “A Reinforcement Learn-
ing Approach to job-shop Scheduling.” Proc. Fourteenth
International Joint Conference on Atrtificial Intelligence
(IJCAI 1995), 1995.

7. M. Aydin and E. Oztemel, “Dynamic job-shop scheduling
using reinforcement learning agents”, Robotics and Au-
tonomous Systems, vol. 33, pp. 169-178, 2000.

8. M. Bostock, “Visualizing Algorithms” [Online]. Available:
https://bost.ocks.org/mike/algorithms/, June 26, 2014.

9. B. Chakuma and M. Helbig, “Visualizing the Optimiza-
tion Process for Multi-objective Optimization Problems”.
Artificial Intelligence and Soft Computing. ICAISC 2018,
Lecture Notes in Computer Science, vol 10841. Springer,
2018.

10. T. von Landesberger, G. Andrienko, N. Andrienko, S.
Bremm, M. Kirschner, S. Wesarg, and A. Kuijper, “Open-
ing up the “black box” of medical image segmentation
with statistical shape models”, The Visual Computer, vol.
29, pp. 893-905, 2013.

11. K. Matkovi¢, D. Gracanin, M. Jelovi¢, A. Ammer, A.

—_

Lez, and H. Hauser, “Interactive Visual Analysis of Multi-
ple Simulation Runs Using the Simulation Model View:
Understanding and Tuning of an Electronic Unit Injec-
tor”, IEEE Transactions on Visualization and Computer
Graphics, vol. 16, no. 6, pp. 1449-1457, Nov.-Dec. 2010.

12. Y. Wan and C. Hansen, “Uncertainty Footprint: Visu-
alization of Nonuniform Behavior of Iterative Algorithms
Applied to 4D Cell Tracking”, Computer Graphics Forum,
vol. 36, n0. 3 (June 2017), pp. 479-489, 2017.

13. E.R. Tufte, The Visual Display of Quantitative Informa-
tion, Graphics Press, Cheshire, Connecticut, 1983.

14. P. Xu, H. Mei, L. Ren, and W. Chen, “ViDX: Visual Di-
agnostics of Assembly Line Performance in Smart Facto-
ries”, IEEE Transactions on Visualization and Computer
Graphics, vol. 23, no. 1, pp. 291-300, Jan. 2017.

15. N. Andrienko and G. Andrienko, Exploratory Analysis
of Spatial and Temporal Data: A Systematic Approach.
Springer, 2006.

16. N. Andrienko, G. Andrienko, S. Miksch, H. Schumann,
and S. Wrobel, “A theoretical model for pattern discovery
in visual analytics”, Visual Informatics, vol. 5, no 1, pp.23-
42, 2021.

17. W. Metzger, L.T. Spillmann, S.T. Lehar, M.T. Stromeyer,
and M.T. Wertheimer, Laws of seeing. Mit Press, 2006.

18. J. Bertin, Semiology of graphics; diagrams networks
maps, University of Wisconsin Press, 1983.

19. W. S. Cleveland and R. McGill, “Graphical Perception:
Theory, Experimentation, and Application to the Devel-
opment of Graphical Methods”, Journal of the American
Statistical Association, vol. 79, no. 387, pp. 531-554,
1984.

20. C. Tominski, G. Andrienko, N. Andrienko, S. Bleisch, S.
I. Fabrikant, E. Mayr, S. Miksch, M. Pohl, A. Skupin, “To-
ward flexible visual analytics augmented through smooth
display transitions”, Visual Informatics, vol. 5, no. 3, pp.
28-38, 2021.

21. N. Andrienko, G. Andrienko, L. Adilova and S. Wrobel,

IT Professional

“Visual Analytics for Human-Centered Machine Learn-
ing”, IEEE Computer Graphics and Applications, vol. 42,
no. 1, pp. 123-133, 1 Jan.-Feb. 2022.

Dr. Gennady Andrienko (www.geoanalitycs.net)
is a lead scientist responsible for visual analyt-
ics research at Fraunhofer Institute for Intelligent
Analysis and Information Systems and part-time
professor at City University London. Gennady An-
drienko was a paper chair of IEEE VAST con-
ference (2015-2016) and associate editor of IEEE
Transactions on Visualization and Computer Graphics
(2012—2016), Information Visualization and Interna-
tional Journal of Cartography. Contact him at gen-
nady.andrienko@iais.fraunhofer.de.

Dr. Natalia Andrienko, is a lead scientist at Fraun-
hofer Institute for Intelligent Analysis and Information
Systems and part-time professor at City University
London. Results of her research have been published
in two monographs, "Exploratory Analysis of Spatial
and Temporal Data: a Systematic Approach” (2006)
and " Visual Analytics of Movement” (2013), and in a
textbook " Visual Analytics for Data Scientists” (2020).
Natalia Andrienko is an associate editor of /[EEE
Transactions on Visualization and Computer Graphics
(2016—2020) and Visual Informatics. Contact her at
natalia.andrienko@iais.fraunhofer.de.

Jose Manuel Cordero Garcia, is a Principal Re-
searcher at CRIDA (R&D unit of the Spanish ANSP,
ENAIRE) in Madrid, with extensive experience in the
Air Traffic Management domain in the areas of op-
erational performance monitoring and management,
data analysis, and data-driven modelling. He has lead
a number of research projects such as SESAR Perfor-
mance Management. José Manuel has co-authored
more than 40 peer-reviewed papers in journals and
conferences, receiving two best paper awards. He
also received the Jane’ ATC Environment Award and
Maverick Sustainability Award, recognizing achieve-
ments in green ATM concepts. Since August 2019,
he has also been appointed as a member of the
EUROCONTROL Performance Review Commission.
Contact him at jmcordero@e-crida.enaire.es.

Dr. Dirk Hecker, is Deputy Director of the Fraun-
hofer Institute for Intelligent Analysis and Information
Systems IAIS and Managing Director of the Fraun-
hofer Big Data and Artificial Intelligence Alliance. His
research interests include Big Data Analytics, Ma-
chine Learning, and Mobility Mining. Contact him at
dirk.hecker@iais.fraunhofer.de.

May/June 2019

Dr. George Vouros, is full Professor at the Depart-
ment of Digital Systems, ICT School, University of Pi-
raeus; head of the Artificial Intelligence Lab (ai-group.
ds.unipi.gr) and member of the Data Science Lab. His
research interests include Data Science(ontologies,
semantic data integration), Machine / Reinforcement
Learning, and Multiagent Systems. Contact him at
georgev@unipi.gr.

15

www.geoanalitycs.net
ai-group.ds.unipi.gr
ai-group.ds.unipi.gr

	BACKGROUND
	RELATED WORK
	VISUAL EXPLORATION TASKS
	VISUALIZATION AND INTERACTION TECHNIQUES
	Process view
	Schedule view
	Machine use evolution view
	Timetable view
	Job evolution view
	Coordination between the views
	User feedback

	DISCUSSION AND CONCLUSION
	Conclusion
	ACKNOWLEDGMENTS
	REFERENCES
	Biographies
	Dr. Gennady Andrienko
	Dr. Natalia Andrienko,
	Jose Manuel Cordero Garcia,
	Dr. Dirk Hecker,
	Dr. George Vouros,

