
              

City, University of London Institutional Repository

Citation: Lemant, J., Le Sueur, C., Manojlović, V. & Noble, R. (2022). Robust, Universal 

Tree Balance Indices. Systematic Biology, 71(5), pp. 1210-1224. doi: 
10.1093/sysbio/syac027 

This is the published version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/28068/

Link to published version: https://doi.org/10.1093/sysbio/syac027

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[12:02 23/7/2022 Sysbio-OP-SYSB220027.tex] Page: 1210 1210–1224

Syst. Biol. 71(5):1210–1224, 2022
© The Author(s) 2022. Published by Oxford University Press on behalf of the Society of Systematic Biologists. This is an Open Access article distributed under the terms of the Creative
Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium,
provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
https://doi.org/10.1093/sysbio/syac027
Advance Access Publication April 12, 2022

Robust, Universal Tree Balance Indices

JEANNE LEMANT1,2,3, CÉCILE LE SUEUR1, VESELIN MANOJLOVIĆ4, AND ROBERT NOBLE1,4,∗
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Abstract.—Balance indices that quantify the symmetry of branching events and the compactness of trees are widely used
to compare evolutionary processes or tree-generating algorithms. Yet, existing indices are not defined for all rooted trees,
are unreliable for comparing trees with different numbers of leaves, and are sensitive to the presence or absence of rare
types. The contributions of this article are twofold. First, we define a new class of robust, universal tree balance indices.
These indices take a form similar to Colless’ index but can account for population sizes, are defined for trees with any
degree distribution, and enable meaningful comparison of trees with different numbers of leaves. Second, we show that for
bifurcating and all other full m-ary cladograms (in which every internal node has the same out-degree), one such Colless-
like index is equivalent to the normalized reciprocal of Sackin’s index. Hence, we both unify and generalize the two most
popular existing tree balance indices. Our indices are intrinsically normalized and can be computed in linear time. We
conclude that these more widely applicable indices have the potential to supersede those in current use. [Cancer; clone tree;
Colless index; Sackin index; species tree; tree balance.]

Tree balance indices—most notably those credited to
Sackin (1972) and Colless (1982)—are widely used to
describe speciation processes, compare cladograms, and
assert the correctness of tree reconstruction methods
(Shao and Sokal 1990; Mooers and Heard 1997; Fischer
et al. 2021). Existing tree balance indices have several
important flaws. First, they cannot be applied to any tree
in which any node has only one descendant. Second,
existing indices are unreliable for comparing trees with
different numbers of leaves. Third, because they do not
account for population sizes, these indices are sensitive
to the omission or inclusion of rare types. The latter issue
is, for example, a problem in oncology (Chkhaidze et al.
2019; Scott et al. 2020), where methods for determining
and classifying evolutionary modes have clinical value
(Davis et al. 2017; Maley et al. 2017).

Here, we develop a new class of robust, universal tree
balance indices. Our definitions not only extend the tree
balance concept and open up new applications but also
unify the two main approaches to quantifying balance
as proposed by Sackin and Colless. We describe several
general advantages of our indices compared to those in
current use.

MATERIALS AND METHODS

Rooted Trees
We consider exclusively rooted trees in which all edges

are oriented away from the root (which will be topmost
in our figures). This orientation defines a natural order
on the tree, from top to bottom: edges descend from the
root to the other internal nodes and finally to the terminal
nodes or leaves. The out-degree of a node i, written d+(i), is
the number of direct descendants, ignoring any subtrees
in which all nodes have zero size. Internal nodes have
out-degree at least one, whereas leaves have out-degree

zero. If all internal nodes have out-degree 1, then the tree
is called linear. If all internal nodes have out-degree m>1
then the tree is a full m-ary tree, and if m=2 then it is also
called bifurcating (such as Fig. 1a,b).

Some other tree topologies have particular names. A
caterpillar tree (Fig. 1a) is a bifurcating tree in which
every internal node except one has exactly one leaf. A
fully symmetric tree (Fig. 1b) is such that every internal
node with the same depth has the same degree or,
equivalently, for each internal node i all the subtrees
rooted at i are identical. A star tree (Fig. 1c) is a tree
whose leaves are all attached to the root, which is the
only internal node.

Node Sizes, Tree Magnitudes, and Leafy Trees
Although our definitions can be applied in other con-

texts, we will assume that nodes correspond to biological
taxa or clones, and on this basis, we assign non-negative
node sizes. If we know (or care) only whether each
type is extant or extinct—as is typical in taxonomy—
then we assign size zero to every node representing an
extinct type, and size one otherwise. If nodes represent
clones with known population sizes—as is often the
case in studies of cancer and microbial evolution—then
each node size is equal to the population size of the
corresponding clone. The magnitude of a tree or subtree
is then defined as the sum of its node sizes (we use
magnitude here because a tree’s size is conventionally
defined as its number of nodes). We define a leafy tree as
a rooted tree in which all internal nodes have size zero.

Cladograms, Taxon Trees, and Clone Trees
Tree types can also be defined in terms of what

they represent. Following Podani (2013), we distinguish
between two representations used in systematic biology.
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FIGURE 1. Contrasting trees. a) Caterpillar tree with IS =35, IS,norm =1, IC =21, IC,norm =1, I� =56, I�,norm =1. b) Fully symmetric bifurcating
tree with IS =24, IS,norm ≈0.59, IC = IC,norm =0, I� =16, I�,norm ≈0.29. c) Star tree with IS =8, IS,norm =0, IC and IC,norm undefined, I� = I�,norm =0.
d) Clone tree of the lung tumor CRUK0065 in the TRACERx cohort (Jamal-Hanjani et al. 2017). In the clone tree, nodes represented by empty
circles correspond to extinct clones, and the diameters of other nodes are proportional to the corresponding clone population sizes.

We define a cladogram as a rooted tree in which internal
nodes represent hypothetical extinct ancestors, leaves
represent extant biological taxa, and edges represent
evolutionary relationships. This is equivalent to the syn-
chronous cladogram definition of Podani (2013). Every
cladogram is by definition a leafy tree, with a magnitude
equal to its number of leaves. A common conception is
that only bifurcating cladograms can be considered fully
resolved. However, the linear two-node cladogram is
appropriate for representing serial anagenesis (in which
each descendant replaces its ancestor), while budding
(in which an ancestor produces a descendant and
remains extant) can give rise to cladogram nodes with
an out-degree greater than two (Podani 2013). Hence,
there is no restriction on cladogram node degrees. An
extant ancestor is represented in a cladogram by a leaf
stemming from the internal ancestor node, in which case,
as Podani notes, “an ancestor is identical to an extant
taxon connected directly to it.”

Alternatively, extant or known ancestors may be
represented uniquely by internal nodes (like in a genea-
logy with overlapping generations). Such diagrams are
known to organismal biologists as species trees or taxon
trees, and to oncologists as clone trees. We define a taxon
tree as a rooted tree in which all nodes represent bio-
logical taxa, and edges represent ancestor-descendant
relationships. Similarly, a clone tree is defined as a rooted
tree in which each node represents a clone (a set of cells
that share alterations of interest due to common descent),
and edges represent the chronology of alterations. Both
taxon tree and clone tree fit the achronous tree definition
of Podani (2013). Clone tree nodes can have any out-
degree, including d+ =1, and each node—including
internal nodes—can be associated with a non-negative
size, as illustrated in Figure 1d.

When nodes are associated with sizes, the addition of
subtrees comprising even vanishingly small nodes can
change leaves into internal nodes and so substantially
change the value of existing tree balance indices. This
behavior is unsatisfactory because relatively small nodes
typically represent either newly created types that have
yet to experience evolutionary forces or types on the
verge of extinction, and in either case convey negligible
information about the mode of evolution. Data sets may

a)

b)

FIGURE 2. Muller plots (left column), taxon or clone trees (middle
column), and cladograms (right column) representing evolution by
splitting only (a) and both splitting and budding (b). In a Muller plot,
polygons represent proportional subpopulation sizes (vertical axis)
over time (horizontal axis), and each descendant is shown emerging
from its parent polygon. In the trees, nodes represented by empty
circles correspond to extinct types.

also omit rare types due to sampling error or because
genetic sequencing methods have imperfect sensitivity
(Turajlic et al. 2018).

The change due to the addition of terminal nodes is
greater when the tree is a cladogram rather than a taxon
or clone tree. For example, when a three-node, two-leaf
tree (Fig. 2a) is augmented by adding a node j to a leaf i
(Fig. 2b), the three original nodes retain their positions
in the clone tree (middle column of Fig. 2), but in the
cladogram (right column) node i becomes two nodes
(i1 and i2), the larger of which is now further from the
root (see Podani (2013) for further illustrations of this
difference). As the size of the new node j is continuously
reduced to zero, the clone tree changes continuously,
whereas the cladogram undergoes an abrupt change
of topology when the size of node j reaches zero. We
conclude that the taxon tree or clone tree representation
is more robust than the cladogram representation in
the general case in which nodes are associated with
sizes and ancestors can be extant. Also, an index that
accounts for nonzero internal node sizes can be made
more robust than one that does not. Accordingly, we will
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define indices for the more general domain of clone trees
and then obtain results for cladograms as a special case.

Existing Tree Balance Indices
The most widely used tree balance indices are in fact

imbalance indices, such that more balanced trees are
assigned smaller values. These indices were introduced
to study cladograms; they take no account of node size,
and, even after applying standard normalizations, they
are appropriate only for comparing trees with equal
numbers of leaves. The most popular are Sackin’s index
and Colless’ index.

Sackin’s index.—Let T be a tree with a set of leaves L(T).
For a leaf l∈L(T), let �l be the number of internal nodes
between l and the root, which is included in the count.
Then, the index credited to Sackin (1972) is

IS(T)=
∑

l∈L(T)

�l.

For two bifurcating trees with the same number of leaves,
a less balanced tree has higher values of � as the tree is
in a sense less compact (compare trees a and b in Fig. 1).

Since the value tends to increase with the number of
nodes, Shao and Sokal (1990) proposed normalizing IS
with respect to trees on n>2 leaves by subtracting its
minimum possible value for such trees and then dividing
by the difference between the maximum and minimum
possible values. The minimal IS is reached on the star
tree, such as tree c in Figure 1, and hence minn(IS)=n.
The maximum is attained on the caterpillar tree, such as
tree a:

max
n

(IS)=n−1+
n−1∑
�=1

�=n−1+n(n−1)/2= (n−1)(n+2)/2.

The normalized index is then

IS,norm(T)= IS(T)−n
(n+2)(n−1)/2−n

.

This normalized index is not very satisfactory as a
balance index because it fails to capture an intuitive
notion of balance. For example, it is not obvious why
a fully symmetric tree (b) should be considered less
balanced than the star tree (c) in Figure 1, yet its IS,norm
value is much larger. To address this issue, Shao and
Sokal (1990) further suggested normalizing IS relative to
its extremal values among trees with the same number of
internal nodes as well as the same number of leaves. But
even then the index remains unreliable for comparing
trees with different numbers of leaves. For example, the
index is 1 for every caterpillar tree, yet long caterpillar
trees are intuitively less balanced than short ones. The
conventional IS normalizations are not defined for trees
containing linear parts. Moreover, since IS does not
account for node size, it is sensitive to the addition or
removal of subtrees comprising relatively small nodes.

Colless’ index.—For an internal node i of a bifurcating tree
T, define ni1 as the number of leaves of the left branch of
the subtree rooted at i, and ni2 as the number of leaves
of the right branch. Then, the index defined by Colless
(1982) is

IC(T)=
∑

i∈Ṽ(T)

|ni1 −ni2 |,

where Ṽ(T) is the set of all internal nodes of T. The index
can be normalized for the set of trees on n>2 leaves by
dividing by its maximal value,

(n−1
2
)
, which is reached

on the caterpillar tree (as in Fig. 1a).
Because Colless’ index cannot be applied to multi-

furcating trees, Mir et al. (2018) recently introduced a
family of Colless-like balance indices, including IC as a
special case. Each of these indices CD,f is determined by a
weight function f , which assigns a size to each subtree as
a function of its out-degree, and a dissimilarity function
D. By definition of D, Colless-like indices are zero if
and only if each internal node divides its descendants
into subtrees of equal size. But since these indices are
normalized by dividing by the maximal value for trees
on the same number of leaves, they are unreliable for
comparing trees with different numbers of leaves. In
common with Sackin’s index, the total cophenetic index
I� (Mir et al. 2013) (see Appendix), and other existing
indices (surveyed by Fischer et al. (2021)), the Colless-
like indices so far defined do not account for node sizes
and can be applied only to trees in which all nodes have
out-degree greater than one.

Desirable Properties of a Universal, Robust Tree Balance
Index

Our aim is to derive a tree balance index J that is useful
for classifying and comparing rooted trees that can have
any distributions of node degrees and node sizes. Here,
we specify four desirable properties that such an index
should have. The first two axioms relate to extrema. We
will call an index universal if it is defined for trees with
any degree distribution and obeys these first two axioms.
An index that conforms to the other three axioms—
which are relevant only when nodes can have arbitrary
sizes—will be called robust.

We will begin by introducing some additional notation
(see also Table 1). For a tree T, we will use V(T) to denote
the set of all nodes of T, which we will abbreviate to V
when the identity of the tree is unambiguous. Let f (v)≥0
denote the size of node v. Then, Ti denotes the subtree
rooted at node i (i.e., the subtree that contains node i and
all its descendants); Si is the magnitude of Ti; and S∗

i is
the magnitude of Ti excluding its root:

Si:=
∑

v∈V(Ti)

f (v); S∗
i :=

∑
v∈V(Ti)

v �=i

f (v)=Si −f (i).

We will use Ṽ(T) or simply Ṽ to denote the set of all
internal nodes such that {i∈ Ṽ}:={i∈V :S∗

i >0}.
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TABLE 1. Notation used throughout this article

Properties of a node i
d+(i) Out-degree
C(i) Set of children
�(i) Depth
f (i) Size
Ti Subtree rooted at i
ni Number of leaves of Ti
Si Magnitude of Ti (sum of node sizes)
S∗

i Magnitude of Ti excluding its root
gi Importance factor
pij Sj/S∗

i , where j∈C(i)
Wi Balance score
Wq

i Balance score based on qH
hi Nonroot dominance factor

Sets of nodes
V All nodes
Ṽ Internal nodes i such that S∗

i >0
L Leaves

Entropies and tree balance indices
qH Generalized entropy with parameter q
1Hb Shannon entropy with base b
IS Sackin’s index
IC Colless’ index
I� Total cophenetic index
CD,f Colless-like index
IS,gen Generalized Sackin’s index
IC,gen Generalized Colless’ index
Jq Tree balance index based on qH
JS Normalized inverse Sackin index
J1c A conservative tree balance index

Conventionally, a tree is considered maximally bal-
anced only if every internal node splits its descendants
into subtrees on the same number of leaves (Shao and
Sokal 1990). We generalize this concept by requiring that
every internal node splits its descendants into at least two
subtrees of equal magnitude, as in Figure 3a. We call this
the equal splits property, and we make it a necessary and
sufficient condition for maximal balance.

Axiom 1 (Maximum value). J(T)≤1 for all trees T, and
J(T)=1 if and only if T has equal splits.

Another convention is that trees with relatively
many internal nodes are considered highly imbalanced.
According to this convention, linear trees (i.e., trees in
which every node i has d+(i)≤1, as in Fig. 3b) should
be considered even less balanced than caterpillar trees.
Also, given that balance implies branching, the most
imbalanced split is one that assigns all descendants to
one branch and none to any other branches. Hence our
second desirable property:

Axiom 2 (Minimum value). J(T)≥0 for all trees T, and
J(T)=0 if and only if T is a linear tree.

Our third desirable property ensures that our index is
insensitive to the properties of nodes that have relatively
few descendants.

Axiom 3 (Insensitivity). Let T be a tree and l be one of
its leaves. If we create a new tree T′ from T by adding a
subtree with finitely many nodes rooted at l then J(T′)→
J(T) as S∗

l /
∑

j∈Ṽ(T′)S∗
j →0.

Our fourth axiom ensures that a linear section of a tree
is regarded as a maximally unequal split.

Axiom 4 (Linear limit). Let T be a tree and i∈ Ṽ(T) with
d+(i)=1. Let i1 be the unique child of i. If we create a new
tree T′ from T by adding additional subtrees with finitely
many nodes rooted at i then J(T′)→ J(T) as Si1/S∗

i →1.

Lastly, we require continuity with respect to varying
node size:

Axiom 5 (Continuity). Suppose we create a new tree T′
by selecting a node of tree T and changing the node’s
size from x to x′. Then J(T′)→ J(T) as x′ →x.

Alternative axioms are considered in the Appendix.

i i i

i i i

:

:

Yes Yes If and only if is 
unimportant or has a 

dominant branch

is a subtree of 
arbitrarily small 
magnitude

represents two 
or more edges

0

1

2

3

4

5

6

7

8

a) b) c) d) e)

FIGURE 3. a) A tree in which each internal node has null size and splits its descendants into subtrees of equal magnitude, and hence J =1. This
tree can be considered balanced only according to an index that accounts for node size. b) A linear tree, for which J =0. c–e) A robust, universal
tree balance index J is insensitive to the addition of a subtree of arbitrarily small magnitude if it is added to a leaf (a) or a nonroot node with
out-degree 1 (b), but not necessarily if the subtree is added to a nonroot node with greater out-degree (c).
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Sensitivity to Changes in Out-degree of Nonroot Nodes
By design, our definition of a robust tree balance

index does not require insensitivity to the addition or
removal of rare types in all cases. To see why, suppose we
transform a tree T into T′ by adding one or more subtrees
of arbitrarily small magnitude, attached to a nonroot
node i∈V(T). As illustrated in Figure 3c–e, there are
three topologically distinct cases to consider. If i is a leaf
of T (Fig. 3c) or d+(i)=1 in T (Fig. 3d) then J(T′)→ J(T)
due to Axioms 3 or 4. In the first case, i is an unimportant
node, which we define to mean that S∗

i /
∑

j∈Ṽ S∗
j →0. In

the second case, if i is not an unimportant node in T then
Ti must have a dominant branch, meaning that i has a child
i1 such that Si1/S∗

i →0. The third case, when d+(i)≥2 in
T (Fig. 3e), is more complicated. If i is an unimportant
node in T then J(T′)→ J(T) as S∗

i /
∑

j∈Ṽ S∗
j →0 in T′, by

Axiom 3. If Ti in T has a dominant branch Ti1 in T then
J(T′)→ J(T) as Si1/S∗

i →1 in T′, by Axiom 4. But if neither
of those conditions hold then our axioms do not specify
the size of the effect on J.

Although we could modify Axiom 4 so that J is always
insensitive to the addition of relatively low-magnitude
subtrees—thus increasing the index’s robustness—we
argue that this would undermine its utility as a tree
balance index. The balance of a node can be conven-
tionally defined as the extent to which it splits its
descendants into multiple subtrees of equal magnitude.
By this definition, the attachment of a new, relatively
low-magnitude subtree to a perfectly balanced node will
create an imbalance even as—in fact especially as—the
magnitude of this new subtree, relative to the magnitude
of the node’s pre-existing descendants, approaches zero.
Therefore, it is desirable for a tree balance index to be
sensitive to certain changes in node degree, such that in
the third scenario considered above, J(T′)→ J(T) if and
only if i is an unimportant node or Ti has a dominant
branch (Fig. 3e).

RESULTS

General Definition of Universal, Robust Tree Balance Indices
Our general definition depends on two continuous

functions of subtree magnitudes:

• An importance factor g :R>0 →R>0 with g(x)→0 as
x→0;

• A balance score W that assigns Wi ∈[0,1] to each
internal node i such that Wi =0 if and only if d+(i)=
1, and Wi =1 if and only if i splits its descendants
into at least two equal-magnitude subtrees.

To allow us to define W more rigorously, let S denote
the set of vectors with positive components that sum to
unity:

S:=∪k≥1 {(x1,...,xk)|x1,...,xk >0,x1 + ...+xk =1}.
Then, W : S →[0,1] is such that, for all (x1,...,xk)∈S:

• (Associativity) For every permutation �,
W(x1,...,xk)=W(x�(1),...,x�(k));

• (Maximum value) W(x1,...,xk)=1 if and only if k >
1 and x1 = ...=xk ;

• (Minimum value) W =0 if and only if
max(x1,...,xk)=1;

• (Continuity) W is a continuous function with
respect to each of its arguments.

We then define a balance index in terms of subtree
magnitudes as

J:= 1∑
k∈Ṽ gk

∑
i∈Ṽ

giWi, (1)

where Wi =W(Si1/S∗
i ,...,Sip/S∗

i ),gi =g(S∗
i /
∑

j∈Ṽ S∗
j ),

and i1,...,ip are the children of node i (see Table 1 for a
recap of notation). A short proof that this type of index
satisfies our five axioms for robustness and universality
(Axioms 1–5) is presented in the Appendix.

The balance score W in Equation 1 measures the
extent to which an internal node splits its descendants
into equal-magnitude subtrees. The importance factor g
assigns more weight to nodes that are the roots of large
subtrees. In biological terms, this means giving more
weight to types that have more descendants. Sackin’s and
Colless’ indices similarly assign more weight to nodes
that have more descendant leaves or are closer to the
root. Mooers and Heard (1997) have argued that it is
reasonable to put more weight on nodes deeper within
the tree because “those nodes are the most informative,
as the subclades they define are older and therefore
sample longer periods of evolutionary time.”

A Specific Index Based on the Shannon Entropy
In defining a specific index, we start by opting for

the simplest importance factor function: g(x)=x. The
role of the balance score function W is to quantify the
extent to which a set of objects (specifically subtrees)
have equal magnitude. A well-known index that satisfies
the necessary conditions is the normalized Shannon
entropy.

Assume a population is partitioned into n∈N types,
with each type i accounting for a proportion pi. Then,
the Shannon entropy with base b is defined as 1Hb:=−∑n

i=1pi logbpi. If all types have equal frequencies pi =
1/n, then 1Hb = logbn. If the types have unequal sizes,
then 1Hb < logbn. And if the abundance is mostly
concentrated on one type j, such that pj →1, then
1Hb →0.

Let C(i) denote the set of children (immediate descend-
ants) of a node i, and for j∈C(i) let pij:=Sj/S∗

i denote the
relative magnitude of subtree Tj compared to all subtrees
attached to i.
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a) b)

FIGURE 4. a) An example calculation of J1. Numbers shown inside nodes are the node sizes. b) All multifurcating leafy trees on six leaves
without linear parts and with equally sized leaves, sorted and labelled by J1 value.

A balance score based on the normalized Shannon
entropy is then

W1
i =

∑
j∈C(i)

W1
ij, with W1

ij =
⎧⎨⎩

−pij logd+(i)pij if pij >0
and d+(i)≥2,

0 otherwise.
(2)

For every internal node i, the number of frequencies
pij is equal to d+(i), and if all these frequencies are
equal then −∑n

i=1pij logbpij = logbd+(i), for any base b.
Changing the base of the logarithm from b to d+(i)
is equivalent to dividing the sum by logbd+(i), which
implies that −∑n

i=1pij logd+(i)pij =1 when all the pij are
equal. From aforementioned properties of the Shannon
entropy, it then follows that W1

i ∈[0,1], with W1
i =0 if

and only if d+(i)=1, and W1
i =1 if and only if i splits its

descendants into at least two equal-magnitude subtrees.
Therefore, the following specific balance index satisfies
our robustness and universality axioms:

J1:= 1∑
k∈Ṽ S∗

k

∑
i∈Ṽ

S∗
i W1

i . (3)

The calculation of J1 is illustrated in Figure 4a.

The definition simplifies when we restrict the domain
to the set of multifurcating leafy trees in which all leaves
have equal size f0. This includes cladograms in which
internal nodes represent extinct ancestors and leaves
correspond to equally important extant types. For all
internal nodes i in such trees, S∗

i =Si = f0ni, where ni is
the number of leaves of the subtree rooted at node i. The
general definition of Equation 1 can then be expressed
in terms of node balance scores and leaf counts:

J = 1∑
k∈Ṽ nk

∑
i∈Ṽ

niWi, (4)

and the specific definition of Equation 3 becomes

J1 = −1∑
k∈Ṽ nk

∑
i∈Ṽ

∑
j∈C(i)

nj logd+(i)
nj

ni
. (5)

For example, Figure 4b shows the J1 values of all leafy
trees on six equally sized leaves without linear parts.
Unlike Sackin’s and Colless’ indices, J1 does not consider
the caterpillar tree the least balanced of these trees.

There are of course many alternative options for W.
For example, Colless’ index can be generalized to define
a robust, though not universal, tree balance index on
the domain of bifurcating trees (see Appendix). Since
the Shannon entropy belongs to families of generalized
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entropies (Rényi 1961; Chao et al. 2014) parameterized by
q>0, the above reasoning can be generalized to define a
balance score Wq, and hence a robust, universal balance
index Jq, for every q>0 (see Appendix). Other candidates
for W include one minus the variance of the proportional
subtree magnitudes or one minus the mean deviation
from the median (Mir et al. 2018). We prefer W1 mostly
because, as we shall show, it is the only function for which
Equation 4 is a generalization of the normalized inverse
Sackin index.

Relationship with Colless’ Index
Like Colless’ index and Colless-like indices as previ-

ously defined, our new family of tree balance indices
is based on the intuitive idea of assigning a value to
each internal node, summing these values, and then
normalizing the sum. A Colless-like index in the sense
of Mir et al. (2018) depends on a function f :N→R≥0,
which assigns node sizes, and a dissimilarity score D :
R→R≥0, where R is the set of non-null real vectors.
Before normalization, such an index has the form

CD,f =
∑
i∈Ṽ

D(�f (Ti1 ),...,�f (Tik )),

where {i1,...,ik} are the children of node i. The function
�f assigns a size to each subtree by summing the
node sizes: �f (T)=∑j∈V(T) f (d+(j)). Neglecting the initial
normalizing factor, our general definition (Equation 1)
has a similar form and can be considered Colless-like in
only a slightly broader sense. Our definition nevertheless
differs in two important ways.

First, whereas the unbounded dissimilarity index D
measures both node imbalance and importance and is
undefined for nodes with out-degree one, we split these
two roles into a normalized balance score W and an
unbounded importance factor g, and we assign a W
value (specifically zero) to nodes with out-degree one.
This difference enables us to extend the balance index
definition to trees with any degree distribution. It also
makes it easy to normalize our indices for any tree,
simply by dividing by the sum of the important factors.
Furthermore, our normalization is universal, rather than
being based on comparison with other trees with the
same number of leaves. For example, our Jq indices
judge long caterpillar trees less balanced than short ones
(Fig. 5a), whereas Sackin’s index, Colless’ index, and the
total cophenetic index consider all caterpillar trees on
more than two leaves equally imbalanced.

Second, instead of assigning a size to each node as a
function of its out-degree, we associate a node’s size with
the size of the biological population it represents. This
ensures that our indices can be made reliably robust by
including population size data.

Relationship with Sackin’s Index
The sum

∑
k∈Ṽ nk is just another way of expressing

Sackin’s index (summing over internal nodes instead

of leaves). Therefore, J in Equation 4 is essentially a
weighted Sackin index (with each term in the sum
weighted by the balance score W) divided by the
unweighted Sackin index. In the special, important
case of full m-ary leafy trees (including full m-ary
cladograms), the weighted sum in J1 (Equation 5)
simplifies yet further. Let T ∗

n,m denote the set of all trees
on n leaves such that all internal nodes have the same
out-degree m>1, every internal node has null size, and
all leaf sizes are equal. Then, we obtain a remarkably
simple relationship between J1 and Sackin’s index:

Proposition 6. Let T be a tree on n leaves with d+(i)=m>1
and f (i)=0 for every internal node i. Then

J1(T)=
1Hm(T)S(T)

IS,gen(T)
,

where 1Hm(T) is the Shannon entropy (base m) of the
proportional node sizes, S(T) is the magnitude of T, and
IS,gen(T):=∑i∈Ṽ(T)S∗

i . If additionally all leaves of T have
the same size (so T ∈T ∗

n,m) then

J1(T)= minn,mIS
IS(T)

= nlogmn
IS(T)

, (6)

where minn,mIS is the minimum IS value of trees in T ∗
n,m.

The above result is somewhat surprising as it unifies
our Colless-like index, which can be viewed as a
weighted average of internal node balance scores, and
Sackin’s index, which is the sum of all leaf depths. A short
proof of Proposition 6 is presented in the Appendix. The
converse result, which is also proved in the Appendix,
justifies our choice of W1 instead of alternative balance
score functions:

Proposition 7. Let J be a tree balance index such that

J(T)= 1∑
k∈Ṽ nk

∑
i∈Ṽ

niW
(

ni1
ni

,...,
nip(i)

ni

)
,

where i1,...,ip(i) are the children of node i, and W is a balance
score satisfying the conditions stated before Equation 1.
Suppose that for all trees T ∈T ∗

n,m, J(T)=nlogmn/IS(T).
Then, W =W1.

The right-hand side of Equation 6 incidentally
provides an alternative way of normalizing Sackin’s
index on full m-ary leafy trees, including the bifurcating
cladograms on which the index was originally defined.
This normalized inverse Sackin index, which we can
define as JS:=nlogmn/IS, provides a more satisfactory
way of comparing trees that differ in their node degrees
or leaf counts. JS =1 if and only if the tree has minimal
depth given m, which is equivalent to being fully
symmetric, and so JS is a sound tree balance index in
the sense defined by Mir et al. (2018) (see Appendix for a
proof). For m>1, we have JS >0 but minJS →0 as n→∞,
which makes sense because trees with more leaves can be
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FIGURE 5. a) J1 values for caterpillar trees and random trees generated from the Yule and uniform models (1000 trees per data point). All
internal nodes have null size and all leaves have equal size. Solid black curves are the means; dashed curves are the 5th and 95th percentiles; and
gray curves are nlog2 n divided by the corresponding expectation of IS (where n is the number of leaves). b) J1 distributions for random trees on
64 leaves generated from the Yule and uniform models (1000 trees per model). c) J1 values for 100 random trees on 16 leaves, before and after
applying a 1% sensitivity threshold. These random trees were generated from the alpha-gamma model with �∼Unif(0,1) and �∼Unif(0,�). d)
IS,norm values for the same set of random trees. e) Absolute change in normalized index values due to applying a 1% sensitivity threshold. Results
are based on 100 random trees for each number of leaves, generated as in (c) and (d). CD,f here is the Colless-like index with f (n)= ln(n+e) and
D is the mean deviation from the median, as recommended by Mir et al. (2018). f) Values of J1c versus J1 for random multifurcating trees on 16
leaves, with node sizes drawn from a continuous uniform distribution. The dashed reference line has slope 1.

made less balanced. In particular, when T is a caterpillar
tree on n≥2 leaves,

JS(T)= 2nlog2n
(n−1)(n+2)

,

as illustrated in Figure 5a. The definition of JS can be
naturally extended to the case m≤1 by setting JS(T):=0
if T is linear or has only one node. From this point of
view, J1 (a Colless-like index) is a generalization of JS (the
normalized reciprocal of Sackin’s index) to the domain
of trees with arbitrary degree distributions and arbitrary
node sizes.

Distributions under the Yule and Uniform Models

An immediate corollary of Proposition 6 is that J1 can
be used to test whether a set of full m-ary cladograms
is consistent with a particular tree-generating model,
with exactly the same sensitivity as Sackin’s index.
For example, Figure 5a,b shows J1 distributions for
random bifurcating trees in T ∗

n,2 generated from the
Yule and uniform models. These two distributions have
insignificant overlap when the trees have at least a few
dozen leaves.

Kirkpatrick and Slatkin (1993) showed that the expect-
ation of IS for the Yule model is

EYule(IS)=2n
n∑

i=2

1
i
=2nlnn+(2�−2)n+o(n),

where � is Euler’s constant and n is the number of leaves.
Mir et al. (2013) have shown that the expectation of IS for
the uniform model is

EUnif (IS)

=n
(

(2n−2)!!
(2n−3)!! −1

)
=n

(
(2n−2)(2n−4)...(4)(2)
(2n−3)(2n−5)...(3)(1)

−1
)

,

which approaches
√

�n3/2 as the number of leaves
n approaches infinity (Blum et al. 2006; King and
Rosenberg 2021). Consistent with Proposition 6, we find
that for random trees in T ∗

n,2 generated by either the
Yule or the uniform model, a good approximation to
the J1 mean is nlog2n divided by the corresponding
expectation of IS (gray curves in Fig. 5a). As n→∞, these
approximations approach 1/(2ln2)≈0.72 and zero for
the Yule and uniform models, respectively.
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FIGURE 6. Example values of J1 versus the conservative tree balance index J1c. The latter index takes account of the size of each internal node,
relative to the sum of its descendant node sizes.

Robustness when Applied to Random Trees

To test the robustness of J1, we generated random
multifurcating trees with node sizes drawn from a
continuous uniform distribution and then compared J1

values for these trees before and after applying a 1%
sensitivity threshold. In the latter case, whenever the
combined frequency of a clone and its descendants was
below 1%, we merged the corresponding subtree with
the clone’s parent, to simulate imperfect detection of
rare types. As expected, the J1 values for the two sets
of trees were highly similar, with a median absolute
difference of only 0.01 for trees that initially had 16 leaves
(Fig. 5c). In contrast, the median absolute difference in
the normalized Sackin’s index for the same two sets of
trees (after resolving any linear parts in the manner of
Fig. 2) was 0.20 (Fig. 5d), confirming that J1 is much more
robust to the omission of rare types.

As the number of leaves per tree increases, indices
such as Sackin’s index and the Colless-like index recom-
mended by Mir et al. (2018) become more robust to the
removal of rare types (Fig. 5e). Like J1, these previously
defined indices give more weight to nodes nearer the
root. In larger trees, the nodes near the root tend to
have large numbers of descendant leaves. It follows that
removing a random sample of nodes from near the tips of
the tree is likely to have only a modest effect on balance,
as the tree’s core structure is preserved. In our results,
this effect outweighs an increase in the proportion of
nodes removed (a median of 7%, 19%, and 24% of nodes
were removed from trees that originally had 16, 32, and
48 leaves, respectively, by applying the 1% sensitivity
threshold). Therefore the robustness benefit of J1 is more
pronounced in trees with fewer leaves.

Comparison with a Conservative Tree Balance Index
We additionally investigated the robustness of an

alternative new tree balance index J1c, defined as

J1c:= 1∑
k∈Ṽ S∗

k

∑
i∈Ṽ

S∗
i

S∗
i

Si
W1

i .

J1c—which we denoted J1 in a previous paper (Noble
et al. 2022)—conforms to an alternative set of axioms that

define what we call a conservative tree balance index. This
index is maximal not for all trees with equal splits, but
only for leafy trees with equal splits (see Appendix for
details).

An advantage of J1c is that, unlike J1, it is always
insensitive to adding relatively low-magnitude subtrees
to the root of the tree. Nevertheless, as the number of
nodes increases, the difference between J1 and J1c rapidly
diminishes, unless the root node is disproportionately
large (Fig. 6). For example, when J1 and J1c are applied
to random multifurcating trees on 16 leaves, with node
sizes drawn from a continuous uniform distribution,
the linear correlation between the two indices is 0.998
(J1c is approximately 10% smaller than J1 in this case;
Fig. 5f). Accordingly, we find that J1c is only slightly
more robust than J1 to the removal of rare types when
applied to reasonably large random trees (Fig. 5e). For
most practical purposes, we see no strong reason to favor
J1c over the simpler index J1.

Resolution Power
Mir et al. (2013) have argued that a useful tree balance

index should have good resolution power, meaning a
low probability of assigning the same value to two trees
with the same number of leaves, chosen uniformly at
random. Proposition 6 implies that, when applied to full
m-ary leafy trees with equally sized leaves, J1 has the
same resolution power as Sackin’s index.

Correlations with Pre-existing Indices

To compare J1 to Sackin’s index, a Colless-like index,
and the total cophenetic index (defined in the Appendix)
on a diverse set of trees, we generated 2000 random
multifurcating leafy trees on 100 equally sized leaves
using the alpha-gamma model (Chen et al. 2009) via
the R package CollessLike (Mir et al. 2018). As shown in
Figure 7, our new balance index correlates negatively
with the previously defined imbalance indices on this
set of random trees, indicating that it captures a similar
notion of balance. The strongest correlation is between J1

and the total cophenetic index (Spearman’s �=−0.84 for
all trees, and �=−0.97 for trees with a mean out-degree
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FIGURE 7. Scatter plots of J1 versus normalized Sackin’s, Colless-like, and total cophenetic indices for 2000 random multifurcating leafy
trees with 100 equally sized leaves. Histograms in the margins show the marginal distributions. Dashed reference curves in the first panel are
obtained by substituting IS,norm into Equation 6 with n=100 and m=2 (upper curve) or m=100 (lower curve). We use the Colless-like index
with f (n)= ln(n+e) and D the mean deviation from the median, as recommended by Mir et al. (2018). Normalization of each index other than J1

depends only on the number of leaves and so does not affect correlations. Trees were generated from the alpha-gamma model with �∼Unif(0,1)
and �∼Unif(0,�).

greater than 3). The marginal histograms in Figure 7
additionally show that more than 85% of these random
trees have balance values less than 0.25 according to the
previously defined indices, whereas J1 values are more
evenly distributed between zero and one, with mean and
median approximately equal to 0.6.

Sensitivity to Certain Changes in Node Degree
As explained in the Methods section, we consider it

desirable for tree balance indices to be sensitive to certain
changes in node degree. In J1 this sensitivity arises
because, in the calculation of the node balance score, the
node out-degree features as the base of the logarithm.
For example, consider a star tree T with l>1 leaves each
of size f0 >0. Suppose we add to the root another n−l
leaves, each of size x>0. If x= f0 then J1(T)=1 since all
the leaves have the same size. Otherwise

J1(T)=−
[

l
f0

lf0 +(n−l)x
logn

(
f0

lf0 +(n−l)x

)
+(n−l)

x
lf0 +(n−l)x

logn

(
x

lf0 +(n−l)x

)]
.

As x decreases from f0 towards zero, J1(T) decreases
monotonically to account for the growing loss of balance.
And as x→0, so J1(T)→ lognl. If we then remove these
vanishingly small leaves, the value of J1(T) will jump
from lognl back to 1 because the remaining leaves are
of equal size. The sensitivity of J1 to such changes
in node degree is thus a straightforward consequence
of the conventional notion of node balance. The size
of the jump in J1 is at most 1−log32≈0.37, and it
approaches zero as l/n→1 (i.e., when the new nodes are
relatively few). The analyses shown in Figure 5e,f show

that such discontinuities do not compromise the overall
robustness of J1 to the removal of rare types.

Implementation and Algorithmic Complexity
Assuming the identity of the root is known, our new

indices can be computed from an adjacency matrix in
O(N) time, where N is the number of nodes (or the
number of edges plus one). Subtree magnitudes are
computed via depth-first search, which takes linear time,
and the computation of the balance index takes at most∑N

i=1 |Adj(i)|=N−1 steps, where Adj(i) is the adjacency
list of node i. Efficient R code for calculating Jq is shared
in an online repository (Noble and Lemant 2021).

DISCUSSION

Here, we have defined a new class of tree balance index
that unifies, generalizes, and in various ways improves
upon previous definitions. Even when restricted to the
tree types on which pre-existing indices are defined, our
indices enable a more meaningful comparison of trees
with different degree distributions or different numbers
of leaves. Due to these advantages, our indices have the
potential to supersede those in current use.

Our indices also enable important new applications.
A challenge in comparing simulated phylogenies and
trees inferred from data is that the former are exact,
whereas the latter are often incomplete (Scott et al.
2020). In oncology, for example, it has been shown that
whether or not a rare tumor clone is detected depends
on both methodology and chance (Turajlic et al. 2018).
Our balance indices largely solve this problem as they are
insensitive to the omission of rare types, as demonstrated
briefly here and more comprehensively in a companion
paper (Noble et al. 2022).
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Because of its unique relationship with Sackin’s index,
we especially recommend J1—a weighted average of the
normalized entropies of the internal nodes—as defined
in general by Equation 3 and more simply for cladograms
by Equation 5. Given that Sackin’s index has been
well studied, it is convenient that J1 inherits some of
the properties of that index when applied to full m-
ary cladograms, including its relatively high sensitivity
in distinguishing between alternative tree-generating
models (Kirkpatrick and Slatkin 1993; Agapow and
Purvis 2002). Within our framework, Sackin’s index is
seen not as a general balance index but rather as a
normalizing factor, which works as a balance index only
in the special case of full m-ary leafy trees (for which the
numerator of J1 is independent of tree topology).

Proposition 6 implies that determining the precise
moments of J1 for a model that generates full m-ary leafy
trees is equivalent to determining the moments of the
reciprocal of Sackin’s index. Figure 7 suggests that J1

has interesting relationships with other indices such as
the total cophenetic index. These are promising areas for
further investigation.
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APPENDIX

Definition of the Total Cophenetic Index
The cophenetic value 	(k,l) of a pair of leaves (k,l)

is the depth of their lowest common ancestor. The total
cophenetic index (Mir et al. 2013) is then the sum of the
cophenetic values over all pairs of leaves:

I�(T)=
∑

N−n+1≤k<l≤n

	(k,l),

where N is the number of nodes and n the number
of leaves. As in Sackin’s index, the principle is that an
unbalanced tree stretches more than a balanced tree.
Being explicitly defined for all multifurcating trees, the
total cophenetic index permits meaningful comparison
of any two multifurcating trees on the same number of
leaves.

For trees on n>2 leaves, the minimum of the total
cophenetic index is reached on the star tree, with
minn(I�)=0. The maximum is attained on the caterpillar
tree:

max
n

(I�)=
n−1∑
k=2

k−1∑
l=1

m=
n−1∑
k=2

1
2

k(k−1)

= 1
2

(
(n−1)n(2n−1)

6
− n(n−1)

2

)
= n(n−1)(n−2)

6
=
(

n
3

)
.

Hence, a normalized version of the total cophenetic
index is I�,norm(T)= I�(T)/

(n
3
)
. This normalized imbal-

ance index is not minimal for all fully symmetric trees.
For example, the cophenetic value of the two leftmost
leaves of the fully symmetric tree in Figure 1b is two, and
so both the un-normalized and normalized cophenetic
indices of this tree will be nonzero.

Conservative Tree Balance Indices
Our axioms permit J to change discontinuously when

we add rare types to the root. This is because Axioms 3
and 4 consider the addition of subtrees that have
vanishingly small magnitude relative to other subtrees
excluding their roots, whereas the relative size of the root
of the entire tree is immaterial. For example, consider a
two-node linear tree T in which the nonroot node has
size �, relative to the size of the root. Then J(T)=0 by
Axiom 4. But if we add another child to the root of T,
also of relative size �, then the J value of the new tree
will be 1 (by Axiom 1), even as �→0. To make our index
robust in such cases, we can add another axiom:

Axiom A.1 (Root limit). Let T be a tree with root r. Then,
J(T)→0 as S∗

r /Sr →1.

But this new axiom conflicts with Axiom 1, which we
must then modify, such that equal splits are no longer
sufficient for maximal balance:

Axiom A.2 (Alternative maximum value). J(T)≤1 for
all trees T, and J(T)=1 only if T has equal splits.
Furthermore, if T has equal splits and is a leafy tree then
J(T)=1.

We will call a tree balance index conservative if it
conforms to these two alternative axioms in addition
to Axioms 2, 3, 4, and 5. This name is appropriate
because Axiom A.1 implies that a tree will be considered
imbalanced unless there is strong evidence to the
contrary (in the form of a relatively small root node).
Every conservative index is both universal and robust.

One way to define a class of conservative indices
is to add to Equation 1 a nonroot dominance factor h :
R>0 ×R>0 → (0,1] with h(x1,x2)→0 as x1/x2 →0, and
h(x1,x2)=1 if and only if x1 =x2. We then obtain

J:= 1∑
k∈Ṽ gk

∑
i∈Ṽ

gihiWi,

with hi =h(S∗
i ,Si). The role of h is to quantify the extent

to which a node should be considered a leaf (which
does not contribute to the index’s value) as opposed
to an internal node (which does). Adding this factor
has no effect on the balance values assigned to leafy
trees, including cladograms, because if an internal node i
has zero size then hi =1. Setting h(x1,x2)=x1/x2, we can
modify Equation 3 to obtain the specific conservative
index

J1c:= 1∑
k∈Ṽ S∗

k

∑
i∈Ṽ

S∗
i

S∗
i

Si
W1

i .

We previously used J1 instead of J1c to denote the above
index (Noble et al. 2022).

Alternative Axioms Proposed by Fischer et al. (2021)
Shortly after we posted a preprint version of the

current article, Fischer et al. (2021) posted a preprint
in which they proposed two alternative axioms for
nonrobust, nonuniversal tree balance indices, such as
Sackin’s and Colless’ indices. In these axioms, BT ∗

n
denotes the set of rooted bifurcating trees with n leaves,
T ∗

n is the set of all rooted trees with n leaves such that
d+(i)>1 for all internal nodes i, and the tree balance
index is denoted t.

Axiom A.3 (Fischer et al. minimum value). The cater-
pillar tree with n leaves is the unique tree minimizing t
on T ∗

n (if t is defined on multifurcating trees) or on BT ∗
n

(if t is defined only on bifurcating trees) for all n≥1.

Axiom A.4 (Fischer et al. maximum value). The fully
symmetric bifurcating tree with n leaves is the unique
tree maximizing t on BT ∗

n for all n=2h with h∈N≥0.

These axioms can be compared with our axioms if
we consider only leafy trees in which all leaves have
equal size (such as cladograms). Axiom A.4 is then just
a special case of our more general Axiom 1 because the
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fully symmetric bifurcating tree with n leaves is the only
tree in BT ∗

n that has equal splits. But Axiom A.3 is not
necessarily consistent with our Axiom 2. In particular,
as shown in Figure 4b, our index J1 does not comply
with Axiom A.3 in the case of multifurcating leafy trees.
We can resolve this incompatibility with the following
simplification:

Axiom A.5 (Alternative Fischer et al. minimum value).
The caterpillar tree with n leaves is the unique tree
minimizing t on BT ∗

n for all n≥1 (whether or not t is
defined on multifurcating trees).

J1 is consistent with Axiom A.5 because, when we
consider only bifurcating leafy trees in which all leaves
have equal size, J1 is equal to JS (by Proposition 6),
which is inversely proportional to IS by definition, and
the caterpillar tree is the unique bifurcating tree that
maximizes IS (Fischer et al. 2021). Although Axiom 1
does not necessarily imply Axiom A.5, it is reasonable
to expect useful universal tree balance indices to satisfy
both conditions.

Proof that the Index of Equation 1 Satisfies Our Five Axioms
Proof . Axiom 1 (Maximum value): We have J ≤1

since g and W lie between zero and one by definition.
Also if any internal node j of tree T does not split its
descendants into at least two equal-magnitude subtrees
then Wj <1 by definition and so∑

i∈Ṽ

giWi <
∑
i∈Ṽ

gi �⇒ J(T)<1.

Now, let T be a tree such that every internal node splits its
descendants into at least two equal-magnitude subtrees.
Then Wi =1 for all i∈ Ṽ by definition. Hence,

J(T)= 1∑
k∈Ṽ gk

∑
i∈Ṽ

gi =1.

Axiom 2 (Minimum value): We have J ≥0 since g and
W are always non-negative by definition. Also if T is
a linear tree then Wi =0 for all i∈ Ṽ by definition, and
hence J(T)=0. Conversely, if some internal node j has
d+(j)>1 then Wj >0 by definition and, because gj must
be positive by definition, we must have J(T)>0.

Axiom 3 (Insensitivity): Adding a subtree to a leaf l
changes the tree balance value via the contributions of
two sets of nodes: the internal nodes of Tl (including
l), and all other internal nodes. For each internal node,
i∈ Ṽ(Tl), as S∗

l /
∑

j∈Ṽ(T′)S∗
j →0 so also S∗

i /
∑

j∈Ṽ(T′)S∗
j →0

(because S∗
i ≤S∗

l ), which implies gi →0 by definition,
and hence all such contributions approach zero. The
contribution of all other internal nodes also approaches
zero because g and W are continuous by definition.

Axiom 4 (Linear limit): Let i∈ Ṽ(T) with d+(i)=1.
Without loss of generality, let i1 denote the original

child of i, and i2,...,ip denote the newly added children
of i. Adding subtrees to i changes the tree balance
value via the contributions of the newly added nodes
and of node i. As Si1/S∗

i →1, so Sik /S∗
i →0 for all k ∈

{2,...,p}. This implies that Sik /
∑

j∈Ṽ(T′)S∗
j →0 and hence

gik →0 by definition for all k ∈{2,...,p}. Therefore, the
first contribution approaches zero. Also as Si1/S∗

i →
1, we have max(Si1/S∗

i ,...,Sip/S∗
i )→1, and so Wi →0

by definition. Therefore, the second contribution also
approaches zero.

Axiom 5 (Continuity): The continuity of J follows
immediately from the continuity of g and W. �

New Generalizations of Sackin’s and Colless’ Indices
The number of distinct subtrees that contain a given

leaf l is equal to its number of ancestors, which is the same
as �l, the depth of l. Hence, Sackin’s index is equivalent
to the sum of the leaf counts of the subtrees rooted at
each internal node. By extension, we can define a new,
more general form of Sackin’s index that accounts for
node sizes:

IS,gen(T):=
∑

i∈Ṽ(T)

S∗
i ,

where S∗
i is the magnitude of the subtree rooted at node

i, excluding the root. In the special case of leafy trees in
which all leaves have size one, we recover IS,gen = IS. This
new index is not very useful for assessing tree balance
because it increases with the total tree magnitude, but
in our framework, it performs an important role as a
normalizing factor.

If we let Si1 denote the magnitude of the left branch of
the subtree rooted at i, and Si2 denote the magnitude of
the right branch, then we can generalize Colless’ index
to account for node sizes in bifurcating trees:

IC,gen(T):=
∑

i∈Ṽ(T)

|Si1 −Si2 |=
∑

i∈Ṽ(T)

S∗
i |pi1 −pi2 |,

where pij =Si1/S∗
i . This definition reduces to IC in

the case of leafy trees in which all leaves have size
one. The right-hand expression above clarifies that the
contribution of each node to Colless’ index is the product
of the node’s importance (i.e., its number of descendants)
and its balance (the degree to which the node splits
its descendants into two equal-magnitude subtrees).
We further see that IC,gen(T)≤ IS,gen(T) for all trees T
(because |pi1 −pi2 |≤1 for all i1,i2), which suggests the
normalization

IC,gen,norm:= IC,gen

IS,gen
= 1∑

k∈Ṽ S∗
k

∑
i∈Ṽ(T)

S∗
i |pi1 −pi2 |.

This new generalization of Colless’ index is more
robust than the conventional form, in the sense that its
value is insensitive to the addition or removal of relat-
ively small nodes. IC,gen,norm also enables meaningful
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comparison of trees with different numbers of leaves.
But, the problem remains that IC,gen,norm applies only
to bifurcating trees.

Other Balance Indices Based on Generalized Entropies
As defined by Chao et al. (2014), generalized entropies

for q≥0,q �=1 are

qH:= 1
q−1

⎛⎝1−
P∑

i=1

pq
i

⎞⎠.

Parameter q determines the sensitivity to the type
frequencies. 0H is simply the richness (minus 1) of
the population, which corresponds to ignoring the
frequencies and just counting the types. For 0<q<1,
rare types are given more weight than implied by their
proportion, whereas for q>1 abundant types matter
more. 2H is the Gini–Simpson coefficient. In the limit
q→1, we recover the Shannon entropy 1He.

For q>0, qH attains its maximum value if and only if
all types have equal frequency pi =1/m:

max(qH)= 1
q−1

(
1− 1

mq−1

)
= mq−1 −1

mq−1(q−1)
.

We can therefore define a normalized balance score Wq
i

for q>0,q �=1 and i∈ Ṽ:

Wq
i :=

⎧⎪⎨⎪⎩
d+(i)q−1

d+(i)q−1 −1

(
1− ∑

j∈C(i)
pq

ij

)
if d+(i)≥2

0 otherwise.

Similarly, one can define Wq
i for q>0,q �=1 based on the

entropy defined by Rényi (1961):

Wq
i :=

⎧⎪⎨⎪⎩
1

(1−q)logd+(i)
log

( ∑
j∈C(i)

pq
ij

)
if d+(i)≥2

0 otherwise.

In either case, a balance index Jq satisfying our axioms is

Jq:= 1∑
k∈Ṽ S∗

k

∑
i∈Ṽ

S∗
i Wq

i ,

for any q>0. And in either case, Jq → J1 as q→1.

Proof of Proposition 6

Proof . By definition of J1, if T is a tree on n leaves
with d+(i)=m>1 and f (i)=0 for every internal node i
then

J1(T)= −1∑
k∈Ṽ Sk

∑
i∈Ṽ

∑
j∈C(i)

Sj logm
Sj

Si
.

The sum of subtree magnitudes over the set of all
internal nodes is equal to the sum of �l multiplied by
leaf size over the set of all leaves:

IS,gen:=
∑
k∈Ṽ

Sk =
∑
k∈L

�kf (k).

Summing first over the internal nodes and then over their
children gives the same result:

∑
i∈Ṽ

∑
j∈C(i)

Sj =
∑
i∈Ṽ

Si =
∑
i∈L

�if (i)=
∑
i∈L

f (i)
�i∑

j=1

1.

Let a(i,j) denote the ancestor of node i at distance j,
with a(i,0)= i and a(i,�i)=r (the root) for all i. Then by
extension,

∑
i∈Ṽ

∑
j∈C(i)

Sj
(Si,Sj)=
∑
i∈L

f (i)
�i∑

j=1


(Sa(i,j),Sa(i,j−1)),

for any function 
. In particular, we have

∑
i∈Ṽ

∑
j∈C(i)

Sj logm
Sj

Si
=
∑
i∈L

f (i)
�i∑

j=1

logm
Sa(i,j−1)

Sa(i,j)
.

Substituting this result into the expression for J1, we find

J1(T)= −1∑
k∈Ṽ Sk

∑
i∈L

�i∑
j=1

f (i)logm
Sa(i,j−1)

Sa(i,j)

= −1∑
k∈Ṽ Sk

∑
i∈L

f (i)
�i∑

j=1

(logmSa(i,j−1) −logmSa(i,j)).

The right-hand sum is a telescoping series that collapses
to give

J1(T)= −1∑
k∈Ṽ Sk

∑
i∈L

f (i)(logmSa(i,0) −logmSa(i,�i)).

Now since i is a leaf, logmSa(i,0) = logmSi = logmf (i). Also
logmSa(i,�i) = logmSr = logmS(T). Hence,

J1(T)= −1∑
k∈Ṽ Sk

∑
i∈L

f (i)(logmf (i)−logmS(T))

= −1∑
k∈Ṽ Sk

∑
i∈L

f (i)logm
f (i)
S(T)

=
1Hm(T)S(T)∑

k∈Ṽ Sk
=

1Hm(T)S(T)
IS,gen(T)

.
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If additionally all leaves i of T have the same size
f (i)= f0 then S(T)=nf0, 1Hm(T)= logmn, and IS,gen(T)=
f0IS(T), which implies J1(T)=nlogmn/IS(T). �

Proof of Proposition 7
Proof . Since

∑
k∈Ṽ nk = IS(T), the conditions are

equivalent to

IS(T)J(T)=
∑
i∈Ṽ

niWi =nlogmn,

with Wi =W
(

ni1
ni

,...,
nip(i)

ni

)
,

where ni1 ,...np(i) are the children of i. Let T be a tree in
T ∗

n,m and i be an internal node of T. Then, Ti ∈T ∗
ni,m and

Tj ∈T ∗
nj,m for every child j of i. Therefore

IS(Ti)J(Ti)=niWi +
∑

j∈C(i)

J(Tj)=niWi +
∑

j∈C(i)

nj logmnj.

Also, IS(Ti)J(Ti)=ni logmni, so we have

niWi +
∑

j∈C(i)

nj logmnj =ni logmni

�⇒ Wi = logmni −
∑

j∈C(i)

nj

ni
logmnj.

Since
∑

j∈C(i)nj =ni, this implies

Wi =
∑

k∈C(i)

nk
ni

logmni

−
∑

j∈C(i)

nj

ni
logmnj =−

∑
j∈C(i)

nj

ni
logm

nj

ni
=W1

i . �

Proof that JS is a Sound Tree Balance Index
Proof . By the definition of Mir et al. (2018), a sound

tree balance index J is such that J(T) is maximal if and
only if T is fully symmetric. The fully symmetric full m-
ary tree on n leaves is the unique tree that minimizes IS
among full m-ary trees on n leaves. This minimum value
is minn,mIS =nlogmn (since every leaf l has the same
depth �l = logmn). Because JS:=nlogmn/IS is defined
only on full m-ary trees, if follows that JS(T) is maximal
if and only if T is fully symmetric. �
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