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ABSTRACT

In this thesis, we explore the role of quasiparticles in two problems that have integrability at
their core: the entanglement content of excited states and the out-of-equilibrium dynamics
in the presence of unstable excitations. In the first part, we consider the one-dimensional
massive free boson and different partitions of a ring. We compute entanglement entropies
and logarithmic negativites in states composed of multiple particle excitations, in the limit
of large volume and regions’ lengths. We find that the quasiparticle excitations give additive
contributions to the vacuum entanglement that depend on very few properties of the state,
namely the number of excitations and their (in)distinguishability, and that are independent of
the connectivity of the regions. The results have a natural probabilistic interpretation as the
entanglement of multi-qubit states where qubits represent the presence or absence of excitations
in the regions of the partition. Such a simple structure suggests that the results obtained are
universal, a suggestion that is further supported by both analytical and numerical evidence.
At the heart of this universality there is the only basic assumption that particle excitations
can be localised within the entanglement regions. In the second part of this thesis we apply
the generalised hydrodynamic approach to study an integrable model possessing an unstable
excitation in its spectrum. Because of the finite lifetime the dynamics of the unstable particle
can be studied only indirectly, in terms of the constituent (stable) particles. We find that the
out-of-equilibrium dynamics of the stable particles exhibits clear signatures of instability such
as decay, creation of tails, and large-time stable populations of mutually interacting particles.
We use these signatures to develop a more clear physical picture of the formation of the unstable

excitation.
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INTRODUCTION

Quantum field theory (QFT) was originally developed to connect the principles of special
relativity with those of quantum mechanics, providing the most complete (experimentally
verified) description of elementary particles [1]. Remarkably QFT methods have also provided
a powerful way to access many-body quantum systems, giving rise to an effective description
in terms of quasiparticles [2]. Roughly speaking, quasiparticles are a simpler way to approach
a very complicated physical problem, that means that under certain conditions, some
multi-body systems can be treated as if composed of fictitious bodies for which a better
understanding of the problem can be achieved. An example is the emergent Bogoliubov

quasiparticles in a weakly-interacting Bose gas [3].

The concept of quasiparticles plays a similar role in integrable quantum field theories, i.e. a
special subset of 1 + 1-dimensional QFTs characterised by infinitely-many local conserved
charges. However, for these theories the simplification of the physical problem comes from the
combination of the low dimensionality of the system and the presence of multiple conserved
charges. As a consequence the dynamics of integrable systems is severely constrained and this
gives rise to a simple scattering picture: quasiparticles are here interpreted as particle
excitations above the ground state, defining the incoming and outgoing states, and their
two-particle scattering fully characterises any scattering processes in the system. This is a
consequence of the factorisation of the scattering-matrix, and of the absence of particle

production.

In this thesis we will explore the role of quasiparticles in two problems in the context of
integrable quantum field theory. In part I we investigate the entanglement content of
multi-particle states by looking at two famous groups of measures: entanglement entropies [4,
5] and logarithmic negativities [6, 7). A motivation is that, as functions of the state, these

measures provide a macroscopic way to capture wuniversal properties of the state i.e.
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properties that to a large extent are independent of the details of the theories. In previous
pioneering studies, the entanglement of the ground state was found to provide an efficient
measure of universal properties such as the central charge of the corresponding Conformal
Field Theory (CFT) for systems at criticality [8-14], and of the mass spectrum of the QFT,
for systems near criticality [15-18]. We thus aim to address the following questions: what
kind of universalities does the excited state entanglement display? Can we use these features

to learn more about the fundamental properties of the quasiparticles?

In part II of this thesis we will study a QFT possessing both integrability and unstable
excitations. These two properties rarely feature simultaneously. However the family of the
homogeneous-sine Gordon models, provides a rare example where both unstable and stable
bound states are present in the spectrum [19-22]. Among these, we will consider the
SU (3)2-Homogeous sine-Gordon model, a theory whose spectrum has two stable particles of
the same mass. These form an unstable bound state, associated to a particular pole structure
of the scattering matrix. Because of the finite-life time the unstable particle is not part of the
asymptotic spectrum and its dynamics can only be studied indirectly. Our goal for part II of
this thesis is to develop a more clear dynamical picture of the formation of this unstable

particle that goes beyond the pole structure of the scattering matrix.

This thesis is organised as follows:

e In Chapter 1, we review a few key concepts of integrability with a particular focus on the

scattering picture.

e In Chapter 2, we start part I of this thesis. In particular, we motivate our interest in
the entanglement of bipartite quantum systems, and introduce two groups of measures,

namely entanglement entropies and logarithmic negativities.

e In Chapter 3, we focus on integrable QFTs, and review the main integrable-model
techniques to compute the entanglement measures introduced in Chapter 2. We pay
special attention on the branch-point twist fields approach [15], i.e. the idea of
expressing the entanglement measures of interest as correlators of symmetry fields, and
on how this connects to replica theories. In order to understand the structure of the
correlators of branch-point twist fields, we review the main results obtained for the

ground state, and the resulting universal properties that the vacuum-state entanglement
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displays. We also highlight the challenges of generalizing the branch-point twist field
approach to finite volume and excited states. We explain how these challenges may be
resolved in the case of the massive free boson theory. To conclude, we review the form
factor techniques developed to compute correlation functions of local operators, with

special attention to the theory considered in the next chapters.

In Chapter 4 (based on the works [23, 24]) we focus on the massive free boson theory. In
particular, we consider a bipartite system and compute the entanglement entropies in
zero-density states. We employ the doubling trick i.e. a free-theory technique introduced
in [25], and discuss its extension to the replica model. By using a contour integral
approach, we compute the twist-field correlators and derive explicit formulae for three
states: a single-particle excited state, a k-particle excited state involving distinct
momenta only, and a k-particle excited state consisting of equal momenta. We provide
concrete examples of all three cases for the 2nd Rényi entropy. We then generalise the
results to states composed of a mixture of excitations of equal and distinct momenta.
To conclude this chapter we present the qubit picture, an alternative approach to obtain
our results that gives a natural probabilistic interpretation to the entanglement content
of quasiparticles. Additionally the qubit picture allows us to obtain explicit formulae for

the entanglement entropy and single-copy entropy.

In Chapter 5 (based on the works [26, 27]), we extend the techniques developed in Chapter
4 to the study of the entanglement entropies and logarithmic negativities of two regions.
We start from the case of two disconnected regions, and consider zero-density states of
the same kind of the previous chapter. We discuss the main differences from the previous
study case, and evaluate the four-point twist field correlators in a single-particle state,
and a k-particle state with all equal or distinct momenta. We present an alternative
computation obtained from the qubit picture that reproduces the same results. We then
discuss the case of two adjacent regions, and conclude the chapter with the generalisation

of the qubit picture to an arbitrary number of disconnected regions.

In Chapter 6 we conclude part I of this thesis. We review the main formulae obtained
in the massive free boson. We then devote the remainder of the chapter to discussing

possible generalisations and extensions, based on the works [23, 24, 26, 28].

In Chapter 7 we start part II. Here, we introduce the main ingredients for the next

two chapters. In particular, we introduce the SU(3)s-homogeneous sine-Gordon model,

3
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and review the Thermodynamic Bethe Ansatz (TBA) [29, 30] of this model [31]. We
finally introduce the GHD approach [32, 33|, and generalise the TBA equations to the

Generalised Gibbs ensemble [34], with a special attention to the model considered.

e In Chapter 8 we present the numerical results reported in [35], and obtained by
implementing the partitioning protocol. We discuss the numerical results for the energy
densities and energy currents. We additionally look at the phase-space dynamics. We
first study the spectral densities and effective velocities of the individual particles at
equilibrium, and develop a dynamical picture of the unstable excitation. We then

discuss the differences observed out of equilibrium.

e In Chapter 9 we present the numerical results reported in [36], and conclude part II
of this thesis. We introduce the inhomogeneous quench, and motivate our choice of
the simulation parameters. We consider two numerical simulations (differing only by
the presence or absence of a bath) and explore the effective velocities and densities to
outline the full dynamical picture. We then provide further details on the structure of
the subsidiary peak and discuss the stark difference between our results and those for a

free theory.
e In the last chapter of this thesis, we draw our conclusions.

e In Appendix A we extend the contour integral approach (introduced in Chapter 4) to two

disconnected regions.

e In Appendix B (based on [28]) we introduce a graph representation for the main results

collected in Chapter 6.

e In Appendices C and D we review the main features of the numerical algorithms used to

obtain the results presented in Chapters 8 and 9, respectively.










CHAPTER

ONE

SCATTERING PICTURE IN INTEGRABLE QUANTUM FIELD
THEORY

1.1 Integrability

Integrability is the property linking all the results in this thesis. Therefore, we devote the
first chapter to introducing a few key concepts. We will consider 1 + 1-dimensional QFTs with
translation and Lorentz invariance, and focus on the scattering picture and on how integrability
constrains the types of scattering that can take place. All the results reported here are standard

and can be found for instance in [37, 38].

In this thesis, we consider multi-particle states that are eigenstates of the Hamiltonian.
These states are well-defined in QFT and a convenient choice as they will be also eigenstates
of any other conserved charges in the theory. Thanks to the relativistic invariance, we do not
need to know the explicit form of the Hamiltonian to characterise such states. Denoting H
and P the Hamiltonian and momentum operators, their eigenvalue equations for single-particle

states are:

H|0" = E|60") | P|0"y = P|o"), [H,P]=0. (1.1)

2

The well-known mass-shell relation E* — P? = m? is satisfied by the relativistic dispersion

relation

E(0") = m, cosh 6", P(0") = m, sinh 0", (1.2)
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where the variable 0* is called rapidity and is just a convenient way of parametrizing such
solutions, and the index p represents the particle species of the single-particle excitation'. Now
if there is only a single-particle, this cannot interact and will propagate freely, therefore if we

want to describe scattering processes, we need to consider multi-particle states:
|0, 05%, .. =101">® 105 ... (1.3)
with energy and momentum accordingly

E(0},052,...) = > my, cosh 0, P(0)*,052,...) = > my, sinh 0. (1.4)

In the context of integrable models, we are interested in the following situation (typically
occurring in scattering experiments): the particles are initially located at very large distance
to each other, then, they will be at finite distance for a finite period of time before and after
the interaction and finally, waiting enough (ideally infinite time) they might be infinitely
separated (free again) or involved in stable bound states. It is thus convenient to describe the
process in terms of the asymptotic incoming and outgoing states and the way these are
related to each other fully characterises the scattering properties of the system. We can define
the scattering matriz (also called simply S-matriz) as the operator mapping the incoming
states into the outgoing states. Its elements describe the scattering processes allowed by the
theory, for instance the one transforming n incoming particles into m outgoing particles can

be schematically written as:
S = MO N9 e (1.5)

For interacting QFT these elements are typically hard to compute and require the application
of pertubative techniques. However, in integrable QFT, the presence of infinitely many local
conserved charges, combined with the low dimensionality of the theory, drastically constrains
the particle dynamics. In the scattering context, integrable quantum field theories are fully

characterised by the following three properties:

e Absence of particle production

e Purely elastic scattering processes

In Chapter 3, this index will include also a copy number, namely another index related to the particular
geometry of the replica model.
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N\ /

0,0, 0
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Figure 1.1 Yang-Baxter equation for a three-particle scattering. The three cases differ by a
symmetry transformation therefore describe the same physics.

e Factorization of the S-matrix

Note that the statements above are not independent of each others, but they are all direct
consequences of the presence of infinitely many conserved charges. The first point obviously
implies that phenomena such as particle creation and annihilation cannot occur and that only
scattering processes which preserve the number of particles are allowed in integrable systems.
Moreover, the elastic scattering implies that as a result of the particle collisions, there might
be two possible scenarios (which or course, reflect the properties of the model under
consideration): particles have preserved or exchanged their own initial momenta and/or other
quantum numbers. In the next subsection we will focus on the former situation, which leads
to theories described by a diagonal scattering matrix. This is indeed the case for all the
theories analysed in this thesis. The latter scenario (that is, when momenta and/or quantum
numbers are exchanged) encodes a more complicated dynamics and leads to theories which
are characterised by a non-diagonal scattering matrix (a famous example is the Sine-Gordon

model [39]).

Finally, the factorization of the S-matrix can be understood from the following
considerations: in the incoming and outgoing basis, one-particle states are characterised by
wave functions associated to the solutions of the field equations, and these are well-localised
(in momentum or rapidity space) around the center of the wave packet. In non-integrable
models the amplitudes of these wave packets keep typically a trace of the details of the
scattering process and these are encoded in some parameters characterising the states, i.e. the
impact parameters. For instance the impact parameters help us to understand the order of
the scattering events (i.e. collisions involving a certain number of particles at a certain finite

time and finite length). In contrast, in integral models?, for each particle it is possible to shift

2Remarkably, this can be shown to hold in the presence of just two independent conserved quantities [40].
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differently the center of the wave packets through the action of a local operator associated to
higher charges of the theory [37, 40]. Since this operator commutes with the Hamiltonian, its
action must lead to the same physics. As a consequence the S-matrix is independent of the
impact parameters. The argument above can be more rigorously expressed in the form of the
Yang-Baxter equation [41, 42]. A graphical example is displayed in Fig. 1.1 for three particles.
The three-particle scattering matrix decomposes into two-particle contributions and is
independent of the order of scattering events. The generalisation of the Yang-Baxter
equations to n-particle scattering implies the factorization of the corresponding S-matrix into
n(n — 1)/2 two-particle terms. Hence, in integrable models we need only to characterise the
two-particle S-matrix in order to fully understand any scattering process involved in the

system.

1.2 Diagonal S-matrix

In this thesis we only consider theories with scattering matrices in a diagonal form. In this

case we can express the action of two-particle S-matrix on two-particle states as:
|07, 05°)™ = S10(61", 65°) 67", 05°)°" . (1.6)

Since the asymptotic incoming and outgoing states coincide we can adopt the following

convention:

(04,057 L O = |0 052 L O o Z,,, (047 Z,,(052) ... Z,, (011)]0) (1.7)
(040,042 . 0 = |0 0Oy o 2, (00%) Zy (0051 - Zy (047)]0)

where the ordering of the rapidities indicates which state is considered. In particular, the
operators Z,,,Z,,, ..., 2, satisfy the Zamolodchikov-Faddeev algebra [39], defining the

scattering properties of the theory and in particular the S-matrix:
Zyy (071) Zy15 (057) = Spuyyua (01", 65%) 2,y (057) Z,, (017) 07" > 657 (1.8)

Such operators may be interpreted as excitations over the ground state and the indices pu;s
indicate the corresponding particle species. In free theories these operators are simply the

creation operators generating the Fock space of the free theory. In a similar way, the operators

10



Cecilia De Fazio

above span the analogue of a Fock space for the integrable theory.

1.2.1 Bootstrap equations for two-particle S-matrix

In this and the next subsections, we provide a brief review of the fundamental properties
of the two-particle diagonal S-matrix. One can easily note that the Yang-Baxter equations
are trivially satisfied for diagonal scattering, however other constraints can almost totally fix
the form of the two-particle scattering matrix. Among these, the symmetries of the theory
considered play an important role. In particular, Lorentz invariance implies that scattering

matrix elements depend only on rapidity differences

Sy (01, 052) = S, 1, (07 — 605*)  (Lorentz invariance) . (1.9)

Moreover, for parity invariant theories the S-matrix is symmetric

Sy (0) = Sy (0) (parity symmetry), (1.10)

where we have introduced the rapidity difference 6 := 6] — 652. In part II of this thesis we
analyse a theory that does not satisfy the property above as it breaks the parity invariance.

Other properties come from general field theory considerations and are:

S (0) = (S (—6%))7 (real analyticity), (1.11)
Spnpn(0) Sy (—0) =1 (unitarity) , (1.12)
Sy pn(0) = Sy i (1 — 0) (crossing symmetry) , (1.13)

where [i denotes antiparticles. For many theories [39] the equations above, along with additional
requirements for bound states (if there are any) that we will introduce in a while, are sufficient
to fix the S-matrix completely, and in general they provide the basis for the S-matriz boostrap
namely the procedure whereby a solution for the two-particle S-matrix can be found. In some
cases the solutions may be fixed up to some functions that do not involve new poles in the
physical sheet. This problem is known as the CDD ambiguity [43] and usually requires other

means to obtain the exact S-matrix solution.

11
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1.2.2 Pole structure of the two-particle S-matrix

By using analyticity arguments [39] it is possible to identify the physical domain on the
f-plane of the two-particle S-matrix. This domain is usually called the physical sheet and
is precisely given by Im(6) € [0,7]. Bound states are identified with a single-pole lying on
the imaginary axis in the physical sheet. Some theories present poles in the unphysical sheet
which can (sometimes) be identified with unstable particles, i.e. bound states that do not
survive in the asymptotic states but do affect the dynamics of the stable particles. Examples of
theories with such a feature are the homogeneous sine-Gordon models [19-22] introduced in the
introduction. In part II of this thesis we will focus on the simplest of these theories. Although
we are not going to treat theories with stable bound states, below, we want to introduce them

for clarity, and to justify how they differ from the “resonance” poles that we will see in part II.

1.2.2.1 Stable bound states

We consider the scattering process p; + p2 — ps such that a stable particle of type ps

is created by the collision of a type-u; and a type-us particle at rapitidity 6 = 7ul?  with

ut? € [0,7]. Crucially integrability imposes that stable bound states are still part of the

asymptotic particle content and thus are on the same footing as the other particles (this is
known as nuclear democracy principle [44]). The S-matrix near the bound-state pole can be

expressed as:

Sy s (0) ~ iw (1.14)
e 0 — Zuﬁ? M2 ’

where I3 is the on-shell three-particle vertex functions. The conservation of energy and

momentum in the scattering process implies a relation between the masses of the particles and

the pole position

2 _ 2 2 na
My = My, + M+ 2my, my, cosuy,? o (1.15)

The existence of the bound state implies that also single-poles in the other channels, namely

Sy s (12 ) and S, 4 (ulil ), arve singular. Note that (1.15) can be seen as the geometrical
relation known as Carnot‘s theorem where the sides of the triangles are given by the masses

m;, m; and m,, this implies a geometric relation among the external angles of this triangle:

uts + uk2? + utt

1 pi2 u s iz ps = 27 (1.16)

and leads to the consistency for the S-matrix amplitudes:

S:U'47ﬁ3 (0> = 5“4’#1 (0 + Z.'ITL'U'2

b2 un) Spaua (0 —aul) ) (boostrap equation), (1.17)

B 13
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where the particle of type p4 is only involved indirectly and is called the “spectator” particle.
The equation above provides an additional S-matrix constraint in the presence of stable bound

states.

1.2.2.2 Unstable bound states
We consider a scattering process p; + o — ji where the resulting particle is now unstable.
This corresponds to having a singularity in the S-matrix at rapidity

Or = ol ., — 10 ., (1.18)

with a pole lying in the non-physical sheet, i.e. 551 4 > 0. The parameter Ufjl 4 18 called

resonance parameter and is a characteristic of the theory.

Unlike stable particles, the unstable excitations are not part of the asymptotic spectrum and
their dynamics is not described by elements of the S-matrix, therefore the bootstrap equation
(1.17) cannot be formulated for them®. Of course, the mass conservation is still a valid constraint
and imposes that unstable particles can be created if the centre-of-mass energy of the two
particles is close enough to the mass of the unstable particle M. This last property is quite
general and holds for any bound states, but additionally unstable particles are characterised
by a finite life-time. The mass M} and the decay width I'; (inverse of the lifetime) can be
computed via the Breit-Wigner formulae [46]:

2
2M: = VA2 + B2+ A, 7“ =VA2+ B> A, (1.19)
for
A= mzl —i—mi2 +2m,,, my,, cosh ‘751 Jip COS 651 o B = 2m,,m,, sinh ‘751 i SIN 6/’;‘1 s - (1.20)

Note that if aﬁl 4o 18 vanishing, then B = 0 and the created particle has infinite life-time. The
bound state becomes a “virtual state”, meaning that fr becomes purely imaginary as for the
case of stable bound states. However the pole is still located outside the physical strip and

cannot be interpreted as a stable particle of the theory.

The formulae above will be used for the SU(3)s-homogenous sine-Gordon model in Section

7.1 in order to provide a first characterization of the unstable excitation of the model.

3 Although attempts to achieve this were made for instance in reference [45].
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CHAPTER

TWO

GENERALITIES ON ENTANGLEMENT

2.1 Entanglement in quantum systems

Entanglement is a genuine quantum phenomenon occurring between two or more parts of
a quantum system. Its most direct consequence is that a local measurement performed on
a subsystem may affect the outcome of other measurements potentially performed far away:.
When this happens we say that the quantum system is in an entangled state. In contrast, if
the local measurement does not add any information on the other sub-parts, we say that the

quantum system is in a separable state.

The concept of entanglement has played a crucial role in the early stages of quantum
physics, where this new form of correlation was perceived as the qualitative feature that most
distinguished the quantum from the classical nature [47]. It is not surprising that the
existence of entanglement had been at the centre of the scientific debate for some time (a
famous example is the FEinstein-Podolsky-Rosen paradoz [48]). The subsequent development
of Bell’s inequalites [49] finally made these quantum correlations accessible to experimental
verification, which was first conducted by Alain Aspect and collaborators [50] using a pair of

maximally entangled photons.

In the last few decades, it has become possible to control quantum correlations and
entanglement has consequently been viewed as a new resource to achieve tasks that have been

considered impossible or inefficient at classical level (a representative example is quantum
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teleportation [51]). In this context, both technological and the theoretical progresses have
raised the quest to develop efficient theoretical measures of entanglement that could not only
distinguish between entangled and unentangled states but also quantify the amount of
entanglement that quantum systems possess. Interestingly, a large variety of quantities have
been identified as good measures of entanglement in many different contexts of many-body

quantum systems [52] as in general there is not a unique way to quantify entanglement.

It is also important to stress that whether or not a state is entangled is strictly related to how
the quantum system is partitioned, and in particular, the answer may be different for different
partitions. This does not mean that the physics is arbitrary, but instead the partition is part of
the phenomenon and is indeed a piece of information encoded in the entanglement. In this part
of the thesis, we will focus on bipartite systems as bipartite entanglement measures are best
understood. They are indeed the simplest realisations in which one can study the entanglement
properties of a quantum state. In the next section we will analyse bipartite systems in detail

and establish a simple criterion to understand whether or not a state is entangled.

2.2 Bipartite systems in pure states: a simple criterion

Consider a bipartition of a quantum system into two complementary regions, say A and B.
The typical scenario that one expects to observe in experimental realisations of such a system
is as follow: there are two observers, traditionally named Alice and Bob, each one accesses a
restricted part of the system, (let us say that Alice makes only observations on A and Bob only
on B). Formally, this simple setting requires that the total Hilbert space H factorises into two
component Hilbert spaces H4 and Hp, each one generated by a set of independent observables
associated to a part of the system:

H=HsQHE. (2.1)

A direct consequence is that an observable O living in H 4 acts trivially on the other Hilbert
space O = O, ®1p. Let us now suppose that the bipartite system is in a certain state ) € H.
By performing their local measurements the observers are expected to transform the state into
some other state. Of course, both Alice and Bob would like to describe their outcomes in terms
of the set of observables that is accessible to them. Hence, it is natural to expand the state |¢)

in the form:

1Y) = Zci,j‘¢i>A ® [X;)8 Z ’Cid"z =1, (2.2)
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Figure 2.1 : Pictorial representation of a one-dimensional system in a separable/factorizable
state (left) and in an entangled state (right). The picture is taken from [53].

where {|¢;)}4 and {|x;)} 5 are two orthonormal bases of H 4 and Hp, respectively, and C; ;s are

normalised complex coefficients.

Crucially, it is rather convenient to assume that the system experienced by Alice and Bob
is originally in a pure state, and thus that the state |¢)) is macroscopically described by a

density operator p, expressed in the following form:

p =y (2:3)

The main simplification is that in a pure bipartite state an observer like Alice or Bob (who
can only measure one subsystem) will be equipped with a clear criterion to establish whether
or not the total quantum system is in a entangled state. Indeed as a result of a certain local
measurement (no matter in which of the two subsystems this is performed), the observer will
obtain an effective mized quantum state if there is entanglement with the rest of the system,
or a pure state if the two parts are not entangled. A schematic representation of the possible
outcomes is shown in Fig. 2.1. Thanks to this criterion, bipartite entanglement measures of
pure states are conceptually easier to study, and they have been widely investigated in the
literature. Remarkably, a local measurement on a sub-part can give information on the entire
system without actually accessing the observables associated to the other part, in this sense

entanglement unveils the presence of non-local properties in quantum systems.

An important consequence of this simple criterion is that unentangled states are entirely
factorizable. However one should admit that it may be hard to check directly the factorizability
of a state in extended quantum systems, where the number of degrees of freedom is generally
large. Nevertheless it is clear even at this stage that the property of a state of being entangled or

not is strictly connected to fundamental concepts of statistical mechanics. Indeed the criterion
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above may be more rigorously re-formulated in terms of some macroscopic observable, namely
the reduced density operator, accessible to the two observers. In particular, the reduced density
operator allows the observer Alice to forget about the rest of the system by tracing out the

degrees of freedom associated to the subsystem B:

pa = Tray{p} . (2.4)

Similarly, the observer Bob will experience the state |¢)) through the reduced density operator
pp restricted to the subsystem B, and obtained by tracing out the degrees of freedom associated

to A.

2.2.1 The Schmidt decomposition

In this subsection we analyse the role of the reduced density operator in the discernment of
entangled and separable states. If we use (2.2) to expand the state [1)), and we then evaluate

the reduced density matrix (2.4) associated to subsystem A, we have that:

pa=>, (Z CingChy )16i0a 40| (2:5)

i1,z
Note that the states |¢;)4 live only in the subspace H4 as expected. The expression above is
true for any choices of orthonormal bases of 74 and Hp in expression (2.2). However the two
observer Alice and Bob may find it useful to express their outcomes in a “common language”
that allows them to compare their results. For such purpose, Alice employs a basis composed
of the eigenstates {|¢;>a} of ps with non-zero eigenvalues )\; . The Schmidt decomposition

provides the expansion of the states in (2.5) in this special basis:
) = 2 V1604 ® [Xi)E | |Xi)B = Z \ﬁ]X]>B (2.6)

Similarly Bob employs a basis composed of the eigenstates {|x;>a} of pp with non-zero

eigenvalues \;, and the state (2.5) becomes

1) = Z VA 69a® %08, |4 = Z DA - (2.7)

Indeed, the density operators ps and pp are “equally mixed” and have thus a common

spectrum. If they have a different number of eigenvalues, the latter will differ only by a
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number of zero eigenvalues. Furthermore, the non-zero eigenvalues satisfy the following
constraint:

dDA=1, 0<N<1 Vi (2.8)

7
The two observers are expected to perform their measurements on the state via the reduced

density matrices:
N ) . N
pa = Nldaaldil,  ps = MlXos sl (2.9)
i=1 i=1

where N is called Schmidt number and is the number of non-zero eigenvalues of both p4 and
pp. If N =1 then the bipartite state |¢)) is separable as it factorises into two separate pure
states of H4 and Hp. In contrast, if N > 1 the state |¢)) is entangled and the subsystems

are described by mixed states.

To sum up, given the spectrum of the reduced density operator, the Schmidt
decomposition provides us with a qualitative criterion to establish whether or not there is
entanglement between two parts of a quantum bipartite system. However, it should be
pointed out that the diagonalization of p, is generally a hard task in extended quantum
systems, again due to the great number of degrees of freedom. Nevertheless there are a few
cases where this task is effectively possible. For instance a well-known example in the context
of quantum information theory is provided by qubit states. We will look into this example in
Section 4.8 where we will evaluate various entanglement measures in states formed of qubits.
The computation basis in which multi-qubit states are expressed is also meaningful in
integrable QFT as it provides the key-ingredient of the semi-classical interpretation of the
entanglement contribution given by a certain type of excited states, presented in Chapters 4

and 5.

Once a criterion to identify the presence of entanglement is established, the following
question is how to quantify the amount of entanglement. In particular which specific features
do we need in order to have a good measure of entanglement? We wish to address this

question in the next subsection.

2.2.2 What is a good measure of entanglement?

An entanglement measure may be generally defined as a mathematical quantity that

captures the fundamental and characteristic proprieties of entanglement and at the same time
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helps us to quantify it. In particular, a good bipartite entanglement measure E', formally

called entanglement monotone, is expected to satisfy the following postulates [54]:

e P1: F maps density matrices into non-negative real numbers: p — E(p) € R} .
e P2: F gives value zero if the state is separable: E(p) =0 .

e P3: E does not increase under Local Operations and Classical Communication (LOCC).

The three statements above are natural requirements if one thinks again about the
Alice-and-Bob experiment. For instance, consider an entanglement measure that is a function
of only the reduced density operators (we will see in the next section that this is actually the
case of the entanglement entropies). Since pa and pp possess a common spectrum, one may
expect this entanglement measure to be a function of only their eigenvalues. An important
consequence of P1 is that good bipartite entanglement measures must be independent of the
subsystem chosen to perform the measurements i.e. both Alice’s and Bob’s outcomes must
lead to the same conclusion. One likewise expects that entanglement measures quantify
zero-entanglement in the absence of entangled states (in a similar way as seen in the Schmidt
decomposition).

Theoretically speaking P3 is less intuitive as this is related to the technological demand of
exchanging information between distantly separated laboratories, which in quantum
information is also known as distance lab scenario. Again the case of Alice and Bob can help
us to understand the problem: they initially share a pure state, and by performing local
measurements on their part of the system they actually transform this pure state into some
other states. The Local Operations are literally the set of operations that they use to perform
their measurements, but they are only able to communicate over long distance by using
Classical Communication devices. Classical correlations are generated by LOCCs and in this
sense an operational definition of separable states can be given as those states that can be
generated exclusively by the action of LOCCs, that is why entanglement measures must not
increase under these transformations. The LOCCs may be mathematically implemented by

some unitary local operators U that keep the entanglement measure F invariant:

EUpU) = E(p). (2.10)

!There are additional properties such as convezity that hold for more general entanglement measures
involving also mixed states. We do not consider these properties in this thesis as we focus only on bipartite
measures of pure states.
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In contrast, entangled states are characterised by the presence of quantum correlations that
are exactly what entanglement measures need to quantify. These requires the implementation
of non-local operations that can not be simulated classically i.e. a measurement of Alice may

affect Bob’s outcomes without employing any classical communication devices.

2.3 Bipartite entanglement measures of pure states

We are now ready to introduce two groups of measures, respectively entanglement entropies
and the logarithmic negativities which will be the focus of the next chapters and in particular

of the excited state entanglement contributions discussed in Chapter 4 and 5.

Figure 2.2 Complementary (left) and non-complementary (right) regions in a bipartite system.
The entanglement entropies measure the entanglement between the red and blue regions in the
right picture, whereas the logarithmic negativity measures the entanglement between the red
and blue regions in the presence of a enviroment i.e. the remaining write region.

The entanglement entropies and the logarithmic negativity are entanglement monotones that
are defined for two different bipartitions of a system, as displayed in Fig. 2.2. The
entanglement entropies measures the amount of entanglement between two complementary
parts such as A and B in Fig. 2.2 (left), this setting is indeed the simplest way to bipartition
a system. A more general partition arises from the presence of two non-complementary
entanglement regions, e.g. the A and B regions displayed in Fig. 2.2 (right), and in this
context the logarithmic negativity is known to be a good measure of entanglement. Strictly
speaking the other negativities (formally called replica logarithmic negativities) are not
entanglement measures in the sense discussed in Subsection 2.2.2, as they may have negative
values. However they are more accessible to techniques and may be used to compute the
logarithmic negativity, as we will see in a while. To some extent, the logarithmic negativities
are more general than entanglement entropies as they account for the presence of an

“environment” in the system (typically occurring in experimental set-ups). However they
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turns out to be more complicated functions of the reduced density matrices, so they are
harder to treat. We will discuss the two groups of entanglement measures in more detail in

these last two subsections of the chapter.

2.3.1 Entanglement measured by entropies

Consider a system composed of two complementary connected regions (like the red and blue
regions in the left picture of Fig. 2.2), say A and B. The von Neumann entropy [4], also called

entanglement entropy, can be expressed as a function of the reduced density matrix:

S(pa) = =Tr{palog pa} . (2.11)

If the state is expressed in the Schmidt decomposition (discussed in Section 2.2.1), equation

(2.11) becomes:
S(pa) = =Y Ailog A, (2.12)

where \;s are the non-zero eigenvalues of p4, satisfying the constraint (2.8). Note that if \; = 1
exists this is the only non-zero eigenvalue and thus S(p4) = 0 as expected from P2 in Section
2.2.2. The entanglement entropy verifies also the other conditions [54, 55], in particular it is

invariant under local unitary operations i.e. it is a function of \;s only.

The entanglement entropy is probably the most studied bipartite entanglement measures.
It has indeed attracted attention in many different areas of many-body quantum physics [56],
ranging from quantum information [51] to condensed matter and out-of-equilibrium dynamics
[57-59] as well as having applications in QFT ( notably in conformal field theories [9, 10], and
in integrable quantum field theories [15] which are the focus of this thesis) and in quantum
gravity [60].
The reasons for such extensive interest are numerous. Its simple definition makes its study in
extended quantum systems at very different energy-scales possible. The way the entanglement
entropy scales with the size of the sub-part of the system characterises the quantum state
and can be used as a macroscopic way to learn more about its fundamental properties. For
instance, near criticality, the entanglement entropy encodes universal information about the
quantum critical points, such as the central charge of the corresponding CFT.
Furthermore, the entanglement entropy measures quantum correlations more generally. Since
it is a simple function of the state, there is no need a priori for the precise characterization of

any other observables. Although some computational techniques may require the introduction
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of other operators, if we can access the eigenvalue spectrum of the reduced density matrix, we
can in principle characterise the entire entanglement content of the state.

Another important advantage is the existence of a very successful technique, called replica
trick that makes the evaluation of the entanglement entropy amenable to extended quantum
systems (we will discuss this method in the context of QFT in the next chapter). A crucial step
required by the replica trick is the computation of the Rényi entropy of order « [5], a bipartite

entanglement measures defined in terms of a positive real parameter «:

1
Salpa) = 7= log Tr{pli},  aeR™, (2.13)

—

and whose limit to one gives the entanglement entropy:
S(pa) = lim Salp) (2.14)

Similar to the entanglement entropy, the Rényi entropy of order o can be expressed in terms

of the non-zero eigenvalues of p4, via the Schmidt decomposition:

- i —log (Zk: Ag) : (2.15)

Sa(pa) =

and satisfies the conditions discussed in Section 2.2.2. To some extent, the Rényi entropies
provide more complete knowledge about the quantum state as they constitute a “spectrum” of
entropies in the parameter a € RT including also the entanglement entropy. Additionally, some

of the Rényi entropies can be measured in experiments [53].

In Chapter 4 we will consider another interesting quantity which is the single-copy entropy
(also known as single-copy entanglement) [61-63]. In the replica model this is given by the
limit

Son(pa) = lim Sa(pa) - (2.16)

In Chapter 5 we will also consider the case where the subsystem A consists of two
disconnected regions A; and Ay (both still connected to B). This leads to a more structured

bipartite system as the entropies now depend on the reduced density matrix pa,(ja,,
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evaluated in Ha, ® Ha,. However, they take the same functional form:

log Tr{p}, ya,} . acRY.
(2.17)

S(PA1 UAQ) = _'I‘r{pz‘h UA2 log PA, UAQ} ) Sa(pz‘h UAQ) = 1—a
Note that although this situation looks similar to the example on the right of Fig. 2.2, the
entanglement entropies are quite distinct from the logarithmic negativities. Indeed the former
measure the entanglement between the union of A; and A, and the rest of the system, while
the latter would be related to the entanglement between A; and A,. Similarly the expressions

in (2.17) may be extended to an arbitrary number of sub-regions A;.

2.3.2 Entanglement measured by negativities

The logarithmic negativity measures the amount of entanglement between two
non-complementary regions A and B, immersed in an “environment” C'. An example with
two disconnected regions is represented in in the right picture of Fig. 2.2, however in principle
the two regions may share a boundary (this is the limit of adjacent regions we will consider in

Chapter 5). In both cases, the bipartite Hilbert space may be seen as having the structure
H=Hayp®Hc . (2.18)

Note that the state described by pa(jp is a mixed state for non-zero value of the logarithmic
negativity and the subsystem Al J B is accordingly entangled with the environment C. The
logarithmic negativity is an entanglement monotone [6, 7, 64, 65] according to the definition in

Section 2.2.2. It can be expressed as

E(payn) =loglloyf ) pllme (2.19)

and depends on the reduced density operator psjp via the operation T, which represents
the partial transposition on subsystem B. Crucially, after partially transposing pa(jp, the
resulting operator pZ;BU 5 is no longer guaranteed to be positive-definite and it may have negative
eigenvalues. The operation - — || - ||r involved in (2.19) represents the trace norm of prU B
namely the sum of all its singular values [66, 67]. Since pﬁBU p is Hermitian, the trace norm is
simply the sum of the absolute values of its eigenvalues. The matrix elements of prU 5 can be
obtained from those of the reduced density matrix p(jp. In particular, let {|e/*)} and { |€jB >}
be the orthonormal bases of H4 and Hp respectively such that the state ‘ef, efy = ‘ef>® |ef>
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lives in H 4B, we have that:
<e§4,eﬂ pz;BUB ‘e,?,ef> = <eiA,eEB| pPAUB |ef,ef> ) (2.20)

Similarly to the case of the entanglement entropy, powerful methods were developed in
[13, 14] to study the logarithmic negativity in CFT using the replica approach and related
techniques, where the logarithmic negativity of the ground state in the limit of adjacent regions
exhibits universal scaling, again related to the central charge. In 141-dimensional QFTs, the
universal scaling properties of logarithmic negativity of the ground state have been investigated
in [18] by using the replica approach. In this context, it is convenient to define the replica

logarithmic negativity for a positive integer parameter n:

Enlpayn) i=logTr{(py7,5)"}, neN. (2.21)

The idea is to calculate (2.21) and then to analytically continue the resulting function of n to
n = 1. An important conclusion from the work [13] is that the replica negativity (2.21) has
two different natural analytic continuations & (n) and &,(n) for different parities of n (even and
odd, respectively) and the logarithmic negativity is obtained by taking the limit n — 1 from

the function &.(n) in the even sector:

E(payB) = }LLH{ Ee(n) . (2.22)

Finally, the logarithmic negativities can be expressed in terms of the non-zero eigenvalues of the
operator pZ;BU 5 Via the Schmidt decomposition, in a similar way as seen for the entanglement

entropies. Indeed, we have that:
E(payn) =log LN Enlpayn) =log Y NP, (2.23)

where )\l(-t) are the non-vanishing eigenvalues of the partially transposed reduced density matrix.
This formulation is useful to combine the replica model approach with the qubit picture i.e.
a technique that we will introduce in Chapter 4, and that will allow us to obtain the excited

state contributions to the logarithmic negativity in Chapter 5.

27






CHAPTER

THREE

TECHNIQUES IN INTEGRABLE QUANTUM FIELD THEORIES

3.1 Replica model

Let us consider a one-dimensional bipartite system in a (141)-dimensional QFT with local
Lagrangian density L[¢](x,y), and expressed in Euclidean coordinates. We suppose that the
entire system is in a pure state, and by identifying two regions A and B in the system, we aim

to evaluate the corresponding entanglement entropies and/or logarithmic negativities.

We first focus on systems of infinite length for simplicity, and extend the techniques to
finite volume in the course of this chapter. Of course, there is not a unique way to partition
such a system. The simplest partition is provided by the case 1 in Fig. 3.1 where we find a
segment A of coordinates (z,0) for x € [z, z1] connected to a complementary region B formed
of two semi-infinite intervals. We have seen in Section 2.3 that the entanglement entropies
provide good measures of entanglement for this particular setting. We may be interested in
more intricate partitions such as case 2 and case 3 in Fig. 3.1 where both regions A and B are
of finite length and immersed in an environment C. In particular, in case 2 the two regions are
chosen to be disconnected, while in case 3 these are joint at the point x1 = x5. All partitions are
suitable to evaluate the amount of entanglement of subsystem A with respect to B and we know
from Section 2.3 that the logarithmic negativity provides a good measure of entanglement based
on the last two partitions. Additionally, in case 2, we can evaluate the entanglement entropy

that the two regions together A | J B share with the environment C. Note that if the regions A
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1) 2) 3)
¢ 6 6 £ 4
B A B Cc A C B C | ...C A B C"
XX Yo X XY X X X X

Figure 3.1 The three partitions of a one-dimensional system that are considered in this
chapter. In particular the system is composed of: a single entanglement region A (case 1),
two disconnected entanglement regions A and B with separation of length /5 (case 2), and two
adjacent entanglement regions joint at z; = x5 (case 3).

and B are connected as in case 3, this is equivalent to case 1 for the entanglement entropies.

As pointed out in the previous chapter, there exists a method to evaluate such entanglement
measures, which may be more generally referred to as replica model. 1t is of course convenient
to start from the simplest partition, i.e. case 1 and then to extend the discussion to the other
two. In order to use this method we need to consider the Rényi entropy of order o = n for a

fixed non-negative integer n # 1, this is simply the function:

1

—nNn

Sn(pa) = . log Tr{p"} , 1<neN. (3.1)

Assuming that the Rényi entropies with integer index n can be computed, the appropriate limit
to the entanglement entropy S; := lim,,_,; S,, must be carefully taken as it requires finding the
correct analytic continuation in the parameter n (this last step is usually called replica trick).
Looking at formula (3.1) it is clear that the nth Rényi entropy is a function of the nth power
of the reduced density operator p4. In particular, given a complete orthonormal basis { |p;)}

of H 4, we can expand the quantity

Tr{pi} = | [ D aom | palér)a alen] palprda - aloral palon)a (3.2)

j=1 k,
The formula above inspired the idea of replicating the theory, indeed the expansion on the right
hand side can be interpreted as the partition function of a new theory in a n-sheeted Riemann

surface M,,, also called replica model and composed of n copies of the original theory [8-10]:

z(n)
zr 7’

exp{ (1= n) Su(pa) } = Tr{ph} = (3.3)

where Z; is a normalization factor required to recover Tr{p%} = 1 for n = 1. In the new

manifold M,,, the n copies are sequentially connected by means of a branch cut that is now
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Figure 3.2 A single copy of the original QFT (left) and the n-copy model (right). Figure taken
from [16] and re-adapted.

interpreted as the entanglement region. A pictorial representation is shown in Fig. 3.2. The
Riemann surface M, has non-zero curvature at the branch points, precisely occurring at
coordinates (xg,0) and (x1,0), which are identified with the boundary points of the

entanglement region in the original theory.

In the path integral formulation, the partition function Z™ can be expressed as

Z0 _ f (D" &), expl— f drdy £7[8)(r.) . (3.4)

where [D™ ®] 4, is an infinite measure on the set of configurations of the field ® of the new
theory, identified with the n-tuple ® = (¢1,...,¢,) and living in M,,. Each copy j =1,...,n
is described by a copy of the original field ¢; and the Lagrangian density of the new theory is

L@)(2,y) := Llpr](w,y) + ... Llon] (,y) | (3.5)

so that the energy density in the new model is the sum of the energy densities of the n

individual copies.

Crucially, a new global symmetry o is induced in the replica model. Indeed the new theory
is invariant under cyclic permutations over the copies as it follows naturally from equation (3.2)
and the properties of the trace. As a consequence, a local field ¢; living in the ith copy satisfies
Yirn = @i and, in particular ¢, 1 = ¢ for i = 1.
Furthermore, since the Lagrangian density £ is local its integral does not depend explicitly on
the manifold M,, and the partition function (3.4) can be evaluated as an object computed from
a model in R? where the structure of the Riemann surface is implemented through appropriate
boundary conditions on the fields ¢, ..., ¢,. Indeed, although the symmetry o leaves the

action invariant it does change the manifold on which the path integral (3.4) is defined. This is
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reminiscent of the case of N indistinguishable particles in classical statistical mechanics. In this
case the partition function is evaluated in a restricted manifold of the phase-space in such a way
to avoid over-counting of states differing by permutations of particles. Similar constrains can
be implemented in the presence of a cyclic permutation symmetry by imposing the following

boundary condition on the n-tuple ®:
Clzo,r1) : @ilz,0") = pi(z,07), Vz € [a,b] , i=1,....n. (3.6)
Under the condition above, equation (3.4) becomes:

ZM) (29, 21) := ZM —J [D" ®]ge exp[—J dz dy L<”>[<I>](x,y)] : (3.7)
C($0,1D1) R2

3.2 Branch-point twist fields

The innovative idea of expressing the partition function (3.7) as a correlator of quantum
fields associated to the branch points of a Riemann surface emerged from the study of the
entanglement entropy in the context of CFT [10]. In [15] such idea was re-elaborated in the
context of QFT with a more general interpretation of these fields as twist fields implementing
the cyclic permutation symmetry of the n-copy model.

Twist fields exist in general whenever a theory is equipped with a global symmetry. In [15] the
concept of twist field was employed for the first time in the context of entanglement measures,
but the idea of implementing a symmetry by means of appropriate fields is actually much older.
Probably the earliest evidence of twist fields in the literature can be found in [68], where the
twist fields are associated to the Z, symmetry induced in an orbifolded CFT. In QFT a very
simple example of twist fields is provided by the Ising order and disorder fields which implement

the Zy symmetry in the free massive Majorana fermion theory [69, 70].

In the replica model, the twist fields resulting from the cyclic permutation symmetry are
called branch-point twist fields as they sit at the branch points (¢, 0) and (z1,0) and their action
on the fundamental fields 1, ... ¢, is akin to imposing condition (3.6) on the path integral.
Remarkably, the partition function in (3.7) can be re-written as a correlator of branch-point
twist fields:

Z0 (o, 21) ~ (T (0,0) T(1,0) )gom g2 (3.8)

In the expression above we have introduced the Hermitian conjugate of the twist field 7 := 7T,
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Figure 3.3 The action of the branch-point twist field in copy 7. The twist field T acts as a
sort of “elevator” sending ¢; to the next copy whenever the copy-field crosses the branch cut.
Picture taken from [15].

also called anti-twist field, implementing the inverse symmetry, i.e. o~!. The two twist-fields
formally generate two semi-infinite branch cuts originated respectively at (zg,0) and (z1,0) that
extend indefinitely. In (3.8) these are combined to form a branch cut of finite length ¢ = |xo—x1].
The fact that o is a symmetry ensures that 7 and 7 commute with the Lagrangian density
L™ and thus are local. Furthermore, it ensures that the partition function (3.8) is invariant
under continuous deformation of the branch cut which is implemented by some appropriate

symmetry transformation.

Crucially, the branch-point twist fields act non-trivially on the fundamental fields of the
theory. Indeed, following from condition (3.6), a local field ¢; living in copy ¢ and T satisfy the

following exchange relations:

0i(2) T() = T(2) pir () 7=, (3.9)
pi(2) T(2) = T(2) pi(2) ¢ <,

for z = (z,y), 2/ = («/,y’). In particular, the resulting action of the twist field 7 is to send the
local field ¢; to the next copy when it crosses the branch cut. Similarly, the field 7 sends the

local field ¢; to the previous copy and its exchange relations are:

0il2) T() = T() pia(2) >, (3.10)

0i(2) T(2) = T(¢) pil2) <z

In both equations (3.9) and (3.10) ¢ = 1,...,n. Properties (3.9) and (3.10) imply that the

'For simpler twist fields such as the field ¢ in the Ising model, the exchange relations with the fundamental
fields of the theories are implemented via a factor of local commutativity [70-72], this will be introduced
in Section 3.3. Relations (3.9) and (3.10) generalise these exchange relations to branch-point twist fields,
characterised by more complicated locality properties.
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branch-point twist fields 7 and 7 are semi-local with respect to the fundamental fields of the
theory.

It is important to stress that the definition of twist field as a symmetry field does not imply
that the twist field 7 is unique. Indeed there might be several realizations of a field satisfying
property (3.9). However the fields 7 and 7 will be uniquely defined if we additionally impose
that they are primary fields in the CFT limit and thus that they have the lowest scaling
dimension. Under this assumption, the scaling dimensions of the branch-point twist fields are
[15]:

1
dn::2AT=2A¢=1—C2<n—E), (3.11)

where c is the central change associated to the CFT and A7 and A4 are the conformal weights
of the primary fields?. The requirement of primary fields is also necessary to recover the CFT

results presented in [10] under an appropriate normalisation (also known as CFT normalisation):

(T (20,0) T (21,0) ) = |mg — 21|72 asm|zg — x| — 0. (3.12)

3.2.1 Entanglement measures as correlators

Let us now consider a pure state |¢) of the orginal QFT that can be either the ground state
or an excited state of a finite number of excitations, namely a zero-density state. The general
ideas of computing the partition function Z™(z, z;) as a correlator of branch-point twist fields
holds in both cases. In particular, as a consequence of (3.8), the nth Rényi entropy evaluated

in 1)) can be expressed as a correlator of branch-point twist fields in the replica model:

log (zn 2 (W| T (20, 0)T (21, 0)|‘I’>>

Sn(xo, 5(71) = 1—n s (313)

where [¥) = [¢), ® |1, ® ... [1), lives in the replica model and ¢ = |x; — x| is the size of the
entanglement region. The parameter ¢ is a short-distance cut-off and is independent of n.
The n-dependence is all absorbed in the non-universal factor z, including the norm of the
state. For n = 1, z; = 1 as the branch-point twist fields simply become the identity in this
case, and thus 0z,/0n = 0. If |¥) is an excited state, the factor z, normalises away the
infinite-volume divergence occurring for colliding rapidities of asymptotic states. In this case

the correlator in (3.13) is usually treated in finite volume (we will discuss this point more in

2If the QFT is not a CFT, these are the conformal dimensions of the underlying CFT which describes the
UV fixed point of the QFT.
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detail in Section 3.2.3).

We have already mentioned that the link connecting the replica model with the computation
of entanglement entropy comes through the replica trick. Mathematically speaking, the replica
trick is simply the limit of S, (¢) as n approaches 1. We can use the identity pa logps =

lim,, 1+ a% p'y and the properties of the trace to write the entanglement entropy as:

Sy (20, 21) = — lim (20 CUIT (20,0)T (21, 0)|0)) (3.14)

n—1+ 0n

However, we need to extend the notion of replica as in the replica model the parameter n
is by construction a positive integer strictly greater than 1, more precisely, we need to take
carefully its analytic continuation to n €]1,+oo[. This analytic continuation problem is not
generally solved in QFTs. In the integrable cases, this problem was addressed in [15, 73] for
the entanglement entropy of the ground state, while for a zero-density state, which is the focus
of the next two chapters, the entanglement entropy is an analytic function of n and so the

analytic continuation is trivial.

Figure 3.4 The Riemann surface constructed to compute Tr{(pays)"} (left) and
Tr{ (pZ;BU )"} (right). They differ by the the second branch cut implementing different
connectivities of the Riemann sheets. Both pictures are taken from [14].

We can now consider more complicated partitions such as case 2 in Fig. 3.1. In this case
we have two disconnected regions and, as pointed out at the beginning of the chapter, the
entanglement entropies measure the quantum correlations that the union of the two regions
A\ J B shares with the rest of the system. The idea of replicating the model seen for a single
region can be easily extended to the case of two regions. The main difference is that the
boundary condition (3.6) is now implemented at the boundary points xg, z1, 2, 3. As shown
in the left picture of Fig. 3.4, this corresponds to having two branch cuts in the resulting replica

model, each associated to a particular entanglement region. As a consequence the nth Rényi
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entropy is now given by a four-point correlation function:

log (zn el (G| T (0, 0)T (21, 0)T (s, 0)7 (3, 0) |x1:>)

1—n

(3.15)

Sn($0,$1,952,$3) =

More generally, if we want to extend the calculation of entanglement entropies to any number
of disconnected regions, we will obtain correlators involving as many branch-point twist fields
as boundary points in the system. The entanglement entropy of two disconnected regions is

obtained in a similar way to (3.14), now involving a four-point correlation function:

Sl (xo, T1,T9, I3) = — lim i (€4dn <\IJ‘T<$0, 0)7'(131, 0)T(.T27 0)7—(1’3, O) "I/>> . (3].6)

n—1t 0N

Interestingly, also the operator Tr{ ( szU 5 )" } can be obtained as a correlator of twist fields.

In particular, the replica logarithmic negativity (2.21) can be expressed as:
gn(J:Oa X1, T2, $3) = log <Zn E4dn <\I]|T(5L’0, 0)7‘(1’17 0)7d(l'27 O)T(l‘g, 0) |\I[>> ) (317)

where the effect of the partial transposition is to exchange the two fields associated to the
boundary points of the interval B. As shown in Fig. 3.4, the partial transposition changes also
the branch cut associated to the region B. Therefore, the correlators (3.15) and (3.17) are

defined in different Riemann surfaces.

Crucially, as pointed out in Subsection 2.3.2, the replica trick needs to be performed in the
even sector of the replica model. This corresponds to posing n = 2m for a fixed integer number

m and then to taking the analytic continuation in m towards m — 1/2:

51(ZE07?L’1,1'2,ZL‘3) = hml ggm(fb(),flfl,l'g,l‘g). (318)

m—3

Note that we have not yet used any special properties of integrability, and the idea of
expressing entanglement measures as correlators can be more generally extended to any
14+1-dimensional QFT. However, as we will see in the course of the chapter, this idea is
particularly useful in integrable models where the existence of exact methods to compute
correlations functions makes the expressions (3.13), (3.15), and (3.17) effectively computable.
This is also the case for 1+1 dimensional CFT where the structure of correlators is severely

constrained. However, for four-point functions such as those in (3.16) and (3.17) CFT

36



Cecilia De Fazio

computations are also extremely challenging as can be seen from the extensive study of the
compactified massless free boson carried out in [11-14]. One should also stress that even in
141 dimensions the application of these methods may be intricate if we consider a correlator
of many quantum fields as the complexity of the computation drastically increases with the
number of fields considered. For this reason it may be convenient to consider some special
limit of expression (3.17) that “reduces” the number of boundary points and thus also the
number of fields in the correlator.

For instance, one can simplify the structure of (3.17) by taking z; — x5 to obtain two
adjacent entanglement regions (like case 3 in Fig. 3.1). This limit was studied in the context
of CFT in [11-14]. If we take such a limit in QFT we will deal with a three-point correlation

function:

&0, 72, 25) = lim Sg@m,xhaa,m@:=log(znsw”ﬂ%<QW7KxOJD7%(x%(D7Tx$OH¢§> ,
o (3.19)
where T2(x5,0) = limg, L, T (21,0)7 (22,0) is a composite twist field® obtained by colliding the
two anti-twist fields in (3.17). In particular, the field 72 implements a non-sequential cyclic
permutation symmetry over the copies. For n even, the action of this symmetry factorises into
two components, each acting only on even-numbered or odd-numbered sheets, therefore the
twist field 72 is accordingly:

T?=7.®07,, (3.20)

where 7, and 7, act respectively on sheets of only even- and odd- copy numbers. The field 72
is fully defined in CFT through the operator product expansion of two anti-twist fields. Its

conformal weights follows naturally from (3.20):
Ara(n) = 2 Ar(n/2), (3.21)

and defines its scaling dimension is d,, = 2 Az (n).

There are other limits of expression (3.17) that one can potentially consider, for instance the
case of two disjoint semi-infinite intervals discussed in [18]. However these cases do not have a
finite volume counterpart. We will see that an important requirement for treating correlators
of twist fields in excited states is to work in finite volume, thus semi-infinite intervals are not

of interest in the treatment of excited states.

3In the context of entanglement, the composite twist fields appeared first in the work [74] and was then
studied in more details in the Ising model [75].
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The general idea of expressing entanglement measures in terms of correlators of
branch-point twist fields has been applied to the study of many different models, especially in
the context of massive QFT. While the original paper [15] considered the Ising and
sinh-Gordon theories, free theories where further studied in [76, 77], whereas the
generalization of these results to non-unitary QFT, including the Lee-Yang model was studied
in [78, 79]. The connection between entanglement entropy and scaling functions was explored
in [74, 80] and, more recently, branch-point twist fields have been employed to study the

out-of-equilibrium dynamics of entanglement [81, 82].

3.2.2 Review of previous results in the ground state

In order to understand the structure of the correlators of branch-point twist fields in excited
states, it is instructive to look first into the entanglement entropies evaluated in the ground
state. In this subsection we choose the state |1)) to be the ground state |0) of the field theory

considered.

An important result obtained in CFT is the logarithmic growth of the nth Rényi entropy
of the ground state with the subsystem size ¢ [9, 10]:

c(n+1 14

where c is the central charge of the CFT and e a short-distance cut-off. In terms of the
branch-point twist fields this result follows naturally from the power-law scaling of the two-point
correlation function (3.13) [15, 16]. The entanglement entropy can be obtained by simply taking
the limit n — 1 of (3.22)

Si(6) = g log é . (3.23)
More generally, both the nth Rényi entropy and the entanglement entropy grow linearly with
the number of boundary points, as a consequence of the power-law scaling of the correlators of
twist fields in CFT. Thus entanglement entropies in the ground state of CF'T satisfy a sort of
area-law [83]. They also violate the area law in the sense that they grow logarithmically with
the system’s size. The results above capture the universal features® of entanglement entropies,

showing these depends on very few details of the theory, in this case just the central charge.

We thus expect that systems that are physically very diverse but described by the same CF'T,

4Here, as well as in the rest of the section the term “universality” means the presence of common features
among a certain number of theories. It is true that the results (3.23) and (3.22) are not universal in a strict
sense as they depend on the cut-off €, but the proportionality to ¢ is independent of the regulator.
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display the same entanglement properties.

To fully exploit the power of this universality, one should consider its connection to the
study of critical systems. Indeed a field theory may be interpreted as a particular scaling limit
of a quantum spin chain with a correlation length £ = 1/m given by the inverse of the mass of
the field theory considered. For such a system the cut-off € could be taken to be proportional
to the lattice spacing and would be in general a small number compared to the other length
scales £ and £. In this context, the entanglement entropies may be used to study the behaviour
of quantum chains near or far from a criticality. For instance we can consider a system at
short-distance (in the so called ultraviolet regime), i.e. when the size of the subsystem is much
smaller of the correlation length & » ¢ » €. In this case, even if £ is finite the subsystem will
be perceived as critical, and the entanglement entropies will be given by (3.22) and (3.23) at

the lowest order.

In contrast, if we are interested in the large-distance limit (also called Infrared regime) i.e.
¢ > & > €, the universal features of chain (if there are any) are described by a QFT, and the
entanglement entropies will be given by the dominant contributions to (3.13) and (3.14) in such
a limit. These contributions can be evaluated by combining several techniques as we will see
below. The starting point is again the correlator of branch-point twist fields in (3.13) that in

QFTs can be naturally expanded in terms of a complete sets of states:

<0\ T(x0)T (x1) [0y = €0 T(x0) x 1 x T(x1)|0) = (3.24)
d@‘” deifk : Hj M1 HeN |2

Z Z J y T)kexp —{ Zmaj cos 037 | [ O[T (0)[07",....0%) |7,

=1 1ot >0 =1

where ¢ now expresses the space-like relativistic distance in Minkowsky space-time between
the two points xo = (z0,0) and x; = (21,0). The expansion (3.24) is obtained by inserting a

complete set of states:
9#1 dQ“’“

1= Z 2 J —%) 005 O "5 - 0] (3.25)

k=1 p1,..,pk

The structure of the n-copy model is incorporated in the indices p; = (i}, @;), including the
copy number i; and the particle species associated to a single excitation of rapidity 9; 7 for any

j=1,...,k

The advantage of using expression (3.24) is that in integrable QFTs there are effective
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methods to exactly compute the matrix elements (0|7 (0)[0}", ..., 01*), also called form factors.
Such methods are usually referred to as the form factor program [84, 85] and they provide
the most powerful and successful approach to the computation of correlation functions, both
analytically and numerically. Form factors are in fact the building blocks of the expansion in
(3.24), and will be discussed in more detail in Section 3.3. Furthermore the right hand side of
(3.24) presents an exponential factor inside the sums, coming from covariance transformations®.
This factor defines a precise ordering of the dominant contributions at large distance ¢. Indeed
in such limit, the form factor contributions involving large number of particles tend to be

negligible and the leading terms are obtained from the lowest particle contributions.

From the form factor expansion it follows that the leading contribution will come from the
zero-particle form factor, also called vacuum expectation value. Since the latter is independent
of £, the leading contribution is independent of the region’s size. This leads to the famous result
that the entanglement entropy of gapped systems saturates for large system size to a constant
that depends on the gap (correlation length). More precisely the nth Rényi entropy saturates

at large distance £ » m~! » e with saturation constant governed by the central charge:

Su(l) = —% log my € + 2U, + O(e™2™) (3.26)

where m; is the mass of the lightest particle of the theory and U, is a model-dependent
constant. This result follows from the clustering property, i.e. the factorization of correlation
functions at large distance, and from the scaling properties of vacuum expectation vales in
(141)-dimensional QFT. The exponential corrections to saturation come from the higher
particle contributions. For instance the first correction is obtained from either the one- or
two-particle form factor (if the one-particle form factor is zero). However, when n — 1 the
leading correction to the entanglement entropy comes from the two-particle form factor term
in all cases. For an integrable QFT with N particle species, the formula of the entanglement

entropy up to the first correction is [15, 16]:

N
$1(0) = ~< log(mie) + 20, - % 3 Ko(26my) + 0¥ (3.27)

a=1

Similarly to (3.23), the result above encodes universal information not only about the

°In the standard derivation of (3.24) that can be found in many sources, including [15, 16], the exponential
factor is obtained by using the Euclidean rotation invariance in order to bring the points in the pure
imaginary time direction (with a distance ¢ ), and to use imaginary-time translation covariance to extract
the real-exponential factor depending on /.
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underlying CFT. Remarkably the first exponential correction captures the mass spectrum of
the QFT irrespective of its scattering matrix. This means that this term looks the same for
both a free theory containing N fermions of masses m, as above and an interacting theory
with the same mass spectrum. The first correction take also a universal form given by the
modified Bessel function K,. This turns out to be a very general property and has been

shown to hold beyond integrability [17].

Consider instead two connected regions A and B as shown in Fig. 3.1, we may wonder
if the logarithmic negativity displays universal properties in a similar fashion. Like in the
single-region case, the correlator (3.19) (now involving three points) can be computed in CFT
by using the scaling properties of the twist field 7 and the composite twist-field 72 [13, 14].

After taking the limit n — 1 the logarithmic negativity is:

E(br, bs) = Slog 118

. (3.28)

In QFT we need to insert the completeness relation (3.25) twice in the correlator (3.19) in order
to obtain a form factor expansion. Again the saturation constant comes from the zero-particle
term and follows from the clustering properties i.e. (0| T T2 7T [0) ~ (0] T [0)<0| T2 |0)<0| T |0)
for large distances ¢, ¢35 » m~! » e. As a consequence, the large-distance vacuum expectation

values of the fields involved in the correlator (3.19) fully define the large-volume leading term:
En(ly,ls) = (dy, + 2d,) log(mye) + 2E, + O(e”atts)mry (3.29)

where d,, and cZn are the conformal dimension of 72 and T respectively, and FE,, is a characteristic
constant of the theory®. The next-to-leading correction comes from two-particle terms of the
form factor expansion such as (0] 77 [0)(0| T2 [0, 052 (64>, 04| T |0). If we take f5 — oo, the
exponential corrections to the logarithmic negativity (once the replica trick is performed) takes

a universal functional form given again by the modified Bessel function Ky [18]:

N

2 —amily
33 O; Ko(v3myby) + Ole ), (3.30)

Enlly) = —Z—ilog(mle) +2F, —

where the point x5 is taken at the origin, N is the number of particle species in the theory,

6Note that E,, and U, in (3.26) are not independent to each other as both quantities are consequences of
the scaling properties of the vacuum expectation value of 7.
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and a > /3.

In the presence of two disconnected regions x; # x9 (as displayed in the right-picture of
Fig. 3.1) the entanglement entropies as well as logarithmic negativities involve the computation
of a full four-point correlation function, which as mentioned before, it is generally a hard task,
even in integrable QFT. This partition has been extensively studied in CFT [11, 12, 14], where
the logarithmic negativities were proven to be scale-invariant functions, depending only on the
ratio:

po@mr)@mm)  (GHG)LHl) oy e (331)

($1 - Io) ($3 - $2) 2 53

An explicit functional expression for any n of the nth replica negativity has been obtained for
the compactified free boson. However, even in this case the continuation in the parameter n is

non-trivial and not fully understood analytically.

3.2.3 Challenges posed by the treatment of excited states

The results reviewed in Section 3.2.2 bring to light the connection between universal
properties and entanglement measures as well as the fact that the entanglement encodes
fundamental information on the theory. Since entanglement measures are functions of the
state (through the reduced density operator) only, it appears clear that bipartite
entanglement measures may be used to investigate further the properties of a given state.
Much has been done for the ground state and it would be now interesting to study
entanglement measures in excited states as these are expected to display additional universal
features associated to the presence of excitations.

Excited state entanglement measures will be extensively studied in Chapters 4 and 5, where
we will consider a free massive free boson theory and assume the bipartite system to be in a
pure state formed of a finite number of excitations, also called zero-density state. One may
reasonably wonder how different is the computation of correlators of twist fields in such a
case, and more generally what are the challenges posed by the treatment of excited states. To
address these questions it is again useful to start from the case of a single entanglement
region, and to extend the discussion to other partitions. Hence, considering a bipartite system
in a pure state |¢) (now including a finite number of excitations), the nth Rényi entropy can
be computed as a two-point correlation function of twist fields in |[¥) = [¢); ® - ® [¢),, in
the n-copy model. Following a similar construction to the one seen in Subsection 3.2.2; the

correlator (3.13) can be expanded by introducing a complete set of states between the two
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fields, schematically:

WITO)T (O ec ) CU[T(0)|@) (T ()W), (3.32)
|©)

where we set xq to the origin and x; to the length of the entanglement region ¢ for simplicity, and
omitted the time-dependence for a shorter notation. The state |®) and |¥) live in the replica
model and are characterized by a discrete set of rapidities (or momenta). If the rapidities in one
state coincide with some in the other state, the matrix elements (| 7(0) |®) and (®| T (£) |¥)"
will develop, in the usual infinite-volume normalization of the states, d-function singularities. A
common way to regularise these singularities is to move the computation to finite-volume and
use the volume (in one-dimension this is a length L) as a natural regulator. This procedure leads
to consider finite-volume form factors [86, 87]. Indeed, in finite volume a systematic prescription
exists to compute the “physical part” of matrix elements of local operators. This consists of
subtracting the contributions of any occurring singularities in a way which is controlled by the
particular pole structure of the infinite volume form factors. This choice permits to obtain
information on both the finite and the infinite volume behaviours of the system. Indeed the
correlator will be given as an infinite sum of contributions in powers of 1/L, whose ordering is
related to the pole-structure of the form factors involved and can be used to select the dominant

contribution at infinite volume.

The first challenge is given by the fact that the branch-point twist fields are not local in
the sense required to apply the techniques presented in [86, 87]. Although they are local with
respect to the Lagrangian density of the replica model (as they implement a symmetry) they are
non-local with respect to the fundamental fields of the theory due to the properties (3.9) and
(3.10). Indeed, due to the complex geometry of the replica model, form factors of twist fields
present additional poles that need to be taken into account in the finite-volume regularization.
It is however very plausible that the standard general ideas for the computation of finite-volume
non-diagonal form factors (i.e. the elements whose pole structure is more similar to those of
standard local operators) will be still applicable to branch-point twist fields. The analysis of
the free boson theory that will be conducted in Chapters 4 and 5, aims to confirm that this is

exactly the case.

Second we need to address the problem of extending the replica model to a finite volume as

"This matrix element can be evaluated at the origin by using space-time translation. This of course introduces
some factor in the expansion (3.32).
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Figure 3.5 Continuous deformation of a branch-cut along the space direction to obtain two
semi-infinite branch-cuts along the time direction of the cylinder. This transformation does not
change the value of the twist-field correlator, and allows us to make sense of twist field form
factors in finite volume.

the original QFT is now mapped into a cylinder with the time-coordinate along its axis and the
space-coordinate along its circumference. As argued in 3.2, in finite volume the branch-point
twist field and its Hermitian conjugate are associated to two semi-infinite branch cuts and the
two fields combine to create a branch cut of finite length in the correlator (3.8). However, once
we write down the expansion (3.32) in finite volume we need to evaluate the matrix elements
(P 00)|P), and (P|O(0)|¥),. The main problem is that for these matrix elements, an
infinitely long branch cut extending in space is incompatible with working in finite volume L.
This conflict can be resolved by adopting an approach which is reminiscent of that taken in [88]
for the Ising field theory and the matrix elements of its Z, twist field . We may use the fact
that the branch cut can be continuously deformed without changing the value of the correlation
function. Therefore, we may continuously “stretch” the branch cut along the time direction
as indicated in Fig. 3.5. The result is a product of fields with branch cuts extending in the
time direction. Indeed in the situation where the branch cut was along the space-direction, the
exchange relation (3.9) imposes continuity between the field ¢; above and the field ;1 below
the branch extending toward the right. After the deformation as in Fig. 3.5, this becomes
the continuity between ; on the left and ¢;,; on the right of the branch extending towards
negative times. In this configuration, the fields are well defined in the quantization on the circle.
The operator ordering of the two-point function in the quantization scheme on the circle, is
implemented in the path integral by a time ordering: an infinitesimal shift 7 along the cylinder,

as in Fig. 3.5.
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8 affects

Crucially, the presence of the branch cuts and more generally of the symmetry o
the boundary conditions of the fundamental fields of the theory. In particular, in parallel to
the situation seen in [88], the Hilbert space of quantization on the circle is divided into sectors
characterised by periodicity conditions associated to the symmetry. For the Ising model, the
Z, symmetry leads to two sectors, Ramond-Ramond and Neveu-Schwarz with periodic and
anti-periodic boundary conditions for the fields of the theory. In the case of the Replica model,
we have in particular n sectors labelled by cyclic elements of the permutation group. In the
cylinder picture of Fig. 3.5, the state |®); lies between the twist fields, in the time slice of
extent 7 introduced by the operator ordering. This means that in finite volume, the state on

the left and the right of the element (V|7 (0)|®)., in (3.32) lie in different sections and thus

satisfy different boundary conditions.

Finally, the question arises as to how the matrix elements of branch-point twist fields with
states in different sectors can be computed. For a general integrable interacting theory the
computation of the matrix elements of branch-point twist fields is still an open problem due
to the regularization problem discussed above. However, for free theories there are additional
resources at our disposal. More precisely, for free theories, it is possible to express the
branch-point twist fields in terms of simpler U(1) twist fields, where the permutation
symmetry has been diagonalized. This is achieved by employing the so-called doubling trick
introduced in [25] and employed successfully in the branch-point twist field context in [15, 89],
where it allowed for the computation of the vacuum expectation value of the branch-point
twist field. A similar idea was also used in [90] in the study of the entanglement entropy of
free theories. In sections 4.2, 4.3 and 4.4 we will extend this idea to the study of the excited
state entanglement in finite volume.

The doubling trick is the simple idea that a real free fermion (Majorana) and a real free boson
theory can be doubled to construct a complex free fermion (Dirac) and a complex free boson
theory. This doubling induces a U(1) symmetry in the new theory to which a U(1) twist field
is associated. The doubled free theory will be replicated in the replica model, and the U(1)
symmetry on each individual copy is extended to a U(n) symmetry, which includes cyclic
permutation of the copies. Diagonalising the cyclic permutation, in the new basis the
branch-point twist field is then expressed as a product of n individual U(1) twist fields 7, for
p=1,...,n. The diagonalisation of the branch-point twist fields in terms of the much simpler

U(1) fields leads to the factorisation of the expansion (3.32) into n independent sums that can

8Note that here we use ¢ meaning the cyclic permutation symmetry while above we were refering to the spin
field o in the Ising model. They are two totally different objects.
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be computed separately in each copy. As we will see in Chapter 4, this is a key-point in the

computation of the entanglement contributions generated by the excited states.

All considerations made so far are independent of the number of twist fields considered in
the correlators therefore they can be extended to two entanglement regions. We will deal with

this case in more detail in Chapter 5.

3.3 Form factors

To conclude this chapter, we review the fundamental properties of the building blocks
composing the expansion (3.24) and (3.32), namely form factors. By definition, elementary
form factors are tensor valued functions, representing matrix elements of some local operator

O located at the origin and evaluated between a multi-particle incoming state and the vacuum:
FL07 052, ... 08%) := (0|O(0)[05, 052, ... 64> (3.33)

We may also refer to the quantity above as a k-particle form factor. To express the incoming

state we have used the convention (1.7).

Form factors may be potentially used to expand correlators of local fields in any theory
possessing translation invariance. However, they are particularly relevant in integrable models,
where the presence of infinitely many local conserved charges as well as standard physical
requirements like Lorenz covariance imposes enough constraints to such matrix elements so that
exact solutions for many theories have been obtained once known the S-matrix. Many examples
can be found in the literature, see e.g. [71, 91] for the Ising model, [92, 93] for sinh-Gordon
model, [94] for sine-Gordon model, [95] for Lee-Yang model. These constraints are partially
inherited from the scattering properties of the excitations, and provide the boostrap equations

for the elementary form factors.

Elementary form factors are the building blocks of ground-state correlators (an example
is given by equation (3.24)). In a more general setting we would need the definition of form
factor as a local operator O evaluated at the origin and between asymptotic states (a graphical
representation is shown in Fig. 3.6) :

FO O N ) = O A O(0,0) |04 L0k (3.34)
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Figure 3.6 General definition of a m + k-particle form factor of local operator. The incoming
state is represented at the bottom while the outgoing state is at the top of the figure.

Elements such as (3.34) are suitable for the treatment of correlators in excited states such as
expansion (3.32). Of course these elements are related to the elementary form factors through

the recursive equation:

F GO s 060 = (3.35)
mel,k’+1()\11/17 Y 7)\;;”:11, )\fnm + iﬂ, 01’“17 e ,G:k) +
k j—1
2| 20 8O = ) T S — 81)
j=1 p=1
x Fr(r?fl,kfl()‘lflv ] /\sz:ll; 91#17 te 7'9;1_]';1’ ejujirlv s 70:k> ]

where [i,, denotes the anti-particle of p,,. The terms including the S-matrix are called
disconnected and are zero if the two asymptotic states do not have any rapidities in common.
In this case the decomposition in elementary form factors is straightforward as (3.35) only
involves the crossing property of the excitations in the outgoing state. More generally a k +m
form factor can be reduced to elementary form factors by using an appropriate number of

iterations of equation (3.35), a graphical example is displayed in Fig. 3.7 for k = 3 and m = 1.

3.3.1 Infinite-volume form factors boostrap

We now concentrate on an integrable QFT in infinite volume. A first fundamental constrain
comes from relativistic invariance and implies that k-particles form factors of scalar operators

are functions of the rapidity differences 6;; := 0" — 05 Y forany 1,7 =1,..., k:

ER08, 052 ... 00%) = B (019,013, ... ,045,...),  fori<j. (3.36)
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Figure 3.7 Equation (3.35) for k = 3 and m = 1. The disconnected terms vanish for {6/} = \”.

Other equations are closely related to the properties of the S-matrix and can be expressed as:

I. Exchange :
FR(08 .0 08 01E) = Sy (05541) B0 05550,657 04" (3.37)
II. Crossing :
k
FR0 + 2im, 052, 00%) = [ | S, (01;) FP (052,04, 04" (3.38)

7j=2

IT1. Kinematic residue :

k
T TS0 (0) )F,?(efl,...,e;;k) (3.39)

7j=1

— i Res gu_gp F,Sr2(€“ +im, 0y, 01", .. 0F) = (

IV. Bound-state residue :
— i Resya_gp FEL(0% +iul /2, 05 —iug. /2, 0, 00) =T, FC, (63,04, ...,00%)
(3.40)

where FZB is the on-shell three-particle vertex functions associated to the (bound-state) poles
of the S-matrix. As seen for the S-matrix in Subsection 1.2.2.1, this equation is indeed related

to the presence of bound states in the asymptotic spectrum of the theory.
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The form factor bootstrap program consists of finding solutions to the equations above.
However, considered a certain theory, it is generally a non-trivial task to match the solutions
of the form factor bootstrap to a specific operator. In the case of twist fields, the equations
(3.37)-(3.39) require some modifications due to their non trivial actions on the fields of the
theory. In particular, the form factor bootstrap program has been extended in [15] to the
branch-point twist fields, with modifications accounting for the special exchange relations
(3.9) and (3.10). For form factors of simpler twist fields, such as the U(1) fields introduced in
Subsection 3.2.3, these modifications may be formally implemented via the factor of local
commutativity w. The latter defines the exchange relations of a twist field O with the
fundamental fields ¢ of the theory [71]. In rapidity-space, these exchange relations are

implemented on the particle-creation operators:
Z,(6) 0(0) = w O(0) Z,(0). (3.41)

where the operators Z,,(0) satisfy the commutation relations (1.8) and define the asymptotic
states (1.7). The locality can be restored by choosing w = 1. This relation changes equations I

and III above and they become:

EL(0% + 2im, 04", ...,00%) = w EC (052, ..., 04, 01)

=w [ ] Suuu(0:1) EE@F, ... 04%)

i=2,k

(3.42)

and

k
—i Resgu_gy FQ (0" + im, 04,007, 01" = (1 —w [T S (00) ) FOO0,....0m).

j=1

(3.43)

These modifications are essential in order to implement the right equations for form factors of
fields satisfying (3.42). Examples of applications can be found in [96] for various operators in
the Federbush model. In free theories, the bootstrap program for form factors of U(1) fields’
was implemented in [89, 97], and consists of the two modified equations (3.42) and (3.43) along
with the exchange equation (3.37). The bound-state residue equation (3.40) is indeed discarded
due to the absence of bound states. In Subsection 4.3.3, we will present the solutions of these

equations for the free boson theory.

9An earlier treatment of form factor of U(1)-field can be found in [72] in the Ising model.
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3.3.2 Finite-volume form factors

We are now interested in extending the concept of form factors to finite volume. A natural
way to implement a finite volume QFT is to map the theory into a cylinder with the space
direction along the circumference and time extending to infinity. The fundamental fields will be
thus subjected to periodic boundary conditions over the circumference. As a consequence the
momenta of multi-particle states |0]",...,01*) for any k € N are quantised. For a quasiparticle
of particle species p; and rapidity 6" in a finite volume L, the quantisation condition is given

by the Bethe-Yang equations:™’

k

im,,. L sinh 6/t

¢!y Lo t: HSMM(GU):1> (3'44)
J#i

where m,,, is the mass of the particle and m,,, sinh 6% is its momentum. The equation above can
be seen as the analogy of the box quantisation in quantum mechanics for integrable systems'!.
It is obtained by demanding that the wave function remains unchanged after a particle has
taken a trip around the circle and returned to its original location. Along the way the ith

particle will interact with the other particles of the theory, and this introduces the product of

S-matrix elements S, ,, in (3.44).

In large volume, the energy of a k-particle state differs from its value in infinite-volume by
the Casimir Energy E,(L) which represents the vacuum energy in finite volume. In particular,

we have :

k
Ep(or,...,0") = E,(L) + Z Mg, cosh 0" + O (e ) . (3.45)

j=1
Corrections to the formula above come from virtual scattering processes due to the compactness
of the cylinder, depend on a characteristic mass scale i, and are expected to be exponentially
suppressed for large volume. The value of E,(L) depends on the normalisation. From the
infinite volume viewpoint it is natural to choose the vacuum energy to be zero as this choice
reproduces exactly the same energy for both infinite and large volume up to the exponential

corrections.

Taking the logarithm of the Bethe-Yang equations [98, 99] we obtain the quantization

0Here, we follow the convention introduced in Chapter 1, and thus we assume that the state |6, ... L0
is part of the eigenbasis of the Hamiltonian.

"The underlying assumptions for the validity of equation (3.44) are the factorization of the S-matrix and
the absence of particle production.
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condition for the ith quasiparticle:

Qu (B4, ..., 01%) = my, Lsinh 61 + Y —ilog S, ., (6:;) = 2wl Il"eZ. (3.46)
]
The finite volume states [{I{",...,I}*}); are related to the infinite volume states

|64, ..., 0 via [86, 87]:

1

oI —
Y/ /Ny

00,0y + O (L) | (3.47)

The quantity p(6}",...,0.") is the density of states in rapidity-space and can be seen as the
Jacobian of the mapping between rapidity and quantum number spaces:

Q0 0.

: (3.48)
o0

P00 =det T, Ty

Under this transformation, a vacuum correlation function in finite volume is expected to differ

from one in infinite volume only by terms that are suppressed in large volume [100]:
(0]0(7,0)0(0,0)[0) — .0|O(7,0)0(0,0)[0y;, ~ O (e7") . (3.49)

This implies that the k-particle elementary form factors of a local operator in finite volume are:

1

L<O|O(0)|{Iflv"'7[gk}>L: \/p(gm eﬂk)

F2(0,052,....0%) + O (e ") . (3.50)

In free theories, we have many simplifications. For instance, equation (3.46) simply becomes:

Qu (04, .. 0" = my, Lsinh 6" = 2x[/ | [MeZ. (3.51)

Hence, in finite volume and in the absence of interaction, the state |0)",...,6.*) composed of

solutions of the Bethe-Yang equations is fully characterised by the set of quantum numbers

{ri", ..., I;'*}. Furthermore the density of states p(0)",...,0y*) becomes diagonal and takes
the following form:
k
p(0", ... 00 = HmuchoshG;%j . (3.52)
=1

If we now go back to the correlator of branch-point twist fields in excited states (3.32), the

expansion on the right hand side presents a special structure in free theories. In particular, as
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we will see explicitly in Subsection 4.4.1, the presence of branch cuts modifies the quantization
conditions of the Bethe-Yang solutions associated to the intermediate states |®)r. It is then
possible to argue that the intermediate states possess distinct quantum numbers from the
external state |¥);. In free theories this corresponds to having two disjoint sets of rapidities on
the two sides of the matrix elements (V|7 (0)|®) and (¥|7(0)|®), and an expansion (3.32) that
is accordingly formed of only non-diagonal form factors [86]. Note that in interacting theories,
the fact that the two states |U); and |®); are characterised by different quantum numbers is
not a sufficient condition to have distinct Bethe-Yang solutions in the two states, due to the
S-matrix dependence of the quantization condition (3.46). In this case one needs to account

for the presence of identical rapidities and thus consider diagonal form factors [87].

For the purpose of this thesis, it is thus enough to consider only non-diagonal form factors
as in Chapters 4 and 5 we will treat the massive free boson. In particular, given two disjoint
sets of quantum numbers {J1*, ..., Jim} # {I}", ..., I;'*}, a non-diagonal form factor of a local

operator O is the finite volume part of the matrix element (3.34):

FO (\Wm 4im, . A i, 00O )
AT T OO 1oy, = Tt Ot T AL IO 000 g (oo
PO ) o )
(3.53)
where the rapidities A{*,..., A\ and 0/, ..., 0;* are Bethe-Yang solutions with quantum
numbers {J{*,...,Jym} and {I{",..., I;*} respectively. Note we have used equation (3.35) to

express the finite-volume element in terms of elementary infinite-volume form factors.
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CHAPTER

FOUR

EXCITED STATE ENTROPIES OF A CONNECTED REGION

4.1 Entanglement entropies in excited states

In this chapter we investigate the entanglement properties of excited states in a free boson
theory, based on the results obtained in [23, 24], where the methodology discussed in Chapter
3 was extended to the treatment of excited states and finite-volume systems. Before these two
works, a quite limited number of studies focused on the entanglement content of excited states.
In conformal field theory, universal results for certain types of excited states were studied. In
[101, 102], the increment of Rényi entropy in an excited state |Y) with as compared to the
ground state of a CF'T for the configuration of Fig. 4.1 was found to be

1+n)(h+h)

3n

Sg(r) —S%r) = ( (7r)? + O (rmw) , (4.1)

for small values of » = +, where the excitation is given by the CFT field T with scaling

£
L
dimension h + h, and Ay = hy + hy, is the smallest scaling dimension of any field in the theory.

In particular, the excited state was defined as

) = cm T(£,€)10) (4.2)

,&—>—100

where &, € are coordinates on the cylinder. Interestingly, a measurement of the entanglement
entropy of a low-lying excited state in CF'T at finite volume can provide information about the

primary field content of the theory. The most extensive numerical study of other kinds of excited
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B L
A
7

Figure 4.1 Typical bipartition of a one-dimensional finite system of total length L into region
A of length ¢ and region B of length L — /.

states in critical systems was conducted in [103], considering states that are macroscopically

different from the ground state.

In this chapter we are instead interested in zero-density states which are defined as a finite
set of excitations above the ground state. They are of zero-density states in the sense that in
the scaling limit the number of excitations remains fixed and finite whereas all length scales
tend to infinity. In this context, the most extensive numerical study in gapped quantum spin
chains was carried out in [104] where the entanglement contribution and its maximal value have
been obtained for certain excited states approaching the semi-classical limit for large volumes
and appropriate regime. Some of these results were obtained and generalised in [23, 24] with a
more general interpretation of the validity regime in terms of localised excitations (this will be

discussed in Chapter 6).

4.1.1 The scaling limit

We consider the situation depicted in Fig. 4.1: a zero-temperature finite-size system (say a
ring) is partitioned into two complementary connected regions A and B of length ¢ and L — ¢,
respectively. We suppose that the entire system is in a state |¢), with zero energy density (i.e.
formed of finite numbers of asymptotic particles, at various momenta) and described by a free
massive bosonic theory. We focus on the scaling limit obtained where both the system’s size
L and the entanglement region’s size ¢ are sent to infinity in a fixed proportion given by their
ratio r

(,L — oo with rz% e [0,1]. (4.3)

We want to compute the entanglement contribution generated by the excitations with respect
to the ground state which is nothing but the difference between the Rényi entropy in the excited
state and in the ground state. In the limit above this quantity turns out to be a function of

the ratio r only

Jim Se(rL,L) — S%(rL,L) =: AS2(r). (4.4)
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In the replica model, the entropy increment (4.4) can be formally written as a ratio of

branch-point twist field correlators,

() — lim — 1o LA TO)T (rL)|o)s
S Llwol—nlg[L<orT<o>ff<rL>ro>L]‘ -

where SY(r) and SY(r) are respectively the entanglement entropy in the ground state and in

the zero-density state.

In Section 3.2.3 we have motivated our interest in excited state entanglement measures as
an effective approach to capture universal information on the state. We have also highlighted
that there are additional complications that one needs to account for in the treatment of
correlators in excited states as these present d-function singularities. We are going to address
this problem in Section 4.4 where a finite volume approach allows us to treat these sigularities.
In free theories, a fundamental step in the computation of (4.5) is provided by the application
of the doubling trick, which allows us to overcome the regularization problem of correlators
of branch-point twist fields in finite volume (a problem that is still not generally resolved for
interaction theories). The doubling trick in fact permits us to express the branch-point twist
fields in terms of simpler fields for which the standard finite-volume techniques [86, 87] are
applicable. In order to introduce the general ideas behind the doubling trick in the next two
Sections 4.2 and 4.3 we will consider the free boson theory in infinite-volume and then extend

the discussion to finite volume in Section 4.4.

4.2 Doubling trick

The doubling trick was first introduced in [25] by Fonseca and Zamolodchikov. It was
employed to find differential equations that are satisfied by certain combinations of
correlation functions in the Ising model. This technique was later used in order to obtain
vacuum expectation values (7)) in infinite volume in the works [15] (free fermion) and [89]
(free boson). The main idea of the doubling trick is to “double” the free theory in order to
have an additional continuous symmetry. Let us consider in particular two independent free

massive real bosons ¢, and ¢,. We can construct a free massive complex boson as:

_ fat it and @f = $a— 9 . (4.6)

Y= NG
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The new theory possesses in fact an internal continuous U(1) symmetry. This symmetry can

then be exploited in order to obtain information about the original (not doubled) theory.

More precisely the two real fields ¢, and ¢, satisty the Klein-Goldon equation and can be

expressed in terms of the mode expansion:
¢a($,t) _ J do [(I (9) eiP(G)x—iE(e)t + aT(G) 6—iP(9)x+iE(9)t] 7 (47)

and a () and a'(0) are respectively the annihilation and creation operators associated to the
real free boson field ¢,. A similar expression can be written for ¢,. The operators a (f) and

a' () generate the Hilbert space H,:

a(6)10), =0,

a'(0) 0, = 10), .

(4.8)

where |0), is the vacuum and a'(f) creates a single-particle state in the f-space with energy

and momentum given by
E(0) =mcoshf; P(f) =msinh. (4.9)
Furthermore a and a' satisfy the algebra:

[a(),a(6")] = 0 = [a'(8),a"(#)], (4.10)
[a(0),a"(0))] =0(0 —0) . (4.11)

The complex fields ® and ®' are also solutions of the Klein-Goldon equation and are
expressed as:

q)(l',t) _ J dé [a+ (9) ez’P(());tfiE(O)t + (Ozf)T((g) efiP(H)eriE‘(O)t] , (4'12)

(I)T(%w _ J do [Of («9) ez’P(é))mfz‘E(e)t + (a+)T(0) efiP(e)achiE(G)t] 7 (4.13)

where (a®)' (0) and o (#) are the creation and annihilation operators of the complex free boson

®(x,t). These create / annihilate a particle with rapidity § and U(1) charge + respectively,
and similarly to the real case they generate the Hilbert space H.

Crucially, a state in the complex theory can be chosen in such a way to reproduce a state

28



Cecilia De Fazio

in the real theory. Indeed the creation and annihilation operators of the real free boson can be

related to those of the complex field via the transformation:

a(0) = at(0) +a(0)

(4.14)

and
b(6) = O gy = - @O ~ ()0 (4.15)

These relations are obtained by inserting the expressions (4.12), (4.13) and (4.7) for both ¢,
and ¢, in (4.6). Using the transformations above it is possible to show that the operators

(a®)T(0) a*(0) satisfy the commutation relations:

[a®(6), (™) (0)] =60 —0). (4.16)

All the other commutation relations are zero, since ¢, and ¢, commute with each other. A
direct consequence is that a complex state can be factorised into two terms in the two real

theories:

|©) =19, ® 1), » (4.17)

where |®) is a state in the complex theory, and |¢), and |¢), are states in the two real theories.
Therefore our computation of the correlator in (4.5) proceeds as follow: we employ the doubling
trick and thus evaluate the correlator (7(0)7(£)) in a carefully chosen complex state | that
reproduces the real result. In the complex theory we can take full advantage of the presence of
the U(1) symmetry which will be essential to expand the correlator in matrix elements that are
regular in finite volume. At the end of the computation we will find results for the real theory
by imposing |¢), = 0),. A more explicit formulation for such correlator will be given in the
next section where we address the problem of extending the replica model to the presence of a

U(1) symmetry.

4.3 Doubled replica free boson model in infinite volume

We now need to construct the Replica model of the free doubled free boson theory. As we
have seen in Section 3.1, the n-copy model arises from the presence of the cyclic permutation
symmetry. In addition, in the new complex theory the doubling induces a U(1) symmetry

duplicating each copy of the replica model. In the replica theory we have n copies of the
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complex free boson, ®; with 7 = 1,...,n. Since the components ¢, ;, ¢y ; are commuting
fields and the permutation symmetry acts in a factorized way, the branch-point twist field also

factorises:

T=T.®T;. (4.18)

In rapidity-space, a state |®) can be written as:

|®) = ‘¢>a ® |O>b = |¢>a,1 ®--® |¢>an ® ‘O>b,1 ® - Q |0>b,n : (4.19)

Note that in each copy, we have conventionally chosen the excitations to live in one of the two
real theories. Again, as seen for the original theory, any real multi-particle state |¢), can be
expressed by an appropriate combination of creation operators (Oz;-—r)T(H) in the complex replica
theory. In particular, the operators (a;)'(6) are now associated to the complex free boson ®;
living in copy j, and they generate the eigenstates of the U(1)-charge and of the Hamiltonian
in the jth complex theory. It follows from (4.14) that a single-particle excitation in copy j is
given by the operator:

(a;)'(0) = —=((a)'(0) + (a7)"(9)) - (4.20)

One natural state that we can choose to consider in this construction is a multi-particle state

k), :=101,...,0k), characterised by k distinct rapidities’:

0 = 16, @10 = = [ T[] (116 + ()10 ) 0. (4:21)

The treatment of this state in (4.21) will be indeed an important study case to obtain
information on the entanglement content of a generic state. In a factorized state such as

(4.21) the correlator of branch-point twist fields factorise into two real components:
&I TO)T(O) = olk[Ta(0)Ta(O)[k)a x 50| T5(0)To(£)[0)s - (4.22)

We therefore obtain the real free boson results as

MTOTO)) (4.23)

. - 7
T OO = o e 0T 010

In the case of some coinciding rapidities, the normalisation of the state needs to be slighly modified. This
case will be discussed in more detail in Section 4.6.2.
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Note that the ratio of correlators in equation (4.5) gives:

ok Ta(0)
a{0|7a(0)

(O K0T

a , (4.24)
(0]0)a  <0|T4(0)7a(€)]0)

Ta
Ta

where we have introduced the ground state of the complex theory” |0) = [0),®|0);, and divided

out the vacuum-correlator ,(0|7,(0)75(¢)|0),. Therefore complex results reproduce exactly real

results.

4.3.1 Diagonalisation of the cyclic permutation action

In the doubled replica model, the combination of the U(1) symmetry of the complex field
on each replica, and of the permutation symmetry of the replica, implies the existence of a
U(n) symmetry of the model. Cyclic permutations form a subgroup of the U(n) symmetry
group of rotations amongst the copies, which can be diagonalized. The diagonal basis is a new
set of n independent complex free bosons, each of which has its own U(1) symmetry, and the
cyclic permutation action is expressed as a product of U(1) actions on each of these bosons.
Therefore, the branch-point twist field acts as a product of U(1) twist fields in the diagonal

basis. In matrix form, the cyclic permutation symmetry act as

D, b, 010 -0
0, O 001 --0
T : = : , suchthat , T'=| + ¢+ &+ . [|. (4.25)
D, d, 000 -1
o, b, 100 ---0
The eigenvalues of the matrix 7" are exactly the nth roots of unity A, = 55" for p=1,...,n

The cyclic permutation action is diagonalized by the fields

_ 2mijp

n (I)] 5 (426)

- 1 &
®p=\/—ﬁj;€

which are themselves canonically normalized complex free boson fields. Since the cyclic
permutation symmetry acts diagonally on the basis CTDP, the branch-point twist field and the

anti-twist field can be factorised into U(1)-fields 7, and their Hermitian conjugates 7_,

2Throughout the next sections we will focus on evaluating correlators in complex states such as [k). We thus
introduce the convention that states with bond letters are complex.
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respectively:

T:ﬁﬂp, ’r:ﬁfrp. (4.27)

p=1

The new twist fields 74, and 7, satisfy the following exchange relations with the new basis:

~ 2mip dq,p ~
Topw, )0y t) = ()7 @y, ) Taplent)  for y>2 . (428)

= by, 1) Taplw,t)  for x>y :

forg,p=1,...,nwith g =q¢+n and p=p+n. It follows that the field 7, is the identity field.

Tl

Remarkably the only effect of the U(1) field is to add a phase Ay, = e* +22% when the two fields
T, and @, are in the same copy. For free bosons, such U(1) fields have been studied and it is

known that they have scaling dimensions [105]
A, =2 (1 - 3) , (4.29)

so that

u 1 1
2) A, = ; <n — E) =d,, (4.30)

which reproduces (3.11) for ¢ = 2 (the central charge of the complex free boson).

In the diagonal basis (4.26), the creation operators are

> e ad)1(0), (4.31)
and are related to the older operators by the inverse transformations:

0= m L

'(6) . (4.32)

Recalling the state (4.19) and expressing the operators oz;—r(ﬁ) there in terms of the tilde

operators through (4.32), we obtain after some manipulations that

— nk H Z Z _2mii gk piez-(d]ejll)T(gl) o (d;’,i)T(ek) 0) . (4.33)

j=le1,....exg=t p1,....pp=1

Thus in the new basis correlators of branch-point twist fields evaluated in the state (4.33)

factorise into correlators of U(1)-fields on the copies p = 1,...,n, and the expression above is
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useful to express such decomposition. One can understand the structure of the resulting
expansions by looking at a specific case. In the next section we will derive the factorization of
the branch-point twist field correlator in a single particle excitation, and identify the building
blocks of the resulting form factor expansions. Despite the simplicity of the state under
consideration, this example may be also instructive to understand the structure of more

complicated expansions such as those derived for multiparticle states.

In order to simplify the writing, from now onwards we will use the short-hand notations:
af(0) :=a;(0) and a; (F) :=0;(0). (4.34)

where a} and bj- are both associated to the new basis, and create excitations with respectively
positive or negative U(1)-charge in copy j. In particular the excitations created by a;r- will be

simply referred to as particles, while those created by b} will be called antiparticles.

4.3.2 Example: twist-field correlator in a single-particle excitation

We consider a single particle excitation |1) obtained from (4.19) for £ = 1. In order to
write the state |1) in the new basis, it is convenient to express it in terms of the population of
quasiparticles in each copy of the Replica model. We thus introduce the integer set {N*} =
{N{",N{,...,N N} where Njir is the number of particle/antiparticles living in the jth-copy.

From (4.33), the single particle state becomes:

1= > C{N=D] ] o] L) 10) (4.35)

{Nt} p=1
where C,({N*}) contain the phase factors resulting from the transformation (4.32) and
associated to the configuration {N*}. The sum runs over the integer sets {N*} and is
constrained by the conservation of the total number of quasiparticles in the replica model,

formally:

Z (NS +N,)) (4.36)
Thus, in the state (4.35) the correlator of branch-point twist fields becomes

ATOTO L= > > G Cn({N}) (4.37)

{N*} (N£}

H 0] [y (1Y% [0, ()1 T (0) T—p(0) [ah ()17 [61,(0)]™ [0),
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Note that above the factorization follows naturally from the operators a,, b, and their
Hermitian conjugates, on which the permutation symmetry acts in a diagonal way by
construction. Therefore the factorization of branch-point twist fields into U(1)-fields is a

property that holds more generally for any multi-particle states expanded in the basis (4.31).

One direct consequence of the factorization in (4.37) is that each correlator of U(1)-fields can
be treated as an independent form factor expansion in each copy of the replica model. Indeed
we can obtain the expansions in the usual way of inserting a complete set of states between
the two fields in each correlator, namely 7., and 7_, so that we have in total n independent
sums. We will present the explicit form of these expansions in Section 4.5 where we will also
deal with the full computation of their leading contributions in the scaling limit (4.3). For the
time being it is worthwhile to introduce only their fundamental components which for any copy

p =1,...,n are matrix elements of the form:

0 Tt H 5070 [ 1500 [ 1410 (139

i1=1 i4=1 iz=1

where the 0; s denote the rapidities of particles, and the ;s denote those of antiparticles. Note
that here and later, the order of the creation and annihilation operators is irrelevant as they all
commute in the free boson case. The only non-zero elements are those preserving the charge
on the left and the right of the twist field. If we assume distinct rapidities 6; # ¢, and 3; # f3;

for all 7, we can easily relate the element above to an elementary form factor of U(1)-fields:*

0 Tt H 5Tl [ T80 [T a0, - (4.39)

11=1 i4=1 13=1

Ff—;-s+q+q( Tyeens S,,Bl+z7r,...,6q+Z7r,ﬁ1,...,,8q,,91+i7r,...,98+i7r)58_q75/_q,,

where d;_, v_y ensures the conservation of the U(1) charge. The expression above is obtained

by iterating the property (3.35) as in this case the disconnected terms are simply zero.

4.3.3 Form factors of U(1)-fields

In this subsection we implement the boostrap equations (3.42), (3.43) and (3.37) for form

factors of U(1)-fields. These equations can be easily solved for two-particle matrix elements.

3Here, we have used a slightly different notation from the one employed in Section 3.3. The reason is to
emphasise the presence of an equal number of particles and antiparticles in non-zero form factors of U(1) field.
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In particular, we define the two-particle form factors of the U(1) field in the pth copy as

FPH=(01 — B2) := (0| T, (0)a}(61)01(82)|0), = F¥I=* (8, — 61) (4.40)
FPH (01 — 62) == (0T, (0)a}(61)a}(62)[0), = 0, (4.41)
(4.42)

FP(B1 = Ba) += (0| Tp(0)8}(51)}(82)[0), = 0.

The twist field preserves the total U(1) charge therefore the two last two form factors are
vanishing. The form factor program for such fields implies:

I. Exchange :
(4.43)

Jadk=s (0) = priFE (—0)

II. Crossing :
=y FPRER(0),  (4.44)

FPEF(0 + 2mi) = 7 FPITE(—0)

(4.45)

ITI. Kinematical residue
Resg_o FP*F(0 + im) = i(1 — V)T

where %;_r are the factors of local commutativity introduced in Subsection 3.3.1, and here
From the exchange relations (4.28) we expect that

associated to the bosons =+.
Yr=(y)"t = %" . Furthermore we define the vacuum expectation value as:
7p = p{0|7,(0)|0); . (4.46)
Based on the equations above it is easy to make a general ansatz:
A ab
Friv(9) = = (4.47)
cosh 5

where A and a are constants to be determined. It is then straightforward to show that the

boostrap equations I-III are satisfied for
P_ L1 d 4 i (4.48)
a==——= an = —7,sin — . )
n 2 P
The final solution is thus
PP (0 el 4.49
(9) —Tpsin -~ coshg (4.49)
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Another solution can be obtained by shifting p — p + n but if we assume p < n the solution
above is singled out. Note that such type of form factor has been known for a long time [72,

89, 97].

One important simplification that comes out in free theories is that higher-particle form
factors factorise into two-particle contributions. An explicit expression for them can be easily
obtained by employing Wick’s theorem and accounting for all possible ways to perform Wick’s

contractions among the excitations. In particular for the complex free boson theory we have

F5 (01,03 81, Bm) = p{O[T,(0)al(61) - - -l (6,,)8 (B1) - - - 81(51n)|0),
= T Z [ 0oy — Br) -+ [ (Oom) — Bm) , (4.50)

oE€ESm

where we introduced the normalized two-particle form factor

pl+—
f;(Q) = F—(@, (4.51)

Tp

and o are all elements of the permutation group .S,, of m indices. Thus once we have the
two-particle form factor solution (4.49), we are then able to compute form factor elements for

any number of particles.

4.4 Doubled replica free boson model in finite volume

Correlators such as (4.37) needs to be treated in finite volume. The originial free boson
complex theory is thus mapped into a cylinder of circumference L, and the resulting replica
model is composed of n copies of the original cylinder with a branch-cut indentified with the
entanglement region. As explained in Subsection 3.2.3 after some manipulation, we obtain
two semi-infinite branch cuts located at the boundary points of the entanglement region and
extending infinitely along the time direction.

In Subsection 3.3.2 we have seen that finite-volume matrix element of local operators may
be expressed in terms of the infinite-volume form factors by mean of the change of variable
(3.47), up to exponential corrections controlled by the volume. We expect such corrections
to be negligible in the scaling limit (4.3) where the volume is taken infinitely large. Roughly
speaking the main difference between the infinite-volume states and the finite-volume states
is that in finite volume their rapidities are quantised. In particular, in the replica model the

quantisation conditions are affected by the presence of the branch cuts. We will use the following
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simple example to explain what these quantization conditions are in general.

Consider a simple matrix element on sector p of the form

k k
Y Hap )T:p(0) (@Ha;(@)lwp = 2.0 Hap )Tip(0) |y xp{al T-p (¢ )HGL(@)|0>IJ~

i=1 Y i=1 w52
We will think of this matrix element as a particular building block of a more complicated
two-point function. This means that the external state []F_, af(6;)[0), depends on rapidities
{6;} which are the same rapidities of the original excited state |k) in (4.21). Here |q), are

intermediate states composed of ¢ excitations, of which s are particles and ¢—s are antiparticles.

In particular the states |q), are of the form:

), = HGT B:) ]_[ 6/ (5:)[0), . (4.53)

i=s+1

and the sum over intermediate states is a sum over ¢ = 0,...,00 and over f;s. The sum is

constrained by the charge conservation. The latter requires
2s —q=k. (4.54)

and fixes either s or ¢ in the sum. In the next two subsections we extend the expansion (4.52)

to finite volume.

4.4.1 Quantisation conditions

In finite volume L one must first choose a sector in order to determine the quantum numbers
of the external state and intermediate states in (4.52). As shown in Fig. 4.2, different sections

may lead to different boundary conditions due to the presence of the branch cuts.

Consider a certain copy j, we choose the external state to be in the section where the field
®; is periodic ®;(z + L) = ®;(x) and it does not cross the branch cut. This choice leads to the
standard quantisation conditions (3.51) discussed in Section 3.3.2. In contrast the intermediate
states |q)p,  will be chosen in a section between the two fields that means that the field @,
will cross the branch cut associated to the branch-point twist field 7 and it will move to the
next copy. As a consequence the quantisation condition becomes ®;(z + L) = ®; 1(z). In
the diagonal basis (4.31) the field ®,(z) only gains a phase resulting from the exchange with

27ip

the twist-field 7, and has quasi-periodic condition ®,(z + L) = e n ®,(x). As a result the
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.........................

..............
..............................

—

Figure 4.2 A single copy of the finite-volume replica model. The quantization conditions in
the presence of the branch cuts can be understood as follow: the field ® is periodic in a sector
of the cylinder that do not involve any branch cut. By performing a trip around the entire
circumference the field ® does not change, and this leads to standard quantization conditions
of the external state in the expansion (4.52). In contrast the field ® gains a phase after the
same trip around the circumference as it lies in a sector that crosses the branch cut associated
to the twist field 7,. The intermediate states in (4.52), formed of excitations associated to the
field ® are accordingly subjected to quantization conditions of the form (4.56) and (4.57).

quantization of momenta (rapidities) is for the external state:
P(6;) = mLsinh0; = 2xl; with [;€eZ and i=1,... k. (4.55)

while for the intermediate states

2mp

P(B;) = mLsinh§; =2nJ} + with JFeZ and i=1,...,s, (4.56)

2
P(5;) = mLsinhp; =2nJ; — P with J;reZ and i=s+1,...,q. (4.57)
n
These latter quantization conditions provide the generalization of the Bethe-Yang equations
(3.51) in the presence of the branch cut induced by the U(1) twist field 7,, and can be naturally

extended to more general external states such as |k).

4.4.2 Finite-volume matrix elements of U(1)-fields

Let |{Li}x)p, be the external state in finite volume with quantum numbers
{Lie = {L,..., I}, and |{J}s4 s p. 1 be the quantised intermeditate states with quantum

numbers {Ji"}sq-s = {Ji,...,JS, Jq,..-J; ). The expansion (4.52) becomes in finite
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volume

pi tUibe [ Tap(0) Top () { i D, 1
= m Y wrl T O s Xyt oqms | To(O) {Tidk D,

. {Jii}syq—s

(4.58)

Remarkably conditions (4.55), (4.56) and (4.56) ensure that the external state and the
intermediate states possess always excitations with distinct rapidities
{0} = {01,...,0k} # {Bi}q = {b1,...,05,} and thus the matrix elements in (4.58) are
non-diagonal finite volume form factors such as (3.53). For instance we can write the matrix

element:

Flfﬁ] Ot ifq—s s 10 + 1T s
o AT Ty O U s s = ({¢i< {;ﬁ}:)p( {;’5}*) )

up to exponentially decaying corrections O(e #%). The form factor in the numerator is exactly

(4.59)

the same function as in infinite volume up to the quantization conditions on the rapidities
discussed earlier. The functions in the denominator are the densities of the left- and right-states,

respectively. In free theories, these functions are given by (3.52):

-
s}

p({0:}) = [ [LE®:),  p({B}s) = [ [LE®B) - (4.60)

i=1 i=1
with E(0) = mcosh6.

Although (4.58) only shows the form factor expansion of a particular correlator, the above
analysis easily extends to any other cases, and a generalisation of expression (4.59) to a generic

matrix element such as (4.39) can be easily obtained.

4.5 Rényi entropy of a single-particle excited state

We now recall the example in Subsection 4.3.2 and proceed to compute the increment of
Rényi entropy (4.4) given by a single-particle excited state. The single-particle excitation is
the simplest example of zero-density excited states and can be used as starting point to carry

out computation for more complicated states.
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In the infinite volume replica model, the state considered is given by expression (4.19) for k = 1:

1 _
= TT(@)'6) + @)'0) ) 0. (4.61)
j=1
As explained in Subsection 4.3.2, such a state admits a more intuitive expression after changing

to the new basis of creation operators (4.31), as per (4.33). Here we write it as

=Y GV DT[] [50)]™ 10, (462)
{N=+} p=1
and C, ({N*}) are coefficient characterising the state [1). The set of integers
{N*} = {N},N;,...,NJ N} = {NT}|J{N"} are the boson occupation numbers of
particles/antiparticles in each sector. In finite volume the one-particle state above satisfies the
Bethe-Yang equation (4.55) with quantum numbers given by a set of n identical integers {I},
characterising the finite volume state [1); := [{I},)r = [{I}yz)1;0 ® - @ [{L}nt )n; -

Therefore the two point correlation function of branch-point twist fields in finite volume is:

LATOTOL, = Y Y ICUNDIFCUNDTF (N N) . (463)

{NE} (N+}

where = denotes complex conjugation, and

Fo (NFNE) = il | Top(0) Tol0) T o (4.64)

is the finite-volume two-point function in sector p. As standard, an expansion in form factors
can be obtained by inserting a complete set of states between the two fields so that (4.64)

becomes a sum over products of the form factors (4.50). Explicitly,

- Z Z ﬁ |{Jii}mi>p;L p;L<{Jii}mi‘ ) (4.65)

0{JF}, +

where the quantum numbers {J;"},,+ = {J;",..., J'} are associated to the Bethe-Yang solutions
of equation (4.56) associated to the particles {6;},,+ = {6h,...,0n,} that are solutions to the
Yang-Bethe equation (4.56). Similarly, the integers {J; },,- correspond to quantum numbers of
antiparticles of rapidities {3;},,- = {01, - .., Bm_} satisfying equation (4.57). The combinatorial
factors m¥*! prevent us from over-counting states with the same set of quantum numbers, but

differently ordered. We can now insert the complete set of states (4.65) into the two-point
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function (4.64), and arrive to

o ] S| PO)SI, P30~ +8;)P(6)]

Z Z m*!m![

NS +Np + N +N,
mE=0 (JF} 4 ]

VLE(0) [1 LE@) 1 LE(B)
XFJI\)I’;+N;+m*+m+({9 + iW}N; J {ei}m+ ) {9 + iW}N; ) {@}m—)

x FPm ({0 jr » {Bi +imbn-; {0} o {00 +imhne) . (4.66)

Ny +Nf +m=+m+

As mentioned in Subsection 4.3.2 there are various constraints to the expansion (4.63). In

particular :

1. The total particle number of the excited state |1); must be preserved in the replica model.

Thus the integer sets {N*} are subject to the condition

i2m=m (4.67)

p:l e=+

2. According to the Wick theorem, only form factors of a even particle number are not

vanishing. As a consequence N, + N,” +m~ +m™ must be an even number.

3. In sector n, the U(1) twist-fields coincide with the identity, and the two-point function
(4.66) becomes simply ; L{ {1} y+|{I} 52 n; Which is non zero only if N = N2, and its

value is just the normalization of the finite-volume states:

Fo (Niy Ni) = NN L (4.68)

4. U(1)-charge conservation implies that

N,y +m* =N +m~ and N, +m" =N +m", (4.69)

which is equivalent to N — N,” = m*™ —m~ = Nlj — N, . As a result, only form factors

involving the same amount of particles and antiparticles are not vanishing.

The constaints above are useful to select and compute the leading contribution of the expansion
(4.66) in the limit (4.3). This task will be addressed in the next section in detail. In general

there are two equivalent ways to compute such contribution, both presented in [24].

The first way is based on the intuition that the large-volume leading contribution comes
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from terms of the expansion (4.66) where the rapidities of the external states approach those
of the intermediate states. In this case, the leading behaviour is dictated by the structure of

the two-particle form factor near the kinematic poles:

g g4 im) = mLsin%cosh@lemTp
fp( i +27r)9;9i '/T(JJF—[—F%)

(4.70)

Hence the two-particle form factors grow linearly with L for large volume, and combine with
the Ls of the density functions in the denominator to give a leading term with an overall
non-negative power of the volume L. In particular, in the scaling limit (4.3) the leading term
turns out to be of Oth power in L and thus volume-independent. The computation involves the
application of the Wick theorem (4.50) to extract the contributions near the kinematic poles
in the expansion (4.66), and the evaluation of a final re-summation of these contributions over
the quantum numbers. In [24] this method has been generalised and successfully employed to

the study of the free fermion.

Alternatively we can note that the expansion (4.66) may be expressed by replacing the sums
> UE by a set of contour integrals such that the sum over residues enclosed by the contours
reproduces the original sum. The latter substitution provides the starting point of the second
approach to compute the leading large-volume contribution. This technique turns out to be
more amenable to generalization to the case of multiple entanglement regions that will feature
in Chapter 5. Furthermore it can be naturally extended to the treatment of multiparticle states
with very few modifications as we will see in Section 4.6. For these two reasons, it is convenient

for us to focus on this second approach. We will make full use of it in the next subsection.

4.5.1 Computation by contour integration

Although the expansion (4.66) looks rather complicated, there is a systematic way employed
in [24] to obtain its leading term in the limit (4.3) by means of manipulation of multidimensional
contour integrals. This method was first developed to compute thermal correlators in integrable
QFTs [106, 107] and can be easily extended to our study case. The computation presented in
[24] requires the implementation of several steps that can be naturally generalised for use in
free boson theories with multiple entanglement regions. In this section we discuss each step in

detail.
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4.5.1.1 Step 1: converting sums to contour integrals

The starting point of the computation is to rewrite each sum ) ,+ in the expansions (4.66)
in such a way to express its summand as the result of a carefully chosen contour integral around

the Bethe-Yang solution 6;. More precisely this implies to express each sum as:

2 ZJ z(LP(H) %TP) 1 ’ (4'71)

I
J,;"eZ

where 6; describes a particle of an intermediate state [{J;" },,+ )p. 1, and C s+ 1s a small contour
encircling 6; with positive orientation. The function h*(6;,...) includes the product of the two
form factors on the left hand side of the expansion (4.66) which is exactly the function we wish
to regularise. The denominator inside the integral is the exponential form of equation (4.56)
so as to ensure that the integrand has a pole exactly when the equation (4.56) is satisfied.
Note that the integration variable ; is not a solution of the equation (4.56). Similarly, we can

express the sum associated to an antiparticle with rapidity (; as

B,,... g h(Bi,...)
Z LE( Bz ZJ (LPF)+22) _ (4.72)

J; ez

In order to simplify the notation from now onwards we will omit the tilde on the integration

variables.

Transforming every sum in (4.66) into a contour integral we obtain the expression

};(Nf,]ff;—r) - miom : - ]N}r-&-N +NF N, HZJ o

+1 |
mol [ %LE(Q) =1 J+€Z
S PSP -)—(N;+N;>P<e>]

1_[ Z J o
m+ i i _27mp 3 27
[JEME i(LP(0:)—=2) _ 15 [€ i(LP(B;)+=7E) _ 1]

k= 1J eZ
Ff, vaum +m+({9}Ng, {Bi +imbm- 5 {0}, {0 +impms) . (473)

4.5.1.2 Step 2: manipulating contour integrals

This step provides the core of the computation and consists in combining the small contours
around the Bethe-Yang solutions into a contour encircling the real axis for each variable. While

doing so, the contour will cross the kinematic poles of the form factors, whenever 6; = 6 or
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B; = 0 for some 7, and we need to subtract the residua of these poles.

— T

Im

O O O D
N N ke T ke

Figure 4.3 Graphical representation of the contour integral manipulation to obtain regular
correlators, (picture taken from [107]). The black dot shows a singularity not enclosed inside
C~, i.e. the contour surrounding the entire real axis.

Each sum )+ is the sum of small contours around the solutions of equation (4.56) 6; or
(4.57) B;
Cti= ), Ce=C"=0Cy, (4.74)

Jrez
where C~ is the contour encircling the real axis whereas Cy the one enclosing the point §; = 0

or 3; = 0 at which the functions h*(6;,...) have kinematic poles.

We now focus on a specific particle with rapidity 6; € {6;},+, and compute the residue for
a single-contour integral C,+ = —Cy. We then extend the result to the multi-contour in (4.73)
J

by using some combinatorial arguments. In particular the integral considered is:

do; et(P(6;)—P(0)) o ‘ .
e, gei(LP(é’j)fm) _ 1FNP’+N;F+m—+m+({9 + ”T}Ng At {0+ ”T}N;r , ABitm-)

n

x P ({0} s {Bi+ imhme 5 (O} 5=, {60: + i} ). (4.75)

Ny + N +m=+m+

The pole structure of the form factors in the integrand gives the right prescription to select
the dominant contributions at large volume. Indeed it is easy to see from (4.45) that the
contribution from residues at # coming from a single kinematic singularity is of order L in the
volume and therefore they will be strongly suppressed by the power of L in the denominator
of (4.73). However, if we consider terms where both form factors have a kinematic pole at the
same location ¢; = 6, then we have to calculate the residue of a second order pole, and this

can change the order in the volume. From the kinematic residue equation (4.45) it follows that
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near the kinematic poles the integrand may be approximated as

. _ 2mip e 27
do, HPE)-PO) —iN} (1 —e np) —iN} <1 —e np>

o, 2m (iLPO)-ZE) | 0,0 0 — 0
X}¥Q?+Aglmn*44n+—2({9_%iW}A@"{Hibn+\{9j}§ {0‘%i7}Ag:4,a{ﬁiLn—)
< i e e o B i {0}, 0+ imhe {05 £ im}), (4.76)

where a pair 6; and 6 have been contracted in both form factors, and the variable 6, is absent
in {0 }m+ \{0;} = {01,...,0;-1,0;11,...,0m+}. The combinatorial factors N, N; are the result

of the pairing of 6; with the 6s.

Evaluating the residue we have that

N+N+ 2mip 27ip d eZZ(P(QJ)—P(G))

—1 1—en ) (1 - —T>

1 p-'p < € (& dez (ei(LP(ej)—sz) - 1)0j:0
XF]I\)I’;+NI,++m*+m+_2({0 + Z.7]—}Np’ ) {Ql}m+\{0j} 3 {8 + Z.W}N;r_l 5 {62}m*)

e ()1 4B+ i s 0}z, {6+ imhus\ (0 + i) (477)

Ny +N +m=+m+—2

Using the Bethe-Yang equation (4.55) and simplifying, the final result is

LE(0) N, N,f g (r)
F]I\);;+Nﬁ+m—+m+f2({9 - Z'7T}pr ? {91}m+\{93} ) {6 + 2'7T}N;r71 ) {ﬁz}m*)
F]g;ﬁ%;+m—+m+_2({0}ﬂgfl 5 {ﬁz + Z‘ﬂ-}m* ; {H}N; , {Qz + iﬁ}m+\{0j + 277'}) , (478)

where the function gy (r) provides the fundamental blocks of the final result and is defined as

+ 2mik

gip(r) =1—=(1—e"n)r, E=1,....,n. (4.79)

An entirely similar computation can be done for a rapidity 5; € {8}~ paired with 6 €

{0} n-- The residue with contour integral C = —Cp is

43, HPEPE) | |
- Jc(e) O GLPE+EE) _ | vt i {0+ s {Oihms 5 {0+ imh e {Bidm-)

FoP ({G}Nz‘f ) {Bz + iﬂ—}mi ) {Q}sz ) {02 + Z.’N}‘Trﬁ)' (480)

Ny +Nf +m=+m+

This residue can be evaluated separately from the residue (4.75) as it involves different sets of
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rapidities. It gives the result:

LE(0) N, N, g",(r)
ER om0 %)y 1 O 10+ i) (Bid\(Bi)

XFL (B Bt i) \B + i) {8}y, (6 +im) ) . (481)

It is important to note, that both results (4.78) and (4.81) are proportional to the volume
therefore any residue such as the ones above will produce a factor LE(0) g}, (r) up to
combinatorial factors resulting from paring particles of the intermediate state with the

remaining 6s.

We now need to account for all possible contractions between the intermediate and the
external states in the expansion (4.73). In particular what we need to do is to extend the

computations above to more intricate integrals with multi-dimensional contours of the type:

NE n
m=! t o mt gt +
Cix - xCi=) T ) (—D)F (=)™ (o), (4.82)
A, N !

t

where each CF is given by expression (4.74) and NF < m* is the maximal number of

second-order poles for residua of the type of (4.78) and (4.81) respectively. Since each
second-order pole residue with contour integral Cy contributes with a factor L to the form

factor expansion (4.73) each term in the right hand side of (4.82) will contribute as L* and

+

the large-volume leading term is expected to come from the maximal power k¥ = NZ.

Therefore in the scaling limit (4.3) it is reasonable to expect that

+ . + ' _\NiE p=\mE-NE NF N
Cx -+ xC; Nf!(mi—Nf)!( )% (CT) (Co)™* , forV — 0. (4.83)

m=*

The other terms of the sum (4.82) will lead to next-to-leading order contributions so that these

will not be considered in this computation.

We conclude this part of the computation by redefining the number m* — m* — NF
and relabelling appropriately the rapidities of the intermediate states. Note that although, in
general, the order in which the integrals over the various contours are performed matters, in both
(4.82) and (4.83) we can obviate this by employing the fact that all such orderings are equivalent

under relabeling of rapidities and that in this case all such relabelings are equivalent due to
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the symmetries of the free boson form factors. This is another strength of the theory under
consideration, which will be crucial in the treatment of multiple-point correlation functions,

but that of course is no longer valid in interacting theories. We finally obtain the expansion:

Fp (N;L, Nf) =
0 1 Ne NE o . N; 1
m;0 oy Ngtmel (Ng) (NE) (V)" g (r)] Nj+Ng—2N§

[ LE(@)]

me a0 [ d GBI PO)+TI, P(8)
: . 4.84
HJH 27 lef 2m | [T (eiEP @)= ey 1) T (e EPBa+ 50— 1) (4.84)

XF§n+N++m +mt Ny N+({9 + iW}N;—N; ,AOitme 3 {0+ “T}N;—N; , {Bitm+)

XF]T\L, z_:N++m +mt Ny N+<{9}N;—N;; AL+ T {Q}N;—N; Al + i)

The factor 1/(NE!'m!) comes from the contour integral (4.83) and the relabelling m* — m* —
NF whereas the factorials come from selecting the s in the contractions. Indeed by iterating the
calculation of the second-pole residua (4.75) and (4.80) for N times, the resulting combinatorial
factors are:
€ € € + \TE( NTE \T€ + N; Nf €|
Ny(Ny—1)...(Nyg = NS+ 1)NJ(Ny — 1) ... (N; = NS +1) = N N* (N2
that means that any time we contract a 6 in the external state with one rapidity of the

intermediate states there is one less selection option available.

4.5.1.3 Step 3: establishing the large-volume leading contribution

Starting from the expansion (4.84) we can now make some important observations that
allow us to extract its leading contributions in the scaling limit (4.3). In particular, it is quite
intuitive that residues such as (4.75) and (4.80) can be performed as long as there is at least
one rapidity # available in both form factors. Since the leading contribution comes from the

largest number of second order poles we have that:
NF =min{N,, NS}, Ny =min{N,,N,}, (4.85)

On the other hand, each term of the expansion (4.84) contributes with the Rth power of the

volume L where

N;+N];+N;+N5
2 )

R =min{N,], N} + min{N, , N, } — (4.86)
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and we expect the leading contribution to maximise this power. It turns out that R is
maximal when the external states have exactly the same amount of particles N;—r = Nf, and
the corresponding term of the expansion (4.84) has a power R = 0. Indeed if we suppose
N;—r < N;—r it is easy to see that R will be negative and the corresponding term will be

suppressed for large volume. Similar results may be obtained in all the other cases.

4.5.1.4 Step 4: identifying the vacuum-correlator and obtaining results

Substituting N; = Nf = Npi in the expansion (4.84) and simplifying the combinatorial

factors, we obtain:

7 (v ) - | T v [gsmﬂ

| e=+%
. m+ ) m .
S e 1L | ) e s e
A mtlm] [T (e (LPe: )—Qﬂ) ~1) H:il<ei(LP(Bi)+2”Tp) —1)
xFﬁ"+m+({9i}m+ s ABitm+ ) F T:nd{ﬁz + m}mf : {Qi + 0Tt ) - (4.87)

the sum in last two lines is the spectral form factor decomposition of the vacuum correlator
»:.{0|T5,(0) T_,(0)]|0),. . and can be easily factorised out. We can finally express the ratio of

correlators as

LUTO)T (O, - e (om N _
= = DG UNEHPTTTTOY (95,()) ™ + oL, (4.88)
LO[TO)TO0)L (43,
Note that for p = n, the factor reproduces the norm of the finite-volume state as expected,
since gin(r) = 1 and ,,, 2{0|7,(0)7,(£)|0). = 1. Finally the increment of entanglement (4.5)

for a single-particle excitation is:

~log M ICa (N \2ﬁ (N (g ()] | - (4.89)

{NE} p=le=%

ASH(r) =

The result above is #-independent and in particular it does not depend on the energy of the
state |1), but only of the ratio r = ¢/L kept fixed in the scaling limit (4.3). It does not explicitly
depend on the mass m of the free boson. However we know that such information is encoded

in the ground-state contribution and thus it does not feature in this subtracted version.
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4.6 Rényi entropy of a multi-particle excited state

In the previous section we have rigorously discussed all the computational steps that lead
to evaluate the increment of entanglement in a single-particle excitation. This computation
provides the basis for computing entanglement increments for more complicated states. In
particular in this section we will look into states whose particles are all distinguishable or
all indistinguishable in their rapidities. These two extreme cases are crucial to construct the

general formulae for the entanglement increment of a generic state discussed in Subsection 4.7.3.

4.6.1 Distinct rapidities

We now consider a k-particle state (4.21) involving only excitations with distinct rapidities

0, # - -+ # 0. In infinite volume this state can be expressed in the form

- NP+ N~
L1 = 1_[ 2 Cu(INe* ) [ Tleh@]™ [e5(6)]™ 10, (4.90)
k g=1{Na*} p=1

where the C,, ({N%%}) coefficients take the same form for each value of ¢, more precisely, for
fixed ¢ they are exactly the same as for the one-particle state (4.62). Similarly to (4.67), the

integers { N%*} satisfy the following restrictions

iZNg’Gzn, g=1,... k. (4.91)

p=le=+

In finite volume, the set of equal rapidities {6,} Not = {6,,0,,...} satisty the Bethe-Yang
equation (4.55) with equal integers {[q}Ng,i = {1, 1,,...} for all ¢ = 1,..., k. The two-point

function takes the form

1,1, 1T T (01,1, .., 1), (4.92)
- |I1 2 WANEDP LN | TTF (N h NE) L (493)
q=1{Ns*} } p=1
where
Fo (ANVE=HANEEY) = pnl{ildygpes oo bt | Top0) T [ gt Uk st Dy

(4.94)
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To find the leading contribution in the volume to F, ({Ngi}, {Ng’i}>, we follow the same
steps as in Section 4.5. As seen in Subsection 4.5.1, we need to focus on the contributions
arising when some intermediate rapidity approaches one of the rapidities of the excited state in
both of the form factors generating second-order poles. In other words, we need to pair up the
intermediate rapidities with the same rapidity of the excited state from the in- and out-states.
Since the sets of rapidities {6,} Nyt are all distinct, the computation of the leading contribution
can be seen as iterating the procedure described in Section 4.5.1 independently for each set.

Carrying out the calculation, the result will be

fpg{ b AN

NeFINE [ (] [0, 0] Ol (00T (00 + O(L™Y) . (4.95)

q=

As a consequence, in the scaling limit (4.3), the result for a state involving k distinct rapidities

factorizes into k single-particle state contributions. That is

AT T (rD),. ., D b T o
lim - = C,({NoE Net g (r)]
i LOTOT (000 [ {N;j (VEE LT[ o]

hm[mm G >|1>L] | (496
o | 0| T(0)T(¢)[0)s

The equation above implies that the increment of the nth Rényi entropy given by a k-particle
state with only distinct particles is k times as big as the one generated by a single-particle

excited state:

ASIL () = i ASL(r) = kASL(r), (4.97)

where ASL(r) is given by (4.89). Like (4.89), the result above does not depend on the explicit
values of rapidites 64, ..., 6, but only on the assumption that they are different from each other.
Indeed such a simple result (4.97) no longer holds if all or some rapidities of the excited state
coincide. We will see this in the next subsection where we consider an excited state with only

coinciding rapidities.

4.6.2 Coinciding rapidities

Let us consider a k-particle excited state where all the rapidities coincide, and are denoted

by 6. In this case the norm of the k-particle state is k!"™ and needs to be modified in (4.33).
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The properly normalized infinite-volume state can then be written as

= Ny Ny
k) = Z W (NN T TIebO]™ [sh@)] ™ 10), (4.98)
‘ {N*} p=1
The expression above looks very similar to (4.62). Although both states depend on a single
rapidity variable, the state (4.98) obeys a different selection rule which is

DY NS =nk, (4.99)
p=1e=+
and that depends on the number of excitations k. The same condition holds for N;—r. As a

consequence we expect the final results to give numerically different values than (4.89). The

coefficients D¥ ({N*}) are related to the coefficients C,, ({N*}) of the previous subsections by

n

DF({N*}) H D GUNNT Oe st | nae - (4.100)

q=1{Nat} p=1e=+ ot
The two point function is then

- 1 - n
LT T O = 7 DN DAV [T 7, (NEN) . (0

7 ANEH (N} p=1
where F, is the same function as for the one-particle case (4.64) with integers N;—r obeying

(4.99). It follows from the computation in Section 4.5 that the leading large-volume term of

the two-point function is

KK TO)T(rL)[kr _ T A Fon (o]
i O[T (0)T (rL)[0); k' {g}‘ 'H SR

and finally the increment to the nth Rényi entropy given by a k-particle excited state of equal
rapidities in the scaling limit (4.3) is:

Ask) = 1o | s S bV P TTTT (ool | o)
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4.7 Results

Results (4.89), (4.97) and (4.103) depend explicitly on the coefficients C,({N*}) and
DF({N*}) which are expected to have a universal form for each n. However, we have not
found a closed formula for these coefficients for a general n yet. In order to make the result
above more concrete it may be instructive to start from two simple examples. In Subsections
4.7.1 and 4.7.2 we will consider the second Rényi entropy, namely the quantity (4.5) for a
two-copy model, evaluated in a single- and a two-particle state respectively. For more
complicated states, the coefficients C,,({N*}) and D¥({N*}) can be systematically evaluated
by using a standard computer software such as Mathematica. Once the coefficients are known
we can easily evaluate formula (4.102) for several values of k, and we observe that the results
are always polynomials in r that possess the r < 1 —r symmetry as expected. We will discuss

the general formulae and the resulting properties in Subsection 4.7.3.

4.7.1 Example 1: second Rényi entropy of a single-particle

excitation

We compute the second Rényi Entropy, i.e. n = 2, of a single-particle excited state. From

(4.61) we can easily write down the state
Lo Lot (et Lot
1) = 702(0)02(6)]0)2 + 78:(0)8:(0)[0)2 + 502(6)02(6)]0)2

1 1 1
— ol @)al ()]0 — 61O 0)|0) — 51 (0)6] (0)[0):

| @h(0) + e(0)) ~ a}(0) + 81(0))2] 10). (4.104)

IS,

and identify the nonzero coefficients Cy(N;", N;, N5, N5 ) of the expansion (4.62) as

1
C2(2.0,0,0) = —,  C5(0,0,2,0) =

1
02(07270a0) = _17 02(07()’ 072) =

. (4.105)

DO = | = | =

1
C(1,1,0,0) = 3 C5(0,0,1,1) =

Note that in this particular case the all terms of the expansions (4.63) are naturally constrained
by the the U(1)-charge conservation to have identical external states on the two sides of the

correlators of U(1) i.e. {Ny} = {N,}. This is a consequence of the low number of particles and

82



Cecilia De Fazio

antiparticles considered in the two-copy model. The coefficients (4.105) can be directly plugged
into (4.88), and, considering the scaling limit (4.3), we obtain

2! 1

LT O)T(rL) 1)L 28 o 2 2 2 20, 2
o LOIT ()T (0)[0); = 1—6[91(7“)] 16 [921(r)] +191(T)9—1(7")
+ f—é [glsmf + 2 (2] + 2 )g2 ()
= SHgle ="+ (1), (4.106)

where we used the fact that ¢g2(r) = ¢*,(r) = 1 and ¢?(r) = ¢?,(r) = 1 — 2r. Therefore the

difference of Rényi entropies is
ASy(r) = =log(r* + (1 —1)?), (4.107)

Note that the argument of the logarithm has a very simple polynomial structure with order

given by n.
4.7.2 Example 2: second Rényi entropy of a two-particle excitation
Let us consider a two-particle excited state with distinct rapidities which we represent as

|1,1). From the general expression (4.33) it is easy to see that

L1 = <[ @) +8h60))* — (6l(6n) + 6] (61)?]

| (82) + 8(682))% = (6] (62) + 6] (62))2] 10) (4.108)

g e N

X

The state can be fully characterized by the coefficients Cy({ N¢*}) with ¢ = 1,2 and these give
two copies of the coefficients (4.105) of the one-particle state (4.104). Substituting these values

into the formula we obtain exactly the square of (4.106), that is

L UTOT (DL, [1 1
Lo O[T (0)T(0)[0),

2
2
5 + 5[9%(7“)]2] =[r*+1-r)?". (4.109)
Note that the polynomial above is of forth power, suggesting that a general formula involves a
polynomial of knth order for a k-particle excitation.

Consider instead a two-particle excited state of equal rapidities. In infinite volume, the state

may be written as

2
2 = g |[6e o2 - ce+er] o. (4.110
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The coefficients D3(N;", Ny, N, N5 ) entering the formula (4.102) can be read off by either
expanding (4.110) and looking at the coefficients of all distinct states in the ensuing linear

combination, or by using (4.100)

1 1 1 1
D3(4,0,0,0) = o D3(0,4,0,0) = o D3(0,0,4,0) = o D3(0,0,0,4) = T

D3(2,0,2,0) = —é, D2(2,0,0,2) = —é, D2(0,2,2,0) = —%, D2(0,2,2,0) = —%,
D3(3,1,0,0) = }l, D3(1,3,0,0) = 411’ D3(0,0,3,1) = 411’ D3(0,0,1,3) = i,
D31,1,2,0) = —}l, D3(1,1,0,2) = —}17 D3(2,0,1,1) = —}l, D3(0,2,1,1) = _411’
D3(2,2,0,0) = g, D3(0,0,2,2) = g, D3(1,1,1,1) = —%. (4.111)

Plugging the coefficients into (4.102) leads to

b SR (4 o )

. (2)2 22! ([ ()] g2, ()] + [g3(r)]* [922(1)])
() 22 (OF + 1 0F) (80T + [2a0T)
. G)Q 3 ([630)]) 21 + ) [, (0)]°)
N (3)2 3 ([30)]" 92(r) + g3 [%5()]")
. G)?mgg(r)gw ([s3)]” + [9200]°)
+ G)z 2l ([g%(r)f + [g%l(r)f) 95(r)g%5(r)
+ (%)2g%<r>gzl<r>g§<r>gzz<r>}

= S [0 g R

= a1 =)+ (1 =)t (4.112)

where the last line follows from noting once more that g5(r) = ¢?,(r) = 1 and gi(r) = ¢*,(r) =

1 — 2r. This then gives the expression

AS3(r) = —log(r* + 4r*(1 —r)* + (1 —r)*). (4.113)
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Figure 4.4 Increment of Rényi entropy for one-, two- and three-particle excited states
consisting of identical particles in several n-copy models with n = 2,3,5,10. For a fixed n,
the entropies grow with the number of excitations in the state. Furthermore, they show the
r — 1—r symmetry, which is expected for partitions involving two complementary parts. Other
observations can be found at the end of this page.

4.7.3 A simple polynomial structure

In [23, 24] the calculation of (4.101) was performed for various values of k£ and n by using
Mathematica. Already looking at the two examples above, it is actually not hard to work out
the general pattern. Let us start from the nth Rényi entropy of a single-particle excitation. We

find the following results:
_log(r™ + (1 —17)")
B 1—n '

ASE(r) (4.114)

For a k-particle state with particles of all different rapitidies/momenta the result follows from
(4.97) and, is simply as above, multiplied by k. If we consider instead k particles which have all

equal rapitidies/momenta the increment of the nth Rényi entropy has the following structure

k

log > [fF(r)]"
ASE(r) = q:lo_n , fEr) = (’qua —r)he (4.115)

where the argument of the logarithm is a polynomial of order kn, as predicted in Subsection
4.7.2. Note that for k = 1, the expression above give exactly (4.114). In Fig. 4.4 we present
several examples of the function (4.115) for k = 1,2,3. Looking at these examples we can make

the following observations:

1. The functions AS* do not depend on the rapidities/momenta of the excited states but

are single-valued functions of the parameter r = ¢/L for fixed n and k.

2. The functions AS* are symmetric under the exchange r — 1 —r and thus more generally

independent of the subsystem ¢ or L — ¢ chosen as entanglement region. As discussed in
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Chapter 2, this is a fundamental property that any quantity measuring the entanglement

shared by two complementary parts must satisfy.

3. As a consequence of the previous point, the functions AS* show a zero r-derivative at r =
1/2, which corresponds to a maximum in the case of the second Rényi entropy. In Fig. 4.4
we can observe that for large n the functions AS* shows a local maximum/minimum at

r = 1/2if n is odd/even.

4. For fixed k and r, the function AS¥(r) does not increase with n. According to (2.14)
and (2.16) the function AS*(r) is bounded from above and below by the increments of
entanglement entropy ASF(r) and of single-copy entropy ASE (r) respectively:

ASE (r) < ASF(r) < AST(r) (4.116)

Finally, we can generalise the results above for generic states containing a mixture of
excitations with equal and distinct rapidities. In particular we denote AS**2(r) the Rényi
entropies of an excited state consisting of k; particles of momentum p; for p; # p; for ¢ # j we
find

koo qn
log > [qu(r)]
=0
AP () = IAST (), = )
J

- 1—n
J

(4.117)

where fff(r) is the function f¥(r) in (4.115) with k = k; and ¢ = g;.

4.8 Qubit picture

The properties listed in the previous subsection may be better understood if one considers
the qubit interpretation of multiparticle excited states, first presented in [23, 24] and then
extended to more complicated cases in [26, 28]. Such interpretation starts from the simple
observation that in the scaling limit (4.3) the entanglement increments (4.115) equate the
Rényi entropies of simple states formed of qubits. These “multi-qubit states” are associated

with the presence or the absence of the excitations in the entanglement region .

In order to explain the qubit interpretation, consider a bipartite Hilbert space
H = Hint ® Hext. Each factor Hing >~ Heyx is the Hilbert space for N; distinguishable sets each
of j indistinguishable qubits, for j = 1,2,3,.... Making the relation with the entanglement

problem described above, we associate H;,, with the interior of the entanglement region of
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length ¢ and Hy, with its exterior. In particular, we identify a state |1) with the presence of a
single-particle excitation and [0) with its absence. With k particles lying on (0,L), we
construct the state |Wg,) € H by the (naive) picture according to which equal-rapidity
particles are indistinguishable, and a particle can lie anywhere in (0, L) with flat probability:
any given particle has probability r of lying in the entanglement region, and 1 — r of lying
outside. We make a linear combination of qubit states following this picture, with coefficients
that are square roots of the total probability of a given qubit configuration, taking proper
care of (in)distinguishability. Then, the Rényi entropies of the resulting state |¥,) are given

exactly by | (T )
_ log (Trpdy,)
B 1—n

S (r) v P = T [Wap) (W (4.118)

and the statement is that Sy * (r) = ASY(r) for some excited state |U);. In order to understand
how these qubit states look like, we can look at some simple examples. For instance, according

to the qubit picture, the state:
Vo) =Vr D@0 + V=T [0)® 1), (4.119)

describes the probability distribution for a particular single-excitation of the free boson QFT,
say |1);. This leads to two possible configurations: either the particle is located within the
entanglement region with a probability r or outside of it, with probability 1 — r. It is actually
very easy to see that the nth Rényi entropy of the state above exactly reproduces formula
(4.114). We may have more complicated multi-qubit states if more particles are present, for

instance two particles of coinciding rapidities:

W2y = Vi2 12)®1(0) +4/2r(1— 1) [ ® 1)+ /(T = )2 |0) ® [2). (4.120)

There are now three possible configurations as either the two particles are in the same region,
with probability r2, or one is in the region and one outside of it (no matter which one), with
probability 2r(1 — r), or both are outside the region, with probability (1 — r)2. The particle
configuration changes if the two particles are distinguishable i.e. characterised by two different

rapidities/momenta:

|\1/$,;1>> —Vr2 [1,1D®10,0)++/r(1 — ) (|]1,00®]0, 1)+]0, 1H®|1,05) ++/(1 — )2 |0, 0>®]1, 1)
(4.121)

Indeed, by counting the various ways two distinct particles can be distributed inside or

87



CHAPTER 4. EXCITED STATE ENTROPIES OF A CONNECTED REGION

outside an entanglement region we obtain four configurations in total, as now it matters which

particle is inside/outside. The entanglement of the excited state will change accordingly.

We can now extend the qubit picture to a generic state in the entanglement region problem,
given that this state is characterised by a certain number of sets N; containing equal rapidities.
We can construct the corresponding multi-qubit state as follow: the Hilbert space of the exterior
and interior can be split into sectors Hine =~ Hext =~ ®§V=1Cki“, where NN is the total number
of sets N;, and K = )] j=1 k; the total number of qubits. In particular, each set N; containing
k; indistinguishable qubits is equipped by an Hilbert space CFi*+! with basis elements |g;) for
¢; = 1,...,k; labelling the number of particles in the interior state. Similarly |g;) where
q; = k; — q; is a basis of the sector of the Hilbert space associated to the exterior. Hence, we

can define a basis of Hiy, that is {|Q) = |¢1,...,qn) ; ¢; < kj, j =1,...,N}, and a basis of
Hexe that is {}Q> =|q1,---,qn) ; G < k;j, j=1,...,N}. The multi-qubit state is

N
k1,ka,.. .k =
(TGt N Coa @ ®1Q) ., Cog = vig [ [ o+, (4.122)
Q’Q j:1

where pg is the probability of finding the particle configuration () in the entanglement region

according to the naive picture above, given by

pq = ﬁ (k])rqj(l —r)kima, (4.123)

j=1 qj

One can easily observe that the state

N
E1,k2,. ok (k;)
W) = @ g (4.124)
i=1
factorises into states |07 living in Cki+! @ C*i*! for j = 1,..., N, which are
ab J

_ kj : k.
0 = RV m Ok -g . - ()ma-nee g
;=0

J

The coefficients ffj (r) are of the same form as the one in equation (4.115) and provide the
Schimidt decomposition (2.7) for the multi-qubit state. If we trace out the degree of freedom

associated to the jth sector of the Hilbert space Hey, we then obtain the reduced density
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matrix in a diagonal form:

k;
i) = Tre W) UG = 37 £ () lap) <oyl - (4.126)
;=0

Recalling the multi-qubit state (4.122) its reduced density matrix to the total Hilbert space

Hext also factorises as a consequence of (4.124), and the nth Rényi entropy of the state becomes:

LA N
Voo ol )]
Sy =Y 5 = qj:f_ - : (4.127)

=1 =1

which reproduces exactly (4.117).

4.8.1 Increment of entanglement entropy

The qubit picture not only offers an interesting probabilistic interpretation of the Rényi
entropies’ increments presented in Subsection 4.7.3, but it also provides a simple method to
obtain results for the entanglement entropy. Indeed, the eigenvalues of the reduced density

matrix are known from the qubit states, and in particular, are given by the functions
k k k—
fi(r) = ri(1—r)"9, (4.128)

for choices of k and ¢ dictated by the excited states. Let’s consider the case of a single particle
excitation where fi(r) = 1 —r and f{(r) = r, using (2.12) we obtain that the increment of

entanglement entropy is
AS(r) = —rlogr — (1 —r)log(1 — 1), (4.129)

Note that according to the qubit picture, the increment of Von Neumann entropy of a single
particle excitation maximises where the particle has equal probability of being found in ¢ or
L — ¢ and its maximum is exactly log 2. In this sense the qubit picture provides a semi-classical
interpretation of the entanglement entropy as a measure of how uncertain is the localisation of

the quasiparticle in the two regions ¢ and L — /.

The entanglement entropy contribution given by a k-particle state of all distinct rapidities
is simply:

ASPY ) = kASHr) = k[—rlogr — (1 —r)log(1 —7)] , (4.130)
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Figure 4.5 Entanglement entropy of various combinations of equal and distinct rapitidies that
lead to five-particle states. The higher the number of indistinguishable rapidities the lower
the maximum at » = 1/2. The maximal entropy contribution of the state with only distinct
particles ASM 1 (1/2) is exactly 5 bits.

and has maximum klog?2 at r = 1/2. Therefore, if the rapidities are distinct, the contribution
to the entanglement entropy of k particles is exactly k times the contribution of a single particle
excitation, while if they are equal, this is not true: the contribution is in fact smaller. Indeed

for multi-particles states composed of particles of all equal rapidities we have that
ASF(r Z fE () log fE(r). (4.131)

The function above maximises again at r = 1/2, but according to the qubit picture there are
now configurations more likely to occur than others and this leads to a lower maximum than
(4.130), signalling that there is less uncertainty on the localization of identical quasiparticles.

In particular, the maximum is given by

i Pk 1 [k
ASY Z — log 5 < klog2, for k>1. (4.132)
q=0 q q

Similarly to the Rényi entropies, we may easily obtain entanglement entropy contributions
given by generic states. In particular, the increment of entanglement entropy ASF*(r) of

an excited state consisting of k; particles of momentum p; with p; # p; for ¢ # j is

Sivh(r) = Y ASt ) = Y Z () log f2(r) (4.133)

7
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where fff (r) is the function (4.128) for k = k; and ¢ = ¢;. More generally the presence
of indistinguishable particles will lead to smaller entanglement contributions. Examples for

various five-particle states are displayed in Fig. 4.5 .

4.8.2 Increment of single-copy entropy

Another quantity that can be evaluated through the functions (4.128) is the single-copy
entropy, defined in Section 2.3.1 as the n — oo limit of the nth Rényi entropy. In the Schmidt
decomposition such quantity is given by —log A*, where \* is the largest eigenvalue of the
reduced density matrix [61]. Interestingly, excited state contributions to the single-copy entropy
present non-analytic features. For a single-particle excitation, we have

—log(l—r) for 0<r

ASL(r) = (4.134)

N A
E N[+

—logr for %<T

Again, the result is just multiplied by & for a state consisting of k distinct-momentum particles.
For equal momenta it is a function which is non-differentiable at & points in the interval r € (0, 1)

(generalizing (4.134)). The positions of these cusps are given by the values

1+q
r=—— fo q__()“.]{;_l 4.135
1+ k ' ’ ’ ’ ( )

and the single copy entropy is given by

q 1+4¢
ASE (r) = —log ff(r) for Tk <r < Tk (4.136)
and ¢ = 0,..., k. Similarly to the other entropies, the single-copy entanglement contribution
given by a generic excited state is
ASEF2 () = 3 ASK(r) (4.137)

where particles are organised in groups of k; particles of momentum p; with p; # p; for ¢ # j.
With the formulae above we have described all the entanglement entropies’ contributions of
any multi-particle state with finite number of excitations and thus completed the task of this
chapter. Some particular examples obtained with formulae (4.117), (4.133) and (4.137) are
displayed in Fig. 4.6.

In conclusion, under the qubit interpretation and its general assumptions, the contributions
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Figure 4.6 The functions (4.117), (4.133) and (4.137) for a single particle state (top-left),
a state of 10 equal momenta (top-right) and for two “mixed” states with some equal and
some distinct momenta (bottom). In each figure, the colorful functions are Rényi entropies for
n = 2,3,5,8 11,17, the dashed (outer-most) curve is the von Neumann entropy and the dot
dashed (inner-most) curve is the single-copy entropy.

to the various entropies that an excited state generates with respect to the ground state encodes
information on the occupancy distributions of the excitations in the entanglement region. In
particular, the (in)distinguishabilty of the excitations is the key property that fully defines the
entanglement content of any excited state. This suggests that the results presented above are
universal, in the sense that they only depend on the quasiparticle content of the state and its
statistics. This is a suggestion that will be further confirmed in the next chapter where we

analyse different partitions.
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CHAPTER

FIVE

EXCITED STATE ENTANGLEMENT OF TWO REGIONS

5.1 The case of two disconnected regions

In this chapter we extend our study started in Chapter 4 to two entanglement regions. We
consider the situation represented in Fig. 5.1. In particular we consider a closed finite-volume
system of volume L with two disconnected regions A and B immersed in an environment C|

and described by a free massive boson theory.

As pointed out several times, the entanglement entropies and the logarithmic negativity
are all suitable entanglement measures in this setting, but they capture different information
about the state. In particular, the entanglement entropies measure the entanglement of the
union of the two regions relative to the environment, while the logarithmic negativity measures
the entanglement of a certain region, say A, with respect to the other region B in the presence
of the environment C'. Results for excited state entanglement increments in two regions have
been first obtained [26], which will be also the paper we will mostly refer to in the course of

this chapter.

Along similar lines to Chapter 4, we assume the system to be in a zero-density state |¢) and
at zero-temperature. We want to analyse the two entanglement measures in a carefully chosen

scaling limit. Defining the new variables:

, for i=1,2,3, and r:=1-—1r —r3, (5.1)

e~
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Figure 5.1 Two disconnected regions in a closed one-dimensional system.

this scaling limit is obtained by sending the entanglement regions’ sizes and the entire system’s

size to infinity in a fixed proportion
L, 0,0y, (3 — o0, with r,r1,T2, 73 finite, and 0<r,r,r,rys<1. (5.2)

In such a limit, the increment of the Rényi entropies of two disconnected regions can be

expressed in terms of branch-point twist field correlators as :

ASH(r) = S5(r1,ma,m3) = S (11,72, 73) (5.3)
LA TO)T (1 L)T ((r1 + 7"2)L)f:r((7‘1 + 1y +73)L)|d)L
T((Tl +T2+T‘3)L)|0>L ’

= lim og -

L-wl—n LO|T(0)T (r L)T ((r1 + 7o) L)

where SY(r1,r9,73) are the entropies in the ground state. As the notation suggests, we will see
later that the increments AS?(r) are functions of r only. In the same limit, the increments of

the replica logarithmic negativities are given by:!

AEL(r1,m5) = EJ(r1,r2,13) — EY(r1,72,73) (5.4)
= lim IOg L<¢’T(O>7-( ) ((Tl + TQ)L)T((H + 19 + T3)L)‘¢>L

riL T
L= | O[T (O)T (r L) T ((ry + ro) L)T((r1 + 2+ 75) L)[O)r, |

and are functions of r; and r3 only. As standard, 7 is the branch-point twist field, 7 is
its Hermitian conjugate and |0); is the ground state in the compactified space of Fig. 5.1.
One should expect that 7 = 7 in the doubled copy replica model n = 2 as they implement
the same symmetry transformation. As a consequence, the results for the replica logarithmic
negativity equal those for the Rényi entropy (up to a sign) for n = 2. When employing the
branch-point twist field technique, we will therefore be computing ratios of four-point functions

in the infinite volume limit. As seen in Section 3.2.2, exact explicit formulae for the four-point

INote that the state |¢) is real. When we consider a generic complex state we usually denote it as |®).
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functions above are generally hard to access even in the ground state and/or CET. Remarkably
though, the increments considered here, in this particular scaling limit, turn out to be effectively
computable. Additionally the qubit picture can be extended to two entanglement regions and
provides an effective method to evaluate explicitly the increments of Von Newman entropy and

the logarithmic negativity even in the case of disconnected regions.

5.2 Computation by branch-point twist fields

Compared to the situation explored in Section 4.3, the infinite-volume correlators of twist
fields in (5.3) and (5.4) are defined in two new replica models, both characterised by the presence
of an additional branch cut along the space direction. Many considerations developed in the
study of the single-region problem can be extended to these two cases. One similarity is the
state considered, which is again a zero-density state |¢) in a free boson theory. Suppose this
state to be formed of K particles whose rapidities are not necessary distinct from one another.
Commutation relations among free boson fields ensure that the state |¢) can be decomposed
into independent blocks |¢) = |k1) ® |k2)® ..., each one containing k; identical rapidities, and
such that the sum of the particle numbers reproduces the total number of particles in |¢) that
is k1 + ko + - - - = K. It seems thus convenient to treat each block as a separate case, and thus

to focus on the case of a k-particle excitation state |k) of all equal momenta/rapidities.

As seen in the previous chapter, the doubling trick can be successfully implemented to
convert correlators of branch twist fields into much simpler correlators of U(1)-fields. Here, the
trick consists of evaluating the four-point functions in a complex state |k) that reproduce real

results i.e. the state (4.21) derived in Section 4.3 (up to normalisation). We have thus that:”

)T (2) 3) k)
)T (2) 3)10)

(w3) [k) kI T(O)T (1) T (22) T (

KT O : ()T (@ 55
7 (23)10) ~ O[T (0)F (o0) T (22) T (

) T T (v
O] T (0)T (21 T T (x
and a similar expression for the correlator associated to the replica negativity. When doubling
the replica model, the diagonalisation of the cyclic permutation action (discussed in Subsection
4.3.1 for the single-region problem) can be naturally extended to replica models arising from
multiple branch cuts, and the basis in which the symmetry acts diagonally can be obtained
via the transformation (4.31). Although in the diagonal basis the computation of correlators is
enormously simplified, the price to pay is a more complicated structure for the excited states

which must now be also expressed in this new basis (see e.g. (4.62) for an example).

2 Along similar lines to Chapter 4, we use bond letters for complex states.
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When implementing the finite-volume in each replica model, the branch-cuts need to be
deformed by following the same instructions provided in Subsection 3.2.3. In the end of this
process, we deal with four semi-infinite branch cuts along the time-direction of the cylinder.
In the new finite-volume replica models, the complex fields ®;s satisfy periodic boundary
conditions which are affected by the presence of the four branch cuts, and that more generally
depends on which sector of the cylinder these fields are defined. As a consequence
quasiparticles are described by rapidities which will be quantized in finite volume and the
quantization conditions will depend upon the sector p the corresponding creation/anhilation
operator is acting on, and upon an index « that parametrizes the periodicity conditions for
the fields ®;(z + L) = ®;:q(z). A set of generalized Bethe-Yang equations (developed in
Section 4.4.1 for single-regions) can be written as

Q” (6) = 2T with Qg (0) = mLsinh (0) — 27mea g , (5.6)

where € = + is the U(1) charge of the particle and J“* € Z.

In order to obtain form factor expansions we need first to insert three complete sets of
states in each four-point correlator. We can define some operator 11(9'1) inserting a complete set
of states with quantization condition a. For any « and p we have that 1;(1) = 1, is trivially the
identity operator. The sum over a complete set of states in sector p with quantization condition

« can be written as

Z Z m |{J+ a}m+>p,L p,L<{J+ a} | (5.7)

m+_0{J+a

where each state |{J7*}x )z is characterised by a rapidity set {67%, ... O 0, 0 )
formed of the Bethe-Yang equation (5.6) with a fixed a. We can then define the complete sum

over all sectors
1) = @p_ 1l (5.8)

The branch-point twist fields intertwine between the different quantization sectors. Denoting

the corresponding Hilbert space by H(®) we can write

T H® -yl T:H® - Hle, (5.9)
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As seen in Section 4.4.1, we assume that field @ satisfies standard quantization conditions,
which corresponds to having the associated excited state |k);, in the trivial quantization sector
H© | This, combined with the properties of the branch-point twist fields means that the four

point functions of interest may be spanned as

LK T(0)T (21) T (w2) T (w3) [k)y, = £<K| T (0) 10T (1) 1OT (w5) 1T (w3) [,
(5.10)

LK TO)T () T (22) T (23) ooy = £ K| T (0) LV T (1) 10T (a2) 19T (a3) [y,
(5.11)
where 7, 2 3 denote the positions of the branch-point twist fields which is related to the original

lengths in Fig. 5.1 as

T = 61 , X = El + 62, and T3 .= 61 + 82 + 63 . (512)

5.2.1 Four-point correlation functions in single-particle excited

states

Let us focus on the calculation for a single-particle excited state which in infinite volume is
given by:
n

= Y (N ]Lal @] [of©)]" 0. (5.13)

{N£} p=1

Note that the state above is of the same form as the one considered in Subsection 4.5 in the
computation of a two-point function, and C,, ({NT}) are exactly the same coefficients defined

in (4.62). In finite volume, the rapidity is the solution of the quantization condition (5.6)
Q" () = mLsinh (0) = 271°, €= +. (5.14)
Following previous considerations, the finite volume four-point functions are

LAITOT @) T (@) T @)D, = > 3 (G (V] Cn ({7}

{NE} {N+}

17 (N N (5.15)
p=1
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LAITOT @) T (@) T @), = Y, 3 [Co({Iv ] c ({4}
Xﬁ]:—p (Vg 5z (5.16)

with the different sector contributions

Fo(NENE) = I T, (0) 10T, (01) 10T, () 180 Ty () [ 11 5
(5.17)

By (NENE) = g T30 10, () 10T, (22) 170 T, () {5 D -
(5.18)

In sector n the U(1) twist fields coincide with the identity operator, hence the contributions

from this sector are just the normalization of the state

n

Fo(NENE) = Fu (N NE) = NN o s s (5.19)

The functions F, and F,, can be systematically computed by using the contour integral approach
discussed in detail in Subsection 4.5.1. However the calculation for four-point functions turns
out to be much more involved. The main conceptual difference arises from the fact that now
also first-order and third-order poles contribute to the leading contribution and need to be
taken into account. Crucially, once the sums in (5.7) have been transformed in into contour
integrals, in order to regularise the correlators one needs to account for all possible contractions
0;’0‘ ~ # generating such poles in the form factors involving the rapidities #. This tedious
task was rigorously addressed in [26] where the full computation is presented. In appendix A
we focus on the subtle points of the computation, with special attention to the extension of
the computational steps described in Subsection 4.5.1 to this particular case. Following the

computational instructions, one arrives to the following final result for the nth Rényi entropy

increment:
im L<1|T(0)7:'($1)T(l’> x3) (1)), _ o n N[ (1 4 1]
Lo (O[T (0)T (1) T (22) T (2 )|0>L {;}‘ ge:ﬁ gk, (ro+ )]

(5.20)
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where g7, (r) is the function in in (4.79). Hence this is exactly the same result as for single
region entanglement entropy. We can set 1 +r3 = 1 —r and use the fact that the correlator is
invariant under r — 1 — r to rewrite the result above as in formula (6.3). The final result for

the replica negativity is instead

117 (0)7 7 1 n :
im ACIA )7:(5101)7:@ 2) T (ws) 1)y = Z !C’ n Nyt [ggp (Tl,T‘g)]Np (5.21)
15 O[T (0) T (a0) T (w2) T < )0 &
where we have introduced the function:
Gl (r1,rs) = 1= 1y — g + 11”5 4 rge” (5.22)

We conclude that, in the scaling limit (5.2), the increments of Rényi entropies and those of
replica logarithmic negativities do not depend on the distance between the two regions (which

is associated to the ratio 7).

5.2.2 Multi-particle states

In infinite volume a state |k) of all coinciding rapidities takes the exact form of (4.98).

Generalising the results in Subsection 4.6.2, one easily obtains that

ST OT (o) T (@) T () 0 = g D D) IDANENI DA [T 7, (V555

{N+}{N+}

and

ST O T (o) T e2) T ) o = s 3 3 IDEUNSDI DA [ 7, (W75

{NE} (N} p=1

where the functions F, and F, are the same as in (5.15) and (5.16). Compared to the
single-particle case, the coefficients satisfy different constraints (as argued in Section 4.6.2). It
is straightforward to generalise the results in the previous section to the case of multiparticle

states:

fimg T = Ny go(r1 + s N ) )
R AUR ATSEATAE ATSIOSED E oo R
- 7, (N2, (V) o

fio T T = N ad,(r,ms) |7 24
=, 0|7, (0) Ty (1) Ty (22) Ty (33) 0y, A7 (96,1, 75)] (5.24)
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and obtain finally

1 DE((NEH[* :
ASi(r) = T, log Z%H N g )™ | (5.25)
{N+ : p=1e=+
DE ({NED]? 2 )
AEf(ri,rs) = log | Y] %]‘[ Nean (r, )] | (5.26)
{Nt} : p=1e=+

In order to obtain explicit formulae one needs to compute the coefficients DF ({N*}), which
are the same for any fixed number of excitation considered. As pointed out in Chapter 4, these
coefficients can be numerically evaluated by looking at specific excited states, usually with the
help of computational software. However, the evaluation of (5.26) and (5.26) is much more
efficient if one employs instead the qubit picture, introduced in Section 4.8. The qubit picture
provides indeed a systematic way to predict the general polynomial structure of the results
above for any number k of excitations involved in the state and any copy number n. In the
next section, we will extend the idea discussed in Section 4.8 to two regions and obtain closed

formulae for the increments above.

5.3 Computation by qubit picture

Consider a state formed of k particle excitations of equal momenta/rapidities. According
to the qubit picture, there exists a k-qubit state ]\Ifgz)> describing the occupancy distribution
of the k-particles excitations in the three regions of the partition in Fig. 5.1. This multi-qubit
state lives in a factorised Hilbert state Hq, = H1 ® Ho @ Hs, whose components H; and Hs
represent respectively the interior of regions A and B in Fig. 5.1, while Hs is associated to their

exterior. Consider an orthonormal basis of Hp,, the state \\I/gf))> is expressed by

|‘I’fﬁ3> = Z Chy ko ks | K1K2K3) (5.27)
{kl ,kz,k;),}EO'g’(k)

where the sums run over positive integers forming a tripartition of k, and the coefficients cg, i, &,

are explicit functions of the ratios in the definition (5.1):

_ k!r’flrk2r§35 598
Cky,ka,ks *= kl'kz'kg' k1+ko+ks,k - ( : )
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Note that the Kronecker delta 0, +x,+k4,% constrains the sums above. Provided that all vectors

|k1koks) are normalized to one, then the vector |\Iffllf))> is also a unit vector,

k k
<xpgb)yxpgb)> — Z s = (11 7+ 13)F = 1. (5.29)
{k1,k2,k3}€a’8(k>

The state \\Ifé’,i)> in (5.27) may be interpreted as follow: each state |kikoks) is a state
of ki excitations in region A, k3 excitations in region B and ks excitations in the rest of
the system. The square of the corresponding coefficient ¢} ;. ,. is the associated probability
that this configuration occurs if we were to place randomly and independently, with uniform
distribution, k& particles on the interval [0, 1] covered by three non-intersecting subintervals of

lengths r1,r and r;3.

From expression (5.27) it is then possible to explicitly construct the reduced density matrix

and its partially transposed version as:

(kiks|pay slkiks) = Z Chkoks Ck) koKl » (5.30)
koeNg

<k1k3’P£BUB‘k/1k§>: Z Chy kokty Ck/ koks » (5.31)
k‘QENQ

Here the sums run over all non-negative integers, and whenever the constraint ky + ko + k3 = k
is violated, the corresponding coefficient ¢y, , k, is zero by definition. From this constraint we
know in fact that 0 < ko < k so we could have restricted the summation range ko € Ny much
more. However we will write it like this for now, for simplicity, and discuss the summation
ranges more precisely at the end of our calculation. With these results we can now evaluate
the matrix elements of the n-th powers of the reduced density matrices above. These are given
by:

n

Giklohyslt R = > ] e G (5.32)

kkaEENO;SZQ ,,,,, n j:l
kgeNO;TEIn

n

GRS ORI D = > ] [t » (5.33)

ki,k§€N0;5:2 ..... n ]:1
kgeNO;rEIn

where I, := {1,...,n}. Finally, we are interested in the Rényi entropies and the replica

logarithmic negativities, which means we need to take the trace over Al JB of the matrices
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above. This gives the following results:

(k) n

1 1

ab — § | | I o

Sn (7"1, Tg) = . log Ck{k%kéck{+lk%ké+l s (534)

1
{k?eNosielz;sel,} j=1

(k) n
q — P . .

{k?eNo;ielz;sel, } j=1

where we adopt the convention k} = k"™ for i = 1,2,3. We can write these formulae more

explicitly by employing the definition (5.28), giving

(k) |
\ 1 kbt r 2r
ab _ E | | 1 3 S , o
Sn (rl, 7/.3) = 1 o log k]lk.]lk][ k1+k%+k§,k 5k{+1+k%+ké+l,k ,(536)
{k$eNo;ielz;seln} j=1
(k) A k2
v T 7”

ab _ 1 3 S . o

En (r1,m3) = log E | | ) Opd sk Ok g | - (5.37)

{keNo;iels;sely} j=1

In the next subsections we examine each of these functions separately.

5.3.1 Results for Rényi entropies
We can now eliminate the delta-functions by implementing their constraints. Let us start
with the Rényi entropies. We can substitute:

K =k—k"—k, Vj, (5.38)

and this will eliminate the sums over k] with j = 1,...,n. We then have sums over k} and }
left but we can also eliminate one of these by implementing the second set of delta-functions

together with the conditions above. This gives the constraints,
=k =p Vj. (5.39)

Therefore, kI = k —p — kzg This means that the factor ]_[j Tfirkérlgé in (5.36) becomes

n

K 1 K n(k—p)—q
H?“ll rerg? = rPry (5.40)
j=1
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where we defined ¢ := 37 k3. This finally allows us to rewrite (5.36) as

o kn(k=p)
Sy " (ry,13) = log (Z Z Z, ok "pr) : (5.41)

p=0 ¢=0

where

Z= D Hp,k,k Pk (5.42)

{kh 7kn}600

and o (q) represents the set of integer partitions of ¢ into n non-negative parts. We have

relabelled kg := kj, and the range of the sums in p and ¢ is determined by the condition
2,4 # 0. From the definition (5.39), 0 < p < k. Regarding the values of ¢, we know that ¢ can

not be negative (by definition) so ¢ = 0. Its maximum value is obtained if k —p — k; = 0 for

all j. This corresponds to ¢ = n(k — p). In fact the sum over ¢ can be rewritten as

n(k—p)

3zt =S syt = ()] o

with ;1 + r3 = 1 — r so that

S () ) =2 SY () = 1 i ~log (Zk: [(;) rP(1 - r)k—p]n> . (5.44)

p=0

Therefore, the entanglement entropy depends only on the parameter r and is given by exactly
the same expression found in Section 4.8. In other words, in the qubit picture, the entanglement
entropy depends only on the overall size of regions and not on whether or not they are connected.
5.3.2 Results for replica logarithmic negativity

A similar analysis can be carried out for the replica logarithmic negativity. Starting with
(5.37) the second delta function gives the condition:

Wo=k—k7 -k vy, (5.45)

and this eliminates the sums over &/ with j = 1,...,n. We then have sums over &} and k;%
left but we can also eliminate one of these by implementing the second set of delta-functions

together with the conditions above. This gives the constraints,

A A A A (5.46)
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We may regard this equation as a first order difference equation for the sequence k; The
solution to such an equation is the sum of the solution to its homogenous version (a constant)
and a particular solution of the full equation which can be worked out by inspection to be

—k} — kJ™'. The general solution is then
TR (5.47

where 7 is an arbitrary constant. With this we also have that k;{ =k—v+ k‘é We can now

evaluate the product

H,,, Lkt _ noayn(e—p)-2,9 (5.48)

where ¢ := Z}Ll k} and p = k — 7. Relabelling kJ*' := k; we then find

[5(k—p)]
k) 1
En " (r1,73) = T log Z Z A, Pk =20 | (5.49)
p=—k g=max(0,—np)
where
A ﬁ i (5.50)
P4 (k.. kn}e n(g) j=1 (p + kj)‘<k — P — kj — ijrl)!kj! ' '

The range of sums in p and ¢ is fixed by selecting out those contributions for which A, , # 0.
This requires that the arguments of the factorials in the denominator remain non-negative,

which in turn restricts the type of partitions that can contribute to the sum over kq,..., k,.

Consider the sum in p. The range of this sum can be determined easily from the relation
(5.47). This implies that 0 < v < 2k. Together with the definition of p this gives —k < p < k.

This guarantees that all arguments of the factorials in the denominator remain non-negative.

The range of values of ¢ can also be determined as follows. The lower limit is easy to
establish as whenever p < 0 the partitions contributing to A, ;, must have k; > —p. Thus, the
smallest value of ¢ giving a non-vanishing contribution corresponds to taking all k; = —p for
all 7 which gives ¢ = —np. On the other hand, if p > 0 then the smallest value ¢ can take
is zero corresponding to all k; = 0. This fixes the lower bound to max(0,—np). Let us now
consider the upper bound. Given a certain p, the largest value ¢ can take corresponds to having

k—p—Fkj—Fkj1 =0forall j, or kj + kjy1 =k —p. Writing

Syt k) = (k). (5.51)

j=1 J=1
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we have obviously that the right hand side gives n(k — p) whereas the left hand side gives

@]. This gives

2 Z;LZI k; = 2q. Therefore, for generic parity of n and k — p, we obtain ¢ = |

the range max (0, —np) < ¢ < [—n(k;p)]‘

5.4 The analytic continuation in n

Similarly to the case of a single region, the qubit picture in two regions provides a systematic
way to obtain the the entanglement entropy and logarithmic negativity. Given a qubit state, the
only ingredients we need are the eigenvalues of its reduced density matrix (for the entanglement

entropy) and those of its partial transposition (for the logarithmic negativity).

In the case of the entanglement entropy, these ingredients are easily accessible: since the
result (5.44) is independent on the connectivity of the two regions, the desired eigevalues are
simply the functions fF(r) in (4.128). The increments of von Newmann entropy are accordingly
given by formula (4.131) for any number of excitations k. The case of the logarithmic negativity
is generally more complicated. However for states composed of a low number of qubits, the
diagonalisation of pﬁB turns out to be easier to access, and it is effectively possible to derive
closed formulae for the logarithmic negativity. To clarify this point we present below a very
simple example: the computation of both entanglement entropy and logarithmic negativity
for a single-qubit state. By using similar analyses, it is possible to obtain explicit formulae
for the logarithmic negativity of two- and three-particle states [26]. Unlike the entanglement
entropy, the analytic continuation in the parameter n of the functions (5.49) shows a non-trivial

structure, even in the simple example below.

5.4.1 Example of a single-particle excitation

We consider the qubit state (5.27) for k =1

(TS = /] 100) + /7[010) + /r5]001). (5.52)

where the first qubit represents the presence (1) or not (0) of a particle in region A, the second
qubit represents the same for region C', and the final qubit likewise for region B. Tracing over

the mid-qubit we have that

pays = r1[10){10] + r|00)00] + r5|01)01} + y/r175 (|10)01] + |01)(10]) , (5.53)
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Figure 5.2 Left: The function (5.60) for n = 2,4,6 and 8 (the higher the value of n, the more
negative the value of the function). Right: The function (5.61). Recall that 0 < 7 +r3 < 1,
which restricts the domain of definition of the functions shown.

P75 = T110)(10] + |00)00| + r5[01(01] + /775 (|11)00] + [00)(11]) . (5.54)

In matrix form we have

11 10 0L 00 11 10 01 00
1[0 0 0 0 1) 0 0 0 s

paus=| 1010 r Jrrs 0 | pap=| 10 0 0 0 |, (555
010 s 13 0O 0ol 0 0 r3 0
00 o 0o r 0|3 0 0 7

where the first row and first column refer to the states involved in (5.53)-(5.54). The eigenvalues

of pap are:

)\120, )\220, )\3:1—7”, /\4:7”, (556)
and those of pﬁlfj B
/12 X dr 1= — T2 F Arra
)\';51:7“1, )\327’3, )\gzr—k r2+ 7’17”3’ )\i:r 7’2—1— 7‘17’37 (5'57)

Note that in the latter case, the last eigenvalue is clearly negative. This means that, for a

one-particle excitation we have:

1
S, (r) T , (5.58)
which is what we expected, and
V1?4 dryrs)" — /1% + dryrs)"
El(r1,75) = log (r? by 8 TQ: rirg)” (" T2n rirs) ) . (5.59)
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Note that, although (5.58) and (5.59) are in general rather different functions, it is easy to
show that the polynomials inside the logarithm coincide for n = 2. Interestingly, for n integer,
even or odd, there is no square-root dependence of the polynomial in (5.59) (the square-roots
always cancel). Indeed, it can be equivalently written from the expression given in the previous
Section 5.49 by setting k = 1:

(3]

n—p
EX(ri,rs) =log | 71 + 1% + Z
p=0 "t TP p

st I (5.60)

where [.] denotes the integer part. However, the logarithmic negativity itself involves the square

root in (5.59). From the eigenvalues above this gives

4
51(7"1,7“3) = log (Z ]Af]) = log<7"1 +rg+A/1r2 + 4r1r3>, (5.61)
i=1

As we can see in Fig. 5.2, there is a change of curvature when taking the limit n — 1. This
result gives a representative example of the non-trivial nature of the analytic continuation from

n even ton = 1.

5.5 Replica negativity of two adjacent regions

An important observation arising from results (5.20) and (5.21) is that increments of both
entropies and negativities are independent of the distance between the two subsystems A and
B i.e. the parameter ry. The results (5.49) and (5.44) obtained by the qubit picture further
confirm such a feature, suggesting that it is even more general. In fact we can think to approach
the problem in a simpler way by considering the quantity (5.4) in the limit when ry — 0. In
this limit the two intermediate fields 7 (7, L)T ((r1 + r2) L) would sit at the same space position
and consequently they produce a new field, with new scaling properties:

T2(r L) := lim T(r L)T((r1 + 72)L). (5.62)

ro—0

It is known that this field has very different properties depending on whether n is even or
odd [13]. However, in order to compute the logarithmic negativity, only the even case is
of interest. In this case the field 72 is a twist field implementing the replica permutation
symmetry among evenly spaced copies of the theory. As seen at the end of Subsection 3.2.1,

(where we first introduced the field above), it connects even-labelled and odd-labelled copies
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Figure 5.3 Procedure of connecting two regions in a ring.

within themselves, effectively acting as the action of two standard branch-point twist fields in

an n/2 replica theory.

In the special limit (5.62), we can define the increment of logarithmic negativity as:

N £{¢| T(0) 7?2(7’1L) T((ri+713)L) o),
L= L 0L T(O) T2(ri L) T((re+r3)L) [0y, |

(5.63)

where we have implicitly considered the scaling limit (5.2). As pointed out in Chapter 3, if
we reduce the distance between A and B to zero, and evaluate the Rényi entropy this would
reproduce exactly the situation analysed in Chapter 4. For this reason we do not consider the

Rényi entropy in such a setting.

5.5.1 U(1)-field decomposition of the 7>-field

We assume n to be an even number. The fields 72 and 72 implement permutations
symmetries over the exchange of copies j — j + 2 which form a subset of the U(n) symmetry
group, therefore the U(1)-field basis diagonalise their action. We can employ the basis (4.31)
once again to decompose the fields 72 and 772 in terms of U (1)-fields. More precisely we need
to consider U(1)- fields T, acting on sector p that satisfy the following exchange property
with the fields :

Tal@@ly) = ¢ wdy(y)Thylx) for o' >a', (5.64)

= O,y Taplx) for a' >y,

¢,p =1,...,n. In terms of these fields, the fields 72 and 7?2 can both be diagonalized as follows

T =117 T =]]Twn (5.65)
p=1 p=1
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For free bosons, the U(1) fields 7, have scaling dimensions [105]:

Ay = (1 - 3) (5.66)

so that
Ar =23 Ay =1 (22 (5.67)
T2 — 2p_6 2 n 9 .

which reproduces the conformal weight (3.21) for ¢ = 2 (the central charge of the complex free

boson).

5.5.2 The three-point correlation function

As usual, the presence of branch cuts in finite volume replica models affects the
quantization conditions of momenta associated to single-particle excitations, which
consequently live in different Hilbert spaces H(® defined by quasi-periodic boundary
conditions of the fields ®;(z + L) = ®,:4(z). The branch-point twist fields connect the

various sectors as in (5.9), and the 72 and T2 act accordingly as
T2 H® — Her2D) T2 H® — A2 (5.68)

As before we assume |k); to be in the trivial section H(®. Thus combining the actions of the

various fields we obtain
LK T(0) T2 (1) T (x3) [kyy = £ (k| T (0) 10T (1) 159T (23) [k, - (5.69)

Consider a single-particle state such as (5.13), the finite volume three-point function above can

be expressed as:

LATOT @) T, = Y S [T e () 15 (3. 87)

{N*£} {N*} p=1
with sector contributions given by
Fo (NENE) = pallls 1T 0) 20 Toay (1) 170, (20) I} oy (5:70)

where 3 := 11 +r3, and rapidities in the external state satisfy (5.14). The computational steps

developed in appendix A can be easily extended to the case of the three-point function above.
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Crucially, the intertwining action of the field 7,_s, is such as to have intermediate states
with rapidities only in H® and H(Y. This is structurally different from what we observe
in the four-point functions (5.17) and (5.18). There, contractions among external states and
intermediate states in H(?) may lead to third order-pole residue, which are found to be dominant
in the limit (5.2) and thus to contribute to the leading term of the expansion. This situation
can be actually avoided in the case of the three-point function (5.70), where only first- and
second-order pole residua can contribute. Despite the different origin of the dominant terms,

the full computation (which will be presented in the work [27]) leads to the same result (A.30),

€ AN Ny
= H N;)! [gep (7“1,7"3)] P (5.71)
e=+
where g7 (r1,73) is defined in (5.22). Multi-particle state results follow directly from the
arguments in Subsection 5.2.2. We thus conclude that also partitions arising from the limit of

adjoint regions reproduce the qubit results.

5.6 Qubit picture for multiple regions

The results obtained in the previous sections have shown that, the qubit picture (so simple
in its formulation) describes perfectly well the entanglement contributions of excited states
in the massive free boson. The only underlying assumption is that, since single excitations
are supposed to be de-localised within the volume, they have flat probability of being found
anywhere in the volume L. Under this assumption, qubit states describe how these excitations
distribute within the partitioned intervals and their simple properties crucially determine the

excited state entanglement contributions.

We conclude this chapter by extending the qubit picture to an arbitrary number of
disconnected regions. Indeed, as we will see in the following subsections (where we present the
full computation by qubit states) we can prove that formulae (5.44) and (5.49) hold more

generally for any connectivity.

5.6.1 Rényi entropies of multiple disconnected regions

Let us consider the case when one of our subsystems is composed of a disconnected regions
R,, withm =1,... a. Let Ry be the rest of the system and R’ := | J,, R,,. Suppose that the

entire bipartite system is composed by Ro( JR', and that we are interested in the entanglement
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entropy of a particular k-particle excited state. According to the qubit picture we can consider
a bipartite Hilbert space H = Ho ® H’, and associate Hy to the exterior, and its complement
‘H' to the interior of the multiple-entanglement regions. Moreover the interior Hilbert space

decomposes into « independent components H' = H; ® - -+ Q@ Ha.

In this setting the qubit states can be defined as follow: we define an orthonormal basis
() eH : k= (ko,..., ko) € N3T1} such that k,, is the number of excitations in region R,,
and > | k,, = k for a state of k identical excitations. Let

07

S - (5.72)

m=1

where 7, is the scaled length of region R,,. We define the qubit state:

¢ ky
v = > [ ]_[ki] Sso o [k, (5.73)
=0

k={ko,...ka }e 0T (k)

where 0§ *!(k) represents the set of integer partitions of k into @ + 1 non-negative parts. It

is easy to extend the definition (2.13) to the case of multiple disconnected regions. Indeed, if
) o®
we now introduce S¥(ry, ..., 1) = exp{ {(1 —n)S, “*(rq, ... ,?"a)}} where Sp, P (r1,...,74)

is the nth Rényi entropy in the qubit state (5.73) it is easy to see that this can be written as:

Srlj(rla ce ,Ta) = Z Hk‘ <H /{?”) 5k0+2 & 6k’+2 VB K (574)

{k]eNo jeI, ; pelQ} = 1

where I,, = {1,...,n} and I = {0, ..., a}. The delta-functions introduce the contraints
Z {4k =k and wakrk for i=1,...,n, (5.75)
=1 m=1

with the identifications k2, = k7, and k} = k™"'. These constraints are equivalent to

ikinz ik;ﬂ[l =, (5.76)

m=1 m=1

where v is an arbitrary constant. As a consequence

ké{ZV_Zkin and ki=k—vy=:q for i=1,... n (5.77)
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As in the two region case k{ does not depend on any k' s. Substituting (5.77) into (5.74) we

have:

sy 2 OT(GE A)

9€Z (k) eNo; jeln ; pela—1} i

(5.78)
Again the multinomial coefficients constrain the sums. The presence of ¢! in the denominator
means that ¢ > 0. We know also that ki must be non-negative for all i = 1,...,n and m =
1,...,a—1. Furthermore the only non-zero terms in the sums are given by k — q—an 11 k=0

and thus ¢ < k. In summary, for the same reasons as in the two region case 0 < ¢ < k.

We can re-write (5.78) as

s - S[OTFE, 5 [ i)

=0 =Lsi=0 (kL eog T (si)

(5.79)

It is easy to see that

a—1 K a—1 si
Tm" .
Z Si!H(ki )!=< rm> , YVi=1,...,n, (5.80)

and thus (5.79) becomes:

SF(ry,...,r ZZ {( )]nrgq ﬁ r_ql <k;q) rR=a=si (Z rm>] : (5.81)

Furthermore we can notice that

= (1—r)"*? (5.82)

where in the last line we used (5.72). By recalling the Rényi entropy, we finally have:

S, é’“éb( Ta) = Swé’{“ﬁ( 0) = 1in log (i l(D rg(1—r0)kq]n>. (5.83)

q=0

notice it takes the same form as (5.44) (with r replaced by r9). Therefore, the Rényi (and
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related) entropies of this particular class of qubit states depend only on the relative size of the

two parts in the bipartition and not on whether or not they are connected.

5.6.2 Replica logarithmic negativities of disconnected regions

A very similar computation can be performed for the replica logarithmic negativities. The

starting point is the assumption that regions A and B are now disconnected, namely

A= 4 aa B=|]| B, (5.84)

i=1 i=1

so that A consists of a number o and B of a number [ of disconnected regions. Let regions A;
and B; have scaled lengths given by 7! and r}, respectively. Then our results for the (replica)

logarithmic negativities will still hold up to the identifications:

T 227{, T3=Zr§, and r=1-—r —r3. (5.85)
i=1 '

In the qubit picture this can be shown in a very similar way as for the Rényi entropies in the

previous section, so we do not present the computation here.
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CHAPTER

SIX

ENTANGLEMENT INCREMENTS OF LOCALISED
EXCITATIONS

6.1 Summary of the main results in the free boson

In Chapters 4 and 5 we have studied the free boson theory in two different bipartitions,
composed respectively of a single region or two (either connected or disconnected) regions. In
this section we aim to summarise the main results obtained for both the entanglement entropies

and the logarithmic negativities.

Let us consider two regions, say A and B, of lengths' ¢; and /_; respectively. The region
C corresponds to the rest of the system, specifically of length ¢o = L — ¢; — ¢_;. Note a
single-region bipartition such as the one analysed in Chapter 4 can be obtained by fixing one
entanglement region’s size (say ¢_;) to zero, in such a way to identify ¢; with the length of
the entanglement region, and ¢, with the length of its complement. As usual we are interested
in the scaling limit obtained by sending the regions’ size and the volume L simultaneously to

infinity while keeping their ratios finite in the process:

N

L — o, l; — o0, fixed r; :zzj, (6.1)
where 7 = —1,0,1 for two regions and j = 0,1 for a single-region. We assume the system to

!Note that we have changed a bit the notation employed in Chapter 5, where we have usually called the two
regions’ lengths ¢ and ¢3. This change is convenient to generalise the results for both partitions.
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be in a zero-density state, namely a state composed of a finite number of excitations. The
first interesting result is that the entanglement increments generated by |¢) with respect to the
ground state |0) depend on the ratios r, ro, r_1, only:

lim (S¢ — S9)(roL) = AS%(ry), im (2 — EN(r1L,roL,r_1L) = AEX(r1,70,7_1) . (6.2)

1
L—o L—o
In particular, the entropy increment for a single particle excitation is:

AS(ry) = log(rg + (1 —rp)™) , (6.3)

1—n

whereas the increment of von Neumann entropies generated by the same state is given by
ASII(’T‘()) = —To log o — (]. — 7”0) log(l - 7‘0) . (64)

Therefore the functional forms are the same for both single region (i.e. rg = 1 — r;) and
double regions (i.e. 1o =1 — 171 —r_1). The same holds for multiparticle states. Indeed when
considering states formed of many excitations, the entanglement entropies increase in a way
that depends only on two factors: the (in)distinguishability of the excitations (if they have
identical or distinct momenta), and the size of the regions A and B relative to that of the
whole system. For a state composed of k distinct particles (distinct momenta), the entropy
increments is just k£ times the single-particle ones. More interesting are the entropy increments

of a k-particle excitations with identical momenta:

n

k
1 k _
ASp(ro) = ——log ) re(l—ro) 1, (6.5)
q=0 q
k
k k
ASF(rg) = =] rd(1— 1) ?log rd(1—ro) 0| . (6.6)
q=0 \ ¢ q

Remarkably all the entropy increments do not depend on the connectivity of the regions and
are functions of rg only. The replica logarithmic negativity is found to be a function of r{,7_1,
where each parameter now enters independently. For a state consisting of a single particle
excitation the increment of the replica logarithmic negativity is given by the simple expression:

(5]

AE (ry,m—q) = log [ 7™ + 1, +
(71, 7-1) 3 A -1 ;)”_p »

n n—p n—
o Qpr’fr’il , (6.7)

where [.] denotes the integer part. Note that for a single region (i.e. 19 = 1 —ry), the result
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Figure 6.1 The functions (6.7) for n = 2,4,6,8,10 and 12 (solid lines) and the function (6.9)

(dashed line). In all cases we consider r| = r_; = %. The replica logarithmic negativities

take more negative values for larger values of n. This figure illustrates the gradual change in
curvature as n — 1.

(6.7) trivially reproduces the Rényi entropy increments therefore below we focus only on two
regions 7o = 1 —r; — r_;. The increment of the logarithmic negativity can be obtained by
analytically continuing this expression from n even to n = 1. Evaluation of the sum above for

n = 2m and m € N gives

AéL

. 2m 2m
o (r,r_q) =log | r{™ 4+ r7Y

2m 2m
AT+ Arir_ + 1 AT+ Arir_ — 1
+ 2 + 2

(6.8)

so that the analytic continuation is simply,

AEY (ry,r4) = lim A&y, (r1,71) = log (m + 1o+ ArE+ 47’17’_1) . (6.9)

m—3

Note that the functions (6.9) gives a nice simple illustration of the non-trivial nature of the
analytic continuation from n even to n = 1. This can be better understood by looking at

Fig. 6.1.

For a state consisting of k£ distinct excitations (particles with distinct momenta), the result
is simply k times the above, just as for the Rényi entropies. The case of identical excitations
(identical momenta) is more interesting. Consider an excited state of k identical excitations.
The increment of the replica logarithmic negativity is given by:

5 (k—p)]

k [
AE*(ry,r_1) = log Z A, pretapner) =200 (6.10)

p=—k g=max(0,—np)
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where the coeflicients A, , are defined as follows:

k!

Apg = . kz}]g (q)ﬂ E e Tl (6.11)
and o((q) represents the set of integer partitions of ¢ into n non-negative parts. Note that
the coefficients are zero whenever any of the arguments of the factorials in the denominator
becomes negative and this selects out the partitions that contribute to each coefficient for given
values of p and ¢. As should be, formula (6.7) is the & = 1 case of (6.10). Indeed the coefficients
inside the sum (6.7) are nothing but the number of partitions of p into n parts, p of which are

1 and n — p of which are 0, with the constraint that there are no consecutive 1s.

Since the coefficients A, , are rather non-trivial, it is not easy to perform the sums in
(6.10) explicitly and the analytic continuation leading to the logarithmic negativity is rather
involved. Nevertheless, consider few excitations, we can explicitly compute the eigenvalues of
the partially transposed reduced density matrix obtained from the qubit interpretation. An
example for a single-particle excitation is provided in Subsection 5.4.1, and additional closed

formula for £ = 2,3 have been presented [26].

The qubit interpretation (introduced in Section 4.8 and extended in Section 5.3 to two
regions) is based on the simple observation that the entanglement contributions above equate

those of a much simpler states:

(k) \If<k) o®

ASE(ro) = Sn™® (ro),  AEE(ri,r_1) = En® (r,r_1),  AER(ri,r_1) = % (r1,7_1)
(6.12)
for any k and n. The state |\I/ > lives in a bipartite Hilbert space of which one part is associated
to the interior and the other one to the exterior of the entanglement regions A and B. More

precisely, it is formed of k qubits and takes the following form :

k:rlfl ko k-1

;
W Oty kok 1k K1, o, by) (6.13)

v =
k1 ko k1
Each state |kj ko k_1) is interpreted as describing a specific occupancy configuration that is
kq excitations in region A, k_; excitations in region B and kg excitations in the rest of the
system. For a single region we assume k_; = 0. The square of the corresponding coefficient
is the associated probability that this configuration occurs if we were to place randomly and

independently, with uniform distribution, & particles on the interval [0, 1] covered by three
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non-intersecting subintervals of lengths r1, 7y and r_;.

Under the qubit interpretation all the entanglement increments in (6.12) are independent of
the connectivity of the two regions, and as seen in 5.6, the same conclusion can be even drawn
for a system consisting of any number of disconnected regions. In Section 5.5 we have also used
the branch-point twist field approach to explore specifically the case of two connected regions,

and obtained exactly the same results above.

Furthermore, the expression (6.10) with (6.11) suggests a combinatorial interpretation for
the polynomials in the logarithmics, and such interpretation is made more concrete in Appendix

B, based on a graph approach introduced in [28].

Finally we expect the state |¢) to be more generally a mixed excited state consisting of k;
particles of identical momentum p; with 7 = 1,...m and p; # p; for ¢ # j. For such a state
we have that the Rényi entropies and the (replica) logarithmic negativities can be expressed in

terms of the building blocks given above, namely:

ASFLkm () = Z ASﬁq(ro) 7 (6.14)
q=1
Aggkm (e o) = Y A& (r1, o). (6.15)

<
Il
—_

6.2 Generalisations and extensions

According to the qubit interpretation, the entanglement increments due to particle
excitations depend on very few features of the state, namely the ratios r;s associated to each
region /; of the partition, the number of quasiparticles and the statistics of the excitations (if
they have equal or distinct momenta). Since these are quite general features, one may
reasonably wonder if our results may hold much more generally. There is indeed both
analytical and numerical evidence suggesting that the results presented in Section 6.1 are
universal. To conclude part I of this thesis we want to give a flavour of the diverse contexts in
which (under appropriate conditions) the qubit picture can be exploited to predict the

entanglement contributions of zero-density states:

e The massive free fermion: In [24] the excited state entanglement entropies of a single
region have been studied also in the free fermion theory. Indeed the techniques discussed
in Chapter 4 can be easily extended to the massive free fermion, having even a simpler

application as fermionic states are formed of only distinct particles. Taking into account
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the different statistics of the states, the entanglement contributions of multiple-particle
excitations exactly reproduce formulae (6.3), (6.4) for single particles, and (6.14) for

multiple particles in the scaling limit (6.1).

e The harmonic chain: In [24, 26] the (free boson) formulae (6.3)-(6.15) have been
numerically checked in the harmonic chain by implementing the wave functional method?.
The harmonic chain is indeed a discrete theory whose continuum limit reproduces the

massive free boson. The dispersion relation for a single-particle excitation is

A
E(p) = \/m2 + 4Ax~2 sin? ;p , (6.16)

where Az is the lattice spacing, m is the mass and p is the momentum of the excitation.
Numerical results are expected to reproduce the free-boson results where Az - p « 1, and
the relativistic dispersion relation is recovered in (6.16). In this regime both the entropy
and replica logarithmic negativity increments (in their simple formulations given by the
qubit pictures (6.12)) have shown perfect agreement with the numerical outcomes in both
the single- and double- region cases. Remarkably all entanglement increments are found
to be correct even in a regime of parameters that goes beyond the universal scaling regime
of QFT (some figures are shown in the end of the chapter). This includes large momenta
regions, beyond the low-energy QFT regime, and holds independently of the value of the
lattice spacing Az. The domain of applicability of the free-boson results is characterized
by the condition [23]:

min (m_l, 2%) & lin (6.17)

where P is the largest momentum of any of the excitations in the state and 27/P can be
interpreted as the De Broglie wave length associated to that particular excitation, and
& = m~! is the system’s correlation length. The length £, is the smallest region’s size
in the partition considered, precisely min(¢_1, ¢y, ¢1) for doubled regions and min(¢y, ¢;)
for single regions. Some examples are displayed in Fig. 6.2 for two regions, and Fig. 6.3
(left) for one region. Crucially, the validity regime (6.17) suggests that the entanglement

contributions of excitations riproduce the simple formulae (6.12) as long as the excitations

2This numerical procedure is based on constructing the exact wave functional for the ground state of the
chain in the fundamental-field basis, and the exact branch-point twist operator acting on this basis. It reduces
the problem to a multi-dimensional Gaussian integral. For the entanglement increment, a ratio of the reduced
density matrices of the excited and ground states, the result takes the form of a multi-point function of Gaussian
variables associated to the particles in the excited state, which is evaluated by Wick’s theorem in terms of the
inverse of the corresponding Gaussian kernel. More detail on the equations implemented can be found in

Appendix A of [24].
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may be localised within the entanglement regions i.e. the wave lengths of the excitations
are much smaller than the regions’ lengths. It is indeed in this particular regime that we

can make sense of the probabilistic interpretation provided by the qubit picture.

Free bosons in higher dimensions: The entanglement increments (6.12) can be
explored also in higher dimensions. In [23] the wave functional method has been used to
study numerically the increments of entanglement entropies in a two-dimensional
harmonic lattice on [0, L]>. The numerical outcomes perfectly reproduce formulae (6.3)
and (6.4) where now the r;s are interpreted as ratios of regions’ volumes and total
system’s volume r; = v;/V (an example is shown in the right picture of Fig. 6.3). This
suggests that the qubit picture may be applicable to higher dimensional systems. For
the massive boson theory this can be even proven analytically [28]. Of course this first
requires the extension of the notion of twist fields, now acting on multi-dimensional
boundary regions, to higher dimensions. The proof is based on the combined application
of exchange relations of higher-dimensional branch-point twist operators, clustering
properties (i.e. factorization of correlators at large volume) and Wick’s theorem. Indeed
the graph partition functions and all the graph rules discussed in Appendix B can be
derived in this context in terms of Wick contractions in an appropriate Fock space
representation of qubit states. Finally the generalisation to multiple regions seen in
Section 5.6 ensures that even in higher dimensions the excited state entanglement
contributions are independent of the connectivity of the regions involved in the

bipartition.

Interacting models: In [23] the entanglement increments have been also analysed in
interacting magnonic states.  Previous analyses exist [103, 104], which however
concentrated on less universal regimes. In the ferromagnetic Heisenberg chain,

two-particle states with respect to the ferromagnetic vacuum have the simple form

S PG D) T e T Ly D (6.18)
z,yeZ
where S¢(p,q) is the scattering matrix. More generally, for the purpose of evaluating
large-distance quantities these are abstract states representing two-particle asymptotic
states, with Sc(p,q) the two-body scattering matrix of the field theory (via the TBA
formalism of integrable QFT [29, 30]). Consider a single entanglement regions of length

ly, explicit computations for entanglemente entropy increments of one- and two-particle
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states such as (6.18) (of equal or distinct momementa) lead to formulae (6.3), (6.14) and
(6.5) (see Supplementary Material in [23] for more detail). There is no need to fix the
momenta via the Bethe ansatz, therefore these results hold for any states of the form
(6.18). Bound states of the Heisenberg chains (Bethe strings) have been studied in [104];
these have an intrinsic length scale £ (inversely proportional to the bounding energy), and
one can see that in the regime (6.17) and scaling limit (6.1) their entropy contributions
are given by (6.3), suggesting that once more that our results are rather generic and also

valid in interacting theories.

In summary, the entanglement increments associated with zero-density excited states in the
scaling limit discussed here, takes a universal form that we expect to hold for a wide variety
of theories, from interacting QFT models, to higher-dimensional theories and spin chain
models. At the heart of this universality lies the basic assumption of locality, that is, the
assumption that excitations are localized, either because the correlation length is finite and
much smaller than the entanglement regions or because particles have a small De Broille wave
length. Once locality is present, the particular scaling limit taken here, leads to a theory
where the few excitations above the ground state form a zero-density set, that is, in effect
behave as non-interacting degrees of freedom, whose only defining property is their location
within a particular entanglement regions, and the corresponding probabilistic occupancy
distribution of such excitations into the partition considered. In this sense, the qubit picture,
although it is a naive non-interacting model, provides a natural way to display such a simple
locality property, and we expect that interaction and dimensionality are unimportant in this
context. In contrast they will inevitably matter if we consider finite-volume corrections and

also if we do not subtract the ground state contribution.

Finally, it is worth mentioning that, very recently, generalizations of our results have been
published in [108-113]. These works have demonstrated the presence of non-universal
finite-volume corrections as well as finding precise examples (e.g. XY chains) where our
universal formulae cease to apply. These are cases where the assumption of locality is no
longer holds. They demonstrate that, as we have argued here, locality of excitations is an

essential property of all theories where our results apply.
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Figure 6.2 Numerical results for the harmonic chain in two disconnected regions. In both
pictures the parameters are chosen as Az = 0.02, L = 20 and m = 1, and the results are
displayed in the cross-section = r_; = R/2. The symbols are numerical data and the solid
curves are obtained from the formula. Left: numerical outcomes for the increment of the 2nd
(red circles), 3rd (green triangles) and 4th (blue squares) Rényi entropies for a state of two
identical excitations with momenta for p; = py = 4m. The solid lines are given by formula (6.5)
for n = 2,3,4. Right: Results for £ = 1 and p = 47 with n = 2 (red circles), n = 3 (blue
triangles), and n = 4 (green squares). The dashed curve is the logarithmic negativity (6.9),
showing once again the gradual change in curvature as n — 1. The colorful lines are obtained
from (6.7) for n = 2,3, 4.
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Figure 6.3 Comparison between analytic results (continuous curves) and numerical values
(markers) of the 2nd Rényi entropies for two-particle states in two models: the harmonic chain
(left) and the two-dimensional harmonic lattice (right). In both cases the entropies are evaluated
in a single regions, and the solid line are given by (6.3) and (6.14) for n = 2. Although the
excitations considered in the two cases are of very different momenta and masses, and defined in
two different spacial dimensions, the numerical results reproduce the same functions ASzl 1 and
AS2 in both pictures. Left: we show the 2nd Rényi entropy increments with distinct momenta
given by p; ~ 30, py &~ 45 (squares, red curve) and with equal momenta p; = ps ~ 50 (dots, blue
curve). The other numerical parameters are m = 1, L = 10, Az = 0.01. Right: we fix L = 50
and Az = 1, and explore the 2nd Rényi entropy increments for mass m = 1 and small momenta
(squares), and for mass m = 0.001 and large momenta (crosses), both cases satisfying condition
(6.17). Numerical results for distinct momenta p; = (0,0), pa = (0.26,0) = (47/L,0) (squares)
and p; = (2.51,1.26) = (407/L,207/L), p» = (3.14,0) = (507/L,0) (crosses) perfectly agree
with the upper curve, whereas those for equal momenta p; = po = (0.13,0) = (27/L,0)
(squares) and p; = py = (2.51,1.26) (crosses) are in great agreement with the lower curve.
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CHAPTER

SEVEN

GENERALISED HYDRODYNAMICS OF UNSTABLE
EXCITATIONS

7.1 The model

In part IT of this thesis we are going to explore the dynamics of unstable excitations in
integrable models. Remarkably the severe constraints imposed by the infinite-many local
conserved charges, in combination with the low dimensions of the theory, do not forbid the
formation of unstable particles. Unlike stable bound states, which are notoriously a common
feature of most interacting integrable QFTs, unstable bound states are a rare occurrence. The
largest family of relativistic field theories known to possess both integrability and unstable
particles are the homogeneous sine-Gordon (HSG) models. Despite their name, they have
little in common with the sine-Gordon model. In particular, their scattering matrices are

diagonal.

The homogeneous sine-Gordon models can be seen as massive perturbations of a critical
Wess-Zumino-Novikov-Witten model [114-118] associated to cosets G/U(1)™ where G is some
simply-laced algebra, k is the level (an integer), and r, is the rank of G. They have been
extensively studied in a series of papers in the late 90s, where their classical and quantum
integrability were established [19, 20], their particle spectrum determined [21], and an exact
scattering matrix eventually proposed [22]. The scattering matrix was then tested extensively

by employing the TBA [29, 30] and the form factor approach [84, 85]. The TBA of these
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models was studied in detail in [31, 45, 119], while the form factors of local operators were
constructed in [120, 121]. The effect of the presence of unstable particles in the renormalisation
group flow (RG-flow) of several quantities was also explored using form factor techniques in
[122, 123]. More recently, the mass-coupling relation was determined [124, 125]. Furthermore,
the HSG models can be seen as particular cases of a larger family of theories, associated to two
simply-laced Lie algebras g and § and known as g|g-theories, for which the scattering matrix

is provided in [126].

In this part of the thesis, we focus on the simplest theory of the family which is the
SU (3)a-homogeneous sine-Gordon model. Its asymptotic spectrum consists of two stable
self-conjugate particles of equal masses. Label these stable particles +, the S-matrix of the

theory has the following simple form

1 .
Sii(g) = —1, SJ_F;(Q) = itanh§ (9 *to— %T) s (71)

where o is a free parameter. Hence, the interaction involves only particles of different species,

and the S-matrix reveals some interesting features of the theory, one of this is the parity breaking

Si—(0) = S_4(=0) # 5_1.(0). (7.2)
In addition we have that
|1|im Siz(0) =1, (7.3)

which means that in this limit parity symmetry is restored and the theory may be seen as two
independent, mutually commuting free Majorana fermions. For finite o, the theory is interacting
and the scattering amplitudes S1+(6) have a pole outside the physical sheet at 6 = Fo — %r, in
the strip —7 < Im(#) < 0. According to Subsection 1.2.2, this pole is associated to an unstable

bound state of the otherwise two free Majorana fermion species. As discussed in [122] from the

Breit-Wigner formula it follows that, for this particular S-matrix,
M? = m?(1 + cosh o) and I'? = 4m*(—1 + cosho), (7.4)
where M is the mass of the unstable particle and I' its decay width. In this thesis, we will

mostly focus on the regime |o| » 0, where we have that

1 o] |o|
M~ —mez and I ~+2me= . 7.5
73 (7.5
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Thus, the larger |o| is, the more massive and short-lived the unstable excitation becomes. For |o|
large, one would then expect a clear separation of energy scales. That is at small temperatures
compared to the scale set by the mass M and decay width I', the physics is dominated by the
two free fermions as unstable bound states decay quickly. In contrast, at large temperatures
with respect to this scale, there is enough energy for a finite proportion of particles to be
found within bound states, which re-populate fast enough. At large temperatures, the unstable
particle has nontrivial, large-scale effects. The goal of part II is to obtain a clearer, dynamical
picture of these effects, and to identify the unstable particle in a more physically clear fashion
that goes beyond the pole structure of the S-matrix. The study of the TBA of the SU(3),-HSG

model, in the next section, provides an important step in this direction.

Without loss of generality, we choose

for the remainder of this thesis.

7.2 The thermodynamic Bethe ansatz equations

The starting point of the TBA approach is provided by some equations that we have
introduced in Section 3.3.2 in a quite different context: the Bethe-Yang equations. these
equations are simply the outcomes of dragging particles + along the world line!. For the

SU(3)2-HSG model [31] we have:

iLmsinh 0 ¢ _(gF _ gF) = 1, (7.7)

e

where 6% are the rapidity associated to particles +. The logarithm of the equation above (times
—1) gives:

Lmsinh 6 — ilog Sy (6% — 0F) = 27J7. (7.8)

where —ilog S+ are scattering phases and J* are integers. For a given set of quantum numbers

{J} n+ there will be a set of Bethe-Yang solutions {6} v+, these are usually called roots. There

!The reader may note that such condition is less trivial for HSG-models with richer particle spectra. Due to
the parity violation it actually matters if the particles are moved clockwise or anticlockwise along the world line
and this leads to two different quantization conditions. In the case of the SU(3)2-HSG model, since there are
only two particles there is actually no difference between the two choices and we accordingly implement only
one quantization condition.
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might be also quantum numbers not allowed for the system. Solutions of the equation above
obtained with these quantum numbers are usually called holes. The TBA equations are obtained
from (7.8) in the thermodynamic limit, i.e. when L — oo, N* — oo with N*/L kept fixed
[29, 30]. In this limit we can introduce the following quantities: the densities of states ps(0; +)
and the quasiparticle densities or spectral densities p,(6;+), i.e. the density of states filled
by the quasiparticles in the rapidity interval [0, 60 + df]. We can then define the quasiparticle

occupation numbers:

n(0; £) := pp(0; £)/ps(0; £) (7.9)
which are related to the pseudoenergies through the equation:

1

n(f; £) = 15 e -

(7.10)
The TBA equations can be expressed as non-linear integral equations for the pseudoenergies:
S50 4) = w(6) — pus * L(O:T), (7.11)

Below, we explain all the ingredients of the equation above. The quantity w(f) is called TBA
driving term and is an intrinsic way of fixing the macroscopic state. Indeed it determines the
weight of the states in the ensemble, it is such that every state formed of rapidities {6;} has
weight exp[— >, w(6;)]. In the case above, since we are at equilibrium, we have implicitly
considered a thermal state’:

w(f) = mf coshd : (7.12)

where the parameter [3 is the inverse of the temperature T'. The interaction enters in the kernels

©+7(0), which are formally defined as the rapidity derivatives of the scattering phases (times

+F
—1). In our theory they are simply:

1

cosh(f + o) (7.13)

.d
piz(0) = —z@log Syr(0) =
The integral part of the equation is incorporated in the convolution, which is denoted by * on

the right hand side of the same equation. We define the convolution as:

1 Q0

:%700

a*b() : a(0 — 0')b(0)de’ (7.14)

2For the theory and the set-ups considered in this thesis, the TBA driving term is the same for both particles
+, and for this reason, we have omitted the particle species in their arguments.
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the L-functions depend on the pseudoenergies and implement the non-linearity of the equation
L(6; +) = 1n<1 + e‘ai(a%ﬁ) . (7.15)

Note that when the two particles + behave as free Majorana fermions ¢4+ ~ 0 the TBA
equation is €(f; +) = fm cosh 6 where m cosh 6 is simply the single-particle energy eigenvalue.
For interacting regimes, the TBA equations (7.11) can be solved analytically only at very high
temperature, where it is possible to implement the so-called constant TBA (see e.g. [31] for a
treatment in the present model). For this reason, we need to investigate the equations above
numerically. Indeed there exists a standard recursive procedure to solve numerically TBA
equations, of which the state (via the TBA driving term), and the theory (via the kernel)
provide the only inputs. This numerical procedure typically shows fast convergence to the

numerical solutions (after very few iterations). For the SU(3),-HSG model, we provide a

numerical recipe in Appendix C.

Thus the TBA solutions can be explored numerically as functions of the temperature 7' (or
analogously of 8 = 1/T') and of the parameter o, and the TBA quantities introduced above can
be accordingly expressed as functions of these parameters once the pseudoenergies have been
computed. Furthermore, an important observation is that the equations (7.11) can be mapped
into

o(0; 1) = pm cosh(@ F %) —(p* K)(0;F) with ¢(#) :=sechf. (7.16)
for the shifted functions

g

(05 +) =5 (0 F 3

) and K*(0) =log(1 + e ¢Y). (7.17)

Note that under this shift and a change of variables in the convolution integral, the
o-dependence of the TBA kernel is eliminated so that it is now only explicit in the TBA

driving term.

Then, if o or 6 are large and positive we can approximate

$(0;+) = 77" — (p* K)(0; F) (7.18)
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1.2’ —————
e
/
/
1

--0=0
—o =10
c=15
o =20
—o0 =25

"0 25 5 75 10 125 15
r = log 2T

Figure 7.1 TBA scaling function of the SU(3),-HSG model for various o. The mass is m = 1
in all cases.

where
o

k = log(2T) 5

(7.19)

This shows that for o large enough, the TBA equations and their solutions are function of the
parameter s and rapidity only. Interestingly the variable s gives an indication on energy scale

of the system (in the variable log(27')), in particular we have that

T=>M — k=0 Interacting Regime (7.20)
T~M — Kk ~0 Formation of the unstable particle (7.21)
T<M — k<0 Non-interacting Regime (7.22)

where M is the mass of the unstable excitation defined previously.

7.2.1 The TBA scaling function

The three regimes (7.20), (7.21), and (7.22) can be better understood by analysing the TBA

scaling function, formally defined as:

_3mOo

o(T) = -7 | df cosh O(L(0; +) + L(0;—) ). (7.23)

A natural way to plot this function is against r = log 2T (or similarly — log /3/2) as this variable
gives information on the energetic regime of the theory according to the definition (7.19) and
the regimes identified earlier. Numerical results for the function (7.23) were first presented [31].

In this paper, a common feature of the HSG-models was observed, that is, that many physical
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quantities, such as the function above develop staircase patterns.

In Fig. 7.1 the function (7.23) has been calculated for various values of o by using a software
called iFluid (this will be used in Chapter 9, numerical details are given in Appendix D). The
position and size of the steps (or plateaux) reflect the interpretation of ¢(r) as a function
describing the RG-flow between the two fixed points of the theory. This is also in accordance

with the separation of energy scales discussed in the previous sections.

Indeed, for large o, at temperatures that are large with respect to the mass scale m but small
with respect to the separation scale M (that is negative x ), the theory reaches the UV limit
of the two-free-fermion theory, with central charge ¢ = 1. In contrast, for temperatures beyond
this separation scale (positive x ) the UV fixed point is determined by the coset SU(3)y/U(1)?
and corresponds to ¢ = g = 1.2. The various curves correspond to different values of o with
a step, occurring around g (x = 0), and representing the on-set of the interaction. Thus
at intermediate values of temperatures we observe that the flow approaches these two fixed
points in succession, giving rise to the staircase pattern that is typical of this model. From the
RG-viewpoint, this pattern reflects the presence of a larger amount of degrees of freedom as

energy is increased, interaction is turned on, and the unstable particle is formed.

It is worth noting that staircase patterns in RG flows are also found for other theories,
typically the roaming trajectory model [127, 128] and generalizations thereof [129]. However a

direct connection to unstable excitations is missing in those cases.

7.3 Generalised Hydrodynamics

We stress that unstable excitations are not part of the asymptotic states, and thus their
dynamics cannot be directly described by the usual scattering picture (seen in Chapter 1).
For this reason unstable particles are typically hard to study and their dynamics can be only

outlined indirectly, in terms of the stable constituents.

In the next two chapters we will explore the SU(3),-HSG model in two different
out-of-equilibrium set-ups and analyse several dynamical quantities associated to the stable
particles. The out-of-equilibrium physics is the most natural context to seek signatures of
instability in the physical quantities of individual particles. We can then use these signatures
to identify the unstable excitation and study its dynamics. The main tool we employ in order

to compute such quantities is the generalized hydrodynamic approach (GHD), a leading
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method in the study of the dynamics of many-body quantum systems, particularly integrable
ones [32, 33, 130]. In this section we want to introduce this approach and its application to

the study of unstable particles.

To explain the basis of GHD we start from a very general example. Suppose we have a
certain system originally at equilibrium, and we engineer a set-up to drive the system
out-of-equilibrium, for instance, by preparing independently two semi-infinite homogeneous
quantum systems at different temperatures and let these evolve at time ¢ # 0 (this set-up is
exactly what we consider in the next chapter, and is generally known as partitioning protocol).
After a transient period, the system may thermalise. This is indeed the typical situation we
study in thermodynamics where the system reaches a new equilibrium, described by the Gibbs
ensemble. The thermodynamic quantities (free energy, entropy, etc...) are accordingly local

averages in the new macroscopic state, evaluated though the partition function:
Z(OB) _ Tr{efH Y (7.24)

where H represents the energy operator and § = 1/T is the inverse of the temperature.
However, the intersection of low dimensionality and multiple conserved charges may give rise
to a distinct kind of dynamics, one in which there is no long-term thermalization (an example
is the quantum Newton’s cradle experiment [131]). This behaviour is due to the fact that the
multiple conserved charges are involved in determining the long time dynamics, and need to
be included in the dynamical description by extending the concept of Gibbs ensemble to
generalized Gibbs ensemble (GGE) [34]. In GGE, the partition function accounts for multiple

conserved charges Q; in the system:
Z(GEE) _ Ty e LikiQiy) (7.25)

where the generalised inverse temperatures ;s are the Lagrangian parameters associated to the
conserved charges Qis. As a consequence, quantum integrable models, do not thermalise (to
Gibbs ensembles) but instead equilibrate to GGEs. Precisely, in the set-up designed above, the
presence of multiple local conserved charges give rise to ballistic transport meaning that, after
a transient period, steady state currents flowing between the right and left subsystems emerge
(see [132] for a review). The GHD approach provides a method to compute such currents, as

as we will see in Chapter 8.
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Furthermore, out-of-equilibrium systems are typically characterised by a time- and
space-dependence of the local observables, which reflect the inhomogeneities of the state. The
GHD approach works at the mesoscopic scale, and the “hydrodynamics” enters the picture
through the concept of fluid cells: a fluid cell is a region of space-time which is small enough
for the state to look homogeneous, whilst containing a large enough number of particles. The
assumption of local entropy mazximization, also known as GHD principle, enters naturally in
this context. Technically, this is the assumption that averages of local quantities tend
uniformly enough, at large times, to averages evaluated in GGE states of the form (7.25),
involving all the local and quasi-local charges of the system®, with space-time dependent
potentials f5;(x,t):

<O((L’, t)> ~ <O(07 0)>§(J1,t) ) B<I7 t) = (61(‘%‘7 t)? ﬁ2(x7 t)? s ) : (726)

The above assumption is particularly meaningful in integrable models, where we are equipped
with a specific methodology to evaluate exact expectation values of currents and densities
associated to the local conserved charges of the theories. This is indeed the methodology
given by the TBA discussed in the previous section (which can be generalised to GGEs [134]),
and to a large extent by the scattering picture introduced in Chapter 1 as it provides the
main ingredients for the TBA equations. In the context of integrable models GHD was first
introduced in [32] in QFT, and in [33] in quantum chains. Since the original papers, a lot of
developments have been achieved, such as the inclusion of force terms [135-138], diffusive and
higher corrections [139-142], noise [143], integrability breaking terms [144-146]. There is now
even experimental evidence that GHD provides a better description of transport in an atom

chip than conventional hydrodynamics [147].

Another interesting development is the inclusion of theories possessing unstable excitations.
This was first implemented in [35] for the SU(3)2-HSG model in the simple set-up described
earlier. In [36, 148] the same theory has been recently explored in inhomogeneous set-ups.
In Chapters 8 and 9 we will make full use of the GHD approach to study numerically the
out-of-equilibrium dynamics arising from these set-ups and, for this reason, we focus only on

the SU(3)2-HSG model for the remainder of the thesis.

3Here, with local or quasi-local conserved charges we mean quantities of the form Q; = §dzq;(x,t) such that
0:Q; = 0 and that the density g¢;(x,t) is local i.e. supported on finite regions, or quasi-local i.e. supported on
infinite regions but with an “envelope” that decays sufficiently fast. A review of quasi-local charges in integrable
discrete systems can be found in [133].
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7.3.1 Quasiparticle description via TBA

As mentioned earlier GHD requires a quasiparticle description. The TBA approach
introduced in Section 7.2, combined with the GHD principle, can be naturally extended for
such a purpose. The main difference is that now we need to implement GGE macroscopic

states and such a change enters in the TBA equations via the TBA driving term:
w(z,t,0) = > Bi(z, H)hi(0), (7.27)

Above, the single-particle eigenvalues h;(6)* of all local conserved charges of the system are
included, and the corresponding generalized inverse temperatures [;(x,t) are fluid-cell
dependent (that means they incorporate the space- and time-dependence of the state). As a
consequence, all TBA quantities will generally be functions of space and time. In particular

the TBA equations become
(2,0, 5) = w(a,1,0) — pus * (4,0, ), (7.28)

where the kernel is given exactly by (7.13), the convolution is (7.14), and the L-functions are
now time- and space- dependent via (7.15). From these objects, averages of all local operators
can in principle be calculated. We will concentrate on densities ¢;(x,t) of conserved charges

Qi = §dzg;(x,t), and their currents j;(z,t) satisfying:

For these quantities, simple expressions exist. Their averages are fully fixed by giving the
one-particle eigenvalues of the associated conserved charge, h;(#). The averages are obtained

by using the “dressed” quantities h{"(x,t,6; £), which solve the linear integral equations
h?r(x> t, 0; i) = hl(e) T prg* (h?r (l’, t, 9; $) n(x, l 9; $) ) (730)

where

n(z,t,0;+) = (7.31)

1 + 66($7t707i)

4Since in the model considered the eigenvalues h;(f) are the same for both particles, following a similar
argument as for Section 7.2, we drop the dependence of + to simplify the notation.
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is the occupation function associated to particle +. Equations (7.30) are simply another way
to express the TBA equations (7.28) and the dressing operation represents the action of the
interactions on the eigenvalues h;(6). Note the dressing operation make these quantities space-
and time-dependent, and as a result the dressed quantity will be generally different for each

particle +.

Specifically, the GGE averages of local charge densities q, and of their associated currents

j, are defined via the GHD principle (7.26) as:

qi(x’ t) = <Qi(07 0)>ﬁ(x,t) ) _]Z(:L‘, t) = <]z(07 0)>ﬁ(x,t) ) (732)

(recall that 8 was the set of generalized inverse temperatures in the GGE), and are expressed

as
“df d
q;(z,t) = —e(0) hi*(z,t,0;b) n(x,t,0;b)
b=+

© e
= | 5z e™(@.t,60:0) hi(6) n(x,t,6;b), (7.33)
b=+~
and

0
o) = [ 500 B (ot 050) o, )

b=+ v~

©de
= 2| @ t.0:0) hi(0) . ,6:0). (7.34)
s
b=+ v —®

Above the energy and momentum one-particle eigenvalues are e(f) = mcoshf and p(f) =
msinh #. We have also used a symmetry of the equations that allows us to interchange the

“dressing” operation inside the integral and the sum.
There are a number of natural conserved charges available in the model. In this thesis we

will focus only on the energy and particle number. Their single-particle eigenvalues are:

ho(6) =1  (particle number)
hi(0) = e(d) = mcoshf  (energy). (7.35)

Further, as the scattering is diagonal, the number of particles, energy and other charges carried

by each individual particle type are also conserved charges themselves. We will use the notation
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q; and j; for the associated average densities and currents, which therefore take the form

+ ” do dr -+ ” df dr
q = — e (x,t,0; +) hiy(0) n(x,t,0; ), j; = — p“(x,t,0; +)h;(O)n(z,t,0; ).

o 2T _op 2m
(7.36)

Note how the particle types are not summed over in these expressions.

In the next chapters we will focus our attention on two intermediate functions in the above
expressions: these are the spectral densities (already introduced for the equilibrium case in

Section 7.2), and the effective velocities (which first appeared in [149]),

1 (2,1, 0; +
oo t.0:5) = (@t 0 bn(en0:5), ot piz) = LEREEL gy

T edr(z,t,0; +)"
respectively.

The spectral densities define the density of the two quasiparticles + in the phase-space
and are a conserved quantity. Specifically, at fixed time ¢ the quantity p,(z,t,6;+)d6 dx
represents the number of particles of type 4+ in a phase-space element dfdz, while
Vet (2,1, 0; %) pp(x, t,0; £) df dz is the associated current. Furthermore, with the quasiparticle

description introduced above, the effective velocities possess a very clear physical meaning.

Indeed according to the GHD equations [32]:
Oin(x,t,0; ) + veg(w, t,0; ) Oy n(x, t,0) =0, (7.38)

they represents the propagation velocities of the convective evolution of the occupation
functions, identified with the normal modes of particle + and — respectively. In particular, at

a given fluid cell (z,t) the effective velocities are

_(h—
vz, t,0;+) = v¥(0) + Jda W pp(x,t,0;F) (Ueﬂ(a:, t,a; F) — vz, 1,0, F) ) ,
(7.39)
and can be seen as a modification of the group velocity v&"(0) = p(6)/e(8) of each quasiparticle

under the effect of the interaction.

7.3.2 Effects of parity violation on scattering dynamics

In the next two chapters we will study numerically the average particle and energy densities
and currents, as well as the spectral density and the effective velocities. Before doing so, one

can already predict certain properties of the dynamics of the model from the structure of the
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kernels (7.13) in the above TBA description.

1
—p._(0) —p_.(0)
0.5
20-10 0 10 20 20 -10 0 10 20
9 9

Figure 7.2 Kernels ¢4 +(6) of the SU(3),-HSG model, for 0 = 20. Analytical formulae are
given by (7.13).

We conclude this chapter with a few observations, based on Fig. 7.2:

e Parity breaking: We have seen that in the TBA/GGE equations (7.30) the interaction
enters in the kernel, in integrable QFT this has standard properties, such as a fast decay at
large |0|, characteristic of the local interaction of the model, as well as interaction peaks
around 6 = 0. For instance, the sinh-Gordon kernel at the self-dual point is 2sech @,
which satisfies the two properties. However, the kernels (7.13) are exceptional in that as
they are peaked around a rapidity that is generally non-zero. Indeed, due to (7.2) TBA
quantities are not symmetric in 6 even though they are identical under the simultaneous
change of signs of rapidities § — —6 and particle types + — F. This is a remnant of
the fact that the the scattering phases (7.1) themselves, and the underlying action of the
model, break parity.

e Scattering: The kernels are maximal at § = Fo, taking values g4+ (Fo) = 1, and rapidly
decreasing functions away from their maximum (i.e. sech 6 is strongly peaked around zero).
For instance, for o > 0, this means that ¢, () is maximal for § = —o < 0. Recalling
that # = 6; — 6, is the difference of the rapidities of the two incoming particles with
types €1 = + and e = —, we see that, for o large and positive, the scattering can be
nontrivial only in the region 6; < 6,. This, physically, corresponds to a collision where
the particle of type — moves towards the right, and that of type + towards the left, in
the rest frame. Analysing ¢_,(6), the same conclusion is reached upon exchanging the
roles of + particles. Thus nontrivial scattering occurs only in one direction, for ¢ > 0

when particle — travels rightwards towards particle + (and the opposite for o < 0),
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and it is this scattering that is expected to give rise to the unstable particle. For this

reason, the functions of interest have quite different behaviours for 6 > 0 and 6 < 0 for +

particles, with one choice giving the free fermion result and the other what we can term

an “interaction” result.

e Separation into right- and left-movers: We have seen in equation (7.39) that the

propagation velocities of the individual particles are generally different from their group

velocities as a result of particle interactions. Furthermore, it emerges from comparison

with soliton gases and the flea gas model [150] that the value of the kernels can be

interpreted as the distance jumped by particles upon collision. Positive kernels give the

“natural” picture, whereby a tagged particle, travelling rightwards (leftwards) and hitting

another particle, experiences a jump leftwards (rightwards), by the amount given by the

scattering kernel. Thus, from the previous point, we expect that, say for ¢ > 0, particle

+ (—) is mostly hit from the left (right) and therefore is mostly displaced toward the right

(left); its effective velocity will receive a positive (negative) correction, as compared to its

group velocity. We may therefore broadly identify particles of type + with right-movers,

and of type — with left-movers. This picture becomes exact near the UV fixed points,

and will be further investigated numerically in the next chapter.
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CHAPTER

EIGHT

SET-UP 1: PARTITIONING PROTOCOL

8.1 The bipartite quench

In Chapter 7 we have introduced the GHD equations and the corresponding TBA description
for the SU(3),-HSG model. We want now to engineer an out-of-equilibrium set up by employing
the partitioning protocol. This is the easiest way to drive a system out-of-equilibrium and, as
seen in Section 7.3, the dynamics arising from this particular quench protocol is well understood,

leading to a clear separation between integrable and non-integrable systems.

We consider two semi-infinite systems, described by two Gibbs ensembles at inverse
temperatures fg for the right (left) baths such that the initial state is homonegeous
everywhere, except at the separation point x = 0. We assume that the two halves are of the
same nature, and described by a SU(3)2-HSG model (with the same free parameter o). When
putting the two systems in contact at ¢ = 0, flows of energy and other charges are
immediately produced. After waiting long enough, relaxation occurs and these flows are
expected to reach a steady regime in a region close enough to the contact point. As pointed
out in Section 7.3, the nature of this steady regime is non-trivial in integrable models, as
non-equilibrium steady states are produced in the intermediate region between subsystems,
carrying non-trivial flows. These flows are powered by the original baths that act as
asymptotic reservoirs. As seen in Subsection (7.3.1), hydrodynamic conservation equations

and TBA equations can be combined to characterize the currents of the system. Remarkably,
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1?;\‘;

Figure 8.1 Dynamics of integrable systems after a bipartite quench. After a sufficiently large
time the system is described by a continuum of GGE states with generalised inverse temperature
B(€) parametrised by the ray £ = z/t. The large-time evolution is characterised by emergent

steady state currents within the light cone £ = +1 (for relativistic systems) originated at the
contact point at time ¢t = 0. Picture taken from [32].

in the set-up designed above, GHD solutions for the large-scale non-equilibrium occupation

functions are known [32, 33] and are simply:
n(€,0; ) = ngr(0; £)O(0 — Gg—r ) +np(0;£) (9(95—r —0), (8.1)

where the time- and space-dependence is included in 6, which is a function of the ray & = z/t,
and O is the Heaviside step function. The resulting large-scale evolution of the system is
represented graphically in Fig. 8.1. Thus, to determine the solutions of the occupation functions
at any fixed ray &, we need two ingredients: ny, p(6; =) and Og—r. The former are the occupation
numbers in the original baths, and can be evaluated by the TBA equations (7.11) with driving
terms wr, gr(0) = mpBL g cosh@ (as expected, for & — +oo, (8.1) reproduces the original bath
of the right and left subsystems, respectively). The latter are the discontinuity positions 67,

which are solutions to the equations:

verr(&, 053 1) = €. (8.2)

Above, the effective velocities are assumed to be monotonic functions of rapidity, which
guarantees a unique solution at any fixed ray £&. We remark that the equations above require
the implementation of the TBA equations and for the reason explained in Section 7.2, they

are solved numerically.

Another important observation is that for CFT the total energy current and total energy

density are known in this particular quench protocol. These were indeed investigated in [151,
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152] and found to be homogeneous within the light cone £ = £1, in particular

CFT CT CFT CT
Ji = E(TIQ,_TJQ%) and q; = E(T5+T12%)a (8.3)

where c is the central charge and as usual T = ﬁgi. This result will be useful in the next

section to described the UV regime of the system.

8.1.1 Numerical analysis

In the rest of this chapter, we will present the numerical results reported in [35] and obtained
by implementing standard TBA numerical methods. We provide a more detailed description
of the algorithm in Appendix C. In our analysis we look at the “ray” located exactly in the

middle of the steady-state region so that we fix
£E=0. (8.4)

Our numerics have shown that the physical picture does not change substantially for other rays.

At £ = 0, the equations become:
n(0; £) = nr(0; 1) O(0 — 05 ) +n(0;£) OO —0), veal(é, b05;%) =0. (8.5)

Above, as well as in the remainder of this chapter, we omit the £&-dependence of GHD quantities
in order to simplify the notation. Hence, at £ = 0, the 63 are simply the zeros of the effective
velocities, and equation (8.2) accordingly expresses the fact that the occupation functions of
particles with positive (negative) effective velocities take the form of those in the original

ensembles on the left (right) sub-system.

To conclude this section, we provide some basic information on the physical parameters and
motivation for the corresponding domain explored in our numerical simulations. In much of
our analysis we will fix the ratio of temperatures and vary (; only. It is thus convenient to

introduce the following variable
o Pr
Br’

(not to be confused with the position variable which is never explicitly used in this chapter).

(8.6)

Hence the ratio x defines the initial state of the system and gives rise to non equilibrium
dynamics for x # 1. In particular, x > 1 (x < 1) corresponds to introducing a positive

(negative) temperature gradient 77, > Tg (1, < Tg) in the system. Now, we may easily observe

147



CHAPTER 8. SET-UP 1: PARTITIONING PROTOCOL

that if |x| is too large, the resulting large-time dynamics will be almost fully determined by
only one side of the system, that is the one at highest temperature. This will be confirmed by
our numerics, and indeed we have found the most interesting physics when |x| < 3 and thus

when the two inverse temperatures are comparable.

We will also study the system at x = 1 which corresponds to the system at equilibrium.
Although the equilibrium properties of this model have been studied at length using TBA
techniques [31], we find that the new ideas brought by the recently developed hydrodynamic
picture shed new light into the main features of the theory, especially the nature of the
unstable particle (this will be analysed in detail in Section 8.3). In addition, understanding
the equilibrium case in terms of its underlying hydrodynamic properties will be extremely

helpful when interpreting the out-of-equilibrium dynamics.

Finally, it is well known from standard equilibrium TBA arguments that non-vanishing

values of the functions L(f; +) and n(6#; ) are strongly localized in the range

2
logé <6 < log (8.7)

2 B’
as the functions fall off double-exponentially outside this range. In out-of-equilibrium set-ups
f = min{fr, fr}. In our numerics we will exploit this property to implement numerical integrals

of TBA functions of interest.

Throughout the remainder of this chapter we will set the mass scale to m = 1. We are now
ready to analyse several quantities of interest. We will start from energy current and energy

densities in the next section.

8.2 Hydrodynamic scaling functions

One of the most effective ways to visualize the effect of the unstable particle is to look at
temperature-dependent quantities, for a wide range of temperatures. For instance, in Section
7.2.1 we have studied, the temperature-dependence of the TBA scaling function (7.23), and
established that the resulting staircase pattern is connected to the degrees of freedom of the
theory, and in particular to its RG-flow. Interestingly, when connecting two halves of
temperature ratio x, many GHD quantities display similar information if explored as

functions of the initial inverse temperature 3y, (or similarly Sg).
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m=1, o= 25,20,10,0, x=30
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Figure 8.2 The scaled energy current as a c-like function for several values of o and temperature

CiT s ( CFT

ratio z = 30. The plateaux are located at (77, 51— ﬁ) = 0.261508 and %5, =

751 — ﬁ) = 0.31381. Similarly to the TBA-scaling function plotted in Fig. 7.1, the scaled

energy current encodes information about the RG-flow, but for out-of-equilibrium systems.

An example is shown in Fig. 8.2 , where we have evaluated the energy current (7.34) for
i = 1, scaled it by a factor 3%, and plotted the results for various o. Multiplication by (% is
dictated by the CFT result (8.3), and is a convenient way to reveal a staircase pattern which
reflects the presence of two UV fixed points (with central charges ¢ = 1 and ¢ = 1.2), reached
for (relatively) low and high temperatures as previously described in Section 7.2.1. Similar

scaling patterns can be found for the total energy density (7.33). Therefore, one may think of

1251182 124182
T ) T )

the quantities where [ is the largest temperature, as new scaling functions. This
idea is however not new. Indeed many such scaling functions were proposed in the work [153]

and, more recently, for the roaming trajectories model in [154].

Under the above considerations the corresponding growth of degrees of freedom observed
at the onset of the unstable particle, can be measured in terms of some very concrete physical
quantities such as the energy flows and densities, and this can help us to outline a more physical
understanding of the unstable bound states. Following this idea, in the next two subsections
we set 0 = 20 and analyse the equilibrium and out-of-equilibrium energy currents and energy

densities of the individual particles.

8.2.1 Equilibrium energy currents and energy densities

We start from the system at equilibrium (i.e. both baths at the same inverse temperature
p := B, = Bg that is x = 1). The numerical outcomes for energy currents and energy densities

as functions of log 3/2 are shown in Fig. 8.3. Looking at this figure, we can identify the following
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Figure 8.3 We consider the system at equilibrium i.e. x = 1, and set the parameters m = 1,
and o = 20. Left: The total scaled energy current 3%j, (squares, green), the contribution 523}
(triangles, red) and 3%j; (circles, blue). Right: The total scaled energy density 3?q, (squares,
green), the contribution 5%q; (triangles, red) and 5%q; (circles, blue).

properties:

e Parity breaking: Although the total energy current is zero at equilibrium (as expected),
the individual contributions from =+ particles are non-vanishing (and opposite) for some
energy scales. This is allowed due parity breaking in the theory. More precisely, in
TBA, under parity, the signs of the currents and the particle types are exchanged. Here
we observe that this gives rise to a negative (positive) energy current carried by + (—)

particles.

e Onset of the unstable particle: The individual particle contributions to the energy
density and current, and also the total energy density, display a staircase pattern with
a step whose onset is located around logg = —% = —10 . This energy value represents
the onset of the unstable particle. For logg > —Z the individual contributions to the
current are vanishing as this is the regime where the theory behaves as two decoupled free
fermions and parity is restored. Energetically speaking, this is the region where energy is

not high enough to allow for the formation of the unstable excitation.

e CFT values: The staircase patterns observed for the individual contributions to the
energy density are identical, because parity preserves the sign of the energy. Their two
plateaux can be predicted from CFT. For lower temperatures logg > —2 the energy

densities tend to their massless free fermion value,

2 0 2 o0
9 4+ FF .. cosh” ¢ 1J U T

2 im = g— = = du = — = 0.261799. 8.8
Fai ﬁli% 2 f_oo 1+ efcoshtd g ) 1 4 ev YT (88)
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This corresponds exactly to the height of the lowest plateau of the lower curve on the

right panel of Fig. 8.3. Similarly, the highest plateau is located at the value

e

2 + CET
B 93 12

— 0.314159

which is the CFT result for ¢ = 1.2.

8.2.2 Out-of-equilibrium energy currents and energy densities

In this subsection we discuss the main features of the out-of-equilibrium energy currents and
energy densities for different temperature ratios, focussing on the main changes with respect

to the equilibrium situation. Our discussion focusses on Fig. 8.4. The main important features
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Figure 8.4 The total (scaled) energy current 32j, (squares, green), the contribution £2j;
(triangles, red) and ?j; (circles, blue) and similarly for the energy density. We consider the
cases x = 3/2 (i = L) and x = 2/3 (i = R). In all cases 0 = 20, m = 1.

are the following:

e Symmetry: A clear feature from the pictures is the following symmetry under the

exchange x — x~! (or 8 < Bg):

it (BL.Br) = =31 (Br, Br)  and

j1(BL76R) - _j1(5R»5L) ) (8-10)
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and similarly

qli(ﬁL, Br) — QT(/@R, Br) and 9, (Bz, Br) — a,(Br, BL) - (8.11)

This is in agreement with the parity symmetry of the TBA equations.

e Conformal limits: The height of the plateaux is predicted as in the equilibrium case

by the formula (8.3). For instance, for x = 3/2 the scaled total current has plateaux at

5. CFT TC 4 Sme
Ll 1— =) = 2= 12

which gives values 0.174533 and 0.145444, for ¢ = 1.2 and ¢ = 1, respectively. The same
holds for the total spectral density:

5 CFT TC 4 137mc
i 14+ =) = 2= 8.13

predicting the values 0.453786 and 0.378155 for ¢ = 1.2 and ¢ = 1.

e Unstable particle onset: In all figures we also see the location of the start of the

5 5. In fact, quantities associated

plateau at —o/2 = —10 with respect to the scales log

B _g

with particle + develop a plateau for log 5+ > —3 whereas for particles of — type the

plateau’s onset occurs at log %R = —35. This is hardly detectable in these figures because

BL.R

log% = 0.405... and therefore there is little difference between the values log =

; but we
have verified this fact for larger values of x. Such a difference is also evident in other

out-of-equilibrium quantities we will analyse in Section 8.4, in particular in Fig. 8.9.

e Particles couple mainly to one bath: The previous point suggests that type +
particles are particularly sensitive to the value of 3, whereas particles of type — couple
strongly to the value of Sr. This is related to the structure of the kernels described in
Subsection 7.3.2 and also to the structure of the occupation numbers (8.1). For particle
+ this means that it will feel strong interaction with particle — only when 6 < 0 and close
to —o. At the same time, for § < 0 the occupation number is largely described by its
equilibrium value on the left bath (see Fig. 8.9 for more details) and so particle + mainly

interacts at inverse temperature ;. A similar argument can be made for particle —.

e Equilibrium currents vs temperature gradient: In contrast to the equilibrium case,

here both particle type contributions to the currents have the same sign, although they
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are different from each other. For x > 1 both contributions are positive, even though
the contribution of particle + is always smaller (the opposite is true for x < 1). This
change can be explained as the result of interference (sometimes constructive, sometimes
destructive) between two phenomena: the equilibrium dynamics and that induced by the
temperature gradient. If x > 1 we have that T, > Tk and so from the temperature
gradient we expect a positive current. However, for particle + the equilibrium current
would have the opposite sign and so, even if temperature “wins” in the end, we still have a
reduced current. For particle — on the other hand both the gradient and the equilibrium
tendency support a positive current, so its total contribution is enhanced. The opposite

effect is seen for x < 1.

In summary, the growth observed in Fig. 8.2 at intermediate temperatures (i.e. logg <S—3)
of the original baths, can be interpreted as a combined effect of the formation of unstable bound
states and the emergent obstacle that the temperature gradient creates to such formation when
the system is driven out of equilibrium. The formation of the unstable particles, and the
corresponding increase in degrees of freedom captured by the scaling functions, seems closely
related to the dynamics of the individual particles, and in particular to the scattering processes

that determine the sign of the individual energy currents in Fig. 8.3, even at equilibrium. This

will be further investigated in the next section.

8.3 Equilibrium physics with unstable particles

Following the conclusion of the previous section, we want now to give a closer look at the
scattering dynamics of the two stable quasiparticles, and this can be better understood if we
look into rapidity-dependent TBA/GHD functions. We now focus on two very fundamental
phase-space quantities, namely, the spectral densities and the effective velocities, defined in
(7.37). For the SU(3)2-HSG model , this phase-space analysis was first conducted in [35],
and was motivated by the important roles of both quantities p;f and v*" in GHD. However,
these quantities can be of course explored also at equilibrium as they are both functions of the
occupation functions n(f; +). Remarkably, a very interesting physical picture of the unstable
bound states emerges already at equilibrium, and we want indeed to discuss this in detail in

Subsection &8.3.3.

In the next two subsections, we will investigate further the equilibrium dynamics of the

two stable particles by studying the two phase-space quantities of interest separately in three
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different regimes. Indeed, a common features observed in both Sections 8.2.1 and 8.2.2 it
that either the equilibrium and the out-of-equilibrium dynamics change drastically when the
formation of unstable particles is allowed in the system. In this analysis, it is worth recalling the
parameter Kk = — logg — Z. Once the parameter o has been fixed (and along with it, the mass
scale M), the three regimes (7.20), (7.21) and (7.20) are identified by the inverse temperature

of the system only'.

Throughout the section, we consider the system described by a Gibbs ensemble at § = (5 =

fOr i.e. x =1, and as earlier, we fix o = 20.

8.3.1 Effective velocities

We start from the effective velocities. Fig. 8.5 shows three “snapshots” of the velocities
as functions of the rapidity variable at three different temperatures. The main noteworthy

features are the following:

e Free fermion regime (x < 0): For low temperatures the two velocities are well described
by the free fermion result v°¥(#; £) = tanh@. In particular, at large rapidities, we have

non-interacting right- and left-movers propagating at the speed of light.

e Unstable particle and parity breaking (x = 0): For intermediate temperatures the
onset of the unstable particles triggers a parity breaking effect. Velocity profiles exhibit
the symmetry

v (0; 4) = —o(—0; ). (8.14)

The presence of the unstable particle marks the interaction and this reduces the absolute
values of the velocities, down from their conformal values +1, and gives rise to two
distinct plateaux, one in each effective velocity. The heights of the intermediate plateaux
for both particle types change with temperature until reaching again the values +1 at
very high temperatures. Some of the features may be explained using the flea gas picture,

as explained below.

e UV limit (x » 0)? : In the deep UV limit the velocities reach once more their CFT

values +1 but are “shifted” in comparison with their free fermion value. In fact they are

'In the next sections we may often refer to low, intermediate, and high temperatures of the system. The
implicit reference is always the mass scale of the unstable excitation via the regimes mentioned above.

2In our numerics we observe that the TBA scaling function (7.23) approaches the UV limit for x = 3 that is
what we mean here by denoting « » 0.
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Figure 8.5 Effective velocity profiles at equilibrium for three temperatures: for low
temperatures (left figure) we observe the free fermion result, the group velocity tanh@; for
intermediate temperatures (middle figure) we observe the onset of the unstable particle; for high
temperatures (right figure), where a new CFT is reached, effective velocities of + (—) particles
are shifted so that they appear to be mostly right-moving (left-moving). The evolution of the
effective velocities as functions of temperature can be further explored in this video [155].

very well approximated by the functions (8.18) which are derived below. We have again
large regions of right- and left- movers propagating at the speed of light, and we observe
that the + (—) particle acquires “mostly” right-moving (left-moving) properties. This is
again in agreement with the flea-gas picture, which, as we explained, indicates that +

(—) particles should be right-movers (left-movers).

e Plateaux and the “flea gas” picture : The flea gas scattering picture described at the
end of Subsection 7.3.2 explains the presence of the intermediate plateaux in the middle
panel of Fig. 8.5. For instance, the + particle may only scatter by collisions on its left,
and these collisions generate jumps rightwards. Thus, only for 6 < 0, where the particles
are not moving rightwards at the speed of light, can such collisions happen; and when
they happen, they “slow down” the particle. This only happens in a small interval of
values of @ (for the + particle this is approximately the interval [—c/2,0]) and the precise
boundaries of this intermediate plateau, are more subtle to explain. They are determined
by an interplay between spectral densities and the effective velocity. For instance, a
change of the effective velocities at rapidities |0] > ¢/2 is precluded for low temperatures
logg > —0/2, because no particles are present at such rapidities. The configuration
achieved at large temperatures, for instance the right-most panel of Fig. 8.5, has however
a clear meaning. Indeed, scattering may only happen between + and — particles for
rapidity differences near to o, but does not happen if particles are co-moving (have the
same effective velocity). Thus, for instance, + particles at rapidities —15 and — particles
at rapidities 5 do not scatter according to the right-panel of Fig 8.5. Interestingly, a

more involved plateau structure of effective velocites has been observed recently in [156]
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for the roaming trajectory model.

e Vanishing Velocities (k ~ 0): Interestingly, at the onset of the unstable particle, the
intermediate plateaux both have heights zero. The physical interpretation is that for such
temperatures, + and — particles of rapidities |§| < /2 are essentially stationary, and this
allows them to form the finitely-lived bound state represented by the unstable particle.

We will observe the formation of the unstable particle more precisely in Subsection 8.3.3.

The behaviour of the effective velocities for very high temperatures as described in the item on
“UV limit” can be analytically derived from the TBA equations under some simple assumptions.
Recall the definition of the effective velocities (7.37) and of the dressing operation (7.30). We
know that the kernels ¢4 () are functions that are strongly peaked around § = Fo and we also
know that the functions n(f; +) develop a plateau in the region (8.7). For high temperatures
this will be a very wide plateau of height n = @ = 0.618... (this can be derived from
the constant TBA equations [31]) so that within the region where the kernel is non-vanishing
the occupation numbers are constant and may be taken out of the integral. Thus, at high

temperatures we can approximately write

e0]
R (0; 1) ~ hi(0) + % f A\ (0 = NN F) . (8.15)
o0

An even cruder approximation consists of treating the kernel as a d-function §(6 — A + o) and
writing

h&(0; +) ~ hy(0) + nh{™(0 £+ 05 F) . (8.16)
The equations above are solved by the following functions

hi(0) + nhi(0 + o)

hdr 6:-+) = 8.17
1 ( 7—) 1 _ n2 ( )
For the effective velocities this means that
off sinh @ + nsinh(f + o) 6} o
f:+) ~ f log = » ——. 8.18
ENUED cosh @ + ncosh(f + o) o 83 2 (8.18)

If n = 1 the functions above are exactly tanh (9 + %) In this case n is not 1 but the function
above still resembles a shifted hyperbolic tangent very much. That is the reason why the curves

in the rightmost panel in Fig. 8.5 look a lot like shifted versions of those in the leftmost panel.
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Figure 8.6 Spectral densities for three values of the temperature: 3 = 2e3,2e~ 1! and 2¢~16.
In the two rightmost panels, the vertical axis labels should be multiplied by factors 10® and
10°, respectively, as indicated. In all panels, a dashed horizontal line indicates the height of the
free-fermion peak, 0.04431.../5. For low temperatures (left panel) we observe the free fermion
result; for intermediate temperatures (middle panel) we observe the onset of the unstable
particle with one of the peaks growing beyond the free fermion value; for high temperatures
(right panel) the densities develop one additional local maximum. The evolution of the densities
as functions of temperature can be further explored in this video [157].

8.3.2 Spectral densities

In this section we analyse the main features of the spectral densities p,(6; +) defined in
(7.37) by considering three density profiles for low, intermediate and high temperatures. These
are presented in Fig. 8.6, where, for comparison, the values of the maxima of the free-fermion
densities at large temperatues, pit = g;—é with ¢ = 1.27846... (dashed black line), are shown.

The most important features of the spectral densities at equilibrium are the following:

e Free fermion regime (k < 0): The spectral densities for sufficiently low energies
(Fig. 8.6, left panel) are those of a free fermion and are described by the corresponding

formula
1  coshd FF

=:p, (9). (8.19)

pp(e’i) - %1+€5cosh0 D

This function has maxima around 6 = =+ log g, as seen in the figure; more precisely, the

positions of the maxima scale, for 8 small, as 6 ~ ilog% + o(1) where ¢ = 1.27846...
-1

solves e™f = ¢ — 1. These maxima are at a height that scales as ~ 35> 88 also seen in the

figure.

e Turning on the interaction (x ~ 0): For higher temperatures (Fig. 8.6, middle and
right panels) we still have maxima around =+ log g, but the heights of some of the maxima
start to change as soon as the unstable particle comes into play. For intermediate energies
we observe that for each given particle type, one of the maxima (the right (left) one for +

(—) particles) coincides with its free fermion value whereas the other maximum is higher,
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indicating an “excess” density generated by the onset of the interaction. This asymmetry
is justified by the structure of the kernels, as discussed in Subsection 7.3.2. That is the
¢+ (0) kernel is maximized at § = —o < 0 and is negligible for # > 0 thus the effect of
interaction only manifests itself for # < 0 while the free fermion physics persists for 6 > 0.
This excess grows as temperature increases and gradually leads to the formation of an
additional peak for each particle. The gradual growth can be displayed more clearly in

this video [157].

e Three local maxima (x > 0): Following the observation above, for high temperatures
(compared to the unstable particle’s mass) two new local maxima, one for each density,
emerge located around i(logg + o) (Fig. 8.6, right panel). Thus, at high temperatures,
each spectral density exhibits three local maxima: the free fermion peak expected for that
temperature, the “interacting peak” whose maximum is largest, and a smaller, “subsidiary
peak”. We observe two important features for these peaks. First, the position of the
maxima is once more justified by the scattering matrix which dictates that interaction
is maximized for rapidity differences +o. In particular, the rapidity difference between
the + particle (red) interacting peak and the — particle (blue) subsidiary peak is, at
all temperatures, around —o, the value at which the scattering interaction () is
maximal; and viceversa. Second, for each particle type, the excess area of the interacting
peak compared to the free fermion peak roughly coincides with the area of the subsidiary
peak. The implications of the observation above will be discussed in detail in Subsection

8.3.3.

8.3.3 Emergence of bound states in the scattering dynamics

We now argue that by simultaneously analysing features of the effective velocities and
spectral densities, we gain a new, dynamical insight into the equilibrium scattering theory of

the model.

Recalling Chapter 7, the conventional understanding of unstable particles is based on the
presence of a pole in the scattering amplitudes and on the notion of how the presence of this
particle adds, at large temperatures, new degrees of freedom to the theory: it drives an RG
flow between, in the IR, a double free fermion theory and, in the UV, a non-trivial coset
model. However, the introduction of dynamical quantities such as the effective velocities, in
combination with the two observations we have made in the last point of Subsection 8.3.2, brings

a new, perhaps more intuitive perspective into the interpretation of this unstable particle.
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Figure 8.7 The effective velocities versus the normalized spectral densities ,(0;+) =
2p,(0; +)/p* —1 where p* is the height of the largest local maximum. The inverse temperature
is 8 = 2e71%. The subsidiary peak of particle + (particle —) and the interacting peak of particle
— (particle +) are co-moving at velocity +1 (—1). This is a direct consequence of the formation
of unstable bonds and of the homogeneity of the equilibrium state.

We illustrate this with Fig. 8.7, which shows the same high temperature physics we have
seen in Subsections 8.3.1 and 8.3.2 and combines scaled versions of the curves found in the
right panels of Figs. 8.5 and 8.6. Consider the positions of the local maxima of the spectral
densities in Fig. 8.7 and the corresponding values of the velocities. For particle + (left panel,
red) the density has maxima around logg ~ +16 (free fermion peak), ~ —4 (subsidiary peak)
and ~ —16 (interacting peak). Comparing with the effective velocity curve, the particles these
peaks represent have velocities very nearly +1, +1 and —1, respectively. For particle — (right
panel, blue), the maxima of the free fermion, interacting and subsidiary peaks are around

logg ~ —16, ~ 4 and ~ +16, respectively, with velocities —1, —1 and 1, respectively.

Thus, the velocities associated with the interacting peak of each distribution and the
subsidiary peak of the other distribution are always the same. These particles are co-moving
and thus have the opportunity to bond. Since, as we observed in Subsection 8.3.2, their
rapidity separation +o are at the maxima of the scattering kernel p,+(6), these particles are
indeed subject to a strong interaction, and can form bound states (even if only finitely-lived).
Further, as the “excess” area of the interacting peaks are roughly the same as the areas of the
subsidiary peaks, the excess density created by the onset of interaction and the subsidiary
peak can be interpreted as pairs of bound (+—) and (—+) particles propagating at the same
speed. These are the unstable particles, gathered within two clouds, one right-moving and one
left-moving. The population of unstable, finitely-lived particles thus formed is rendered stable

by the high energy of the thermal bath and the continuous availability of co-moving,
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interacting particles of opposite types.

In summary, varying the temperature and observing the various structures form with their
respective effective velocities, is the most direct way we know of “visualizing” the formation of
the unstable particle. This visualization is particularly striking when observing the continuous

change of the densities as temperature is increased in this video.

Finally, this new perspective connects to the hydrodynamic scaling functions as follows.
In the UV, we have degrees of freedom coming from two free fermions (each with its right-
and left-moving components), and, in addition, one unstable particle (also with its right- and
left-moving components). In order to account for these quantitatively, we need to look at the

energy per unit temperature-square carried by the particles, namely

6 62
= e0) 0 5) (3.20)
The total area under the curves is exactly the energy density (64%/7)q], and according to

Section 8.2 the sum gives the central charge. If we then subtract the free fermion contributions

we obtain an effective measure of the degrees of freedom of the unstable particle:
6,3 6 52
~—Aq, = 2 doe(0) (py(0;+) = p,"(0)) (8.21)

This represents 1/5 of the energy area covered by the free fermion parts (this corresponds to
¢ = 1 for two free fermions), as it should. We then observe that the contributions coming from
the excess area of the interacting peaks largely dominate the contributions from the subsidiary
peaks, as the subsidiary peaks are at smaller values (in absolute values) of rapidities (thus they
carry less energy). Therefore, the contribution of each + particle to the energy current and
densities, and to the central charge, coming from the clouds of unstable particles is dominated

by the excess density of the interacting peak.

Furthermore, for + particles, say, the interacting peak consists of particles propagating
with velocity —1. As this dominates any contribution from the subsidiary peak, this means
that there are more highly energetic + particles propagating with velocity —1 than there are
with velocity +1. Therefore a negative energy current is generated, as observed in Subsection

8.2.1.
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8.4 QOut-of-equilibrium dynamics with unstable particles

We now consider the two subsystems with temperature ratio x # 1, and explore the
resulting out-of-equilibrium effective velocities and spectral densities. As pointed out earlier,
when driving the system out of equilibrium this gives rise to different dynamics whether or
not the original baths admit formation of unstable particles. It is thus helpful to introduce
BL,Rr o

5+ — 2 associated to each bath of the system at ¢ = 0 to identify

the variable Kz p = —log

their initial energetic regimes given by (7.20), (7.21) and (7.20).

8.4.1 Effective Velocities
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Figure 8.8 Steady state effective velocities for three values of S and three values of x,
including (for comparison) the equilibrium case x = 1. The velocity profiles retain many
of their equilibrium features. In the bottom right figure x = % (dashed, green), x = 1 (solid,
pink) and x = 2 (dotted, blue). The variation of the velocities with temperature can be further
explored in this video [158].

In this section we take another look at the effective velocities with a focus on changes with
respect to the equilibrium behaviour. Fig. 8.8 explores this behaviour for low, intermediate and

high temperatures. Our main observations are the following:
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Figure 8.9 Values of f; for various ratios x as functions of log %L, with 67 < 0 and 6; > 0.

The signs are as expected from the behaviours of the effective velocities seen in Fig. 8.8. The
same symbols are employed for 67 and each given x.

e Conformal regime (kpp « 0, kg » 0): Both at low and high temperatures the
equilibrium behaviours are recovered. For low temperatures we find the free fermion
result. For very high temperatures we find the conformal equilibrium result. Once

temperature is high enough the UV result is approached even if 3, # Bg.

e Particles couple mainly to one bath (k. 2 0): For intermediate temperatures, like
the ones considered in the second row of Fig. 8.8, we observe that whereas v*f(6; +) is
virtually unchanged as long as f, is fixed, even if Bg is changed, v*%(; —) is very much
dependent on the values of Sr. This can be explained by the same arguments presented

in Subsection 8.2.2.

e Effective velocities zeroes (k1 z ~ 0): The height of the intermediate plateau of the
velocities that emerges for intermediate temperatures changes with temperature so that
there exists a choice of temperatures log %R ~ —10 for which the plateau of the — particle
velocity is at height zero (as on the dashed green line in the bottom right panel of Fig. 8.8)
and similarly for particle +. This suggests that the effective velocities at this particular
temperature have a continuous set of zeroes. However this is a numerical effect. The
results for #F shown in Fig. 8.9 shows that the values of 7 are always unique but that
for some small range of temperatures our algorithm is not accurate enough to precisely
identify these values. In other words, the intermediate plateau of the effective velocities

is never exactly flat, but its slope is too small to be seen numerically.

e Intermediate regime (min{x; g} <0, max{k g} = 0): At intermediate temperatures

the on set of unstable particles may be only on one original bath. This is clear in Fig.
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8.9 as the plateaux at velocity zero are clear signatures of the formation of the unstable
particles, and these occur at distinct temperature for + and — particles. Following the
second point, there is not a drastic change in the dynamics as each particle is mainly

coupled to one bath.

8.4.2 Spectral densities

Let us now discuss how the spectral densities change in an out-of-equilibrium situation.
Fig. 8.10 shows three examples for low, intermediate and large temperature which can be easily

compared with Fig. 8.6. We notice the following new features:

e Free fermion regime (k; r < 0): For low temperatures (Fig. 8.10, left panel) we recover

the out-of-equilibrium free fermion behaviour

| 1 o(6) O(-9)
pp(97 i) = % cosh ¢ (1 + eBrcoshd + 1 + ePrcoshf .

Br

The maxima are centered around ¢ = log 5% and ¢ = — log %L and continue to be so even

at higher temperatures.

e Onset of the interaction (k. g ~ 0): As in the equilibrium situation, the heights of
the free fermion peaks start to change after the onset of the unstable particle (Fig. 8.10,
middle panel). However still the right peak of particle + density coincides with the free
fermion peak at temperature 3 and the left peak of the — spectral density coincides with
the free fermion peak at inverse temperature Sr. These are the free fermion peaks that we
had identified in the equilibrium situation. The opposite peaks, which have higher heights
than they would in a free fermion theory, are the interacting peaks, as also identified in
the equilibrium situation. Importantly, by contrast here the peaks of + and — particles

have different heights.

e Three Local Maxima (k1 z » 0): For very high temperatures (Fig. 8.10, right panel),
we observe once more a structure with three local maxima per density. The additional
(smaller) maxima are located at — log %L —o (red curve, + spectral density) and log ’%R +o
(blue curve, — spectral density). Following the nomenclature used in the equilibrium
situation, these are the subsidiary peaks. Once more, the excess area of the left-most,
interacting peak in the density of + particles (compared to the free fermion peak at inverse

temperature [Sg) roughly coincides with the area of the subsidiary peak in the density of
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Figure 8.10 Spectral Densities for x = e (T}, > Tg) and three values of the inverse temperatures
(B = 2e73, 27 and 2¢7'6). For the two highest temperatures the vertical axis labels should
be multiplied by 10% and 10, respectively, as indicated. In all panels, dashed (dotted) horizontal
lines indicate the height of the free-fermion peaks, 0.04431.../8; (0.04431.../6gr). A more
complete picture of the dynamics can be gained from this video [159].

— particles. This is made more precise at the end of this subsection.

e Formation of the Unstable Particle (k. z » 0): As for the equilibrium case we can
argue that the excess density of the interacting peak of the + spectral density “couples” to
the subsidiary peak of the — spectral density and viceversa to form a finitely-lived unstable
particle. The only difference with respect to the equilibrium case is that the areas and
heights of all six maxima in the two spectral densities are distinct. In particular, the
smallest maxima of both distributions are now different as one is governed by the right
temperature and the other by the left temperature. This can be seen more precisely in
the additional Fig. 8.11. By computing the areas of all the peaks and comparing them
to each other, this out-of-equilibrium analysis confirms the dynamical explanation of
the formation of unstable particles, by allowing for an unambiguous identification of the
coupling between + and — particles. A numerical evaluation of these areas is presented

below.

e Comparison to Equilibrium: Considering the densities in Fig. 8.11 we observe the
following: for the + particles density we find that the two right-most peaks — the free
fermion and subsidiary peaks — are perfectly well described by the equilibrium density at
inverse temperature 8 = B;, = 2e7'% whereas the left-most peak — the interacting peak
— is described by the equilibrium density at inverse temperature § = 8z = 2¢~*. The
same “cut and paste” structure is observed for the — particles distribution, where the
“cut” is now located around # = 10 (this is the the value of 6, as seen from Fig. 8.9).
This behaviour can be best explained when matching densities with effective velocities.
The velocities associated to the various types of peaks (free fermion, subsidiary and

interacting) are distributed as in the equilibrium case, but now, these determine the
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Figure 8.11 Spectral densities at equilibrium for temperatures 3 = Bz = 2¢7'° and 38 =
Br, = 2e~ 1% and out of equilibrium for the same temperatures. The out-of-equilibrium spectral
densities exhibit a “copy and paste” effect as each peak reproduces exactly a local maximum of
the equilibrium spectral densities at one of the two bath temperatures 8;, and Br. As a result,

many of the GHD quantities (described in Subsections 8.2.2 and 8.4.1) couple mainly to one
bath.

initial bath the particles come from, and thus the temperature they carry.

].Og ﬂL/z t;in tr;in A+ B+ B_ A_

—15 —9.9099 94771 26433.3 68869.5 24477.7 70810.8
—16 —9.9802 9.6275 70689.5 189237. 68793.3 191195.
—17 —9.9802 9.7162 191302. 516162. 189231. 518292.

Table 8.1: Excess areas of the interaction peaks of the spectral densities A, compared to the
areas of the subsidiary peaks By. As expected A, ~ B_ and A_ ~ B,.

Before concluding this subsection we would like to make our statements about the areas of the

various maxima of the spectral densities a little bit more precise. For this purpose let us define

the following quantities:

th R
Ay = J " df ( pp(ev +) - p5F<97 +)5L ) ) A= B df (pp(97 _> - PgF(ea _)5}2 ) )
- tmin
5 t;liﬂ
B, := f df p,(0,+), B_ = J df p,(0,—) . (8.22)
trtlin -5

where R = log 2/, + 6, t=. is the position of the local minimum of the spectral density that is

located between the interacting and subsidiary peaks (that is approximately +10 in Fig. 8.11).
pg F(0; +)p is the free fermion spectral density given by (8.19) at inverse temperature 3. The
subsidiary peaks of the + spectral densities are then located approximately in the intervals

[tris D] and [=5,t,,,]- The choice of the integration limits is of course slightly arbitrary, so
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the areas below are just an illustration of the general statement that A, ~ B_ and A_ ~ B,.
In contrast to the equilibrium case it is now clear that A, # B, and A_ # B_, therefore our
argument based on attributing a certain area of the spectral density curves to the formation of

unstable particles is only plausible if we “couple” the + spectral density curves.

8.5 Conclusions

In conclusion, our numerical study of the SU(3),-HSG model in the partitioning protocol
has shown that it is possible to outline a more physical understanding of unstable excitation in
integrable models by employing the GHD approach. Even at equilibrium, we found a very direct
evidence for such unstable bound states, that is the identification of mutual interacting areas
of quasiparticle densities which are co-moving in the phase-space. We observe a similar physics
when driving the system out of equilibrium, the only difference is that the resulting areas are
in different proportions, signaling that, one bath is more energetic in the initial state and the
stable particles there have more occasion to bond. In both cases, we can identify these areas
with a stable population of unstable excitations, where the stability is due to the homogeneity
and the high-energy of the initial state as well as the large-time dynamic description employed
in this particular set-up. It is thus reasonable to look into more general set-ups where we can
fully exploit the power of the GHD approach to look for truly dynamic signatures of instability.
This will be the purpose of the final chapter of this thesis.
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CHAPTER

NINE

SET-UP 2: INHOMOGENEOUS QUENCH

9.1 The inhomogeneous quench

In this chapter we study the SU(3),-HSG model in an inhomogeneous quench. In particular
we prepare the system in an initial state characterised by spacial inhomogeneities via the

following Gaussian temperature profile:
T(x) =T, + Ty — T)e ™  with Ty, T, € Rsg, (9.1)

and all the TBA functions will be accordingly space-dependent. We will refer to T, as the bath
temperature and T, as the mazimal temperature. Given such an initial configuration, the quench
consists in letting the system evolve at time ¢ # 0, and the resulting out-of-equilibrium dynamics
is described by the GHD equations (7.38) as seen for instance in [160-163] and also summarised
in Section 7.3. In free theories v (x,t,0) = tanh 6, and therefore, at large temperatures, where
large rapidities are involved, excitations mostly move at velocities £1. Typically, interaction in
most integrable QFTs does not qualitatively change the effective velocity, and the same holds
near interacting conformal points. This leads to the splitting of the original particle density

maximum at x = 0 into two identical maxima propagating in opposite directions [160-163].

In this chapter, we will see that the presence of unstable particles modifies this picture
substantially. We will analyse the numerical results presented in [36], and obtained by

adapting the iFluid package [164], which is a MATLAB code that solves GHD for a wide range
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of conditions and integrable models. More details are presented in Appendix D. Before
exploring the evolution, in the next subsection we want to discuss the choice of the

simulations parameters

9.1.1 The initial state

In our numerics the initial state is defined by the simulation parameters 7,, T;,, and the free
parameter of the theory o. Since this state is at equilibrium, we know quite well its properties
from the analysis in Section 8.3. Indeed a time ¢ = 0, the TBA functions of interest are simply
a three-dimensional version of those seen at equilibrium in the homogeneous state (an example
is shown in Fig. 9.1 for the spectral density of particle + and will be analysed in detail in the

next section).

A conclusion from the previous chapter is that even out of equilibrium, the initial conditions
of the system may “hide” the decay of the finitely lived excitations, so that now we can ask: in
which state do we need to initialise the system in such a way as to observe direct evidence of

the instability of the bound states?

To answer this question we make some simple observations based on the analysis in
Sections 8.3 and 8.4. We introduce the parameters ko, = log2T,,, — ¢/2, and set the
maximal temperature 7T,, in an interacting regime i.e. k,, > 0 in such a way as to define
certain regions of the phase-space with high populations of mutually interacting particles:
these are indeed the particles that bound to create unstable particles. One should observe
that in the partitioning protocol, the excess areas identified in Subsection 8.3.3 and 8.4.2, are
associated with unstable excitations that are constantly created and destroyed, giving rise to
stable populations of unstable particles even out of equilibrium. This is because the stable
particles are homogeneously distributed in space and thus provide a constant particle
reservoir to form such unstable bonds. In contrast, in this set-up, the out-of-equilibrium
evolution of the particle modes, combined with the inhomogeneities of the initial state give
rise to a situation where created and destroyed unstable particles may be not sufficiently
balanced and we should be able to observe effective evidence of the short-time life of the
particle in the GHD quantities of interest. One way to engineer such a physical situation is by
releasing these hot and highly interacting finite densities of particles into a low-temperature

environment, and thus choose the simulation parameters in the following regimes:

Ko <0< Ky € KUy - (9.2)
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Figure 9.1 The equilibrium spectral density of particle 4 initialised in the two numerical
simulations analysed in this chapter, with fixed parameters ¢ = 10 and 27}, = ¢’ and bath
temperature either 27, = 0 or 27, = €*. In this last case, the environment is filled by spacial
homogeneous densities of free fermions.

In this set-up the population of unstable particles will be accordingly modified by the lower
particle reservoirs of the bath. Note that, above, we have additionally required that our system
is far from the UV, which occurs for kyy ~ 3 according to our numerics at equilibrium. Indeed
in the UV regime, the finite densities of quasiparticles are found to be too energetic and more
likely to interact, which makes it much harder to observe any signatures of unstable particle

decay.

9.2 Full dynamics

We are now ready to present our numerical results. In this section, we aim to capture the
full dynamical picture and we then want to analyse it in more detail in the next two sections.
We choose o = 10, 2T,, = €’ (i.e. k,, = 2) and the bath temperature T, is either 0 or within

the free fermion regime 27, = 3.

We focus our analysis on the spectral densities and effective velocities of particles +, defined
in (7.37), and on the particle densities defined in (7.36) for i = 1. Another quantity of interest

is obtained by subtracting the free fermion contribution g5* to each particle density ¢ :

Aqg (z,t) = qf (x,1) — g " (1), (9.3)
where
1 (~ cosh 6
FF
t) = — db 94
Y (l’, ) o7 J—oo 1 4 ¢—B(=,t,0) cosho ’ ( )
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For the free fermion, an explicit solution to the GHD equation is known and is

1

5(1‘7 l 9) = (Tm _ Ta)e—(m—ttanh0)2 + T, ’

(9.5)

given the initial state (9.1) and the fact that the free fermion propagation velocity is simply

tanh 6.

Due to the symmetry of the initial state, and the parity transformations of the model, the

dynamical quantitites of particle + and — satisfy the following relations:

pp($,t,0;+) = pp(_xata _07_) ; Ueﬂ(xvt79;+) = _Ueﬁ(_x>ta _07_) . (96)

CIBL(% t) = qg(—%t) Aq(—]i_(l‘?t) = Aqa(_x’ t) : (97)

Thus we can only focus on the dynamics of one particle, say +, and use the transformation
above to obtain the dynamics of particle —. Alternatively, we can focus on both particles and

consider only x > 0 (or similarly z < 0).

As emphasised in Chapter 8, the analysis of spectral densities is helpful in determining
the composition of finite-density states. For our choice of parameters, the spectral density
of particle + at time t = 0 is shown in Fig. 9.1. We can identify three peaks respectively
at 0 ~ —log(2T,,) = —7 (interacting peak), 0 ~ +log(27T,,) = 7 (free fermion peak), and
0 ~ +1og(2T,,) — 0 = —3 (subsidiary peak). The subsidiary peak represents the proportion
of particles 4+ loosely bound with particles —. In Fig. 9.1 the interacting and the subsidiary
peaks are not completely apart, but they will evolve in opposite directions as we know from
Section 8.3 that their effective velocities are of opposite signs (this can be seen also in Fig. 9.2,
in the next subsection). Additionally in the presence of a bath, two identical ridges are formed

around 6 ~ +3 and represent a continuum of free propagating particles.

9.2.1 Tail and decay

Consider a zero-temperature environment as in the colorspace plots in Fig. 9.2. The first
row illustrates the behaviour of the spectral density of particle + as a function of time. At time
t = 0 this is exactly the three-dimensional function plotted on the left picture in Fig. 9.1. The
effective velocity (the second row), for ¢ = 0, shows that the interacting (free fermion) peak
moves at speed —1 (+1), and the subsidiary peak contains a spectrum of effective velocities

captured by the “rainbow” colouring which indicates the presence of intermediate plateaux in
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Figure 9.2 Particle + dynamics for various time snapshots, the parameters are o = 10, T, = 0
(no bath) and 27, = e’. Particle — dynamics follows from (9.6). We introduce the short
notation pf = p,(x,t,0; +) and v = v*f(z,¢,0; +). Row 1: Spectral density exhibiting three
characteristic local maxima, the least of which decays in time leading to the formation of a tail.
Row 2: Effective velocities dominated by the values +1 but exhibiting an intermediate plateau
in rapidity space which is correlated with the decaying peak of the spectral density.

the rapidity variable.

Turning on time, the most salient feature is that the subsidiary peak moves as per the
initial splitting, but then falls apart, leaving behind a tail of particles moving with velocities
tending to —1. Unstable particles start moving at speed near +1, but, as they enter the
zero-temperature environment, decay faster than they can form, and we see the particle +
components un-binding and recovering their non-interacting speeds near to —1. After the initial
splitting, the right-moving wave reduces in time, leaving just the free fermion contribution
(which remains unchanged for larger times) and a tail attached to the left-moving wave at

z < 0.

9.2.2 Magnetic-fluid effect

Do these behaviours change in the presence of a bath at nonzero temperature? Fig. 9.3
shows the z > 0 part of the functions pi(z,t,0) (see also this video [165] for a complete
three-dimensional view). The presence of a bath does not significantly change the effective

velocities as free fermions propagate with velocity tanh 6.

In contrast, an important change occurs in the spectral densities: the subsidiary peak
observed at time ¢ = 0 no longer fully disintegrates under time evolution. Instead, it largely
persists, propagating on top of the § = —3 ridge. Because of the spread of effective velocities
in the initial subsidiary peak, this cannot be explained by a large population of particles at

constant velocity +1. Indeed, there is a large difference between the effective velocity of these
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particles and the propagation velocity of the peaks (this will be discussed in details in Section
9.3). Why is this wave travelling at speed +1, riding on the bath? The answer is that the large
wave of particles — going at velocity +1 interacts with particles + in the bath, because they
are present around the rapidities of the subsidiary peak. They form unstable particles as they

pass by, thus changing the bath density. The phenomenon observed in Fig. 9.3 is reminiscent of

Figure 9.3 Snapshots of the spectral densities pzf = pp(z,t,0; 1) for x = 0 in the presence of
a bath at temperature 27, = €, o = 10 and 27T}, = e”. Recalling (9.6), the dynamics for z < 0
is straightforwards. Whilst the interacting and free fermion peaks remain largely unchanged,
the bath facilitates the formation of a persistent peak that travels at speed +1 “riding” on
the bath. The two light-blue ridges are also due to the bath whose temperature is in the free
fermion region of the theory. The ridges look “static” because they are uniformly distributed
in space but represent particles propagating with opposite effective velocities +1. See also the
the videos [165, 166].

that of a magnet passing by a magnetic fluid: here, the decaying subsidiary peak is driven over
the bath as the bath interacts with the magnet-like interacting peak travelling at velocity +1
(these are indeed found at the rapidity distance that maximases their interaction). The overall
effect is the creation of a wave that follows the magnet. However the fluid itself does not need
to move at velocity +1, meaning that this wave is always formed of different particles coming
from either the bath and the subsidiary peak that under the effect of the magnet give rise to a
persistent peak. We remark that the life-time of the unstable particles is of order e~ %, and thus
is not directly observable: unstable particles rapidly decay and reform within the persistent

peak, with the end result of preserving it for large times.

9.2.3 Bath vs. no bath

The full dynamical picture described earlier can be summarised in this video [166].
Furthermore, similar features such as tail and decay can be found in the particle densities, as
we can see for particle + in left figures Fig. 9.4 and bath temperatures 27, = 0 (top) and
2T, = ¢* (bottom). We recall that the particle densities are simply the spectral densities
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integrated in 6, therefore they describe the same physics seen earlier but in real space. Finally
we explore the function (9.3) for particle + in the right pictures. For z > 0 this function
describes only particles of the (either decaying or persistent) subsidiary peak and the tail.
The effect of the bath is seen starkly in the right-bottom picture: the persistent peak of the
spectral density displayed in Fig. 9.3 corresponds to a right-mover peak propagating with
velocity +1, which remains unchanged over time. In contrast for 7, = 0 the peak is decaying

and only the tail is left at large time.

(z,t) Agf (z,t) —2
T T T T 3
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Figure 9.4 Particle density of particle + (left) and Agg (right) at time ¢ indicated in the
legend. The pictures show the full decay of the left-mover peak in the absence of a bath (top),
and its persistence in the presence of a bath (bottom). The highest functions in the top left
and bottom left figures are at t = 0.

It is worth mentioning that the presence of a persistent peak is not a consequence of fine
tuning of parameters but a robust effect, present more generally for initial states in the regime
(9.2), as peaks have finite extension and will overlap for a wide range of temperatures. Other
examples will be shown in [148], where a more detailed analysis on the variation of parameters
will be conducted. Further evidence that the signatures of decay found here provide a non-trivial

characterisation of unstable particles is provided in the next two subsections.

9.3 A closer look to the subsidiary peak

We have seen that both the function Agy (see Fig. 9.4) and the spectral density (see Figs. 9.2

and 9.3) exhibit a peak which either decays or persists for large times, depending on whether or
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not there is a bath. In this section, we examine the features of this peak in more detail. We will
look at cross-sections of the spectral density’s subsidiary peak and of the velocity distribution
for particles in this peak, for fixed values of x and t. We will make an important distinction
between effective and propagation velocities and show that these are in general different, a
feature that is dictated by interaction with the interacting peak of the opposite particle type

and would therefore be absent if evolution was free, as explored in Section 9.4.

9.3.1 Effective vs. propagation velocities

Let us consider the effective velocity of particles both in the presence and in the absence of
a bath. We will report on particle + with particle — admitting an analogous analysis. Data

facilitating this discussion is presented in Table 4.

No bath Bath
t x* 0* h* | x*/t | v* x* o* h* | x*/t | v*

2.00 1.90 | -3.30 | 5.89 | 0.95 | 0.61 1.80 | -3.44 | 5.89 | 0.90 | 0.54
3.00 | 2.80 |-3.15 | 5.50| 0.93 | 0.65 || 2.80 | -3.07 | 5.47 | 0.93 | 0.67
4.00 | 3.80 | -2.70 | 5.07 | 0.95 | 0.76 || 3.80 | -2.70 | 5.03 | 0.95 | 0.76
5.00 | 490 |-2.17 | 4.80 ] 0.98 | 0.84 || 4.70 | -2.54 | 453 | 0.94 | 0.77
6.00 | 5.70 | -2.17 | 4.57 | 0.95 | 0.82 || 5.70 | -2.24 | 4.06 | 0.95 | 0.81
7.00 | 6.50 |-2.17 | 3.78 | 0.93 | 0.78 || 6.90 | -2.39 | 3.42 | 0.99 | 0.81
8.00 | 7.50 |-1.79 | 290 | 0.94 | 0.81 || 790 | -2.39 | 3.41 | 0.99 | 0.81
9.00 | 8.40 |-1.64 | 2.19| 0.93 | 0.79 || 9.00 | -2.39 | 3.41 | 1.00 | 0.81
10.00 | 9.40 | -1.26 | 1.50 | 0.94 | 0.80 || 10.00 | -2.39 | 3.41 | 1.00 | 0.81
11.00 | 10.30 | -1.03 | 0.96 | 0.94 | 0.77 || 11.00 | -2.39 | 3.42 | 1.00 | 0.81
12.00 | 11.30 | -0.50 | 0.56 | 0.94 | 0.78 || 12.00 | -2.39 | 3.42 | 1.00 | 0.81

Table 9.1: Numerical results for the subsidiary peak of the spectral density of particle + in
the absence (T, = 0) and presence (27, = €*) of a bath. The other parameters are fixed to
o =10 and T}, = 2¢7 as before. z*, §* and h* are the phase-space coordinates and the height of
the local maximum of the subsidiary peak, respectively and v* = v*%F (2*, ¢, 6*). The quantity
x*/t represents the observed propagation velocity of the subsidiary peak of particle + resulting
from its interaction with the interacting peak of particle — which propagates at speed +1. The
numerical uncertainty of phase-space coordinates is Az* = 0.10 and Af* = 0.07 to 0.08, with
lower rapidity resolution for less negative values of 0* (as discussed in Appendix D).

We consider two different velocities: the standard effective velocity v* := v°f(x* t 6%)
evaluated at the maximum of the subsidiary peak, and the propagation velocity, x*/t that is
the actual speed at which the maximum of the peak is seen to propagate. The choices of
times t € [2,12] was dictated by the time of clear separation of the subsidiary peak from the
interacting peak at t = 2 and the time at which almost complete decay of the subsidiary peak

is observed for no bath at ¢ = 12.

Looking at this table it is perhaps most striking that the effective and propagation velocities
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are markedly different both in the presence and in the absence of a bath. Thus, even if the
presence of a bath gives rise to the magnetic fluid phenomenon described in the paper, that is,
the emergence of a persisting peak that seems to ride on top of the bath, the fact is that, in
the absence of a bath, the interaction with particles of type — still has a huge influence on the
propagation velocity of the subsidiary peak. Indeed, the peak propagates faster than would be
expected from its effective velocity distribution and this can only be attributed to non-trivial
interaction with particles of type — which is inextricably linked to the presence of unstable
particles. This increase in velocity is however larger in the presence of a bath and for large

times it reaches the maximum value +1.

In addition, we can make the following interesting observations:

e For early times data are very similar both in the presence and absence of a bath. Indeed,
for times t € [2, 7] decay occurs whether or not there is a bath. We can see this decay most
clearly from the table and the height of maximum h* which reduces from 5.89 at t = 2
to 3.42 at t = 7. The way in which this decay or particle loss occurs is asymmetric in
and results in an “under-cut” in the shape of the subsidiary peak, with the lost particles
contributing to a growing tail linking the subsidiary peak to the interacting peak of the
same particle species (this tail is seen most clearly in Fig. 9.2). As a result, not only
the height of the maximum is reduced but its position in phase-space shifts towards less

negative values of 6.

e In the absence of a bath, further asymmetric decay of the subsidiary peak continues until
the peak disintegrates first into a front-like feature and ultimately into a section of the

tail joining the free fermion and the interacting peak of the same species.

e In the presence of a bath, the subsidiary peak becomes persistent from time ¢t = 7, with
the rapidity space position fixed at 8% = —2.39, height h* = 3.42 and propagation velocity
x*/t = 1. The fact that the subsidiary peak moves along the interacting peak at velocity
+1 rather than the much slower effective velocity of its constituents is the embodiment of
the magnetic-fluid mechanism, explained in Subsection 9.2.2. The subsidiary peak does
not consist of the same particles propagating but instead of newly formed bound-states
between the particles of the interacting peak of particle — and the particle reservoir of
particle + available from the bath ridge. Nevertheless, the asymmetric decay process,
being independent from the persistent feature, is still present in the case with bath. It

is only masked by the dominant mechanism of the magnetic-fluid for times larger than
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Figure 9.5 Effective velocities (left axis, blue) and spectral density cross-sections (right axis,
red) of particle 4+ in row 1 and — in row 2 at time ¢ = 10 in the case of no bath. For particle + we
see the subsidiary (decaying) and free fermion peaks whereas for particle — we see the interacting
peak. Columns show these quantities sequentially for positions x = 9,9.2,9.4,9.6,9.8. The
central emphasised column corresponds to z = x* = 9.4, that is the position of the maximum
of the subsidiary peak of particle +. The vertical dashed lines indicate the maximum of particle
+ subsidiary peak (0* = —1.26) in row 1 and the maximum of particle — interacting peak in row
2, which is around the value 6* + o as dictated by the structure of the scattering phases. The
horizontal dashed lines indicate the effective velocity of the maximum of particle + subsidiary
peak and are annotated with the corresponding numerical values.

t=1.

9.3.2 On the shape of the subsidiary peak

For time t = 10, a deeper understanding of the data can be reached in conjunction with
FIGs. 9.5 and 9.6 which show cross-sections of the effective velocity and spectral density of
particles £+ for the bath and no bath situations. In particular, we focus here on the shape of
the subsidiary peak which can now be accessed more clearly through cross-sections at fixed

space-time positions. Let us summarize our main observations:

e In Fig. 9.5. the subsidiary peak of particle +, although very small compared to the free
fermion peak, can still be seen to be highly asymmetric both in the z-coordinate and
rapidity space. In fact, it is more akin to a wave-front, with particles at the back slower
than those in the front. It is worth noticing that by time ¢ = 10 the decaying peak is

also significantly lagging behind the interacting peak of particle — (since its propagating

178



Cecilia De Fazio

oc=10, 2T, =¢€2, 2T, =e",t =10
x=10 x=10.2

0.81

S I &
> / 1
0.5 j / |
1 |
-10 -10 0 10 -10 0
0 0

Figure 9.6 Effective velocities (left axis, red) and spectral density cross-sections (right axis,
blue) of particle + in row 1 and — in row 2 at time ¢ = 10 in the case of bath temperature
2T, = e3. For particle + we see the subsidiary (persisting) and free fermion peaks whereas for
particle — we see the (large) interacting peak a very small bump corresponding to the bath
(for particle + this is masked by the persisting peak sitting right on top). Columns show these
quantities sequentially for positions z = 9.6,9.8,10,10.2,10.4. The emphasised central column
corresponds to x = z* = 10 the position of the maximum of subsidiary peak of particle +. The
vertical dashed lines indicate the maximum of particle + subsidiary peak (6* = —2.39) in row
1 and the maximum of particle — interacting peak in row 2, which is around the value 6* + o
as dictated by the structure of the scattering phases. The horizontal dashed lines indicate the
effective velocity of the maximum of particle + subsidiary peak and are annotated with the
corresponding numerical values.

velocity is 9.4 whereas for the interacting peak it is +1) and eventually falls out of its

interaction range.

e In contrast with the last point, in Fig. 9.6 the peak is symmetric in the coordinate space
and is accompanied by a velocity profile symmetric with respect to its maximum. The
maximum of the subsidiary peak of particle + coincides in the coordinate space with the
maximum of the interacting peak of particle — and both can be found at z = 10 for
t = 10. Despite slower effective velocity, the propagation velocity of the subsidiary peak
equals that of the magnet-like interacting peak, which interacts with the bath and drags
the subsidiary peak along. This is the magnetic-fluid mechanism reported in Subsection

(9.2.2).
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Figure 9.7 Particle density in the HSG-model p,(x,t,0; +) (red) versus p,(z —ttanh6,0,0; +)
(blue). The top/bottom rows correspond to the absence/presence of a bath. The peak in the
first column has been cut so as to show the remaining figures more clearly. The dotted curves
represent the change in the height of the local maxima of the spectral densities as function of
time. Red and blue curves generally differ in the height of the local maxima as well as the
presence (absence) of a tail.

9.4 Comparison with free-particle evolution

We want now to compare the numerical results presented in the previous sections with
results obtained in the absence interactions. We can then ask: are the properties of decay, tails
and persistence really characteristics of the formation and decay of unstable particles due to
nontrivial interaction? In this section we show that this is the case: the interaction is essential

in order to explain the observed effects.

There are many ways how one can realise a free-particle evolution. One might consider
the same quench problem, with the same initial temperature distribution, in a free theory.
This however leads to a different initial density distribution, hence any comparison with the
interacting case is not very meaningful. Instead, one may compare with what would happen for
a free-particle system with the same initial spectral distribution of particles: the distribution
in space-rapidity p;—’(x, 0,0), describing the density of particles with positions x and relativistic

velocities tanh 0 at time ¢t = 0.

The comparison is presented in Fig. 9.7, where we see stark differences between free and
interacting evolution of the particle density of particle +. In particular, the two emitted waves

remain stable in the free-evolution. In order to interpret these results, we remark that in the free
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evolution, the distribution of velocities is very different from that of the initial effective velocities
seen in Fig. 9.2: particles + with negative rapidities that pertain to the subsidiary peak have
negative effective velocities, instead of positive. Hence, with the free dynamics, these particles
will start moving towards the left instead of the right as observed with interactions. Thus,
free-particle evolution according to the initial spectral distribution is significantly different
from the outset, with peaks of very different sizes. Furthermore, the distribution of rapidities
leads to sharply defined velocities, which are all either very near to 1 or to —1. Hence there is
very little dispersion, and no tail or decay is observed. Those are thus a stark indication of the

presence of interaction.

It is also striking to observe that in the case without bath, the decay under interacting
evolution leads to a final right-moving wave that agrees precisely with the right-moving wave
emitted from the initial distribution in the free evolution case. This indicated that all
unstable particles, represented by the original subsidiary peak, have decayed, and lie within
the tail. With a bath, there remains an additional particle density, representing the
population of unstable particles stabilised by the presence of the bath.

9.5 Conclusions

By studying the SU(3),-HSG model in an inhomogeneous set-up (with temperature profile
(9.1)), we have found further and even more direct evidence of the unstable excitation on the
out-of-equilibrium densities and effective velocities of the individual particles. In particular,
signatures of instability can be found in the decay of and the resulting formation of tails in the
subsidiary peaks of the out-of-equilibrium spectral densities of the individual particles. These
signatures can be only explained in terms of a non-trivial interaction among the stable particles,
as seen in comparison with the free evolution obtained from the same initial spectral density
profile. Moreover, the large-time evolution of the interacting system changes whether or not
there is a bath. In the presence of a bath, a novel “magnetic fluid effect” emerges: for each
individual particle + the subsidiary peak does not entirely decay and gives rise to a persistent
wave of particles “riding” on top of the bath and following the magnet-like interacting peak
as this passes by. Within the persistent peak unstable particles are created and destroyed in
a stable proportion, but involving always different stable particles. As a consequence a stark
difference between the propagation velocities and the effective velocities at the top of the peaks

is observed and is fully explained by the instability of the bound state.
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CONCLURSION

In this thesis we have looked at two different problems in the context of integrable QFT: the
universal properties of the excited state entanglement and the dynamics of unstable excitations.
Although these are two very different problems, a common feature is that their solution relies
on a simple quasiparticle description. In the course of this thesis we have provided various
types of evidence that the study of the properties of quasiparticles as well as of their dynamics

is crucial to achieve a better understanding of both problems.

In part I we have investigated the entanglement content of multi-particle states by
analysing different partitions of the massive free boson, in the limit where both the volume L
and regions’ sizes {; are sent to infinity in fixed proportions r; = ¢;/L. The results
(summarised in Section 6.1) take a simple and universal form as functions of r;. They are
independent of the mass and energy of the excitations, and of the connectivity of the
entanglement regions. The qubit picture (introduced in Section 4.8 for a connected region and
extended in Sections 5.3 and 5.6 for two and multiple regions) provides a natural probabilistic
interpretation for the entanglement carried by quasiparticles: this is, under the flat
probability assumption, the entanglement of a multi-qubit state, where qubits describe the
occupancy configuration of the quasiparticles in the regions of the partition. This
configuration fully determines the associated entanglement. We expect these results to take a
universal form for a wide variety of theories (discussed in Section 6.2) as long as the
quasiparticles can be localised within the entanglement regions. In this context, the qubit
interpretation combines the semiclassical picture of localised excitations, controlled by
correlation lengths and De broglie wave-length, with the quantum effect of
“indistinguishability”. These interconnected properties of locality and indistinguishability are

what best characterise the entanglement content of a finite number of quasiparticles.
The results presented in part I of this thesis provide a complete understanding of the most
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popular measures of entanglement in zero-density excited states of the one-dimensional
massive free boson at zero-temperature. An interesting direction for future work is to extend
the study to other measures of entanglement. In [167], this extension will be addressed for the
symmetry resolved entanglement, an entanglement measure defined in terms of internal
symmetries of the model. Many of the techniques seen in Chapters 4 and 5 generalise to this
case. Indeed a twist field description to the symmetry resolved entanglement has been
recently provided [168], and used to treat the ground state in [169-171]. Another possible
development is to consider the next-to-leading corrections for the entanglement increments in
the limit (6.1). We now expect these contributions to depend on the details of the state, such
as the energy and rapidity. It would be interesting to see if the qubit picture can be modified
to also capture these features. More challenging will be to address the problem of excited
state entanglement in interacting integrable QFT. Despite the evidence discussed in Section
6.2, a rigorous proof of the validity of our results for interacting field theories is missing. The
challenge consists in finding a good finite-volume regularisation for branch-point twist fields
that, as discussed in Subsection 3.2.3, is still an open problem. Our analysis of the massive
free boson provides evidence that this is rather a technical problem than a real limitation, and
thus it should be possible to extent the finite-volume techniques [86, 87] at least for
non-diagonal form factors. It would be interesting to investigate under which conditions the
results are still valid in the presence of interactions and if they come only from non-diagonal

form factors also in these cases.

In part II we have shown how unstable particles can be seen in a new light within the
GHD framework. By looking at the dynamics of the individual constituent particles, we have
found new direct and physically meaningful signatures of instability. One of the most surprising
results is that even at equilibrium it is possible to speak of a rich physics. In particular, at
high temperatures we observe areas of quasiparticle densities which are co-moving in the phase
space, forming finitely-lived bound states. We can identify these areas with a stable population
of unstable particles. Indeed these bound states are continuously replenished thanks to the
high temperature and the homogeneity of the state. In the partitioning protocol (discussed
in Chapter 8), this picture does not change substantially, as we observe the stable areas of
quasiparticles even out of equilibrium, but now these are in different proportions for particle +
and — as they couple mainly to one bath. In contrast, in the inhomogeneous quench (discussed

in Chapter 9), the instability of the bound state is made visible by the inhomogenuity of the
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state. We thus observe direct signatures of instability such as decay and formation of tails
in the spectral densities and particle densities. Importantly, in the presence of a bath, a new
hydrodynamic phenomenon comes into play: the long-time persistence of a small but significant
wave of particles “riding” on top of the bath, propelled by its interaction with the large wave

of particles of the opposite type.

Given how rich the dynamics of this simple model is, it would be very interesting to study
other models of the same HSG family with richer particle spectra, where more unstable particles
with tunable masses and decay widths are present. There is also still much to learn about
the time evolution of hydrodynamic quantities under variation of T,, 7T}, and o, and this will
be addressed in [148], where also a more quantitative analysis of the phenomena discussed
in this thesis will be presented. The hope is that, with a good qualitative and quantitative
characterisation of these features, we may lay the foundation for an effective theory where the
large-time stable populations of stable particles (observed in the two different set-ups considered

in this thesis) are representative of the unstable excitations.
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APPENDIX

A

CONTOUR-INTEGRAL APPROACH FOR TWO
DISCONNECTED REGIONS

In this appendix we outline the computational steps of the four-point functions (5.17) and

(5.18), re-written below:

Fo(NENE) = pnlllhg T (0) 10T, (1) 1

p p p

W Ty (w2) 10T, (3) [ {1} 2 Dpir
(A.1)

Fo (NENE) = i T, (0) 10T, (00) 10T, (w2) 170 T, () {1 e -
(A.2)

We focus on the sector correlator ]:'p associated to the nth Rényi entropy. The same procedure
can be implemented for for ]}p. Of course the different intermediate states and the different

product of fields involved in (A.2) will lead to different outcomes.

Notation:

We denote the rapidities of the complete sets of states (referring to the correlator in (A.1)

and starting from left to right) by 8¢, af, B¢

€

and their numbers by m¢, k¢, m¢, respectively. As
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usual € = +. The rapidities satisfy the following Bethe-Yang quantization conditions (5.6)

Qg (8) = mLsinh (8)) - 2me- = 2mJ, (A3)

Q" (af) = mLsinh(af) = 2l (A.4)
e, 1/ e _ : ~§ . B _ ~.E

Qy ( 3¢) = mLsinh (@) 27ren 2 Jf . (A.5)

Additionally, we introduce the following notation for the sets of rapidities in the various

intermediate states

mi = {ﬂl""’/@m+7/61_7'"’/87’;7}7
l_{i:{ozf,...,oz,;,af,...,a,;_}, (A.6)
@i = {B 7"'7ﬂm+75177"'76;17}7

and in the external states of equal rapidities:

N* = (0 10y, N = {05 J10)5- - (A7)

The quantization conditions for rapidities in N and N are the same for both particles and
antiparticles and are given by equation (5.14).
The expansion

Using the transformation (3.47) we can expand (A.1) into infinite volume form factors:

71x3N;,P(9)

AE) - TSy e.zz

el NeiR
1258 25 3 25 B o
ixlzznﬁl ( )@(332 371)21 1 ( )ez(xg mz)zglp(55>

I L 0] [T15 28 (00 |11 LB
X (N[5 (0)| ) ([ T,(0)] ) (It T,(0) ) (aia* 77, (0) | N

where P(6) = msinh § and E(#) = m cosh § are the single-particle momenta and single-particle
energy respectively. The elements in the last row can be of course written in terms of elementary
form factors of U(1)-fields such as (4.39), which is the form that one usually considers to treat
the expansion above. However, in this appendix we intend to clarify some computational subtle

points, and refer the curious reader to [28] for full details. For this purpose it is fine to keep
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the form factors in their general form as above to simplify the notation.

In Section 4.5 we have presented a computational recipe for the two-point function. This has
a natural extension to correlators involving an higher number of fields and we discuss below the
main changes that one needs to account for in the treatment of four-point correlators. Similar
to the two-point case the U(1)-charge constrains the numbers of particles in the intermediate

states but we now have more constraints:
+ - _ .+ -+ T N -
Ny =N, =m"—m” =k" -k =m"—m =N - N, . (A.9)

One interesting difference is that due to the quantization conditions (A.4), some rapidities in
the intermediate states | k) may coincide with those of the external states. This does not change
the fact that the form factors are non-diagonal, as in each form factor the rapidities on the
two sides are always distinct. In order to correctly account for the different contributions, we

separate the rapidities into two groups k™ — l_(iUKi, one coinciding with 6

K* = {9}K+U{9}K (A.10)

and the rest k*. We can thus also separate the quantum number sums as

Z i dOFEKKS ). (A.11)

€=0 {Ie $IO

S ET ) — Y

{1}

The functions f represents the product of form factors in (A.8), note that the order of the
rapidities in each set does not matter (since we are dealing with free bosons, the form factors
are symmetric in all rapidities). We stress that at this stage all the rapidities in the formula
are solutions of the appropriate Bethe-Yang equations. This will not be the case anymore when

we advance to the first computational step.

Step 1: Transforming sums into contour integrals

We rewrite our formulae in terms of contour integrals:

L) age f(s. )
Z - ZLJE 27 engl i)—l’ (A.12)

JieZ

d
2 :ZJ 0‘2606), (A.13)
IEEZ Cje v P Z)_]_

189



APPENDIX A. CONTOUR-INTEGRAL APPROACH FOR TWO DISCONNECTED
REGIONS

e e
¥ ) ], % B ) (A1)
Jsez
where the Cs are small contours around solutions of the Bethe-Yang equations and the functions
@y defined in (A.3) ensure that the integrand has a pole exactly when the Bethe-Yang equation
is satisfied.
We remark that in the equations above the integral variables on the right hand side are no
longer Bethe-Yang solutions.! This means that they can cross points where the function f
shows singularities i.e. where the form factors in (A.8) has some equal rapidities on the two
sides (note that this is only possible within the contour integrals). When this happens we use
the kinematic pole property (4.45) of two-particle form factors to “contract” such rapidities. In
the next computational step we want to identify all the possible contractions involving rapidities
of the intermediate states and look into the pole structures of the form factors “inside” their
contour integrals. As seen for the two-point functions, the analysis of the form factor poles
provides the right prescription to evaluate the dominant contributions to the expansion (A.8)

in the scaling limit (5.2).

Step 2: manipulating contour integrals

In order to implement correctly the contour integral approach it is convenient to treat one
type of intermediate states at a time and to convert their sums at the exact moment when we
work on that specif type. Note that the expansion (A.8) never involves the sets of states | m™)
and ‘ mi> in the same form factors. A good strategy is to treat first these two sets where we

need to focus on only two form factors at a time, and finally consider the states | k).

We concentrate on the states |m*™). Once we transforms their sums into contour integral
we notice that rapidities in [m*) can be contracted with others in three different ways,

schematically:

L (NE [T (0)) mty mE T, (0) K, K (A15)

Note that only contractions between particles of the same U(1)-charge are allowed as these
correspond to elementary form factors of opposite charge. We know in fact from Subsection
4.3.3 that these are the only non-zero form factors of U(1)-fields. Each single contraction

in equation (A.15) corresponds to a single-pole residue. However there will be terms of the

n a way, denoting the two variables on the right and left hand sides of equations (A.12), (A.13), (A.14)
with the same symbols is an abuse of notation that is however convenient to keep track of the different origins
of the contour integrals.
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expansion where the function f shows a double-pole. This precisely occurs when a rapidity
35 is contracted with a 6 rapidity in both form factors (as both states |Hi> and ‘Ki> are
composed of only #s). Similarly to the case seen in Subsection 4.5.1.1, we need to subtract the

contribution generated by these poles. The contour after the deformation is:

Cre =Cs—Co— Cac, €=, (A.16)
=2 Z

JieZ

where o # 0, and Cy and Ca§ are contours crossing the kinematic poles f = 6 and 3 = o
respectively whereas the function f is regular at any points of the contour C-. The

multi-contour for all 3f rapidities is

[CT]™ = CxC x---xC°. (A.17)

The order of contours does not matter due to the symmetry of the function f mentioned above.
We can expand the integration multi-contour by substituting (A.16) into (A.17). As a result

there are several terms of the multi-contour that give the same residue and we can write

[}

[C;]me ~ Z (—1)™=*" G (me, mf, ms) [Cs]™S x [HC ] [Co]™ (A.18)

me
Jj=

—_

me,mg,me,

where 7;s are some rapidities in k°, and G (m&,mg,m) is a combinatorial factor resulting
from the power expansion. Crucially the non-negative integer summation indices in (A.18) are

constrained by
mt =me + myg + my,, (A.19)

Consider integrals over Cv§v form factors there produce only first order poles, as this correspond
to contracting rapitidities only in the second form factor. Consider instead Cy, as mentioned
before, if M€ # 0, the product of the two first form factors produces both second and first order
poles. We denote by mg /2 the number of first order poles arising from the first/second form

factor, and by mg ; the number of second order poles. They satisfy the condition

Evaluating the residua of these poles produces several types of factors in the resulting expansion,
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after appropriate relabelling of the rapiditity sets. We refer the reader to [26] for the full
computations. Below we wish to use some simple arguments to give a flavour of how the

different poles contribute to the expansions.

In Subsection 4.5.1.2, we have evaluated a number N{ of second order pole residua and
after relabelling m* — m¢ — N¢ these introduce a factor proportional to [LE (G)QSP(T)]N; in
the expansion. Similar poles may occur also in this case and the corresponding residua give
the same contribution as above with r replaced by a linear combination of the ratios ry, ro, 3.
The exact combination depends on the specific residue and comes from different exponential
functions involved there.

In contrast, when we consider four-point functions we need also to account for first order poles.
The way how these change the structure of the expansion can be understood by looking at

the case of a single first-order pole for instance f = . After evaluating a first-order pole and

relabelling the rapidity set appropriately m¢ — m® — 1 | we obtain schematically:

e enP)
‘ : N* £ (m*|T,(0)| k¥, K*). ..
J—CG 277' 61‘@5»1(6:) B 1<— |7;(0)|m ><m |Tp(0)|_ , >

— L LRONO{GYT,(0) m*) m, {8} [T, (0)] kF K. (A.21)

Thus as a result of the residue, the contracted rapidity 6 is trivially replaced in the regular
form factors. Additionally the residue contributes a constant factor R*! that is independent
of the ratios 71,79, r3. When we consider other first-order residua (such as those involving aj
rapidities) these generate different factors as the exponential functions in the integrand would be
generally different. For this reason the factors R! depend also on the quantization conditions.
Although first-order poles contribute to the expansion (A.8) with only volume-independent
factors, they reshuffle rapitidies in the four form factors. These rapidities may eventually
recombine with others in |k) and produce higher order form factor poles, which do contribute

to the expansion with volume-dependent factors?.

The computational recipe consists of evaluating all the residua involved in equations (A.19)
and (A.20) and relabel accordingly rapitidies in |m*). Then, the exact same considerations
above are valid for states ’mi> Indeed, one can easily notice that in the expansion (A.8)
the third and forth form factors are the mirrored version of the first and second ones, up to

replacement of the states [m* ) with |m*), and |N*) with |ﬁi> The case of |k*) is instead

2Note that this scenario could not happen in the case of two-point functions such as that in Subsection
(4.5.1.2) as there we have inserted only a complete set of state, and for this reason we have not considered
first-order pole at all.
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more involved. Indeed after manipulating contour integrals associated to the rapidity sets
m* and m® there will be rapidities afs in each form factors of the expansion (A.8), resulting
from first-order poles of either 55 = aj and B; = «f (which give results similar to (A.21) both
producing different factors). To reflect this the original set k® can be partitioned into four parts,
namely k® = ki, [ J k53 kS, k), where each subset kf, is composed of rapidities of, that at
the end of the manipulation process will appear in the ith and kth form factors. Although each
of these subsets needs to be treated in a separate way, we can make some general statements by
concentrating on a particular rapidity ;. Once the sums have been transformed into contour
integrals, we want to deform the contour into one encircling the real axis Ce., however, we need
to subtract the residua of poles at o, = 6, since these poles are not included in the original

contour. That is

Co:= D Car, = C—Cy. (A.22)

I#10
It is important to note that C— must be chosen such as to run closer to the real axis than the
contour C«;, for rapidities in m® and m®, to avoid capturing undesired residua. Although the
resulting multi-contour integral has similar structure to the one analysed in Subsection 4.5.1.2,
it finally leads to a different residue calculation. In this particular case, in fact, the denominator
@ (%) 1 of the contour integral (A.13) is singular at o, = 6 and the form factors (which
would be part of the function f(a$, ...) in the numerator) can also have kinematic singularities
at this point. Since any given rapidity «f, appears in two form factors it follows then that we
can have first, second, and third order poles. However it is possible to prove that only the third
order pole-contributions will survive in the scaling limit (5.2). Indeed each third-order pole
residue introduces a factor LE(0)g(x) in the expansion, and thus contributes to reducing the
power of L in the denominator of expansion (A.8), while the residua resulting from the other
poles turn out to be volume-independent. The function §(z) is a second-order polynomial in z,
where z is a linear combination of ratios 71, 79, r3. Again, the exact form of x depends on the
integrand of the contour integral®. We need of course to consider all these contributions in each

subset k° and correctly account for the combinatorial factors arising from pairing rapidities.

Once completed the entire procedure described above, the function f will be regular in all

variable and we can move to the next computational step.

3If we are interested in the correlator (A.2), these poles would still produce factors LE(6)g(z') but with
different combination z’ of ratios rq,rs, 73.

193



APPENDIX A. CONTOUR-INTEGRAL APPROACH FOR TWO DISCONNECTED
REGIONS

Step 3: establishing the large-volume leading contribution

The evaluations of residua introduce some constrains due to the limited total number of 8

rapidities that can take part in the residue calculation. Computations for rapidity sets m* and

m° imply
mj < min (N5, M<) | M, < min (N;, M€> ,
€ € € ~ € ~ € €
me’l + m97d < Np s m971 + mgyd < M ,
€ € € ~ € ~ € \T€E
Myo + My g <M<, My o+ My g < p- (A23)

We denote sj; the number of third order poles evaluated by rapidities a;; belonging to the set
ki;. These numbers are constrained by the number of rapidities in k;;, by the total number of

_1,]'7

0 rapidities. Additionally we have the following less trivial constraints

€ € € € € € € €
S13 1+ S14 S Np —Myqg— Mgy, S93 1 Soq < My q 5
€ € \NTE ~ € ~ € € € ~ €
S1g t Sy S Np — My g — Myo, S13 T S33 < My o
€ € € € : € € \TE ~ €
S{3 + 87y + 853 + 55, < min (Np —mgp 4, Ny — mad) . (A.24)

After evaluation of all residua, the volume dependence of the whole expression is [LE ()]

Since only second- and third- order pole residua have contributed to rising this power we have:

A = 6+“+6+6+€+6—%—J—M (A.25)
m97d m97d 813 814 823 824 2 2 ’ '

e=+

where the negative terms comes from the denominators in the expansion (A.8). The maximal
A will give the leading large-volume contribution of the four-point function. We may rearrange

the expression as

A (Sig + 85+ s+ st — (Nj = mpa) | mpa— M-
= 2 2
Sig + 14 + 853 + 85 — <N;_m5,d> my, — M¢

due to the constraints (A.23) and (A.24) each fraction inside the sum is less or equal than zero.
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Therefore, the maximum of A is achieved when all inequalities are saturated, namely

€ __ NTE € _ ~€ €
N, =Ny, my g = My g = M°,
€ _ . ~€ € _ ~€ €
Myo = My, =0, S13 = My — So35
e € € € € € € ~ € €
Soq4 = My 1 — Sa3» 314—Np_M — Mg — Mgy + Sz, (A.27)

where M€, mg ,,my, and s5; are still free parameters within the range

0< M <N,  0<my, <Ns— M,

=t

0<mpy < Ny — M*, max (M€ + mg, + mg, — NS, 0) < s5 < min (mf;, mg,) (A.28)

P’

The maximum power of the volume is then A = 0. This corresponds to the situation when all
dependency on the 6 rapidities has been cancelled by the evaluation of residua. Hence there
are no other poles to consider other than third order ones (as these will produce subleading

contributions).

Step 4: obtaining results

The remaining sums (A.28) can be finally re-written in such a way as to obtain the factor
Nel[gz, (ry + r3)]N’§. Since the leading contribution is #-independent, the vacuum-correlator

factorises out, and this gives the following final result

F, (NF N+ .
lim — (N N7) B = [ [ N gl (re + 1“3)]Np . (A.29)
L= L O[Ty (0) Ty (1) Ty (22) Ty (2) 10, 3
where the dependence on the ratio 7, has dropped out as a consequence of (A.27) and (A.28).
As we can see the excess entanglement entropy depends only on the total length of region

A J B and not on how it is partitioned.

As mentioned in the beginning of the appendix, the same procedure can be extended to
the replica negativity. The corresponding third-order and second-order residue calculations

introduce respectively powers of LE(6)g(z') and LE(0)g%,,(«')" in the resulting expansion in a

for rapidities with quantization conditions a = —1, and this changes some results of the second-order pole
residues. In the entanglement entropies (of either connected and disconnected regions) the leading large-volume

4More precisely, the signs + arise from the fact that in the correlator (A.2) we need to account also

contributions comes from second-order poles occuring always in rapidities inserted between as .. .7;,1;1)7; cee
and the second-order pole residua produce powers of LE(0)g.,(x). In contrast, in the case of the logarithmic
negativities, the dominant contribution may also come from second-order poles in rapidities inserted as
- 7;11(,_1)7;, ..., and the corresponding second-order pole residue produce powers of LE(0)g",(z').
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very similar fashion. The difference is that now 2’ will be given by different linear combinations
of r1, r9, 73 as a result of the different quantization conditions satisfied by the rapidities in the
intermediate states and the different combination of fields involved in (A.2). The final result
will be:

p (N ;_r NV ;;_r ) Np

7
hm = = = NG‘ g? (’r‘ T ) P , <A30)
B O 007 () T (o) Ty )00, k7 (7

where g7, (r1,73) is defined in (5.22). It is then easy to see that equations (A.29) and (A.30)
lead to the results (5.20) and (5.21).
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APPENDIX

B

GRAPH PARTITION FUNCTION

In [28] the existence of a one-to-one relationship between (6.10) and the generating functions
of graphs satisfying certain connectivity conditions was shown.  The resulting graph
representation connects the probabilistic interpretation of ”localised” excitations to the
replica models (associated to the entanglement measures studied in this thesis) in a very
natural way.

Suppose we want to evaluate the logarithmic negativities of a k-particle excited state for two
disconnected regions. The following graph rules reproduce the connectivity properties of the

replica model considered :

e The graphs are composed of two disjoint finite sets of vertices of equal cardinality kn,
where k is the number of particles (assuming they all have equal momenta) and n the
copy number associated to replica model. As a consequence the copy label is periodic i.e.

n+1=1.

e BEach edge of the graph connects one vertex in a set to one in the other. Therefore there

is no link between vertices in the same set.

e All vertices are connected exactly once. Therefore there is no unpaired vertex.

e Every edge connects copy m to m’ = m + i where i can be —1,0, 1, and it contributes to

the evaluation of a graph ¢ a factor r;.
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Figure B.1 Structure of the graphs

-

We can picture the graphs’ structure as suggested in Fig. B.1, and call G, the finite set of
all graphs allowed by the rules above for a fixed k and n. For a graph g € Gy ,,, we denote by
Ni(g), i € {1,0,—1} the number of edges contributing as r;. We finally define a graph partition
as the sum over all possible graphs g € G, we can construct from the rules above, given
two sets of kn vertices. More formally this corresponds to the following polynomial in three

variables 71,7, 7_1:"

H piVito) (n>2)
Pra(ri,ro,ro1) = > 4 (0. . (B.1)
9EGk,n réVO(g)(rl +r_)M@ (= 2).

The connection with the entanglement problem is as follows: each left vertex represents a
particle excitation in a certain copy of the replica model, and via the qubit interpretation, each
graph represents a possible configuration of the occupancy distribution of the kn particles in
three regions ( now implemented in the replica model). In each graph, the edges implement the
action of the cyclic permutation symmetry over the copies. This is formally implemented by
twist operators, which in 1+1 QFT are identified with a product of branch-point twist fields,
but they can be more generally considered as operators implementing special connectivity
properties among the copies of a replica model. Particle excitations are of course associated to

the fundamental fields of the theory, and satisfy appropriate exchange relations with the twist

!Note that the notation in this appendix has changed slightly compared to Chapter 5, and we use instead
the notation introduced in Chapter 6. In particular we use r; with ¢ = —1,0, 1 instead of r1, 7, and r3. This is
just a more suitable notation in the context of graphs.

200



Cecilia De Fazio

operators. Suppose we consider a particle on copy m in a certain graph configuration, the twist
operator acts on this excitation in such a way to permutes copy m to m + 1 if the excitation is
found in a certain region of ratio ry, or permutes copy m to m — 1 if this is found in another
distinct region of ratio r_;. In contrast the twist operator acts trivially if the excitation is

found in the rest of the system, associated to ratio rg.

Under the interpretation above, the graph partition function reproduces the polynomial in

the logarithm of the increments AEX [28]:

Pk,n(ﬁ, To, 721)

(kD)

i ¥ ®)
AEF = £,/ = log (B.2)

where the normalisation 1/(k!)” comes from the fact that each vertex can be one of the k
identical excitations (assuming the indistinguishability of such particles). The entropy

increments AS* are obtained by fixing r_; = 0:

) 0 |
AEF = By =log p—k’"izll’)zo’ ) . Pra(r,re,0) = Z H ri) (B.3)
' 9€G},., i€{1,0}

The corresponding graphs form a subset G , = G, and are composed of edges 7y or 7 only.

B.1 Example: graph partition function for a

single-particle state

Consider a single-particle state in a replica model with n = 4 copies, the increment of

logarithmic negativity is :
A&} (ry,m0,7_1) = log (7“1L + 7t g+ drdrrog + 27’%7%1) . (B.4)

The graph partition py 4(71,70,7_1) is exactly the polynomial in the argument of the logarithm.
Its graph representation is displayed in Fig. B.2, where the graphs are organised in three
separate rows. The graph partition p; 4(r1,7,0) is simply given by the first two terms in the

same figure.

Let us focus on the polynomial py4(ri,70,7-1). We can identify three types of graph
contributions, each associated to a particular row in Fig. B.2. The first three terms represent

graph configurations where all excitations are found in the same region of ratio r; for
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Figure B.2 All contributing graphs for k = 1, n = 4.

i =1,0,—1, and these contribute the highest power of r; only to the polynomial (B.4). To the
same polynomial, graphs in the second row equally contribute r2r;r_; while those in the third
line equally contribute r#r?,, producing a coefficient 4 and 2, respectively, which represent

their graph multiplicity.

The graph partition function can help us to better understand the structure of the
polynomial (B.4). Below, we indeed make a simple observation, which turns out to be quite
general for single-particle excitations. Consider a left vertex in copy m (for instance m = 2)
and suppose that this is joint to the right by a edge r; (connecting vertices 2 — 3). Then,
consider the left vertex in the next copy m + 1 (m = 3). Since according to the rules the
straight connection is not allowed, we have only two choices to connect such a vertex: by
another edge r; (that is 3 — 4) or by an edge r_; (that is 3 — 2). The former leads inevitably
to a graph in the first row of Fig. B.2 whereas the latter forms a “cross” of weight ry7_; with
the other edge m — m + 1 (2 — 3). Recalling the periodicity in the copy number, the graphs
in the second and third rows can only result from combinations of crosses and straight lines,
and in particular the second row involves exactly one cross, and the third row involves exactly
two crosses. As a consequence the terms 4ririr_; + 2r?r?, in (B.4) account for all the
possible configurations we obtain if we use only crosses (at least one) and straight lines to

connect the four left vertices to the right. This simple argument can be extended for any
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single-excitation, and any copy number n :

[3]

n [(n-— _
Pin(ri,r0,721) =17 + +rg 0y + Z p— ( . q) e 2 (ry g ) (B.5)
q=1

where g represents the number of crosses, n — ¢ the number of straight lines. The coefficients
in the sum select the indices appropriately to reproduce crosses in the graphs with the right

combinatorial multiplicity.

Note that if we consider multi-particle states of only distinct particles, we can only connect
a left and a right vertex to the right if the two vertices are associated to the same excitation
i.e. labelled by the same particle number. Thus the cross-and-line argument presented above is
still valid in this case, and as expected the resulting graph partition function is exactly k& time
the one in (B.1). In contrast, when we consider particles of equal momenta, also connections
among different particle numbers are allowed (as they are indistinguishable) and although the
cross-terms still contribute r17_;, there will be also other combinations of r; and r_; allowed

and one needs to properly account for these other contributions.

203






APPENDIX

C

NUMERICS WITH MATHEMATICA

In this appendix we discuss briefly some details of the Mathematica programme, implemented
to generate all the numerical results presented in Chapter 8 of this thesis. As usual in the TBA
context, the TBA/GHD equations are solved numerically starting with a discretization of the
variable # within a finite interval. For this we exploit a well-known property of all relevant TBA
functions namely, that they double-exponentially fall off for rapidities larger than log2/3 or
smaller than log 3/2 (and similarly in the out-of-equilibrium situation). In our numerics we have
chosen a slightly larger interval [log 5/2 — o /4, log2/8 + o/4] which grows with temperature.

In the out-of-equilibrium regime we choose [ to be the inverse of the highest temperature.

We have kept the number M of discrete equidistant rapidity values fixed. It is clear that
the larger M is, the better the approximation to the continuum. However, a very large M
increases drastically the running time of the programme. In all our numerical analysis we
have set M = 200. This value has been chosen in such a way as to ensure that a number
of benchmark results are reproduced. For instance, we reproduce the expected pattern of the
c-function at equilibrium (see Fig. 7.1) as well as the known free Majorana fermion results in

the relevant temperature range, both at and out of equilibrium.

We have focussed on studying the temperature-dependence of the TBA quantities described
in Subsection 7.3.1 exactly in the middle of the light-cone (so, for ray x/t = 0). For this reason,
we omit the space- and time-dependence of the TBA quantities considered. For simplicity, we

have set the parameters of the theory as m = 1 and o = 20. We can summarise the algorithm
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we have implemented as follows:

(a) For fixed values of 31 g solve (7.11) for the left and right steady states and compute
nf(0; £) and n’(0; £) using (7.31).

(b) Solve (7.30) for h;() = p(#) recursively. Start by setting 67 in (8.1) to some trial value

(say 0). Solve recursively for pd*(6; +) until convergence is achieved.

(c) Once a solution for p¥*(#; +) has been obtained, find the solution to p%(#; +) = 0. This

will give a new value of ;.

d) Repeat (b) and (c) with this new value of §F and again as many times as necessary until
0

a stable value of 67 is reached.
(e) Employ the solution (8.1) to evaluate any dressed quantity of interest h%(6; +).
(f) Evaluate (7.33) and (7.34).

(g) Repeat for a different right- and left-temperatures.

In (c) and (e) the convergence of the dressing operation is ensured by the condition that the
difference of the outcome given by the last iteration and the preceding one is smaller than the
module of a certain number «. In all of the cases, o has been chosen to be no larger than

10~* generally ensuring very high precision. Similar arguments hold for the convergence of (a)

and (d).
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D

NUMERICS WITH IFLUID

In this Appendix we describe in more detail the numerical simulations reported in [36], and
presented in Chapter 9 of this thesis, focussing on possible error sources, precision issues and

consistency checks.

D.1 Generalities

As mentioned in Chapter 9, our numerical simulations have been obtained by implementing
a new numerical tool, called iFluid (integrable-Fluid, version 1.1.0 which is an open-source
MATLAB framework specifically designed for solving the GHD equations in integrable models
[164]. It is worth mentioning also that an integral-equation solution to the GHD equation (7.38)

is also known [162], but its numerical stability has not been sufficiently studied yet.

Thanks to a tensor-based numerical environment, iFluid boasts high efficiency and high
process running speed. Additionally, a new model can be easily implemented by extending
the iFluid package with a model-specific class. Such implementation can be done by following
the instructions provided in [164]. However, the SU(3),-HSG model requires additional

modifications and we have implemented them in this study.

The quantities studied in part II of this thesis feature in the iFluidCore class, which
provides solutions to the TBA equations and inputs for the GHD equations. By default, the

definition of spatial particle density included in the iFluidCore class, depends on the

209



APPENDIX D. NUMERICS WITH IFLUID

type-array. It is a fundamental property of the class and is included in the model
implementation as a one-dimensional array composed of integers which label the particle
types. In massive integrable QFTs with more than one particle in the spectrum, this
definition of the particle density introduces multiplicative factors in its type components,
which can lead to wrong results. We have instead implemented the definition that reproduces
the total spatial particle density q,(x,t) = qf (z,t) + qq (z,t) as defined in (7.33) and leads to
a correct result. Moreover, in our implementation of the model, some iFluidCore functions
have been modified to output the contributions from each particle type to a given quantity

separately (i.e. the functions qj (z,1)).

In iFluid, the propagation of the GHD quantities is computed via iFluidSolver class. In
our numerical simulation we have employed the SecondOrderSolver solver, whose details can

be found in Section 3.2 in [164].

The work [36] has provided the first application of the iFluid package to a system which is
initially prepared in a state involving temperatures 7' » 1. Earlier examples provided with the
package (i.e. sinh-Gordon model) were tested for temperatures 7' ~ 1. The convergence of the
thermodynamic Bethe ansatz equations has been successfully ensured for temperatures up to

O(e'?), and the results have been checked in the several ways, as we will see in the next section.

D.2 Precision and consistency checks

In order to make sure that the modified code gave meaningful results we carried out various
consistency checks, mainly comparing the outputs of iFluid with standard results that are

accessible by other numerical procedures.

A preliminary check was done on the initial state, which is given by the solution of the
(equilibrium) TBA equations for a given fixed temperature T'(x) for each value of z. In the
iFluid code, the precision is controlled by two parameters, namely, the tolerance and the
maximal number of iterations allowed. In order to guarantee the highest accuracy, we set the
former to 10732 and the latter to 5000. We made these choices in part by comparing the
outputs of iFluid in the initial state to results obtained for the same functions with a
Mathematica code used in Chapter 8, and established that, for the choices above, we achieved

higher precision with iFluid.

A similar check was performed by evaluating the TBA scaling function (7.23) over a range of
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temperatures (especially at high temperatures), and seeing that plateaus at the expected values
of the central charge [31] where reproduced. An example is displayed in Fig. 7.1. Likewise we
computed the energy densities and currents in the UV (high temperature) limit, reproducing
the results of Section 8.2.

t 0 3 6 9 12 15
Qo 561.2520 561.2541 561.1937 561.1511 561.1156 | 561.0970

Table D.1: Numerical values of the total integrated particle density )y at several times. Here,
the parameters are: o = 10, log(27,,) = 7 and T, = 0 (no bath). To evaluate @y, we have
computed (7.33) for ¢ = 0 and performed a cubic spline interpolation, implementing additional
grid points whose spacing in z is Az = 1. x 1075, (g is numerically conserved, up to a variation
on the first decimal place, which can be attributed to the discretisation procedure.

Having established that the initial state is accurately described, we then turned to
consistency checks of dynamical quantities. We calculated the total particle density Qg given
by the z-integral of the total particle density (7.33) for i = 0. @)y should be conserved in time
and so its computation for various values of times provides a consistency check for numerical
solutions of the GHD equations. In Table D.1 we have reported the numerical values of the
total particle density evaluated in the no-bath case. )y is confirmed to be conserved, up to a
numerical variation on the first decimal place, which is the order of the grid spacing

implemented in the simulation (see Table D.2 for details).

Finally, we performed other consistency checks which exploit the connection of our model

191/2 ur model

with free theories. In particular, as explained in 7.1, we have that for T « e
should reduce to two Majorana free fermions. Thus, performing numerics for the SU(3),-HSG
model with o = 20 for the same temperature choices discussed in Chapter 9, we should obtain
results which are fully in the free fermion regime where the time-evolution equations can be

solved exactly. Thus, in this regime numerical results from iFluid can be compared to analytical

solutions. We have confirmed that they are in perfect agreement.

D.3 Space and rapidity discretisations

Besides convergence of the numerical solution of the TBA equations, we have established
that the key source of numerical error is the choice of space discretisation. The values adopted

in our computations are given in Table D.2.

We have devoted special attention to the discretisation of the rapidity interval. iFluid

employs Gauss-Legendre quadrature integration, which has excellent convergence properties for
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H H A max H No. Points H Max. Val. H Quadrature H

t 0.2500 61 15. Rectangular
x 0.1000 441 22. Rectangular
0 0.0762 700 17. Gauss-Legendre

Table D.2: Discretisation parameters and quadratures chosen for the two numerical
simulations (i.e. with and without a bath) presented in [36] and discussed in Chapter 9 .
From the left, the columns indicate (respectively for ¢, z,0): the variable, the lowest resolution
(i.e. the largest spacing between two grid points Apax), the number of grid points, the largest
absolute value the variable takes, and the type of quadrature implemented. In the rectangular
quadrature we have implemented equidistant grid points with fixed spacing Apax-

N —N= 100
03 N | —N = 200
= ® N = 200 —N = 300
N AN =300 — N = 400
0.25-" " m N =500 —N = 500
° * N =700 —N = 600
02 .. E— —N = 700
= - — N = 800
4 A
0.15 ‘A
0.1- vj: ...........
ARRTEPRRALEE oo
..... e
005 T

200 300 400 500 600 700 800

Figure D.1 Right: The rapidity discretisation interval as a function of rapidity for different
numbers of points in a fixed rapidity interval § € [-17,17]. The markers indicate the values of
N that are considered in Fig. D.2. Left: Comparison of the rapidity discretisation interval in
the middle and towards the edges of the interval with non-trivial dynamics. Afy and Afq are
defined to be the rapidity discretisation intervals for # = 0 and 6 = 10, respectively.

integrals over a finite interval [172, 173]. However, this quadrature is optimised for minimising
boundary errors. This means that the number of data intervals is lowest in the middle of the
interval, precisely where we find the non-trivial behaviour of the thermodynamic quantities of
interest. The dependence of the size of the rapidity intervals, Af on the rapidity 6 and the

number of points in the interval considered N for a fixed range of rapidities is shown in Fig. D.1.

As a point of reference, we have chosen to compare the resolution at # = 0 and 10, as
a primary region with non-trivial dynamics. Although the discretisation interval for § = 0
remains the largest for any value of N, the distribution quickly flattens out when the number
of points is increased. Investigating the range of N values from 200 to 700, we achieve an order
of magnitude increase in resolution for both § = 0 and 10. Significantly smaller is also the
difference between these two quantities, which is consistent with the flattening of the curve in

the right panel of fig. D.1. The numerical values of the size of the discretisation interval for a
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chosen numbers of points in the rapidity interval are included in Table D.3.

L~ [ A% [ Ao [ A6 — A |
200 | 0.2604 02157 0.0506
300 | 01777 0.1439 0.0338
500 | 01067 0.0864 0.0203
700 | 00762 0.0617 0.0145

Table D.3: Numerical values of the rapidity discretisation intervals A#, for a given number
of rapidity points N in the range of rapidities used in this investigation 6 € [—17,17].

N =200 N =300

——t=4
——t=6
4t i t t=10|
t=15

N =500 N =700

-15 -10 -5 0 5 10 15 -15 -10 -5

o
o

10 15

Figure D.2 Spatial particle density of particle + for different numbers of points in the fixed
rapidity interval 6 € [—17,17]. The N = 200 panel shows regular oscillations. The oscillations
persist for N = 300, disappear around N = 500 and are consistently absent for higher numbers
of points, such as N = 700. Variations of space and time discretisation parameters have not
produced any significant changes in the same functions.

In order to obtain the averages of conserved charges and currents in the SU(3)2-HSG model,
it is necessary to integrate over the rapidity variable, as defined in (7.33). This integration
procedure leads to the “accumulation” of any numerical errors present in the original function
and to the formation of regular structures that could be easily mistaken for genuine physical

phenomena. An example of this effect can be seen in the particle density associated to particle
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+ computed with different rapidity discretisations. Four examples are presented in Fig. D.2.
As expected, the problem arises from the middle of the rapidity interval where resolution is
lowest. By changing N we can identify a large enough value that guarantees a stable solution
for the spatial particle density. In our code we have chosen N = 700. The quantities not
integrated over the rapidity integral did not exhibit any unusual behaviour even for the values
of N as low as 200. Interestingly, this applies also to the spectral density, which produces then
spatial particle density when integrated over rapidity. This further confirms that the emergence
of of the oscillations seen in the top left fig. D.2 is genuinely a numerical effect arising due to

integration.
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