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ABSTRACT

In this thesis, we explore the role of quasiparticles in two problems that have integrability at

their core: the entanglement content of excited states and the out-of-equilibrium dynamics

in the presence of unstable excitations. In the first part, we consider the one-dimensional

massive free boson and different partitions of a ring. We compute entanglement entropies

and logarithmic negativites in states composed of multiple particle excitations, in the limit

of large volume and regions’ lengths. We find that the quasiparticle excitations give additive

contributions to the vacuum entanglement that depend on very few properties of the state,

namely the number of excitations and their (in)distinguishability, and that are independent of

the connectivity of the regions. The results have a natural probabilistic interpretation as the

entanglement of multi-qubit states where qubits represent the presence or absence of excitations

in the regions of the partition. Such a simple structure suggests that the results obtained are

universal, a suggestion that is further supported by both analytical and numerical evidence.

At the heart of this universality there is the only basic assumption that particle excitations

can be localised within the entanglement regions. In the second part of this thesis we apply

the generalised hydrodynamic approach to study an integrable model possessing an unstable

excitation in its spectrum. Because of the finite lifetime the dynamics of the unstable particle

can be studied only indirectly, in terms of the constituent (stable) particles. We find that the

out-of-equilibrium dynamics of the stable particles exhibits clear signatures of instability such

as decay, creation of tails, and large-time stable populations of mutually interacting particles.

We use these signatures to develop a more clear physical picture of the formation of the unstable

excitation.

xix





INTRODUCTION

Quantum field theory (QFT) was originally developed to connect the principles of special

relativity with those of quantum mechanics, providing the most complete (experimentally

verified) description of elementary particles [1]. Remarkably QFT methods have also provided

a powerful way to access many-body quantum systems, giving rise to an effective description

in terms of quasiparticles [2]. Roughly speaking, quasiparticles are a simpler way to approach

a very complicated physical problem, that means that under certain conditions, some

multi-body systems can be treated as if composed of fictitious bodies for which a better

understanding of the problem can be achieved. An example is the emergent Bogoliubov

quasiparticles in a weakly-interacting Bose gas [3].

The concept of quasiparticles plays a similar role in integrable quantum field theories, i.e. a

special subset of 1 ` 1-dimensional QFTs characterised by infinitely-many local conserved

charges. However, for these theories the simplification of the physical problem comes from the

combination of the low dimensionality of the system and the presence of multiple conserved

charges. As a consequence the dynamics of integrable systems is severely constrained and this

gives rise to a simple scattering picture: quasiparticles are here interpreted as particle

excitations above the ground state, defining the incoming and outgoing states, and their

two-particle scattering fully characterises any scattering processes in the system. This is a

consequence of the factorisation of the scattering-matrix, and of the absence of particle

production.

In this thesis we will explore the role of quasiparticles in two problems in the context of

integrable quantum field theory. In part I we investigate the entanglement content of

multi-particle states by looking at two famous groups of measures: entanglement entropies [4,

5] and logarithmic negativities [6, 7]. A motivation is that, as functions of the state, these

measures provide a macroscopic way to capture universal properties of the state i.e.

1
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properties that to a large extent are independent of the details of the theories. In previous

pioneering studies, the entanglement of the ground state was found to provide an efficient

measure of universal properties such as the central charge of the corresponding Conformal

Field Theory (CFT) for systems at criticality [8–14], and of the mass spectrum of the QFT,

for systems near criticality [15–18]. We thus aim to address the following questions: what

kind of universalities does the excited state entanglement display? Can we use these features

to learn more about the fundamental properties of the quasiparticles?

In part II of this thesis we will study a QFT possessing both integrability and unstable

excitations. These two properties rarely feature simultaneously. However the family of the

homogeneous-sine Gordon models, provides a rare example where both unstable and stable

bound states are present in the spectrum [19–22]. Among these, we will consider the

SUp3q2-Homogeous sine-Gordon model, a theory whose spectrum has two stable particles of

the same mass. These form an unstable bound state, associated to a particular pole structure

of the scattering matrix. Because of the finite-life time the unstable particle is not part of the

asymptotic spectrum and its dynamics can only be studied indirectly. Our goal for part II of

this thesis is to develop a more clear dynamical picture of the formation of this unstable

particle that goes beyond the pole structure of the scattering matrix.

This thesis is organised as follows:

• In Chapter 1, we review a few key concepts of integrability with a particular focus on the

scattering picture.

• In Chapter 2, we start part I of this thesis. In particular, we motivate our interest in

the entanglement of bipartite quantum systems, and introduce two groups of measures,

namely entanglement entropies and logarithmic negativities.

• In Chapter 3, we focus on integrable QFTs, and review the main integrable-model

techniques to compute the entanglement measures introduced in Chapter 2. We pay

special attention on the branch-point twist fields approach [15], i.e. the idea of

expressing the entanglement measures of interest as correlators of symmetry fields, and

on how this connects to replica theories. In order to understand the structure of the

correlators of branch-point twist fields, we review the main results obtained for the

ground state, and the resulting universal properties that the vacuum-state entanglement

2
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displays. We also highlight the challenges of generalizing the branch-point twist field

approach to finite volume and excited states. We explain how these challenges may be

resolved in the case of the massive free boson theory. To conclude, we review the form

factor techniques developed to compute correlation functions of local operators, with

special attention to the theory considered in the next chapters.

• In Chapter 4 (based on the works [23, 24]) we focus on the massive free boson theory. In

particular, we consider a bipartite system and compute the entanglement entropies in

zero-density states. We employ the doubling trick i.e. a free-theory technique introduced

in [25], and discuss its extension to the replica model. By using a contour integral

approach, we compute the twist-field correlators and derive explicit formulae for three

states: a single-particle excited state, a k-particle excited state involving distinct

momenta only, and a k-particle excited state consisting of equal momenta. We provide

concrete examples of all three cases for the 2nd Rényi entropy. We then generalise the

results to states composed of a mixture of excitations of equal and distinct momenta.

To conclude this chapter we present the qubit picture, an alternative approach to obtain

our results that gives a natural probabilistic interpretation to the entanglement content

of quasiparticles. Additionally the qubit picture allows us to obtain explicit formulae for

the entanglement entropy and single-copy entropy.

• In Chapter 5 (based on the works [26, 27]), we extend the techniques developed in Chapter

4 to the study of the entanglement entropies and logarithmic negativities of two regions.

We start from the case of two disconnected regions, and consider zero-density states of

the same kind of the previous chapter. We discuss the main differences from the previous

study case, and evaluate the four-point twist field correlators in a single-particle state,

and a k-particle state with all equal or distinct momenta. We present an alternative

computation obtained from the qubit picture that reproduces the same results. We then

discuss the case of two adjacent regions, and conclude the chapter with the generalisation

of the qubit picture to an arbitrary number of disconnected regions.

• In Chapter 6 we conclude part I of this thesis. We review the main formulae obtained

in the massive free boson. We then devote the remainder of the chapter to discussing

possible generalisations and extensions, based on the works [23, 24, 26, 28].

• In Chapter 7 we start part II. Here, we introduce the main ingredients for the next

two chapters. In particular, we introduce the SUp3q2-homogeneous sine-Gordon model,
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and review the Thermodynamic Bethe Ansatz (TBA) [29, 30] of this model [31]. We

finally introduce the GHD approach [32, 33], and generalise the TBA equations to the

Generalised Gibbs ensemble [34], with a special attention to the model considered.

• In Chapter 8 we present the numerical results reported in [35], and obtained by

implementing the partitioning protocol. We discuss the numerical results for the energy

densities and energy currents. We additionally look at the phase-space dynamics. We

first study the spectral densities and effective velocities of the individual particles at

equilibrium, and develop a dynamical picture of the unstable excitation. We then

discuss the differences observed out of equilibrium.

• In Chapter 9 we present the numerical results reported in [36], and conclude part II

of this thesis. We introduce the inhomogeneous quench, and motivate our choice of

the simulation parameters. We consider two numerical simulations (differing only by

the presence or absence of a bath) and explore the effective velocities and densities to

outline the full dynamical picture. We then provide further details on the structure of

the subsidiary peak and discuss the stark difference between our results and those for a

free theory.

• In the last chapter of this thesis, we draw our conclusions.

• In Appendix A we extend the contour integral approach (introduced in Chapter 4) to two

disconnected regions.

• In Appendix B (based on [28]) we introduce a graph representation for the main results

collected in Chapter 6.

• In Appendices C and D we review the main features of the numerical algorithms used to

obtain the results presented in Chapters 8 and 9, respectively.
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CHAPTER

ONE

SCATTERING PICTURE IN INTEGRABLE QUANTUM FIELD

THEORY

1.1 Integrability

Integrability is the property linking all the results in this thesis. Therefore, we devote the

first chapter to introducing a few key concepts. We will consider 1 ` 1-dimensional QFTs with

translation and Lorentz invariance, and focus on the scattering picture and on how integrability

constrains the types of scattering that can take place. All the results reported here are standard

and can be found for instance in [37, 38].

In this thesis, we consider multi-particle states that are eigenstates of the Hamiltonian.

These states are well-defined in QFT and a convenient choice as they will be also eigenstates

of any other conserved charges in the theory. Thanks to the relativistic invariance, we do not

need to know the explicit form of the Hamiltonian to characterise such states. Denoting Ĥ

and P̂ the Hamiltonian and momentum operators, their eigenvalue equations for single-particle

states are:

Ĥ |θµy “ E |θµy , P̂ |θµy “ P |θµy , rĤ, P̂ s “ 0 . (1.1)

The well-known mass-shell relation E2 ´ P 2 “ m2 is satisfied by the relativistic dispersion

relation

Epθµq “ mµ cosh θµ, P pθµq “ mµ sinh θµ , (1.2)
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where the variable θµ is called rapidity and is just a convenient way of parametrizing such

solutions, and the index µ represents the particle species of the single-particle excitation1. Now

if there is only a single-particle, this cannot interact and will propagate freely, therefore if we

want to describe scattering processes, we need to consider multi-particle states:

|θµ11 , θ
µ2
2 , . . .y “ |θµ11 y b |θµ22 y . . . (1.3)

with energy and momentum accordingly

Epθµ11 , θ
µ2
2 , . . . q “

ÿ

i

mµi cosh θµii , P pθµ11 , θ
µ2
2 , . . . q “

ÿ

i

mµi sinh θµii . (1.4)

In the context of integrable models, we are interested in the following situation (typically

occurring in scattering experiments): the particles are initially located at very large distance

to each other, then, they will be at finite distance for a finite period of time before and after

the interaction and finally, waiting enough (ideally infinite time) they might be infinitely

separated (free again) or involved in stable bound states. It is thus convenient to describe the

process in terms of the asymptotic incoming and outgoing states and the way these are

related to each other fully characterises the scattering properties of the system. We can define

the scattering matrix (also called simply S-matrix ) as the operator mapping the incoming

states into the outgoing states. Its elements describe the scattering processes allowed by the

theory, for instance the one transforming n incoming particles into m outgoing particles can

be schematically written as:

SnÑm “
out

xλν11 , . . . , λ
νm
m |θµ11 , . . . , θ

µn
n y

in . (1.5)

For interacting QFT these elements are typically hard to compute and require the application

of pertubative techniques. However, in integrable QFT, the presence of infinitely many local

conserved charges, combined with the low dimensionality of the theory, drastically constrains

the particle dynamics. In the scattering context, integrable quantum field theories are fully

characterised by the following three properties:

• Absence of particle production

• Purely elastic scattering processes

1In Chapter 3, this index will include also a copy number, namely another index related to the particular
geometry of the replica model.
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Figure 1.1 Yang-Baxter equation for a three-particle scattering. The three cases differ by a
symmetry transformation therefore describe the same physics.

• Factorization of the S-matrix

Note that the statements above are not independent of each others, but they are all direct

consequences of the presence of infinitely many conserved charges. The first point obviously

implies that phenomena such as particle creation and annihilation cannot occur and that only

scattering processes which preserve the number of particles are allowed in integrable systems.

Moreover, the elastic scattering implies that as a result of the particle collisions, there might

be two possible scenarios (which or course, reflect the properties of the model under

consideration): particles have preserved or exchanged their own initial momenta and/or other

quantum numbers. In the next subsection we will focus on the former situation, which leads

to theories described by a diagonal scattering matrix. This is indeed the case for all the

theories analysed in this thesis. The latter scenario (that is, when momenta and/or quantum

numbers are exchanged) encodes a more complicated dynamics and leads to theories which

are characterised by a non-diagonal scattering matrix (a famous example is the Sine-Gordon

model [39]).

Finally, the factorization of the S-matrix can be understood from the following

considerations: in the incoming and outgoing basis, one-particle states are characterised by

wave functions associated to the solutions of the field equations, and these are well-localised

(in momentum or rapidity space) around the center of the wave packet. In non-integrable

models the amplitudes of these wave packets keep typically a trace of the details of the

scattering process and these are encoded in some parameters characterising the states, i.e. the

impact parameters. For instance the impact parameters help us to understand the order of

the scattering events (i.e. collisions involving a certain number of particles at a certain finite

time and finite length). In contrast, in integral models2, for each particle it is possible to shift

2Remarkably, this can be shown to hold in the presence of just two independent conserved quantities [40].
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differently the center of the wave packets through the action of a local operator associated to

higher charges of the theory [37, 40]. Since this operator commutes with the Hamiltonian, its

action must lead to the same physics. As a consequence the S-matrix is independent of the

impact parameters. The argument above can be more rigorously expressed in the form of the

Yang-Baxter equation [41, 42]. A graphical example is displayed in Fig. 1.1 for three particles.

The three-particle scattering matrix decomposes into two-particle contributions and is

independent of the order of scattering events. The generalisation of the Yang-Baxter

equations to n-particle scattering implies the factorization of the corresponding S-matrix into

npn ´ 1q{2 two-particle terms. Hence, in integrable models we need only to characterise the

two-particle S-matrix in order to fully understand any scattering process involved in the

system.

1.2 Diagonal S-matrix

In this thesis we only consider theories with scattering matrices in a diagonal form. In this

case we can express the action of two-particle S-matrix on two-particle states as:

|θµ11 , θ
µ2
2 y

in
“ S1,2pθ

µ1
1 , θ

µ2
2 q |θµ11 , θ

µ2
2 y

out . (1.6)

Since the asymptotic incoming and outgoing states coincide we can adopt the following

convention:

|θµ11 , θ
µ2
2 . . . , θµkk y

in :“ |θµ11 , θ
µ2
2 . . . , θµkk y 9 Zµ1pθµ11 q Zµ2pθµ22 q . . . Zµkpθµ1k q |0y , (1.7)

|θµ11 , θ
µ2
2 . . . , θµkk y

out :“
∣∣θµkk , θµk´1

k´1 . . . , θµ11
D

9 Zµkpθµkk q Zµk´1
pθ
µk´1

k´1 q . . . Zµ1pθµ11 q |0y ,

where the ordering of the rapidities indicates which state is considered. In particular, the

operators Zµ1 , Zµ2 , . . . , Zµk satisfy the Zamolodchikov-Faddeev algebra [39], defining the

scattering properties of the theory and in particular the S-matrix:

Zµ1pθµ11 qZµ2pθµ22 q “ Sµ1,µ2pθµ11 , θ
µ2
2 q Zµ2pθµ22 qZµ1pθµ11 q , θµ11 ą θµ22 . (1.8)

Such operators may be interpreted as excitations over the ground state and the indices µis

indicate the corresponding particle species. In free theories these operators are simply the

creation operators generating the Fock space of the free theory. In a similar way, the operators
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above span the analogue of a Fock space for the integrable theory.

1.2.1 Bootstrap equations for two-particle S-matrix

In this and the next subsections, we provide a brief review of the fundamental properties

of the two-particle diagonal S-matrix. One can easily note that the Yang-Baxter equations

are trivially satisfied for diagonal scattering, however other constraints can almost totally fix

the form of the two-particle scattering matrix. Among these, the symmetries of the theory

considered play an important role. In particular, Lorentz invariance implies that scattering

matrix elements depend only on rapidity differences

Sµ1,µ2pθµ11 , θ
µ2
2 q “ Sµ1,µ2pθµ11 ´ θµ22 q (Lorentz invariance) . (1.9)

Moreover, for parity invariant theories the S-matrix is symmetric

Sµ1,µ2pθq “ Sµ2,µ1pθq (parity symmetry), (1.10)

where we have introduced the rapidity difference θ :“ θµ11 ´ θµ22 . In part II of this thesis we

analyse a theory that does not satisfy the property above as it breaks the parity invariance.

Other properties come from general field theory considerations and are:

Sµ1,µ2pθq “
`

Sµ1,µ2p´θ˚
q
˘˚

(real analyticity) , (1.11)

Sµ1,µ2pθq Sµ1,µ2p´θq “ 1 (unitarity) , (1.12)

Sµ1,µ2pθq “ Sµ1,µ̄2piπ ´ θq (crossing symmetry) , (1.13)

where µ̄ denotes antiparticles. For many theories [39] the equations above, along with additional

requirements for bound states (if there are any) that we will introduce in a while, are sufficient

to fix the S-matrix completely, and in general they provide the basis for the S-matrix boostrap

namely the procedure whereby a solution for the two-particle S-matrix can be found. In some

cases the solutions may be fixed up to some functions that do not involve new poles in the

physical sheet. This problem is known as the CDD ambiguity [43] and usually requires other

means to obtain the exact S-matrix solution.
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1.2.2 Pole structure of the two-particle S-matrix

By using analyticity arguments [39] it is possible to identify the physical domain on the

θ-plane of the two-particle S-matrix. This domain is usually called the physical sheet and

is precisely given by Impθq P r0, πs. Bound states are identified with a single-pole lying on

the imaginary axis in the physical sheet. Some theories present poles in the unphysical sheet

which can (sometimes) be identified with unstable particles, i.e. bound states that do not

survive in the asymptotic states but do affect the dynamics of the stable particles. Examples of

theories with such a feature are the homogeneous sine-Gordon models [19–22] introduced in the

introduction. In part II of this thesis we will focus on the simplest of these theories. Although

we are not going to treat theories with stable bound states, below, we want to introduce them

for clarity, and to justify how they differ from the “resonance” poles that we will see in part II.

1.2.2.1 Stable bound states

We consider the scattering process µ1 ` µ2 Ñ µ3 such that a stable particle of type µ3

is created by the collision of a type-µ1 and a type-µ2 particle at rapitidity θ “ iuµ3µ1 µ2 with

uµ3µ1 µ2 P r0, πs. Crucially integrability imposes that stable bound states are still part of the

asymptotic particle content and thus are on the same footing as the other particles (this is

known as nuclear democracy principle [44]). The S-matrix near the bound-state pole can be

expressed as:

Sµ1 µ2pθq „ i
p Γµ3µ1 µ2 q2

θ ´ iuµ3µ1 µ2
, (1.14)

where Γµ3µ1 µ2 is the on-shell three-particle vertex functions. The conservation of energy and

momentum in the scattering process implies a relation between the masses of the particles and

the pole position

m2
µ3

“ m2
µ1

` m2
µ2

` 2mµ1mµ2 cosuµ3µ1 µ2 . (1.15)

The existence of the bound state implies that also single-poles in the other channels, namely

Sµ1 µ3piuµ2µ1 µ3q and Sµ2 µ3piuµ1µ2 µ3q, are singular. Note that (1.15) can be seen as the geometrical

relation known as Carnot‘s theorem where the sides of the triangles are given by the masses

mi,mj and mn, this implies a geometric relation among the external angles of this triangle:

uµ3µ1 µ2 ` uµ2µ1 µ3 ` uµ1µ2 µ3 “ 2π , (1.16)

and leads to the consistency for the S-matrix amplitudes:

Sµ4,µ̄3pθq “ Sµ4,µ1pθ ` iūµ2µ3 µ1q Sµ2,µ4pθ ´ iūµ1µ2 µ3q (boostrap equation) , (1.17)
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where the particle of type µ4 is only involved indirectly and is called the “spectator” particle.

The equation above provides an additional S-matrix constraint in the presence of stable bound

states.

1.2.2.2 Unstable bound states

We consider a scattering process µ1 ` µ2 Ñ µ̃ where the resulting particle is now unstable.

This corresponds to having a singularity in the S-matrix at rapidity

θR “ σµ̃µ1 µ2 ´ iσ̄µ̃µ1 µ2 , (1.18)

with a pole lying in the non-physical sheet, i.e. σ̄µ̃µ1 µ2 ą 0. The parameter σµ̃µ1 µ2 is called

resonance parameter and is a characteristic of the theory.

Unlike stable particles, the unstable excitations are not part of the asymptotic spectrum and

their dynamics is not described by elements of the S-matrix, therefore the bootstrap equation

(1.17) cannot be formulated for them3. Of course, the mass conservation is still a valid constraint

and imposes that unstable particles can be created if the centre-of-mass energy of the two

particles is close enough to the mass of the unstable particle Mµ̃. This last property is quite

general and holds for any bound states, but additionally unstable particles are characterised

by a finite life-time. The mass Mµ̃ and the decay width Γµ̃ (inverse of the lifetime) can be

computed via the Breit-Wigner formulae [46]:

2M2
µ̃ “

?
A2 ` B2 ` A ,

Γ2
µ̃

2
“

?
A2 ` B2 ´ A , (1.19)

for

A “ m2
µ1

`m2
µ2

`2mµ1mµ2 coshσµ̃µ1 µ2 cos σ̄µ̃µ1 µ2 , B “ 2mµ1mµ1 sinhσµ̃µ1 µ2 sin σ̄µ̃µ1 µ2 . (1.20)

Note that if σµ̃µ1 µ2 is vanishing, then B “ 0 and the created particle has infinite life-time. The

bound state becomes a “virtual state”, meaning that θR becomes purely imaginary as for the

case of stable bound states. However the pole is still located outside the physical strip and

cannot be interpreted as a stable particle of the theory.

The formulae above will be used for the SUp3q2-homogenous sine-Gordon model in Section

7.1 in order to provide a first characterization of the unstable excitation of the model.

3Although attempts to achieve this were made for instance in reference [45].
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CHAPTER

TWO

GENERALITIES ON ENTANGLEMENT

2.1 Entanglement in quantum systems

Entanglement is a genuine quantum phenomenon occurring between two or more parts of

a quantum system. Its most direct consequence is that a local measurement performed on

a subsystem may affect the outcome of other measurements potentially performed far away.

When this happens we say that the quantum system is in an entangled state. In contrast, if

the local measurement does not add any information on the other sub-parts, we say that the

quantum system is in a separable state.

The concept of entanglement has played a crucial role in the early stages of quantum

physics, where this new form of correlation was perceived as the qualitative feature that most

distinguished the quantum from the classical nature [47]. It is not surprising that the

existence of entanglement had been at the centre of the scientific debate for some time (a

famous example is the Einstein-Podolsky-Rosen paradox [48]). The subsequent development

of Bell’s inequalites [49] finally made these quantum correlations accessible to experimental

verification, which was first conducted by Alain Aspect and collaborators [50] using a pair of

maximally entangled photons.

In the last few decades, it has become possible to control quantum correlations and

entanglement has consequently been viewed as a new resource to achieve tasks that have been

considered impossible or inefficient at classical level (a representative example is quantum
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teleportation [51]). In this context, both technological and the theoretical progresses have

raised the quest to develop efficient theoretical measures of entanglement that could not only

distinguish between entangled and unentangled states but also quantify the amount of

entanglement that quantum systems possess. Interestingly, a large variety of quantities have

been identified as good measures of entanglement in many different contexts of many-body

quantum systems [52] as in general there is not a unique way to quantify entanglement.

It is also important to stress that whether or not a state is entangled is strictly related to how

the quantum system is partitioned, and in particular, the answer may be different for different

partitions. This does not mean that the physics is arbitrary, but instead the partition is part of

the phenomenon and is indeed a piece of information encoded in the entanglement. In this part

of the thesis, we will focus on bipartite systems as bipartite entanglement measures are best

understood. They are indeed the simplest realisations in which one can study the entanglement

properties of a quantum state. In the next section we will analyse bipartite systems in detail

and establish a simple criterion to understand whether or not a state is entangled.

2.2 Bipartite systems in pure states: a simple criterion

Consider a bipartition of a quantum system into two complementary regions, say A and B.

The typical scenario that one expects to observe in experimental realisations of such a system

is as follow: there are two observers, traditionally named Alice and Bob, each one accesses a

restricted part of the system, (let us say that Alice makes only observations on A and Bob only

on B). Formally, this simple setting requires that the total Hilbert space H factorises into two

component Hilbert spaces HA and HB, each one generated by a set of independent observables

associated to a part of the system:

H “ HA b HB . (2.1)

A direct consequence is that an observable O living in HA acts trivially on the other Hilbert

space O “ OAb1B. Let us now suppose that the bipartite system is in a certain state |ψy P H.

By performing their local measurements the observers are expected to transform the state into

some other state. Of course, both Alice and Bob would like to describe their outcomes in terms

of the set of observables that is accessible to them. Hence, it is natural to expand the state |ψy

in the form:

|ψy “
ÿ

i, j

Ci,j|ϕiyA b |χjyB ,
ÿ

i,j

|Ci,j|
2

“ 1 , (2.2)
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Figure 2.1 : Pictorial representation of a one-dimensional system in a separable/factorizable
state (left) and in an entangled state (right). The picture is taken from [53].

where t|ϕiyuA and t|χjyuB are two orthonormal bases of HA and HB, respectively, and Ci,js are

normalised complex coefficients.

Crucially, it is rather convenient to assume that the system experienced by Alice and Bob

is originally in a pure state, and thus that the state |ψy is macroscopically described by a

density operator ρ, expressed in the following form:

ρ “ |ψy xψ| . (2.3)

The main simplification is that in a pure bipartite state an observer like Alice or Bob (who

can only measure one subsystem) will be equipped with a clear criterion to establish whether

or not the total quantum system is in a entangled state. Indeed as a result of a certain local

measurement (no matter in which of the two subsystems this is performed), the observer will

obtain an effective mixed quantum state if there is entanglement with the rest of the system,

or a pure state if the two parts are not entangled. A schematic representation of the possible

outcomes is shown in Fig. 2.1. Thanks to this criterion, bipartite entanglement measures of

pure states are conceptually easier to study, and they have been widely investigated in the

literature. Remarkably, a local measurement on a sub-part can give information on the entire

system without actually accessing the observables associated to the other part, in this sense

entanglement unveils the presence of non-local properties in quantum systems.

An important consequence of this simple criterion is that unentangled states are entirely

factorizable. However one should admit that it may be hard to check directly the factorizability

of a state in extended quantum systems, where the number of degrees of freedom is generally

large. Nevertheless it is clear even at this stage that the property of a state of being entangled or

not is strictly connected to fundamental concepts of statistical mechanics. Indeed the criterion
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above may be more rigorously re-formulated in terms of some macroscopic observable, namely

the reduced density operator, accessible to the two observers. In particular, the reduced density

operator allows the observer Alice to forget about the rest of the system by tracing out the

degrees of freedom associated to the subsystem B:

ρA “ TrHB
tρu . (2.4)

Similarly, the observer Bob will experience the state |ψy through the reduced density operator

ρB restricted to the subsystem B, and obtained by tracing out the degrees of freedom associated

to A.

2.2.1 The Schmidt decomposition

In this subsection we analyse the role of the reduced density operator in the discernment of

entangled and separable states. If we use (2.2) to expand the state |ψy, and we then evaluate

the reduced density matrix (2.4) associated to subsystem A, we have that:

ρA “
ÿ

i1,i2

´

ÿ

j

Ci1,jC
˚
i2,j

¯

|ϕi1yA Axϕi2 | . (2.5)

Note that the states |ϕiyA live only in the subspace HA as expected. The expression above is

true for any choices of orthonormal bases of HA and HB in expression (2.2). However the two

observer Alice and Bob may find it useful to express their outcomes in a “common language”

that allows them to compare their results. For such purpose, Alice employs a basis composed

of the eigenstates t|ϕ̃iyAu of ρA with non-zero eigenvalues λi . The Schmidt decomposition

provides the expansion of the states in (2.5) in this special basis:

|ψy “
ÿ

i

a

λi |ϕ̃iyA b |χ̃iyB , |χ̃iyB “
ÿ

j

Ci,j
?
λi

|χjyB . (2.6)

Similarly Bob employs a basis composed of the eigenstates t|χ̂iyAu of ρB with non-zero

eigenvalues λi, and the state (2.5) becomes

|ψy “
ÿ

j

a

λj |ϕ̂jyA b |χ̂jyB , |ϕ̂jyA “
ÿ

i

Ci,j
a

λj
|ϕiyA . (2.7)

Indeed, the density operators ρA and ρB are “equally mixed” and have thus a common

spectrum. If they have a different number of eigenvalues, the latter will differ only by a
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number of zero eigenvalues. Furthermore, the non-zero eigenvalues satisfy the following

constraint:
ÿ

i

λi “ 1 , 0 ă λi ď 1 @i . (2.8)

The two observers are expected to perform their measurements on the state via the reduced

density matrices:

ρA “

N
ÿ

i“1

λi |ϕ̃iyA Axϕ̃i| , ρB “

N
ÿ

i“1

λi|χ̂iyB Bxχ̂i| (2.9)

where N is called Schmidt number and is the number of non-zero eigenvalues of both ρA and

ρB. If N “ 1 then the bipartite state |ψy is separable as it factorises into two separate pure

states of HA and HB. In contrast, if N ą 1 the state |ψy is entangled and the subsystems

are described by mixed states.

To sum up, given the spectrum of the reduced density operator, the Schmidt

decomposition provides us with a qualitative criterion to establish whether or not there is

entanglement between two parts of a quantum bipartite system. However, it should be

pointed out that the diagonalization of ρA is generally a hard task in extended quantum

systems, again due to the great number of degrees of freedom. Nevertheless there are a few

cases where this task is effectively possible. For instance a well-known example in the context

of quantum information theory is provided by qubit states. We will look into this example in

Section 4.8 where we will evaluate various entanglement measures in states formed of qubits.

The computation basis in which multi-qubit states are expressed is also meaningful in

integrable QFT as it provides the key-ingredient of the semi-classical interpretation of the

entanglement contribution given by a certain type of excited states, presented in Chapters 4

and 5.

Once a criterion to identify the presence of entanglement is established, the following

question is how to quantify the amount of entanglement. In particular which specific features

do we need in order to have a good measure of entanglement? We wish to address this

question in the next subsection.

2.2.2 What is a good measure of entanglement?

An entanglement measure may be generally defined as a mathematical quantity that

captures the fundamental and characteristic proprieties of entanglement and at the same time
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helps us to quantify it. In particular, a good bipartite entanglement measure E1, formally

called entanglement monotone, is expected to satisfy the following postulates [54]:

• P1: E maps density matrices into non-negative real numbers: ρ ÝÑ Epρq P R`
0 .

• P2: E gives value zero if the state is separable: Epρq “ 0 .

• P3: E does not increase under Local Operations and Classical Communication (LOCC).

The three statements above are natural requirements if one thinks again about the

Alice-and-Bob experiment. For instance, consider an entanglement measure that is a function

of only the reduced density operators (we will see in the next section that this is actually the

case of the entanglement entropies). Since ρA and ρB possess a common spectrum, one may

expect this entanglement measure to be a function of only their eigenvalues. An important

consequence of P1 is that good bipartite entanglement measures must be independent of the

subsystem chosen to perform the measurements i.e. both Alice’s and Bob’s outcomes must

lead to the same conclusion. One likewise expects that entanglement measures quantify

zero-entanglement in the absence of entangled states (in a similar way as seen in the Schmidt

decomposition).

Theoretically speaking P3 is less intuitive as this is related to the technological demand of

exchanging information between distantly separated laboratories, which in quantum

information is also known as distance lab scenario. Again the case of Alice and Bob can help

us to understand the problem: they initially share a pure state, and by performing local

measurements on their part of the system they actually transform this pure state into some

other states. The Local Operations are literally the set of operations that they use to perform

their measurements, but they are only able to communicate over long distance by using

Classical Communication devices. Classical correlations are generated by LOCCs and in this

sense an operational definition of separable states can be given as those states that can be

generated exclusively by the action of LOCCs, that is why entanglement measures must not

increase under these transformations. The LOCCs may be mathematically implemented by

some unitary local operators U that keep the entanglement measure E invariant:

EpU :ρUq “ Epρq . (2.10)

1There are additional properties such as convexity that hold for more general entanglement measures
involving also mixed states. We do not consider these properties in this thesis as we focus only on bipartite
measures of pure states.
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In contrast, entangled states are characterised by the presence of quantum correlations that

are exactly what entanglement measures need to quantify. These requires the implementation

of non-local operations that can not be simulated classically i.e. a measurement of Alice may

affect Bob’s outcomes without employing any classical communication devices.

2.3 Bipartite entanglement measures of pure states

We are now ready to introduce two groups of measures, respectively entanglement entropies

and the logarithmic negativities which will be the focus of the next chapters and in particular

of the excited state entanglement contributions discussed in Chapter 4 and 5.

Figure 2.2 Complementary (left) and non-complementary (right) regions in a bipartite system.
The entanglement entropies measure the entanglement between the red and blue regions in the
right picture, whereas the logarithmic negativity measures the entanglement between the red
and blue regions in the presence of a enviroment i.e. the remaining write region.

The entanglement entropies and the logarithmic negativity are entanglement monotones that

are defined for two different bipartitions of a system, as displayed in Fig. 2.2. The

entanglement entropies measures the amount of entanglement between two complementary

parts such as A and B in Fig. 2.2 (left), this setting is indeed the simplest way to bipartition

a system. A more general partition arises from the presence of two non-complementary

entanglement regions, e.g. the A and B regions displayed in Fig. 2.2 (right), and in this

context the logarithmic negativity is known to be a good measure of entanglement. Strictly

speaking the other negativities (formally called replica logarithmic negativities) are not

entanglement measures in the sense discussed in Subsection 2.2.2, as they may have negative

values. However they are more accessible to techniques and may be used to compute the

logarithmic negativity, as we will see in a while. To some extent, the logarithmic negativities

are more general than entanglement entropies as they account for the presence of an

“environment” in the system (typically occurring in experimental set-ups). However they
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turns out to be more complicated functions of the reduced density matrices, so they are

harder to treat. We will discuss the two groups of entanglement measures in more detail in

these last two subsections of the chapter.

2.3.1 Entanglement measured by entropies

Consider a system composed of two complementary connected regions (like the red and blue

regions in the left picture of Fig. 2.2), say A and B. The von Neumann entropy [4], also called

entanglement entropy, can be expressed as a function of the reduced density matrix:

SpρAq “ ´TrtρA log ρAu . (2.11)

If the state is expressed in the Schmidt decomposition (discussed in Section 2.2.1), equation

(2.11) becomes:

SpρAq “ ´
ÿ

i

λi log λi , (2.12)

where λis are the non-zero eigenvalues of ρA, satisfying the constraint (2.8). Note that if λi “ 1

exists this is the only non-zero eigenvalue and thus SpρAq “ 0 as expected from P2 in Section

2.2.2. The entanglement entropy verifies also the other conditions [54, 55], in particular it is

invariant under local unitary operations i.e. it is a function of λis only.

The entanglement entropy is probably the most studied bipartite entanglement measures.

It has indeed attracted attention in many different areas of many-body quantum physics [56],

ranging from quantum information [51] to condensed matter and out-of-equilibrium dynamics

[57–59] as well as having applications in QFT ( notably in conformal field theories [9, 10], and

in integrable quantum field theories [15] which are the focus of this thesis) and in quantum

gravity [60].

The reasons for such extensive interest are numerous. Its simple definition makes its study in

extended quantum systems at very different energy-scales possible. The way the entanglement

entropy scales with the size of the sub-part of the system characterises the quantum state

and can be used as a macroscopic way to learn more about its fundamental properties. For

instance, near criticality, the entanglement entropy encodes universal information about the

quantum critical points, such as the central charge of the corresponding CFT.

Furthermore, the entanglement entropy measures quantum correlations more generally. Since

it is a simple function of the state, there is no need a priori for the precise characterization of

any other observables. Although some computational techniques may require the introduction
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of other operators, if we can access the eigenvalue spectrum of the reduced density matrix, we

can in principle characterise the entire entanglement content of the state.

Another important advantage is the existence of a very successful technique, called replica

trick that makes the evaluation of the entanglement entropy amenable to extended quantum

systems (we will discuss this method in the context of QFT in the next chapter). A crucial step

required by the replica trick is the computation of the Rényi entropy of order α [5], a bipartite

entanglement measures defined in terms of a positive real parameter α:

SαpρAq “
1

1 ´ α
logTrtραAu , α P R` , (2.13)

and whose limit to one gives the entanglement entropy:

SpρAq “ lim
αÑ1

SαpρAq . (2.14)

Similar to the entanglement entropy, the Rényi entropy of order α can be expressed in terms

of the non-zero eigenvalues of ρA, via the Schmidt decomposition:

SαpρAq “
1

1 ´ α
log

ˆ

ÿ

k

λαk

˙

, (2.15)

and satisfies the conditions discussed in Section 2.2.2. To some extent, the Rényi entropies

provide more complete knowledge about the quantum state as they constitute a “spectrum” of

entropies in the parameter α P R` including also the entanglement entropy. Additionally, some

of the Rényi entropies can be measured in experiments [53].

In Chapter 4 we will consider another interesting quantity which is the single-copy entropy

(also known as single-copy entanglement) [61–63]. In the replica model this is given by the

limit

S8pρAq “ lim
αÑ8

SαpρAq . (2.16)

In Chapter 5 we will also consider the case where the subsystem A consists of two

disconnected regions A1 and A2 (both still connected to B). This leads to a more structured

bipartite system as the entropies now depend on the reduced density matrix ρA1
Ť

A2 ,
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evaluated in HA1 b HA2 . However, they take the same functional form:

SpρA1
Ť

A2q “ ´TrtρA1
Ť

A2 log ρA1
Ť

A2u , SαpρA1
Ť

A2q “
1

1 ´ α
logTrtραA1

Ť

A2
u , α P R` .

(2.17)

Note that although this situation looks similar to the example on the right of Fig. 2.2, the

entanglement entropies are quite distinct from the logarithmic negativities. Indeed the former

measure the entanglement between the union of A1 and A2 and the rest of the system, while

the latter would be related to the entanglement between A1 and A2. Similarly the expressions

in (2.17) may be extended to an arbitrary number of sub-regions Ai.

2.3.2 Entanglement measured by negativities

The logarithmic negativity measures the amount of entanglement between two

non-complementary regions A and B, immersed in an “environment” C. An example with

two disconnected regions is represented in in the right picture of Fig. 2.2, however in principle

the two regions may share a boundary (this is the limit of adjacent regions we will consider in

Chapter 5). In both cases, the bipartite Hilbert space may be seen as having the structure

H “ HA
Ť

B b HC . (2.18)

Note that the state described by ρA
Ť

B is a mixed state for non-zero value of the logarithmic

negativity and the subsystem A
Ť

B is accordingly entangled with the environment C. The

logarithmic negativity is an entanglement monotone [6, 7, 64, 65] according to the definition in

Section 2.2.2. It can be expressed as

EpρAŤ

Bq “ log ||ρTBA
Ť

B||Tr , (2.19)

and depends on the reduced density operator ρAŤ

B via the operation TB, which represents

the partial transposition on subsystem B. Crucially, after partially transposing ρA
Ť

B, the

resulting operator ρTBAŤ

B is no longer guaranteed to be positive-definite and it may have negative

eigenvalues. The operation ¨ ÞÑ || ¨ ||Tr involved in (2.19) represents the trace norm of ρTBAŤ

B,

namely the sum of all its singular values [66, 67]. Since ρTBAŤ

B is Hermitian, the trace norm is

simply the sum of the absolute values of its eigenvalues. The matrix elements of ρTBAŤ

B can be

obtained from those of the reduced density matrix ρAŤ

B. In particular, let t
∣∣eAi Du and t

∣∣eBj D u

be the orthonormal bases of HA and HB respectively such that the state
∣∣eAi , eBj D “

∣∣eAi Db
∣∣eBj D
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lives in HA
Ť

B, we have that:

@

eAi , e
B
j

∣∣ ρTBAŤ

B

∣∣eAk , eBℓ D “
@

eAi , e
B
ℓ

∣∣ ρAŤ

B

∣∣eAk , eBj D . (2.20)

Similarly to the case of the entanglement entropy, powerful methods were developed in

[13, 14] to study the logarithmic negativity in CFT using the replica approach and related

techniques, where the logarithmic negativity of the ground state in the limit of adjacent regions

exhibits universal scaling, again related to the central charge. In 1+1-dimensional QFTs, the

universal scaling properties of logarithmic negativity of the ground state have been investigated

in [18] by using the replica approach. In this context, it is convenient to define the replica

logarithmic negativity for a positive integer parameter n:

EnpρAŤ

Bq :“ logTr t p ρTBA
Ť

B q
n

u , n P N . (2.21)

The idea is to calculate (2.21) and then to analytically continue the resulting function of n to

n “ 1. An important conclusion from the work [13] is that the replica negativity (2.21) has

two different natural analytic continuations Eepnq and Eopnq for different parities of n (even and

odd, respectively) and the logarithmic negativity is obtained by taking the limit n Ñ 1 from

the function Eepnq in the even sector:

EpρAŤ

Bq “ lim
nÑ1

Eepnq . (2.22)

Finally, the logarithmic negativities can be expressed in terms of the non-zero eigenvalues of the

operator ρTBAŤ

B via the Schmidt decomposition, in a similar way as seen for the entanglement

entropies. Indeed, we have that:

EpρA
Ť

Bq “ log
ÿ

i

|λ
ptq
i | EnpρA

Ť

Bq “ log
ÿ

i

|λ
ptq
i |n , (2.23)

where λ
ptq
i are the non-vanishing eigenvalues of the partially transposed reduced density matrix.

This formulation is useful to combine the replica model approach with the qubit picture i.e.

a technique that we will introduce in Chapter 4, and that will allow us to obtain the excited

state contributions to the logarithmic negativity in Chapter 5.
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CHAPTER

THREE

TECHNIQUES IN INTEGRABLE QUANTUM FIELD THEORIES

3.1 Replica model

Let us consider a one-dimensional bipartite system in a (1+1)-dimensional QFT with local

Lagrangian density Lrφspx, yq, and expressed in Euclidean coordinates. We suppose that the

entire system is in a pure state, and by identifying two regions A and B in the system, we aim

to evaluate the corresponding entanglement entropies and/or logarithmic negativities.

We first focus on systems of infinite length for simplicity, and extend the techniques to

finite volume in the course of this chapter. Of course, there is not a unique way to partition

such a system. The simplest partition is provided by the case 1 in Fig. 3.1 where we find a

segment A of coordinates px, 0q for x P rx0, x1s connected to a complementary region B formed

of two semi-infinite intervals. We have seen in Section 2.3 that the entanglement entropies

provide good measures of entanglement for this particular setting. We may be interested in

more intricate partitions such as case 2 and case 3 in Fig. 3.1 where both regions A and B are

of finite length and immersed in an environment C. In particular, in case 2 the two regions are

chosen to be disconnected, while in case 3 these are joint at the point x1 “ x2. All partitions are

suitable to evaluate the amount of entanglement of subsystem A with respect to B and we know

from Section 2.3 that the logarithmic negativity provides a good measure of entanglement based

on the last two partitions. Additionally, in case 2, we can evaluate the entanglement entropy

that the two regions together A
Ť

B share with the environment C. Note that if the regions A
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Figure 3.1 The three partitions of a one-dimensional system that are considered in this
chapter. In particular the system is composed of: a single entanglement region A (case 1),
two disconnected entanglement regions A and B with separation of length ℓ2 (case 2), and two
adjacent entanglement regions joint at x1 “ x2 (case 3).

and B are connected as in case 3, this is equivalent to case 1 for the entanglement entropies.

As pointed out in the previous chapter, there exists a method to evaluate such entanglement

measures, which may be more generally referred to as replica model. It is of course convenient

to start from the simplest partition, i.e. case 1 and then to extend the discussion to the other

two. In order to use this method we need to consider the Rényi entropy of order α “ n for a

fixed non-negative integer n ‰ 1, this is simply the function:

SnpρAq “
1

1 ´ n
logTrtρnAu , 1 ă n P N . (3.1)

Assuming that the Rényi entropies with integer index n can be computed, the appropriate limit

to the entanglement entropy S1 :“ limnÑ1 Sn must be carefully taken as it requires finding the

correct analytic continuation in the parameter n (this last step is usually called replica trick).

Looking at formula (3.1) it is clear that the nth Rényi entropy is a function of the nth power

of the reduced density operator ρA. In particular, given a complete orthonormal basis t |φiyu

of HA, we can expand the quantity

TrtρnAu “

n
ź

j“1

ÿ

kj

Axφk1 | ρA |φk2yA Axφk2 | ρA |φk3yA . . . Axφkn | ρA |φk1yA . (3.2)

The formula above inspired the idea of replicating the theory, indeed the expansion on the right

hand side can be interpreted as the partition function of a new theory in a n-sheeted Riemann

surface Mn, also called replica model and composed of n copies of the original theory [8–10]:

expt p1 ´ nqSnpρAq u “ TrtρnAu “
Zpnq

Zn
1

, (3.3)

where Z1 is a normalization factor required to recover TrtρnAu “ 1 for n “ 1. In the new

manifold Mn, the n copies are sequentially connected by means of a branch cut that is now
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Figure 3.2 A single copy of the original QFT (left) and the n-copy model (right). Figure taken
from [16] and re-adapted.

interpreted as the entanglement region. A pictorial representation is shown in Fig. 3.2. The

Riemann surface Mn has non-zero curvature at the branch points, precisely occurring at

coordinates px0, 0q and px1, 0q, which are identified with the boundary points of the

entanglement region in the original theory.

In the path integral formulation, the partition function Zpnq can be expressed as

Zpnq
“

ż

rDn ΦsMn exp

„

´

ż

Mn

dx dy Lpnq
rΦspx, yq

ȷ

, (3.4)

where rDn ΦsMn is an infinite measure on the set of configurations of the field Φ of the new

theory, identified with the n-tuple Φ “ pφ1, . . . , φnq and living in Mn. Each copy j “ 1, . . . , n

is described by a copy of the original field φj and the Lagrangian density of the new theory is

Lpnq
rΦspx, yq :“ Lrφ1spx, yq ` . . .Lrφnspx, yq , (3.5)

so that the energy density in the new model is the sum of the energy densities of the n

individual copies.

Crucially, a new global symmetry σ is induced in the replica model. Indeed the new theory

is invariant under cyclic permutations over the copies as it follows naturally from equation (3.2)

and the properties of the trace. As a consequence, a local field φi living in the ith copy satisfies

φi`n “ φi and, in particular φn`1 “ φ1 for i “ 1.

Furthermore, since the Lagrangian density Lpnq is local its integral does not depend explicitly on

the manifold Mn and the partition function (3.4) can be evaluated as an object computed from

a model in R2 where the structure of the Riemann surface is implemented through appropriate

boundary conditions on the fields φ1, . . . , φn. Indeed, although the symmetry σ leaves the

action invariant it does change the manifold on which the path integral (3.4) is defined. This is
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reminiscent of the case of N indistinguishable particles in classical statistical mechanics. In this

case the partition function is evaluated in a restricted manifold of the phase-space in such a way

to avoid over-counting of states differing by permutations of particles. Similar constrains can

be implemented in the presence of a cyclic permutation symmetry by imposing the following

boundary condition on the n-tuple Φ:

Cpx0, x1q : φipx, 0
`

q “ φi`1px, 0
´

q , @x P ra, bs , i “ 1, . . . , n . (3.6)

Under the condition above, equation (3.4) becomes:

Zpnq
px0, x1q :“ Zpnq

“

ż

Cpx0,x1q

rDn ΦsR2 exp

„

´

ż

R2

dx dy Lpnq
rΦspx, yq

ȷ

. (3.7)

3.2 Branch-point twist fields

The innovative idea of expressing the partition function (3.7) as a correlator of quantum

fields associated to the branch points of a Riemann surface emerged from the study of the

entanglement entropy in the context of CFT [10]. In [15] such idea was re-elaborated in the

context of QFT with a more general interpretation of these fields as twist fields implementing

the cyclic permutation symmetry of the n-copy model.

Twist fields exist in general whenever a theory is equipped with a global symmetry. In [15] the

concept of twist field was employed for the first time in the context of entanglement measures,

but the idea of implementing a symmetry by means of appropriate fields is actually much older.

Probably the earliest evidence of twist fields in the literature can be found in [68], where the

twist fields are associated to the Zn symmetry induced in an orbifolded CFT. In QFT a very

simple example of twist fields is provided by the Ising order and disorder fields which implement

the Z2 symmetry in the free massive Majorana fermion theory [69, 70].

In the replica model, the twist fields resulting from the cyclic permutation symmetry are

called branch-point twist fields as they sit at the branch points px0, 0q and px1, 0q and their action

on the fundamental fields φ1, . . . φn is akin to imposing condition (3.6) on the path integral.

Remarkably, the partition function in (3.7) can be re-written as a correlator of branch-point

twist fields:

Zpnq
px0, x1q „ x T px0, 0q T̃ px1, 0q yLpnq,R2 . (3.8)

In the expression above we have introduced the Hermitian conjugate of the twist field T̃ :“ T :,
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Figure 3.3 The action of the branch-point twist field in copy i. The twist field T acts as a
sort of “elevator” sending φi to the next copy whenever the copy-field crosses the branch cut.
Picture taken from [15].

also called anti-twist field, implementing the inverse symmetry, i.e. σ´1. The two twist-fields

formally generate two semi-infinite branch cuts originated respectively at px0, 0q and px1, 0q that

extend indefinitely. In (3.8) these are combined to form a branch cut of finite length ℓ “ |x0´x1|.

The fact that σ is a symmetry ensures that T and T̃ commute with the Lagrangian density

Lpnq and thus are local. Furthermore, it ensures that the partition function (3.8) is invariant

under continuous deformation of the branch cut which is implemented by some appropriate

symmetry transformation.

Crucially, the branch-point twist fields act non-trivially on the fundamental fields of the

theory. Indeed, following from condition (3.6), a local field φi living in copy i and T satisfy the

following exchange relations:1

φipzq T pz1
q “ T pz1

qφi`1pzq x1
ě x , (3.9)

φipzq T pz1
q “ T pz1

qφipzq x1
ď x ,

for z “ px, yq, z1 “ px1, y1q. In particular, the resulting action of the twist field T is to send the

local field φi to the next copy when it crosses the branch cut. Similarly, the field T̃ sends the

local field φi to the previous copy and its exchange relations are:

φipzq T̃ pz1
q “ T̃ pz1

qφi´1pzq x1
ě x , (3.10)

φipzq T̃ pz1
q “ T̃ pz1

qφipzq x1
ď x .

In both equations (3.9) and (3.10) i “ 1, . . . , n. Properties (3.9) and (3.10) imply that the

1For simpler twist fields such as the field σ in the Ising model, the exchange relations with the fundamental
fields of the theories are implemented via a factor of local commutativity [70–72], this will be introduced
in Section 3.3. Relations (3.9) and (3.10) generalise these exchange relations to branch-point twist fields,
characterised by more complicated locality properties.
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branch-point twist fields T and T̃ are semi-local with respect to the fundamental fields of the

theory.

It is important to stress that the definition of twist field as a symmetry field does not imply

that the twist field T is unique. Indeed there might be several realizations of a field satisfying

property (3.9). However the fields T and T̃ will be uniquely defined if we additionally impose

that they are primary fields in the CFT limit and thus that they have the lowest scaling

dimension. Under this assumption, the scaling dimensions of the branch-point twist fields are

[15]:

dn :“ 2 ∆T “ 2 ∆T̃ “
c

12

´

n ´
1

n

¯

, (3.11)

where c is the central change associated to the CFT and ∆T and ∆T̃ are the conformal weights

of the primary fields2. The requirement of primary fields is also necessary to recover the CFT

results presented in [10] under an appropriate normalisation (also known as CFT normalisation):

x T px0, 0q T̃ px1, 0q y “ |x0 ´ x1|
´2dn , asm |x0 ´ x1| Ñ 0 . (3.12)

3.2.1 Entanglement measures as correlators

Let us now consider a pure state |ψy of the orginal QFT that can be either the ground state

or an excited state of a finite number of excitations, namely a zero-density state. The general

ideas of computing the partition function Zpnqpx0, x1q as a correlator of branch-point twist fields

holds in both cases. In particular, as a consequence of (3.8), the nth Rényi entropy evaluated

in |ψy can be expressed as a correlator of branch-point twist fields in the replica model:

Snpx0, x1q “

log
´

zn ε
2dn xΨ|T px0, 0qT̃ px1, 0q|Ψy

¯

1 ´ n
, (3.13)

where |Ψy “ |ψy1 b |ψy2 b . . . |ψyn lives in the replica model and ℓ “ |x1 ´ x0| is the size of the

entanglement region. The parameter ε is a short-distance cut-off and is independent of n.

The n-dependence is all absorbed in the non-universal factor zn including the norm of the

state. For n “ 1, z1 “ 1 as the branch-point twist fields simply become the identity in this

case, and thus Bzn{Bn “ 0. If |Ψy is an excited state, the factor zn normalises away the

infinite-volume divergence occurring for colliding rapidities of asymptotic states. In this case

the correlator in (3.13) is usually treated in finite volume (we will discuss this point more in

2If the QFT is not a CFT, these are the conformal dimensions of the underlying CFT which describes the
UV fixed point of the QFT.
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detail in Section 3.2.3).

We have already mentioned that the link connecting the replica model with the computation

of entanglement entropy comes through the replica trick. Mathematically speaking, the replica

trick is simply the limit of Snpℓq as n approaches 1. We can use the identity ρA log ρA “

limnÑ1`
B

Bn
ρnA and the properties of the trace to write the entanglement entropy as:

S1px0, x1q “ ´ lim
nÑ1`

B

Bn

´

ε2dn xΨ|T px0, 0qT̃ px1, 0q|Ψy

¯

. (3.14)

However, we need to extend the notion of replica as in the replica model the parameter n

is by construction a positive integer strictly greater than 1, more precisely, we need to take

carefully its analytic continuation to n Ps1,`8r. This analytic continuation problem is not

generally solved in QFTs. In the integrable cases, this problem was addressed in [15, 73] for

the entanglement entropy of the ground state, while for a zero-density state, which is the focus

of the next two chapters, the entanglement entropy is an analytic function of n and so the

analytic continuation is trivial.

Figure 3.4 The Riemann surface constructed to compute Trt p ρA
Ť

B qn u (left) and

Trt p ρTBA
Ť

B qn u (right). They differ by the the second branch cut implementing different

connectivities of the Riemann sheets. Both pictures are taken from [14].

We can now consider more complicated partitions such as case 2 in Fig. 3.1. In this case

we have two disconnected regions and, as pointed out at the beginning of the chapter, the

entanglement entropies measure the quantum correlations that the union of the two regions

A
Ť

B shares with the rest of the system. The idea of replicating the model seen for a single

region can be easily extended to the case of two regions. The main difference is that the

boundary condition (3.6) is now implemented at the boundary points x0, x1, x2, x3. As shown

in the left picture of Fig. 3.4, this corresponds to having two branch cuts in the resulting replica

model, each associated to a particular entanglement region. As a consequence the nth Rényi
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entropy is now given by a four-point correlation function:

Snpx0, x1, x2, x3q “

log
´

zn ε
4dn xΨ|T px0, 0qT̃ px1, 0qT px2, 0qT̃ px3, 0q|Ψy

¯

1 ´ n
. (3.15)

More generally, if we want to extend the calculation of entanglement entropies to any number

of disconnected regions, we will obtain correlators involving as many branch-point twist fields

as boundary points in the system. The entanglement entropy of two disconnected regions is

obtained in a similar way to (3.14), now involving a four-point correlation function:

S1px0, x1, x2, x3q “ ´ lim
nÑ1`

B

Bn

´

ε4dn xΨ|T px0, 0qT̃ px1, 0qT px2, 0qT̃ px3, 0q|Ψy

¯

. (3.16)

Interestingly, also the operator Trt p ρTBA
Ť

B qn u can be obtained as a correlator of twist fields.

In particular, the replica logarithmic negativity (2.21) can be expressed as:

Enpx0, x1, x2, x3q “ log
´

zn ε
4dn xΨ|T px0, 0qT̃ px1, 0qT̃ px2, 0qT px3, 0q|Ψy

¯

, (3.17)

where the effect of the partial transposition is to exchange the two fields associated to the

boundary points of the interval B. As shown in Fig. 3.4, the partial transposition changes also

the branch cut associated to the region B. Therefore, the correlators (3.15) and (3.17) are

defined in different Riemann surfaces.

Crucially, as pointed out in Subsection 2.3.2, the replica trick needs to be performed in the

even sector of the replica model. This corresponds to posing n “ 2m for a fixed integer number

m and then to taking the analytic continuation in m towards m Ñ 1{2:

E1px0, x1, x2, x3q “ lim
mÑ 1

2

E2mpx0, x1, x2, x3q. (3.18)

Note that we have not yet used any special properties of integrability, and the idea of

expressing entanglement measures as correlators can be more generally extended to any

1+1-dimensional QFT. However, as we will see in the course of the chapter, this idea is

particularly useful in integrable models where the existence of exact methods to compute

correlations functions makes the expressions (3.13), (3.15), and (3.17) effectively computable.

This is also the case for 1+1 dimensional CFT where the structure of correlators is severely

constrained. However, for four-point functions such as those in (3.16) and (3.17) CFT
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computations are also extremely challenging as can be seen from the extensive study of the

compactified massless free boson carried out in [11–14]. One should also stress that even in

1+1 dimensions the application of these methods may be intricate if we consider a correlator

of many quantum fields as the complexity of the computation drastically increases with the

number of fields considered. For this reason it may be convenient to consider some special

limit of expression (3.17) that “reduces” the number of boundary points and thus also the

number of fields in the correlator.

For instance, one can simplify the structure of (3.17) by taking x1 Ñ x2 to obtain two

adjacent entanglement regions (like case 3 in Fig. 3.1). This limit was studied in the context

of CFT in [11–14]. If we take such a limit in QFT we will deal with a three-point correlation

function:

Enpx0, x2, x3q “ lim
x1Ñx2

Enpx0, x1, x2, x3q “ log
´

zn ε
2dn`d̃n xΨ|T px0, 0qT̃ 2

px2, 0qT px3, 0q|Ψy

¯

,

(3.19)

where T̃ 2px2, 0q “ limx1Ñx2 T̃ px1, 0qT̃ px2, 0q is a composite twist field3 obtained by colliding the

two anti-twist fields in (3.17). In particular, the field T̃ 2 implements a non-sequential cyclic

permutation symmetry over the copies. For n even, the action of this symmetry factorises into

two components, each acting only on even-numbered or odd-numbered sheets, therefore the

twist field T̃ 2 is accordingly:

T̃ 2
“ T̃e b T̃o , (3.20)

where T̃e and T̃o act respectively on sheets of only even- and odd- copy numbers. The field T̃ 2

is fully defined in CFT through the operator product expansion of two anti-twist fields. Its

conformal weights follows naturally from (3.20):

∆T 2pnq “ 2 ∆T pn{2q, (3.21)

and defines its scaling dimension is d̃n “ 2 ∆T 2pnq.

There are other limits of expression (3.17) that one can potentially consider, for instance the

case of two disjoint semi-infinite intervals discussed in [18]. However these cases do not have a

finite volume counterpart. We will see that an important requirement for treating correlators

of twist fields in excited states is to work in finite volume, thus semi-infinite intervals are not

of interest in the treatment of excited states.

3In the context of entanglement, the composite twist fields appeared first in the work [74] and was then
studied in more details in the Ising model [75].
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The general idea of expressing entanglement measures in terms of correlators of

branch-point twist fields has been applied to the study of many different models, especially in

the context of massive QFT. While the original paper [15] considered the Ising and

sinh-Gordon theories, free theories where further studied in [76, 77], whereas the

generalization of these results to non-unitary QFT, including the Lee-Yang model was studied

in [78, 79]. The connection between entanglement entropy and scaling functions was explored

in [74, 80] and, more recently, branch-point twist fields have been employed to study the

out-of-equilibrium dynamics of entanglement [81, 82].

3.2.2 Review of previous results in the ground state

In order to understand the structure of the correlators of branch-point twist fields in excited

states, it is instructive to look first into the entanglement entropies evaluated in the ground

state. In this subsection we choose the state |ψy to be the ground state |0y of the field theory

considered.

An important result obtained in CFT is the logarithmic growth of the nth Rényi entropy

of the ground state with the subsystem size ℓ [9, 10]:

Snpℓq “
c pn ` 1q

6n
log

ℓ

ϵ
, (3.22)

where c is the central charge of the CFT and ϵ a short-distance cut-off. In terms of the

branch-point twist fields this result follows naturally from the power-law scaling of the two-point

correlation function (3.13) [15, 16]. The entanglement entropy can be obtained by simply taking

the limit n Ñ 1 of (3.22)

S1pℓq “
c

3
log

ℓ

ϵ
. (3.23)

More generally, both the nth Rényi entropy and the entanglement entropy grow linearly with

the number of boundary points, as a consequence of the power-law scaling of the correlators of

twist fields in CFT. Thus entanglement entropies in the ground state of CFT satisfy a sort of

area-law [83]. They also violate the area law in the sense that they grow logarithmically with

the system’s size. The results above capture the universal features4 of entanglement entropies,

showing these depends on very few details of the theory, in this case just the central charge.

We thus expect that systems that are physically very diverse but described by the same CFT,

4Here, as well as in the rest of the section the term “universality” means the presence of common features
among a certain number of theories. It is true that the results (3.23) and (3.22) are not universal in a strict
sense as they depend on the cut-off ϵ, but the proportionality to c is independent of the regulator.
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display the same entanglement properties.

To fully exploit the power of this universality, one should consider its connection to the

study of critical systems. Indeed a field theory may be interpreted as a particular scaling limit

of a quantum spin chain with a correlation length ξ “ 1{m given by the inverse of the mass of

the field theory considered. For such a system the cut-off ϵ could be taken to be proportional

to the lattice spacing and would be in general a small number compared to the other length

scales ℓ and ξ. In this context, the entanglement entropies may be used to study the behaviour

of quantum chains near or far from a criticality. For instance we can consider a system at

short-distance (in the so called ultraviolet regime), i.e. when the size of the subsystem is much

smaller of the correlation length ξ " ℓ " ϵ. In this case, even if ξ is finite the subsystem will

be perceived as critical, and the entanglement entropies will be given by (3.22) and (3.23) at

the lowest order.

In contrast, if we are interested in the large-distance limit (also called Infrared regime) i.e.

ℓ " ξ " ϵ, the universal features of chain (if there are any) are described by a QFT, and the

entanglement entropies will be given by the dominant contributions to (3.13) and (3.14) in such

a limit. These contributions can be evaluated by combining several techniques as we will see

below. The starting point is again the correlator of branch-point twist fields in (3.13) that in

QFTs can be naturally expanded in terms of a complete sets of states:

x0| T px0qT̃ px1q |0y “ x0| T px0q ˆ 1 ˆ T̃ px1q |0y “ (3.24)
8
ÿ

k“1

ÿ

µ1,...,µk

ż

θ
µ1
1 ą¨¨¨ąθ

µ1
k

dθµ11 . . . dθµkk
p2πqk

exp

«

´ℓ
k
ÿ

j“1

mαj cos θ
µj
j

ff

| x0|T p0q|θµ11 , . . . , θ
µk
k y |

2 ,

where ℓ now expresses the space-like relativistic distance in Minkowsky space-time between

the two points x0 “ px0, 0q and x1 “ px1, 0q. The expansion (3.24) is obtained by inserting a

complete set of states:

1 “

8
ÿ

k“1

ÿ

µ1,...,µk

ż

θ
µ1
1 ą¨¨¨ąθ

µ1
k

dθµ11 . . . dθµkk
p2πqk

|θµ11 , . . . , θ
µk
k y xθµkk , . . . , θ

µ1
1 | . (3.25)

The structure of the n-copy model is incorporated in the indices µj “ pij, αjq, including the

copy number ij and the particle species associated to a single excitation of rapidity θ
µj
j for any

j “ 1, . . . , k.

The advantage of using expression (3.24) is that in integrable QFTs there are effective
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methods to exactly compute the matrix elements x0|T p0q|θµ11 , . . . , θ
µk
k y, also called form factors.

Such methods are usually referred to as the form factor program [84, 85] and they provide

the most powerful and successful approach to the computation of correlation functions, both

analytically and numerically. Form factors are in fact the building blocks of the expansion in

(3.24), and will be discussed in more detail in Section 3.3. Furthermore the right hand side of

(3.24) presents an exponential factor inside the sums, coming from covariance transformations5.

This factor defines a precise ordering of the dominant contributions at large distance ℓ. Indeed

in such limit, the form factor contributions involving large number of particles tend to be

negligible and the leading terms are obtained from the lowest particle contributions.

From the form factor expansion it follows that the leading contribution will come from the

zero-particle form factor, also called vacuum expectation value. Since the latter is independent

of ℓ, the leading contribution is independent of the region’s size. This leads to the famous result

that the entanglement entropy of gapped systems saturates for large system size to a constant

that depends on the gap (correlation length). More precisely the nth Rényi entropy saturates

at large distance ℓ " m´1 " ϵ with saturation constant governed by the central charge:

Snpℓq “ ´
c pn ` 1q

6n
log m1 ϵ ` 2Un ` Ope´2ℓm1q (3.26)

where m1 is the mass of the lightest particle of the theory and Un is a model-dependent

constant. This result follows from the clustering property, i.e. the factorization of correlation

functions at large distance, and from the scaling properties of vacuum expectation vales in

(1+1)-dimensional QFT. The exponential corrections to saturation come from the higher

particle contributions. For instance the first correction is obtained from either the one- or

two-particle form factor (if the one-particle form factor is zero). However, when n Ñ 1 the

leading correction to the entanglement entropy comes from the two-particle form factor term

in all cases. For an integrable QFT with N particle species, the formula of the entanglement

entropy up to the first correction is [15, 16]:

S1pℓq “ ´
c

3
logpm1ϵq ` 2U1 ´

1

8

N
ÿ

α“1

K0p2ℓmαq ` Ope´3ℓm1q (3.27)

Similarly to (3.23), the result above encodes universal information not only about the

5In the standard derivation of (3.24) that can be found in many sources, including [15, 16], the exponential
factor is obtained by using the Euclidean rotation invariance in order to bring the points in the pure
imaginary time direction (with a distance ℓ ), and to use imaginary-time translation covariance to extract
the real-exponential factor depending on ℓ.
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underlying CFT. Remarkably the first exponential correction captures the mass spectrum of

the QFT irrespective of its scattering matrix. This means that this term looks the same for

both a free theory containing N fermions of masses mα as above and an interacting theory

with the same mass spectrum. The first correction take also a universal form given by the

modified Bessel function K0. This turns out to be a very general property and has been

shown to hold beyond integrability [17].

Consider instead two connected regions A and B as shown in Fig. 3.1, we may wonder

if the logarithmic negativity displays universal properties in a similar fashion. Like in the

single-region case, the correlator (3.19) (now involving three points) can be computed in CFT

by using the scaling properties of the twist field T and the composite twist-field T̃ 2 [13, 14].

After taking the limit n Ñ 1 the logarithmic negativity is:

Epℓ1, ℓ3q “
c

4
log

ℓ1 ℓ3
ϵpℓ1 ` ℓ3q

. (3.28)

In QFT we need to insert the completeness relation (3.25) twice in the correlator (3.19) in order

to obtain a form factor expansion. Again the saturation constant comes from the zero-particle

term and follows from the clustering properties i.e. x0| T T̃ 2 T |0y „ x0| T |0y x0| T̃ 2 |0y x0| T |0y

for large distances ℓ1, ℓ3 " m´1 " ϵ. As a consequence, the large-distance vacuum expectation

values of the fields involved in the correlator (3.19) fully define the large-volume leading term:

Enpℓ1, ℓ3q “ pd̃n ` 2dnq logpm1ϵq ` 2En ` Ope´2pℓ1`ℓ3qm1q , (3.29)

where dn and d̃n are the conformal dimension of T 2 and T̃ respectively, and En is a characteristic

constant of the theory6. The next-to-leading correction comes from two-particle terms of the

form factor expansion such as x0| T |0y x0| T̃ 2 |θµ11 , θ
µ2
2 y xθµ22 , θ

µ1
1 | T |0y. If we take ℓ3 Ñ 8, the

exponential corrections to the logarithmic negativity (once the replica trick is performed) takes

a universal functional form given again by the modified Bessel function K0 [18]:

Enpℓ1q “ ´
c

4
logpm1ϵq ` 2E1 ´

2

3
?

3π

N
ÿ

α“1

K0p
?

3m1ℓ1q ` Ope´am1ℓ1q , (3.30)

where the point x2 is taken at the origin, N is the number of particle species in the theory,

6Note that En and Un in (3.26) are not independent to each other as both quantities are consequences of
the scaling properties of the vacuum expectation value of T .
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and a ą
?

3.

In the presence of two disconnected regions x1 ‰ x2 (as displayed in the right-picture of

Fig. 3.1) the entanglement entropies as well as logarithmic negativities involve the computation

of a full four-point correlation function, which as mentioned before, it is generally a hard task,

even in integrable QFT. This partition has been extensively studied in CFT [11, 12, 14], where

the logarithmic negativities were proven to be scale-invariant functions, depending only on the

ratio:

r “
px2 ´ x0q px3 ´ x1q

px1 ´ x0q px3 ´ x2q
“

pℓ1 ` ℓ2q pℓ2 ` ℓ3q

ℓ1 ℓ3
, Enpℓ1, ℓ2, ℓ3q “ Enprq . (3.31)

An explicit functional expression for any n of the nth replica negativity has been obtained for

the compactified free boson. However, even in this case the continuation in the parameter n is

non-trivial and not fully understood analytically.

3.2.3 Challenges posed by the treatment of excited states

The results reviewed in Section 3.2.2 bring to light the connection between universal

properties and entanglement measures as well as the fact that the entanglement encodes

fundamental information on the theory. Since entanglement measures are functions of the

state (through the reduced density operator) only, it appears clear that bipartite

entanglement measures may be used to investigate further the properties of a given state.

Much has been done for the ground state and it would be now interesting to study

entanglement measures in excited states as these are expected to display additional universal

features associated to the presence of excitations.

Excited state entanglement measures will be extensively studied in Chapters 4 and 5, where

we will consider a free massive free boson theory and assume the bipartite system to be in a

pure state formed of a finite number of excitations, also called zero-density state. One may

reasonably wonder how different is the computation of correlators of twist fields in such a

case, and more generally what are the challenges posed by the treatment of excited states. To

address these questions it is again useful to start from the case of a single entanglement

region, and to extend the discussion to other partitions. Hence, considering a bipartite system

in a pure state |ψy (now including a finite number of excitations), the nth Rényi entropy can

be computed as a two-point correlation function of twist fields in |Ψy “ |ψy1 b ¨ ¨ ¨ b |ψyn in

the n-copy model. Following a similar construction to the one seen in Subsection 3.2.2, the

correlator (3.13) can be expanded by introducing a complete set of states between the two
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fields, schematically:

xΨ|T p0qT̃ pℓq|Ψy 9
ÿ

|Φy

xΨ|T p0q|Φy xΦ|T̃ pℓq|Ψy , (3.32)

where we set x0 to the origin and x1 to the length of the entanglement region ℓ for simplicity, and

omitted the time-dependence for a shorter notation. The state |Φy and |Ψy live in the replica

model and are characterized by a discrete set of rapidities (or momenta). If the rapidities in one

state coincide with some in the other state, the matrix elements xΨ| T p0q |Φy and xΦ| T pℓq |Ψy7

will develop, in the usual infinite-volume normalization of the states, δ-function singularities. A

common way to regularise these singularities is to move the computation to finite-volume and

use the volume (in one-dimension this is a length L) as a natural regulator. This procedure leads

to consider finite-volume form factors [86, 87]. Indeed, in finite volume a systematic prescription

exists to compute the “physical part” of matrix elements of local operators. This consists of

subtracting the contributions of any occurring singularities in a way which is controlled by the

particular pole structure of the infinite volume form factors. This choice permits to obtain

information on both the finite and the infinite volume behaviours of the system. Indeed the

correlator will be given as an infinite sum of contributions in powers of 1{L, whose ordering is

related to the pole-structure of the form factors involved and can be used to select the dominant

contribution at infinite volume.

The first challenge is given by the fact that the branch-point twist fields are not local in

the sense required to apply the techniques presented in [86, 87]. Although they are local with

respect to the Lagrangian density of the replica model (as they implement a symmetry) they are

non-local with respect to the fundamental fields of the theory due to the properties (3.9) and

(3.10). Indeed, due to the complex geometry of the replica model, form factors of twist fields

present additional poles that need to be taken into account in the finite-volume regularization.

It is however very plausible that the standard general ideas for the computation of finite-volume

non-diagonal form factors (i.e. the elements whose pole structure is more similar to those of

standard local operators) will be still applicable to branch-point twist fields. The analysis of

the free boson theory that will be conducted in Chapters 4 and 5, aims to confirm that this is

exactly the case.

Second we need to address the problem of extending the replica model to a finite volume as

7This matrix element can be evaluated at the origin by using space-time translation. This of course introduces
some factor in the expansion (3.32).
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Figure 3.5 Continuous deformation of a branch-cut along the space direction to obtain two
semi-infinite branch-cuts along the time direction of the cylinder. This transformation does not
change the value of the twist-field correlator, and allows us to make sense of twist field form
factors in finite volume.

the original QFT is now mapped into a cylinder with the time-coordinate along its axis and the

space-coordinate along its circumference. As argued in 3.2, in finite volume the branch-point

twist field and its Hermitian conjugate are associated to two semi-infinite branch cuts and the

two fields combine to create a branch cut of finite length in the correlator (3.8). However, once

we write down the expansion (3.32) in finite volume we need to evaluate the matrix elements

LxΨ|Op0q|ΦyL and LxΦ|Op0q|ΨyL. The main problem is that for these matrix elements, an

infinitely long branch cut extending in space is incompatible with working in finite volume L.

This conflict can be resolved by adopting an approach which is reminiscent of that taken in [88]

for the Ising field theory and the matrix elements of its Z2 twist field σ. We may use the fact

that the branch cut can be continuously deformed without changing the value of the correlation

function. Therefore, we may continuously “stretch” the branch cut along the time direction

as indicated in Fig. 3.5. The result is a product of fields with branch cuts extending in the

time direction. Indeed in the situation where the branch cut was along the space-direction, the

exchange relation (3.9) imposes continuity between the field φi above and the field φi`1 below

the branch extending toward the right. After the deformation as in Fig. 3.5, this becomes

the continuity between φi on the left and φi`1 on the right of the branch extending towards

negative times. In this configuration, the fields are well defined in the quantization on the circle.

The operator ordering of the two-point function in the quantization scheme on the circle, is

implemented in the path integral by a time ordering: an infinitesimal shift τ along the cylinder,

as in Fig. 3.5.
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Crucially, the presence of the branch cuts and more generally of the symmetry σ8 affects

the boundary conditions of the fundamental fields of the theory. In particular, in parallel to

the situation seen in [88], the Hilbert space of quantization on the circle is divided into sectors

characterised by periodicity conditions associated to the symmetry. For the Ising model, the

Z2 symmetry leads to two sectors, Ramond-Ramond and Neveu-Schwarz with periodic and

anti-periodic boundary conditions for the fields of the theory. In the case of the Replica model,

we have in particular n sectors labelled by cyclic elements of the permutation group. In the

cylinder picture of Fig. 3.5, the state |ΦyL lies between the twist fields, in the time slice of

extent τ introduced by the operator ordering. This means that in finite volume, the state on

the left and the right of the element LxΨ|T p0q|ΦyL in (3.32) lie in different sections and thus

satisfy different boundary conditions.

Finally, the question arises as to how the matrix elements of branch-point twist fields with

states in different sectors can be computed. For a general integrable interacting theory the

computation of the matrix elements of branch-point twist fields is still an open problem due

to the regularization problem discussed above. However, for free theories there are additional

resources at our disposal. More precisely, for free theories, it is possible to express the

branch-point twist fields in terms of simpler Up1q twist fields, where the permutation

symmetry has been diagonalized. This is achieved by employing the so-called doubling trick

introduced in [25] and employed successfully in the branch-point twist field context in [15, 89],

where it allowed for the computation of the vacuum expectation value of the branch-point

twist field. A similar idea was also used in [90] in the study of the entanglement entropy of

free theories. In sections 4.2, 4.3 and 4.4 we will extend this idea to the study of the excited

state entanglement in finite volume.

The doubling trick is the simple idea that a real free fermion (Majorana) and a real free boson

theory can be doubled to construct a complex free fermion (Dirac) and a complex free boson

theory. This doubling induces a Up1q symmetry in the new theory to which a Up1q twist field

is associated. The doubled free theory will be replicated in the replica model, and the Up1q

symmetry on each individual copy is extended to a Upnq symmetry, which includes cyclic

permutation of the copies. Diagonalising the cyclic permutation, in the new basis the

branch-point twist field is then expressed as a product of n individual Up1q twist fields Tp for

p “ 1, . . . , n. The diagonalisation of the branch-point twist fields in terms of the much simpler

Up1q fields leads to the factorisation of the expansion (3.32) into n independent sums that can

8Note that here we use σ meaning the cyclic permutation symmetry while above we were refering to the spin
field σ in the Ising model. They are two totally different objects.
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be computed separately in each copy. As we will see in Chapter 4, this is a key-point in the

computation of the entanglement contributions generated by the excited states.

All considerations made so far are independent of the number of twist fields considered in

the correlators therefore they can be extended to two entanglement regions. We will deal with

this case in more detail in Chapter 5.

3.3 Form factors

To conclude this chapter, we review the fundamental properties of the building blocks

composing the expansion (3.24) and (3.32), namely form factors. By definition, elementary

form factors are tensor valued functions, representing matrix elements of some local operator

O located at the origin and evaluated between a multi-particle incoming state and the vacuum:

FO
k pθµ11 , θ

µ2
2 , . . . , θ

µk
k q :“ x0|Op0q|θµ11 , θ

µ2
2 , . . . , θ

µk
k y . (3.33)

We may also refer to the quantity above as a k-particle form factor. To express the incoming

state we have used the convention (1.7).

Form factors may be potentially used to expand correlators of local fields in any theory

possessing translation invariance. However, they are particularly relevant in integrable models,

where the presence of infinitely many local conserved charges as well as standard physical

requirements like Lorenz covariance imposes enough constraints to such matrix elements so that

exact solutions for many theories have been obtained once known the S-matrix. Many examples

can be found in the literature, see e.g. [71, 91] for the Ising model, [92, 93] for sinh-Gordon

model, [94] for sine-Gordon model, [95] for Lee-Yang model. These constraints are partially

inherited from the scattering properties of the excitations, and provide the boostrap equations

for the elementary form factors.

Elementary form factors are the building blocks of ground-state correlators (an example

is given by equation (3.24)). In a more general setting we would need the definition of form

factor as a local operator O evaluated at the origin and between asymptotic states (a graphical

representation is shown in Fig. 3.6) :

FO
m`kpλν11 , . . . , λ

νm
m ; θµ11 , . . . , θ

µk
k q “ xλνmm . . . λν11 | Op0, 0q |θµ11 . . . θµkk y . (3.34)
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Figure 3.6 General definition of a m` k-particle form factor of local operator. The incoming
state is represented at the bottom while the outgoing state is at the top of the figure.

Elements such as (3.34) are suitable for the treatment of correlators in excited states such as

expansion (3.32). Of course these elements are related to the elementary form factors through

the recursive equation:

FO
m,kpλν11 , . . . , λ

νm
m ; θ µ11 , . . . , θ µkk q “ (3.35)

Fm´1,k`1pλν11 , . . . , λ
νm´1

m´1 ; λν̄mm ` iπ, θ µ11 , . . . , θ µkk q `

`

k
ÿ

j“1

”

2πδµj νm δpλνmm ´ θ
µj
j q

j´1
ź

p“1

Sνm µppλ
νm
m ´ θµpp q ˆ

ˆFO
m´1,k´1pλν11 , . . . , λ

νm´1

m´1 ; θ µ11 , . . . , θ
µj´1

j´1 , θ
µj`1

j`1 , . . . , θ
µk
k q

ı

where µ̄m denotes the anti-particle of µm. The terms including the S-matrix are called

disconnected and are zero if the two asymptotic states do not have any rapidities in common.

In this case the decomposition in elementary form factors is straightforward as (3.35) only

involves the crossing property of the excitations in the outgoing state. More generally a k `m

form factor can be reduced to elementary form factors by using an appropriate number of

iterations of equation (3.35), a graphical example is displayed in Fig. 3.7 for k “ 3 and m “ 1.

3.3.1 Infinite-volume form factors boostrap

We now concentrate on an integrable QFT in infinite volume. A first fundamental constrain

comes from relativistic invariance and implies that k-particles form factors of scalar operators

are functions of the rapidity differences θij :“ θµii ´ θ
µj
j for any i, j “ 1, . . . , k:

FO
k pθµ11 , θ

µ2
2 , . . . , θ

µk
k q “ FO

k pθ12, θ13, . . . , θij, . . . q , for i ă j . (3.36)
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Figure 3.7 Equation (3.35) for k “ 3 andm “ 1. The disconnected terms vanish for tθµii u ‰ λν .

Other equations are closely related to the properties of the S-matrix and can be expressed as:

I. Exchange :

FO
k pθµ11 , . . . , θ

µj
j , θ

µj`1

j`1 , . . . , θ
µk
k q “ Sµj ,µj`1

pθj j`1q F
O
k pθµ11 , . . . , θ

µj`1

j`1 , θ
µj
j , . . . , θ

µk
k q , (3.37)

II. Crossing :

FO
k pθµ11 ` 2iπ, θµ22 , . . . , θ

µk
k q “

k
ź

j“2

Sµ1,µjpθ1jq F
O
k pθµ22 , . . . , θ

µk
k , θ

µ1
1 q , (3.38)

III. Kinematic residue :

´ i Res θµ“θµ0
FO
k`2pθ

µ
` iπ, θµ0 , θ

µ1
1 , . . . , θ

µk
k q “

´

1 ´

k
ź

j“1

Sµ,µjpθ0jq
¯

FO
k pθµ11 , . . . , θ

µk
k q (3.39)

IV. Bound-state residue :

´ i Resθα“θβ0
FO
k`2pθ

α
` iuβαγ{2, θβ0 ´ iuαβγ{2, , θµ11 , . . . , θ

µk
k q “ Γγαβ F

O
k`1pθ

γ
0 , θ

µ1
1 , . . . , θ

µk
k q ,

(3.40)

where Γγαβ is the on-shell three-particle vertex functions associated to the (bound-state) poles

of the S-matrix. As seen for the S-matrix in Subsection 1.2.2.1, this equation is indeed related

to the presence of bound states in the asymptotic spectrum of the theory.
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The form factor bootstrap program consists of finding solutions to the equations above.

However, considered a certain theory, it is generally a non-trivial task to match the solutions

of the form factor bootstrap to a specific operator. In the case of twist fields, the equations

(3.37)-(3.39) require some modifications due to their non trivial actions on the fields of the

theory. In particular, the form factor bootstrap program has been extended in [15] to the

branch-point twist fields, with modifications accounting for the special exchange relations

(3.9) and (3.10). For form factors of simpler twist fields, such as the Up1q fields introduced in

Subsection 3.2.3, these modifications may be formally implemented via the factor of local

commutativity ω. The latter defines the exchange relations of a twist field O with the

fundamental fields φ of the theory [71]. In rapidity-space, these exchange relations are

implemented on the particle-creation operators:

ZµpθqOp0q “ ωOp0qZµpθq , (3.41)

where the operators Zµpθq satisfy the commutation relations (1.8) and define the asymptotic

states (1.7). The locality can be restored by choosing ω “ 1. This relation changes equations I

and III above and they become:

F O
k pθµ11 ` 2iπ, θµ12 , . . . , θ

µk
k q “ ω F O

k pθµ22 , . . . , θk, θ1q

“ ω
ź

i“2,k

Sµi,µ1pθi 1q F
O
k pθµ11 , . . . , θ

µk
k q ,

(3.42)

and

´i Res θµ“θµ0
F O
k`2pθ

µ
` iπ, θµ0 , θ

µ1
1 , . . . , θ

µk
k q “

´

1 ´ ω
k
ź

j“1

Sµ,µjpθ0jq
¯

F O
k pθµ11 , . . . , θ

µk
k q .

(3.43)

These modifications are essential in order to implement the right equations for form factors of

fields satisfying (3.42). Examples of applications can be found in [96] for various operators in

the Federbush model. In free theories, the bootstrap program for form factors of Up1q fields9

was implemented in [89, 97], and consists of the two modified equations (3.42) and (3.43) along

with the exchange equation (3.37). The bound-state residue equation (3.40) is indeed discarded

due to the absence of bound states. In Subsection 4.3.3, we will present the solutions of these

equations for the free boson theory.

9An earlier treatment of form factor of Up1q-field can be found in [72] in the Ising model.
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3.3.2 Finite-volume form factors

We are now interested in extending the concept of form factors to finite volume. A natural

way to implement a finite volume QFT is to map the theory into a cylinder with the space

direction along the circumference and time extending to infinity. The fundamental fields will be

thus subjected to periodic boundary conditions over the circumference. As a consequence the

momenta of multi-particle states |θµ11 , . . . , θ
µk
k y for any k P N are quantised. For a quasiparticle

of particle species µi and rapidity θµii in a finite volume L, the quantisation condition is given

by the Bethe-Yang equations :10

eimµiL sinh θ
µi
i

k
ź

j‰i

Sµi µjpθi jq “ 1 , (3.44)

where mµi is the mass of the particle and mµi sinh θµii is its momentum. The equation above can

be seen as the analogy of the box quantisation in quantum mechanics for integrable systems11.

It is obtained by demanding that the wave function remains unchanged after a particle has

taken a trip around the circle and returned to its original location. Along the way the ith

particle will interact with the other particles of the theory, and this introduces the product of

S-matrix elements Sµi µj in (3.44).

In large volume, the energy of a k-particle state differs from its value in infinite-volume by

the Casimir Energy EopLq which represents the vacuum energy in finite volume. In particular,

we have :

ELpθµ1 , . . . , θµkq “ EopLq `

k
ÿ

j“1

maj cosh θµk ` O
`

e´µ̃L
˘

. (3.45)

Corrections to the formula above come from virtual scattering processes due to the compactness

of the cylinder, depend on a characteristic mass scale µ̃, and are expected to be exponentially

suppressed for large volume. The value of EopLq depends on the normalisation. From the

infinite volume viewpoint it is natural to choose the vacuum energy to be zero as this choice

reproduces exactly the same energy for both infinite and large volume up to the exponential

corrections.

Taking the logarithm of the Bethe-Yang equations [98, 99] we obtain the quantization

10Here, we follow the convention introduced in Chapter 1, and thus we assume that the state |θµ1

1 , . . . , θµk

k y

is part of the eigenbasis of the Hamiltonian.
11The underlying assumptions for the validity of equation (3.44) are the factorization of the S-matrix and

the absence of particle production.
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condition for the ith quasiparticle:

Qµipθ
µ1
1 , . . . , θ

µk
k q :“ mµiL sinh θµii `

ÿ

i‰j

´i logSµi µjpθi jq “ 2πIµii , Iµii P Z . (3.46)

The finite volume states |tIµ11 , . . . , Iµkk uyL are related to the infinite volume states

|θµ11 , . . . , θ
µk
k y via [86, 87]:

|tIµ11 , . . . , Iµkk uyL “
1

a

ρpθµ11 , . . . , θ
µk
k q

|θµ11 , . . . , θ
µk
k y ` O

`

e´µ̃L
˘

. (3.47)

The quantity ρpθµ11 , . . . , θ
µk
k q is the density of states in rapidity-space and can be seen as the

Jacobian of the mapping between rapidity and quantum number spaces:

ρpθµ11 , . . . , θ
µk
k q “ detJ , Ji,j “

BQµipθ
µ1
1 , . . . , θ

µk
k q

B θ
µj
j

.̇ (3.48)

Under this transformation, a vacuum correlation function in finite volume is expected to differ

from one in infinite volume only by terms that are suppressed in large volume [100]:

x0|Opτ, 0qÕp0, 0q|0y ´ Lx0|Opτ, 0qÕp0, 0q|0yL „ O
`

e´µ̃L
˘

. (3.49)

This implies that the k-particle elementary form factors of a local operator in finite volume are:

Lx0|Op0q |tIµ11 , . . . , Iµkk uyL “
1

a

ρpθµ11 , . . . , θ
µk
k q

FO
k pθµ11 , θ

µ2
2 , . . . , θ

µk
k q ` O

`

e´µ̃L
˘

. (3.50)

In free theories, we have many simplifications. For instance, equation (3.46) simply becomes:

Qµipθ
µ1
1 , . . . , θ

µk
k q “ mµiL sinh θµii “ 2πIµii , Iµii P Z . (3.51)

Hence, in finite volume and in the absence of interaction, the state |θµ11 , . . . , θ
µk
k y composed of

solutions of the Bethe-Yang equations is fully characterised by the set of quantum numbers

tIµ11 , . . . , Iµkk u. Furthermore the density of states ρpθµ11 , . . . , θ
µk
k q becomes diagonal and takes

the following form:

ρpθµ11 , . . . , θ
µk
k q “

k
ź

j“1

mµjL cosh θ
µj
j . (3.52)

If we now go back to the correlator of branch-point twist fields in excited states (3.32), the

expansion on the right hand side presents a special structure in free theories. In particular, as
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we will see explicitly in Subsection 4.4.1, the presence of branch cuts modifies the quantization

conditions of the Bethe-Yang solutions associated to the intermediate states |ΦyL. It is then

possible to argue that the intermediate states possess distinct quantum numbers from the

external state |ΨyL. In free theories this corresponds to having two disjoint sets of rapidities on

the two sides of the matrix elements xΨ|T p0q|Φy and xΨ|T p0q|Φy, and an expansion (3.32) that

is accordingly formed of only non-diagonal form factors [86]. Note that in interacting theories,

the fact that the two states |ΨyL and |ΦyL are characterised by different quantum numbers is

not a sufficient condition to have distinct Bethe-Yang solutions in the two states, due to the

S-matrix dependence of the quantization condition (3.46). In this case one needs to account

for the presence of identical rapidities and thus consider diagonal form factors [87].

For the purpose of this thesis, it is thus enough to consider only non-diagonal form factors

as in Chapters 4 and 5 we will treat the massive free boson. In particular, given two disjoint

sets of quantum numbers tJν11 , . . . , J
νm
m u ‰ tIµ11 , . . . , Iµkk u, a non-diagonal form factor of a local

operator O is the finite volume part of the matrix element (3.34):

LxtJν11 , . . . , J
νm
m u|Op0q |tIµ11 , . . . , Iµkk uyL “

FO
m`kpλνmm ` iπ, . . . , λν11 ` iπ, θµ11 , . . . , θ

µk
k q

a

ρpλν11 , . . . , λ
νm
m q ρpθµ11 , . . . , θ

µk
k q

`O
`

e´µ̃L
˘

(3.53)

where the rapidities λν11 , . . . , λ
νm
m and θµ11 , . . . , θ

µk
k are Bethe-Yang solutions with quantum

numbers tJν11 , . . . , J
νm
m u and tIµ11 , . . . , Iµkk u respectively. Note we have used equation (3.35) to

express the finite-volume element in terms of elementary infinite-volume form factors.
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CHAPTER

FOUR

EXCITED STATE ENTROPIES OF A CONNECTED REGION

4.1 Entanglement entropies in excited states

In this chapter we investigate the entanglement properties of excited states in a free boson

theory, based on the results obtained in [23, 24], where the methodology discussed in Chapter

3 was extended to the treatment of excited states and finite-volume systems. Before these two

works, a quite limited number of studies focused on the entanglement content of excited states.

In conformal field theory, universal results for certain types of excited states were studied. In

[101, 102], the increment of Rényi entropy in an excited state |Υy with as compared to the

ground state of a CFT for the configuration of Fig. 4.1 was found to be

SΥ
n prq ´ S0

nprq “
p1 ` nqph ` h̄q

3n
pπrq2 ` O

`

r2∆ψ
˘

, (4.1)

for small values of r “ ℓ
L

, where the excitation is given by the CFT field Υ with scaling

dimension h` h̄, and ∆ψ “ hψ ` h̄ψ is the smallest scaling dimension of any field in the theory.

In particular, the excited state was defined as

|Υy “ lim
ξ,ξ̄Ñ´i8

Υpξ, ξ̄q |0y , (4.2)

where ξ, ξ̄ are coordinates on the cylinder. Interestingly, a measurement of the entanglement

entropy of a low-lying excited state in CFT at finite volume can provide information about the

primary field content of the theory. The most extensive numerical study of other kinds of excited
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Figure 4.1 Typical bipartition of a one-dimensional finite system of total length L into region
A of length ℓ and region B of length L ´ ℓ.

states in critical systems was conducted in [103], considering states that are macroscopically

different from the ground state.

In this chapter we are instead interested in zero-density states which are defined as a finite

set of excitations above the ground state. They are of zero-density states in the sense that in

the scaling limit the number of excitations remains fixed and finite whereas all length scales

tend to infinity. In this context, the most extensive numerical study in gapped quantum spin

chains was carried out in [104] where the entanglement contribution and its maximal value have

been obtained for certain excited states approaching the semi-classical limit for large volumes

and appropriate regime. Some of these results were obtained and generalised in [23, 24] with a

more general interpretation of the validity regime in terms of localised excitations (this will be

discussed in Chapter 6).

4.1.1 The scaling limit

We consider the situation depicted in Fig. 4.1: a zero-temperature finite-size system (say a

ring) is partitioned into two complementary connected regions A and B of length ℓ and L´ ℓ,

respectively. We suppose that the entire system is in a state |ϕyL with zero energy density (i.e.

formed of finite numbers of asymptotic particles, at various momenta) and described by a free

massive bosonic theory. We focus on the scaling limit obtained where both the system’s size

L and the entanglement region’s size ℓ are sent to infinity in a fixed proportion given by their

ratio r

ℓ, L Ñ 8 with r “
ℓ

L
P r0, 1s . (4.3)

We want to compute the entanglement contribution generated by the excitations with respect

to the ground state which is nothing but the difference between the Rényi entropy in the excited

state and in the ground state. In the limit above this quantity turns out to be a function of

the ratio r only

lim
LÑ8

S ϕ
n prL, Lq ´ S 0

n prL, Lq “: ∆S ϕ
n prq . (4.4)
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In the replica model, the entropy increment (4.4) can be formally written as a ratio of

branch-point twist field correlators,

∆Sϕnprq “ lim
LÑ8

1

1 ´ n
log

«

Lxϕ|T p0qT̃ prLq|ϕyL

Lx0|T p0qT̃ prLq|0yL

ff

. (4.5)

where S 0
n prq and Sψn prq are respectively the entanglement entropy in the ground state and in

the zero-density state.

In Section 3.2.3 we have motivated our interest in excited state entanglement measures as

an effective approach to capture universal information on the state. We have also highlighted

that there are additional complications that one needs to account for in the treatment of

correlators in excited states as these present δ-function singularities. We are going to address

this problem in Section 4.4 where a finite volume approach allows us to treat these sigularities.

In free theories, a fundamental step in the computation of (4.5) is provided by the application

of the doubling trick, which allows us to overcome the regularization problem of correlators

of branch-point twist fields in finite volume (a problem that is still not generally resolved for

interaction theories). The doubling trick in fact permits us to express the branch-point twist

fields in terms of simpler fields for which the standard finite-volume techniques [86, 87] are

applicable. In order to introduce the general ideas behind the doubling trick in the next two

Sections 4.2 and 4.3 we will consider the free boson theory in infinite-volume and then extend

the discussion to finite volume in Section 4.4.

4.2 Doubling trick

The doubling trick was first introduced in [25] by Fonseca and Zamolodchikov. It was

employed to find differential equations that are satisfied by certain combinations of

correlation functions in the Ising model. This technique was later used in order to obtain

vacuum expectation values xT y in infinite volume in the works [15] (free fermion) and [89]

(free boson). The main idea of the doubling trick is to “double” the free theory in order to

have an additional continuous symmetry. Let us consider in particular two independent free

massive real bosons ϕa and ϕb. We can construct a free massive complex boson as:

Φ “
ϕa ` iϕb

?
2

and Φ:
“
ϕa ´ iϕb

?
2

. (4.6)
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The new theory possesses in fact an internal continuous Up1q symmetry. This symmetry can

then be exploited in order to obtain information about the original (not doubled) theory.

More precisely the two real fields ϕa and ϕb satisfy the Klein-Goldon equation and can be

expressed in terms of the mode expansion:

ϕapx, tq “

ż

dθ
“

a pθq eiP pθqx´iEpθq t
` a:

pθq e´iP pθqx`iEpθq t
‰

, (4.7)

and a pθq and a:pθq are respectively the annihilation and creation operators associated to the

real free boson field ϕa. A similar expression can be written for ϕb. The operators a pθq and

a:pθq generate the Hilbert space Ha:

a pθq |0ya “ 0 ,

a:
pθq |0ya “ |θya ,

(4.8)

where |0ya is the vacuum and a:pθq creates a single-particle state in the θ-space with energy

and momentum given by

Epθq “ m cosh θ ; P pθq “ m sinh θ . (4.9)

Furthermore a and a: satisfy the algebra:

rapθq, apθ1
qs “ 0 “ ra:

pθq, a:
pθ1

qs , (4.10)

rapθq, a:
pθ1

qs “ δpθ ´ θ1
q . (4.11)

The complex fields Φ and Φ: are also solutions of the Klein-Goldon equation and are

expressed as:

Φpx, tq “

ż

dθ
“

α`
pθq eiP pθqx´iEpθq t

` pα´
q

:
pθq e´iP pθqx`iEpθq t

‰

, (4.12)

Φ:
px, tq “

ż

dθ
“

α´
pθq eiP pθqx´iEpθq t

` pα`
q

:
pθq e´iP pθqx`iEpθq t

‰

, (4.13)

where pα˘q: pθq and α˘ pθq are the creation and annihilation operators of the complex free boson

Φpx, tq. These create / annihilate a particle with rapidity θ and Up1q charge ˘ respectively,

and similarly to the real case they generate the Hilbert space H.

Crucially, a state in the complex theory can be chosen in such a way to reproduce a state
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in the real theory. Indeed the creation and annihilation operators of the real free boson can be

related to those of the complex field via the transformation:

apθq “
α`pθq ` α´pθq

?
2

; a:
pθq “

pα`q:pθq ` pα´q:pθq
?

2
, (4.14)

and

bpθq “
α`pθq ´ α´pθq

i
?

2
; b:

pθq “ ´
pα`q:pθq ´ pα´q:pθq

i
?

2
. (4.15)

These relations are obtained by inserting the expressions (4.12), (4.13) and (4.7) for both ϕa

and ϕb in (4.6). Using the transformations above it is possible to show that the operators

pα˘q:pθq α˘pθq satisfy the commutation relations:

rα˘
pθq, pα˘

q
:
pθ1

qs “ δpθ ´ θ1
q . (4.16)

All the other commutation relations are zero, since ϕa and ϕb commute with each other. A

direct consequence is that a complex state can be factorised into two terms in the two real

theories:

|Φy “ |ϕya b |ϕyb , (4.17)

where |Φy is a state in the complex theory, and |ϕya and |ϕyb are states in the two real theories.

Therefore our computation of the correlator in (4.5) proceeds as follow: we employ the doubling

trick and thus evaluate the correlator xT p0qT̃ pℓqy in a carefully chosen complex state |Φy that

reproduces the real result. In the complex theory we can take full advantage of the presence of

the Up1q symmetry which will be essential to expand the correlator in matrix elements that are

regular in finite volume. At the end of the computation we will find results for the real theory

by imposing |ϕyb “ |0yb. A more explicit formulation for such correlator will be given in the

next section where we address the problem of extending the replica model to the presence of a

Up1q symmetry.

4.3 Doubled replica free boson model in infinite volume

We now need to construct the Replica model of the free doubled free boson theory. As we

have seen in Section 3.1, the n-copy model arises from the presence of the cyclic permutation

symmetry. In addition, in the new complex theory the doubling induces a Up1q symmetry

duplicating each copy of the replica model. In the replica theory we have n copies of the
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complex free boson, Φj with j “ 1, . . . , n. Since the components ϕa,j, ϕb,j are commuting

fields and the permutation symmetry acts in a factorized way, the branch-point twist field also

factorises:

T “ Ta b Tb . (4.18)

In rapidity-space, a state |Φy can be written as:

|Φy “ |ϕya b |0yb “ |ϕya,1 b ¨ ¨ ¨ b |ϕya,n b |0yb,1 b ¨ ¨ ¨ b |0yb,n . (4.19)

Note that in each copy, we have conventionally chosen the excitations to live in one of the two

real theories. Again, as seen for the original theory, any real multi-particle state |ϕya can be

expressed by an appropriate combination of creation operators pα˘
j q:pθq in the complex replica

theory. In particular, the operators pα˘
j q:pθq are now associated to the complex free boson Φj

living in copy j, and they generate the eigenstates of the U(1)-charge and of the Hamiltonian

in the jth complex theory. It follows from (4.14) that a single-particle excitation in copy j is

given by the operator:

pajq
:
pθq “

1
?

2
ppα`

j q
:
pθq ` pα´

j q
:
pθqq . (4.20)

One natural state that we can choose to consider in this construction is a multi-particle state

|kya :“ |θ1, . . . , θkya characterised by k distinct rapidities1:

|ky “ |kya b |0yb “
1

2
kn
2

n
ź

j“1

k
ź

i“1

´

pα`
j q

:
pθiq ` pα´

j q
:
pθiq

¯

|0y . (4.21)

The treatment of this state in (4.21) will be indeed an important study case to obtain

information on the entanglement content of a generic state. In a factorized state such as

(4.21) the correlator of branch-point twist fields factorise into two real components:

xk|T p0qT̃ pℓq|ky “ axk|Tap0qT̃apℓq|kya ˆ bx0|Tbp0qT̃bpℓq|0yb . (4.22)

We therefore obtain the real free boson results as

axk|Tap0qT̃apℓq|kya “
xk|T p0qT̃ pℓq|ky

bx0|Tbp0qT̃bpℓq|0yb
. (4.23)

1In the case of some coinciding rapidities, the normalisation of the state needs to be slighly modified. This
case will be discussed in more detail in Section 4.6.2.
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Note that the ratio of correlators in equation (4.5) gives:

axk|Tap0qT̃apℓq|kya

ax0|Tap0qT̃apℓq|0ya
“

xk|Tap0qT̃apℓq|ky

x0|Tap0qT̃apℓq|0y
, (4.24)

where we have introduced the ground state of the complex theory2 |0y “ |0yab|0yb, and divided

out the vacuum-correlator bx0|Tbp0qT̃bpℓq|0yb. Therefore complex results reproduce exactly real

results.

4.3.1 Diagonalisation of the cyclic permutation action

In the doubled replica model, the combination of the Up1q symmetry of the complex field

on each replica, and of the permutation symmetry of the replica, implies the existence of a

Upnq symmetry of the model. Cyclic permutations form a subgroup of the Upnq symmetry

group of rotations amongst the copies, which can be diagonalized. The diagonal basis is a new

set of n independent complex free bosons, each of which has its own Up1q symmetry, and the

cyclic permutation action is expressed as a product of Up1q actions on each of these bosons.

Therefore, the branch-point twist field acts as a product of Up1q twist fields in the diagonal

basis. In matrix form, the cyclic permutation symmetry act as

T

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

Φ1

Φ2

...

Φn´1

Φn

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

Φ2

Φ3

...

Φn

Φ1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, such that , T “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 1 0 ¨ ¨ ¨ 0

0 0 1 ¨ ¨ ¨ 0
...

...
...

. . .
...

0 0 0 ¨ ¨ ¨ 1

1 0 0 ¨ ¨ ¨ 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (4.25)

The eigenvalues of the matrix T are exactly the nth roots of unity λp “ e
2πip
n for p “ 1, . . . , n.

The cyclic permutation action is diagonalized by the fields

Φ̃p “
1

?
n

n
ÿ

j“1

e´
2πijp
n Φj , (4.26)

which are themselves canonically normalized complex free boson fields. Since the cyclic

permutation symmetry acts diagonally on the basis Φ̃p, the branch-point twist field and the

anti-twist field can be factorised into Up1q-fields Tp and their Hermitian conjugates T´p

2Throughout the next sections we will focus on evaluating correlators in complex states such as |ky. We thus
introduce the convention that states with bond letters are complex.
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respectively:

T “

n
ź

p“1

T`p , T̃ “

n
ź

p“1

T´p . (4.27)

The new twist fields T`p and T´p satisfy the following exchange relations with the new basis:

T˘ppx, tqΦ̃qpy, tq “

´

e˘
2πip
n

¯δq ,p
Φ̃qpy, tq T˘ppx, tq for y ą x , (4.28)

“ Φ̃qpy, tq T˘ppx, tq for x ą y ,

for q, p “ 1, . . . , n with q ” q`n and p ” p`n. It follows that the field Tn is the identity field.

Remarkably the only effect of the Up1q field is to add a phase λ˘p “ e˘
2πip
n when the two fields

T˘p and Φ̃q are in the same copy. For free bosons, such Up1q fields have been studied and it is

known that they have scaling dimensions [105]

∆p “
p

2n

´

1 ´
p

n

¯

, (4.29)

so that

2
n
ÿ

p“1

∆p “
1

6

ˆ

n ´
1

n

˙

“ dn, (4.30)

which reproduces (3.11) for c “ 2 (the central charge of the complex free boson).

In the diagonal basis (4.26), the creation operators are

pα̃˘
p q

:
pθq “

1
?
n

n
ÿ

j“1

e˘
2πijp
n pα˘

j q
:
pθq , (4.31)

and are related to the older operators by the inverse transformations:

pα˘
j q

:
pθq “

1
?
n

n
ÿ

p“1

e¯
2πijp
n pα̃˘

p q
:
pθq . (4.32)

Recalling the state (4.19) and expressing the operators α˘
j pθq there in terms of the tilde

operators through (4.32), we obtain after some manipulations that

|ky “
1

p2nq
nk
2

n
ź

j“1

ÿ

ϵ1,...,ϵk“˘

n
ÿ

p1,...,pk“1

e´
2πij
n

řk
i“1 piϵipα̃ϵ1p1q

:
pθ1q ¨ ¨ ¨ pα̃ϵkpkq

:
pθkq |0y . (4.33)

Thus in the new basis correlators of branch-point twist fields evaluated in the state (4.33)

factorise into correlators of Up1q-fields on the copies p “ 1, . . . , n, and the expression above is
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useful to express such decomposition. One can understand the structure of the resulting

expansions by looking at a specific case. In the next section we will derive the factorization of

the branch-point twist field correlator in a single particle excitation, and identify the building

blocks of the resulting form factor expansions. Despite the simplicity of the state under

consideration, this example may be also instructive to understand the structure of more

complicated expansions such as those derived for multiparticle states.

In order to simplify the writing, from now onwards we will use the short-hand notations:

α̃`
j pθq :“ ajpθq and α̃´

j pθq :“ bjpθq . (4.34)

where a:j and b:j are both associated to the new basis, and create excitations with respectively

positive or negative Up1q-charge in copy j. In particular the excitations created by a:j will be

simply referred to as particles, while those created by b:j will be called antiparticles.

4.3.2 Example: twist-field correlator in a single-particle excitation

We consider a single particle excitation |1y obtained from (4.19) for k “ 1. In order to

write the state |1y in the new basis, it is convenient to express it in terms of the population of

quasiparticles in each copy of the Replica model. We thus introduce the integer set tN˘u “

tN`
1 , N

´
1 , . . . , N

`
n , N

´
n u, where N˘

j is the number of particle/antiparticles living in the jth-copy.

From (4.33), the single particle state becomes:

|1y “
ÿ

tN˘u

CnptN˘
uq

n
ź

p“1

ra
:
ppθqs

N`
p rb

:
ppθqs

N´
p |0y , (4.35)

where CnptN˘uq contain the phase factors resulting from the transformation (4.32) and

associated to the configuration tN˘u. The sum runs over the integer sets tN˘u and is

constrained by the conservation of the total number of quasiparticles in the replica model,

formally:

N :“
n
ÿ

p“1

pN`
p ` N´

p q “ n . (4.36)

Thus, in the state (4.35) the correlator of branch-point twist fields becomes

x1| T p0qT̃ pℓq |1y “
ÿ

tN˘u

ÿ

tÑ˘u

C˚
nptN˘uq CnptÑ˘uq (4.37)

ˆ

n
ź

p“1

p x0| rap pθqsN
´
p rbp pθqsN

`
p T`pp0q T´ppℓq ra:ppθqsÑ

`
p rb:ppθqsÑ

´
p |0yp .
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Note that above the factorization follows naturally from the operators ap, bp and their

Hermitian conjugates, on which the permutation symmetry acts in a diagonal way by

construction. Therefore the factorization of branch-point twist fields into Up1q-fields is a

property that holds more generally for any multi-particle states expanded in the basis (4.31).

One direct consequence of the factorization in (4.37) is that each correlator of Up1q-fields can

be treated as an independent form factor expansion in each copy of the replica model. Indeed

we can obtain the expansions in the usual way of inserting a complete set of states between

the two fields in each correlator, namely T`p and T´p so that we have in total n independent

sums. We will present the explicit form of these expansions in Section 4.5 where we will also

deal with the full computation of their leading contributions in the scaling limit (4.3). For the

time being it is worthwhile to introduce only their fundamental components which for any copy

p “ 1, . . . , n are matrix elements of the form:

px0|

s
ź

i1“1

appθi1q

q
ź

i2“1

bppβi2qT˘pp0q

q1
ź

i4“1

b
:
ppβ

1
i4

q

s1
ź

i3“1

a
:
ppθ

1
i3

q|0yp , (4.38)

where the θi s denote the rapidities of particles, and the βis denote those of antiparticles. Note

that here and later, the order of the creation and annihilation operators is irrelevant as they all

commute in the free boson case. The only non-zero elements are those preserving the charge

on the left and the right of the twist field. If we assume distinct rapidities θi ‰ θ1
i and βi ‰ β1

i

for all i, we can easily relate the element above to an elementary form factor of Up1q-fields:3

px0|

s
ź

i1“1

appθi1q

q
ź

i2“1

bppβi2qT˘pp0q

q1
ź

i4“1

b
:
ppβ

1
i4

q

s1
ź

i3“1

a
:
ppθ

1
i3

q|0yp “ (4.39)

F p,n
s`s1`q`q1pθ

1
1, . . . , θ

1
s1 , β1 ` iπ, . . . , βq ` iπ; β1

1, . . . , β
1
q1 , θ1 ` iπ, . . . , θs ` iπqδs´q,s1´q1 ,

where δs´q,s1´q1 ensures the conservation of the Up1q charge. The expression above is obtained

by iterating the property (3.35) as in this case the disconnected terms are simply zero.

4.3.3 Form factors of Up1q-fields

In this subsection we implement the boostrap equations (3.42), (3.43) and (3.37) for form

factors of Up1q-fields. These equations can be easily solved for two-particle matrix elements.

3Here, we have used a slightly different notation from the one employed in Section 3.3. The reason is to
emphasise the presence of an equal number of particles and antiparticles in non-zero form factors of Up1q field.
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In particular, we define the two-particle form factors of the Up1q field in the pth copy as

F p|`´
pθ1 ´ β2q :“ px0|Tpp0qa

:
ppθ1qb

:
ppβ2q|0yp “ F p|´`

pβ2 ´ θ1q , (4.40)

F p|``
pθ1 ´ θ2q :“ px0|Tpp0qa

:
ppθ1qa

:
ppθ2q|0yp “ 0 , (4.41)

F p|´´
pβ1 ´ β2q :“ px0|Tpp0qb

:
ppβ1qb

:
ppβ2q|0yp “ 0 . (4.42)

The twist field preserves the total Up1q charge therefore the two last two form factors are

vanishing. The form factor program for such fields implies:

I. Exchange :

F p|˘¯
pθq “ F p|¯˘

p´θq (4.43)

II. Crossing :

F p|˘¯
pθ ` 2πiq “ γ˘

p F
p|¯˘

p´θq “ γ˘
p F

p|˘¯
pθq , (4.44)

III. Kinematical residue :

Resθ“0F
p|˘¯

pθ ` iπq “ ip1 ´ γ˘
p qτp , (4.45)

where γ˘
p are the factors of local commutativity introduced in Subsection 3.3.1, and here

associated to the bosons ˘. From the exchange relations (4.28) we expect that

γ`
p “ pγ´

p q´1 “ e
2πip
n . Furthermore we define the vacuum expectation value as:

τp “ px0|Tpp0q|0yp . (4.46)

Based on the equations above it is easy to make a general ansatz:

F p|`´
pθq “

Aeaθ

cosh θ
2

, (4.47)

where A and a are constants to be determined. It is then straightforward to show that the

boostrap equations I-III are satisfied for

a “
p

n
´

1

2
and A “ ´τp sin

πp

n
. (4.48)

The final solution is thus

F p|`´pθq “ ´τp sin
πp

n

ep
p
n

´ 1
2qθ

cosh θ
2

. (4.49)
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Another solution can be obtained by shifting p ÞÑ p ` n but if we assume p ď n the solution

above is singled out. Note that such type of form factor has been known for a long time [72,

89, 97].

One important simplification that comes out in free theories is that higher-particle form

factors factorise into two-particle contributions. An explicit expression for them can be easily

obtained by employing Wick’s theorem and accounting for all possible ways to perform Wick’s

contractions among the excitations. In particular for the complex free boson theory we have

F p,n
2m pθ1, . . . , θm; β1, . . . , βmq “ px0|Tpp0qa

:
ppθ1q ¨ ¨ ¨ a

:
ppθmqb

:
ppβ1q ¨ ¨ ¨ b

:
ppβmq|0yp

“ τp
ÿ

σPSm

fnp pθσp1q ´ β1q ¨ ¨ ¨ fnp pθσpmq ´ βmq , (4.50)

where we introduced the normalized two-particle form factor

fnp pθq :“
F p|`´pθq

τp
, (4.51)

and σ are all elements of the permutation group Sm of m indices. Thus once we have the

two-particle form factor solution (4.49), we are then able to compute form factor elements for

any number of particles.

4.4 Doubled replica free boson model in finite volume

Correlators such as (4.37) needs to be treated in finite volume. The originial free boson

complex theory is thus mapped into a cylinder of circumference L, and the resulting replica

model is composed of n copies of the original cylinder with a branch-cut indentified with the

entanglement region. As explained in Subsection 3.2.3 after some manipulation, we obtain

two semi-infinite branch cuts located at the boundary points of the entanglement region and

extending infinitely along the time direction.

In Subsection 3.3.2 we have seen that finite-volume matrix element of local operators may

be expressed in terms of the infinite-volume form factors by mean of the change of variable

(3.47), up to exponential corrections controlled by the volume. We expect such corrections

to be negligible in the scaling limit (4.3) where the volume is taken infinitely large. Roughly

speaking the main difference between the infinite-volume states and the finite-volume states

is that in finite volume their rapidities are quantised. In particular, in the replica model the

quantisation conditions are affected by the presence of the branch cuts. We will use the following
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simple example to explain what these quantization conditions are in general.

Consider a simple matrix element on sector p of the form

px0|

k
ź

i“1

appθiqT`pp0q T´ppℓq
k
ź

i“1

a
:
ppθiq|0yp “

ÿ

|qyp

px0|

k
ź

i“1

appθiqT`pp0q|qypˆpxq|T´ppℓq
k
ź

i“1

a
:
ppθiq|0yp .

(4.52)

We will think of this matrix element as a particular building block of a more complicated

two-point function. This means that the external state
śk

i“1 a
:
ppθiq|0yp depends on rapidities

tθiu which are the same rapidities of the original excited state |ky in (4.21). Here |qyp are

intermediate states composed of q excitations, of which s are particles and q´s are antiparticles.

In particular the states |qyp are of the form:

|qyp “

s
ź

i“1

a
:
ppβiq

q
ź

i“s`1

b
:
ppβiq|0yp , (4.53)

and the sum over intermediate states is a sum over q “ 0, . . . ,8 and over βis. The sum is

constrained by the charge conservation. The latter requires

2s ´ q “ k. (4.54)

and fixes either s or q in the sum. In the next two subsections we extend the expansion (4.52)

to finite volume.

4.4.1 Quantisation conditions

In finite volume L one must first choose a sector in order to determine the quantum numbers

of the external state and intermediate states in (4.52). As shown in Fig. 4.2, different sections

may lead to different boundary conditions due to the presence of the branch cuts.

Consider a certain copy j, we choose the external state to be in the section where the field

Φj is periodic Φjpx`Lq “ Φjpxq and it does not cross the branch cut. This choice leads to the

standard quantisation conditions (3.51) discussed in Section 3.3.2. In contrast the intermediate

states |qyp, L will be chosen in a section between the two fields that means that the field Φj

will cross the branch cut associated to the branch-point twist field T and it will move to the

next copy. As a consequence the quantisation condition becomes Φipx ` Lq “ Φi`1pxq. In

the diagonal basis (4.31) the field Φ̃ppxq only gains a phase resulting from the exchange with

the twist-field T`p and has quasi-periodic condition Φ̃ppx ` Lq “ e
2πip
n Φ̃ppxq. As a result the
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Figure 4.2 A single copy of the finite-volume replica model. The quantization conditions in
the presence of the branch cuts can be understood as follow: the field Φ is periodic in a sector
of the cylinder that do not involve any branch cut. By performing a trip around the entire
circumference the field Φ does not change, and this leads to standard quantization conditions
of the external state in the expansion (4.52). In contrast the field Φ̃ gains a phase after the
same trip around the circumference as it lies in a sector that crosses the branch cut associated
to the twist field Tp. The intermediate states in (4.52), formed of excitations associated to the
field Φ̃ are accordingly subjected to quantization conditions of the form (4.56) and (4.57).

quantization of momenta (rapidities) is for the external state:

P pθiq “ mL sinh θi “ 2πIi with Ii P Z and i “ 1, . . . , k . (4.55)

while for the intermediate states

P pβiq “ mL sinh βi “ 2πJ`
i `

2πp

n
with J`

i P Z and i “ 1, . . . , s , (4.56)

P pβiq “ mL sinh βi “ 2πJ´
i ´

2πp

n
with J´

i P Z and i “ s ` 1, . . . , q . (4.57)

These latter quantization conditions provide the generalization of the Bethe-Yang equations

(3.51) in the presence of the branch cut induced by the Up1q twist field Tp, and can be naturally

extended to more general external states such as |ky.

4.4.2 Finite-volume matrix elements of Up1q-fields

Let | tIiuk yp, L be the external state in finite volume with quantum numbers

tIiuk “ tI1, . . . , Iku, and | tJ˘
i us,q´s yp, L be the quantised intermeditate states with quantum

numbers tJ˘
i us,q´s “ tJ`

1 , . . . , J
`
s , J

´
s`1, . . . J

´
q u. The expansion (4.52) becomes in finite
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volume

p;LxtIiuk |T`pp0q T´ppℓq| tIiuk yp, L

“

8
ÿ

s“k

1

s!ps ´ kq!

ÿ

tJ˘
i us,q´s

p;LxtIiuk |Tpp0q| tJ˘
i us,q´s yp, L ˆ p;LxtJ˘

i us,q´s |Tpp0q| tIiuk yp, L .

(4.58)

Remarkably conditions (4.55), (4.56) and (4.56) ensure that the external state and the

intermediate states possess always excitations with distinct rapidities

tθiuk “ tθ1, . . . , θku ‰ tβiuq “ tβ1, . . . , βqu and thus the matrix elements in (4.58) are

non-diagonal finite volume form factors such as (3.53). For instance we can write the matrix

element:

p;LxtIiuk |Tpp0q| tJ˘
i us,q´s yp, L “

F p,n
k`qp tθiuk ; tβiuq´s , tβi ` iπus q

a

ρp tθiuk qρp tβiuq q
, (4.59)

up to exponentially decaying corrections Ope´µLq. The form factor in the numerator is exactly

the same function as in infinite volume up to the quantization conditions on the rapidities

discussed earlier. The functions in the denominator are the densities of the left- and right-states,

respectively. In free theories, these functions are given by (3.52):

ρp tθiuk q “

k
ź

i“1

LEpθiq , ρp tβiuq q “

q
ź

i“1

LEpβiq . (4.60)

with Epθq “ m cosh θ.

Although (4.58) only shows the form factor expansion of a particular correlator, the above

analysis easily extends to any other cases, and a generalisation of expression (4.59) to a generic

matrix element such as (4.39) can be easily obtained.

4.5 Rényi entropy of a single-particle excited state

We now recall the example in Subsection 4.3.2 and proceed to compute the increment of

Rényi entropy (4.4) given by a single-particle excited state. The single-particle excitation is

the simplest example of zero-density excited states and can be used as starting point to carry

out computation for more complicated states.
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In the infinite volume replica model, the state considered is given by expression (4.19) for k “ 1:

|1y “
1

2
n
2

n
ź

j“1

´

pα`
j q

:
pθq ` pα´

j q
:
pθq

¯

|0y . (4.61)

As explained in Subsection 4.3.2, such a state admits a more intuitive expression after changing

to the new basis of creation operators (4.31), as per (4.33). Here we write it as

|1y “
ÿ

tN˘u

Cn
`

tN˘
u
˘

n
ź

p“1

“

a
:
ppθq

‰N`
p
“

b
:
ppθq

‰N´
p

|0y , (4.62)

and Cn ptN˘uq are coefficient characterising the state |1y. The set of integers

tN˘u :“ tN`
1 , N

´
1 , . . . , N

`
n , N

´
n u “: tN`u

Ť

tN´u are the boson occupation numbers of

particles/antiparticles in each sector. In finite volume the one-particle state above satisfies the

Bethe-Yang equation (4.55) with quantum numbers given by a set of n identical integers tIun

characterising the finite volume state |1yL :“ |tIunyL “ |tIuN˘
1

y1;L b ¨ ¨ ¨ b |tIuN˘
n

yn;L.

Therefore the two point correlation function of branch-point twist fields in finite volume is:

Lx1|T p0qT̃ pℓq|1yL “
ÿ

tN˘u

ÿ

tÑ˘u

rCnptN˘
uqs

˚CnptÑ˘
uq

n
ź

p“1

Fp

´

N˘
p , Ñ

˘
p

¯

, (4.63)

where ˚ denotes complex conjugation, and

Fp

´

N˘
p , Ñ

˘
p

¯

“ p;LxtIuN˘
p

| T`pp0q T´ppℓq |tIuÑ˘
p

yp;L , (4.64)

is the finite-volume two-point function in sector p. As standard, an expansion in form factors

can be obtained by inserting a complete set of states between the two fields so that (4.64)

becomes a sum over products of the form factors (4.50). Explicitly,

1 “

8
ÿ

m˘“0

ÿ

tJ˘
i um˘

1

m`!m´!
|tJ˘

i um˘y p;L p;LxtJ˘
i um˘ | , (4.65)

where the quantum numbers tJ`
i um` “ tJ`

1 , . . . , J
`
n u are associated to the Bethe-Yang solutions

of equation (4.56) associated to the particles tθium` “ tθ1, . . . , θm`
u that are solutions to the

Yang-Bethe equation (4.56). Similarly, the integers tJ´
i um´ correspond to quantum numbers of

antiparticles of rapidities tβium´ “ tβ1, . . . , βm´
u satisfying equation (4.57). The combinatorial

factors m˘! prevent us from over-counting states with the same set of quantum numbers, but

differently ordered. We can now insert the complete set of states (4.65) into the two-point
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function (4.64), and arrive to

8
ÿ

m˘“0

ÿ

tJ˘
i um˘

1

m`!m´!

e
iℓ
”

řm`

i“1 P pθiq`
řm´

i“1 P pβiq´pÑ`
p `Ñ´

p qP pθq

ı

”

a

LEpθq

ıN`
p `N´

p `Ñ`
p `Ñ´

p
śm`

i“1 LEpθiq
śm´

i“1 LEpβiq

ˆF p,n

N´
p `N`

p `m´`m`
ptθ ` iπuN´

p
, tθium` ; tθ ` iπuN`

p
, tβium´q

ˆF n´p,n

Ñ´
p `Ñ`

p `m´`m`
ptθuÑ`

p
, tβi ` iπum´ ; tθuÑ´

p
, tθi ` iπum`q . (4.66)

As mentioned in Subsection 4.3.2 there are various constraints to the expansion (4.63). In

particular :

1. The total particle number of the excited state |1yL must be preserved in the replica model.

Thus the integer sets tN˘u are subject to the condition

n
ÿ

p“1

ÿ

ϵ“˘

N ϵ
p “ n . (4.67)

2. According to the Wick theorem, only form factors of a even particle number are not

vanishing. As a consequence N´
p ` N`

p ` m´ ` m` must be an even number.

3. In sector n, the Up1q twist-fields coincide with the identity, and the two-point function

(4.66) becomes simply n;Lx tIuN˘
n

| tIuÑ˘
n

yn;L which is non zero only if N˘
n “ Ñ˘

n , and its

value is just the normalization of the finite-volume states:

Fn

`

N˘
n , N

˘
n

˘

“ N`
n !N´

n ! . (4.68)

4. Up1q-charge conservation implies that

N´
p ` m`

“ N`
p ` m´ and Ñ´

p ` m`
“ Ñ`

p ` m´ , (4.69)

which is equivalent to N`
p ´Np

´
“ m` ´m´ “ Ñ`

p ´ Ñp
´

. As a result, only form factors

involving the same amount of particles and antiparticles are not vanishing.

The constaints above are useful to select and compute the leading contribution of the expansion

(4.66) in the limit (4.3). This task will be addressed in the next section in detail. In general

there are two equivalent ways to compute such contribution, both presented in [24].

The first way is based on the intuition that the large-volume leading contribution comes
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from terms of the expansion (4.66) where the rapidities of the external states approach those

of the intermediate states. In this case, the leading behaviour is dictated by the structure of

the two-particle form factor near the kinematic poles:

fnp pθi ´ θ ` iπq “
θ«θi

mL sin πp
n

cosh θ1 e
iπp
n

πpJ` ´ I `
p
n

q
. (4.70)

Hence the two-particle form factors grow linearly with L for large volume, and combine with

the Ls of the density functions in the denominator to give a leading term with an overall

non-negative power of the volume L. In particular, in the scaling limit (4.3) the leading term

turns out to be of 0th power in L and thus volume-independent. The computation involves the

application of the Wick theorem (4.50) to extract the contributions near the kinematic poles

in the expansion (4.66), and the evaluation of a final re-summation of these contributions over

the quantum numbers. In [24] this method has been generalised and successfully employed to

the study of the free fermion.

Alternatively we can note that the expansion (4.66) may be expressed by replacing the sums
ř

tJ˘
i um˘

by a set of contour integrals such that the sum over residues enclosed by the contours

reproduces the original sum. The latter substitution provides the starting point of the second

approach to compute the leading large-volume contribution. This technique turns out to be

more amenable to generalization to the case of multiple entanglement regions that will feature

in Chapter 5. Furthermore it can be naturally extended to the treatment of multiparticle states

with very few modifications as we will see in Section 4.6. For these two reasons, it is convenient

for us to focus on this second approach. We will make full use of it in the next subsection.

4.5.1 Computation by contour integration

Although the expansion (4.66) looks rather complicated, there is a systematic way employed

in [24] to obtain its leading term in the limit (4.3) by means of manipulation of multidimensional

contour integrals. This method was first developed to compute thermal correlators in integrable

QFTs [106, 107] and can be easily extended to our study case. The computation presented in

[24] requires the implementation of several steps that can be naturally generalised for use in

free boson theories with multiple entanglement regions. In this section we discuss each step in

detail.
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4.5.1.1 Step 1: converting sums to contour integrals

The starting point of the computation is to rewrite each sum
ř

J`
i

in the expansions (4.66)

in such a way to express its summand as the result of a carefully chosen contour integral around

the Bethe-Yang solution θi. More precisely this implies to express each sum as:

ÿ

J`
i PZ

hpθi, . . .q

LEpθiq
“
ÿ

J`
i

ż

C
J`
i

dθ̃i
2π

hpθ̃i, . . . q

eipLP pθ̃iq´
2πp
n

q ´ 1
, (4.71)

where θi describes a particle of an intermediate state |tJ`
i um`yp;L, and CJ`

i
is a small contour

encircling θi with positive orientation. The function h`pθi, . . . q includes the product of the two

form factors on the left hand side of the expansion (4.66) which is exactly the function we wish

to regularise. The denominator inside the integral is the exponential form of equation (4.56)

so as to ensure that the integrand has a pole exactly when the equation (4.56) is satisfied.

Note that the integration variable θ̃i is not a solution of the equation (4.56). Similarly, we can

express the sum associated to an antiparticle with rapidity βi as

ÿ

J´
i PZ

h´pβi, . . .q

LEpβiq
“
ÿ

J´
i

ż

C
J´
i

dβ̃i
2π

hpβ̃i, . . . q

eipLP pβ̃iq`
2πp
n

q ´ 1
, (4.72)

In order to simplify the notation from now onwards we will omit the tilde on the integration

variables.

Transforming every sum in (4.66) into a contour integral we obtain the expression

Fp

´

N˘
p , Ñ

˘
p

¯

“

8
ÿ

m˘“0

1

m`!m´!

1
”

a

LEpθq

ıN`
p `N´

p `Ñ`
p `Ñ´

p

»

–

m`
ź

i“1

ÿ

J`
i PZ

ż

C
J`
i

dθi
2π

fi

fl

ˆ

»

–

m´
ź

k“1

ÿ

J´
k PZ

ż

C
J´
k

dβk
2π

fi

fl

e
iℓ
”

řm`

i“1 P pθiq`
řm´

i“1 P pβiq´pÑ`
p `Ñ´

p qP pθq

ı

śm`

i“1reipLP pθiq´
2πp
n

q ´ 1s
śm´

i“1re
ipLP pβiq`

2πp
n

q ´ 1s

ˆF p,n

N´
p `N`

p `m´`m`
ptθ ` iπuN´

p
, tθium` ; tθ ` iπuN`

p
, tβium´q

ˆF n´p,n

Ñ´
p `Ñ`

p `m´`m`
ptθuÑ`

p
, tβi ` iπum´ ; tθuÑ´

p
, tθi ` iπum`q . (4.73)

4.5.1.2 Step 2: manipulating contour integrals

This step provides the core of the computation and consists in combining the small contours

around the Bethe-Yang solutions into a contour encircling the real axis for each variable. While

doing so, the contour will cross the kinematic poles of the form factors, whenever θi “ θ or
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βi “ θ for some i, and we need to subtract the residua of these poles.

Re

Im

Re

Im

Figure 4.3 Graphical representation of the contour integral manipulation to obtain regular
correlators, (picture taken from [107]). The black dot shows a singularity not enclosed inside
Cé, i.e. the contour surrounding the entire real axis.

Each sum
ř

J˘
i

is the sum of small contours around the solutions of equation (4.56) θi or

(4.57) βi :

C˘
i :“

ÿ

J˘
i PZ

CJ˘
i

“ Cé
´ Cθ , (4.74)

where Cé is the contour encircling the real axis whereas Cθ the one enclosing the point θi “ θ

or βi “ θ at which the functions h˘pθi, . . . q have kinematic poles.

We now focus on a specific particle with rapidity θj P tθium` , and compute the residue for

a single-contour integral CJ`
j

“ ´Cθ. We then extend the result to the multi-contour in (4.73)

by using some combinatorial arguments. In particular the integral considered is:

´

ż

Cθ

dθj
2π

eiℓpP pθjq´P pθqq

eipLP pθjq´
2πp
n

q ´ 1
F p,n

N´
p `N`

p `m´`m`
ptθ ` iπuN´

p
, tθium` ; tθ ` iπuN`

p
, tβium´q

ˆF n´p,n

Ñ´
p `Ñ`

p `m´`m`
ptθuÑ`

p
, tβi ` iπum´ ; tθuÑ´

p
, tθi ` iπum`q . (4.75)

The pole structure of the form factors in the integrand gives the right prescription to select

the dominant contributions at large volume. Indeed it is easy to see from (4.45) that the

contribution from residues at θ coming from a single kinematic singularity is of order L0 in the

volume and therefore they will be strongly suppressed by the power of L in the denominator

of (4.73). However, if we consider terms where both form factors have a kinematic pole at the

same location θj “ θ, then we have to calculate the residue of a second order pole, and this

can change the order in the volume. From the kinematic residue equation (4.45) it follows that
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near the kinematic poles the integrand may be approximated as

´

ż

Cθ

dθj
2π

eiℓpP pθjq´P pθqq

eipLP pθjq´
2πp
n

q ´ 1

´iN`
p

´

1 ´ e´
2πip
n

¯

θj ´ θ

´iÑ`
p

´

1 ´ e
2πip
n

¯

θ ´ θj
ˆF p,n

N´
p `N`

p `m´`m`´2
ptθ ` iπuN´

p
, tθium`ztθju ; tθ ` iπuN`

p ´1 , tβium´q

ˆF n´p,n

Ñ´
p `Ñ`

p `m´`m`´2
ptθuÑ`

p ´1 , tβi ` iπum´ ; tθuÑ´
p
, tθi ` iπum`ztθj ` iπuq , (4.76)

where a pair θj and θ have been contracted in both form factors, and the variable θj is absent

in tθium`ztθju “ tθ1, . . . , θj´1, θj`1, . . . , θm`u. The combinatorial factors N`
p , Ñ`

p are the result

of the pairing of θi with the θs.

Evaluating the residue we have that

´iN`
p Ñ

`
p

´

1 ´ e
2πip
n

¯´

1 ´ e´
2πip
n

¯ d

dθi

ˆ

eiℓpP pθjq´P pθqq

eipLP pθjq´
2πp
n

q ´ 1

˙

θj“θ

ˆF p,n

N´
p `N`

p `m´`m`´2
ptθ ` iπuN´

p
, tθium`ztθju ; tθ ` iπuN`

p ´1 , tβium´q

ˆF n´p,n

Ñ´
p `Ñ`

p `m´`m`´2
ptθuÑ`

p ´1 , tβi ` iπum´ ; tθuÑ´
p
, tθi ` iπum`ztθj ` iπuq . (4.77)

Using the Bethe-Yang equation (4.55) and simplifying, the final result is

LEpθqN`
p Ñ

`
p g

n
p prq

F p,n

N´
p `N`

p `m´`m`´2
ptθ ` iπuN´

p
, tθium`ztθju ; tθ ` iπuN`

p ´1 , tβium´q

ˆF n´p,n

Ñ´
p `Ñ`

p `m´`m`´2
ptθuÑ`

p ´1 , tβi ` iπum´ ; tθuÑ´
p
, tθi ` iπum`ztθj ` iπuq , (4.78)

where the function gnp prq provides the fundamental blocks of the final result and is defined as

gn˘kprq :“ 1 ´ p1 ´ e˘ 2πik
n qr , k “ 1, . . . , n . (4.79)

An entirely similar computation can be done for a rapidity βj P tβium´ paired with θ P

tθuN´
p

. The residue with contour integral CJ´
j

“ ´Cθ is

´

ż

Cpθq

dβj
2π

eiℓpP pβjq´P pβqq

eipLP pβjq`
2πp
n

q ´ 1
F p,n

N´
p `N`

p `m´`m`
ptθ ` iπuN´

p
, tθium` ; tθ ` iπuN`

p
, tβium´q

ˆF n´p,n

Ñ´
p `Ñ`

p `m´`m`
ptθuÑ`

p
, tβi ` iπum´ ; tθuÑ´

p
, tθi ` iπum`q . (4.80)

This residue can be evaluated separately from the residue (4.75) as it involves different sets of
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rapidities. It gives the result:

LEpθq N´
p Ñ

´
p g

n
´pprq

F p,n

N´
p `N`

p `m´`m`´2
ptθ ` iπuN´

p ´1 , tθium` ; tθ ` iπuN`
p
, tβium´ztβkuq

ˆF n´p,n

Ñ´
p `Ñ`

p `m´`m`´2
ptθuÑ`

p
, tβi ` iπum´ztβj ` iπu ; tθuÑ´

p ´1 , tθi ` iπum`q . (4.81)

It is important to note, that both results (4.78) and (4.81) are proportional to the volume

therefore any residue such as the ones above will produce a factor LEpθq gn˘pprq up to

combinatorial factors resulting from paring particles of the intermediate state with the

remaining θs.

We now need to account for all possible contractions between the intermediate and the

external states in the expansion (4.73). In particular what we need to do is to extend the

computations above to more intricate integrals with multi-dimensional contours of the type:

C˘
i ˆ ¨ ¨ ¨ ˆ C˘

i
looooooomooooooon

m˘

“

N˘

ÿ̊

k˘“1

m˘!

k˘! pm˘ ´ k˘q!
p´1q

k˘

pCé
q
m˘´k˘

pCθqk
˘

, (4.82)

where each C˘
i is given by expression (4.74) and N˘

˚ ď m˘ is the maximal number of

second-order poles for residua of the type of (4.78) and (4.81) respectively. Since each

second-order pole residue with contour integral Cθ contributes with a factor L to the form

factor expansion (4.73) each term in the right hand side of (4.82) will contribute as Lk
˘

and

the large-volume leading term is expected to come from the maximal power k˘ “ N˘
˚ .

Therefore in the scaling limit (4.3) it is reasonable to expect that

C˘
i ˆ ¨ ¨ ¨ ˆ C˘

i
looooooomooooooon

m˘

„
m˘!

N˘
˚ ! pm˘ ´ N˘

˚ q!
p´1q

N˘
˚ pCé

q
m˘´N˘

˚ pCθqN
˘
˚ , for V Ñ 8 . (4.83)

The other terms of the sum (4.82) will lead to next-to-leading order contributions so that these

will not be considered in this computation.

We conclude this part of the computation by redefining the number m˘ ÞÑ m˘ ´ N˘
˚

and relabelling appropriately the rapidities of the intermediate states. Note that although, in

general, the order in which the integrals over the various contours are performed matters, in both

(4.82) and (4.83) we can obviate this by employing the fact that all such orderings are equivalent

under relabeling of rapidities and that in this case all such relabelings are equivalent due to
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the symmetries of the free boson form factors. This is another strength of the theory under

consideration, which will be crucial in the treatment of multiple-point correlation functions,

but that of course is no longer valid in interacting theories. We finally obtain the expansion:

Fp

`

N˘
p , N

˘
p

˘

“

8
ÿ

m˘“0

»

—

–

ź

ϵ“˘

1

N ϵ
˚!mϵ!

ˆ

N ϵ
p

N ϵ
˚

˙ˆ

Ñ ϵ
p

N`
˚

˙

pN ϵ
˚!q2

“

gnϵpprq
‰Nϵ

˚
1

”

a

LEpθq

ıNϵ
p`Ñϵ

p´2Nϵ
˚

fi

ffi

fl

ˆ

«

m`
ź

i“1

ż

CÔ

dθi
2π

ff«

m´
ź

i“1

ż

CÔ

dβi
2π

ff

e
iℓ
´

řm`

i“1 P pθiq`
řm´

i“1 P pβiq
¯

śm`

i“1pe
ipLP pθiq´

2πp
n

q ´ 1q
śm´

i“1peipLP pβiq`
2πp
n

q ´ 1q
(4.84)

ˆF p,n

N´
p `N`

p `m´`m`´N´
˚ ´N`

˚

ptθ ` iπuN´
p ´N´

˚
, tθium` ; tθ ` iπuN`

p ´N`
˚
, tβium`q

ˆF n´p,n

Ñ´
p `Ñ`

p `m´`m`´N´
˚ ´N`

˚

ptθuÑ`
p ´N`

˚
, tβi ` iπum´ ; tθuÑ´

p ´N´
˚
, tθi ` iπum` q .

The factor 1{pN ϵ
˚!mϵ!q comes from the contour integral (4.83) and the relabelling m˘ ÞÑ m˘ ´

N˘
˚ whereas the factorials come from selecting the θs in the contractions. Indeed by iterating the

calculation of the second-pole residua (4.75) and (4.80) for N ϵ
˚ times, the resulting combinatorial

factors are:

N ϵ
ppN ϵ

p ´ 1q . . . pN ϵ
p ´ N`

˚ ` 1qÑ ϵ
ppÑ ϵ

p ´ 1q . . . pÑ ϵ
p ´ N`

˚ ` 1q “

ˆ

N ϵ
p

N ϵ
˚

˙ˆ

Ñ ϵ
p

N`
˚

˙

pN ϵ
˚!q2

that means that any time we contract a θ in the external state with one rapidity of the

intermediate states there is one less selection option available.

4.5.1.3 Step 3: establishing the large-volume leading contribution

Starting from the expansion (4.84) we can now make some important observations that

allow us to extract its leading contributions in the scaling limit (4.3). In particular, it is quite

intuitive that residues such as (4.75) and (4.80) can be performed as long as there is at least

one rapidity θ available in both form factors. Since the leading contribution comes from the

largest number of second order poles we have that:

N`
˚ “ mintN`

p , Ñ
`
p u , N´

˚ “ mintN´
p , Ñ

´
p u , (4.85)

On the other hand, each term of the expansion (4.84) contributes with the Rth power of the

volume L where

R “ mintN`
p , Ñ

`
p u ` mintN´

p , Ñ
´
p u ´

N`
p `N´

p ` Ñ`
p ` Ñ´

p

2
, (4.86)
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and we expect the leading contribution to maximise this power. It turns out that R is

maximal when the external states have exactly the same amount of particles N˘
p “ Ñ˘

p , and

the corresponding term of the expansion (4.84) has a power R “ 0. Indeed if we suppose

N˘
p ă Ñ˘

p it is easy to see that R will be negative and the corresponding term will be

suppressed for large volume. Similar results may be obtained in all the other cases.

4.5.1.4 Step 4: identifying the vacuum-correlator and obtaining results

Substituting Ñ˘
p “ N˘

˚ “ N˘
p in the expansion (4.84) and simplifying the combinatorial

factors, we obtain:

Fp

`

N˘
p , N

˘
p

˘

“

«

ź

ϵ“˘

N ϵ
˚!
“

gnϵpprq
‰Nϵ

˚

ff

ˆ

8
ÿ

m˘“0

1

m`!m´!

«

m`
ź

i“1

ż

CÔ

dθi
2π

ff«

m´
ź

i“1

ż

CÔ

dβi
2π

ff

e
iℓ
´

řm`

i“1 P pθiq`
řm´

i“1 P pβiq
¯

śm`

i“1pe
ipLP pθiq´

2πp
n

q ´ 1q
śm´

i“1pe
ipLP pβiq`

2πp
n

q ´ 1q

ˆF p,n
m´`m`ptθium` ; tβium`qF n´p,n

m´`m`ptβi ` iπum´ ; tθi ` iπum` q . (4.87)

the sum in last two lines is the spectral form factor decomposition of the vacuum correlator

p;Lx0|T`pp0q T´pp0q|0yp;L and can be easily factorised out. We can finally express the ratio of

correlators as

Lx1|T p0qT̃ pℓq|1yL

Lx0|T p0qT̃ pℓq|0yL
“

ÿ

tN˘u

|CnptN˘
uq|

2
n
ź

p“1

ź

ϵ“˘

pN ϵ
p!q

`

gnϵpprq
˘Nϵ

p
` OpL´1

q , (4.88)

Note that for p “ n, the factor reproduces the norm of the finite-volume state as expected,

since g˘nprq “ 1 and n;Lx0|Tnp0qT̃npℓq|0yn;L “ 1. Finally the increment of entanglement (4.5)

for a single-particle excitation is:

∆S1
nprq “

1

1 ´ n
log

»

–

ÿ

tN˘u

|CnptN˘
uq|

2
n
ź

p“1

ź

ϵ“˘

pN ϵ
p!q

`

gnϵpprq
˘Nϵ

p
s

fi

fl . (4.89)

The result above is θ-independent and in particular it does not depend on the energy of the

state |1yL but only of the ratio r “ ℓ{L kept fixed in the scaling limit (4.3). It does not explicitly

depend on the mass m of the free boson. However we know that such information is encoded

in the ground-state contribution and thus it does not feature in this subtracted version.
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4.6 Rényi entropy of a multi-particle excited state

In the previous section we have rigorously discussed all the computational steps that lead

to evaluate the increment of entanglement in a single-particle excitation. This computation

provides the basis for computing entanglement increments for more complicated states. In

particular in this section we will look into states whose particles are all distinguishable or

all indistinguishable in their rapidities. These two extreme cases are crucial to construct the

general formulae for the entanglement increment of a generic state discussed in Subsection 4.7.3.

4.6.1 Distinct rapidities

We now consider a k-particle state (4.21) involving only excitations with distinct rapidities

θ1 ‰ ¨ ¨ ¨ ‰ θk. In infinite volume this state can be expressed in the form

|1,1, . . . ,1
loooomoooon

k

y “

k
ź

q“1

ÿ

tNq,˘u

Cn
`

tN q,˘
u
˘

n
ź

p“1

“

a
:
ppθqq

‰Nq,`
p

“

b
:
ppθqq

‰Nq,´
p

|0y , (4.90)

where the Cn ptN q,˘uq coefficients take the same form for each value of q, more precisely, for

fixed q they are exactly the same as for the one-particle state (4.62). Similarly to (4.67), the

integers tN q,˘u satisfy the following restrictions

n
ÿ

p“1

ÿ

ϵ“˘

N q,ϵ
p “ n , q “ 1, . . . , k . (4.91)

In finite volume, the set of equal rapidities tθquNq,˘
p

“ tθq, θq, . . .u satisfy the Bethe-Yang

equation (4.55) with equal integers tIquNq,˘
p

“ tIq, Iq, . . .u for all q “ 1, . . . , k. The two-point

function takes the form

Lx1,1, . . . ,1|T p0qT̃ pℓq|1,1, . . . ,1yL (4.92)

“

»

–

k
ź

q“1

ÿ

tNq,˘u

ÿ

tÑq,˘u

rCnptN q,˘
uqs

˚CnptÑ q,˘
uq

fi

fl

n
ź

p“1

Fp

´

tN q,˘
p u, tÑ q,˘

p u

¯

, (4.93)

where

Fp

´

tN q,˘
p u, tÑ q,˘

p u

¯

“ p;LxtI1uN1,˘
p
, . . . , tIkuNk,˘

p
| T`pp0q T´ppℓq |tI1uN1,˘

p
, . . . , tIkuNk,˘

p
yp;L .

(4.94)
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To find the leading contribution in the volume to Fp

´

tN q,˘
p u, tÑ q,˘

p u

¯

, we follow the same

steps as in Section 4.5. As seen in Subsection 4.5.1, we need to focus on the contributions

arising when some intermediate rapidity approaches one of the rapidities of the excited state in

both of the form factors generating second-order poles. In other words, we need to pair up the

intermediate rapidities with the same rapidity of the excited state from the in- and out-states.

Since the sets of rapidities tθquNq,˘
p

are all distinct, the computation of the leading contribution

can be seen as iterating the procedure described in Section 4.5.1 independently for each set.

Carrying out the calculation, the result will be

Fp

´

tN q,˘
p u, tÑ q,˘

p u

¯

“

k
ź

q“1

N q,`
p !N q,´

p !
“

gnp prq
‰Nq,`

p
“

gn´pprq
‰Nq,´

p

p;Lx0|Tpp0qT´ppℓq|0yp;L ` OpL´1
q . (4.95)

As a consequence, in the scaling limit (4.3), the result for a state involving k distinct rapidities

factorizes into k single-particle state contributions. That is

lim
LÑ8

Lx1, . . . ,1|T p0qT̃ prLq|1, . . . ,1yL

Lx0|T p0qT̃ pℓq|0yL
“

k
ź

q“1

»

–

ÿ

tNq,˘u

|CnptN q,˘
uq|

2
n
ź

p“1

ź

ϵ“˘

N q,ϵ
p !

“

gnϵpprq
‰Nq,ϵ

p

fi

fl

“ lim
LÑ8

«

Lx1|T p0qT̃ prLq|1yL

Lx0|T p0qT̃ pℓq|0yL

ffk

. (4.96)

The equation above implies that the increment of the nth Rényi entropy given by a k-particle

state with only distinct particles is k times as big as the one generated by a single-particle

excited state:

∆S1,1,...
n prq “

k
ÿ

q“1

∆S1
nprq “ k∆S1

nprq , (4.97)

where ∆S1
nprq is given by (4.89). Like (4.89), the result above does not depend on the explicit

values of rapidites θ1, . . . , θk but only on the assumption that they are different from each other.

Indeed such a simple result (4.97) no longer holds if all or some rapidities of the excited state

coincide. We will see this in the next subsection where we consider an excited state with only

coinciding rapidities.

4.6.2 Coinciding rapidities

Let us consider a k-particle excited state where all the rapidities coincide, and are denoted

by θ. In this case the norm of the k-particle state is k!n and needs to be modified in (4.33).
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The properly normalized infinite-volume state can then be written as

|ky “
1

?
k!
n

ÿ

tN˘u

Dk
n

`

tN˘
u
˘

n
ź

p“1

“

a
:
ppθq

‰N`
p
“

b
:
ppθq

‰N´
p

|0y , (4.98)

The expression above looks very similar to (4.62). Although both states depend on a single

rapidity variable, the state (4.98) obeys a different selection rule which is

n
ÿ

p“1

ÿ

ϵ“˘

N ϵ
p “ nk , (4.99)

and that depends on the number of excitations k. The same condition holds for Ñ˘
p . As a

consequence we expect the final results to give numerically different values than (4.89). The

coefficients Dk
n ptN˘uq are related to the coefficients Cn ptN˘uq of the previous subsections by

Dk
nptN˘

uq “

k
ź

q“1

ÿ

tNq,˘u

CnptN q,˘
uq

n
ź

p“1

ź

ϵ“˘

δNϵ
p,
řk
q“1N

q,ϵ
p
. (4.100)

The two point function is then

Lxk|T p0qT̃ pℓq|kyL “
1

pk!qn

ÿ

tN˘u

ÿ

tÑ˘u

rDk
nptN˘

uqs
˚Dk

nptÑ˘
uq

n
ź

p“1

Fp

´

N˘
p , Ñ

˘
p

¯

, (4.101)

where Fp is the same function as for the one-particle case (4.64) with integers N˘
p obeying

(4.99). It follows from the computation in Section 4.5 that the leading large-volume term of

the two-point function is

lim
LÑ8

Lxk|T p0qT̃ prLq|kyL

Lx0|T p0qT̃ prLq|0yL
“

1

pk!qn

ÿ

tN˘u

|Dk
nptN˘

uq|
2

n
ź

p“1

ź

ϵ“˘

`

N ϵ
p

˘

!
“

gnϵpprq
‰Nϵ

p , (4.102)

and finally the increment to the nth Rényi entropy given by a k-particle excited state of equal

rapidities in the scaling limit (4.3) is:

∆Sknprq “
1

1 ´ n
log

»

–

1

pk!qn

ÿ

tN˘u

|Dk
nptN˘

uq|
2

n
ź

p“1

ź

ϵ“˘

`

N ϵ
p

˘

!
“

gnϵpprq
‰Nϵ

p

fi

fl . (4.103)
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4.7 Results

Results (4.89), (4.97) and (4.103) depend explicitly on the coefficients CnptN˘uq and

Dk
nptN˘uq which are expected to have a universal form for each n. However, we have not

found a closed formula for these coefficients for a general n yet. In order to make the result

above more concrete it may be instructive to start from two simple examples. In Subsections

4.7.1 and 4.7.2 we will consider the second Rényi entropy, namely the quantity (4.5) for a

two-copy model, evaluated in a single- and a two-particle state respectively. For more

complicated states, the coefficients CnptN˘uq and Dk
nptN˘uq can be systematically evaluated

by using a standard computer software such as Mathematica. Once the coefficients are known

we can easily evaluate formula (4.102) for several values of k, and we observe that the results

are always polynomials in r that possess the r Ø 1 ´ r symmetry as expected. We will discuss

the general formulae and the resulting properties in Subsection 4.7.3.

4.7.1 Example 1: second Rényi entropy of a single-particle

excitation

We compute the second Rényi Entropy, i.e. n “ 2, of a single-particle excited state. From

(4.61) we can easily write down the state

|1y “
1

4
a

:

2pθqa
:

2pθq|0y2 `
1

4
b

:

2pθqb
:

2pθq|0y2 `
1

2
a

:

2pθqb
:

2pθq|0y2

´
1

4
a

:

1pθqa
:

1pθq|0y1 ´
1

4
b

:

1pθqb
:

1pθq|0y1 ´
1

2
a

:

1pθqb
:

1pθq|0y1

“
1

4

”

pa
:

2pθq ` b
:

2pθqq
2

´ pa
:

1pθq ` b
:

1pθqq
2
ı

|0y , (4.104)

and identify the nonzero coefficients C2pN
`
1 , N

´
1 , N

`
2 , N

´
2 q of the expansion (4.62) as

C2p2, 0, 0, 0q “ ´
1

4
, C2p0, 0, 2, 0q “

1

4
,

C2p0, 2, 0, 0q “ ´
1

4
, C2p0, 0, 0, 2q “

1

4
,

C2p1, 1, 0, 0q “ ´
1

2
, C2p0, 0, 1, 1q “

1

2
. (4.105)

Note that in this particular case the all terms of the expansions (4.63) are naturally constrained

by the the Up1q-charge conservation to have identical external states on the two sides of the

correlators of Up1q i.e. tN2u “ tÑ2u. This is a consequence of the low number of particles and
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antiparticles considered in the two-copy model. The coefficients (4.105) can be directly plugged

into (4.88), and, considering the scaling limit (4.3), we obtain

lim
LÑ8

Lx1|T p0qT̃ prLq|1yL

Lx0|T p0qT̃ pℓq|0yL
“

2!

16

“

g21prq
‰2

`
2!

16

“

g2´1prq
‰2

`
1

4
g21prqg2´1prq

`
2!

16

“

g22prq
‰2

`
2!

16

“

g2´2prq
‰2

`
1

4
g22prqg2´2prq

“
1

2
`

1

2
rg21prqs

2
“ r2 ` p1 ´ rq2 , (4.106)

where we used the fact that g22prq “ g2´2prq “ 1 and g21prq “ g2´1prq “ 1 ´ 2r. Therefore the

difference of Rényi entropies is

∆S1
2prq “ ´ log

`

r2 ` p1 ´ rq2
˘

, (4.107)

Note that the argument of the logarithm has a very simple polynomial structure with order

given by n.

4.7.2 Example 2: second Rényi entropy of a two-particle excitation

Let us consider a two-particle excited state with distinct rapidities which we represent as

|1,1y. From the general expression (4.33) it is easy to see that

|1,1y “
1

4

”

pa
:

2pθ1q ` b
:

2pθ1qq
2

´ pa
:

1pθ1q ` b
:

1pθ1qq
2
ı

ˆ
1

4

”

pa
:

2pθ2q ` b
:

2pθ2qq
2

´ pa
:

1pθ2q ` b
:

1pθ2qq
2
ı

|0y . (4.108)

The state can be fully characterized by the coefficients C2ptN q,˘uq with q “ 1, 2 and these give

two copies of the coefficients (4.105) of the one-particle state (4.104). Substituting these values

into the formula we obtain exactly the square of (4.106), that is

lim
LÑ8

Lx1,1|T p0qT̃ prLq|1,1yL

Lx0|T p0qT̃ pℓq|0yL
“

„

1

2
`

1

2
rg21prqs

2

ȷ2

“
“

r2 ` p1 ´ rq2
‰2
. (4.109)

Note that the polynomial above is of forth power, suggesting that a general formula involves a

polynomial of knth order for a k-particle excitation.

Consider instead a two-particle excited state of equal rapidities. In infinite volume, the state

may be written as

|2y “
1

2!

„

1

4

”

pa
:
2pθq ` b

:
2pθqq2 ´ pa

:
1pθq ` b

:
1pθqq2

ı

ȷ2

|0y . (4.110)
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The coefficients D2
2pN`

1 , N
´
1 , N

`
2 , N

´
2 q entering the formula (4.102) can be read off by either

expanding (4.110) and looking at the coefficients of all distinct states in the ensuing linear

combination, or by using (4.100)

D2
2p4, 0, 0, 0q “

1

16
, D2

2p0, 4, 0, 0q “
1

16
, D2

2p0, 0, 4, 0q “
1

16
, D2

2p0, 0, 0, 4q “
1

16
,

D2
2p2, 0, 2, 0q “ ´

1

8
, D2

2p2, 0, 0, 2q “ ´
1

8
, D2

2p0, 2, 2, 0q “ ´
1

8
, D2

2p0, 2, 2, 0q “ ´
1

8
,

D2
2p3, 1, 0, 0q “

1

4
, D2

2p1, 3, 0, 0q “
1

4
, D2

2p0, 0, 3, 1q “
1

4
, D2

2p0, 0, 1, 3q “
1

4
,

D2
21, 1, 2, 0q “ ´

1

4
, D2

2p1, 1, 0, 2q “ ´
1

4
, D2

2p2, 0, 1, 1q “ ´
1

4
, D2

2p0, 2, 1, 1q “ ´
1

4
,

D2
2p2, 2, 0, 0q “

3

8
, D2

2p0, 0, 2, 2q “
3

8
, D2

2p1, 1, 1, 1q “ ´
1

2
. (4.111)

Plugging the coefficients into (4.102) leads to

lim
LÑ8

Lx2|T p0qT̃ prLq|2yL

Lx0|T p0qT̃ pℓq|0yL
“

1

2!2

#

ˆ

1

16

˙2

4!
´

“

g21prq
‰4

`
“

g2´1prq
‰4

`
“

g22prq
‰4

`
“

g2´2prq
‰4
¯

`

ˆ

3

8

˙2

2!2!
´

“

g21prq
‰2 “

g2´1prq
‰2

`
“

g22prq
‰2 “

g2´2prq
‰2
¯

`

ˆ

1

8

˙2

2!2!
´

“

g21prq
‰2

`
“

g2´1prq
‰2
¯´

“

g22prq
‰2

`
“

g2´2prq
‰2
¯

`

ˆ

1

4

˙2

3!
´

“

g21prq
‰3
g2´1prq ` g21prq

“

g2´1prq
‰3
¯

`

ˆ

1

4

˙2

3!
´

“

g22prq
‰3
g2´2prq ` g22prq

“

g2´2prq
‰3
¯

`

ˆ

1

4

˙2

2!g21prqg2´1prq
´

“

g22prq
‰2

`
“

g2´2prq
‰2
¯

`

ˆ

1

4

˙2

2!
´

“

g21prq
‰2

`
“

g2´1prq
‰2
¯

g22prqg2´2prq

`

ˆ

1

2

˙2

g21prqg2´1prqg22prqg2´2prq

+

“
3

8
`

3

8

“

g21prq
‰4

`
1

4

“

g21prq
‰2

“ r4 ` 4r2p1 ´ rq2 ` p1 ´ rq4 , (4.112)

where the last line follows from noting once more that g22prq “ g2´2prq “ 1 and g21prq “ g2´1prq “

1 ´ 2r. This then gives the expression

∆S2
2prq “ ´ log

`

r4 ` 4r2p1 ´ rq2 ` p1 ´ rq4
˘

. (4.113)
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Figure 4.4 Increment of Rényi entropy for one-, two- and three-particle excited states
consisting of identical particles in several n-copy models with n “ 2, 3, 5, 10. For a fixed n,
the entropies grow with the number of excitations in the state. Furthermore, they show the
r ÞÑ 1´r symmetry, which is expected for partitions involving two complementary parts. Other
observations can be found at the end of this page.

4.7.3 A simple polynomial structure

In [23, 24] the calculation of (4.101) was performed for various values of k and n by using

Mathematica. Already looking at the two examples above, it is actually not hard to work out

the general pattern. Let us start from the nth Rényi entropy of a single-particle excitation. We

find the following results:

∆S1
nprq “

logprn ` p1 ´ rqnq

1 ´ n
. (4.114)

For a k-particle state with particles of all different rapitidies/momenta the result follows from

(4.97) and, is simply as above, multiplied by k. If we consider instead k particles which have all

equal rapitidies/momenta the increment of the nth Rényi entropy has the following structure

∆Sknprq “

log
k
ř

q“0

“

fkq prq
‰n

1 ´ n
, fkq prq “

ˆ

k

q

˙

rqp1 ´ rqk´q , (4.115)

where the argument of the logarithm is a polynomial of order kn, as predicted in Subsection

4.7.2. Note that for k “ 1, the expression above give exactly (4.114). In Fig. 4.4 we present

several examples of the function (4.115) for k “ 1, 2, 3. Looking at these examples we can make

the following observations:

1. The functions ∆Skn do not depend on the rapidities/momenta of the excited states but

are single-valued functions of the parameter r “ ℓ{L for fixed n and k.

2. The functions ∆Skn are symmetric under the exchange r ÞÑ 1 ´ r and thus more generally

independent of the subsystem ℓ or L ´ ℓ chosen as entanglement region. As discussed in
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Chapter 2, this is a fundamental property that any quantity measuring the entanglement

shared by two complementary parts must satisfy.

3. As a consequence of the previous point, the functions ∆Skn show a zero r-derivative at r “

1{2, which corresponds to a maximum in the case of the second Rényi entropy. In Fig. 4.4

we can observe that for large n the functions ∆Skn shows a local maximum/minimum at

r “ 1{2 if n is odd/even.

4. For fixed k and r, the function ∆Sknprq does not increase with n. According to (2.14)

and (2.16) the function ∆Sknprq is bounded from above and below by the increments of

entanglement entropy ∆Sk1 prq and of single-copy entropy ∆Sk8prq respectively:

∆Sk8prq ď ∆Sknprq ď ∆Sk1 prq (4.116)

Finally, we can generalise the results above for generic states containing a mixture of

excitations with equal and distinct rapidities. In particular we denote ∆Sk1,k2,¨¨¨n prq the Rényi

entropies of an excited state consisting of ki particles of momentum pi for pi ‰ pj for i ‰ j we

find

∆Sk1,k2,¨¨¨n prq “
ÿ

j

∆Skjn prq, “
ÿ

j

log
k
ř

qj“0

”

f
kj
qj prq

ın

1 ´ n
(4.117)

where f
kj
qj prq is the function fkq prq in (4.115) with k “ kj and q “ qj.

4.8 Qubit picture

The properties listed in the previous subsection may be better understood if one considers

the qubit interpretation of multiparticle excited states, first presented in [23, 24] and then

extended to more complicated cases in [26, 28]. Such interpretation starts from the simple

observation that in the scaling limit (4.3) the entanglement increments (4.115) equate the

Rényi entropies of simple states formed of qubits. These “multi-qubit states” are associated

with the presence or the absence of the excitations in the entanglement region ℓ.

In order to explain the qubit interpretation, consider a bipartite Hilbert space

H “ Hint b Hext. Each factor Hint » Hext is the Hilbert space for Nj distinguishable sets each

of j indistinguishable qubits, for j “ 1, 2, 3, . . .. Making the relation with the entanglement

problem described above, we associate Hint with the interior of the entanglement region of
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length ℓ and Hext with its exterior. In particular, we identify a state |1y with the presence of a

single-particle excitation and |0y with its absence. With k particles lying on p0, Lq, we

construct the state |Ψqby P H by the (naive) picture according to which equal-rapidity

particles are indistinguishable, and a particle can lie anywhere in p0, Lq with flat probability:

any given particle has probability r of lying in the entanglement region, and 1 ´ r of lying

outside. We make a linear combination of qubit states following this picture, with coefficients

that are square roots of the total probability of a given qubit configuration, taking proper

care of (in)distinguishability. Then, the Rényi entropies of the resulting state |Ψqby are given

exactly by

S
Ψqb
n prq “

log
`

Tr ρnHint

˘

1 ´ n
, ρHint

“ TrHext |ΨqbyxΨqb| , (4.118)

and the statement is that S
Ψqb
n prq “ ∆SΨ

n prq for some excited state |ΨyL. In order to understand

how these qubit states look like, we can look at some simple examples. For instance, according

to the qubit picture, the state:

|Ψ
p1q

qb y “
?
r |1y b |0y `

?
1 ´ r |0y b |1y , (4.119)

describes the probability distribution for a particular single-excitation of the free boson QFT,

say |1yL. This leads to two possible configurations: either the particle is located within the

entanglement region with a probability r or outside of it, with probability 1 ´ r. It is actually

very easy to see that the nth Rényi entropy of the state above exactly reproduces formula

(4.114). We may have more complicated multi-qubit states if more particles are present, for

instance two particles of coinciding rapidities:

|Ψ
p2q

qb y “
?
r2 |2y b |0y `

a

2rp1 ´ rq |1y b |1y `
a

p1 ´ rq2 |0y b |2y . (4.120)

There are now three possible configurations as either the two particles are in the same region,

with probability r2, or one is in the region and one outside of it (no matter which one), with

probability 2rp1 ´ rq, or both are outside the region, with probability p1 ´ rq2. The particle

configuration changes if the two particles are distinguishable i.e. characterised by two different

rapidities/momenta:

|Ψ
p1,1q

qb y “
?
r2 |1, 1yb|0, 0y`

a

rp1 ´ rq p|1, 0yb|0, 1y`|0, 1yb|1, 0yq`
a

p1 ´ rq2 |0, 0yb|1, 1y .

(4.121)

Indeed, by counting the various ways two distinct particles can be distributed inside or
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outside an entanglement region we obtain four configurations in total, as now it matters which

particle is inside/outside. The entanglement of the excited state will change accordingly.

We can now extend the qubit picture to a generic state in the entanglement region problem,

given that this state is characterised by a certain number of sets Nj containing equal rapidities.

We can construct the corresponding multi-qubit state as follow: the Hilbert space of the exterior

and interior can be split into sectors Hint » Hext » bN
j“1C

ki`1, where N is the total number

of sets Nj, and K “
ř

jě1 kj the total number of qubits. In particular, each set Nj containing

kj indistinguishable qubits is equipped by an Hilbert space Ckj`1 with basis elements |qjy for

qj “ 1, . . . , kj labelling the number of particles in the interior state. Similarly |q̄jy where

q̄j “ kj ´ qj is a basis of the sector of the Hilbert space associated to the exterior. Hence, we

can define a basis of Hint that is t|Qy “ |q1, . . . , qNy ; qj ď kj , j “ 1, . . . , Nu, and a basis of

Hext that is t
∣∣Q̄D “ |q̄1, . . . , q̄Ny ; q̄j ď kj , j “ 1, . . . , Nu. The multi-qubit state is

|Ψ
pk1,k2,...,kN q

qb y “
ÿ

Q,Q̄

CQ,Q̄ |Qy b |Q̄y , CQ,Q̄ “
?
pQ

N
ź

j“1

δqj`q̄j ,kj (4.122)

where pQ is the probability of finding the particle configuration Q in the entanglement region

according to the naive picture above, given by

pQ “

N
ź

j“1

ˆ

kj
qj

˙

rqjp1 ´ rqkj´qj . (4.123)

One can easily observe that the state

|Ψ
pk1,k2,...,kN q

qb y “

N
â

j“1

|Ψ
pkjq

qb y (4.124)

factorises into states |Ψ
pkjq

qb y living in Ckj`1 b Ckj`1 for j “ 1, . . . , N , which are

|Ψ
pkjq

qb y “

kj
ÿ

qj“0

b

f
kj
qj prq |qjy b |kj ´ qjy , fkjqj prq “

ˆ

kj
qj

˙

rqjp1 ´ rqkj´qj . (4.125)

The coefficients f
kj
qj prq are of the same form as the one in equation (4.115) and provide the

Schimidt decomposition (2.7) for the multi-qubit state. If we trace out the degree of freedom

associated to the jth sector of the Hilbert space Hext, we then obtain the reduced density
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matrix in a diagonal form:

ρ
pkjq

int “ Trext|Ψ
pkjq

qb y xΨ
pkjq

qb | “

kj
ÿ

qj“0

f
kj
qj prq |qjy xqj | . (4.126)

Recalling the multi-qubit state (4.122) its reduced density matrix to the total Hilbert space

Hext also factorises as a consequence of (4.124), and the nth Rényi entropy of the state becomes:

S
Ψ

pk1,k2,...,kN q

qb
n “

N
ÿ

j“1

S
Ψ

pkjq

qb
n “

N
ÿ

j“1

log
k
ř

qj“0

”

f
kj
qj prq

ın

1 ´ n
, (4.127)

which reproduces exactly (4.117).

4.8.1 Increment of entanglement entropy

The qubit picture not only offers an interesting probabilistic interpretation of the Rényi

entropies’ increments presented in Subsection 4.7.3, but it also provides a simple method to

obtain results for the entanglement entropy. Indeed, the eigenvalues of the reduced density

matrix are known from the qubit states, and in particular, are given by the functions

fkq prq “

¨

˝

k

q

˛

‚rqp1 ´ rqk´q , (4.128)

for choices of k and q dictated by the excited states. Let’s consider the case of a single particle

excitation where f 1
0 prq “ 1 ´ r and f 1

1 prq “ r, using (2.12) we obtain that the increment of

entanglement entropy is

∆S1
1prq “ ´r log r ´ p1 ´ rq logp1 ´ rq , (4.129)

Note that according to the qubit picture, the increment of Von Neumann entropy of a single

particle excitation maximises where the particle has equal probability of being found in ℓ or

L´ ℓ and its maximum is exactly log 2. In this sense the qubit picture provides a semi-classical

interpretation of the entanglement entropy as a measure of how uncertain is the localisation of

the quasiparticle in the two regions ℓ and L ´ ℓ.

The entanglement entropy contribution given by a k-particle state of all distinct rapidities

is simply:

∆S1,1,...,1
1 prq “ k∆S1

1prq “ k r´r log r ´ p1 ´ rq logp1 ´ rqs , (4.130)
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Figure 4.5 Entanglement entropy of various combinations of equal and distinct rapitidies that
lead to five-particle states. The higher the number of indistinguishable rapidities the lower
the maximum at r “ 1{2. The maximal entropy contribution of the state with only distinct
particles ∆S1,1,1,1,1

1 p1{2q is exactly 5 bits.

and has maximum k log 2 at r “ 1{2. Therefore, if the rapidities are distinct, the contribution

to the entanglement entropy of k particles is exactly k times the contribution of a single particle

excitation, while if they are equal, this is not true: the contribution is in fact smaller. Indeed

for multi-particles states composed of particles of all equal rapidities we have that

∆Sk1 prq “ ´

k
ÿ

q“0

fkq prq log fkq prq . (4.131)

The function above maximises again at r “ 1{2, but according to the qubit picture there are

now configurations more likely to occur than others and this leads to a lower maximum than

(4.130), signalling that there is less uncertainty on the localization of identical quasiparticles.

In particular, the maximum is given by

∆Sk1

ˆ

1

2

˙

“

k
ÿ

q“0

1

2k

¨

˝

k

q

˛

‚log

»

–

1

2k

¨

˝

k

q

˛

‚

fi

fl ă k log 2 , for k ą 1 . (4.132)

Similarly to the Rényi entropies, we may easily obtain entanglement entropy contributions

given by generic states. In particular, the increment of entanglement entropy ∆Sk1,k2,¨¨¨1 prq of

an excited state consisting of ki particles of momentum pi with pi ‰ pj for i ‰ j is

Sk1,k2,¨¨¨1 prq “
ÿ

i

∆Ski1 prq “
ÿ

i

«

´

k
ÿ

qi“0

fkiqi prq log fkiqi prq

ff

, (4.133)
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where fkiqi prq is the function (4.128) for k “ ki and q “ qi. More generally the presence

of indistinguishable particles will lead to smaller entanglement contributions. Examples for

various five-particle states are displayed in Fig. 4.5 .

4.8.2 Increment of single-copy entropy

Another quantity that can be evaluated through the functions (4.128) is the single-copy

entropy, defined in Section 2.3.1 as the n Ñ 8 limit of the nth Rényi entropy. In the Schmidt

decomposition such quantity is given by ´ log λ˚, where λ˚ is the largest eigenvalue of the

reduced density matrix [61]. Interestingly, excited state contributions to the single-copy entropy

present non-analytic features. For a single-particle excitation, we have

∆S1
8prq “

$

&

%

´ logp1 ´ rq for 0 ď r ă 1
2

´ log r for 1
2

ď r ď 1.
(4.134)

Again, the result is just multiplied by k for a state consisting of k distinct-momentum particles.

For equal momenta it is a function which is non-differentiable at k points in the interval r P p0, 1q

(generalizing (4.134)). The positions of these cusps are given by the values

r “
1 ` q

1 ` k
for q “ 0, . . . , k ´ 1, (4.135)

and the single copy entropy is given by

∆Sk8prq “ ´ log fkq prq for
q

1 ` k
ď r ă

1 ` q

1 ` k
(4.136)

and q “ 0, . . . , k. Similarly to the other entropies, the single-copy entanglement contribution

given by a generic excited state is

∆Sk1,k2,¨¨¨8 prq “
ÿ

i

∆Ski8 prq , (4.137)

where particles are organised in groups of ki particles of momentum pi with pi ‰ pj for i ‰ j.

With the formulae above we have described all the entanglement entropies’ contributions of

any multi-particle state with finite number of excitations and thus completed the task of this

chapter. Some particular examples obtained with formulae (4.117), (4.133) and (4.137) are

displayed in Fig. 4.6.

In conclusion, under the qubit interpretation and its general assumptions, the contributions
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Figure 4.6 The functions (4.117), (4.133) and (4.137) for a single particle state (top-left),
a state of 10 equal momenta (top-right) and for two “mixed” states with some equal and
some distinct momenta (bottom). In each figure, the colorful functions are Rényi entropies for
n “ 2, 3, 5, 8, 11, 17, the dashed (outer-most) curve is the von Neumann entropy and the dot
dashed (inner-most) curve is the single-copy entropy.

to the various entropies that an excited state generates with respect to the ground state encodes

information on the occupancy distributions of the excitations in the entanglement region. In

particular, the (in)distinguishabilty of the excitations is the key property that fully defines the

entanglement content of any excited state. This suggests that the results presented above are

universal, in the sense that they only depend on the quasiparticle content of the state and its

statistics. This is a suggestion that will be further confirmed in the next chapter where we

analyse different partitions.
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CHAPTER

FIVE

EXCITED STATE ENTANGLEMENT OF TWO REGIONS

5.1 The case of two disconnected regions

In this chapter we extend our study started in Chapter 4 to two entanglement regions. We

consider the situation represented in Fig. 5.1. In particular we consider a closed finite-volume

system of volume L with two disconnected regions A and B immersed in an environment C,

and described by a free massive boson theory.

As pointed out several times, the entanglement entropies and the logarithmic negativity

are all suitable entanglement measures in this setting, but they capture different information

about the state. In particular, the entanglement entropies measure the entanglement of the

union of the two regions relative to the environment, while the logarithmic negativity measures

the entanglement of a certain region, say A, with respect to the other region B in the presence

of the environment C. Results for excited state entanglement increments in two regions have

been first obtained [26], which will be also the paper we will mostly refer to in the course of

this chapter.

Along similar lines to Chapter 4, we assume the system to be in a zero-density state |ϕy and

at zero-temperature. We want to analyse the two entanglement measures in a carefully chosen

scaling limit. Defining the new variables:

ri :“
ℓi
L
, for i “ 1, 2, 3, and r :“ 1 ´ r1 ´ r3 , (5.1)
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Figure 5.1 Two disconnected regions in a closed one-dimensional system.

this scaling limit is obtained by sending the entanglement regions’ sizes and the entire system’s

size to infinity in a fixed proportion

L, ℓ1, ℓ2, ℓ3 Ñ 8 , with r, r1, r2, r3 finite, and 0 ď r, r1, r2, r3 ď 1 . (5.2)

In such a limit, the increment of the Rényi entropies of two disconnected regions can be

expressed in terms of branch-point twist field correlators as :

∆Sϕnprq :“ Sϕnpr1, r2, r3q ´ S 0
n pr1, r2, r3q (5.3)

“ lim
LÑ8

1

1 ´ n
log

«

Lxϕ|T p0qT̃ pr1LqT ppr1 ` r2qLqT̃ ppr1 ` r2 ` r3qLq|ϕyL

Lx0|T p0qT̃ pr1LqT ppr1 ` r2qLqT̃ ppr1 ` r2 ` r3qLq|0yL

ff

,

where S0
npr1, r2, r3q are the entropies in the ground state. As the notation suggests, we will see

later that the increments ∆Sϕnprq are functions of r only. In the same limit, the increments of

the replica logarithmic negativities are given by:1

∆Eϕn pr1, r3q :“ Eϕn pr1, r2, r3q ´ E 0
n pr1, r2, r3q (5.4)

“ lim
LÑ8

log

«

Lxϕ|T p0qT̃ pr1LqT̃ ppr1 ` r2qLqT ppr1 ` r2 ` r3qLq|ϕyL

Lx0|T p0qT̃ pr1LqT̃ ppr1 ` r2qLqT ppr1 ` r2 ` r3qLq|0yL

ff

,

and are functions of r1 and r3 only. As standard, T is the branch-point twist field, T̃ is

its Hermitian conjugate and |0yL is the ground state in the compactified space of Fig. 5.1.

One should expect that T “ T̃ in the doubled copy replica model n “ 2 as they implement

the same symmetry transformation. As a consequence, the results for the replica logarithmic

negativity equal those for the Rényi entropy (up to a sign) for n “ 2. When employing the

branch-point twist field technique, we will therefore be computing ratios of four-point functions

in the infinite volume limit. As seen in Section 3.2.2, exact explicit formulae for the four-point

1Note that the state |ϕy is real. When we consider a generic complex state we usually denote it as |Φy.
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functions above are generally hard to access even in the ground state and/or CFT. Remarkably

though, the increments considered here, in this particular scaling limit, turn out to be effectively

computable. Additionally the qubit picture can be extended to two entanglement regions and

provides an effective method to evaluate explicitly the increments of Von Newman entropy and

the logarithmic negativity even in the case of disconnected regions.

5.2 Computation by branch-point twist fields

Compared to the situation explored in Section 4.3, the infinite-volume correlators of twist

fields in (5.3) and (5.4) are defined in two new replica models, both characterised by the presence

of an additional branch cut along the space direction. Many considerations developed in the

study of the single-region problem can be extended to these two cases. One similarity is the

state considered, which is again a zero-density state |ϕy in a free boson theory. Suppose this

state to be formed of K particles whose rapidities are not necessary distinct from one another.

Commutation relations among free boson fields ensure that the state |ϕy can be decomposed

into independent blocks |ϕy “ |k1y b |k2y b . . . , each one containing kj identical rapidities, and

such that the sum of the particle numbers reproduces the total number of particles in |ϕy that

is k1 ` k2 ` ¨ ¨ ¨ “ K. It seems thus convenient to treat each block as a separate case, and thus

to focus on the case of a k-particle excitation state |ky of all equal momenta/rapidities.

As seen in the previous chapter, the doubling trick can be successfully implemented to

convert correlators of branch twist fields into much simpler correlators of Up1q-fields. Here, the

trick consists of evaluating the four-point functions in a complex state |ky that reproduce real

results i.e. the state (4.21) derived in Section 4.3 (up to normalisation). We have thus that:2

xk| T p0q T̃ px1q T px2q T̃ px3q |ky

x0| T p0q T̃ px1q T px2q T̃ px3q |0y
“

xk| T p0q T̃ px1q T px2q T̃ px3q |ky

x0| T p0q T̃ px1q T px2q T̃ px3q |0y
(5.5)

and a similar expression for the correlator associated to the replica negativity. When doubling

the replica model, the diagonalisation of the cyclic permutation action (discussed in Subsection

4.3.1 for the single-region problem) can be naturally extended to replica models arising from

multiple branch cuts, and the basis in which the symmetry acts diagonally can be obtained

via the transformation (4.31). Although in the diagonal basis the computation of correlators is

enormously simplified, the price to pay is a more complicated structure for the excited states

which must now be also expressed in this new basis (see e.g. (4.62) for an example).

2Along similar lines to Chapter 4, we use bond letters for complex states.
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When implementing the finite-volume in each replica model, the branch-cuts need to be

deformed by following the same instructions provided in Subsection 3.2.3. In the end of this

process, we deal with four semi-infinite branch cuts along the time-direction of the cylinder.

In the new finite-volume replica models, the complex fields Φjs satisfy periodic boundary

conditions which are affected by the presence of the four branch cuts, and that more generally

depends on which sector of the cylinder these fields are defined. As a consequence

quasiparticles are described by rapidities which will be quantized in finite volume and the

quantization conditions will depend upon the sector p the corresponding creation/anhilation

operator is acting on, and upon an index α that parametrizes the periodicity conditions for

the fields Φjpx ` Lq “ Φj`αpxq. A set of generalized Bethe-Yang equations (developed in

Section 4.4.1 for single-regions) can be written as

Q ϵ,α
p pθq “ 2πJ ϵ,α with Q ϵ,α

p pθq “ mL sinh pθq ´ 2πϵα
p

n
, (5.6)

where ϵ “ ˘ is the Up1q charge of the particle and J ϵ,α P Z.

In order to obtain form factor expansions we need first to insert three complete sets of

states in each four-point correlator. We can define some operator 1pαq
p inserting a complete set

of states with quantization condition α. For any α and p we have that 1pαq
p ” 1p is trivially the

identity operator. The sum over a complete set of states in sector p with quantization condition

α can be written as

1pαq
p “

8
ÿ

m˘“0

ÿ

tJ ˘,α
i um˘

1

m`!m´!
|tJ ˘,α

i um˘y p;L p;LxtJ ˘,α
i um˘ | (5.7)

where each state |tJ ˘,α
i um˘y p;L is characterised by a rapidity set tθ`,α

1 , . . . , θ`,α
m` , θ

´,α
1 , . . . , θ´,α

m´ u

formed of the Bethe-Yang equation (5.6) with a fixed α. We can then define the complete sum

over all sectors

1pαq
“ b

n
p“11

pαq
p . (5.8)

The branch-point twist fields intertwine between the different quantization sectors. Denoting

the corresponding Hilbert space by Hpαq we can write

T : Hpαq
Ñ Hpα`1q , T̃ : Hpαq

Ñ Hpα´1q . (5.9)
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As seen in Section 4.4.1, we assume that field Φ satisfies standard quantization conditions,

which corresponds to having the associated excited state |kyL in the trivial quantization sector

Hp0q . This, combined with the properties of the branch-point twist fields means that the four

point functions of interest may be spanned as

L xk| T p0q T̃ px1q T px2q T̃ px3q |kyL “ L xk| T p0q 1p1q T̃ px1q 1p0q T px2q 1p1q T̃ px3q |kyL ,

(5.10)

L xk| T p0q T̃ px1q T̃ px2q T px3q |kyL “ L xk| T p0q 1p1q T̃ px1q 1p0q T̃ px2q 1p´1q T px3q |kyL ,

(5.11)

where x1,2,3 denote the positions of the branch-point twist fields which is related to the original

lengths in Fig. 5.1 as

x1 :“ ℓ1 , x2 :“ ℓ1 ` ℓ2 , and x3 :“ ℓ1 ` ℓ2 ` ℓ3 . (5.12)

5.2.1 Four-point correlation functions in single-particle excited

states

Let us focus on the calculation for a single-particle excited state which in infinite volume is

given by:

|1y “
ÿ

tN˘u

Cn
`␣

N˘
(˘

n
ź

p“1

“

a:
p pθq

‰N`
p
“

b:
p pθq

‰N´
p

|0y . (5.13)

Note that the state above is of the same form as the one considered in Subsection 4.5 in the

computation of a two-point function, and Cn ptN˘uq are exactly the same coefficients defined

in (4.62). In finite volume, the rapidity is the solution of the quantization condition (5.6)

Q ϵ,0
p pθq “ mL sinh pθq “ 2πI0 , ϵ “ ˘ . (5.14)

Following previous considerations, the finite volume four-point functions are

L x1| T p0q T̃ px1q T px2q T̃ px3q |1yL “
ÿ

tN˘u

ÿ

tÑ˘u

“

Cn
`␣

N˘
(˘‰˚

Cn

´!

Ñ˘
)¯

ˆ

n
ź

p“1

F̂p

´

N˘
p , Ñ

˘
p

¯

, (5.15)

99



CHAPTER 5. EXCITED STATE ENTANGLEMENT OF TWO REGIONS

L x1| T p0q T̃ px1q T̃ px2q T px3q |1yL “
ÿ

tN˘u

ÿ

tÑ˘u

“

Cn
`␣

N˘
(˘‰˚

Cn

´!

Ñ˘
)¯

ˆ

n
ź

p“1

F̃p

´

N˘
p , Ñ

˘
p

¯

, (5.16)

with the different sector contributions

F̂p

´

N˘
p , Ñ

˘
p

¯

“ p;Lx tI0uN˘
p

|Tp p0q 1p1q
p T̃p px1q 1p0q

p Tp px2q 1p1q
p T̃p px3q | tI0uÑ˘

p
yp;L ,

(5.17)

F̃p

´

N˘
p , Ñ

˘
p

¯

“ p;Lx tI0uN˘
p

|Tp p0q 1p1q
p T̃p px1q 1p0q

p T̃p px2q 1p´1q
p Tp px3q | tI0uÑ˘

p
yp;L .

(5.18)

In sector n the Up1q twist fields coincide with the identity operator, hence the contributions

from this sector are just the normalization of the state

F̂n

´

N˘
n , Ñ

˘
n

¯

“ F̃n

´

N˘
n , Ñ

˘
n

¯

“ N`
n !N´

n !δN`
n ,Ñ

`
n
δN´

n ,Ñ
´
n
. (5.19)

The functions F̂n and F̃n can be systematically computed by using the contour integral approach

discussed in detail in Subsection 4.5.1. However the calculation for four-point functions turns

out to be much more involved. The main conceptual difference arises from the fact that now

also first-order and third-order poles contribute to the leading contribution and need to be

taken into account. Crucially, once the sums in (5.7) have been transformed in into contour

integrals, in order to regularise the correlators one needs to account for all possible contractions

θ ϵ,αj « θ generating such poles in the form factors involving the rapidities θ. This tedious

task was rigorously addressed in [26] where the full computation is presented. In appendix A

we focus on the subtle points of the computation, with special attention to the extension of

the computational steps described in Subsection 4.5.1 to this particular case. Following the

computational instructions, one arrives to the following final result for the nth Rényi entropy

increment:

lim
LÑ8

L x1| T p0q T̃ px1q T px2q T̃ px3q |1yL

L x0| T p0q T̃ px1q T px2q T̃ px3q |0yL

“
ÿ

tN˘u

ˇ

ˇCn
`

tN˘
u
˘
ˇ

ˇ

2
n
ź

p“1

ź

ϵ“˘

N ϵ
p!
“

gnϵp pr1 ` r3q
‰Nϵ

p .

(5.20)
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where gnϵpprq is the function in in (4.79). Hence this is exactly the same result as for single

region entanglement entropy. We can set r1 ` r3 “ 1 ´ r and use the fact that the correlator is

invariant under r Ñ 1 ´ r to rewrite the result above as in formula (6.3). The final result for

the replica negativity is instead

lim
LÑ8

L x1| T p0q T̃ px1q T̃ px2q T px3q |1yL

L x0| T p0q T̃ px1q T̃ px2q T px3q |0yL

“
ÿ

tN˘u

ˇ

ˇCn
`

tN˘
u
˘
ˇ

ˇ

2
n
ź

p“1

ź

ϵ“˘

N ϵ
p!
“

ĝnϵp pr1, r3q
‰Nϵ

p .(5.21)

where we have introduced the function:

ĝnϵp pr1, r3q “ 1 ´ r1 ´ r3 ` r1e
2πi ϵp

n ` r3e
´2πi ϵp

n . (5.22)

We conclude that, in the scaling limit (5.2), the increments of Rényi entropies and those of

replica logarithmic negativities do not depend on the distance between the two regions (which

is associated to the ratio r2).

5.2.2 Multi-particle states

In infinite volume a state |ky of all coinciding rapidities takes the exact form of (4.98).

Generalising the results in Subsection 4.6.2, one easily obtains that

Lxk|T p0q T̃ px1q T px2q T̃ px3q |kyL “
1

pk!qn

ÿ

tN˘u

ÿ

tÑ˘u

rDk
nptN˘

uqs
˚Dk

nptÑ˘
uq

n
ź

p“1

F̂p

´

N˘
p , Ñ

˘
p

¯

,

and

Lxk|T p0q T̃ px1q T̃ px2q T px3q |kyL “
1

pk!qn

ÿ

tN˘u

ÿ

tÑ˘u

rDk
nptN˘

uqs
˚Dk

nptÑ˘
uq

n
ź

p“1

F̃p

´

N˘
p , Ñ

˘
p

¯

,

where the functions F̂p and F̃p are the same as in (5.15) and (5.16). Compared to the

single-particle case, the coefficients satisfy different constraints (as argued in Section 4.6.2). It

is straightforward to generalise the results in the previous section to the case of multiparticle

states:

lim
LÑ8

F̂p

`

tN˘
p u, tN˘

p u
˘

p;L x0| Tp p0q T̃p px1q Tp px2q T̃p px3q |0yp;L

“
ź

ϵ“˘

N ϵ
p!
“

gnϵppr1 ` r3q
‰Nϵ

p , (5.23)

lim
LÑ8

F̃p

`

tN˘
p u, tN˘

p u
˘

p;L x0| Tp p0q T̃p px1q T̃p px2q Tp px3q |0yp;L

“
ź

ϵ“˘

N ϵ
p!
“

ĝnϵppr1, r3q
‰Nϵ

p . (5.24)
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and obtain finally

∆Sknprq “
1

1 ´ n
log

¨

˝

ÿ

tN˘u

ˇ

ˇDk
n ptN˘uq

ˇ

ˇ

2

pk!qn

n
ź

p“1

ź

ϵ“˘

N ϵ
p!
“

gnϵpprq
‰Nϵ

p

˛

‚ , (5.25)

∆Eknpr1, r3q “ log

¨

˝

ÿ

tN˘u

ˇ

ˇDk
n ptN˘uq

ˇ

ˇ

2

pk!qn

n
ź

p“1

ź

ϵ“˘

N ϵ
p!
“

ĝnϵppr1, r3q
‰Nϵ

p

˛

‚ , (5.26)

In order to obtain explicit formulae one needs to compute the coefficients Dk
n ptN˘uq, which

are the same for any fixed number of excitation considered. As pointed out in Chapter 4, these

coefficients can be numerically evaluated by looking at specific excited states, usually with the

help of computational software. However, the evaluation of (5.26) and (5.26) is much more

efficient if one employs instead the qubit picture, introduced in Section 4.8. The qubit picture

provides indeed a systematic way to predict the general polynomial structure of the results

above for any number k of excitations involved in the state and any copy number n. In the

next section, we will extend the idea discussed in Section 4.8 to two regions and obtain closed

formulae for the increments above.

5.3 Computation by qubit picture

Consider a state formed of k particle excitations of equal momenta/rapidities. According

to the qubit picture, there exists a k-qubit state |Ψ
pkq

qb y describing the occupancy distribution

of the k-particles excitations in the three regions of the partition in Fig. 5.1. This multi-qubit

state lives in a factorised Hilbert state Hqb “ H1 b H2 b H3, whose components H1 and H3

represent respectively the interior of regions A and B in Fig. 5.1, while H2 is associated to their

exterior. Consider an orthonormal basis of Hqb, the state |Ψ
pkq

qb y is expressed by

|Ψ
pkq

qb y “
ÿ

tk1,k2,k3uPσ3
0pkq

ck1,k2,k3 |k1k2k3y , (5.27)

where the sums run over positive integers forming a tripartition of k, and the coefficients ck1,k2,k3

are explicit functions of the ratios in the definition (5.1):

ck1,k2,k3 :“

d

k!rk11 r
k2rk33

k1!k2!k3!
δk1`k2`k3,k . (5.28)
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Note that the Kronecker delta δk1`k2`k3,k constrains the sums above. Provided that all vectors

|k1k2k3y are normalized to one, then the vector |Ψ
pkq

qb y is also a unit vector,

xΨ
pkq

qb |Ψ
pkq

qb y “
ÿ

tk1,k2,k3uPσ3
0pkq

c2k1,k2,k3 “ pr1 ` r ` r3q
k

“ 1. (5.29)

The state |Ψ
pkq

qb y in (5.27) may be interpreted as follow: each state |k1k2k3y is a state

of k1 excitations in region A, k3 excitations in region B and k2 excitations in the rest of

the system. The square of the corresponding coefficient c2k1,k2,k3 is the associated probability

that this configuration occurs if we were to place randomly and independently, with uniform

distribution, k particles on the interval r0, 1s covered by three non-intersecting subintervals of

lengths r1, r and r3.

From expression (5.27) it is then possible to explicitly construct the reduced density matrix

and its partially transposed version as:

xk1k3|ρAŤ

B|k1
1k

1
3y “

ÿ

k2PN0

ck1k2k3ck1
1k2k

1
3
, (5.30)

xk1k3|ρ
TB
A
Ť

B|k1
1k

1
3y “

ÿ

k2PN0

ck1k2k1
3
ck1

1k2k3
, (5.31)

Here the sums run over all non-negative integers, and whenever the constraint k1 ` k2 ` k3 “ k

is violated, the corresponding coefficient ck1,k2,k3 is zero by definition. From this constraint we

know in fact that 0 ď k2 ď k so we could have restricted the summation range k2 P N0 much

more. However we will write it like this for now, for simplicity, and discuss the summation

ranges more precisely at the end of our calculation. With these results we can now evaluate

the matrix elements of the n-th powers of the reduced density matrices above. These are given

by:

xk11k
1
3|ρnA

Ť

B|kn`1
1 kn`1

3 y “
ÿ

ks1,k
s
3PN0;s“2,...,n

kr2PN0;rPIn

n
ź

j“1

ckj1k
j
2k
j
3
ckj`1

1 kj2k
j`1
3
, (5.32)

xk11k
1
3| pρTBA

Ť

B q
n
|kn`1

1 kn`1
3 y “

ÿ

ks1,k
s
3PN0;s“2,...,n

kr2PN0;rPIn

n
ź

j“1

ckj1k
j
2k
j`1
3
ckj`1

1 kj2k
j
3
, (5.33)

where In :“ t1, . . . , nu. Finally, we are interested in the Rényi entropies and the replica

logarithmic negativities, which means we need to take the trace over A
Ť

B of the matrices
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above. This gives the following results:

S
Ψ

pkq

qb
n pr1, r3q “

1

1 ´ n
log

¨

˝

ÿ

tksi PN0;iPI3;sPInu

n
ź

j“1

ckj1k
j
2k
j
3
ckj`1

1 kj2k
j`1
3

˛

‚ , (5.34)

EΨ
pkq

qb
n pr1, r3q “ log

¨

˝

ÿ

tksi PN0;iPI3;sPInu

n
ź

j“1

ckj1k
j
2k
j`1
3
ckj`1

1 kj2k
j
3

˛

‚ , (5.35)

where we adopt the convention k1i ” kn`1
i for i “ 1, 2, 3. We can write these formulae more

explicitly by employing the definition (5.28), giving

S
Ψ

pkq

qb
n pr1, r3q “

1

1 ´ n
log

¨

˝

ÿ

tksi PN0;iPI3;sPInu

n
ź

j“1

k!r
kj1
1 r

kj2r
kj3
3

kj1!k
j
2!k

j
3!
δkj1`kj2`kj3,k

δkj`1
1 `kj2`kj`1

3 ,k

˛

‚,(5.36)

EΨ
pkq

qb
n pr1, r3q “ log

¨

˝

ÿ

tksi PN0;iPI3;sPInu

n
ź

j“1

k!r
kj1
1 r

kj2r
kj3
3

kj1!k
j
2!k

j
3!
δkj1`kj2`kj`1

3 ,k δkj`1
1 `kj2`kj3,k

˛

‚ . (5.37)

In the next subsections we examine each of these functions separately.

5.3.1 Results for Rényi entropies

We can now eliminate the delta-functions by implementing their constraints. Let us start

with the Rényi entropies. We can substitute:

kj1 “ k ´ kj´1
2 ´ kj3 , @ j , (5.38)

and this will eliminate the sums over kj1 with j “ 1, . . . , n. We then have sums over kj2 and kj3

left but we can also eliminate one of these by implementing the second set of delta-functions

together with the conditions above. This gives the constraints,

kj2 “ kj`1
2 “: p @ j . (5.39)

Therefore, kj1 “ k ´ p ´ kj3. This means that the factor
ś

j r
kj1
1 r

kj2r
kj3
3 in (5.36) becomes

n
ź

j“1

r
kj1
1 r

kj2r
kj3
3 “ r

npk´pq´q
1 rnprq3 , (5.40)
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where we defined q :“
řn
j“1 k

j
3. This finally allows us to rewrite (5.36) as

S
Ψ

pkq

qb
n pr1, r3q “

1

1 ´ n
log

˜

k
ÿ

p“0

npk´pq
ÿ

q“0

Zp,qr
npk´pq´q
1 rnprq3

¸

, (5.41)

where

Zp,q “
ÿ

tk1,...,knuPσn0 pqq

n
ź

j“1

k!

p!kj!pk ´ p ´ kjq!
, (5.42)

and σn0 pqq represents the set of integer partitions of q into n non-negative parts. We have

relabelled kj3 :“ kj, and the range of the sums in p and q is determined by the condition

Zp,q ‰ 0. From the definition (5.39), 0 ď p ď k. Regarding the values of q, we know that q can

not be negative (by definition) so q ě 0. Its maximum value is obtained if k ´ p ´ kj “ 0 for

all j. This corresponds to q “ npk ´ pq. In fact the sum over q can be rewritten as

npk´pq
ÿ

q“0

Zp,qr
npk´pq´q
1 rq3 “

n
ź

j“1

k´p
ÿ

kj“0

k!

p!kj!pk ´ p ´ kjq!
r
k´p´kj
1 r

kj
3 “

„ˆ

k

p

˙

pr1 ` r3q
k´p

ȷn

, (5.43)

with r1 ` r3 “ 1 ´ r so that

S
Ψ

pkq

qb
n pr1, r3q “: S

Ψ
pkq

qb
n prq “

1

1 ´ n
log

˜

k
ÿ

p“0

„ˆ

k

p

˙

rpp1 ´ rqk´p

ȷn
¸

. (5.44)

Therefore, the entanglement entropy depends only on the parameter r and is given by exactly

the same expression found in Section 4.8. In other words, in the qubit picture, the entanglement

entropy depends only on the overall size of regions and not on whether or not they are connected.

5.3.2 Results for replica logarithmic negativity

A similar analysis can be carried out for the replica logarithmic negativity. Starting with

(5.37) the second delta function gives the condition:

kj1 “ k ´ kj´1
2 ´ kj´1

3 , @ j , (5.45)

and this eliminates the sums over kj1 with j “ 1, . . . , n. We then have sums over kj2 and kj3

left but we can also eliminate one of these by implementing the second set of delta-functions

together with the conditions above. This gives the constraints,

kj2 ´ kj´1
2 “ kj´1

3 ´ kj`1
3 , @ j . (5.46)
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We may regard this equation as a first order difference equation for the sequence kj2. The

solution to such an equation is the sum of the solution to its homogenous version (a constant)

and a particular solution of the full equation which can be worked out by inspection to be

´kj3 ´ kj`1
3 . The general solution is then

kj2 “ γ ´ kj3 ´ kj´1
3 , (5.47)

where γ is an arbitrary constant. With this we also have that kj1 “ k ´ γ ` kj3. We can now

evaluate the product
n
ź

j“1

r
kj1
1 r

kj2r
kj3
3 “ rnp`q

1 rnpk´pq´2qrq3 , (5.48)

where q :“
řn
j“1 k

j
3 and p “ k ´ γ. Relabelling kj`1

3 :“ kj we then find

EΨ
pkq

qb
n pr1, r3q “

1

1 ´ n
log

¨

˝

k
ÿ

p“´k

rn
2

pk´pqs
ÿ

q“maxp0,´npq

Ap,qr
np`q
1 rnpk´pq´2qrq3

˛

‚, (5.49)

where

Ap,q “
ÿ

tk1,...,knuPσn0 pqq

n
ź

j“1

k!

pp ` kjq!pk ´ p ´ kj ´ kj`1q!kj!
. (5.50)

The range of sums in p and q is fixed by selecting out those contributions for which Ap,q ‰ 0.

This requires that the arguments of the factorials in the denominator remain non-negative,

which in turn restricts the type of partitions that can contribute to the sum over k1, . . . , kn.

Consider the sum in p. The range of this sum can be determined easily from the relation

(5.47). This implies that 0 ď γ ď 2k. Together with the definition of p this gives ´k ď p ď k.

This guarantees that all arguments of the factorials in the denominator remain non-negative.

The range of values of q can also be determined as follows. The lower limit is easy to

establish as whenever p ă 0 the partitions contributing to Ap,q must have kj ě ´p. Thus, the

smallest value of q giving a non-vanishing contribution corresponds to taking all kj “ ´p for

all j which gives q “ ´np. On the other hand, if p ě 0 then the smallest value q can take

is zero corresponding to all kj “ 0. This fixes the lower bound to maxp0,´npq. Let us now

consider the upper bound. Given a certain p, the largest value q can take corresponds to having

k ´ p ´ kj ´ kj`1 “ 0 for all j, or kj ` kj`1 “ k ´ p. Writing

n
ÿ

j“1

pkj ` kj`1q “

n
ÿ

j“1

pk ´ pq , (5.51)
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we have obviously that the right hand side gives npk ´ pq whereas the left hand side gives

2
řn
j“1 kj “ 2q. Therefore, for generic parity of n and k ´ p, we obtain q “ r

npk´pq

2
s. This gives

the range maxp0,´npq ď q ď r
npk´pq

2
s.

5.4 The analytic continuation in n

Similarly to the case of a single region, the qubit picture in two regions provides a systematic

way to obtain the the entanglement entropy and logarithmic negativity. Given a qubit state, the

only ingredients we need are the eigenvalues of its reduced density matrix (for the entanglement

entropy) and those of its partial transposition (for the logarithmic negativity).

In the case of the entanglement entropy, these ingredients are easily accessible: since the

result (5.44) is independent on the connectivity of the two regions, the desired eigevalues are

simply the functions fkq prq in (4.128). The increments of von Newmann entropy are accordingly

given by formula (4.131) for any number of excitations k. The case of the logarithmic negativity

is generally more complicated. However for states composed of a low number of qubits, the

diagonalisation of ρTBA turns out to be easier to access, and it is effectively possible to derive

closed formulae for the logarithmic negativity. To clarify this point we present below a very

simple example: the computation of both entanglement entropy and logarithmic negativity

for a single-qubit state. By using similar analyses, it is possible to obtain explicit formulae

for the logarithmic negativity of two- and three-particle states [26]. Unlike the entanglement

entropy, the analytic continuation in the parameter n of the functions (5.49) shows a non-trivial

structure, even in the simple example below.

5.4.1 Example of a single-particle excitation

We consider the qubit state (5.27) for k “ 1

|Ψ
p1q

qb y “
?
r1|100y `

?
r|010y `

?
r3|001y . (5.52)

where the first qubit represents the presence (1) or not (0) of a particle in region A, the second

qubit represents the same for region C, and the final qubit likewise for region B. Tracing over

the mid-qubit we have that

ρAŤ

B “ r1|10yx10| ` r|00yx00| ` r3|01yx01| `
?
r1r3 p|10yx01| ` |01yx10|q , (5.53)
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Figure 5.2 Left: The function (5.60) for n “ 2, 4, 6 and 8 (the higher the value of n, the more
negative the value of the function). Right: The function (5.61). Recall that 0 ď r1 ` r3 ď 1,
which restricts the domain of definition of the functions shown.

ρTBA
Ť

B “ r1|10yx10| ` r|00yx00| ` r3|01yx01| `
?
r1r3 p|11yx00| ` |00yx11|q . (5.54)

In matrix form we have

ρA
Ť

B “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

11 10 01 00

11 0 0 0 0

10 0 r1
?
r1r3 0

01 0
?
r1r3 r3 0

00 0 0 0 r

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, ρTBA
Ť

B “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

11 10 01 00

11 0 0 0
?
r1r3

10 0 r1 0 0

01 0 0 r3 0

00
?
r1r3 0 0 r

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, (5.55)

where the first row and first column refer to the states involved in (5.53)-(5.54). The eigenvalues

of ρAŤB are:

λ1 “ 0 , λ2 “ 0 , λ3 “ 1 ´ r , λ4 “ r , (5.56)

and those of ρTBAŤB

λt1 “ r1 , λt2 “ r3 , λt3 “
r `

?
r2 ` 4r1r3

2
, λt4 “

r ´
?
r2 ` 4r1r3

2
, (5.57)

Note that in the latter case, the last eigenvalue is clearly negative. This means that, for a

one-particle excitation we have:

S1
nprq “

logprn ` p1 ´ rqnq

1 ´ n
, (5.58)

which is what we expected, and

E1
npr1, r3q “ log

ˆ

rn1 ` rn3 `
pr `

?
r2 ` 4r1r3qn

2n
`

pr ´
?
r2 ` 4r1r3q

n

2n

˙

. (5.59)
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Note that, although (5.58) and (5.59) are in general rather different functions, it is easy to

show that the polynomials inside the logarithm coincide for n “ 2. Interestingly, for n integer,

even or odd, there is no square-root dependence of the polynomial in (5.59) (the square-roots

always cancel). Indeed, it can be equivalently written from the expression given in the previous

Section 5.49 by setting k “ 1:

E1
npr1, r3q “ log

¨

˝rn1 ` rn3 `

rn
2

s
ÿ

p“0

n

n ´ p

¨

˝

n ´ p

p

˛

‚ rn´2prp1r
p
3

˛

‚ , (5.60)

where r.s denotes the integer part. However, the logarithmic negativity itself involves the square

root in (5.59). From the eigenvalues above this gives

E1
pr1, r3q “ log

˜

4
ÿ

i“1

|λti|

¸

“ log
´

r1 ` r3 `
a

r2 ` 4r1r3

¯

, (5.61)

As we can see in Fig. 5.2, there is a change of curvature when taking the limit n Ñ 1. This

result gives a representative example of the non-trivial nature of the analytic continuation from

n even to n “ 1.

5.5 Replica negativity of two adjacent regions

An important observation arising from results (5.20) and (5.21) is that increments of both

entropies and negativities are independent of the distance between the two subsystems A and

B i.e. the parameter r2. The results (5.49) and (5.44) obtained by the qubit picture further

confirm such a feature, suggesting that it is even more general. In fact we can think to approach

the problem in a simpler way by considering the quantity (5.4) in the limit when r2 Ñ 0. In

this limit the two intermediate fields T̃ pr1LqT̃ ppr1 ` r2qLq would sit at the same space position

and consequently they produce a new field, with new scaling properties:

T̃ 2
pr1Lq :“ lim

r2Ñ0
T̃ pr1LqT̃ ppr1 ` r2qLq. (5.62)

It is known that this field has very different properties depending on whether n is even or

odd [13]. However, in order to compute the logarithmic negativity, only the even case is

of interest. In this case the field T̃ 2 is a twist field implementing the replica permutation

symmetry among evenly spaced copies of the theory. As seen at the end of Subsection 3.2.1,

(where we first introduced the field above), it connects even-labelled and odd-labelled copies
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Figure 5.3 Procedure of connecting two regions in a ring.

within themselves, effectively acting as the action of two standard branch-point twist fields in

an n{2 replica theory.

In the special limit (5.62), we can define the increment of logarithmic negativity as:

∆Eϕn pr1, r3q “ lim
LÑ8

log

«

L xϕ| T p0q T̃ 2p r1Lq T p pr1 ` r3qL q |ϕyL

L x0| T p0q T̃ 2p r1Lq T p pr1 ` r3qL q |0yL

ff

, (5.63)

where we have implicitly considered the scaling limit (5.2). As pointed out in Chapter 3, if

we reduce the distance between A and B to zero, and evaluate the Rényi entropy this would

reproduce exactly the situation analysed in Chapter 4. For this reason we do not consider the

Rényi entropy in such a setting.

5.5.1 Up1q-field decomposition of the T̃ 2-field

We assume n to be an even number. The fields T 2 and T̃ 2 implement permutations

symmetries over the exchange of copies j ÞÑ j ˘ 2 which form a subset of the Upnq symmetry

group, therefore the Up1q-field basis diagonalise their action. We can employ the basis (4.31)

once again to decompose the fields T 2 and T̃ 2 in terms of Up1q-fields. More precisely we need

to consider Up1q- fields Tλ p acting on sector p that satisfy the following exchange property

with the fields Φ̃:

Tλ ppxqΦ̃qpyq “ e
2πiλ
n

δqpΦ̃qpyqTλ ppxq for y1 ą x1 , (5.64)

“ Φ̃qpyqTλ ppxq for x1 ą y1 ,

q, p “ 1, . . . , n. In terms of these fields, the fields T 2 and T̃ 2 can both be diagonalized as follows

T 2
“

n
ź

p“1

T2p T̃ 2
“

n
ź

p“1

T2pn´pq . (5.65)
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For free bosons, the Up1q fields Tλ p have scaling dimensions [105]:

∆λ “
λ

2n

ˆ

1 ´
λ

n

˙

(5.66)

so that

∆T 2 “ 2

n
2
ÿ

p“1

∆2p “
1

6

ˆ

n

2
´

2

n

˙

, (5.67)

which reproduces the conformal weight (3.21) for c “ 2 (the central charge of the complex free

boson).

5.5.2 The three-point correlation function

As usual, the presence of branch cuts in finite volume replica models affects the

quantization conditions of momenta associated to single-particle excitations, which

consequently live in different Hilbert spaces Hpαq defined by quasi-periodic boundary

conditions of the fields Φjpx ` Lq “ Φj`αpxq. The branch-point twist fields connect the

various sectors as in (5.9), and the T 2 and T̃ 2 act accordingly as

T 2 : Hpαq
Ñ Hpα`2q , T̃ 2 : Hpαq

Ñ Hpα´2q . (5.68)

As before we assume |kyL to be in the trivial section Hpαq. Thus combining the actions of the

various fields we obtain

L xk| T p0q T̃ 2
px1q T px3q |kyL “ L xk| T p0q 1p1qT̃ 2

px1q 1p´1qT px3q |kyL . (5.69)

Consider a single-particle state such as (5.13), the finite volume three-point function above can

be expressed as:

L x1| T p0q T̃ 2
px1q T px3q |1yL “

ÿ

tN˘u

ÿ

tÑ˘u

“

Cn
`␣

N˘
(˘‰˚

Cn

´!

Ñ˘
)¯

n
ź

p“1

F̄p

´

N˘
p , Ñ

˘
p

¯

,

with sector contributions given by

F̄p

´

N˘
p , Ñ

˘
p

¯

“ p;Lx tI0uN˘
p

|Tp p0q 1p1q
p Tn´2p px1q 1p´1q

p Tp px3q | tI0uÑ˘
p

yp;L , (5.70)

where x3 :“ r1 ` r3, and rapidities in the external state satisfy (5.14). The computational steps

developed in appendix A can be easily extended to the case of the three-point function above.
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Crucially, the intertwining action of the field Tn´2p is such as to have intermediate states

with rapidities only in Hp1q and Hp´1q. This is structurally different from what we observe

in the four-point functions (5.17) and (5.18). There, contractions among external states and

intermediate states in Hp0q may lead to third order-pole residue, which are found to be dominant

in the limit (5.2) and thus to contribute to the leading term of the expansion. This situation

can be actually avoided in the case of the three-point function (5.70), where only first- and

second-order pole residua can contribute. Despite the different origin of the dominant terms,

the full computation (which will be presented in the work [27]) leads to the same result (A.30),

lim
LÑ8

F̃p

`

N˘
p , N

˘
p

˘

p;L x0| Tp p0q Tn´2p px1q Tp px3q |0yp;L
“

ź

ϵ“˘

N ϵ
p!
“

ĝnϵp pr1, r3q
‰Nϵ

p , (5.71)

where ĝnϵp pr1, r3q is defined in (5.22). Multi-particle state results follow directly from the

arguments in Subsection 5.2.2. We thus conclude that also partitions arising from the limit of

adjoint regions reproduce the qubit results.

5.6 Qubit picture for multiple regions

The results obtained in the previous sections have shown that, the qubit picture (so simple

in its formulation) describes perfectly well the entanglement contributions of excited states

in the massive free boson. The only underlying assumption is that, since single excitations

are supposed to be de-localised within the volume, they have flat probability of being found

anywhere in the volume L. Under this assumption, qubit states describe how these excitations

distribute within the partitioned intervals and their simple properties crucially determine the

excited state entanglement contributions.

We conclude this chapter by extending the qubit picture to an arbitrary number of

disconnected regions. Indeed, as we will see in the following subsections (where we present the

full computation by qubit states) we can prove that formulae (5.44) and (5.49) hold more

generally for any connectivity.

5.6.1 Rényi entropies of multiple disconnected regions

Let us consider the case when one of our subsystems is composed of α disconnected regions

Rm with m “ 1, . . . , α. Let R0 be the rest of the system and R1 :“
Ť

mRm. Suppose that the

entire bipartite system is composed by R0

Ť

R1, and that we are interested in the entanglement
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entropy of a particular k-particle excited state. According to the qubit picture we can consider

a bipartite Hilbert space H “ H0 b H1, and associate H0 to the exterior, and its complement

H1 to the interior of the multiple-entanglement regions. Moreover the interior Hilbert space

decomposes into α independent components H1 “ H1 b ¨ ¨ ¨ b Hα.

In this setting the qubit states can be defined as follow: we define an orthonormal basis

t|ky P H : k “ pk0, . . . , kαq P Nα`1
0 u such that km is the number of excitations in region Rm

and
řα
m“1 km “ k for a state of k identical excitations. Let

r1
“

α
ÿ

m“1

rm “ 1 ´ r0 (5.72)

where rm is the scaled length of region Rm. We define the qubit state:

|Ψ
pkq

α,qby “
ÿ

k“tk0,...,kαuPσα`1
0 pkq

«

k!
α
ź

ℓ“0

rkℓℓ
kℓ!

ff1{2

δřα
i“0 ki,k

|ky , (5.73)

where σα`1
0 pkq represents the set of integer partitions of k into α ` 1 non-negative parts. It

is easy to extend the definition (2.13) to the case of multiple disconnected regions. Indeed, if

we now introduce Sknpr1, . . . , rαq :“ exp

"

tp1 ´ nqS
Ψ

pkq

α,qb
n pr1, . . . , rαqu

*

where S
Ψ

pkq

α,qb
n pr1, . . . , rαq

is the nth Rényi entropy in the qubit state (5.73) it is easy to see that this can be written as:

Sknpr1, . . . , rαq “
ÿ

tkjp P N0 ; jPIn ; pPI0αu

n
ź

i“1

k!

˜

α
ź

ℓ“0

r
kiℓ
ℓ

kiℓ!

¸

δki0`
řα
m“1 k

i
m ,k δki0`

řα
m“1 k

i`1
m ,k , (5.74)

where In “ t1, . . . , nu and I0α “ t0, . . . , αu. The delta-functions introduce the contraints

α
ÿ

m“1

kim ` ki0 “ k and
α
ÿ

m“1

ki`1
m ` ki0 “ k , for i “ 1, . . . , n , (5.75)

with the identifications k0m ” knm and k1m ” kn`1
m . These constraints are equivalent to

α
ÿ

m“1

kim “

α
ÿ

m“1

ki`1
m :“ γ , (5.76)

where γ is an arbitrary constant. As a consequence

kiα “ γ ´

α´1
ÿ

m“1

kim and ki0 “ k ´ γ “: q for i “ 1, . . . , n. (5.77)
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As in the two region case ki0 does not depend on any kims. Substituting (5.77) into (5.74) we

have:

Sknpr1, . . . , rαq “
ÿ

qPZ

ÿ

tkjp P N0 ; jPIn ; pPIα´1u

„ˆ

k

q

˙

rq0

ȷn n
ź

i“1

˜

pk ´ qq! r
k´q´

řα´1
m“1 k

i
m

α

pk ´ q ´
řα´1
m“1 k

i
mq!

α´1
ź

m“1

r
kim
m

pkimq!

¸

.

(5.78)

Again the multinomial coefficients constrain the sums. The presence of q! in the denominator

means that q ě 0. We know also that kim must be non-negative for all i “ 1, . . . , n and m “

1, . . . , α´1. Furthermore the only non-zero terms in the sums are given by k´q´
řα´1
m“1 k

i
m ě 0

and thus q ď k. In summary, for the same reasons as in the two region case 0 ď q ď k.

We can re-write (5.78) as:

Sknpr1, . . . , rαq “

k
ÿ

q“0

„ˆ

k

q

˙ȷn

rnq0

n
ź

i“1

k´q
ÿ

si“0

ÿ

tki1,...,k
i
α´1u Pσα´1

0 psiq

«

ˆ

k ´ q

si

˙

rk´q´si
α si!

α´1
ź

m“1

r
kim
m

pkimq!

ff

.

(5.79)

It is easy to see that

ÿ

tki1,...,k
i
α´1u Pσα´1

0 psiq

si!
α´1
ź

m“1

r
kim
m

pkimq!
“

˜

α´1
ÿ

m“1

rm

¸si

, @ i “ 1, . . . , n , (5.80)

and thus (5.79) becomes:

Sknpr1, . . . , rαq “

k
ÿ

q“0

„ˆ

k

q

˙ȷn

rnq0

n
ź

i“1

«

k´q
ÿ

si“1

ˆ

k ´ q

si

˙

rk´q´si
α

˜

α´1
ÿ

m“1

rm

¸si ff

. (5.81)

Furthermore we can notice that

n
ź

i“1

«

k´q
ÿ

si“1

ˆ

k ´ q

si

˙

rk´q´si
α

˜

α´1
ÿ

m“1

rm

¸si
ff

“

«

k´q
ÿ

s“0

ˆ

k ´ q

s

˙

rk´q´s
α

˜

α´1
ÿ

m“1

rm

¸sffn

“

»

–

˜

α
ÿ

m“1

rm

¸k´q
fi

fl

n

“ p1 ´ r0q
npk´qq , (5.82)

where in the last line we used (5.72). By recalling the Rényi entropy, we finally have:

S
Ψ

pkq

α,qb
n pr1, . . . , rαq “: S

Ψ
pkq

qb
n pr0q “

1

1 ´ n
log

˜

k
ÿ

q“0

„ˆ

k

q

˙

rq0 p1 ´ r0q
k´q

ȷn
¸

. (5.83)

notice it takes the same form as (5.44) (with r replaced by r0). Therefore, the Rényi (and
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related) entropies of this particular class of qubit states depend only on the relative size of the

two parts in the bipartition and not on whether or not they are connected.

5.6.2 Replica logarithmic negativities of disconnected regions

A very similar computation can be performed for the replica logarithmic negativities. The

starting point is the assumption that regions A and B are now disconnected, namely

A “
ďα

i“1
Ai and B “

ďβ

i“1
Bi , (5.84)

so that A consists of a number α and B of a number β of disconnected regions. Let regions Ai

and Bi have scaled lengths given by ri1 and ri3, respectively. Then our results for the (replica)

logarithmic negativities will still hold up to the identifications:

r1 “

α
ÿ

i“1

ri1 , r3 “

β
ÿ

i“1

ri3, and r “ 1 ´ r1 ´ r3 . (5.85)

In the qubit picture this can be shown in a very similar way as for the Rényi entropies in the

previous section, so we do not present the computation here.
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CHAPTER

SIX

ENTANGLEMENT INCREMENTS OF LOCALISED

EXCITATIONS

6.1 Summary of the main results in the free boson

In Chapters 4 and 5 we have studied the free boson theory in two different bipartitions,

composed respectively of a single region or two (either connected or disconnected) regions. In

this section we aim to summarise the main results obtained for both the entanglement entropies

and the logarithmic negativities.

Let us consider two regions, say A and B, of lengths1 ℓ1 and ℓ´1 respectively. The region

C corresponds to the rest of the system, specifically of length ℓ0 “ L ´ ℓ1 ´ ℓ´1. Note a

single-region bipartition such as the one analysed in Chapter 4 can be obtained by fixing one

entanglement region’s size (say ℓ´1) to zero, in such a way to identify ℓ1 with the length of

the entanglement region, and ℓ0 with the length of its complement. As usual we are interested

in the scaling limit obtained by sending the regions’ size and the volume L simultaneously to

infinity while keeping their ratios finite in the process:

L Ñ 8 , ℓj Ñ 8 , fixed rj :“
ℓj
L
, (6.1)

where j “ ´1, 0, 1 for two regions and j “ 0, 1 for a single-region. We assume the system to

1Note that we have changed a bit the notation employed in Chapter 5, where we have usually called the two
regions’ lengths ℓ1 and ℓ3. This change is convenient to generalise the results for both partitions.
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be in a zero-density state, namely a state composed of a finite number of excitations. The

first interesting result is that the entanglement increments generated by |ϕy with respect to the

ground state |0y depend on the ratios r1, r0, r´1, only:

lim
LÑ8

pSϕn ´ S0
nqpr0Lq “ ∆Sϕnpr0q , lim

LÑ8
pEϕn ´ E0

nqpr1L, r0L, r´1Lq “ ∆Eϕn pr1, r0, r´1q . (6.2)

In particular, the entropy increment for a single particle excitation is:

∆S1
npr0q “

logprn0 ` p1 ´ r0qnq

1 ´ n
, (6.3)

whereas the increment of von Neumann entropies generated by the same state is given by

∆S1
1pr0q “ ´r0 log r0 ´ p1 ´ r0q logp1 ´ r0q . (6.4)

Therefore the functional forms are the same for both single region (i.e. r0 “ 1 ´ r1) and

double regions (i.e. r0 “ 1 ´ r1 ´ r´1). The same holds for multiparticle states. Indeed when

considering states formed of many excitations, the entanglement entropies increase in a way

that depends only on two factors: the (in)distinguishability of the excitations (if they have

identical or distinct momenta), and the size of the regions A and B relative to that of the

whole system. For a state composed of k distinct particles (distinct momenta), the entropy

increments is just k times the single-particle ones. More interesting are the entropy increments

of a k-particle excitations with identical momenta:

∆Sknpr0q “
1

1 ´ n
log

k
ÿ

q“0

»

–

¨

˝

k

q

˛

‚rq0p1 ´ r0qk´q

fi

fl

n

, (6.5)

∆Sk1 pr0q “ ´

k
ÿ

q“0

¨

˝

k

q

˛

‚rq0p1 ´ r0qk´q log

»

–

¨

˝

k

q

˛

‚rq0p1 ´ r0qk´q

fi

fl . (6.6)

Remarkably all the entropy increments do not depend on the connectivity of the regions and

are functions of r0 only. The replica logarithmic negativity is found to be a function of r1, r´1,

where each parameter now enters independently. For a state consisting of a single particle

excitation the increment of the replica logarithmic negativity is given by the simple expression:

∆E1
npr1, r´1q “ log

¨

˝rn1 ` rn´1 `

rn
2

s
ÿ

p“0

n

n ´ p

¨

˝

n ´ p

p

˛

‚ rn´2p
0 rp1r

p
´1

˛

‚ , (6.7)

where r.s denotes the integer part. Note that for a single region (i.e. r0 “ 1 ´ r1), the result
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Figure 6.1 The functions (6.7) for n “ 2, 4, 6, 8, 10 and 12 (solid lines) and the function (6.9)
(dashed line). In all cases we consider r1 “ r´1 “ R

2
. The replica logarithmic negativities

take more negative values for larger values of n. This figure illustrates the gradual change in
curvature as n Ñ 1.

(6.7) trivially reproduces the Rényi entropy increments therefore below we focus only on two

regions r0 “ 1 ´ r1 ´ r´1. The increment of the logarithmic negativity can be obtained by

analytically continuing this expression from n even to n “ 1. Evaluation of the sum above for

n “ 2m and m P N gives

∆E1
2mpr1, r´1q “ log

¨

˝r2m1 ` r2m´1 `

˜

a

r20 ` 4r1r´1 ` r0
2

¸2m

`

˜

a

r20 ` 4r1r´1 ´ r0
2

¸2m
˛

‚ .

(6.8)

so that the analytic continuation is simply,

∆E1
pr1, r´1q :“ lim

mÑ 1
2

∆E1
2mpr1, r´1q “ log

ˆ

r1 ` r´1 `

b

r20 ` 4r1r´1

˙

. (6.9)

Note that the functions (6.9) gives a nice simple illustration of the non-trivial nature of the

analytic continuation from n even to n “ 1. This can be better understood by looking at

Fig. 6.1.

For a state consisting of k distinct excitations (particles with distinct momenta), the result

is simply k times the above, just as for the Rényi entropies. The case of identical excitations

(identical momenta) is more interesting. Consider an excited state of k identical excitations.

The increment of the replica logarithmic negativity is given by:

∆Eknpr1, r´1q “ log

¨

˝

k
ÿ

p“´k

rn
2

pk´pqs
ÿ

q“maxp0,´npq

Ap,q r
np`q
1 r

npk´pq´2q
0 rq´1

˛

‚ , (6.10)
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where the coefficients Ap,q are defined as follows:

Ap,q “
ÿ

tk1,...,knuPσn0 pqq

n
ź

j“1

k!

pp ` kjq!pk ´ p ´ kj`1 ´ kjq!kj`1!
, (6.11)

and σn0 pqq represents the set of integer partitions of q into n non-negative parts. Note that

the coefficients are zero whenever any of the arguments of the factorials in the denominator

becomes negative and this selects out the partitions that contribute to each coefficient for given

values of p and q. As should be, formula (6.7) is the k “ 1 case of (6.10). Indeed the coefficients

inside the sum (6.7) are nothing but the number of partitions of p into n parts, p of which are

1 and n ´ p of which are 0, with the constraint that there are no consecutive 1s.

Since the coefficients Ap,q are rather non-trivial, it is not easy to perform the sums in

(6.10) explicitly and the analytic continuation leading to the logarithmic negativity is rather

involved. Nevertheless, consider few excitations, we can explicitly compute the eigenvalues of

the partially transposed reduced density matrix obtained from the qubit interpretation. An

example for a single-particle excitation is provided in Subsection 5.4.1, and additional closed

formula for k “ 2, 3 have been presented [26].

The qubit interpretation (introduced in Section 4.8 and extended in Section 5.3 to two

regions) is based on the simple observation that the entanglement contributions above equate

those of a much simpler states:

∆Sknpr0q “ S
Ψ

pkq

qb
n pr0q , ∆Eknpr1, r´1q “ EΨ

pkq

qb
n pr1, r´1q , ∆Ekpr1, r´1q “ EΨ

pkq

qb pr1, r´1q ,

(6.12)

for any k and n. The state |Ψ
pkq

qb y lives in a bipartite Hilbert space of which one part is associated

to the interior and the other one to the exterior of the entanglement regions A and B. More

precisely, it is formed of k qubits and takes the following form :

|Ψ
pkq

qb y “
ÿ

k1 k0 k´1

d

k! rk11 rk00 r
k´1

´1

k1! k0! k´1!
δk1`k0`k´1,k |k1, k0, k´1y (6.13)

Each state |k1 k0 k´1y is interpreted as describing a specific occupancy configuration that is

k1 excitations in region A, k´1 excitations in region B and k0 excitations in the rest of the

system. For a single region we assume k´1 “ 0. The square of the corresponding coefficient

is the associated probability that this configuration occurs if we were to place randomly and

independently, with uniform distribution, k particles on the interval r0, 1s covered by three
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non-intersecting subintervals of lengths r1, r0 and r´1.

Under the qubit interpretation all the entanglement increments in (6.12) are independent of

the connectivity of the two regions, and as seen in 5.6, the same conclusion can be even drawn

for a system consisting of any number of disconnected regions. In Section 5.5 we have also used

the branch-point twist field approach to explore specifically the case of two connected regions,

and obtained exactly the same results above.

Furthermore, the expression (6.10) with (6.11) suggests a combinatorial interpretation for

the polynomials in the logarithmics, and such interpretation is made more concrete in Appendix

B, based on a graph approach introduced in [28].

Finally we expect the state |ϕy to be more generally a mixed excited state consisting of ki

particles of identical momentum pi with i “ 1, . . .m and pi ‰ pj for i ‰ j. For such a state

we have that the Rényi entropies and the (replica) logarithmic negativities can be expressed in

terms of the building blocks given above, namely:

∆Sk1,...,kmn pr0q “

m
ÿ

q“1

∆S
kq
n pr0q , (6.14)

∆Ek1,...,kmn pr1, r´1q “

m
ÿ

q“1

∆Ekqn pr1, r´1q . (6.15)

6.2 Generalisations and extensions

According to the qubit interpretation, the entanglement increments due to particle

excitations depend on very few features of the state, namely the ratios ris associated to each

region ℓi of the partition, the number of quasiparticles and the statistics of the excitations (if

they have equal or distinct momenta). Since these are quite general features, one may

reasonably wonder if our results may hold much more generally. There is indeed both

analytical and numerical evidence suggesting that the results presented in Section 6.1 are

universal. To conclude part I of this thesis we want to give a flavour of the diverse contexts in

which (under appropriate conditions) the qubit picture can be exploited to predict the

entanglement contributions of zero-density states:

• The massive free fermion: In [24] the excited state entanglement entropies of a single

region have been studied also in the free fermion theory. Indeed the techniques discussed

in Chapter 4 can be easily extended to the massive free fermion, having even a simpler

application as fermionic states are formed of only distinct particles. Taking into account
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the different statistics of the states, the entanglement contributions of multiple-particle

excitations exactly reproduce formulae (6.3), (6.4) for single particles, and (6.14) for

multiple particles in the scaling limit (6.1).

• The harmonic chain: In [24, 26] the (free boson) formulae (6.3)-(6.15) have been

numerically checked in the harmonic chain by implementing the wave functional method2.

The harmonic chain is indeed a discrete theory whose continuum limit reproduces the

massive free boson. The dispersion relation for a single-particle excitation is

Eppq “

c

m2 ` 4∆x´2 sin2 ∆x p

2
, (6.16)

where ∆x is the lattice spacing, m is the mass and p is the momentum of the excitation.

Numerical results are expected to reproduce the free-boson results where ∆x ¨ p ! 1, and

the relativistic dispersion relation is recovered in (6.16). In this regime both the entropy

and replica logarithmic negativity increments (in their simple formulations given by the

qubit pictures (6.12)) have shown perfect agreement with the numerical outcomes in both

the single- and double- region cases. Remarkably all entanglement increments are found

to be correct even in a regime of parameters that goes beyond the universal scaling regime

of QFT (some figures are shown in the end of the chapter). This includes large momenta

regions, beyond the low-energy QFT regime, and holds independently of the value of the

lattice spacing ∆x. The domain of applicability of the free-boson results is characterized

by the condition [23]:

min

ˆ

m´1,
2π

P

˙

! ℓmin , (6.17)

where P is the largest momentum of any of the excitations in the state and 2π{P can be

interpreted as the De Broglie wave length associated to that particular excitation, and

ξ “ m´1 is the system’s correlation length. The length ℓmin is the smallest region’s size

in the partition considered, precisely minpℓ´1, ℓ0, ℓ1q for doubled regions and minpℓ0, ℓ1q

for single regions. Some examples are displayed in Fig. 6.2 for two regions, and Fig. 6.3

(left) for one region. Crucially, the validity regime (6.17) suggests that the entanglement

contributions of excitations riproduce the simple formulae (6.12) as long as the excitations

2This numerical procedure is based on constructing the exact wave functional for the ground state of the
chain in the fundamental-field basis, and the exact branch-point twist operator acting on this basis. It reduces
the problem to a multi-dimensional Gaussian integral. For the entanglement increment, a ratio of the reduced
density matrices of the excited and ground states, the result takes the form of a multi-point function of Gaussian
variables associated to the particles in the excited state, which is evaluated by Wick’s theorem in terms of the
inverse of the corresponding Gaussian kernel. More detail on the equations implemented can be found in
Appendix A of [24].
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may be localised within the entanglement regions i.e. the wave lengths of the excitations

are much smaller than the regions’ lengths. It is indeed in this particular regime that we

can make sense of the probabilistic interpretation provided by the qubit picture.

• Free bosons in higher dimensions: The entanglement increments (6.12) can be

explored also in higher dimensions. In [23] the wave functional method has been used to

study numerically the increments of entanglement entropies in a two-dimensional

harmonic lattice on r0, Ls2. The numerical outcomes perfectly reproduce formulae (6.3)

and (6.4) where now the ris are interpreted as ratios of regions’ volumes and total

system’s volume ri “ vi{V (an example is shown in the right picture of Fig. 6.3). This

suggests that the qubit picture may be applicable to higher dimensional systems. For

the massive boson theory this can be even proven analytically [28]. Of course this first

requires the extension of the notion of twist fields, now acting on multi-dimensional

boundary regions, to higher dimensions. The proof is based on the combined application

of exchange relations of higher-dimensional branch-point twist operators, clustering

properties (i.e. factorization of correlators at large volume) and Wick’s theorem. Indeed

the graph partition functions and all the graph rules discussed in Appendix B can be

derived in this context in terms of Wick contractions in an appropriate Fock space

representation of qubit states. Finally the generalisation to multiple regions seen in

Section 5.6 ensures that even in higher dimensions the excited state entanglement

contributions are independent of the connectivity of the regions involved in the

bipartition.

• Interacting models: In [23] the entanglement increments have been also analysed in

interacting magnonic states. Previous analyses exist [103, 104], which however

concentrated on less universal regimes. In the ferromagnetic Heisenberg chain,

two-particle states with respect to the ferromagnetic vacuum have the simple form

ÿ

x,yPZ

eipx`iqySsgnpx´yqpp, qq| Ò ¨ ¨ ¨ Óx ¨ ¨ ¨ Ò ¨ ¨ ¨ Óy ¨ ¨ ¨ Òy , (6.18)

where Sϵpp, qq is the scattering matrix. More generally, for the purpose of evaluating

large-distance quantities these are abstract states representing two-particle asymptotic

states, with Sϵpp, qq the two-body scattering matrix of the field theory (via the TBA

formalism of integrable QFT [29, 30]). Consider a single entanglement regions of length

ℓ0, explicit computations for entanglemente entropy increments of one- and two-particle
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states such as (6.18) (of equal or distinct momementa) lead to formulae (6.3), (6.14) and

(6.5) (see Supplementary Material in [23] for more detail). There is no need to fix the

momenta via the Bethe ansatz, therefore these results hold for any states of the form

(6.18). Bound states of the Heisenberg chains (Bethe strings) have been studied in [104];

these have an intrinsic length scale ξ (inversely proportional to the bounding energy), and

one can see that in the regime (6.17) and scaling limit (6.1) their entropy contributions

are given by (6.3), suggesting that once more that our results are rather generic and also

valid in interacting theories.

In summary, the entanglement increments associated with zero-density excited states in the

scaling limit discussed here, takes a universal form that we expect to hold for a wide variety

of theories, from interacting QFT models, to higher-dimensional theories and spin chain

models. At the heart of this universality lies the basic assumption of locality, that is, the

assumption that excitations are localized, either because the correlation length is finite and

much smaller than the entanglement regions or because particles have a small De Broille wave

length. Once locality is present, the particular scaling limit taken here, leads to a theory

where the few excitations above the ground state form a zero-density set, that is, in effect

behave as non-interacting degrees of freedom, whose only defining property is their location

within a particular entanglement regions, and the corresponding probabilistic occupancy

distribution of such excitations into the partition considered. In this sense, the qubit picture,

although it is a naive non-interacting model, provides a natural way to display such a simple

locality property, and we expect that interaction and dimensionality are unimportant in this

context. In contrast they will inevitably matter if we consider finite-volume corrections and

also if we do not subtract the ground state contribution.

Finally, it is worth mentioning that, very recently, generalizations of our results have been

published in [108–113]. These works have demonstrated the presence of non-universal

finite-volume corrections as well as finding precise examples (e.g. XY chains) where our

universal formulae cease to apply. These are cases where the assumption of locality is no

longer holds. They demonstrate that, as we have argued here, locality of excitations is an

essential property of all theories where our results apply.
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Figure 6.2 Numerical results for the harmonic chain in two disconnected regions. In both
pictures the parameters are chosen as ∆x “ 0.02, L “ 20 and m “ 1, and the results are
displayed in the cross-section r1 “ r´1 “ R{2. The symbols are numerical data and the solid
curves are obtained from the formula. Left: numerical outcomes for the increment of the 2nd
(red circles), 3rd (green triangles) and 4th (blue squares) Rényi entropies for a state of two
identical excitations with momenta for p1 “ p2 “ 4π. The solid lines are given by formula (6.5)
for n “ 2, 3, 4. Right: Results for k “ 1 and p “ 4π with n “ 2 (red circles), n “ 3 (blue
triangles), and n “ 4 (green squares). The dashed curve is the logarithmic negativity (6.9),
showing once again the gradual change in curvature as n Ñ 1. The colorful lines are obtained
from (6.7) for n “ 2, 3, 4.

Figure 6.3 Comparison between analytic results (continuous curves) and numerical values
(markers) of the 2nd Rényi entropies for two-particle states in two models: the harmonic chain
(left) and the two-dimensional harmonic lattice (right). In both cases the entropies are evaluated
in a single regions, and the solid line are given by (6.3) and (6.14) for n “ 2. Although the
excitations considered in the two cases are of very different momenta and masses, and defined in
two different spacial dimensions, the numerical results reproduce the same functions ∆S1,1

2 and
∆S2

2 in both pictures. Left: we show the 2nd Rényi entropy increments with distinct momenta
given by p1 « 30, p2 « 45 (squares, red curve) and with equal momenta p1 “ p2 « 50 (dots, blue
curve). The other numerical parameters are m “ 1, L “ 10, ∆x “ 0.01. Right: we fix L “ 50
and ∆x “ 1, and explore the 2nd Rényi entropy increments for mass m “ 1 and small momenta
(squares), and for mass m “ 0.001 and large momenta (crosses), both cases satisfying condition
(6.17). Numerical results for distinct momenta p⃗1 “ p0, 0q, p⃗2 “ p0.26, 0q “ p4π{L, 0q (squares)
and p⃗1 “ p2.51, 1.26q “ p40π{L, 20π{Lq, p⃗2 “ p3.14, 0q “ p50π{L, 0q (crosses) perfectly agree
with the upper curve, whereas those for equal momenta p⃗1 “ p⃗2 “ p0.13, 0q “ p2π{L, 0q

(squares) and p⃗1 “ p⃗2 “ p2.51, 1.26q (crosses) are in great agreement with the lower curve.
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CHAPTER

SEVEN

GENERALISED HYDRODYNAMICS OF UNSTABLE

EXCITATIONS

7.1 The model

In part II of this thesis we are going to explore the dynamics of unstable excitations in

integrable models. Remarkably the severe constraints imposed by the infinite-many local

conserved charges, in combination with the low dimensions of the theory, do not forbid the

formation of unstable particles. Unlike stable bound states, which are notoriously a common

feature of most interacting integrable QFTs, unstable bound states are a rare occurrence. The

largest family of relativistic field theories known to possess both integrability and unstable

particles are the homogeneous sine-Gordon (HSG) models. Despite their name, they have

little in common with the sine-Gordon model. In particular, their scattering matrices are

diagonal.

The homogeneous sine-Gordon models can be seen as massive perturbations of a critical

Wess-Zumino-Novikov-Witten model [114–118] associated to cosets Gk{Up1qrg where G is some

simply-laced algebra, k is the level (an integer), and rg is the rank of G. They have been

extensively studied in a series of papers in the late 90s, where their classical and quantum

integrability were established [19, 20], their particle spectrum determined [21], and an exact

scattering matrix eventually proposed [22]. The scattering matrix was then tested extensively

by employing the TBA [29, 30] and the form factor approach [84, 85]. The TBA of these
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models was studied in detail in [31, 45, 119], while the form factors of local operators were

constructed in [120, 121]. The effect of the presence of unstable particles in the renormalisation

group flow (RG-flow) of several quantities was also explored using form factor techniques in

[122, 123]. More recently, the mass-coupling relation was determined [124, 125]. Furthermore,

the HSG models can be seen as particular cases of a larger family of theories, associated to two

simply-laced Lie algebras g and g̃ and known as g|g̃-theories, for which the scattering matrix

is provided in [126].

In this part of the thesis, we focus on the simplest theory of the family which is the

SUp3q2-homogeneous sine-Gordon model. Its asymptotic spectrum consists of two stable

self-conjugate particles of equal masses. Label these stable particles ˘, the S-matrix of the

theory has the following simple form

S˘˘pθq “ ´1, S˘¯pθq “ ˘ tanh
1

2

ˆ

θ ˘ σ ´
iπ

2

˙

, (7.1)

where σ is a free parameter. Hence, the interaction involves only particles of different species,

and the S-matrix reveals some interesting features of the theory, one of this is the parity breaking

S`´pθq “ S´`p´θq ‰ S´`pθq . (7.2)

In addition we have that

lim
|σ|Ñ8

S˘¯pθq “ 1 , (7.3)

which means that in this limit parity symmetry is restored and the theory may be seen as two

independent, mutually commuting free Majorana fermions. For finite σ, the theory is interacting

and the scattering amplitudes S˘¯pθq have a pole outside the physical sheet at θ “ ¯σ´ iπ
2

, in

the strip ´π ď Impθq ď 0. According to Subsection 1.2.2, this pole is associated to an unstable

bound state of the otherwise two free Majorana fermion species. As discussed in [122] from the

Breit-Wigner formula it follows that, for this particular S-matrix,

M2
“ m2

p1 ` coshσq and Γ2
“ 4m2

p´1 ` coshσq , (7.4)

where M is the mass of the unstable particle and Γ its decay width. In this thesis, we will

mostly focus on the regime |σ| " 0, where we have that

M „
1

?
2
me

|σ|

2 and Γ „
?

2me
|σ|

2 . (7.5)
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Thus, the larger |σ| is, the more massive and short-lived the unstable excitation becomes. For |σ|

large, one would then expect a clear separation of energy scales. That is at small temperatures

compared to the scale set by the mass M and decay width Γ, the physics is dominated by the

two free fermions as unstable bound states decay quickly. In contrast, at large temperatures

with respect to this scale, there is enough energy for a finite proportion of particles to be

found within bound states, which re-populate fast enough. At large temperatures, the unstable

particle has nontrivial, large-scale effects. The goal of part II is to obtain a clearer, dynamical

picture of these effects, and to identify the unstable particle in a more physically clear fashion

that goes beyond the pole structure of the S-matrix. The study of the TBA of the SUp3q2-HSG

model, in the next section, provides an important step in this direction.

Without loss of generality, we choose

σ ą 0 (7.6)

for the remainder of this thesis.

7.2 The thermodynamic Bethe ansatz equations

The starting point of the TBA approach is provided by some equations that we have

introduced in Section 3.3.2 in a quite different context: the Bethe-Yang equations. these

equations are simply the outcomes of dragging particles ˘ along the world line1. For the

SUp3q2-HSG model [31] we have:

eiLm sinh θ˘

S˘¯pθ˘
´ θ¯

q “ 1 . (7.7)

where θ˘ are the rapidity associated to particles ˘. The logarithm of the equation above (times

´i) gives:

Lm sinh θ˘
´ i logS˘¯pθ˘

´ θ¯
q “ 2πJ˘ . (7.8)

where ´i logS˘¯ are scattering phases and J˘ are integers. For a given set of quantum numbers

tJ˘
i uN˘ there will be a set of Bethe-Yang solutions tθ˘

i uN˘ , these are usually called roots. There

1The reader may note that such condition is less trivial for HSG-models with richer particle spectra. Due to
the parity violation it actually matters if the particles are moved clockwise or anticlockwise along the world line
and this leads to two different quantization conditions. In the case of the SUp3q2-HSG model, since there are
only two particles there is actually no difference between the two choices and we accordingly implement only
one quantization condition.
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might be also quantum numbers not allowed for the system. Solutions of the equation above

obtained with these quantum numbers are usually called holes. The TBA equations are obtained

from (7.8) in the thermodynamic limit, i.e. when L Ñ 8, N˘ Ñ 8 with N˘{L kept fixed

[29, 30]. In this limit we can introduce the following quantities: the densities of states ρspθ; ˘q

and the quasiparticle densities or spectral densities ρppθ; ˘q, i.e. the density of states filled

by the quasiparticles in the rapidity interval rθ, θ ` dθs. We can then define the quasiparticle

occupation numbers :

npθ; ˘q :“ ρppθ; ˘q{ρspθ; ˘q , (7.9)

which are related to the pseudoenergies through the equation:

npθ; ˘q “
1

1 ` e εpθ;˘q
. (7.10)

The TBA equations can be expressed as non-linear integral equations for the pseudoenergies:

ε˘
pθ; ˘q “ wpθq ´ φ˘¯ ‹ Lpθ; ¯q , (7.11)

Below, we explain all the ingredients of the equation above. The quantity wpθq is called TBA

driving term and is an intrinsic way of fixing the macroscopic state. Indeed it determines the

weight of the states in the ensemble, it is such that every state formed of rapidities tθiu has

weight expr´
ř

iwpθiqs. In the case above, since we are at equilibrium, we have implicitly

considered a thermal state2:

wpθq “ mβ cosh θ , (7.12)

where the parameter β is the inverse of the temperature T . The interaction enters in the kernels

φ˘¯pθq, which are formally defined as the rapidity derivatives of the scattering phases (times

´1). In our theory they are simply:

φ˘¯pθq :“ ´i
d

dθ
logS˘¯pθq “

1

coshpθ ˘ σq
. (7.13)

The integral part of the equation is incorporated in the convolution, which is denoted by ‹ on

the right hand side of the same equation. We define the convolution as:

a ‹ bpθq :“
1

2π

ż 8

´8

apθ ´ θ1
qbpθ1

qdθ1 , (7.14)

2For the theory and the set-ups considered in this thesis, the TBA driving term is the same for both particles
˘, and for this reason, we have omitted the particle species in their arguments.
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the L-functions depend on the pseudoenergies and implement the non-linearity of the equation

Lpθ; ˘q “ ln
´

1 ` e´ε˘pθ;˘q
¯

. (7.15)

Note that when the two particles ˘ behave as free Majorana fermions φ˘¯ « 0 the TBA

equation is εpθ; ˘q “ βm cosh θ where m cosh θ is simply the single-particle energy eigenvalue.

For interacting regimes, the TBA equations (7.11) can be solved analytically only at very high

temperature, where it is possible to implement the so-called constant TBA (see e.g. [31] for a

treatment in the present model). For this reason, we need to investigate the equations above

numerically. Indeed there exists a standard recursive procedure to solve numerically TBA

equations, of which the state (via the TBA driving term), and the theory (via the kernel)

provide the only inputs. This numerical procedure typically shows fast convergence to the

numerical solutions (after very few iterations). For the SUp3q2-HSG model, we provide a

numerical recipe in Appendix C.

Thus the TBA solutions can be explored numerically as functions of the temperature T (or

analogously of β “ 1{T ) and of the parameter σ, and the TBA quantities introduced above can

be accordingly expressed as functions of these parameters once the pseudoenergies have been

computed. Furthermore, an important observation is that the equations (7.11) can be mapped

into

ϕpθ; ˘q “ βm cosh
´

θ ¯
σ

2

¯

´ pφ ‹ Kqpθ; ¯q with φpθq :“ sech θ . (7.16)

for the shifted functions

ϕpθ; ˘q :“ ε˘
pθ ¯

σ

2
q and K˘

pθq “ log
`

1 ` e´ϕpθ;˘q
˘

. (7.17)

Note that under this shift and a change of variables in the convolution integral, the

σ-dependence of the TBA kernel is eliminated so that it is now only explicit in the TBA

driving term.

Then, if σ or θ are large and positive we can approximate

ϕpθ; ˘q “ e¯θ´κ
´ pφ ‹ Kqpθ; ¯q (7.18)
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Figure 7.1 TBA scaling function of the SUp3q2-HSG model for various σ. The mass is m “ 1
in all cases.

where

κ “ logp2T q ´
σ

2
. (7.19)

This shows that for σ large enough, the TBA equations and their solutions are function of the

parameter κ and rapidity only. Interestingly the variable κ gives an indication on energy scale

of the system (in the variable logp2T q), in particular we have that

T Á M ðñ κ Á 0 Interacting Regime (7.20)

T „ M ðñ κ „ 0 Formation of the unstable particle (7.21)

T À M ðñ κ À 0 Non-interacting Regime (7.22)

where M is the mass of the unstable excitation defined previously.

7.2.1 The TBA scaling function

The three regimes (7.20), (7.21), and (7.22) can be better understood by analysing the TBA

scaling function, formally defined as:

cpT q “
3m

π2T

ż 8

´8

dθ cosh θpLpθ; `q ` Lpθ; ´q q . (7.23)

A natural way to plot this function is against r “ log 2T (or similarly ´ log β{2) as this variable

gives information on the energetic regime of the theory according to the definition (7.19) and

the regimes identified earlier. Numerical results for the function (7.23) were first presented [31].

In this paper, a common feature of the HSG-models was observed, that is, that many physical
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quantities, such as the function above develop staircase patterns.

In Fig. 7.1 the function (7.23) has been calculated for various values of σ by using a software

called iFluid (this will be used in Chapter 9, numerical details are given in Appendix D). The

position and size of the steps (or plateaux) reflect the interpretation of cprq as a function

describing the RG-flow between the two fixed points of the theory. This is also in accordance

with the separation of energy scales discussed in the previous sections.

Indeed, for large σ, at temperatures that are large with respect to the mass scale m but small

with respect to the separation scale M (that is negative κ ), the theory reaches the UV limit

of the two-free-fermion theory, with central charge c “ 1. In contrast, for temperatures beyond

this separation scale (positive κ ) the UV fixed point is determined by the coset SUp3q2{Up1q2

and corresponds to c “ 6
5

“ 1.2. The various curves correspond to different values of σ with

a step, occurring around σ
2

(κ “ 0), and representing the on-set of the interaction. Thus

at intermediate values of temperatures we observe that the flow approaches these two fixed

points in succession, giving rise to the staircase pattern that is typical of this model. From the

RG-viewpoint, this pattern reflects the presence of a larger amount of degrees of freedom as

energy is increased, interaction is turned on, and the unstable particle is formed.

It is worth noting that staircase patterns in RG flows are also found for other theories,

typically the roaming trajectory model [127, 128] and generalizations thereof [129]. However a

direct connection to unstable excitations is missing in those cases.

7.3 Generalised Hydrodynamics

We stress that unstable excitations are not part of the asymptotic states, and thus their

dynamics cannot be directly described by the usual scattering picture (seen in Chapter 1).

For this reason unstable particles are typically hard to study and their dynamics can be only

outlined indirectly, in terms of the stable constituents.

In the next two chapters we will explore the SUp3q2-HSG model in two different

out-of-equilibrium set-ups and analyse several dynamical quantities associated to the stable

particles. The out-of-equilibrium physics is the most natural context to seek signatures of

instability in the physical quantities of individual particles. We can then use these signatures

to identify the unstable excitation and study its dynamics. The main tool we employ in order

to compute such quantities is the generalized hydrodynamic approach (GHD), a leading
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method in the study of the dynamics of many-body quantum systems, particularly integrable

ones [32, 33, 130]. In this section we want to introduce this approach and its application to

the study of unstable particles.

To explain the basis of GHD we start from a very general example. Suppose we have a

certain system originally at equilibrium, and we engineer a set-up to drive the system

out-of-equilibrium, for instance, by preparing independently two semi-infinite homogeneous

quantum systems at different temperatures and let these evolve at time t ‰ 0 (this set-up is

exactly what we consider in the next chapter, and is generally known as partitioning protocol).

After a transient period, the system may thermalise. This is indeed the typical situation we

study in thermodynamics where the system reaches a new equilibrium, described by the Gibbs

ensemble. The thermodynamic quantities (free energy, entropy, etc...) are accordingly local

averages in the new macroscopic state, evaluated though the partition function:

Z(GE)
„ Trt e´β Ĥ

u , (7.24)

where Ĥ represents the energy operator and β “ 1{T is the inverse of the temperature.

However, the intersection of low dimensionality and multiple conserved charges may give rise

to a distinct kind of dynamics, one in which there is no long-term thermalization (an example

is the quantum Newton’s cradle experiment [131]). This behaviour is due to the fact that the

multiple conserved charges are involved in determining the long time dynamics, and need to

be included in the dynamical description by extending the concept of Gibbs ensemble to

generalized Gibbs ensemble (GGE) [34]. In GGE, the partition function accounts for multiple

conserved charges Q̂i in the system:

Z(GGE)
„ Trt e´

ř

i βi Q̂i u , (7.25)

where the generalised inverse temperatures βis are the Lagrangian parameters associated to the

conserved charges Q̂is. As a consequence, quantum integrable models, do not thermalise (to

Gibbs ensembles) but instead equilibrate to GGEs. Precisely, in the set-up designed above, the

presence of multiple local conserved charges give rise to ballistic transport meaning that, after

a transient period, steady state currents flowing between the right and left subsystems emerge

(see [132] for a review). The GHD approach provides a method to compute such currents, as

as we will see in Chapter 8.
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Furthermore, out-of-equilibrium systems are typically characterised by a time- and

space-dependence of the local observables, which reflect the inhomogeneities of the state. The

GHD approach works at the mesoscopic scale, and the “hydrodynamics” enters the picture

through the concept of fluid cells: a fluid cell is a region of space-time which is small enough

for the state to look homogeneous, whilst containing a large enough number of particles. The

assumption of local entropy maximization, also known as GHD principle, enters naturally in

this context. Technically, this is the assumption that averages of local quantities tend

uniformly enough, at large times, to averages evaluated in GGE states of the form (7.25),

involving all the local and quasi-local charges of the system3, with space-time dependent

potentials βipx, tq:

xOpx, tqy « xOp0, 0qyβpx,tq , βpx, tq :“ pβ1px, tq, β2px, tq, . . . q . (7.26)

The above assumption is particularly meaningful in integrable models, where we are equipped

with a specific methodology to evaluate exact expectation values of currents and densities

associated to the local conserved charges of the theories. This is indeed the methodology

given by the TBA discussed in the previous section (which can be generalised to GGEs [134]),

and to a large extent by the scattering picture introduced in Chapter 1 as it provides the

main ingredients for the TBA equations. In the context of integrable models GHD was first

introduced in [32] in QFT, and in [33] in quantum chains. Since the original papers, a lot of

developments have been achieved, such as the inclusion of force terms [135–138], diffusive and

higher corrections [139–142], noise [143], integrability breaking terms [144–146]. There is now

even experimental evidence that GHD provides a better description of transport in an atom

chip than conventional hydrodynamics [147].

Another interesting development is the inclusion of theories possessing unstable excitations.

This was first implemented in [35] for the SUp3q2-HSG model in the simple set-up described

earlier. In [36, 148] the same theory has been recently explored in inhomogeneous set-ups.

In Chapters 8 and 9 we will make full use of the GHD approach to study numerically the

out-of-equilibrium dynamics arising from these set-ups and, for this reason, we focus only on

the SUp3q2-HSG model for the remainder of the thesis.

3Here, with local or quasi-local conserved charges we mean quantities of the form Qi “
ş

dxqipx, tq such that
BtQi “ 0 and that the density qipx, tq is local i.e. supported on finite regions, or quasi-local i.e. supported on
infinite regions but with an “envelope” that decays sufficiently fast. A review of quasi-local charges in integrable
discrete systems can be found in [133].
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7.3.1 Quasiparticle description via TBA

As mentioned earlier GHD requires a quasiparticle description. The TBA approach

introduced in Section 7.2, combined with the GHD principle, can be naturally extended for

such a purpose. The main difference is that now we need to implement GGE macroscopic

states and such a change enters in the TBA equations via the TBA driving term:

wpx, t, θq “
ÿ

i

βipx, tqhipθq , (7.27)

Above, the single-particle eigenvalues hipθq4 of all local conserved charges of the system are

included, and the corresponding generalized inverse temperatures βipx, tq are fluid-cell

dependent (that means they incorporate the space- and time-dependence of the state). As a

consequence, all TBA quantities will generally be functions of space and time. In particular

the TBA equations become

εpx, t, θ; ˘q “ wpx, t, θq ´ φ˘¯ ‹ Lpx, t, θ; ¯q , (7.28)

where the kernel is given exactly by (7.13), the convolution is (7.14), and the L-functions are

now time- and space- dependent via (7.15). From these objects, averages of all local operators

can in principle be calculated. We will concentrate on densities qipx, tq of conserved charges

Qi “
ş

dxqipx, tq, and their currents jipx, tq satisfying:

Btqipx, tq ` Bxjipx, tq “ 0 . (7.29)

For these quantities, simple expressions exist. Their averages are fully fixed by giving the

one-particle eigenvalues of the associated conserved charge, hipθq. The averages are obtained

by using the “dressed” quantities hdri px, t, θ; ˘q, which solve the linear integral equations

hdri px, t, θ; ˘q “ hipθq ` φ˘¯ ‹ phdri px, t, θ; ¯qnpx, t, θ; ¯q q (7.30)

where

npx, t, θ; ˘q “
1

1 ` eεpx,t,θ;˘q
(7.31)

4Since in the model considered the eigenvalues hipθq are the same for both particles, following a similar
argument as for Section 7.2, we drop the dependence of ˘ to simplify the notation.
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is the occupation function associated to particle ˘. Equations (7.30) are simply another way

to express the TBA equations (7.28) and the dressing operation represents the action of the

interactions on the eigenvalues hipθq. Note the dressing operation make these quantities space-

and time-dependent, and as a result the dressed quantity will be generally different for each

particle ˘.

Specifically, the GGE averages of local charge densities qi and of their associated currents

ji are defined via the GHD principle (7.26) as:

qipx, tq “ xqip0, 0qyβpx,tq , jipx, tq “ xjip0, 0qyβpx,tq , (7.32)

(recall that β was the set of generalized inverse temperatures in the GGE), and are expressed

as

qipx, tq “
ÿ

b“˘

ż 8

´8

dθ

2π
epθq hdri px, t, θ; bq npx, t, θ; bq

“
ÿ

b“˘

ż 8

´8

dθ

2π
edrpx, t, θ; bq hipθq npx, t, θ; bq , (7.33)

and

jipx, tq “
ÿ

b“˘

ż 8

´8

dθ

2π
ppθq hdri px, t, θ; bq npx, t, θ; bq

“
ÿ

b“˘

ż 8

´8

dθ

2π
pdrpx, t, θ; bq hipθq npx, t, θ; bq . (7.34)

Above the energy and momentum one-particle eigenvalues are epθq “ m cosh θ and ppθq “

m sinh θ. We have also used a symmetry of the equations that allows us to interchange the

“dressing” operation inside the integral and the sum.

There are a number of natural conserved charges available in the model. In this thesis we

will focus only on the energy and particle number. Their single-particle eigenvalues are:

h0pθq “ 1 pparticle numberq

h1pθq “ epθq “ m cosh θ penergyq . (7.35)

Further, as the scattering is diagonal, the number of particles, energy and other charges carried

by each individual particle type are also conserved charges themselves. We will use the notation
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q˘
i and j˘

i for the associated average densities and currents, which therefore take the form

q˘
i “

ż 8

´8

dθ

2π
edrpx, t, θ; ˘q hipθq npx, t, θ; ˘q , j˘

i “

ż 8

´8

dθ

2π
pdrpx, t, θ; ˘qhipθqnpx, t, θ; ˘q .

(7.36)

Note how the particle types are not summed over in these expressions.

In the next chapters we will focus our attention on two intermediate functions in the above

expressions: these are the spectral densities (already introduced for the equilibrium case in

Section 7.2), and the effective velocities (which first appeared in [149]),

ρppx, t, θ; ˘q “
1

2π
edrpx, t, θ; ˘qnpx, t, θ; ˘q , veffpx, t, θ; ˘q “

pdrpx, t, θ; ˘q

edrpx, t, θ; ˘q
, (7.37)

respectively.

The spectral densities define the density of the two quasiparticles ˘ in the phase-space

and are a conserved quantity. Specifically, at fixed time t the quantity ρppx, t, θ; ˘qdθ dx

represents the number of particles of type ˘ in a phase-space element dθ dx, while

veffpx, t, θ; ˘q ρppx, t, θ; ˘q dθ dx is the associated current. Furthermore, with the quasiparticle

description introduced above, the effective velocities possess a very clear physical meaning.

Indeed according to the GHD equations [32]:

Bt npx, t, θ; ˘q ` veffpx, t, θ; ˘q Bx npx, t, θq “ 0 , (7.38)

they represents the propagation velocities of the convective evolution of the occupation

functions, identified with the normal modes of particle ` and ´ respectively. In particular, at

a given fluid cell px, tq the effective velocities are

veffpx, t, θ; ˘q “ vgrpθq `

ż

dα
φ˘¯pθ ´ αq

epθq
ρppx, t, θ; ¯q

`

veffpx, t, α; ¯q ´ veffpx, t, θ; ¯q
˘

,

(7.39)

and can be seen as a modification of the group velocity vgrpθq “ ppθq{epθq of each quasiparticle

under the effect of the interaction.

7.3.2 Effects of parity violation on scattering dynamics

In the next two chapters we will study numerically the average particle and energy densities

and currents, as well as the spectral density and the effective velocities. Before doing so, one

can already predict certain properties of the dynamics of the model from the structure of the
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kernels (7.13) in the above TBA description.

-20 -10 0 10 20
0

0.5

1

-20 -10 0 10 20

Figure 7.2 Kernels φ˘,¯pθq of the SUp3q2-HSG model, for σ “ 20. Analytical formulae are
given by (7.13).

We conclude this chapter with a few observations, based on Fig. 7.2:

• Parity breaking: We have seen that in the TBA/GGE equations (7.30) the interaction

enters in the kernel, in integrable QFT this has standard properties, such as a fast decay at

large |θ|, characteristic of the local interaction of the model, as well as interaction peaks

around θ “ 0. For instance, the sinh-Gordon kernel at the self-dual point is 2 sech θ,

which satisfies the two properties. However, the kernels (7.13) are exceptional in that as

they are peaked around a rapidity that is generally non-zero. Indeed, due to (7.2) TBA

quantities are not symmetric in θ even though they are identical under the simultaneous

change of signs of rapidities θ Ñ ´θ and particle types ˘ Ñ ¯. This is a remnant of

the fact that the the scattering phases (7.1) themselves, and the underlying action of the

model, break parity.

• Scattering: The kernels are maximal at θ “ ¯σ, taking values φ˘¯p¯σq “ 1, and rapidly

decreasing functions away from their maximum (i.e. sech θ is strongly peaked around zero).

For instance, for σ ą 0, this means that φ`´pθq is maximal for θ “ ´σ ă 0. Recalling

that θ “ θ1 ´ θ2 is the difference of the rapidities of the two incoming particles with

types ϵ1 “ ` and ϵ2 “ ´, we see that, for σ large and positive, the scattering can be

nontrivial only in the region θ1 ă θ2. This, physically, corresponds to a collision where

the particle of type ´ moves towards the right, and that of type ` towards the left, in

the rest frame. Analysing φ´`pθq, the same conclusion is reached upon exchanging the

roles of ˘ particles. Thus nontrivial scattering occurs only in one direction, for σ ą 0

when particle ´ travels rightwards towards particle ` (and the opposite for σ ă 0),
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and it is this scattering that is expected to give rise to the unstable particle. For this

reason, the functions of interest have quite different behaviours for θ ą 0 and θ ă 0 for ˘

particles, with one choice giving the free fermion result and the other what we can term

an “interaction” result.

• Separation into right- and left-movers: We have seen in equation (7.39) that the

propagation velocities of the individual particles are generally different from their group

velocities as a result of particle interactions. Furthermore, it emerges from comparison

with soliton gases and the flea gas model [150] that the value of the kernels can be

interpreted as the distance jumped by particles upon collision. Positive kernels give the

“natural” picture, whereby a tagged particle, travelling rightwards (leftwards) and hitting

another particle, experiences a jump leftwards (rightwards), by the amount given by the

scattering kernel. Thus, from the previous point, we expect that, say for σ ą 0, particle

` (´) is mostly hit from the left (right) and therefore is mostly displaced toward the right

(left); its effective velocity will receive a positive (negative) correction, as compared to its

group velocity. We may therefore broadly identify particles of type ` with right-movers,

and of type ´ with left-movers. This picture becomes exact near the UV fixed points,

and will be further investigated numerically in the next chapter.
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CHAPTER

EIGHT

SET-UP 1: PARTITIONING PROTOCOL

8.1 The bipartite quench

In Chapter 7 we have introduced the GHD equations and the corresponding TBA description

for the SUp3q2-HSG model. We want now to engineer an out-of-equilibrium set up by employing

the partitioning protocol. This is the easiest way to drive a system out-of-equilibrium and, as

seen in Section 7.3, the dynamics arising from this particular quench protocol is well understood,

leading to a clear separation between integrable and non-integrable systems.

We consider two semi-infinite systems, described by two Gibbs ensembles at inverse

temperatures βR,L for the right (left) baths such that the initial state is homonegeous

everywhere, except at the separation point x “ 0. We assume that the two halves are of the

same nature, and described by a SUp3q2-HSG model (with the same free parameter σ). When

putting the two systems in contact at t “ 0, flows of energy and other charges are

immediately produced. After waiting long enough, relaxation occurs and these flows are

expected to reach a steady regime in a region close enough to the contact point. As pointed

out in Section 7.3, the nature of this steady regime is non-trivial in integrable models, as

non-equilibrium steady states are produced in the intermediate region between subsystems,

carrying non-trivial flows. These flows are powered by the original baths that act as

asymptotic reservoirs. As seen in Subsection (7.3.1), hydrodynamic conservation equations

and TBA equations can be combined to characterize the currents of the system. Remarkably,
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Figure 8.1 Dynamics of integrable systems after a bipartite quench. After a sufficiently large
time the system is described by a continuum of GGE states with generalised inverse temperature
βpξq parametrised by the ray ξ “ x{t. The large-time evolution is characterised by emergent
steady state currents within the light cone ξ “ ˘1 (for relativistic systems) originated at the
contact point at time t “ 0. Picture taken from [32].

in the set-up designed above, GHD solutions for the large-scale non-equilibrium occupation

functions are known [32, 33] and are simply:

npξ, θ; ˘q “ nRpθ; ˘q Θpθ ´ θ˘
ξ q ` nLpθ; ˘q Θpθ˘

ξ ´ θq, (8.1)

where the time- and space-dependence is included in θ˘
ξ , which is a function of the ray ξ “ x{t,

and Θ is the Heaviside step function. The resulting large-scale evolution of the system is

represented graphically in Fig. 8.1. Thus, to determine the solutions of the occupation functions

at any fixed ray ξ, we need two ingredients: nL,Rpθ; ˘q and θ˘
ξ . The former are the occupation

numbers in the original baths, and can be evaluated by the TBA equations (7.11) with driving

terms ωL,Rpθq “ mβL,R cosh θ (as expected, for ξ Ñ ˘8, (8.1) reproduces the original bath

of the right and left subsystems, respectively). The latter are the discontinuity positions θ˘
ξ ,

which are solutions to the equations:

veffpξ, θ˘
ξ ; ˘q “ ξ . (8.2)

Above, the effective velocities are assumed to be monotonic functions of rapidity, which

guarantees a unique solution at any fixed ray ξ. We remark that the equations above require

the implementation of the TBA equations and for the reason explained in Section 7.2, they

are solved numerically.

Another important observation is that for CFT the total energy current and total energy

density are known in this particular quench protocol. These were indeed investigated in [151,
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152] and found to be homogeneous within the light cone ξ “ ˘1, in particular

j1
CFT
“

c π

12
pT 2

L ´ T 2
R q and q1

CFT
“

c π

12
pT 2

L ` T 2
Rq , (8.3)

where c is the central charge and as usual TR,L “ β´1
R,L. This result will be useful in the next

section to described the UV regime of the system.

8.1.1 Numerical analysis

In the rest of this chapter, we will present the numerical results reported in [35] and obtained

by implementing standard TBA numerical methods. We provide a more detailed description

of the algorithm in Appendix C. In our analysis we look at the “ray” located exactly in the

middle of the steady-state region so that we fix

ξ “ 0 . (8.4)

Our numerics have shown that the physical picture does not change substantially for other rays.

At ξ “ 0, the equations become:

npθ; ˘q “ nRpθ; ˘q Θpθ ´ θ˘
0 q ` nLpθ; ˘q Θpθ˘

0 ´ θq , veffpξ, θ˘
0 ; ˘q “ 0 . (8.5)

Above, as well as in the remainder of this chapter, we omit the ξ-dependence of GHD quantities

in order to simplify the notation. Hence, at ξ “ 0, the θ˘
0 are simply the zeros of the effective

velocities, and equation (8.2) accordingly expresses the fact that the occupation functions of

particles with positive (negative) effective velocities take the form of those in the original

ensembles on the left (right) sub-system.

To conclude this section, we provide some basic information on the physical parameters and

motivation for the corresponding domain explored in our numerical simulations. In much of

our analysis we will fix the ratio of temperatures and vary βL only. It is thus convenient to

introduce the following variable

x “
βR
βL

, (8.6)

(not to be confused with the position variable which is never explicitly used in this chapter).

Hence the ratio x defines the initial state of the system and gives rise to non equilibrium

dynamics for x ‰ 1. In particular, x ą 1 (x ă 1) corresponds to introducing a positive

(negative) temperature gradient TL ą TR (TL ă TR) in the system. Now, we may easily observe
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that if |x| is too large, the resulting large-time dynamics will be almost fully determined by

only one side of the system, that is the one at highest temperature. This will be confirmed by

our numerics, and indeed we have found the most interesting physics when |x| À 3 and thus

when the two inverse temperatures are comparable.

We will also study the system at x “ 1 which corresponds to the system at equilibrium.

Although the equilibrium properties of this model have been studied at length using TBA

techniques [31], we find that the new ideas brought by the recently developed hydrodynamic

picture shed new light into the main features of the theory, especially the nature of the

unstable particle (this will be analysed in detail in Section 8.3). In addition, understanding

the equilibrium case in terms of its underlying hydrodynamic properties will be extremely

helpful when interpreting the out-of-equilibrium dynamics.

Finally, it is well known from standard equilibrium TBA arguments that non-vanishing

values of the functions Lpθ; ˘q and npθ; ˘q are strongly localized in the range

log
β

2
ă θ ă log

2

β
, (8.7)

as the functions fall off double-exponentially outside this range. In out-of-equilibrium set-ups

β “ mintβL, βRu. In our numerics we will exploit this property to implement numerical integrals

of TBA functions of interest.

Throughout the remainder of this chapter we will set the mass scale to m “ 1. We are now

ready to analyse several quantities of interest. We will start from energy current and energy

densities in the next section.

8.2 Hydrodynamic scaling functions

One of the most effective ways to visualize the effect of the unstable particle is to look at

temperature-dependent quantities, for a wide range of temperatures. For instance, in Section

7.2.1 we have studied, the temperature-dependence of the TBA scaling function (7.23), and

established that the resulting staircase pattern is connected to the degrees of freedom of the

theory, and in particular to its RG-flow. Interestingly, when connecting two halves of

temperature ratio x, many GHD quantities display similar information if explored as

functions of the initial inverse temperature βL (or similarly βR).
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Figure 8.2 The scaled energy current as a c-like function for several values of σ and temperature

ratio x “ 30. The plateaux are located at β2
Lj1

CFT
“ π

12
p1 ´ 1

900
q “ 0.261508 and β2

Lj1
CFT
“

π
10

p1 ´ 1
900

q “ 0.31381. Similarly to the TBA-scaling function plotted in Fig. 7.1, the scaled
energy current encodes information about the RG-flow, but for out-of-equilibrium systems.

An example is shown in Fig. 8.2 , where we have evaluated the energy current (7.34) for

i “ 1, scaled it by a factor β2
L, and plotted the results for various σ. Multiplication by β2

L is

dictated by the CFT result (8.3), and is a convenient way to reveal a staircase pattern which

reflects the presence of two UV fixed points (with central charges c “ 1 and c “ 1.2), reached

for (relatively) low and high temperatures as previously described in Section 7.2.1. Similar

scaling patterns can be found for the total energy density (7.33). Therefore, one may think of

the quantities 12|j1|β2

π
, 12q1β

2

π
, where β is the largest temperature, as new scaling functions. This

idea is however not new. Indeed many such scaling functions were proposed in the work [153]

and, more recently, for the roaming trajectories model in [154].

Under the above considerations the corresponding growth of degrees of freedom observed

at the onset of the unstable particle, can be measured in terms of some very concrete physical

quantities such as the energy flows and densities, and this can help us to outline a more physical

understanding of the unstable bound states. Following this idea, in the next two subsections

we set σ “ 20 and analyse the equilibrium and out-of-equilibrium energy currents and energy

densities of the individual particles.

8.2.1 Equilibrium energy currents and energy densities

We start from the system at equilibrium (i.e. both baths at the same inverse temperature

β :“ βL “ βR that is x “ 1). The numerical outcomes for energy currents and energy densities

as functions of log β{2 are shown in Fig. 8.3. Looking at this figure, we can identify the following
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Figure 8.3 We consider the system at equilibrium i.e. x “ 1, and set the parameters m “ 1,
and σ “ 20. Left: The total scaled energy current β2j1 (squares, green), the contribution β2j`

1

(triangles, red) and β2j´
1 (circles, blue). Right: The total scaled energy density β2q1 (squares,

green), the contribution β2q`
1 (triangles, red) and β2q´

1 (circles, blue).

properties:

• Parity breaking: Although the total energy current is zero at equilibrium (as expected),

the individual contributions from ˘ particles are non-vanishing (and opposite) for some

energy scales. This is allowed due parity breaking in the theory. More precisely, in

TBA, under parity, the signs of the currents and the particle types are exchanged. Here

we observe that this gives rise to a negative (positive) energy current carried by ` (´)

particles.

• Onset of the unstable particle: The individual particle contributions to the energy

density and current, and also the total energy density, display a staircase pattern with

a step whose onset is located around log β
2

“ ´σ
2

“ ´10 . This energy value represents

the onset of the unstable particle. For log β
2

ą ´σ
2

the individual contributions to the

current are vanishing as this is the regime where the theory behaves as two decoupled free

fermions and parity is restored. Energetically speaking, this is the region where energy is

not high enough to allow for the formation of the unstable excitation.

• CFT values: The staircase patterns observed for the individual contributions to the

energy density are identical, because parity preserves the sign of the energy. Their two

plateaux can be predicted from CFT. For lower temperatures log β
2

ą ´σ
2

the energy

densities tend to their massless free fermion value,

β2q˘
1

FF
“ lim

βÑ0

β2

2π

ż 8

´8

dθ
cosh2 θ

1 ` eβ cosh θ
“

1

π

ż 8

0

u

1 ` eu
du “

π

12
“ 0.261799 . (8.8)
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This corresponds exactly to the height of the lowest plateau of the lower curve on the

right panel of Fig. 8.3. Similarly, the highest plateau is located at the value

β2q˘
1

CFT
“

πc

12
“ 0.314159 , (8.9)

which is the CFT result for c “ 1.2.

8.2.2 Out-of-equilibrium energy currents and energy densities

In this subsection we discuss the main features of the out-of-equilibrium energy currents and

energy densities for different temperature ratios, focussing on the main changes with respect

to the equilibrium situation. Our discussion focusses on Fig. 8.4. The main important features
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Figure 8.4 The total (scaled) energy current β2
i j1 (squares, green), the contribution β2

i j
`
1

(triangles, red) and β2
i j

´
1 (circles, blue) and similarly for the energy density. We consider the

cases x “ 3{2 (i “ L) and x “ 2{3 (i “ R). In all cases σ “ 20,m “ 1.

are the following:

• Symmetry: A clear feature from the pictures is the following symmetry under the

exchange x Ñ x´1 (or βL Ø βR):

j˘
1 pβL, βRq Ñ ´j¯

1 pβR, βLq and j1pβL, βRq Ñ ´j1pβR, βLq , (8.10)
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and similarly

q˘
1 pβL, βRq Ñ q¯

1 pβR, βLq and q1pβL, βRq Ñ q1pβR, βLq . (8.11)

This is in agreement with the parity symmetry of the TBA equations.

• Conformal limits: The height of the plateaux is predicted as in the equilibrium case

by the formula (8.3). For instance, for x “ 3{2 the scaled total current has plateaux at

β2
Lj1

CFT
“

πc

12

ˆ

1 ´
4

9

˙

“
5πc

108
, (8.12)

which gives values 0.174533 and 0.145444, for c “ 1.2 and c “ 1, respectively. The same

holds for the total spectral density:

β2
Lq1

CFT
“

πc

12

ˆ

1 `
4

9

˙

“
13πc

108
, (8.13)

predicting the values 0.453786 and 0.378155 for c “ 1.2 and c “ 1.

• Unstable particle onset: In all figures we also see the location of the start of the

plateau at ´σ{2 “ ´10 with respect to the scales log
βL,R
2

. In fact, quantities associated

with particle ` develop a plateau for log βL
2

ą ´σ
2

whereas for particles of ´ type the

plateau’s onset occurs at log βR
2

“ ´σ
2
. This is hardly detectable in these figures because

log 3
2

“ 0.405... and therefore there is little difference between the values log
βL,R
2

; but we

have verified this fact for larger values of x. Such a difference is also evident in other

out-of-equilibrium quantities we will analyse in Section 8.4, in particular in Fig. 8.9.

• Particles couple mainly to one bath: The previous point suggests that type `

particles are particularly sensitive to the value of βL whereas particles of type ´ couple

strongly to the value of βR. This is related to the structure of the kernels described in

Subsection 7.3.2 and also to the structure of the occupation numbers (8.1). For particle

` this means that it will feel strong interaction with particle ´ only when θ ă 0 and close

to ´σ. At the same time, for θ ă 0 the occupation number is largely described by its

equilibrium value on the left bath (see Fig. 8.9 for more details) and so particle ` mainly

interacts at inverse temperature βL. A similar argument can be made for particle ´.

• Equilibrium currents vs temperature gradient: In contrast to the equilibrium case,

here both particle type contributions to the currents have the same sign, although they
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are different from each other. For x ą 1 both contributions are positive, even though

the contribution of particle ` is always smaller (the opposite is true for x ă 1). This

change can be explained as the result of interference (sometimes constructive, sometimes

destructive) between two phenomena: the equilibrium dynamics and that induced by the

temperature gradient. If x ą 1 we have that TL ą TR and so from the temperature

gradient we expect a positive current. However, for particle ` the equilibrium current

would have the opposite sign and so, even if temperature “wins” in the end, we still have a

reduced current. For particle ´ on the other hand both the gradient and the equilibrium

tendency support a positive current, so its total contribution is enhanced. The opposite

effect is seen for x ă 1.

In summary, the growth observed in Fig. 8.2 at intermediate temperatures (i.e. log β
2

À ´σ
2

)

of the original baths, can be interpreted as a combined effect of the formation of unstable bound

states and the emergent obstacle that the temperature gradient creates to such formation when

the system is driven out of equilibrium. The formation of the unstable particles, and the

corresponding increase in degrees of freedom captured by the scaling functions, seems closely

related to the dynamics of the individual particles, and in particular to the scattering processes

that determine the sign of the individual energy currents in Fig. 8.3, even at equilibrium. This

will be further investigated in the next section.

8.3 Equilibrium physics with unstable particles

Following the conclusion of the previous section, we want now to give a closer look at the

scattering dynamics of the two stable quasiparticles, and this can be better understood if we

look into rapidity-dependent TBA/GHD functions. We now focus on two very fundamental

phase-space quantities, namely, the spectral densities and the effective velocities, defined in

(7.37). For the SUp3q2-HSG model , this phase-space analysis was first conducted in [35],

and was motivated by the important roles of both quantities ρ˘
p and veff in GHD. However,

these quantities can be of course explored also at equilibrium as they are both functions of the

occupation functions npθ; ˘q. Remarkably, a very interesting physical picture of the unstable

bound states emerges already at equilibrium, and we want indeed to discuss this in detail in

Subsection 8.3.3.

In the next two subsections, we will investigate further the equilibrium dynamics of the

two stable particles by studying the two phase-space quantities of interest separately in three
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different regimes. Indeed, a common features observed in both Sections 8.2.1 and 8.2.2 it

that either the equilibrium and the out-of-equilibrium dynamics change drastically when the

formation of unstable particles is allowed in the system. In this analysis, it is worth recalling the

parameter κ “ ´ log β
2

´ σ
2
. Once the parameter σ has been fixed (and along with it, the mass

scale M), the three regimes (7.20), (7.21) and (7.20) are identified by the inverse temperature

of the system only1.

Throughout the section, we consider the system described by a Gibbs ensemble at β “ βL “

βR i.e. x “ 1, and as earlier, we fix σ “ 20.

8.3.1 Effective velocities

We start from the effective velocities. Fig. 8.5 shows three “snapshots” of the velocities

as functions of the rapidity variable at three different temperatures. The main noteworthy

features are the following:

• Free fermion regime pκ ă 0q: For low temperatures the two velocities are well described

by the free fermion result veffpθ; ˘q “ tanh θ. In particular, at large rapidities, we have

non-interacting right- and left-movers propagating at the speed of light.

• Unstable particle and parity breaking pκ Á 0q: For intermediate temperatures the

onset of the unstable particles triggers a parity breaking effect. Velocity profiles exhibit

the symmetry

veffpθ; `q “ ´veffp´θ; ´q . (8.14)

The presence of the unstable particle marks the interaction and this reduces the absolute

values of the velocities, down from their conformal values ˘1, and gives rise to two

distinct plateaux, one in each effective velocity. The heights of the intermediate plateaux

for both particle types change with temperature until reaching again the values ˘1 at

very high temperatures. Some of the features may be explained using the flea gas picture,

as explained below.

• UV limit pκ " 0q2 : In the deep UV limit the velocities reach once more their CFT

values ˘1 but are “shifted” in comparison with their free fermion value. In fact they are

1In the next sections we may often refer to low, intermediate, and high temperatures of the system. The
implicit reference is always the mass scale of the unstable excitation via the regimes mentioned above.

2In our numerics we observe that the TBA scaling function (7.23) approaches the UV limit for κ Á 3 that is
what we mean here by denoting κ " 0.
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Figure 8.5 Effective velocity profiles at equilibrium for three temperatures: for low
temperatures (left figure) we observe the free fermion result, the group velocity tanh θ; for
intermediate temperatures (middle figure) we observe the onset of the unstable particle; for high
temperatures (right figure), where a new CFT is reached, effective velocities of ` (´) particles
are shifted so that they appear to be mostly right-moving (left-moving). The evolution of the
effective velocities as functions of temperature can be further explored in this video [155].

very well approximated by the functions (8.18) which are derived below. We have again

large regions of right- and left- movers propagating at the speed of light, and we observe

that the ` (´) particle acquires “mostly” right-moving (left-moving) properties. This is

again in agreement with the flea-gas picture, which, as we explained, indicates that `

(´) particles should be right-movers (left-movers).

• Plateaux and the “flea gas” picture : The flea gas scattering picture described at the

end of Subsection 7.3.2 explains the presence of the intermediate plateaux in the middle

panel of Fig. 8.5. For instance, the ` particle may only scatter by collisions on its left,

and these collisions generate jumps rightwards. Thus, only for θ ă 0, where the particles

are not moving rightwards at the speed of light, can such collisions happen; and when

they happen, they “slow down” the particle. This only happens in a small interval of

values of θ (for the ` particle this is approximately the interval r´σ{2, 0s) and the precise

boundaries of this intermediate plateau, are more subtle to explain. They are determined

by an interplay between spectral densities and the effective velocity. For instance, a

change of the effective velocities at rapidities |θ| ą σ{2 is precluded for low temperatures

log β
2

ą ´σ{2, because no particles are present at such rapidities. The configuration

achieved at large temperatures, for instance the right-most panel of Fig. 8.5, has however

a clear meaning. Indeed, scattering may only happen between ` and ´ particles for

rapidity differences near to σ, but does not happen if particles are co-moving (have the

same effective velocity). Thus, for instance, ` particles at rapidities ´15 and ´ particles

at rapidities 5 do not scatter according to the right-panel of Fig 8.5. Interestingly, a

more involved plateau structure of effective velocites has been observed recently in [156]
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for the roaming trajectory model.

• Vanishing Velocities pκ « 0q: Interestingly, at the onset of the unstable particle, the

intermediate plateaux both have heights zero. The physical interpretation is that for such

temperatures, ` and ´ particles of rapidities |θ| ă σ{2 are essentially stationary, and this

allows them to form the finitely-lived bound state represented by the unstable particle.

We will observe the formation of the unstable particle more precisely in Subsection 8.3.3.

The behaviour of the effective velocities for very high temperatures as described in the item on

“UV limit” can be analytically derived from the TBA equations under some simple assumptions.

Recall the definition of the effective velocities (7.37) and of the dressing operation (7.30). We

know that the kernels φ˘¯pθq are functions that are strongly peaked around θ “ ¯σ and we also

know that the functions npθ; ˘q develop a plateau in the region (8.7). For high temperatures

this will be a very wide plateau of height n “
?
5´1
2

“ 0.618... (this can be derived from

the constant TBA equations [31]) so that within the region where the kernel is non-vanishing

the occupation numbers are constant and may be taken out of the integral. Thus, at high

temperatures we can approximately write

hdri pθ; ˘q « hipθq `
n

2π

ż 8

´8

dλφ˘¯pθ ´ λqhdri pλ; ¯q . (8.15)

An even cruder approximation consists of treating the kernel as a δ-function δpθ ´ λ ˘ σq and

writing

hdri pθ; ˘q « hipθq ` nhdri pθ ˘ σ; ¯q . (8.16)

The equations above are solved by the following functions

hdri pθ; ˘q “
hipθq ` nhipθ ˘ σq

1 ´ n2
. (8.17)

For the effective velocities this means that

veffpθ; ˘q «
sinh θ ` n sinhpθ ˘ σq

cosh θ ` n coshpθ ˘ σq
for log

β

2
" ´

σ

2
. (8.18)

If n “ 1 the functions above are exactly tanh
`

θ ˘ σ
2

˘

. In this case n is not 1 but the function

above still resembles a shifted hyperbolic tangent very much. That is the reason why the curves

in the rightmost panel in Fig. 8.5 look a lot like shifted versions of those in the leftmost panel.
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Figure 8.6 Spectral densities for three values of the temperature: β “ 2e´3, 2e´11 and 2e´16.
In the two rightmost panels, the vertical axis labels should be multiplied by factors 103 and
105, respectively, as indicated. In all panels, a dashed horizontal line indicates the height of the
free-fermion peak, 0.04431...{β. For low temperatures (left panel) we observe the free fermion
result; for intermediate temperatures (middle panel) we observe the onset of the unstable
particle with one of the peaks growing beyond the free fermion value; for high temperatures
(right panel) the densities develop one additional local maximum. The evolution of the densities
as functions of temperature can be further explored in this video [157].

8.3.2 Spectral densities

In this section we analyse the main features of the spectral densities ρppθ; ˘q defined in

(7.37) by considering three density profiles for low, intermediate and high temperatures. These

are presented in Fig. 8.6, where, for comparison, the values of the maxima of the free-fermion

densities at large temperatues, ρFFmax “ ℓ´1
2πβ

with ℓ “ 1.27846... (dashed black line), are shown.

The most important features of the spectral densities at equilibrium are the following:

• Free fermion regime pκ ă 0q: The spectral densities for sufficiently low energies

(Fig. 8.6, left panel) are those of a free fermion and are described by the corresponding

formula

ρppθ; ˘q “
1

2π

cosh θ

1 ` eβ cosh θ
“: ρFFp pθq . (8.19)

This function has maxima around θ “ ˘ log β
2
, as seen in the figure; more precisely, the

positions of the maxima scale, for β small, as θ „ ˘ log β
2ℓ

` op1q where ℓ “ 1.27846...

solves e´ℓ “ ℓ´ 1. These maxima are at a height that scales as „ ℓ´1
2πβ

, as also seen in the

figure.

• Turning on the interaction pκ „ 0q: For higher temperatures (Fig. 8.6, middle and

right panels) we still have maxima around ˘ log β
2
, but the heights of some of the maxima

start to change as soon as the unstable particle comes into play. For intermediate energies

we observe that for each given particle type, one of the maxima (the right (left) one for `

(´) particles) coincides with its free fermion value whereas the other maximum is higher,
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indicating an “excess” density generated by the onset of the interaction. This asymmetry

is justified by the structure of the kernels, as discussed in Subsection 7.3.2. That is the

φ`´pθq kernel is maximized at θ “ ´σ ă 0 and is negligible for θ ą 0 thus the effect of

interaction only manifests itself for θ ă 0 while the free fermion physics persists for θ ą 0.

This excess grows as temperature increases and gradually leads to the formation of an

additional peak for each particle. The gradual growth can be displayed more clearly in

this video [157].

• Three local maxima pκ ą 0q: Following the observation above, for high temperatures

(compared to the unstable particle’s mass) two new local maxima, one for each density,

emerge located around ˘plog β
2

` σq (Fig. 8.6, right panel). Thus, at high temperatures,

each spectral density exhibits three local maxima: the free fermion peak expected for that

temperature, the “interacting peak” whose maximum is largest, and a smaller, “subsidiary

peak”. We observe two important features for these peaks. First, the position of the

maxima is once more justified by the scattering matrix which dictates that interaction

is maximized for rapidity differences ˘σ. In particular, the rapidity difference between

the ` particle (red) interacting peak and the ´ particle (blue) subsidiary peak is, at

all temperatures, around ´σ, the value at which the scattering interaction φ`´pθq is

maximal; and viceversa. Second, for each particle type, the excess area of the interacting

peak compared to the free fermion peak roughly coincides with the area of the subsidiary

peak. The implications of the observation above will be discussed in detail in Subsection

8.3.3.

8.3.3 Emergence of bound states in the scattering dynamics

We now argue that by simultaneously analysing features of the effective velocities and

spectral densities, we gain a new, dynamical insight into the equilibrium scattering theory of

the model.

Recalling Chapter 7, the conventional understanding of unstable particles is based on the

presence of a pole in the scattering amplitudes and on the notion of how the presence of this

particle adds, at large temperatures, new degrees of freedom to the theory: it drives an RG

flow between, in the IR, a double free fermion theory and, in the UV, a non-trivial coset

model. However, the introduction of dynamical quantities such as the effective velocities, in

combination with the two observations we have made in the last point of Subsection 8.3.2, brings

a new, perhaps more intuitive perspective into the interpretation of this unstable particle.
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Figure 8.7 The effective velocities versus the normalized spectral densities ϱppθ; ˘q “

2ρppθ; ˘q{ρ̃˘ ´1 where ρ̃˘ is the height of the largest local maximum. The inverse temperature
is β “ 2e´16. The subsidiary peak of particle ` (particle ´) and the interacting peak of particle
´ (particle `) are co-moving at velocity `1 (´1). This is a direct consequence of the formation
of unstable bonds and of the homogeneity of the equilibrium state.

We illustrate this with Fig. 8.7, which shows the same high temperature physics we have

seen in Subsections 8.3.1 and 8.3.2 and combines scaled versions of the curves found in the

right panels of Figs. 8.5 and 8.6. Consider the positions of the local maxima of the spectral

densities in Fig. 8.7 and the corresponding values of the velocities. For particle ` (left panel,

red) the density has maxima around log β
2

« `16 (free fermion peak), « ´4 (subsidiary peak)

and « ´16 (interacting peak). Comparing with the effective velocity curve, the particles these

peaks represent have velocities very nearly `1, `1 and ´1, respectively. For particle ´ (right

panel, blue), the maxima of the free fermion, interacting and subsidiary peaks are around

log β
2

« ´16, « 4 and « `16, respectively, with velocities ´1, ´1 and 1, respectively.

Thus, the velocities associated with the interacting peak of each distribution and the

subsidiary peak of the other distribution are always the same. These particles are co-moving

and thus have the opportunity to bond. Since, as we observed in Subsection 8.3.2, their

rapidity separation ˘σ are at the maxima of the scattering kernel φ˘¯pθq, these particles are

indeed subject to a strong interaction, and can form bound states (even if only finitely-lived).

Further, as the “excess” area of the interacting peaks are roughly the same as the areas of the

subsidiary peaks, the excess density created by the onset of interaction and the subsidiary

peak can be interpreted as pairs of bound p`´q and p´`q particles propagating at the same

speed. These are the unstable particles, gathered within two clouds, one right-moving and one

left-moving. The population of unstable, finitely-lived particles thus formed is rendered stable

by the high energy of the thermal bath and the continuous availability of co-moving,
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interacting particles of opposite types.

In summary, varying the temperature and observing the various structures form with their

respective effective velocities, is the most direct way we know of “visualizing” the formation of

the unstable particle. This visualization is particularly striking when observing the continuous

change of the densities as temperature is increased in this video.

Finally, this new perspective connects to the hydrodynamic scaling functions as follows.

In the UV, we have degrees of freedom coming from two free fermions (each with its right-

and left-moving components), and, in addition, one unstable particle (also with its right- and

left-moving components). In order to account for these quantitatively, we need to look at the

energy per unit temperature-square carried by the particles, namely

6 β2

π
epθq ρppθ; ˘q (8.20)

The total area under the curves is exactly the energy density p6β2{πqq˘
1 , and according to

Section 8.2 the sum gives the central charge. If we then subtract the free fermion contributions

we obtain an effective measure of the degrees of freedom of the unstable particle:

6β2

π
∆q1 “

6 β2

π

ÿ

b“˘

ż

dθ epθq
`

ρppθ; ˘q ´ ρFFp pθq
˘

(8.21)

This represents 1{5 of the energy area covered by the free fermion parts (this corresponds to

c “ 1 for two free fermions), as it should. We then observe that the contributions coming from

the excess area of the interacting peaks largely dominate the contributions from the subsidiary

peaks, as the subsidiary peaks are at smaller values (in absolute values) of rapidities (thus they

carry less energy). Therefore, the contribution of each ˘ particle to the energy current and

densities, and to the central charge, coming from the clouds of unstable particles is dominated

by the excess density of the interacting peak.

Furthermore, for ` particles, say, the interacting peak consists of particles propagating

with velocity ´1. As this dominates any contribution from the subsidiary peak, this means

that there are more highly energetic ` particles propagating with velocity ´1 than there are

with velocity `1. Therefore a negative energy current is generated, as observed in Subsection

8.2.1.
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8.4 Out-of-equilibrium dynamics with unstable particles

We now consider the two subsystems with temperature ratio x ‰ 1, and explore the

resulting out-of-equilibrium effective velocities and spectral densities. As pointed out earlier,

when driving the system out of equilibrium this gives rise to different dynamics whether or

not the original baths admit formation of unstable particles. It is thus helpful to introduce

the variable κL,R “ ´ log
βL,R
2

´ σ
2

associated to each bath of the system at t “ 0 to identify

their initial energetic regimes given by (7.20), (7.21) and (7.20).

8.4.1 Effective Velocities
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Figure 8.8 Steady state effective velocities for three values of βL and three values of x,
including (for comparison) the equilibrium case x “ 1. The velocity profiles retain many
of their equilibrium features. In the bottom right figure x “ 3

2
(dashed, green), x “ 1 (solid,

pink) and x “ 2
3

(dotted, blue). The variation of the velocities with temperature can be further
explored in this video [158].

In this section we take another look at the effective velocities with a focus on changes with

respect to the equilibrium behaviour. Fig. 8.8 explores this behaviour for low, intermediate and

high temperatures. Our main observations are the following:
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Figure 8.9 Values of θ˘
0 for various ratios x as functions of log βL

2
, with θ`

0 ď 0 and θ´
0 ě 0.

The signs are as expected from the behaviours of the effective velocities seen in Fig. 8.8. The
same symbols are employed for θ˘

0 and each given x.

• Conformal regime pκL,R ! 0 , κL,R " 0q: Both at low and high temperatures the

equilibrium behaviours are recovered. For low temperatures we find the free fermion

result. For very high temperatures we find the conformal equilibrium result. Once

temperature is high enough the UV result is approached even if βL ‰ βR.

• Particles couple mainly to one bath pκL,R Á 0q: For intermediate temperatures, like

the ones considered in the second row of Fig. 8.8, we observe that whereas veffpθ; `q is

virtually unchanged as long as βL is fixed, even if βR is changed, veffpθ; ´q is very much

dependent on the values of βR. This can be explained by the same arguments presented

in Subsection 8.2.2.

• Effective velocities zeroes pκL,R „ 0q: The height of the intermediate plateau of the

velocities that emerges for intermediate temperatures changes with temperature so that

there exists a choice of temperatures log βR
2

« ´10 for which the plateau of the ´ particle

velocity is at height zero (as on the dashed green line in the bottom right panel of Fig. 8.8)

and similarly for particle `. This suggests that the effective velocities at this particular

temperature have a continuous set of zeroes. However this is a numerical effect. The

results for θ˘
0 shown in Fig. 8.9 shows that the values of θ˘

0 are always unique but that

for some small range of temperatures our algorithm is not accurate enough to precisely

identify these values. In other words, the intermediate plateau of the effective velocities

is never exactly flat, but its slope is too small to be seen numerically.

• Intermediate regime pmintκL,Ru À 0 , maxtκL,Ru Á 0q: At intermediate temperatures

the on set of unstable particles may be only on one original bath. This is clear in Fig.
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8.9 as the plateaux at velocity zero are clear signatures of the formation of the unstable

particles, and these occur at distinct temperature for ` and ´ particles. Following the

second point, there is not a drastic change in the dynamics as each particle is mainly

coupled to one bath.

8.4.2 Spectral densities

Let us now discuss how the spectral densities change in an out-of-equilibrium situation.

Fig. 8.10 shows three examples for low, intermediate and large temperature which can be easily

compared with Fig. 8.6. We notice the following new features:

• Free fermion regime pκL,R ă 0q: For low temperatures (Fig. 8.10, left panel) we recover

the out-of-equilibrium free fermion behaviour

ρppθ; ˘q “
1

2π
cosh θ

ˆ

Θpθq

1 ` eβL cosh θ
`

Θp´θq

1 ` eβR cosh θ

˙

.

The maxima are centered around θ “ log βR
2

and θ “ ´ log βL
2

and continue to be so even

at higher temperatures.

• Onset of the interaction pκL,R „ 0q: As in the equilibrium situation, the heights of

the free fermion peaks start to change after the onset of the unstable particle (Fig. 8.10,

middle panel). However still the right peak of particle ` density coincides with the free

fermion peak at temperature βL and the left peak of the ´ spectral density coincides with

the free fermion peak at inverse temperature βR. These are the free fermion peaks that we

had identified in the equilibrium situation. The opposite peaks, which have higher heights

than they would in a free fermion theory, are the interacting peaks, as also identified in

the equilibrium situation. Importantly, by contrast here the peaks of ` and ´ particles

have different heights.

• Three Local Maxima pκL,R " 0q: For very high temperatures (Fig. 8.10, right panel),

we observe once more a structure with three local maxima per density. The additional

(smaller) maxima are located at ´ log βL
2

´σ (red curve, ` spectral density) and log βR
2

`σ

(blue curve, ´ spectral density). Following the nomenclature used in the equilibrium

situation, these are the subsidiary peaks. Once more, the excess area of the left-most,

interacting peak in the density of ` particles (compared to the free fermion peak at inverse

temperature βR) roughly coincides with the area of the subsidiary peak in the density of
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Figure 8.10 Spectral Densities for x “ e (TL ą TRq and three values of the inverse temperatures
(βL “ 2e´3, 2e´11 and 2e´16). For the two highest temperatures the vertical axis labels should
be multiplied by 103 and 106, respectively, as indicated. In all panels, dashed (dotted) horizontal
lines indicate the height of the free-fermion peaks, 0.04431...{βL (0.04431...{βR). A more
complete picture of the dynamics can be gained from this video [159].

´ particles. This is made more precise at the end of this subsection.

• Formation of the Unstable Particle pκL,R " 0q: As for the equilibrium case we can

argue that the excess density of the interacting peak of the ` spectral density “couples” to

the subsidiary peak of the ´ spectral density and viceversa to form a finitely-lived unstable

particle. The only difference with respect to the equilibrium case is that the areas and

heights of all six maxima in the two spectral densities are distinct. In particular, the

smallest maxima of both distributions are now different as one is governed by the right

temperature and the other by the left temperature. This can be seen more precisely in

the additional Fig. 8.11. By computing the areas of all the peaks and comparing them

to each other, this out-of-equilibrium analysis confirms the dynamical explanation of

the formation of unstable particles, by allowing for an unambiguous identification of the

coupling between ` and ´ particles. A numerical evaluation of these areas is presented

below.

• Comparison to Equilibrium: Considering the densities in Fig. 8.11 we observe the

following: for the ` particles density we find that the two right-most peaks – the free

fermion and subsidiary peaks – are perfectly well described by the equilibrium density at

inverse temperature β “ βL “ 2e´16 whereas the left-most peak – the interacting peak

– is described by the equilibrium density at inverse temperature β “ βR “ 2e´15. The

same “cut and paste” structure is observed for the ´ particles distribution, where the

“cut” is now located around θ “ 10 (this is the the value of θ´
0 as seen from Fig. 8.9).

This behaviour can be best explained when matching densities with effective velocities.

The velocities associated to the various types of peaks (free fermion, subsidiary and

interacting) are distributed as in the equilibrium case, but now, these determine the
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Figure 8.11 Spectral densities at equilibrium for temperatures β “ βR “ 2e´15 and β “

βL “ 2e´16 and out of equilibrium for the same temperatures. The out-of-equilibrium spectral
densities exhibit a “copy and paste” effect as each peak reproduces exactly a local maximum of
the equilibrium spectral densities at one of the two bath temperatures βL and βR. As a result,
many of the GHD quantities (described in Subsections 8.2.2 and 8.4.1) couple mainly to one
bath.

initial bath the particles come from, and thus the temperature they carry.

log βL{2 t`min t´min A` B` B´ A´

´15 ´9.9099 9.4771 26433.3 68869.5 24477.7 70810.8
´16 ´9.9802 9.6275 70689.5 189237. 68793.3 191195.
´17 ´9.9802 9.7162 191302. 516162. 189231. 518292.

Table 8.1: Excess areas of the interaction peaks of the spectral densities A˘ compared to the
areas of the subsidiary peaks B˘. As expected A` « B´ and A´ « B`.

Before concluding this subsection we would like to make our statements about the areas of the

various maxima of the spectral densities a little bit more precise. For this purpose let us define

the following quantities:

A` :“

ż t`min

´R

dθ p ρppθ,`q ´ ρFFp pθ,`qβL q , A´ :“

ż R

t´min

dθ p ρppθ,´q ´ ρFFp pθ,´qβR q ,

B` :“

ż 5

t`min

dθ ρppθ,`q , B´ :“

ż t´min

´5

dθ ρppθ,´q . (8.22)

where R “ log 2{βL ` 6, t˘min is the position of the local minimum of the spectral density that is

located between the interacting and subsidiary peaks (that is approximately ˘10 in Fig. 8.11).

ρFFp pθ; ˘qβ is the free fermion spectral density given by (8.19) at inverse temperature β. The

subsidiary peaks of the ˘ spectral densities are then located approximately in the intervals

rt`min, 5s and r´5, t´mins. The choice of the integration limits is of course slightly arbitrary, so
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the areas below are just an illustration of the general statement that A` « B´ and A´ « B`.

In contrast to the equilibrium case it is now clear that A` ‰ B` and A´ ‰ B´, therefore our

argument based on attributing a certain area of the spectral density curves to the formation of

unstable particles is only plausible if we “couple” the ˘ spectral density curves.

8.5 Conclusions

In conclusion, our numerical study of the SUp3q2-HSG model in the partitioning protocol

has shown that it is possible to outline a more physical understanding of unstable excitation in

integrable models by employing the GHD approach. Even at equilibrium, we found a very direct

evidence for such unstable bound states, that is the identification of mutual interacting areas

of quasiparticle densities which are co-moving in the phase-space. We observe a similar physics

when driving the system out of equilibrium, the only difference is that the resulting areas are

in different proportions, signaling that, one bath is more energetic in the initial state and the

stable particles there have more occasion to bond. In both cases, we can identify these areas

with a stable population of unstable excitations, where the stability is due to the homogeneity

and the high-energy of the initial state as well as the large-time dynamic description employed

in this particular set-up. It is thus reasonable to look into more general set-ups where we can

fully exploit the power of the GHD approach to look for truly dynamic signatures of instability.

This will be the purpose of the final chapter of this thesis.
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CHAPTER

NINE

SET-UP 2: INHOMOGENEOUS QUENCH

9.1 The inhomogeneous quench

In this chapter we study the SUp3q2-HSG model in an inhomogeneous quench. In particular

we prepare the system in an initial state characterised by spacial inhomogeneities via the

following Gaussian temperature profile:

T pxq “ Ta ` pTm ´ Taqe
´x2 with Ta, Tm P Rě0 , (9.1)

and all the TBA functions will be accordingly space-dependent. We will refer to Ta as the bath

temperature and Tm as the maximal temperature. Given such an initial configuration, the quench

consists in letting the system evolve at time t ‰ 0, and the resulting out-of-equilibrium dynamics

is described by the GHD equations (7.38) as seen for instance in [160–163] and also summarised

in Section 7.3. In free theories veffpx, t, θq “ tanh θ, and therefore, at large temperatures, where

large rapidities are involved, excitations mostly move at velocities ˘1. Typically, interaction in

most integrable QFTs does not qualitatively change the effective velocity, and the same holds

near interacting conformal points. This leads to the splitting of the original particle density

maximum at x “ 0 into two identical maxima propagating in opposite directions [160–163].

In this chapter, we will see that the presence of unstable particles modifies this picture

substantially. We will analyse the numerical results presented in [36], and obtained by

adapting the iFluid package [164], which is a Matlab code that solves GHD for a wide range
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of conditions and integrable models. More details are presented in Appendix D. Before

exploring the evolution, in the next subsection we want to discuss the choice of the

simulations parameters

9.1.1 The initial state

In our numerics the initial state is defined by the simulation parameters Ta, Tm, and the free

parameter of the theory σ. Since this state is at equilibrium, we know quite well its properties

from the analysis in Section 8.3. Indeed a time t “ 0, the TBA functions of interest are simply

a three-dimensional version of those seen at equilibrium in the homogeneous state (an example

is shown in Fig. 9.1 for the spectral density of particle ` and will be analysed in detail in the

next section).

A conclusion from the previous chapter is that even out of equilibrium, the initial conditions

of the system may “hide” the decay of the finitely lived excitations, so that now we can ask: in

which state do we need to initialise the system in such a way as to observe direct evidence of

the instability of the bound states?

To answer this question we make some simple observations based on the analysis in

Sections 8.3 and 8.4. We introduce the parameters κa,m “ log 2Ta,m ´ σ{2, and set the

maximal temperature Tm in an interacting regime i.e. κm ą 0 in such a way as to define

certain regions of the phase-space with high populations of mutually interacting particles:

these are indeed the particles that bound to create unstable particles. One should observe

that in the partitioning protocol, the excess areas identified in Subsection 8.3.3 and 8.4.2, are

associated with unstable excitations that are constantly created and destroyed, giving rise to

stable populations of unstable particles even out of equilibrium. This is because the stable

particles are homogeneously distributed in space and thus provide a constant particle

reservoir to form such unstable bonds. In contrast, in this set-up, the out-of-equilibrium

evolution of the particle modes, combined with the inhomogeneities of the initial state give

rise to a situation where created and destroyed unstable particles may be not sufficiently

balanced and we should be able to observe effective evidence of the short-time life of the

particle in the GHD quantities of interest. One way to engineer such a physical situation is by

releasing these hot and highly interacting finite densities of particles into a low-temperature

environment, and thus choose the simulation parameters in the following regimes:

κa ă 0 ă κm ! κUV . (9.2)
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Figure 9.1 The equilibrium spectral density of particle + initialised in the two numerical
simulations analysed in this chapter, with fixed parameters σ “ 10 and 2Tm “ e7 and bath
temperature either 2Ta “ 0 or 2Ta “ e3. In this last case, the environment is filled by spacial
homogeneous densities of free fermions.

In this set-up the population of unstable particles will be accordingly modified by the lower

particle reservoirs of the bath. Note that, above, we have additionally required that our system

is far from the UV, which occurs for κUV „ 3 according to our numerics at equilibrium. Indeed

in the UV regime, the finite densities of quasiparticles are found to be too energetic and more

likely to interact, which makes it much harder to observe any signatures of unstable particle

decay.

9.2 Full dynamics

We are now ready to present our numerical results. In this section, we aim to capture the

full dynamical picture and we then want to analyse it in more detail in the next two sections.

We choose σ “ 10, 2Tm “ e7 (i.e. κm “ 2) and the bath temperature Ta is either 0 or within

the free fermion regime 2Ta “ e3.

We focus our analysis on the spectral densities and effective velocities of particles `, defined

in (7.37), and on the particle densities defined in (7.36) for i “ 1. Another quantity of interest

is obtained by subtracting the free fermion contribution qFF0 to each particle density q`
0 :

∆q`
0 px, tq “ q`

0 px, tq ´ qFF0 px, tq , (9.3)

where

qFF0 px, tq “
1

2π

ż 8

´8

dθ
cosh θ

1 ` e´βpx,t,θq cosh θ
, (9.4)
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For the free fermion, an explicit solution to the GHD equation is known and is

βpx, t, θq “
1

pTm ´ Taqe´px´t tanh θq2 ` Ta
, (9.5)

given the initial state (9.1) and the fact that the free fermion propagation velocity is simply

tanh θ.

Due to the symmetry of the initial state, and the parity transformations of the model, the

dynamical quantitites of particle ` and ´ satisfy the following relations:

ρppx, t, θ; `q “ ρpp´x, t,´θ; ´q , veffpx, t, θ; `q “ ´veffp´x, t,´θ; ´q . (9.6)

q`
0 px, tq “ q´

0 p´x, tq ∆q`
0 px, tq “ ∆q´

0 p´x, tq . (9.7)

Thus we can only focus on the dynamics of one particle, say `, and use the transformation

above to obtain the dynamics of particle ´. Alternatively, we can focus on both particles and

consider only x ą 0 (or similarly x ă 0).

As emphasised in Chapter 8, the analysis of spectral densities is helpful in determining

the composition of finite-density states. For our choice of parameters, the spectral density

of particle ` at time t “ 0 is shown in Fig. 9.1. We can identify three peaks respectively

at θ « ´ logp2Tmq “ ´7 (interacting peak), θ « ` logp2Tmq “ 7 (free fermion peak), and

θ « ` logp2Tmq ´ σ “ ´3 (subsidiary peak). The subsidiary peak represents the proportion

of particles ` loosely bound with particles ´. In Fig. 9.1 the interacting and the subsidiary

peaks are not completely apart, but they will evolve in opposite directions as we know from

Section 8.3 that their effective velocities are of opposite signs (this can be seen also in Fig. 9.2,

in the next subsection). Additionally in the presence of a bath, two identical ridges are formed

around θ « ˘3 and represent a continuum of free propagating particles.

9.2.1 Tail and decay

Consider a zero-temperature environment as in the colorspace plots in Fig. 9.2. The first

row illustrates the behaviour of the spectral density of particle ` as a function of time. At time

t “ 0 this is exactly the three-dimensional function plotted on the left picture in Fig. 9.1. The

effective velocity (the second row), for t “ 0, shows that the interacting (free fermion) peak

moves at speed ´1 (`1), and the subsidiary peak contains a spectrum of effective velocities

captured by the “rainbow” colouring which indicates the presence of intermediate plateaux in
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Figure 9.2 Particle ` dynamics for various time snapshots, the parameters are σ “ 10, Ta “ 0
(no bath) and 2Tm “ e7. Particle ´ dynamics follows from (9.6). We introduce the short
notation ρ`

p “ ρppx, t, θ; `q and veff,` “ veffpx, t, θ; `q. Row 1: Spectral density exhibiting three
characteristic local maxima, the least of which decays in time leading to the formation of a tail.
Row 2: Effective velocities dominated by the values ˘1 but exhibiting an intermediate plateau
in rapidity space which is correlated with the decaying peak of the spectral density.

the rapidity variable.

Turning on time, the most salient feature is that the subsidiary peak moves as per the

initial splitting, but then falls apart, leaving behind a tail of particles moving with velocities

tending to ´1. Unstable particles start moving at speed near `1, but, as they enter the

zero-temperature environment, decay faster than they can form, and we see the particle `

components un-binding and recovering their non-interacting speeds near to ´1. After the initial

splitting, the right-moving wave reduces in time, leaving just the free fermion contribution

(which remains unchanged for larger times) and a tail attached to the left-moving wave at

x ă 0.

9.2.2 Magnetic-fluid effect

Do these behaviours change in the presence of a bath at nonzero temperature? Fig. 9.3

shows the x ě 0 part of the functions ρ˘
p px, t, θq (see also this video [165] for a complete

three-dimensional view). The presence of a bath does not significantly change the effective

velocities as free fermions propagate with velocity tanh θ.

In contrast, an important change occurs in the spectral densities: the subsidiary peak

observed at time t “ 0 no longer fully disintegrates under time evolution. Instead, it largely

persists, propagating on top of the θ “ ´3 ridge. Because of the spread of effective velocities

in the initial subsidiary peak, this cannot be explained by a large population of particles at

constant velocity `1. Indeed, there is a large difference between the effective velocity of these

173

https://youtu.be/mvNnzBL7vYs


CHAPTER 9. SET-UP 2: INHOMOGENEOUS QUENCH

particles and the propagation velocity of the peaks (this will be discussed in details in Section

9.3). Why is this wave travelling at speed `1, riding on the bath? The answer is that the large

wave of particles ´ going at velocity `1 interacts with particles ` in the bath, because they

are present around the rapidities of the subsidiary peak. They form unstable particles as they

pass by, thus changing the bath density. The phenomenon observed in Fig. 9.3 is reminiscent of

Figure 9.3 Snapshots of the spectral densities ρ˘
p “ ρppx, t, θ; ˘q for x ě 0 in the presence of

a bath at temperature 2Ta “ e3, σ “ 10 and 2Tm “ e7. Recalling (9.6), the dynamics for x ă 0
is straightforwards. Whilst the interacting and free fermion peaks remain largely unchanged,
the bath facilitates the formation of a persistent peak that travels at speed `1 “riding” on
the bath. The two light-blue ridges are also due to the bath whose temperature is in the free
fermion region of the theory. The ridges look “static” because they are uniformly distributed
in space but represent particles propagating with opposite effective velocities ˘1. See also the
the videos [165, 166].

that of a magnet passing by a magnetic fluid: here, the decaying subsidiary peak is driven over

the bath as the bath interacts with the magnet-like interacting peak travelling at velocity `1

(these are indeed found at the rapidity distance that maximases their interaction). The overall

effect is the creation of a wave that follows the magnet. However the fluid itself does not need

to move at velocity `1, meaning that this wave is always formed of different particles coming

from either the bath and the subsidiary peak that under the effect of the magnet give rise to a

persistent peak. We remark that the life-time of the unstable particles is of order e´σ
2 , and thus

is not directly observable: unstable particles rapidly decay and reform within the persistent

peak, with the end result of preserving it for large times.

9.2.3 Bath vs. no bath

The full dynamical picture described earlier can be summarised in this video [166].

Furthermore, similar features such as tail and decay can be found in the particle densities, as

we can see for particle ` in left figures Fig. 9.4 and bath temperatures 2Ta “ 0 (top) and

2Ta “ e3 (bottom). We recall that the particle densities are simply the spectral densities
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integrated in θ, therefore they describe the same physics seen earlier but in real space. Finally

we explore the function (9.3) for particle ` in the right pictures. For x ě 0 this function

describes only particles of the (either decaying or persistent) subsidiary peak and the tail.

The effect of the bath is seen starkly in the right-bottom picture: the persistent peak of the

spectral density displayed in Fig. 9.3 corresponds to a right-mover peak propagating with

velocity `1, which remains unchanged over time. In contrast for Ta “ 0 the peak is decaying

and only the tail is left at large time.
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Figure 9.4 Particle density of particle ` (left) and ∆q`
0 (right) at time t indicated in the

legend. The pictures show the full decay of the left-mover peak in the absence of a bath (top),
and its persistence in the presence of a bath (bottom). The highest functions in the top left
and bottom left figures are at t “ 0.

It is worth mentioning that the presence of a persistent peak is not a consequence of fine

tuning of parameters but a robust effect, present more generally for initial states in the regime

(9.2), as peaks have finite extension and will overlap for a wide range of temperatures. Other

examples will be shown in [148], where a more detailed analysis on the variation of parameters

will be conducted. Further evidence that the signatures of decay found here provide a non-trivial

characterisation of unstable particles is provided in the next two subsections.

9.3 A closer look to the subsidiary peak

We have seen that both the function ∆q0 (see Fig. 9.4) and the spectral density (see Figs. 9.2

and 9.3) exhibit a peak which either decays or persists for large times, depending on whether or
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not there is a bath. In this section, we examine the features of this peak in more detail. We will

look at cross-sections of the spectral density’s subsidiary peak and of the velocity distribution

for particles in this peak, for fixed values of x and t. We will make an important distinction

between effective and propagation velocities and show that these are in general different, a

feature that is dictated by interaction with the interacting peak of the opposite particle type

and would therefore be absent if evolution was free, as explored in Section 9.4.

9.3.1 Effective vs. propagation velocities

Let us consider the effective velocity of particles both in the presence and in the absence of

a bath. We will report on particle ` with particle ´ admitting an analogous analysis. Data

facilitating this discussion is presented in Table 4.

No bath Bath
t x˚ θ˚ h˚ x˚{t v˚ x˚ θ˚ h˚ x˚{t v˚

2.00 1.90 -3.30 5.89 0.95 0.61 1.80 -3.44 5.89 0.90 0.54

3.00 2.80 -3.15 5.50 0.93 0.65 2.80 -3.07 5.47 0.93 0.67

4.00 3.80 -2.70 5.07 0.95 0.76 3.80 -2.70 5.03 0.95 0.76

5.00 4.90 -2.17 4.80 0.98 0.84 4.70 -2.54 4.53 0.94 0.77

6.00 5.70 -2.17 4.57 0.95 0.82 5.70 -2.24 4.06 0.95 0.81

7.00 6.50 -2.17 3.78 0.93 0.78 6.90 -2.39 3.42 0.99 0.81

8.00 7.50 -1.79 2.90 0.94 0.81 7.90 -2.39 3.41 0.99 0.81

9.00 8.40 -1.64 2.19 0.93 0.79 9.00 -2.39 3.41 1.00 0.81

10.00 9.40 -1.26 1.50 0.94 0.80 10.00 -2.39 3.41 1.00 0.81

11.00 10.30 -1.03 0.96 0.94 0.77 11.00 -2.39 3.42 1.00 0.81

12.00 11.30 -0.50 0.56 0.94 0.78 12.00 -2.39 3.42 1.00 0.81

Table 9.1: Numerical results for the subsidiary peak of the spectral density of particle ` in
the absence (Ta “ 0) and presence (2Ta “ e3) of a bath. The other parameters are fixed to
σ “ 10 and Tm “ 2e7 as before. x˚, θ˚ and h˚ are the phase-space coordinates and the height of
the local maximum of the subsidiary peak, respectively and v˚ ” veff,`px˚, t, θ˚q. The quantity
x˚{t represents the observed propagation velocity of the subsidiary peak of particle ` resulting
from its interaction with the interacting peak of particle ´ which propagates at speed +1. The
numerical uncertainty of phase-space coordinates is ∆x˚ “ 0.10 and ∆θ˚ “ 0.07 to 0.08, with
lower rapidity resolution for less negative values of θ˚ (as discussed in Appendix D).

We consider two different velocities: the standard effective velocity v˚ :“ veffpx˚, t, θ˚q

evaluated at the maximum of the subsidiary peak, and the propagation velocity, x˚{t that is

the actual speed at which the maximum of the peak is seen to propagate. The choices of

times t P r2, 12s was dictated by the time of clear separation of the subsidiary peak from the

interacting peak at t “ 2 and the time at which almost complete decay of the subsidiary peak

is observed for no bath at t “ 12.

Looking at this table it is perhaps most striking that the effective and propagation velocities
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are markedly different both in the presence and in the absence of a bath. Thus, even if the

presence of a bath gives rise to the magnetic fluid phenomenon described in the paper, that is,

the emergence of a persisting peak that seems to ride on top of the bath, the fact is that, in

the absence of a bath, the interaction with particles of type ´ still has a huge influence on the

propagation velocity of the subsidiary peak. Indeed, the peak propagates faster than would be

expected from its effective velocity distribution and this can only be attributed to non-trivial

interaction with particles of type ´ which is inextricably linked to the presence of unstable

particles. This increase in velocity is however larger in the presence of a bath and for large

times it reaches the maximum value `1.

In addition, we can make the following interesting observations:

• For early times data are very similar both in the presence and absence of a bath. Indeed,

for times t P r2, 7s decay occurs whether or not there is a bath. We can see this decay most

clearly from the table and the height of maximum h˚ which reduces from 5.89 at t “ 2

to 3.42 at t “ 7. The way in which this decay or particle loss occurs is asymmetric in θ

and results in an “under-cut” in the shape of the subsidiary peak, with the lost particles

contributing to a growing tail linking the subsidiary peak to the interacting peak of the

same particle species (this tail is seen most clearly in Fig. 9.2). As a result, not only

the height of the maximum is reduced but its position in phase-space shifts towards less

negative values of θ.

• In the absence of a bath, further asymmetric decay of the subsidiary peak continues until

the peak disintegrates first into a front-like feature and ultimately into a section of the

tail joining the free fermion and the interacting peak of the same species.

• In the presence of a bath, the subsidiary peak becomes persistent from time t “ 7, with

the rapidity space position fixed at θ˚ “ ´2.39, height h˚ “ 3.42 and propagation velocity

x˚{t “ 1. The fact that the subsidiary peak moves along the interacting peak at velocity

`1 rather than the much slower effective velocity of its constituents is the embodiment of

the magnetic-fluid mechanism, explained in Subsection 9.2.2. The subsidiary peak does

not consist of the same particles propagating but instead of newly formed bound-states

between the particles of the interacting peak of particle ´ and the particle reservoir of

particle ` available from the bath ridge. Nevertheless, the asymmetric decay process,

being independent from the persistent feature, is still present in the case with bath. It

is only masked by the dominant mechanism of the magnetic-fluid for times larger than
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Figure 9.5 Effective velocities (left axis, blue) and spectral density cross-sections (right axis,
red) of particle ` in row 1 and ´ in row 2 at time t “ 10 in the case of no bath. For particle ` we
see the subsidiary (decaying) and free fermion peaks whereas for particle ´ we see the interacting
peak. Columns show these quantities sequentially for positions x “ 9, 9.2, 9.4, 9.6, 9.8. The
central emphasised column corresponds to x “ x˚ “ 9.4, that is the position of the maximum
of the subsidiary peak of particle `. The vertical dashed lines indicate the maximum of particle
` subsidiary peak (θ˚ “ ´1.26) in row 1 and the maximum of particle ´ interacting peak in row
2, which is around the value θ˚ ` σ as dictated by the structure of the scattering phases. The
horizontal dashed lines indicate the effective velocity of the maximum of particle ` subsidiary
peak and are annotated with the corresponding numerical values.

t “ 7.

9.3.2 On the shape of the subsidiary peak

For time t “ 10, a deeper understanding of the data can be reached in conjunction with

FIGs. 9.5 and 9.6 which show cross-sections of the effective velocity and spectral density of

particles ˘ for the bath and no bath situations. In particular, we focus here on the shape of

the subsidiary peak which can now be accessed more clearly through cross-sections at fixed

space-time positions. Let us summarize our main observations:

• In Fig. 9.5. the subsidiary peak of particle `, although very small compared to the free

fermion peak, can still be seen to be highly asymmetric both in the x-coordinate and

rapidity space. In fact, it is more akin to a wave-front, with particles at the back slower

than those in the front. It is worth noticing that by time t “ 10 the decaying peak is

also significantly lagging behind the interacting peak of particle ´ (since its propagating
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Figure 9.6 Effective velocities (left axis, red) and spectral density cross-sections (right axis,
blue) of particle ` in row 1 and ´ in row 2 at time t “ 10 in the case of bath temperature
2Ta “ e3. For particle ` we see the subsidiary (persisting) and free fermion peaks whereas for
particle ´ we see the (large) interacting peak a very small bump corresponding to the bath
(for particle ` this is masked by the persisting peak sitting right on top). Columns show these
quantities sequentially for positions x “ 9.6, 9.8, 10, 10.2, 10.4. The emphasised central column
corresponds to x “ x˚ “ 10 the position of the maximum of subsidiary peak of particle `. The
vertical dashed lines indicate the maximum of particle ` subsidiary peak (θ˚ “ ´2.39) in row
1 and the maximum of particle ´ interacting peak in row 2, which is around the value θ˚ ` σ
as dictated by the structure of the scattering phases. The horizontal dashed lines indicate the
effective velocity of the maximum of particle ` subsidiary peak and are annotated with the
corresponding numerical values.

velocity is 9.4 whereas for the interacting peak it is +1) and eventually falls out of its

interaction range.

• In contrast with the last point, in Fig. 9.6 the peak is symmetric in the coordinate space

and is accompanied by a velocity profile symmetric with respect to its maximum. The

maximum of the subsidiary peak of particle ` coincides in the coordinate space with the

maximum of the interacting peak of particle ´ and both can be found at x “ 10 for

t “ 10. Despite slower effective velocity, the propagation velocity of the subsidiary peak

equals that of the magnet-like interacting peak, which interacts with the bath and drags

the subsidiary peak along. This is the magnetic-fluid mechanism reported in Subsection

(9.2.2).
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Figure 9.7 Particle density in the HSG-model ρppx, t, θ; `q (red) versus ρppx´ t tanh θ, 0, θ; `q

(blue). The top/bottom rows correspond to the absence/presence of a bath. The peak in the
first column has been cut so as to show the remaining figures more clearly. The dotted curves
represent the change in the height of the local maxima of the spectral densities as function of
time. Red and blue curves generally differ in the height of the local maxima as well as the
presence (absence) of a tail.

9.4 Comparison with free-particle evolution

We want now to compare the numerical results presented in the previous sections with

results obtained in the absence interactions. We can then ask: are the properties of decay, tails

and persistence really characteristics of the formation and decay of unstable particles due to

nontrivial interaction? In this section we show that this is the case: the interaction is essential

in order to explain the observed effects.

There are many ways how one can realise a free-particle evolution. One might consider

the same quench problem, with the same initial temperature distribution, in a free theory.

This however leads to a different initial density distribution, hence any comparison with the

interacting case is not very meaningful. Instead, one may compare with what would happen for

a free-particle system with the same initial spectral distribution of particles: the distribution

in space-rapidity ρ˘
p px, 0, θq, describing the density of particles with positions x and relativistic

velocities tanh θ at time t “ 0.

The comparison is presented in Fig. 9.7, where we see stark differences between free and

interacting evolution of the particle density of particle `. In particular, the two emitted waves

remain stable in the free-evolution. In order to interpret these results, we remark that in the free
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evolution, the distribution of velocities is very different from that of the initial effective velocities

seen in Fig. 9.2: particles ` with negative rapidities that pertain to the subsidiary peak have

negative effective velocities, instead of positive. Hence, with the free dynamics, these particles

will start moving towards the left instead of the right as observed with interactions. Thus,

free-particle evolution according to the initial spectral distribution is significantly different

from the outset, with peaks of very different sizes. Furthermore, the distribution of rapidities

leads to sharply defined velocities, which are all either very near to 1 or to ´1. Hence there is

very little dispersion, and no tail or decay is observed. Those are thus a stark indication of the

presence of interaction.

It is also striking to observe that in the case without bath, the decay under interacting

evolution leads to a final right-moving wave that agrees precisely with the right-moving wave

emitted from the initial distribution in the free evolution case. This indicated that all

unstable particles, represented by the original subsidiary peak, have decayed, and lie within

the tail. With a bath, there remains an additional particle density, representing the

population of unstable particles stabilised by the presence of the bath.

9.5 Conclusions

By studying the SUp3q2-HSG model in an inhomogeneous set-up (with temperature profile

(9.1)), we have found further and even more direct evidence of the unstable excitation on the

out-of-equilibrium densities and effective velocities of the individual particles. In particular,

signatures of instability can be found in the decay of and the resulting formation of tails in the

subsidiary peaks of the out-of-equilibrium spectral densities of the individual particles. These

signatures can be only explained in terms of a non-trivial interaction among the stable particles,

as seen in comparison with the free evolution obtained from the same initial spectral density

profile. Moreover, the large-time evolution of the interacting system changes whether or not

there is a bath. In the presence of a bath, a novel “magnetic fluid effect” emerges: for each

individual particle ˘ the subsidiary peak does not entirely decay and gives rise to a persistent

wave of particles “riding” on top of the bath and following the magnet-like interacting peak

as this passes by. Within the persistent peak unstable particles are created and destroyed in

a stable proportion, but involving always different stable particles. As a consequence a stark

difference between the propagation velocities and the effective velocities at the top of the peaks

is observed and is fully explained by the instability of the bound state.

181





CONCLUSION

In this thesis we have looked at two different problems in the context of integrable QFT: the

universal properties of the excited state entanglement and the dynamics of unstable excitations.

Although these are two very different problems, a common feature is that their solution relies

on a simple quasiparticle description. In the course of this thesis we have provided various

types of evidence that the study of the properties of quasiparticles as well as of their dynamics

is crucial to achieve a better understanding of both problems.

In part I we have investigated the entanglement content of multi-particle states by

analysing different partitions of the massive free boson, in the limit where both the volume L

and regions’ sizes ℓi are sent to infinity in fixed proportions ri “ ℓi{L. The results

(summarised in Section 6.1) take a simple and universal form as functions of ri. They are

independent of the mass and energy of the excitations, and of the connectivity of the

entanglement regions. The qubit picture (introduced in Section 4.8 for a connected region and

extended in Sections 5.3 and 5.6 for two and multiple regions) provides a natural probabilistic

interpretation for the entanglement carried by quasiparticles: this is, under the flat

probability assumption, the entanglement of a multi-qubit state, where qubits describe the

occupancy configuration of the quasiparticles in the regions of the partition. This

configuration fully determines the associated entanglement. We expect these results to take a

universal form for a wide variety of theories (discussed in Section 6.2) as long as the

quasiparticles can be localised within the entanglement regions. In this context, the qubit

interpretation combines the semiclassical picture of localised excitations, controlled by

correlation lengths and De broglie wave-length, with the quantum effect of

“indistinguishability”. These interconnected properties of locality and indistinguishability are

what best characterise the entanglement content of a finite number of quasiparticles.

The results presented in part I of this thesis provide a complete understanding of the most
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popular measures of entanglement in zero-density excited states of the one-dimensional

massive free boson at zero-temperature. An interesting direction for future work is to extend

the study to other measures of entanglement. In [167], this extension will be addressed for the

symmetry resolved entanglement, an entanglement measure defined in terms of internal

symmetries of the model. Many of the techniques seen in Chapters 4 and 5 generalise to this

case. Indeed a twist field description to the symmetry resolved entanglement has been

recently provided [168], and used to treat the ground state in [169–171]. Another possible

development is to consider the next-to-leading corrections for the entanglement increments in

the limit (6.1). We now expect these contributions to depend on the details of the state, such

as the energy and rapidity. It would be interesting to see if the qubit picture can be modified

to also capture these features. More challenging will be to address the problem of excited

state entanglement in interacting integrable QFT. Despite the evidence discussed in Section

6.2, a rigorous proof of the validity of our results for interacting field theories is missing. The

challenge consists in finding a good finite-volume regularisation for branch-point twist fields

that, as discussed in Subsection 3.2.3, is still an open problem. Our analysis of the massive

free boson provides evidence that this is rather a technical problem than a real limitation, and

thus it should be possible to extent the finite-volume techniques [86, 87] at least for

non-diagonal form factors. It would be interesting to investigate under which conditions the

results are still valid in the presence of interactions and if they come only from non-diagonal

form factors also in these cases.

In part II we have shown how unstable particles can be seen in a new light within the

GHD framework. By looking at the dynamics of the individual constituent particles, we have

found new direct and physically meaningful signatures of instability. One of the most surprising

results is that even at equilibrium it is possible to speak of a rich physics. In particular, at

high temperatures we observe areas of quasiparticle densities which are co-moving in the phase

space, forming finitely-lived bound states. We can identify these areas with a stable population

of unstable particles. Indeed these bound states are continuously replenished thanks to the

high temperature and the homogeneity of the state. In the partitioning protocol (discussed

in Chapter 8), this picture does not change substantially, as we observe the stable areas of

quasiparticles even out of equilibrium, but now these are in different proportions for particle `

and ´ as they couple mainly to one bath. In contrast, in the inhomogeneous quench (discussed

in Chapter 9), the instability of the bound state is made visible by the inhomogenuity of the

184



Cecilia De Fazio

state. We thus observe direct signatures of instability such as decay and formation of tails

in the spectral densities and particle densities. Importantly, in the presence of a bath, a new

hydrodynamic phenomenon comes into play: the long-time persistence of a small but significant

wave of particles “riding” on top of the bath, propelled by its interaction with the large wave

of particles of the opposite type.

Given how rich the dynamics of this simple model is, it would be very interesting to study

other models of the same HSG family with richer particle spectra, where more unstable particles

with tunable masses and decay widths are present. There is also still much to learn about

the time evolution of hydrodynamic quantities under variation of Ta, Tm and σ, and this will

be addressed in [148], where also a more quantitative analysis of the phenomena discussed

in this thesis will be presented. The hope is that, with a good qualitative and quantitative

characterisation of these features, we may lay the foundation for an effective theory where the

large-time stable populations of stable particles (observed in the two different set-ups considered

in this thesis) are representative of the unstable excitations.
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APPENDIX

A

CONTOUR-INTEGRAL APPROACH FOR TWO

DISCONNECTED REGIONS

In this appendix we outline the computational steps of the four-point functions (5.17) and

(5.18), re-written below:

F̂p

´

N˘
p , Ñ

˘
p

¯

“ p;Lx tI0uN˘
p

|Tp p0q 1p1q
p T̃p px1q 1p0q

p Tp px2q 1p1q
p T̃p px3q | tI0uÑ˘

p
yp;L ,

(A.1)

F̃p

´

N˘
p , Ñ

˘
p

¯

“ p;Lx tI0uN˘
p

|Tp p0q 1p1q
p T̃p px1q 1p0q

p T̃p px2q 1p´1q
p Tp px3q | tI0uÑ˘

p
yp;L .

(A.2)

We focus on the sector correlator F̂p associated to the nth Rényi entropy. The same procedure

can be implemented for for F̃p. Of course the different intermediate states and the different

product of fields involved in (A.2) will lead to different outcomes.

Notation:

We denote the rapidities of the complete sets of states (referring to the correlator in (A.1)

and starting from left to right) by βϵi , α
ϵ
i , β̃

ϵ
i and their numbers by mϵ, kϵ, m̃ϵ, respectively. As
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usual ϵ “ ˘. The rapidities satisfy the following Bethe-Yang quantization conditions (5.6)

Q ϵ,1
p pβϵi q “ mL sinh pβϵi q ´ 2πϵ

p

n
“ 2πJ ϵi , (A.3)

Q ϵ,0
p pαϵiq “ mL sinh pαϵiq “ 2πIϵi , (A.4)

Q ϵ,1
p pβ̃ϵi q “ mL sinh

´

β̃ϵi

¯

´ 2πϵ
p

n
“ 2πJ̃ ϵi . (A.5)

Additionally, we introduce the following notation for the sets of rapidities in the various

intermediate states

m˘
“ t β`

1 , . . . , β
`

m` , β
´
1 , . . . , β

´

m´u ,

k˘
“ tα`

1 , . . . , α
`

k` , α
´
1 , . . . , α

´

k´u , (A.6)

m̃˘
“ t β̃`

1 , . . . , β̃
`

m` , β̃
´
1 , . . . , β̃

´

m´u ,

and in the external states of equal rapidities:

N˘
“ tθuN`

p

ď

tθuN´
p
, Ñ

˘
“ tθuÑ`

p

ď

tθuÑ´
p
. (A.7)

The quantization conditions for rapidities in N and Ñ are the same for both particles and

antiparticles and are given by equation (5.14).

The expansion

Using the transformation (3.47) we can expand (A.1) into infinite volume form factors:

Fp

´

N˘
p , Ñ

˘
p

¯

“
ź

ϵ“˘

8
ÿ

mϵ“0

1

mϵ!

ÿ

tJϵu

8
ÿ

kϵ“0

1

kϵ!

ÿ

tIεu

8
ÿ

m̃ϵ“0

1

m̃ϵ!

ÿ

tJ̃ϵu

e´ix3Ñϵ
pP pθq

”

a

LE pθq

ıNϵ
p`Ñϵ

p

ˆ
eix1

řmϵ

i“1 Ppβϵi qeipx2´x1q
řkϵ

i“1 Ppαϵiqeipx3´x2q
řm̃ϵ

i“1 Ppβ̃ϵi q

“
śmϵ

i“1 LE pβϵi q
‰

”

śkϵ

i“1 LE pαϵiq
ı ”

śm̃ϵ

i“1 LEpβ̃ϵi q
ı (A.8)

ˆxN˘
|Tpp0q|m˘

y xm˘
|T´pp0q|k˘

y xk˘
|Tpp0q| m̃˘

y x m̃˘
|T´pp0q| Ñ

˘
y .

where P pθq “ m sinh θ and Epθq “ m cosh θ are the single-particle momenta and single-particle

energy respectively. The elements in the last row can be of course written in terms of elementary

form factors of Up1q-fields such as (4.39), which is the form that one usually considers to treat

the expansion above. However, in this appendix we intend to clarify some computational subtle

points, and refer the curious reader to [28] for full details. For this purpose it is fine to keep

188



Cecilia De Fazio

the form factors in their general form as above to simplify the notation.

In Section 4.5 we have presented a computational recipe for the two-point function. This has

a natural extension to correlators involving an higher number of fields and we discuss below the

main changes that one needs to account for in the treatment of four-point correlators. Similar

to the two-point case the Up1q-charge constrains the numbers of particles in the intermediate

states but we now have more constraints:

N`
p ´ N´

p “ m`
´ m´

“ k`
´ k´

“ m̃`
´ m̃´

“ Ñ`
p ´ Ñ´

p . (A.9)

One interesting difference is that due to the quantization conditions (A.4), some rapidities in

the intermediate states |ky may coincide with those of the external states. This does not change

the fact that the form factors are non-diagonal, as in each form factor the rapidities on the

two sides are always distinct. In order to correctly account for the different contributions, we

separate the rapidities into two groups k˘
ÞÑ k˘

Ť

K˘, one coinciding with θ

K˘
“ tθuK`

ď

tθuK´ , (A.10)

and the rest k˘. We can thus also separate the quantum number sums as

8
ÿ

kϵ“0

1

kϵ!

ÿ

tIϵu

f pkϵ, . . . q Ñ

8
ÿ

Kϵ“0

1

Kϵ!

8
ÿ

kϵ“0

1

kϵ!

ÿ

tIϵuSI0

f pkϵ,Kϵ, . . . q . (A.11)

The functions f represents the product of form factors in (A.8), note that the order of the

rapidities in each set does not matter (since we are dealing with free bosons, the form factors

are symmetric in all rapidities). We stress that at this stage all the rapidities in the formula

are solutions of the appropriate Bethe-Yang equations. This will not be the case anymore when

we advance to the first computational step.

Step 1: Transforming sums into contour integrals

We rewrite our formulae in terms of contour integrals:

ÿ

Jϵi PZ

f pβϵi , . . . q

LE pβϵi q
“

ÿ

Jϵi

ż

CJϵ
i

dβϵi
2π

f pβϵi , . . . q

eiQ
ϵ,1
p pβϵi q ´ 1

, (A.12)

ÿ

Iϵi PZ

f pαϵi , . . . q

LE pαϵiq
“

ÿ

Iϵi

ż

CIϵ
i

dαϵi
2π

f pαϵi , . . . q

eiQ
ϵ,0
p pαϵiq ´ 1

, (A.13)
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ÿ

J̃ϵi PZ

fpβ̃ϵi , . . . q

LEpβ̃ϵi q
“

ÿ

J̃ϵi

ż

CJ̃ϵ
i

dβ̃ϵi
2π

fpβ̃ϵi , . . . q

eiQ
ϵ,1
p pβ̃ϵi q ´ 1

, (A.14)

where the Cs are small contours around solutions of the Bethe-Yang equations and the functions

Q ϵ,α
p defined in (A.3) ensure that the integrand has a pole exactly when the Bethe-Yang equation

is satisfied.

We remark that in the equations above the integral variables on the right hand side are no

longer Bethe-Yang solutions.1 This means that they can cross points where the function f

shows singularities i.e. where the form factors in (A.8) has some equal rapidities on the two

sides (note that this is only possible within the contour integrals). When this happens we use

the kinematic pole property (4.45) of two-particle form factors to “contract” such rapidities. In

the next computational step we want to identify all the possible contractions involving rapidities

of the intermediate states and look into the pole structures of the form factors “inside” their

contour integrals. As seen for the two-point functions, the analysis of the form factor poles

provides the right prescription to evaluate the dominant contributions to the expansion (A.8)

in the scaling limit (5.2).

Step 2: manipulating contour integrals

In order to implement correctly the contour integral approach it is convenient to treat one

type of intermediate states at a time and to convert their sums at the exact moment when we

work on that specif type. Note that the expansion (A.8) never involves the sets of states |m˘y

and
∣∣ m̃˘

D

in the same form factors. A good strategy is to treat first these two sets where we

need to focus on only two form factors at a time, and finally consider the states |ky.

We concentrate on the states |m˘y. Once we transforms their sums into contour integral

we notice that rapidities in |m˘y can be contracted with others in three different ways,

schematically:

. . . xN˘
|Tpp0q|m˘

y x m˘
|T´pp0q|k˘,K˘

y . . . (A.15)

Note that only contractions between particles of the same Up1q-charge are allowed as these

correspond to elementary form factors of opposite charge. We know in fact from Subsection

4.3.3 that these are the only non-zero form factors of Up1q-fields. Each single contraction

in equation (A.15) corresponds to a single-pole residue. However there will be terms of the

1In a way, denoting the two variables on the right and left hand sides of equations (A.12), (A.13), (A.14)
with the same symbols is an abuse of notation that is however convenient to keep track of the different origins
of the contour integrals.
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expansion where the function f shows a double-pole. This precisely occurs when a rapidity

βϵj is contracted with a θ rapidity in both form factors (as both states
∣∣N˘

D

and
∣∣K˘

D

are

composed of only θs). Similarly to the case seen in Subsection 4.5.1.1, we need to subtract the

contribution generated by these poles. The contour after the deformation is:

Cϵ :“
ÿ

Jϵi PZ

CJϵi “ CÔ ´ Cθ ´
ÿ

j

Cαϵj , ϵ “ ˘ , (A.16)

where αϵj ‰ θ, and Cθ and Cαϵj are contours crossing the kinematic poles βϵi “ θ and βϵi “ αϵj

respectively whereas the function f is regular at any points of the contour CÔ. The

multi-contour for all βϵi rapidities is

rCϵsm
ϵ

“ Cϵ ˆ Cϵ ˆ ¨ ¨ ¨ ˆ Cϵ
loooooooooomoooooooooon

mϵ

. (A.17)

The order of contours does not matter due to the symmetry of the function f mentioned above.

We can expand the integration multi-contour by substituting (A.16) into (A.17). As a result

there are several terms of the multi-contour that give the same residue and we can write

“

Cϵp
‰mϵ

„
ÿ

mϵÔ,mϵθ,m
ϵ
α

p´1q
mϵα`mϵθ G pmϵ

Ô,m
ϵ
θ,m

ϵ
αq rCÔs

mϵÔ ˆ

«

mϵα
ź

j“1

Cγϵj

ff

ˆ rCθsm
ϵ
θ , (A.18)

where γjs are some rapidities in kϵ, and G pmϵ
Ô,m

ϵ
θ,m

ϵ
αq is a combinatorial factor resulting

from the power expansion. Crucially the non-negative integer summation indices in (A.18) are

constrained by

mϵ
“ mϵ

Ô ` mϵ
θ ` mϵ

α , (A.19)

Consider integrals over Cγϵj , form factors there produce only first order poles, as this correspond

to contracting rapitidities only in the second form factor. Consider instead Cθ, as mentioned

before, if M ϵ ‰ 0, the product of the two first form factors produces both second and first order

poles. We denote by mϵ
θ,1{2 the number of first order poles arising from the first/second form

factor, and by mϵ
θ,d the number of second order poles. They satisfy the condition

mϵ
θ “ mϵ

θ,1 ` mϵ
θ,2 ` mϵ

θ,d . (A.20)

Evaluating the residua of these poles produces several types of factors in the resulting expansion,
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after appropriate relabelling of the rapiditity sets. We refer the reader to [26] for the full

computations. Below we wish to use some simple arguments to give a flavour of how the

different poles contribute to the expansions.

In Subsection 4.5.1.2, we have evaluated a number N ϵ
˚ of second order pole residua and

after relabelling m˘ Ñ mϵ ´ N ϵ
˚ these introduce a factor proportional to

“

LEpθqgnϵpprq
‰Nϵ

˚ in

the expansion. Similar poles may occur also in this case and the corresponding residua give

the same contribution as above with r replaced by a linear combination of the ratios r1, r2, r3.

The exact combination depends on the specific residue and comes from different exponential

functions involved there.

In contrast, when we consider four-point functions we need also to account for first order poles.

The way how these change the structure of the expansion can be understood by looking at

the case of a single first-order pole for instance βϵi “ θ. After evaluating a first-order pole and

relabelling the rapidity set appropriately mϵ Ñ mϵ ´ 1 , we obtain schematically:

. . .

ż

´Cθ

dβϵi
2π

ex1P pβϵi q

eiQ
ϵ,1
p pβϵi q ´ 1

xN˘
|Tpp0q|m˘

y xm˘
|T´pp0q|k˘,K˘

y . . .

Ñ . . .Rϵ,1
xNϵ

ztθu|Tpp0q|m˘
y xm˘, tθu |T´pp0q|k˘,K˘

y . . . (A.21)

Thus as a result of the residue, the contracted rapidity θ is trivially replaced in the regular

form factors. Additionally the residue contributes a constant factor Rϵ,1 that is independent

of the ratios r1, r2, r3. When we consider other first-order residua (such as those involving αϵj

rapidities) these generate different factors as the exponential functions in the integrand would be

generally different. For this reason the factors Rϵ,1 depend also on the quantization conditions.

Although first-order poles contribute to the expansion (A.8) with only volume-independent

factors, they reshuffle rapitidies in the four form factors. These rapidities may eventually

recombine with others in |ky and produce higher order form factor poles, which do contribute

to the expansion with volume-dependent factors2.

The computational recipe consists of evaluating all the residua involved in equations (A.19)

and (A.20) and relabel accordingly rapitidies in |m˘y. Then, the exact same considerations

above are valid for states
∣∣m̃˘

D

. Indeed, one can easily notice that in the expansion (A.8)

the third and forth form factors are the mirrored version of the first and second ones, up to

replacement of the states
∣∣m̃˘

D

with |m˘y, and |N˘
y with |Ñ

˘
y. The case of

∣∣k˘
D

is instead

2Note that this scenario could not happen in the case of two-point functions such as that in Subsection
(4.5.1.2) as there we have inserted only a complete set of state, and for this reason we have not considered
first-order pole at all.
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more involved. Indeed after manipulating contour integrals associated to the rapidity sets

mϵ and m̃ϵ there will be rapidities αϵjs in each form factors of the expansion (A.8), resulting

from first-order poles of either βϵj “ αϵk and β̃ϵj “ αϵi (which give results similar to (A.21) both

producing different factors). To reflect this the original set kϵ can be partitioned into four parts,

namely kϵ “ kϵ12
Ť

kϵ23
Ť

kϵ34
Ť

kϵ41 where each subset kϵik is composed of rapidities αϵik that at

the end of the manipulation process will appear in the ith and kth form factors. Although each

of these subsets needs to be treated in a separate way, we can make some general statements by

concentrating on a particular rapidity αik. Once the sums have been transformed into contour

integrals, we want to deform the contour into one encircling the real axis C̃Ô, however, we need

to subtract the residua of poles at αϵik “ θ, since these poles are not included in the original

contour. That is

Cϵ0 :“
ÿ

I‰I0

Cαϵik “ C̃Ô ´ Cθ . (A.22)

It is important to note that C̃Ô must be chosen such as to run closer to the real axis than the

contour CÔ, for rapidities in mϵ and m̃ϵ, to avoid capturing undesired residua. Although the

resulting multi-contour integral has similar structure to the one analysed in Subsection 4.5.1.2,

it finally leads to a different residue calculation. In this particular case, in fact, the denominator

eiQ
ϵ,0
p pαϵikq ´ 1 of the contour integral (A.13) is singular at αϵik “ θ and the form factors (which

would be part of the function fpαϵik, . . .q in the numerator) can also have kinematic singularities

at this point. Since any given rapidity αϵik appears in two form factors it follows then that we

can have first, second, and third order poles. However it is possible to prove that only the third

order pole-contributions will survive in the scaling limit (5.2). Indeed each third-order pole

residue introduces a factor LEpθqg̃pxq in the expansion, and thus contributes to reducing the

power of L in the denominator of expansion (A.8), while the residua resulting from the other

poles turn out to be volume-independent. The function g̃pxq is a second-order polynomial in x,

where x is a linear combination of ratios r1, r2, r3. Again, the exact form of x depends on the

integrand of the contour integral3. We need of course to consider all these contributions in each

subset kϵ and correctly account for the combinatorial factors arising from pairing rapidities.

Once completed the entire procedure described above, the function f will be regular in all

variable and we can move to the next computational step.

3If we are interested in the correlator (A.2), these poles would still produce factors LEpθqg̃px1q but with
different combination x1 of ratios r1,r2, r3.
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Step 3: establishing the large-volume leading contribution

The evaluations of residua introduce some constrains due to the limited total number of θ

rapidities that can take part in the residue calculation. Computations for rapidity sets mϵ and

mϵ imply

mϵ
θ,d ď min

`

N ϵ
p,M

ϵ
˘

, m̃ϵ
θ,d ď min

´

Ñ ϵ
p,M

ϵ
¯

,

mϵ
θ,1 ` mϵ

θ,d ď N ϵ
p , m̃ϵ

θ,1 ` m̃ϵ
θ,d ď M ϵ ,

mϵ
θ,2 ` mϵ

θ,d ď M ϵ , m̃ϵ
θ,2 ` m̃ϵ

θ,d ď Ñ ϵ
p . (A.23)

We denote sϵij the number of third order poles evaluated by rapidities αij belonging to the set

kϵij. These numbers are constrained by the number of rapidities in kϵij, by the total number of

θ rapidities. Additionally we have the following less trivial constraints

sϵ13 ` sϵ14 ď N ϵ
p ´ mϵ

θ,d ´ mϵ
θ,1 , sϵ23 ` sϵ24 ď mϵ

θ,1 ,

sϵ14 ` sϵ24 ď Ñ ϵ
p ´ m̃ϵ

θ,d ´ m̃ϵ
θ,2 , sϵ13 ` sϵ23 ď m̃ϵ

θ,2 ,

sϵ13 ` sϵ14 ` sϵ23 ` sϵ24 ď min
´

N ϵ
p ´ mϵ

θ,d, Ñ
ϵ
p ´ m̃ϵ

θ,d

¯

. (A.24)

After evaluation of all residua, the volume dependence of the whole expression is rLE pθqs
∆.

Since only second- and third- order pole residua have contributed to rising this power we have:

∆ “
ÿ

ϵ“˘

˜

mϵ
θ,d ` m̃ϵ

θ,d ` sϵ13 ` sϵ14 ` sϵ23 ` sϵ24 ´
N ϵ
p

2
´
Ñ ϵ
p

2
´ M ϵ

¸

, (A.25)

where the negative terms comes from the denominators in the expansion (A.8). The maximal

∆ will give the leading large-volume contribution of the four-point function. We may rearrange

the expression as

∆ “
ÿ

ϵ“˘

˜

sϵ13 ` sϵ14 ` sϵ23 ` sϵ24 ´
`

N ϵ
p ´ mϵ

θ,d

˘

2
`
mϵ
θ,d ´ M ϵ

2

`

sϵ13 ` sϵ14 ` sϵ23 ` sϵ24 ´

´

Ñ ϵ
p ´ m̃ϵ

θ,d

¯

2
`
m̃ϵ
θ,d ´ M ϵ

2

˛

‚ , (A.26)

due to the constraints (A.23) and (A.24) each fraction inside the sum is less or equal than zero.
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Therefore, the maximum of ∆ is achieved when all inequalities are saturated, namely

N ϵ
p “ Ñ ϵ

p , mϵ
θ,d “ m̃ϵ

θ,d “ M ϵ ,

mϵ
θ,2 “ m̃ϵ

θ,1 “ 0 , sϵ13 “ m̃ϵ
θ,2 ´ sϵ23 ,

sϵ24 “ mϵ
θ,1 ´ sϵ23 , sϵ14 “ N ϵ

p ´ M ϵ
´ mϵ

θ,1 ´ m̃ϵ
θ,2 ` sϵ23 , (A.27)

where M ϵ,mϵ
θ,1, m̃

ϵ
θ,2 and sϵ23 are still free parameters within the range

0 ď M ϵ
ď N ϵ

p , 0 ď mϵ
θ,1 ď N ϵ

p ´ M ϵ ,

0 ď m̃ϵ
θ,2 ď N ϵ

p ´ M ϵ , maxpM ϵ
` mϵ

θ,1 ` m̃ϵ
θ,2 ´ N ϵ

p, 0q ď sϵ23 ď min
`

mϵ
θ,1, m̃

ϵ
θ,2

˘

.(A.28)

The maximum power of the volume is then ∆ “ 0. This corresponds to the situation when all

dependency on the θ rapidities has been cancelled by the evaluation of residua. Hence there

are no other poles to consider other than third order ones (as these will produce subleading

contributions).

Step 4: obtaining results

The remaining sums (A.28) can be finally re-written in such a way as to obtain the factor

N ϵ
p!
“

gnϵp pr1 ` r3q
‰Nϵ

p . Since the leading contribution is θ-independent, the vacuum-correlator

factorises out, and this gives the following final result

lim
LÑ8

F̂p

`

N˘
p , N

˘
p

˘

p;L x0| Tp p0q T̃p px1q Tp px2q T̃p px3q |0yp;L

“
ź

ϵ“˘

N ϵ
p!
“

gnϵp pr1 ` r3q
‰Nϵ

p . (A.29)

where the dependence on the ratio r2 has dropped out as a consequence of (A.27) and (A.28).

As we can see the excess entanglement entropy depends only on the total length of region

A
Ť

B and not on how it is partitioned.

As mentioned in the beginning of the appendix, the same procedure can be extended to

the replica negativity. The corresponding third-order and second-order residue calculations

introduce respectively powers of LEpθqg̃px1q and LEpθqgn˘ϵppx
1q4 in the resulting expansion in a

4More precisely, the signs ˘ arise from the fact that in the correlator (A.2) we need to account also
for rapidities with quantization conditions α “ ´1, and this changes some results of the second-order pole
residues. In the entanglement entropies (of either connected and disconnected regions) the leading large-volume

contributions comes from second-order poles occuring always in rapidities inserted between as . . . Tp1p1q
p T̃p . . . ,

and the second-order pole residua produce powers of LEpθqgnϵppxq. In contrast, in the case of the logarithmic
negativities, the dominant contribution may also come from second-order poles in rapidities inserted as

. . . T̃p1p´1q
p Tp . . . , and the corresponding second-order pole residue produce powers of LEpθqgn´ϵppx1q.
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very similar fashion. The difference is that now x1 will be given by different linear combinations

of r1, r2, r3 as a result of the different quantization conditions satisfied by the rapidities in the

intermediate states and the different combination of fields involved in (A.2). The final result

will be:

lim
LÑ8

F̃p

`

N˘
p , N

˘
p

˘

p;L x0| Tp p0q T̃p px1q T̃p px2q Tp px3q |0yp;L

“
ź

ϵ“˘

N ϵ
p!
“

ĝnϵp pr1, r3q
‰Nϵ

p , (A.30)

where ĝnϵp pr1, r3q is defined in (5.22). It is then easy to see that equations (A.29) and (A.30)

lead to the results (5.20) and (5.21).
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B

GRAPH PARTITION FUNCTION

In [28] the existence of a one-to-one relationship between (6.10) and the generating functions

of graphs satisfying certain connectivity conditions was shown. The resulting graph

representation connects the probabilistic interpretation of ”localised” excitations to the

replica models (associated to the entanglement measures studied in this thesis) in a very

natural way.

Suppose we want to evaluate the logarithmic negativities of a k-particle excited state for two

disconnected regions. The following graph rules reproduce the connectivity properties of the

replica model considered :

• The graphs are composed of two disjoint finite sets of vertices of equal cardinality kn,

where k is the number of particles (assuming they all have equal momenta) and n the

copy number associated to replica model. As a consequence the copy label is periodic i.e.

n ` 1 “ 1.

• Each edge of the graph connects one vertex in a set to one in the other. Therefore there

is no link between vertices in the same set.

• All vertices are connected exactly once. Therefore there is no unpaired vertex.

• Every edge connects copy m to m1 “ m` i where i can be ´1, 0, 1, and it contributes to

the evaluation of a graph g a factor ri.
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Figure B.1 Structure of the graphs

We can picture the graphs’ structure as suggested in Fig. B.1, and call Gk,n the finite set of

all graphs allowed by the rules above for a fixed k and n. For a graph g P Gk,n, we denote by

Nipgq, i P t1, 0,´1u the number of edges contributing as ri. We finally define a graph partition

as the sum over all possible graphs g P Gk,n we can construct from the rules above, given

two sets of kn vertices. More formally this corresponds to the following polynomial in three

variables r1, r0, r´1:
1

pk,npr1, r0, r´1q “
ÿ

gPGk,n

¨

$

’

&

’

%

ź

iPt1,0,´1u

r
Nipgq

i pn ą 2q

r
N0pgq

0 pr1 ` r´1q
N1pgq

pn “ 2q.

. (B.1)

The connection with the entanglement problem is as follows: each left vertex represents a

particle excitation in a certain copy of the replica model, and via the qubit interpretation, each

graph represents a possible configuration of the occupancy distribution of the kn particles in

three regions ( now implemented in the replica model). In each graph, the edges implement the

action of the cyclic permutation symmetry over the copies. This is formally implemented by

twist operators, which in 1+1 QFT are identified with a product of branch-point twist fields,

but they can be more generally considered as operators implementing special connectivity

properties among the copies of a replica model. Particle excitations are of course associated to

the fundamental fields of the theory, and satisfy appropriate exchange relations with the twist

1Note that the notation in this appendix has changed slightly compared to Chapter 5, and we use instead
the notation introduced in Chapter 6. In particular we use ri with i “ ´1, 0, 1 instead of r1, r, and r3. This is
just a more suitable notation in the context of graphs.
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operators. Suppose we consider a particle on copy m in a certain graph configuration, the twist

operator acts on this excitation in such a way to permutes copy m to m` 1 if the excitation is

found in a certain region of ratio r1, or permutes copy m to m ´ 1 if this is found in another

distinct region of ratio r´1. In contrast the twist operator acts trivially if the excitation is

found in the rest of the system, associated to ratio r0.

Under the interpretation above, the graph partition function reproduces the polynomial in

the logarithm of the increments ∆Ekn [28]:

∆Ekn “ EΨ
pkq

qb
n “ log

pk,npr1, r0, r´1q

pk!qn
(B.2)

where the normalisation 1{pk!qn comes from the fact that each vertex can be one of the k

identical excitations (assuming the indistinguishability of such particles). The entropy

increments ∆Skn are obtained by fixing r´1 “ 0:

∆Ek
n “ E

Ψ
pkq

qb
n “ log

pk,npr1, r0, 0q

pk!qn
, pk,npr1, r0, 0q “

ÿ

gPG1
k,n

ź

iPt1,0u

r
Nipgq

i . (B.3)

The corresponding graphs form a subset G1
k,n Ă Gk,n, and are composed of edges r0 or r1 only.

B.1 Example: graph partition function for a

single-particle state

Consider a single-particle state in a replica model with n “ 4 copies, the increment of

logarithmic negativity is :

∆E1
4 pr1, r0, r´1q “ log

`

r41 ` r4´1 ` r40 ` 4r20r1r´1 ` 2r21r
2
´1

˘

. (B.4)

The graph partition p1,4pr1, r0, r´1q is exactly the polynomial in the argument of the logarithm.

Its graph representation is displayed in Fig. B.2, where the graphs are organised in three

separate rows. The graph partition p1,4pr1, r0, 0q is simply given by the first two terms in the

same figure.

Let us focus on the polynomial p1,4pr1, r0, r´1q. We can identify three types of graph

contributions, each associated to a particular row in Fig. B.2. The first three terms represent

graph configurations where all excitations are found in the same region of ratio ri for
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Figure B.2 All contributing graphs for k “ 1, n “ 4.

i “ 1, 0,´1, and these contribute the highest power of ri only to the polynomial (B.4). To the

same polynomial, graphs in the second row equally contribute r20r1r´1 while those in the third

line equally contribute r21r
2
´1, producing a coefficient 4 and 2, respectively, which represent

their graph multiplicity.

The graph partition function can help us to better understand the structure of the

polynomial (B.4). Below, we indeed make a simple observation, which turns out to be quite

general for single-particle excitations. Consider a left vertex in copy m (for instance m “ 2)

and suppose that this is joint to the right by a edge r1 (connecting vertices 2 Ñ 3). Then,

consider the left vertex in the next copy m ` 1 (m “ 3). Since according to the rules the

straight connection is not allowed, we have only two choices to connect such a vertex: by

another edge r1 (that is 3 Ñ 4) or by an edge r´1 (that is 3 Ñ 2). The former leads inevitably

to a graph in the first row of Fig. B.2 whereas the latter forms a “cross” of weight r1r´1 with

the other edge m Ñ m ` 1 (2 Ñ 3). Recalling the periodicity in the copy number, the graphs

in the second and third rows can only result from combinations of crosses and straight lines,

and in particular the second row involves exactly one cross, and the third row involves exactly

two crosses. As a consequence the terms 4r20r1r´1 ` 2r21r
2
´1 in (B.4) account for all the

possible configurations we obtain if we use only crosses (at least one) and straight lines to

connect the four left vertices to the right. This simple argument can be extended for any
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single-excitation, and any copy number n :

p1,npr1, r0, r´1q “ rn1 ` `rn0 ` rn´1 `

rn
2

s
ÿ

q“1

n

n ´ q

ˆ

n ´ q

q

˙

rn´2q
0 pr1 r´1q

q (B.5)

where q represents the number of crosses, n ´ q the number of straight lines. The coefficients

in the sum select the indices appropriately to reproduce crosses in the graphs with the right

combinatorial multiplicity.

Note that if we consider multi-particle states of only distinct particles, we can only connect

a left and a right vertex to the right if the two vertices are associated to the same excitation

i.e. labelled by the same particle number. Thus the cross-and-line argument presented above is

still valid in this case, and as expected the resulting graph partition function is exactly k time

the one in (B.1). In contrast, when we consider particles of equal momenta, also connections

among different particle numbers are allowed (as they are indistinguishable) and although the

cross-terms still contribute r1r´1, there will be also other combinations of r1 and r´1 allowed

and one needs to properly account for these other contributions.
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NUMERICS WITH MATHEMATICA

In this appendix we discuss briefly some details of the Mathematica programme, implemented

to generate all the numerical results presented in Chapter 8 of this thesis. As usual in the TBA

context, the TBA/GHD equations are solved numerically starting with a discretization of the

variable θ within a finite interval. For this we exploit a well-known property of all relevant TBA

functions namely, that they double-exponentially fall off for rapidities larger than log 2{β or

smaller than log β{2 (and similarly in the out-of-equilibrium situation). In our numerics we have

chosen a slightly larger interval rlog β{2 ´ σ{4 , log 2{β ` σ{4s which grows with temperature.

In the out-of-equilibrium regime we choose β to be the inverse of the highest temperature.

We have kept the number M of discrete equidistant rapidity values fixed. It is clear that

the larger M is, the better the approximation to the continuum. However, a very large M

increases drastically the running time of the programme. In all our numerical analysis we

have set M “ 200. This value has been chosen in such a way as to ensure that a number

of benchmark results are reproduced. For instance, we reproduce the expected pattern of the

c-function at equilibrium (see Fig. 7.1) as well as the known free Majorana fermion results in

the relevant temperature range, both at and out of equilibrium.

We have focussed on studying the temperature-dependence of the TBA quantities described

in Subsection 7.3.1 exactly in the middle of the light-cone (so, for ray x{t “ 0). For this reason,

we omit the space- and time-dependence of the TBA quantities considered. For simplicity, we

have set the parameters of the theory as m “ 1 and σ “ 20. We can summarise the algorithm
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we have implemented as follows:

(a) For fixed values of βL,R solve (7.11) for the left and right steady states and compute

nRpθ; ˘q and nLpθ; ˘q using (7.31).

(b) Solve (7.30) for hipθq “ ppθq recursively. Start by setting θ˘
0 in (8.1) to some trial value

(say 0). Solve recursively for pdrpθ; ˘q until convergence is achieved.

(c) Once a solution for pdrpθ; ˘q has been obtained, find the solution to pdrpθ; ˘q “ 0. This

will give a new value of θ˘
0 .

(d) Repeat (b) and (c) with this new value of θ˘
0 and again as many times as necessary until

a stable value of θ˘
0 is reached.

(e) Employ the solution (8.1) to evaluate any dressed quantity of interest hdrpθ; ˘q.

(f) Evaluate (7.33) and (7.34).

(g) Repeat for a different right- and left-temperatures.

In (c) and (e) the convergence of the dressing operation is ensured by the condition that the

difference of the outcome given by the last iteration and the preceding one is smaller than the

module of a certain number α. In all of the cases, α has been chosen to be no larger than

10´4 generally ensuring very high precision. Similar arguments hold for the convergence of (a)

and (d).
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NUMERICS WITH IFLUID

In this Appendix we describe in more detail the numerical simulations reported in [36], and

presented in Chapter 9 of this thesis, focussing on possible error sources, precision issues and

consistency checks.

D.1 Generalities

As mentioned in Chapter 9, our numerical simulations have been obtained by implementing

a new numerical tool, called iFluid (integrable-Fluid, version 1.1.0 which is an open-source

Matlab framework specifically designed for solving the GHD equations in integrable models

[164]. It is worth mentioning also that an integral-equation solution to the GHD equation (7.38)

is also known [162], but its numerical stability has not been sufficiently studied yet.

Thanks to a tensor-based numerical environment, iFluid boasts high efficiency and high

process running speed. Additionally, a new model can be easily implemented by extending

the iFluid package with a model-specific class. Such implementation can be done by following

the instructions provided in [164]. However, the SUp3q2-HSG model requires additional

modifications and we have implemented them in this study.

The quantities studied in part II of this thesis feature in the iFluidCore class, which

provides solutions to the TBA equations and inputs for the GHD equations. By default, the

definition of spatial particle density included in the iFluidCore class, depends on the
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type-array. It is a fundamental property of the class and is included in the model

implementation as a one-dimensional array composed of integers which label the particle

types. In massive integrable QFTs with more than one particle in the spectrum, this

definition of the particle density introduces multiplicative factors in its type components,

which can lead to wrong results. We have instead implemented the definition that reproduces

the total spatial particle density q0px, tq “ q`
0 px, tq ` q´

0 px, tq as defined in (7.33) and leads to

a correct result. Moreover, in our implementation of the model, some iFluidCore functions

have been modified to output the contributions from each particle type to a given quantity

separately (i.e. the functions q˘
0 px, tq).

In iFluid, the propagation of the GHD quantities is computed via iFluidSolver class. In

our numerical simulation we have employed the SecondOrderSolver solver, whose details can

be found in Section 3.2 in [164].

The work [36] has provided the first application of the iFluid package to a system which is

initially prepared in a state involving temperatures T " 1. Earlier examples provided with the

package (i.e. sinh-Gordon model) were tested for temperatures T « 1. The convergence of the

thermodynamic Bethe ansatz equations has been successfully ensured for temperatures up to

Ope10q, and the results have been checked in the several ways, as we will see in the next section.

D.2 Precision and consistency checks

In order to make sure that the modified code gave meaningful results we carried out various

consistency checks, mainly comparing the outputs of iFluid with standard results that are

accessible by other numerical procedures.

A preliminary check was done on the initial state, which is given by the solution of the

(equilibrium) TBA equations for a given fixed temperature T pxq for each value of x. In the

iFluid code, the precision is controlled by two parameters, namely, the tolerance and the

maximal number of iterations allowed. In order to guarantee the highest accuracy, we set the

former to 10´32 and the latter to 5000. We made these choices in part by comparing the

outputs of iFluid in the initial state to results obtained for the same functions with a

Mathematica code used in Chapter 8, and established that, for the choices above, we achieved

higher precision with iFluid.

A similar check was performed by evaluating the TBA scaling function (7.23) over a range of
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temperatures (especially at high temperatures), and seeing that plateaus at the expected values

of the central charge [31] where reproduced. An example is displayed in Fig. 7.1. Likewise we

computed the energy densities and currents in the UV (high temperature) limit, reproducing

the results of Section 8.2.

t 0 3 6 9 12 15
Q0 561.2520 561.2541 561.1937 561.1511 561.1156 561.0970

Table D.1: Numerical values of the total integrated particle density Q0 at several times. Here,
the parameters are: σ “ 10, logp2Tmq “ 7 and Ta “ 0 (no bath). To evaluate Q0, we have
computed (7.33) for i “ 0 and performed a cubic spline interpolation, implementing additional
grid points whose spacing in x is ∆x “ 1.ˆ10´5. Q0 is numerically conserved, up to a variation
on the first decimal place, which can be attributed to the discretisation procedure.

Having established that the initial state is accurately described, we then turned to

consistency checks of dynamical quantities. We calculated the total particle density Q0 given

by the x-integral of the total particle density (7.33) for i “ 0. Q0 should be conserved in time

and so its computation for various values of times provides a consistency check for numerical

solutions of the GHD equations. In Table D.1 we have reported the numerical values of the

total particle density evaluated in the no-bath case. Q0 is confirmed to be conserved, up to a

numerical variation on the first decimal place, which is the order of the grid spacing

implemented in the simulation (see Table D.2 for details).

Finally, we performed other consistency checks which exploit the connection of our model

with free theories. In particular, as explained in 7.1, we have that for T ! e|σ|{2 our model

should reduce to two Majorana free fermions. Thus, performing numerics for the SUp3q2-HSG

model with σ “ 20 for the same temperature choices discussed in Chapter 9, we should obtain

results which are fully in the free fermion regime where the time-evolution equations can be

solved exactly. Thus, in this regime numerical results from iFluid can be compared to analytical

solutions. We have confirmed that they are in perfect agreement.

D.3 Space and rapidity discretisations

Besides convergence of the numerical solution of the TBA equations, we have established

that the key source of numerical error is the choice of space discretisation. The values adopted

in our computations are given in Table D.2.

We have devoted special attention to the discretisation of the rapidity interval. iFluid

employs Gauss-Legendre quadrature integration, which has excellent convergence properties for

211



APPENDIX D. NUMERICS WITH IFLUID

∆max No. Points Max. Val. Quadrature

t 0.2500 61 15. Rectangular
x 0.1000 441 22. Rectangular
θ 0.0762 700 17. Gauss-Legendre

Table D.2: Discretisation parameters and quadratures chosen for the two numerical
simulations (i.e. with and without a bath) presented in [36] and discussed in Chapter 9 .
From the left, the columns indicate (respectively for t, x, θ): the variable, the lowest resolution
(i.e. the largest spacing between two grid points ∆max), the number of grid points, the largest
absolute value the variable takes, and the type of quadrature implemented. In the rectangular
quadrature we have implemented equidistant grid points with fixed spacing ∆max.

Figure D.1 Right: The rapidity discretisation interval as a function of rapidity for different
numbers of points in a fixed rapidity interval θ P r´17, 17s. The markers indicate the values of
N that are considered in Fig. D.2. Left: Comparison of the rapidity discretisation interval in
the middle and towards the edges of the interval with non-trivial dynamics. ∆θ0 and ∆θ10 are
defined to be the rapidity discretisation intervals for θ “ 0 and θ “ 10, respectively.

integrals over a finite interval [172, 173]. However, this quadrature is optimised for minimising

boundary errors. This means that the number of data intervals is lowest in the middle of the

interval, precisely where we find the non-trivial behaviour of the thermodynamic quantities of

interest. The dependence of the size of the rapidity intervals, ∆θ on the rapidity θ and the

number of points in the interval considered N for a fixed range of rapidities is shown in Fig. D.1.

As a point of reference, we have chosen to compare the resolution at θ “ 0 and 10, as

a primary region with non-trivial dynamics. Although the discretisation interval for θ “ 0

remains the largest for any value of N , the distribution quickly flattens out when the number

of points is increased. Investigating the range of N values from 200 to 700, we achieve an order

of magnitude increase in resolution for both θ “ 0 and 10. Significantly smaller is also the

difference between these two quantities, which is consistent with the flattening of the curve in

the right panel of fig. D.1. The numerical values of the size of the discretisation interval for a
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chosen numbers of points in the rapidity interval are included in Table D.3.

N ∆θ0 ∆θ10 ∆θ0 ´ ∆θ10

200 0.2664 0.2157 0.0506
300 0.1777 0.1439 0.0338
500 0.1067 0.0864 0.0203
700 0.0762 0.0617 0.0145

Table D.3: Numerical values of the rapidity discretisation intervals ∆θ, for a given number
of rapidity points N in the range of rapidities used in this investigation θ P r´17, 17s.
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Figure D.2 Spatial particle density of particle ` for different numbers of points in the fixed
rapidity interval θ P r´17, 17s. The N “ 200 panel shows regular oscillations. The oscillations
persist for N “ 300, disappear around N “ 500 and are consistently absent for higher numbers
of points, such as N “ 700. Variations of space and time discretisation parameters have not
produced any significant changes in the same functions.

In order to obtain the averages of conserved charges and currents in the SUp3q2-HSG model,

it is necessary to integrate over the rapidity variable, as defined in (7.33). This integration

procedure leads to the “accumulation” of any numerical errors present in the original function

and to the formation of regular structures that could be easily mistaken for genuine physical

phenomena. An example of this effect can be seen in the particle density associated to particle
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` computed with different rapidity discretisations. Four examples are presented in Fig. D.2.

As expected, the problem arises from the middle of the rapidity interval where resolution is

lowest. By changing N we can identify a large enough value that guarantees a stable solution

for the spatial particle density. In our code we have chosen N “ 700. The quantities not

integrated over the rapidity integral did not exhibit any unusual behaviour even for the values

of N as low as 200. Interestingly, this applies also to the spectral density, which produces then

spatial particle density when integrated over rapidity. This further confirms that the emergence

of of the oscillations seen in the top left fig. D.2 is genuinely a numerical effect arising due to

integration.
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Hydrodynamics of Particle Creation and Decay”. In: preparation (2021).

[149] L. Bonnes, F. H. L. Essler, and A. M. Läuchli. ““Light-Cone” Dynamics After Quantum
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[154] D. X. Horváth. “Hydrodynamics of massless integrable RG flows and a non-equilibrium

c-theorem”. In: J. High Energ. Phys. 2019.10 (2019), p. 20. doi: 10.1007/JHEP10(2019)

020.

[155] url: https://youtu.be/lvWd4qxMShQ.

[156] M. Mazzoni, O. Pomponio, O. A. Castro-Alvaredo, and F. Ravanini. “The staircase

model: massless flows and hydrodynamics”. In: J. Phys. A: Math. Theor. 54.40 (2021),

p. 404005. doi: 10.1088/1751-8121/ac2141.

[157] url: https://youtu.be/7jX0HFa1cgs.

[158] url: https://youtu.be/m2ApWaQkcHE.

[159] url: https://youtu.be/suIftU1oNcw.

[160] V. B. Bulchandani, R. Vasseur, C. Karrasch, and J. E. Moore. “Solvable Hydrodynamics

of Quantum Integrable Systems”. In: Phys. Rev. Lett. 119.22 (2017), p. 220604. doi:

10.1103/PhysRevLett.119.220604.

[161] B. Doyon, J. Dubail, R. Konik, and T. Yoshimura. “Large-Scale Description of

Interacting One-Dimensional Bose Gases: Generalized Hydrodynamics Supersedes

Conventional Hydrodynamics”. In: Phys. Rev. Lett. 119.19 (2017), p. 195301. doi:

10.1103/PhysRevLett.119.195301.

[162] B. Doyon, H. Spohn, and T. Yoshimura. “A geometric viewpoint on generalized

hydrodynamics”. In: Nucl. Phys. B 926 (2018), pp. 570–583. doi:

10.1016/j.nuclphysb.2017.12.002.

[163] F. S. Møller, G. Perfetto, B. Doyon, and J. Schmiedmayer. “Euler-scale dynamical

correlations in integrable systems with fluid motion”. In: SciPost Phys. Core 3.2

(2020), p. 16. doi: 10.21468/SciPostPhysCore.3.2.016.

[164] F. S. Møller and J. Schmiedmayer. “Introducing iFluid: a numerical framework for

solving hydrodynamical equations in integrable models”. In: SciPost Phys. 8.3 (2020),

p. 41. doi: 10.21468/SciPostPhys.8.3.041.

[165] url: https://youtu.be/mvNnzBL7vYs.

[166] url: https://youtu.be/yyLcuTn4lBY.

[167] L. Capizzi, O. A. Castro-Alvaredo, C. De Fazio, M. Manzoni, and L. Santamaŕıa-Sanz.
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