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Abstract

In Chapter 1, I form a single cross-section from the USD returns on international
equity indices, international sovereign bonds, and currencies; I then sort the entire
cross-section according to (standardised) value, momentum, and carry measures. In
these international, multi-asset-class portfolios, there are large, significant returns
available to carry investors and significant – though somewhat smaller – returns to
momentum and value investors. The premiums are not much larger than a simple
average of within-asset-class premiums for all three strategies. Asset pricing tests
show that volatility risk can explain currency carry returns, but bond and equity
carry returns have a different source. Value, carry, and momentum returns of across-
asset-class portfolios – including all three asset classes – are difficult to explain using
an equilibrium asset pricing model.

In Chapter 2 and 3, I decompose prices into two unobserved processes: funda-
mental value and pricing error. The former is influenced by private information
contained in order flows, while the latter depends on liquidity providers’ inventory
control. Analysis of UK equity data during the 2008 financial crisis shows that order
flows had a more significant impact on pricing errors during the crisis, indicating
that strained inventory absorption capacity of liquidity providers was the main fac-
tor in the decline of equity market liquidity. The results also reveal that liquidity pro-
vision is reduced in volatile markets due to inventory control, while changes in in-
formation asymmetry only affect equities with small market capitalisation and trad-
ing volume. The Bitcoin and Ethereum results on two leading exchanges (Bitfinex
and Kraken), between January 2017 and January 2018, demonstrate that cryptocur-
rency price change is determined by order flows through information asymmetry
and inventory control. Additionally, when the emerging cryptocurrency market
saw a boom and then crashed, the impacts of order flows on fundamental value
and pricing errors were greater at the beginning of both the boom and the crash.
Cross-cryptocurrency and cross-exchange results indicate that orders of one cryp-
tocurrency on one exchange can also influence the price of another cryptocurrency
on another exchange through information.

v





Introduction

This thesis comprises three chapters. Chapter 1 is an asset pricing paper that presents

common risk factors to explain cross-sectional returns of multi-asset classes, includ-

ing currencies, international sovereign bonds, and equity indices in 43 countries. I

put all the assets into a single investment pool and sort them into portfolios by value,

carry, and momentum signals, which Asness et al. (2013) and Koijen et al. (2013) have

found to generate significant excess returns within each asset class. Through this

multi-asset-class investment, an international investor based in the US could further

benefit from the predictive power of these signals, if value, carry, and momentum

are caused by the same set of systematic risk factors across different asset classes. In

addition, I test whether these across-asset-class value, carry, and momentum returns

can be explained by a unified equilibrium asset pricing model. My results indicate

that all the multi-asset-class value, carry, and momentum portfolios generate a large

high-minus-low (HML) return and Sharpe ratio (SR), but the returns are no larger

than a simple average of HML returns within each asset class. In addition, the re-

turns cannot be fully explained by an asset pricing model including a market return

factor, a market volatility factor, and a liquidity factor. I also find that the return

cross-section of carry portfolios with only currencies can be explained by market

volatility; however, when bonds and equities are added to the portfolio, the volatil-

ity factor no longer applies. This suggests that although value, carry, and momen-

tum portfolios can generate excess returns in different asset classes, the returns may

come from different sources, and they are thus exposed to different asset-specific

risk factors. However, investors can still benefit from diversification by investing

internationally in multiple asset classes.

Chapters 2 and 3 are microstructure papers that study how order flow – the most

important variable in microstructure finance according to Evans and Lyons (2002a)

1



– drives price change. Previous studies have proven that order flows influence price

primarily through price discovery (Hasbrouck (1991a); Hasbrouck (1991b); Evans

and Lyons (2002a); Brandt and Kavajecz (2004); etc.) and price pressure (Hender-

shott and Seasholes (2007); Reiss and Werner (1998); Naik and Yadav (2003); etc.).

Inspired by Hendershott and Menkveld (2014), I use State Space Form (SSF) to de-

compose the observed prices into two unobserved processes: a random walk process

influenced by private information contained in order flows (price discovery), and a

mean-reversion process influenced by liquidity providers’ inventory control (price

pressure). Then I use the Kalman Filter to estimate parameters in SSF, and apply the

method to high-frequency trading data on UK equities and cryptocurrencies to ex-

plore the reason for the market crashes. The results for the UK equity market indicate

that the market crash during the financial crisis was primarily due to the liquidity

providers’ increased inventory control costs, such as funding constraints or greater

risk aversion during the financial crisis, rather than the amplified adverse selection

problem. The results are consistent with those of Nagel (2012) concerning the US

equity market during the crisis. My results for the emerging cryptocurrency market

indicate that Bitcoin and Ethereum prices on Bitfinex and Kraken are also driven

by information in orders through price discovery and liquidity providers’ inventory

control through price pressure. The market boom in May 2017 was caused by unin-

formed liquidity providers’ larger quote adjustment in response to buy orders than

in response to sell orders, likely due to a belief that buy orders were more informa-

tive than sell orders. The market crash that began in January 2018 was caused by the

larger impact of orders through both channels. In addition, my cross-cryptocurrency

results confirm that some information on the fundamental values of Bitcoin and

Ethereum is market-wide. Therefore, the price of one cryptocurrency is primarily

influenced by the order flow of itself, but is also influenced by the order flow of the

other cryptocurrency. My cross-exchange results conclude that prices of Bitcoin and

Ethereum on one exchange are influenced by order flows on the other exchange only

through price discovery.
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Chapter 1

Common risks across asset classes

1.1 Introduction

Previous studies have described significant excess returns generated by value, carry,

and momentum signals in different asset classes (Asness et al. (2013); Koijen et al.

(2013)). However, the literature discusses return predictability by value, carry, and

momentum signals within each asset class. Therefore, my research aims to find out

whether an international investor based in the US can obtain the cross-sectional dif-

ference in returns if all these assets are put into one investment pool, regardless

of their asset classes, and sorted into portfolios according to value, carry, and mo-

mentum signals. If these signals are across-asset-class phenomena caused by com-

mon factors, the multi-asset-class portfolios – sorted only by these signals, regardless

of their asset classes – should generate significant and potentially larger excess re-

turns than a portfolio combined by value, carry, and momentum portfolios within

each asset class. In addition, previous studies have proposed theories of risk fac-

tors that could explain the excess returns of value, carry, and momentum portfolios.

For example, Brunnermeier and Pedersen (2009) argue that funding constraints can

explain the risk premia of popular trades. Shleifer and Vishny (1997) propose an

agency model of limited arbitrage that may explain excess returns that are difficult

to understand in terms of the conventional model. Menkhoff et al. (2014) show that

carry returns in the currency market are driven by market volatility. Therefore, in

this chapter, I test whether the returns of my across-asset-class portfolios are ex-

posed to some standard systematic risk factors that successfully explain these excess

3



Chapter 1. Common risks across asset classes

returns within asset classes in the existing literature. For investors who want to in-

vest across asset classes, when they benefit from diversification, they should also

bear in mind of any systematic risk factors if multiple asset classes are integrated

and part of the returns are caused by common risk factors, and thus adjust their

strategies accordingly based on their risk-bearing capacity and liquidity needs.

I combine currencies and bonds first because, in my research, currency excess

returns are equal to currency appreciation plus short-term interest rates, while bond

returns are equal to currency appreciation plus long-term interest rates. The results

indicate that all three strategies are profitable, generating a positive HML return

over time. I then investigate whether one could explain the differences in mean re-

turns of my value, carry, and momentum portfolios using simple risk factors. In

addition to a simple ’market’ portfolio return (computed as the cross-sectional av-

erage of all of our individual asset returns), I consider a volatility factor similar to

that employed in Menkhoff et al. (2014) and Cenedese et al. (2014). The asset pricing

test indicates that carry returns can be partly explained by market mean returns and

volatility risk factors. However, pricing errors suggest that my volatility factor can-

not explain bond carry returns. Although value and momentum signals can predict

both currency and bond returns within each asset class, they are caused by different

factors in the currency and bond markets and should be studied separately within

each market.

I put all currencies, bonds, and equities together and sort them into portfolios

by value, carry and momentum signals. My key finding is that an international

investor can generate significant excess returns from investing in value, carry, and

momentum, as applied to the aggregate cross-section. The HML portfolio for my

carry signal has a mean return of around 9.4% per annum, with a Sharpe ratio (SR)

over 1. The value and momentum signals generate HML portfolios with mean re-

turns around 4.7% and 6.5%, respectively. As a benchmark, the US value-weighted

stock market generate a mean excess return of 6% over my sample period, with an

SR of 0.41. Therefore, value, carry, and momentum appear to be across-asset-class

phenomena. However, my sorting strategy do not outperform an equally-weighted

4



1.2. Related literature

portfolio combined by value, carry, and momentum portfolios from each asset class.

In addition, a unified asset pricing model with a set of market-wide systematic risk

factors across asset classes – including mean return, volatility and liquidity – can-

not explain the across-asset-class return cross-section. Therefore, my results suggest

that value, carry and momentum returns across asset classes are not caused by a

common set of systematic risk factors. Investors cannot purposely tilt to systematic

risk factors associated with value, carry and momentum signals across asset classes

to earn a bigger excess return than simply combining value, carry and momentum

portfolios within each asset class. In addition, currencies, bonds and equities are

segmented from the perspective of asset pricing. One limitation of my research is

that my systematic risk factors may not be able to capture the international time

variations of the real volatility or liquidity across asset classes. However, my results

could convince investors of the diversification benefits provided by value, carry, and

momentum portfolios across asset classes.

The remainder of this chapter is organised as follows. Section 1.2 presents a

review of the theories in the existing literature and provides evidence for both infor-

mation asymmetry and inventory control channels. Sections 1.3 and 1.4 describe the

data and methodology used in this paper, respectively. The empirical results of the

research are presented in Section 1.5, and Section 1.6 concludes the paper.

1.2 Related literature

Many recent asset pricing papers have explored the determination of cross-sectional

difference in mean returns within asset classes. While many of these papers have

identified risk factors explain cross-sectional difference within specific asset classes

– and some authors have argued that the same risk factors work in different asset

classes – there have been no studies on an aggregated cross-section of assets drawn

from different asset classes.

Fama and French (2012) have found value and momentum premia in interna-

tional stock returns in four regions, with all the premia decreasing with firm size.

Asness et al. (2013) assert that value and momentum phenomena exist in eight asset

5



Chapter 1. Common risks across asset classes

classes globally and that liquidity risk does a better job than macroeconomic factors

of explaining the value and momentum excess returns. Koijen et al. (2013) suggest

that carry strategies applied to various individual asset classes can generate excess

returns, but carry portfolios do poorly in global recessions. All previous research

has indicated a cross-sectional difference in returns if assets within each asset class

are sorted by value, carry, and momentum internationally.

My research is also inspired by a strand of literature that aims to explain risk

premia in international investments using standard asset pricing techniques. Lustig

et al. (2013) propose a downward-sloping term structure of currency premia and

demonstrate that currency carry trade premia can be explained by common innova-

tions to the pricing kernel and a large fraction of risk priced in securities markets is

shared between countries. Menkhoff et al. (2014) find that the cross-section of cur-

rency returns can be priced by global currency volatility. Their findings are similar

to those of Ang et al. (2006) on the stock market. Ang et al. (2006) conclude that

stocks with higher sensitivities to innovation in aggregate volatility have smaller

average returns. In international equity markets, the positive returns obtained by

Cenedese et al. (2014) adopting strategies that take advantage of Uncovered Equity

Parity violations, mirror the carry trade profits in currency markets. They find that

international equity excess returns can be partly explained by systematic risk factors.

The studies described above hint at commonality in asset pricing across asset

classes, with their reliance on similar risk factors (e.g., volatility and liquidity) and

their demonstration that similar sorting rules work in a variety of individual as-

set classes. However, each examines one asset class at a time. Although Asness

et al. (2013) and Koijen et al. (2013) explore the across-asset-class phenomena, both

have sorted the portfolios by the value, carry, or momentum signals within each

asset class first and then combined them across asset classes. Some studies have

attempted to apply a unified asset pricing model to different asset classes. For ex-

ample, Bansal and Shaliastovich (2012) show that a long-run risk set-up is critical

for solving market anomalies across asset classes, such as violation of the expecta-

tion hypothesis in the bond market and violation of uncovered interest parity in the
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foreign exchange market. Lettau et al. (2014) find evidence that the downside-risk

capital asset pricing model (DR-CAPM) can reconcile the cross-sectional dispersion

in returns across multiple asset classes. The key contribution of my research is that it

sorts assets into portfolios solely by signals and regardless of asset classes from the

beginning, thereby identifying whether the strategies provide better risk-adjusted

returns than returns within each asset class. In addition, I test whether any standard

systematic risk factors across asset classes can explain the excess returns.

My research also sheds light on market integration, as my asset pricing test relies

heavily on a financial market integrated both internationally and across-asset-class.

Bekaert and Harvey (1995) propose that the market is fully integrated if assets ex-

posed to the same risks have the same expected returns, irrespective of their market.

The authors examine a number of countries and conclude that some are not becom-

ing more closely integrated into the global financial market. Griffin (2002) concludes

that country-specific risk factors are more useful than global factors for explaining

time variation in portfolio and individual stock returns in the Fama/ French three-

factor setting. Fama and French (2012) provide mixed evidence, but their test results

across four regions demonstrate that global asset pricing models do poorly in ex-

plaining global and regional returns. All previous literature on market integration

through asset pricing tests faces the ’bad model’ problem. My research focuses on

whether patterns in returns across asset classes can be captured by across-asset-class

risk factors. In my case, if the asset pricing test across asset classes fails, this could

be attributed to either a bad model with poor risk factors or to a segmented market.

However, if within-asset-class asset pricing tests work, while across-asset-class asset

pricing tests fail, I can conclude that the three asset classes are not fully integrated.

My research has dual focuses. On one hand, it is a natural extension of Asness

et al. (2013) and Koijen et al. (2013).They find that value, carry and momentum are

everywhere in different asset classes and claim that those excess returns might be

caused by the same factors. Therefore, I go further to test whether these across-

asset-classes excess returns are caused by the same factors and what are the factors.

Both Asness et al. (2013) and Koijen et al. (2013) still sort assets into portfolios by

7



Chapter 1. Common risks across asset classes

those signals within each asset classes first and combine them. While I sort assets

of different asset classes altogether first and sort them into portfolios only by value,

carry and momentum signals. If value, carry and momentum returns across asset

classes are caused by the same risk factors, my portfolios should generate bigger

expected returns than those in Asness et al. (2013) and Koijen et al. (2013) because

my across-asset-class strategy creates a bigger cross-sectional difference in signals

and thus further tilts portfolios to those risk factors. On the other hand, my research

is trying to find out some common systematic risk factors that can price assets across

different asset classes. Since value, carry and momentum are ubiquitous across asset

classes, they provide me with a good way to sort assets into portfolios to minimise

randomness in returns before standard asset pricing tests. If different asset classes

can be priced by the same risk factors, markets are integrated across asset classes.

Therefore, my research contributes by using the common phenomena of value, carry

and momentum to study multi-asset-class pricing and integration.

1.3 Data

All asset returns used in this paper including exchange rates, government bonds

and equity indices are measured in US dollars. I choose exchange rates, government

bonds and equity indices because they are similar in nature. Apart from currency

appreciation, these assets are short-term interest rates, long-term interest rates and

equities, respectively. They are also the most frequently traded and most accessible

international assets to US investors. In addition, according to previous literature,

they are exposed to similar risk factors such as volatility risk and liquidity risk, while

for other asset classes such as credit assets, credit risk or counterparty risks are more

prominent. Therefore, testing whether currencies, bonds and equities are integrated

is the first step of multi-asset-classes integration test. If those asset returns can be

explained by common risk factors, I can further include more asset classes such as

commodities and credits in my future research.

The equity performance for each country is measured by MSCI equity index data

obtained from Thomson Datastream. I also obtain dividend yields and BE/ME ratios
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1.4. Methodology

from MSCI. Exchange rates are obtained from Barclays Bank International (BBI) and

Reuters via Thomson Datastream. I measure total returns to currency investments

(ie. interest rate differentials plus depreciation rates) by assuming that Covered In-

terest Parity (CIP) holds, and using spot and one month forward exchange rates.

To measure long-term bond returns, I use the percentage changes in the total re-

turn index on the 10-year government bonds of each country. I obtain bond returns

and 10-year yields from Global Financial Data. The sample covers November 1983 to

September 2011, but the number of currencies, government bonds and equity indices

for which data are available varies over time. The sample consists of the follow-

ing 43 countries: Australia, Austria, Belgium, Brazil, Bulgaria, Canada, Czech Re-

public, Denmark, Egypt, euro area, Finland, France, Germany, Greece, Hong Kong,

Hungary, India, Indonesia, Ireland, Israel, Italy, Japan, Kuwait, Malaysia, Mexico,

Netherlands, New Zealand, Norway, Philippines, Poland, Portugal, Russia, Singa-

pore, South Africa, South Korea, Spain, Sweden, Switzerland, Taiwan, Thailand,

Ukraine, the United Kingdom, and the United States1.

1.4 Methodology

1.4.1 Predicative variables

The predictors I employ for all assets are value, carry, and momentum. I measure

value by similar methods of Asness et al. (2013) across asset classes. The value mea-

sure for currencies is five-year change in purchasing power parity, which is the neg-

ative five year return minus CPI change relative to US during the same period. It

is measured as the log of average exchange rate of a certain country from 4.5 to 5.5

years ago divided by the spot exchange rate of that country today minus log differ-

ence in CPI relative to US during the same period. For government bonds, value

is measured as five-year change in the yields of the 10-year government bonds. For

equity indices, value is measured as previous month’s BE/ME ratio. I measure carry

by methods proposed by Koijen et al. (2013). For currencies, carry is measured by

1Since the United states is the home country, I do not have currency return data for the United
States. Therefore, I only have exchange rates for 42 countries.
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Chapter 1. Common risks across asset classes

one-month interest rate differentials against US rates. For bonds, I use 10-year yield

to maturity to measure carry, and use dividend yields (adjusted by log) for equity in-

dices. Momentum measures are more straightforward than value and carry, but the

indicators are still slightly different for different asset classes according to previous

literature. Currency momentum is measured as return over the past three months,

same as Menkhoff et al. (2012); bond momentum is return over the past 12 months,

and equity momentum is return over the past 12 months skipping the most recent

month as suggested by Jegadeesh and Titman (2001).

1.4.2 Portfolio formation

To maximise cross-sectional difference of returns, I sort all assets into non-segmented

portfolios regardless of their asset classes and hold the portfolios for one month,

mimicking an international investor who manages three asset classes as if they formed

a single pool of investments. Every month, I sort all assets into portfolios regardless

of their asset classes by a particular predictor variable. Therefore, I first sort the

assets into 15 non-segmented portfolios based on each asset’s value, carry, or mo-

mentum predictor, and then the one fifteenth of assets with the smallest predictors

are allocated to Portfolio 1 (P1) while the one fifteenth of assets with the biggest pre-

dictors are allocated to Portfolio 15 (P15). All assets in each portfolio are equally

weighted. Portfolios are held for one month and reconstructed every month using

re-estimated predictors and the asset pricing tests use these monthly portfolio return

data. The monthly holding period return is excess return for all assets and I denote

the excess return of asset or portfolio i by rxi
t+1. Excess returns for currencies are

equal to depreciation rates plus interest rate differentials, which by CIP are equal to

rxi
t+1 = f i

t − si
t+1. Excess returns for bonds and equities are proxied by holding the

assets while shorting the risk free asset, which is US T-bills in this paper. The excess

return for bond and equity is thus calculated as rxi
t+1 = ri

t+1 − r f
t+1.

As the mean and variance of indicators of three asset classes are quite different,

I standardise the indicators by cross-sectional mean and variance within each asset

class before sorting assets into non-segmented portfolios. For example, every month,
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value predictors are standardised by synchronous value measures within each asset

class to generate a predictor as follows:

st,i =
It,i − µt

σt
(1.1)

where It,i is value measure for asset i at time t, µt is average of value measures of

all assets within the same asset class of i at time t, σt is standard deviation of value

measures of all assets within the same asset class of i at time t.

I then sort all assets into non-segmented portfolios by a standardised score st.

Standardised scores for carry and momentum are calculated in the same way.

1.4.3 Asset pricing test

I adopt two-step Ordinary Least Squares Fama-Macbeth (OLS-FMB) estimations to

uncover risk factors that can price the excess returns of all assets. The excess return

of any asset should satisfy the Euler equation:

Et

(
rxi

t+1mh
t+1

)
= 0 (1.2)

and I assume a linear stochastic discount factor (SDF) mt = 1− b′(ht+1 − µh),

where ht+1 denotes a vector of risk factors and µh denote a vector of factor means.

This specification is equivalent to an expected return-beta representation

E(rxi) = λ′βi (1.3)

Under the ICAPM framework, the factors are state variables that represent in-

vestment opportunities in the market.

I use two-step OLS-FMB to estimate parameters in equation (1.3) by running

time-series regressions to estimate βi and then running cross-sectional regressions

of mean returns on βi.
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Chapter 1. Common risks across asset classes

In the asset pricing tests, I employ three risk factors – mean return factor, volatil-

ity factor and liquidity factor, all of which reflect market status that represent in-

vestment opportunities. Mean return factor is the global market risk constructed by

averaging monthly returns of all assets. The factor thus mimics holding an equally-

weighted portfolio of all assets, which can be regarded as ’market return’. I con-

struct volatility proxies for currencies and equities by the method in Menkhoff et al.

(2014). The measure is realised volatility, which is averaging absolute daily return of

all available assets on any given day and then averaging daily values to the monthly

frequency. The Equity VOL/FX VOL in month t is given by

σFX
t =

1
Tt

∑
τ∈Tt

[
∑

k∈Kτ

(∣∣rk
τ

∣∣
Kτ

)]
, (1.4)

where
∣∣rk

τ

∣∣ denotes absolute daily return for currency k on day τ, Kτ denotes the

number of available currencies on day τ and Tt denotes the total number of trading

days in month t. In empirical analysis, I use volatility innovation, which is residuals

of AR(1) as the volatility risk factor. I use constructed equity volatility to replace

bond volatility because I do not have daily bond data to construct the bond volatility.

The liquidity factor is the Pastor-Stambaugh Liquidity series, which covers only the

US data.

1.5 Empirical results

Table 1.1 presents the results of separately applying the three sorting rules to the

three asset classes. In each of the nine experiments, the HML portfolios have pos-

itive mean returns, with the FX carry and the equity carry and momentum having

the largest HML returns. However, from the perspective of SR, the FX carry and the

equity carry perform best, with SR larger than 0.7, while the large HML return of the

equity momentum is compensated for by its large standard deviation, with an SR

of just 0.35. The results in Table 1.1 are similar to those reported in previous studies

(e.g., Asness et al. (2013); Lustig et al. (2013); Cenedese et al. (2014); Koijen et al.

(2013); Menkhoff et al. (2012)), although their sample periods and countries differ
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1.5. Empirical results

from mine. Asness et al. (2013) cite an HML return for value portfolios on global

indices of 0.06, while my result is 0.0625; a momentum HML return on global in-

dices of 0.087, compared to my 0.0737; a currency value HML return of 0.033, while

my own is 0.0589; and a currency momentum HML return of 0.035, while my result

is 0.0579. Koijen et al. (2013) cite results for currency, bond, and equity carry HML

returns of 0.0529, 0.0385, and 0.09140, respectively, while my own are 0899, 0.0472,

and 0.1147. The final panel of the table summarises the returns and standard devia-

tions of the combined portfolios, composed of equally weighted assets in each asset

class, sorted by each strategy (e.g., the value portfolio is composed of 1/3 currencies

sorted by value, 1/3 bonds, and 1/3 equity indices). Asness et al. (2013) and Koijen

et al. (2013) also constructed their across-asset-class portfolios in this way. We can

see from Panel D that were investors to adopt the carry strategy and invest equally

in the three asset classes, they would earn a 8.68% return and an SR of more than

1, while both the value and momentum strategies would generate HML returns of

around 0.5 and an SR of slightly above 0.5.

Table 1.2 summarises the results of a regression of within-asset-class portfolio re-

turns on market return and volatility risk factors. The findings demonstrate that the

currency carry returns can be explained by the currency mean return and the volatil-

ity risk, which is consistent with previous studies, such as Menkhoff et al. (2012). The

loading of the carry portfolio on the volatility risk factor is negative and significant.

The market mean return and the volatility risk can explain more than 90% of the

cross-sectional difference in portfolio returns. The equity carry and momentum re-

turns can be partly explained by the equity mean return and volatility risk, which

is consistent with the conclusions of Cenedese et al. (2014). The risk factor loadings

are significant, meaning that assets with greater exposure to market risk and mar-

ket volatility risk yield higher expected returns. In addition, equity volatility has

a significant impact on cross-sectional difference in bond momentum returns and

a slightly significant impact on bond carry returns. Bond momentum returns can

be largely explained by bond mean return and equity volatility risk factors. There-

fore, I find that, within each asset class, all three signals have predictive power, and
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Chapter 1. Common risks across asset classes

TABLE 1.1: Value, carry, momentum returns within different asset
classes

This table presents means and standard deviations of value, carry and momentum
predictors and portfolio returns for currencies, bonds and equities respectively.
In each asset classes, assets are sorted into five portfolios by value, carry and
momentum predictors. The predictors (s) and returns (r) of P1 to P5 and HML
portfolio(P5-P1) for each asset class and each sorting method are summarised sepa-
rately in the table. The combined value/carry/momentum portfolio is constructed
by holding 1/3 within-asset-class value/carry/momentum portfolio of each asset
class respectively.

Panel A: Currency
Value Carry MOM

s σs r σr s σs r σr s σs r σr

P1 -0.3286 0.1688 0.0050 0.0877 -0.0079 0.0062 -0.0129 0.0795 -0.0378 0.0374 0.0123 0.0967
P2 -0.2160 0.1738 0.0298 0.0862 -0.0024 0.0015 0.0194 0.0762 -0.0096 0.0319 0.0160 0.0870
P3 -0.1055 0.1780 0.0202 0.0726 -0.0008 0.0014 0.0351 0.0808 0.0047 0.0329 0.0392 0.0836
P4 0.0213 0.1835 0.0321 0.0743 0.0006 0.0015 0.0465 0.0875 0.0194 0.0317 0.0407 0.0843
P5 0.3511 0.3203 0.0640 0.0909 0.0028 0.0047 0.0770 0.1135 0.0446 0.0360 0.0703 0.0907
HML 0.0589 0.0910 0.0899 0.1004 0.0579 0.1059

Panel B: Bond
Value Carry MOM

s σs r σr s σs r σr s σs r σr

P1 -0.5107 0.2175 0.0457 0.0958 4.6877 1.6794 0.0366 0.0968 -0.0362 0.0935 0.0472 0.1013
P2 -0.2931 0.1792 0.0543 0.1005 6.1927 2.2205 0.0435 0.1046 0.0653 0.1002 0.0555 0.0966
P3 -0.1885 0.1720 0.0641 0.1038 6.9729 2.8112 0.0738 0.0958 0.1197 0.1166 0.0715 0.1056
P4 -0.0849 0.1721 0.0830 0.1019 8.1950 3.2748 0.0660 0.1010 0.1661 0.1229 0.0729 0.0989
P5 0.1251 0.1990 0.0544 0.1079 12.0002 3.3755 0.0838 0.1157 0.2818 0.1404 0.0909 0.0934
HML 0.0088 0.0953 0.0472 0.1068 0.0437 0.0997

Panel C: Equity
Value Carry MOM

s σs r σr s σs r σr s σs r σr

P1 -1.0219 0.2671 0.0670 0.1961 -4.3919 0.3640 0.0382 0.2341 -0.1197 0.2259 0.0788 0.2371
P2 -0.7700 0.2420 0.0770 0.1828 -3.8651 0.2701 0.1173 0.2089 0.0546 0.2201 0.0803 0.1942
P3 -0.6192 0.2320 0.1021 0.1938 -3.6320 0.2567 0.1085 0.1950 0.1595 0.2430 0.1140 0.1913
P4 -0.4601 0.2091 0.1072 0.1974 -3.3652 0.2254 0.1486 0.1952 0.2826 0.2915 0.1387 0.1979
P5 -0.1345 0.2684 0.1294 0.2372 -3.0202 0.2133 0.1529 0.2055 0.6156 0.4405 0.1525 0.2343
HML 0.0625 0.1778 0.1147 0.1635 0.0737 0.2077

Panel D: Combined Portfolio
Value Carry MOM

r σr r σr r σr

P1 0.0315 0.0951 0.0248 0.1041 0.0469 0.1199
P2 0.0458 0.1004 0.0643 0.1044 0.0526 0.1032
P3 0.0571 0.1014 0.0768 0.0994 0.0775 0.1026
P4 0.0584 0.1012 0.0899 0.1066 0.0874 0.1025
P5 0.0765 0.1227 0.1116 0.1173 0.1064 0.1104
HML 0.0450 0.0846 0.0868 0.0756 0.0595 0.0995
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1.5. Empirical results

the excess returns generated by the signals can be explained by the systematic risk

factors.

TABLE 1.2: Two Factor OLS-FMB of Segmented Portfolios – Volatility
Risk

Panel A reports OLS-FMB test results of currency portfolios sorted by value, carry
and momentum signals, Panel B reports results of bonds and Panel C reports re-
sults of equities. The risk factors are market risk (’Globe’) and market volatility risk
(’Volatility’).

Panel A: Currency

value carry mom

Globe 0.0026 0.0025 0.0026
t-stats 1.5854 8.2738 4.2219
Volatility -0.0474 -0.0717 0.0965
t-stats -0.6274 -6.0178 2.0669
r-squared 0.0688 0.9567 0.6432
adjusted-r -0.8623 0.9135 0.2864

Panel B: Bond
value carry mom

Globe 0.0053 0.0050 0.0056
t-stats 8.8442 7.2937 11.9814
Volatility -0.2987 -0.1148 -0.5599
t-stats -1.2788 -1.9137 -3.1450
r-squared 0.5059 0.5154 0.7544
adjusted-r 0.0118 0.0309 0.5088

Panel C: Equity

value carry mom

Globe 0.0084 0.0091 0.0093
t-stats 10.0832 6.7815 11.3697
Volatility 0.0774 -0.3618 -0.1551
t-stats 0.7860 -2.7267 -3.2893
r-squared 0.6424 0.6962 0.7834
adjusted-r 0.2847 0.3923 0.5669

To further test whether value, carry, and momentum are across-asset-class phe-

nomena, rather than investing equally in each asset class, I adopt another measure

to diversify across asset classes. Specifically, I put all assets into a single investment

pool at the beginning, then sort them into portfolios by their signals, regardless of
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asset class. However, as demonstrated in Table 1.1, the signals of the portfolios (la-

belled ’s’ in the columns) varied dramatically across asset classes. For example, eq-

uity value portfolios have signals of between -1.02 and -0.13, from P1 to P5. The dis-

tribution of the bond value signals across portfolios is, however, very different, with

average values from -0.51 to 0.12. This implies that, when sorting the aggregated

cross-section, equities will ultimately reach the low-value portfolios and bonds the

high-value portfolios; thus, there is little or no mixing across asset classes. Similarly,

equity carry signals are very small, while bond carry signals are large. This problem

of clear heterogeneity in signal distributions across asset classes is least pronounced

for momentum, simply because momentum is measured as a cumulative historical

return for all asset classes. My solution to this problem is to standardise the predic-

tors within asset classes by subtracting a within-asset-class cross-sectional mean and

scaling by a within-asset-class cross-sectional variance (thus, there is no look-ahead

bias in these computations). This removes the across-asset-class heterogeneity in sig-

nal distributions and thus provides the sorting schemes with more consistent data

across assets.

Since currency excess returns are equal to currency appreciation plus the short-

term interest rate, while bond excess returns are equal to currency appreciation plus

the long-term interest rate, and both currency and bond returns are exposed to mar-

ket mean return and volatility risk factors, I begin by putting currencies and bonds

into a single investment pool. Tables 1.3, 1.4, and 1.5 present the summary statistics

of 10 portfolios when currencies and bonds are put into a single investment pool

and the assets sorted according to their standardised value, carry, and momentum

signals. All three strategies generate significant cross-sectional differences in returns

from P1 to P10. The SRs of across-asset-class value and carry HML portfolios are

slightly smaller than those of the currency value and carry HML portfolios in the

previous table, but much larger than those of bond and equity portfolios mainly

due to a smaller standard deviation. The momentum HML portfolio performs very

well, with SR larger than those of all within-asset-class momentum portfolios and

a positive skewness. All HML portfolios have kurtosis larger than normal and a
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positive autocorrelation. Figure 1.1 indicates that the value portfolio experienced

a significant slump in 1998, when the global currency and bond markets together

went through a liquidity crisis. The value strategy performed well between 2002

and 2010. Its performance was particularly positive during the 2008 financial crisis.

However, after 2008, when the whole market recovered from the crisis, the value

portfolio had negative returns. Its performance after 2005 seems to have provided

a good hedge for the global currency and bond markets. Figure 1.2 suggests that,

after 1998, when the carry HML portfolio went through a downturn, together with

the market portfolio, carry generated much larger cumulative HML returns than an

equally-weighted market portfolio. However, carry investors suffered a significant

loss during the financial crisis. In addition, the large carry draw-downs all began

abruptly. Figure 1.3 demonstrates that the momentum portfolio performed badly in

the mid-1990s, and then generated positive returns year-on-year, but after 2005, its

cumulative returns did not change much.
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Chapter 1. Common risks across asset classes
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1.5. Empirical results

FIGURE 1.1: Cumulative HML Return of Non-segmented Value Port-
folio – Currency and Bond

I plot cumulative HML returns of the non-segmented value portfolio together with

cumulative excess returns of an equally-weighted portfolio from 1990 to 2011. Both

portfolios are composed of currencies and government bonds.
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Chapter 1. Common risks across asset classes

FIGURE 1.2: Cumulative HML Return of Non-segmented Carry Port-
folio – Currency and Bond

I plot cumulative HML returns of the non-segmented carry portfolio together with

cumulative excess returns of an equally-weighted portfolio from 1983 to 2011. Both

portfolios are composed of currencies and government bonds.
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1.5. Empirical results

FIGURE 1.3: Cumulative HML Return of Non-segmented MOM Port-
folio – Currency and Bond

I plot cumulative HML returns of the non-segmented momentum portfolio together

with cumulative excess returns of an equally-weighted portfolio from 1983 to 2011.

Both portfolios are composed of currencies and government bonds.

I have further attempted to determine a common set of systematic risk factors

to explain the cross-sectional difference between returns of portfolios composed of

currencies and bonds. Table 1.6 indicates that carry returns can be partly explained

by market mean return and market volatility factors, and both factors have a signif-

icant impact on the return cross-section. Therefore, the results suggest that assets

with larger ’carry’ are cheaper and can generate larger expected returns, as the re-

turns of those assets are negatively correlated with market volatility. However, as
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Chapter 1. Common risks across asset classes

shown in Figure 1.4, while the upward trending of returns from P1 to P10 can be

partly explained by the risk factors, pricing errors of some portfolios are far from

zero. It cast doubt upon the previous asset pricing test results, because the port-

folios with large pricing errors might be primarily composed of bonds. The table

also shows that volatility risk does not work to explain non-segmented value and

momentum returns.

TABLE 1.6: Two Factor OLS-FMB of 10 Non-segmented Portfolios –
Currency and Bond

This table reports OLS-FMB test results of non-segmented portfolios composed of
currencies and bonds sorted by value, carry and momentum signals. The risk factors
are market risk (’Globe’) and market volatility risk (’Volatility’).

value carry mom

Globe 0.0041 0.0041 0.0047
t-stats 4.8397 6.0576 7.4054
Volatility -0.0484 -0.0994 0.0058
t-stats -0.4921 -2.9779 0.0710
r-squared 0.1575 0.5469 -0.1531
adjusted-r -0.0832 0.4174 -0.4826
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1.5. Empirical results

FIGURE 1.4: Carry Pricing Errors

I plot mean returns of 10 non-segmented standardised carry portfolios composed of

currencies and bonds, and their pricing errors after conducting two-factor (market

mean return and volatility risk) OLS-FMB asset pricing test.

I put all currency, bond, and equity excess returns together to study the cross-

section of value, carry, and momentum returns. Table 1.7 indicates that value gen-

erates a slightly larger HML return when my non-segmented standardised sorting

method is adopted, rather than a simple combination of value portfolios for each

asset class, as demonstrated in Table 1.1. The HML portfolio generates a moderate

Sharpe ratio of around 0.5, but its skewness is very positive, from which investors

can benefit through small extreme loss but large extreme profit. Therefore, assets
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Chapter 1. Common risks across asset classes

sorted solely by value signals, regardless of their asset classes, can slightly outper-

form the equally-weighted portfolio composed of value portfolios from each asset

class. Figure 1.5 indicates how returns of value portfolios accumulate over time,

demonstrating that the value portfolio provides a good hedge for the market risk

(represented by the return of a market portfolio composed of all currencies, bonds,

and equities) from 2006 to 2011, but its return strongly correlates with the market

mean return before 2006.

FIGURE 1.5: Cumulative HML Return of Non-segmented Value Port-
folio

I plot cumulative HML returns of the non-segmented standardised value portfolio

together with cumulative excess returns of an equally-weighted portfolio of all assets

from 1990 to 2011.
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Chapter 1. Common risks across asset classes

Table 1.8 indicates that mean returns of carry portfolios increase from 4.60% per

year for P1 to 17.11% per year for P15. The annual HML for the value sort is 9.38%.

Table 1.8 also demonstrates that standard deviations do not change in any mono-

tonic fashion between P1 and P15. Thus, the carry HML portfolio has a mean return

of over 9%, a Sharpe ratio larger than 1, and negative skewness. Figure 1.6 confirms

that investors can accumulate large returns over time by adopting this across-asset-

class carry strategy. However, although the HML return of my strategy is slightly

larger than that of the combined portfolio in Table 1.1, my SR is smaller.
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1.5. Empirical results
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Chapter 1. Common risks across asset classes

FIGURE 1.6: Cumulative HML Return of Non-segmented Carry Port-
folio

I plot cumulative HML returns of the non-segmented standardised carry portfolio

together with cumulative excess returns of an equally-weighted portfolio of all assets

from 1983 to 2011.

Like carry, sorting on momentum generated large differences in portfolio returns

in my aggregated cross-section. The momentum portfolio returns are presented in

Table 1.9. The annual return increase from 6.79% for P1 to roughly 15.41% for P15.

As illustrated in Figure 1.7, the cumulative HML momentum return in my strat-

egy increased over time and performed poorly, together with the market portfolio,

during the market downturns after 2000. As with my across-asset-class value and

carry portfolios, my momentum portfolio had a slightly larger HML return than the

30



1.5. Empirical results

combined momentum portfolio in Table 1.1.

FIGURE 1.7: Cumulative HML Return of Non-segmented Momen-
tum Portfolio

I plot cumulative HML returns of the non-segmented standardised momentum port-

folios and cumulative excess returns of an equally-weighted portfolio of all assets

from 1983 to 2011.

Table 1.10 presents the correlation coefficients between across-asset-class value,

carry, and momentum HML returns. The negative correlation coefficient between

value and momentum is similar to that reported by Asness et al. (2013) because,

intuitively, value and momentum are ’opposite’ strategies. In addition, my results

suggest that carry is slightly positively correlated with both value and momentum.
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Chapter 1. Common risks across asset classes
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1.5. Empirical results

These small correlations suggest that if investors simply combine value, carry, and

momentum portfolios, they can expand their efficient frontier and achieve portfolios

with greater Sharpe ratios. Therefore, my results suggest that investors can further

diversify among those three strategies. Asness et al. (2013) have combined value and

momentum portfolios because of their negative correlation. They could generate a

portfolio with a bigger SR by constructing a 1:1 value and momentum portfolio. No

previous research has tried to put all three strategies together to take advantage of

the diversification benefits. However, as mentioned by Cenedese et al. (2014), port-

folios sorted by different signals are exposed to different systematic risk factors. It is

important for investors to understand what systematic risk factors they are exposed

to when they adopt these strategies. Although investing in multiple asset classes by

multiple strategies might provide diversification benefits, part of the excess returns

may be caused by systematic risk factors.

TABLE 1.10: Correlation Coefficient Matrix

This table presents time-series correlation coefficient matrix of non-segmented
standardised HML portfolios sorted by value, carry and momentum predictors.

P value carry mom

value 1.0000 0.1322 -0.4061
carry 0.1322 1.0000 0.1370
mom -0.4061 0.1370 1.0000

Figures 1.8, 1.9, and 1.10 indicate the probability of an asset in portfolio Pm being

allocated to portfolio Pn in the following month, thus indicating whether the stan-

dardisation procedure helps to ’mix’ assets in different asset classes. For example, in

the value sorting, there is a 63% probability of an asset in P2 remaining there the fol-

lowing month and a 17% probability of it moving to P3. The figures demonstrate that

there is moderate movement of assets between portfolios. The probabilities of high

and low portfolios are around 0.6 for value and carry and 0.4 for momentum, imply-

ing that investors do not suffer significant transaction costs. Previous literature has

provided sufficient evidence that taking transaction cost into account, value, carry
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Chapter 1. Common risks across asset classes

and momentum signals can still generate significant cross-sectional difference in re-

turns. In addition, the focus of my research is whether returns across different asset

classes can be explained by common risk factors, even if transaction costs decrease

returns, they decrease returns for all assets at the same time, which will not influence

my asset pricing test results.2

FIGURE 1.8: Transition Matrix of Non-segmented Value Portfolio

The number in ith column and jth row of the transition matrix represents the proba-

bility that an asset in ith portfolio this month is allocated to jth portfolio next month

if I sort assets by standardised value measure.

2For example, Menkhoff et al. (2014) report asset pricing test results for both returns before and after
adjusted for transaction cost, returns and asset pricing test results are not much different after taking
transaction cost into account. Asness et al. (2013) deliberately choose returns before transaction cost
because they believe gross returns are most suitable to illuminate the relation between their returns
and risks.
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1.5. Empirical results

FIGURE 1.9: Transition Matrix of Non-segmented Carry Portfolio

The number in ith column and jth row of the transition matrix represents the proba-

bility that an asset in ith portfolio this month is allocated to jth portfolio next month

if I sort assets by standardised carry measure.
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Chapter 1. Common risks across asset classes

FIGURE 1.10: Transition Matrix of Non-segmented Momentum Port-
folio

The number in ith column and jth row of the transition matrix represents the proba-

bility that an asset in ith portfolio this month is allocated to jth portfolio next month

if I sort assets by standardised momentum measure.

The HML returns of these standardised portfolios sorted by value, carry, and

momentum are similar to those of the combined portfolios composed of one third of

each asset class. Overall, these summarised statistics for the portfolios created from

my aggregated cross-section – especially those of carry and momentum – indicate

that an international investor can earn good rewards from investing across asset

classes, regardless of whether they sort the assets into non-segmented portfolios by

the signals from the beginning or diversify across asset classes after adopting the
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1.5. Empirical results

strategies within each asset class first. The results do not indicate that value, carry,

and momentum returns in different asset classes are caused by the same factors.

Therefore, I proceed to conduct asset pricing tests to identify the factors driving the

variation in mean returns of my across-asset-class portfolios.

In the next stage, I focus on the three risk factors described in Section 1.4.3: a

global ’market’ factor equal to the equally weighted average of all asset returns in

the aggregated cross section, a market volatility factor and a market liquidity factor.

Table 1.11 reports the two step OLS-FMB test results for the models containing

global market risk and volatility risk factors. In the first-stage time series regressions,

we see that all value portfolios load with roughly unit weight on the market, in line

with the findings of Lustig et al. (2013). This confirms that the return of the equally-

weighted market portfolio should always be included in the asset pricing test as

a level factor. However, value and momentum returns do not significantly load

on volatility risk, implying that the returns do not vary with the volatility factor

over time. By contrast, most carry portfolios are exposed to the time variation of

market volatility, as most carry returns load significantly on volatility in the first-

step regression.

In the second-stage cross-sectional regressions, the risk premium of momentum

portfolios on the volatility factor is negative and significant. Thus, portfolios with

low exposure to volatility earn high mean returns. Ex ante, one might have expected

the converse – in other words, that a portfolio with high volatility beta, which tends

to pay off well when volatility is low, is not attractive to investors and thus has a

high expected return. The p-value associated with J statistics is not 0, so we cannot

reject the null hypothesis that the pricing error is 0. The adjusted R2 is very small,

suggesting that risk factors can only explain less than 20% of the cross-sectional dif-

ference in momentum returns. Meanwhile, most first-step loadings are not statisti-

cally significant, so the model with volatility risk cannot effectively rationalise my

momentum returns. In addition, since returns of momentum portfolios can be par-

tially explained by volatility risk, my sorting strategy purposely expose my portfo-

lios more to this risk factor than those in Asness et al. (2013). Therefore, my strategy
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Chapter 1. Common risks across asset classes

should generate a bigger return than the strategy in Asness et al. (2013) when market

is less volatile and a smaller return when market is more volatile.

The second-stage results for value are much less impressive. The market factor

appears to be significant and has the correct sign, but volatility plays a relatively

insignificant role in explaining the cross section of mean returns. The volatility coef-

ficient for value portfolios in the second-stage regression is slightly positive, indicat-

ing that high value portfolios – which pay well when volatility is high – should be

more attractive to investors, but they have a higher expected return. This can be ex-

plained by the negative correlation between value and the more popular momentum

trading strategy, as suggested by Asness et al. (2013).

Although most carry returns are exposed to volatility risks in the first-step re-

gression, the exposure seems not to contribute to the cross-sectional difference in

carry returns. Although volatility slightly explains the premium of non-segmented

carry portfolio composed of currencies and bonds, it can not explain the carry pre-

mium when equities are added. The p-value associated with J statistics is 0, mean-

ing that we can reject the null hypothesis that the pricing error is 0. We see from the

table that assets with larger carry and larger expected returns are not significantly

negatively correlated with the market volatility factor. These results confirm those

of Cenedese et al. (2014), suggesting that only global equity factors can price inter-

national equity portfolios sorted by equity carry. Therefore, my return cross-section

incorporating currencies, bonds, and equities cannot be justified by a common set of

risk factors: thus, investors can take advantage of this by investing in carry portfo-

lios across asset classes, without suffering a market-wide volatility risk.

I also attempt to explain the returns by the liquidity risk factor described by Pás-

tor and Stambaugh (2003).3 Table 1.12 indicates how exposure to market risk and

liquidity risk influence mean returns on value and momentum portfolios. The re-

sults are very similar to those presented in Table 1.11. The first-stage results here are

uniformly unimpressive for liquidity risk. The liquidity risk factor has little impact

3This factor has the drawback of relying on liquidity of individual US equities and thus we are
relying on commonality in liquidity across asset classes and countries in its application here.
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1.5. Empirical results

TABLE 1.11: Two Factor OLS-FMB of 15 Non-segmented Portfolios -
Volatility Risk

Panel A reports OLS-FMB test results of non-segmented value/carry/momentum
portfolios. ’Globe’ is market mean return of all assets. ’Vol’ is volatility factor con-
structed by daily data of currency and equity. Panel B reports estimated parameters
in the 1st step regression model. * denotes a 10% significance and ** denotes a 5%
significance.

Panel A: Test Results - Globe and Vol
Value Carry MOM

Globe 0.0048 0.0063 0.0065
t-stats 9.0126 7.0625 10.6022
Vol 0.0494 -0.0287 -0.1033
t-stats 1.5838 -0.8599 -2.7777
r-squared 0.4278 0.0757 0.1761
adjr 0.3324 -0.0784 0.0387
J-stats 12.5468 46.8761 17.9598
p-value 0.4834 0 0.1591

Panel B: 1st step regression result

Value Carry MOM
P Globe Vol Globe Vol Globe Vol

P1 0.9015** 0.0109 1.4143** 0.0294** 1.0138** 0.0089
P2 0.8709** 0.0043 1.0128** 0.0209** 1.1455** 0.0194
P3 0.9144** -0.0068 0.7920** 0.0168** 1.0773** 0.0185*
P4 0.8323** -0.0011 0.0773** 0.0138* 1.0901** 0.0158
P5 0.8450** 0.0149 0.8018** 0.0185** 1.1426** 0.0160
P6 0.8895** 0.0121 0.9209** 0.0331** 1.0589** -0.0102
P7 0.8191** -0.0148 0.9220** -0.0273** 0.9826** -0.0259**
P8 0.8624** 0.0116 0.9567** 0.0085 0.9970** -0.0056
P9 0.9665** 0.0471** 0.9963** -0.0280** 1.1070** 0.0285**
P10 0.8766** - 0.0022 1.0615** -0.0039 0.9100** -0.0013
P11 0.8489** -0.0059 1.1038** -0.0301 0.9717** -0.0195**
P12 0.9333** 0.0043 1.1189** -0.0312** 0.9377** 0.0121
P13 1.0313** 0.0209** 1.1436** -0.0626** 0.8595** -0.0285**
P14 1.1671** 0.0245* 1.1320* -0.0175 0.8252** -0.0139
P15 1.1001** -0.0082 0.9479 0.0100 0.7842** -0.0147
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Chapter 1. Common risks across asset classes

on cross-sectional differences in the value or carry returns. In the second-stage re-

gressions, liquidity risk plays a minor role: there is weak evidence that it helps to

explain the cross-section of mean momentum portfolio returns. This result is similar

to – albeit much weaker than – the asset pricing results for within-asset-class mo-

mentum reported by Asness et al. (2013), Pástor and Stambaugh (2003), and Sadka

(2006).

Table 1.13 reports the results of the global asset pricing test, including market

risk, volatility risk and liquidity risk factors. The results are broadly consistent with

the two-factor asset pricing test results in Tables 1.11 and 1.12, and the first-step

regression results demonstrate that no portfolios are exposed to time variations of

market volatility or liquidity. The R2 for each strategy remains very small. For value

and momentum portfolios, we cannot reject the null hypothesis that the pricing error

is 0, while we can reject the null hypothesis for carry portfolios. In summary, an asset

pricing model with market-wide systematic risk factors across asset classes cannot

rationalise my value, carry, or momentum returns.

Figures 1.11, 1.12, and 1.13 display the mean returns of the value, carry, and mo-

mentum portfolios alongside the pricing errors from the three-factor model. The

portfolio returns clearly demonstrate a cross-sectional difference; however, even af-

ter accounting for the three risk factors, the pricing errors of value and momentum

portfolios demonstrate an upward pattern while pricing errors of some carry port-

folios are large. The results of the previous asset pricing tests, namely that the set

of systematic risk factors cannot explain my return cross-section. However, my test

results suggest that investors could take advantage of the diversification benefits

across asset classes, as value, carry, and momentum portfolios in each asset class are

only exposed to risk factors idiosyncratic to their own asset classes. This also ex-

plains why my returns are not better than an equally-weighted combined portfolio

composed of value, carry, and momentum portfolios from each asset class, as both

methods improve returns through diversification. Sorting assets by those signals, re-

gardless of their asset classes, does not expose the portfolios to any across-asset-class
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1.5. Empirical results

TABLE 1.12: Two Factor OLS-FMB of 15 Non-segmented Portfolios -
Liquidity Risk

Panel A reports OLS-FMB test results non-segmented value/carry/momentum
portfolios. ’Globe’ is market mean return of all assets. ’Liquidity’ factor is Pastor and
Stambaugh’s innovation in aggregate liquidity. Panel B reports estimated parame-
ters in the 1st step regression model. * denotes a 10% significance and ** denotes a
5% significance.

Panel A: Test Results - Globe and Liquidity

Value Carry MOM

Globe 0.0053 0.0063 0.0064
t-stats 10.0556 7.0619 10.1280
Liquidity -0.0229 -0.0029 0.0336
t-stats -1.1399 -0.1213 2.2438
r-squared 0.3180 0.0666 0.1125
adjr 0.2043 -0.0890 -0.0354
J-stats 15.3628 48.7032 18.4444
p-value 0.2853 0 0.1414

Panel B: 1st step regression result

Value Carry MOM
P Globe Liquidity Globe Liquidity Globe Liquidity

P1 0.8789 ** -0.0160 1.0574 ** 0.0534 ** 1.0013 ** -0.0240
P2 0.8662 ** -0.0176 1.0838 ** -0.0172 1.1207 ** -0.0587 **
P3 0.9157 ** 0.0444 ** 1.0759 ** -0.0576 ** 1.0483 ** -0.0421
P4 0.8323 ** 0.0080 1.1104 ** 0.0013 1.0539 ** -0.0064
P5 0.8091 ** -0.0087 0.9988 ** -0.0374 ** 1.1047 ** -0.0036
P6 0.8718 ** -0.0375 * 1.0543 ** 0.0101 1.0665 ** 0.0450 *
P7 0.8596 ** -0.0039 0.9722 ** -0.0249 1.0496 ** -0.0091
P8 0.8308 ** 0.0026 0.9520 ** -0.0459 ** 1.0099 ** 0.0021
P9 0.8747 ** -0.0484 ** 1.0130 ** -0.0341 * 1.0469 ** -0.0248
P10 0.8766 ** 0.0154 0.9540 ** -0.0350 * 0.9186 ** -0.0143
P11 0.8594 ** 0.0133 0.9121 ** 0.0183 1.0121 ** 0.0193
P12 0.9328 ** -0.0288 0.8874 ** 0.0295 0.9063 ** 0.0045
P13 0.9737 ** 0.0071 0.8265 ** -0.0136 0.9107 ** 0.0480 **
P14 1.0950 ** 0.0199 0.9499 ** 0.0709 ** 0.8451 ** 0.0365
P15 1.1145 ** 0.0191 1.0166 ** 0.0838 ** 0.7446 ** 0.0089
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Chapter 1. Common risks across asset classes

TABLE 1.13: Three Factor OLS-FMB of 15 Non-segmented Standard-
ised Portfolios

Panel A reports OLS-FMB test results. Vol is volatility factor constructed by daily
data of currency and equity. Panel B reports estimated parameters in the 1st step
regression model. * denotes a 10% significance and ** denotes a 5% significance.

Panel A: Test Result
Value Carry MOM

Globe 0.0049 0.0063 0.0065
t-stats 8.5077 6.9620 10.2983
Vol 0.0473 0.0346 -0.0886
t-stats 1.4281 -0.9890 -1.9968
Liquidity -0.0124 -0.0169 0.0262
t-stats -0.6082 -0.5648 1.6238
r-squared 0.4326 0.1184 0.2061
adjr 0.2778 -0.1221 -0.0140
J-stats 11.5335 45.2779 17.6129
p-value 0.4838 0 0.1280

Panel B: 1st step regression result

Value Carry MOM
P Globe Vol Liquidity Globe Vol Liquidity Globe Vol Liquidity

P1 0.9018** 0.0095 -0.0103 1.0288** -0.0203* 0.0097 1.0135** 0.0057 -0.0196**
P2 0.8714** 0.0022 -0.0163 1.0858** 0.0031 -0.0063 1.1449** 0.0113 -0.0498
P3 0.9131** -0.0011 0.0437** 0.9527** -0.0142 0.0323 1.0770** 0.0134 -0.0317**
P4 0.8321** -0.0001 0.0080 0.9457** 0.0002 -0.0085 1.0902** 0.0169 0.0068
P5 0.8450** 0.0149 0.0003 1.0438** -0.0031 -0.0190 1.1427** 0.0177 0.0103
P6 0.8905** 0.0078 -0.0328 0.9384** 0.0135 0.0085 1.0594** -0.0033 0.0425*
P7 0.8195** -0.0166* -0.0139 1.0001** -0.0009 -0.0511** 0.9822** -0.0314** -0.0337
P8 0.8621** 0.0130 0.0105 0.9712** -0.0081 0.0515** 0.9970** -0.0060 -0.0026*
P9 0.9672** 0.0384** -0.0252 1.0586** 0.0196* 0.0112 1.1070** 0.0280** -0.0029**
P10 0.8762** -0.0002 0.0152 1.0452** -0.0139 -0.0056 0.9097** -0.0041 -0.0176**
P11 0.8486** -0.0045 0.0106 1.0165** -0.0001 -0.0038 0.9718** -0.0188* 0.0046
P12 0.9342** 0.0006 -0.0285 1.1315** 0.0141 0.0352 0.9379** 0.0147 0.0160**
P13 1.0306** 0.0237** 0.0214 0.9823** 0.0221* -0.0059 0.8599** -0.0237** 0.0295
P14 1.1659** 0.0295** 0.0377 1.0683** 0.0452** -0.0022 0.8256 ** -0.0091 0.0294**
P15 1.0996** -0.0062 0.0154 0.9141** -0.0118 -0.0426 0.7844** 0.0185 0.0234
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1.5. Empirical results

systematic risk factors and thus does not generate greater returns than combined

portfolios after sorting within each asset class.

FIGURE 1.11: Value Pricing Errors

I plot mean returns of 15 non-segmented value portfolios and their pricing errors

after conducting three-factor (market mean return, market volatility and liquidity

risk) OLS-FMB asset pricing test.
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Chapter 1. Common risks across asset classes

FIGURE 1.12: Carry Pricing Errors

I plot mean returns of 15 non-segmented carry portfolios and their pricing errors

after conducting three-factor (market mean return, market volatility and liquidity

risk) OLS-FMB asset pricing test.
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1.5. Empirical results

FIGURE 1.13: Momentum Pricing Error

I plot mean returns of 15 non-segmented momentum portfolios and their pricing

errors after conducting three-factor (market mean return, market volatility and liq-

uidity risks) OLS-FMB asset pricing test.

Above all, the volatility or liquidity factor effectively explains the returns within

each asset class, but it fails across asset classes. The results imply that the currency,

international bond, and equity markets are not fully integrated and thus reward the

same risks with different prices. However, my test nevertheless suffers from the

bad model problem, which is likely due to the fact that my risk factors cannot re-

flect the time variations of market-wide volatility or liquidity across asset classes.

For example, the market portfolio I use is an equally-weighted portfolio, composed

of all assets across asset classes. However, in reality, the trading volumes are quite
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Chapter 1. Common risks across asset classes

different. In addition, my volatility factor is an equally-weighted realised volatil-

ity, constructed on the basis of currency and equity data. My liquidity factor is the

Pastor-Stambaugh liquidity series, which covers only US data.

1.6 Conclusion

I apply value, carry, and momentum sorting rules to an aggregated cross-section

containing global equity indices, bonds, and currencies. I treat assets from different

classes as belonging to a unified cross-section, which differentiates my work from

previous investigations into single asset classes, such as those of Asness et al. (2013),

Lustig et al. (2013), Cenedese et al. (2014), Koijen et al. (2013), and Menkhoff et al.

(2012).

I demonstrate that value/momentum strategies with standardised value/momentum

predictors can generate significant mean returns for international investors who are

willing to spread their wealth across asset classes. Carry is a particularly attractive

strategy, generating HML returns of nearly 10% per annum, with a Sharpe ratio of

more than 1. Momentum yields a mean HML return of around 7%, with a Sharpe

ratio of roughly 0.6.

Asset pricing tests suggest that returns of cross-asset currency and bond port-

folios sorted by carry signals can be partly explained by their exposure to a global

volatility factor; however, when equity is added, the volatility risk factor does not

work at all. In addition, market-wide volatility and liquidity risk factors across as-

set classes cannot explain the across-asset-class value, carry, or momentum returns.

The results suggest that these returns in each asset class are exposed to risk factors

idiosyncratic to their own asset classes; thus, investors can diversify across asset

classes when adopting these strategies to improve their risk-adjusted returns. In ad-

dition, the three different asset classes are not fully integrated because within-asset-

class asset pricing models do a better job than across-asset-class models of explaining

value, carry, and momentum patterns in returns.
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Chapter 2

Evaporating liquidity: information

asymmetry or inventory control

2.1 Introduction

The liquidity of many asset classes declined drastically during the financial crisis

between 2007 and 2009. Previous studies have provided two explanations for this.

Nagel (2012) studies the US equity market and concludes that liquidity provision

withdrawal due to liquidity providers’ inventory control was the main driver of liq-

uidity evaporation. The results confirm what Brunnermeier and Pedersen (2009)

predict by their theory that contributes sudden liquidity dry-up to mutually rein-

forcing market liquidity and funding liquidity, and that speculators’ capital is the

driver of market liquidity and risk premium and volatility is a state variable af-

fecting market liquidity. However, Gorton and Metrick (2012) argue that increased

information asymmetry led to the liquidity evaporation in the securitised debt mar-

ket because the external shock from subprime mortgages switched the information-

insensitive assets to information-sensitive assets. The resulting adverse selection

stopped people from trading and thus caused the market breakdown.

On one hand, information asymmetry may adversely affect liquidity providers’

willingness to supply liquidity. The theoretical background is provided by Kyle

(1985a) and Glosten and Milgrom (1985) whose models point out that market mak-

ers may suffer a loss providing liquidity to informed investors. Previous literature

has proposed different models to explain how adverse selection triggers crisis. For
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example, Bolton et al. (2011) suggest that firms can choose either to sell early or late

if adverse selection discount is too big, leaving only ’lemons’ in the market. Morris

and Shin (2012) propose that a small amount of adverse selection problem can lead

to failure of ’market confidence’ and thus market collapse. Similar to Gorton and

Metrick (2012), Dang et al. (2009) believe that a shock that trigger private informa-

tion production can be made worse due to adverse selection and may reduce trade

to zero. Therefore, when the negative economic shock is large enough, investors are

more worried that the assets in the market are ’lemons’, and thus fear of adverse se-

lection escalates. The liquidity providers who do not profit from producing private

information are worried about being taken advantage of, and the fear of adverse se-

lection will reduce their liquidity provision. On the other hand, liquidity providers’

constrained inventory-absorption capacity due to tighter funding, elevated risk or

less competition can also lead to liquidity dry-up. According to Nagel (2012), the

expected return of liquidity provision will increase during the crisis, different from

liquidity dry-up due to adverse selection problem. This paper examines whether the

evaporating liquidity in the UK equity market during the global financial crisis was

caused by an amplified adverse selection problem or by liquidity providers’ con-

strained inventory absorption capacity and the increased inventory control cost. As

claimed in O’Hara (2003), price discovery and liquidity are two functions of market

for asset pricing. Separating the two processes help to identify which function of

financial market went wrong during the crisis. Many debates arose regarding how

to regulate the financial institutions and at the same time, maintain their functions

such as liquidity provision after the crisis. Identifying whether information asym-

metry or inventory control cause liquidity dry-up provides insights to regulators

and policymakers how to maintain liquidity during market downturn.

Nagel (2012) has used the returns from reversal strategies as a proxy for the re-

turns of liquidity provision, as liquidity providers buy when the public sells, which

coincides with falling prices, and then sell when the public buys, which coincides

with rising prices. However, there are many different versions of reversal strategies,

and it is extremely difficult to determine which version is the best proxy. Previous
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research has considered how inventory control influences liquidity through market

makers’ inventory data. However, as described by Grossman and Miller (1988) and

Campbell et al. (1993), liquidity providers are not just specialists or dealers but any-

one who accommodates liquidity needs in exchange for higher expected returns.

Hendershott et al. (2011) claim that algorithmic traders and quantitative investors

perform the role of providing liquidity without being officially designated as market

makers. Due to the difficulty accessing the inventory data of all liquidity providers

and determining the specification of reversal strategies, I take a different approach.

Inspired by Hendershott and Menkveld (2014), I decompose stock prices into

unobserved fundamental values and pricing errors. Theoretically, on the one hand,

prices move towards assets’ fundamental values in response to information con-

tained in customers’ order flows; and these changes due to private information are

permanent, which makes the fundamental value process a random walk. On the

other hand, the pricing error, the deviation of price from fundamental value, is tran-

sitory, so the pricing error is a stationary process. Therefore, I use state space form

(SSF) approach to isolate the two unobserved time series and obtain estimates of un-

known parameters in the model through Kalman Filter. In addition, the reaction of

fundamental values and pricing errors to customers’ order flows could reflect how

information asymmetry and inventory control varied during the crisis. Information

asymmetry influences liquidity because investors who require immediate liquidity

may have better access to information concerning a particular security than liquidity

suppliers. Therefore, liquidity providers ask for a higher (lower) price when they sell

(buy) an asset to compensate for the adverse selection problem arising from a bad

market shock, leading fundamental value changes to be more sensitive to customers’

orders in the crisis. Meanwhile, the pricing error emerges as liquidity providers in-

crease (decrease) their price quotes after net buy (sell) flow to induce customers’ sell

(buy) orders so that liquidity providers could move inventory back to their desired

level. If liquidity providers tighten liquidity provision, pricing errors induced by

each customers’ order increase.

I find that pricing errors became more sensitive to customers’ order flows from
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June to December 2008, indicating that liquidity providers charged a larger premium

for providing liquidity as the financial crisis developed. Meanwhile, the fundamen-

tal values of most stocks, especially big-cap stocks, did not become more sensitive

to customers’ order flows during the crisis, meaning that adverse selection problem

was not severely amplified for most stocks in the UK market. The Brunnermeier and

Pedersen (2009) model suggests that an exogenous negative shock might trigger the

market to a low-liquidity/ high margin status in which constraint funding, market

illiquidity, and increasing volatility reinforce one another. Thus, the model implies

that liquidity can dry up suddenly, and this sudden dry-up is related to volatility.

My results suggest that pricing errors’ sensitivity to customers’ order flows increases

together with the VIX, supplying evidence that liquidity providers’ tighter inventory

control in a much more volatile market led to the liquidity dry-up during the crisis.

It might be good news to regulators and policymakers that the liquidity dry-up is

caused by inventory control rather than adverse selection. Therefore, as long as the

liquidity provision sector has enough funding and more risk bearing capacity, liq-

uidity will not evaporate. To liquidity providers, my results can assure them that

they would not suffer a bigger loss due to adverse selection. In contrast, consistent

with the results in Nagel (2012), liquidity providers should make a bigger return

during market downturn when liquidity becomes a scare resource.

The remainder of this chapter is organised as follows. Section 2.2 presents a re-

view of previous literature that proposes theories and provides evidence for both

information asymmetry and inventory control channels. Sections 2.3 and 2.4 de-

scribe the data and methodology used in this paper. Section 2.5 presents empirical

results, and Section 2.6 concludes.
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2.2 Literature review

Recent financial crises have shown that, at times, liquidity can decline or even disap-

pear. Levine and Zervos (1998) emphasise the importance of liquidity and contend

that more liquid financial markets can promote investment, productivity, and eco-

nomic growth. Therefore, many microstructure researchers have studied the reasons

for liquidity crises, presenting theoretical models and empirical evidence to explain

liquidity fluctuations. These models typically involve two sources of market friction:

information asymmetry and inventory control.

Liquidity is broadly defined as the ability to quickly trade large quantities of

risky assets, at low costs, and without moving the price. However, the question of

how liquidity should be measured remains. Bid-ask spread is usually employed, as

market makers provide immediate liquidity to those asynchronously and stochas-

tically arriving investors who are unwilling to bear the costs associated with con-

stantly monitoring the market (Townsend (1978)). However, Grossman and Miller

(1988) believe that the bid-ask spread cannot fully capture market liquidity because

it only measures market makers’ return when they ’cross’ both sides of the trade

simultaneously; therefore, they propose autocorrelation in rates of return as a liq-

uidity measure. Campbell et al. (1993), in line with previous studies, state that

price changes accompanied by large trading volumes tend to be reversed because

risk-averse market makers have higher expected returns after accommodating non-

informational traders’ exogenous liquidity demand, which has inspired a set of pa-

pers that estimate liquidity through temporary price changes induced by volume (or

order flow). For example, Pastor and Stambaugh (2001) estimate liquidity using the

effect of a given volume on returns, finding liquidity to be a priced factor. In addi-

tion, to measure the time variation of liquidity provision, Nagel (2012) use returns

from a reversal strategy to measure liquidity after proving that reversal strategy re-

turns closely track the returns earned by liquidity providers.

On the one hand, a group of researchers have studied liquidity through infor-

mation asymmetry. Information leads to permanent changes in price. Kyle (1985a)
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and Glosten and Milgrom (1985) have developed models suggesting that, since liq-

uidity providers react to order flows due to information asymmetry, price fluctuates

in response to order flow innovations, and the impact from information asymme-

try is permanent. Evans and Lyons (2002a) also find that investors’ order flow may

contain private information and make permanent price changes using foreign ex-

change trading data. In addition, they show that uninformed liquidity providers

are informationally disadvantaged when trading with informed agents; thus, liq-

uidity providers should be compensated based on the probability that a coming

order contains private information. Similarly, as mentioned by Weill (2007), mar-

ket makers should be compensated for the adverse selection problem because they

temporarily lean against the market to match the asynchronous stochastic arrivals

of impatient buyers and sellers across time. Together, these studies argue that the

reaction of liquidity providers to customers’ orders is determined by the extent of

information asymmetry in the market. In addition, some studies have confirmed

that uninformed liquidity providers are compensated for adverse selection by bid-

ask spreads. Hasbrouck (1991a) and Hasbrouck (1991b) define information impact

as the persistent impact of trade innovations, concluding that large trades are asso-

ciated with widening bid-ask spreads because a large trade is more likely to contain

private information and, as a result, has a larger price impact. He also finds that

trades are more informative for firms with small market capitalisation. Barclay and

Hendershott (2004) observe that trading costs are much larger after trading hours

than during the trading day, but dealers do not achieve greater profits, as the larger

spread compensates for greater adverse selection problems after the normal trading

hours.

On the other hand, previous studies have provided abundant evidence that tem-

porary price changes are caused by liquidity providers’ inventory management.

Hendershott and Seasholes (2007) and Comerton-Forde et al. (2010) use specialists’

inventory data from the New York Stock Exchange (NYSE) to show that specialists’

inventory position can explain time variation in liquidity. Hansch et al. (1998) find

evidence that inventory has a substantial impact on price formation and liquidity
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in dealership markets. Reiss and Werner (1998) also find that inventory positions

determine dealers’ trading behaviour, while Naik and Yadav (2003) conclude that

individual dealers focus on the position risk of stocks held by themselves, rather

than the position risk of the entire portfolio managed by the firm. These studies all

present evidence that liquidity providers manage risk by keeping their inventories

at a target level.

To separate information asymmetry and inventory control I use the SSF inspired

by Hendershott and Menkveld (2014) and Brogaard et al. (2014) that adopt the SSF

to separate the permanent price changes and transitory price changes. Hendershott

and Menkveld (2014) first apply the model to daily US equity price and liquidity

providers’ inventory to study the price pressure that liquidity providers’ inventory

control exerts on price. The model is further developed in Brogaard et al. (2014) to

divide the order flows into orders of HFTs and non-HFTs in SSF to study how orders

of different types of investors influence fundamental value and pricing error. But in

nature, the model is still based on the different ways that orders drive price due to

information or inventory control.

Many researcher further studied the relationships between market declines, volatil-

ity, and liquidity as a result of liquidity providers’ inventory control after liquidity

dry-ups that occurred during the 1998 LTCM crisis and the 2008 global financial cri-

sis. Some theoretical papers propose models to explain why liquidity decreases after

market declines and becomes more volatile. Brunnermeier and Pedersen (2009) de-

velop a theoretical model in which intermediary capital positions influence liquidity

provision, and they suggest that volatility and liquidity simultaneously influence

one another at the same time during crises, leading to liquidity dry-up. Anshuman

and Viswanathan (2005) focus on the relationship between liquidity and market re-

turns, and present a slightly different model, in which market makers are less able

to finance in the repo market when leveraged investors’ defaults lead to asset liq-

uidation. Garleanu and Pedersen (2007b) show that tighter risk management by

institutions in volatile markets reduces their risk bearing capacity and thus low-

ers market liquidity, suggesting that volatility is the underlying state variable that
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drives liquidity reductions. Kyle and Xiong (2001) and Xiong (2001) propose limit-

to-arbitrage models, indicating that, in normal times, when shocks to noise trades

move prices away from fundamental values, arbitrageurs provide liquidity and take

advantage of the opportunities; however, in market downturns, when those liquid-

ity providers have increased risk aversion or tighter capital constraints, they are less

willing to hold risky assets. Chordia et al. (2005) find that innovations to liquidity

and volatility in stock and bond markets are significantly correlated, indicating that

common factors drive liquidity and volatility in these markets. Deuskar (2006) pro-

vides some initial support for a link between volatility misperception and liquidity,

consistent with the theory that liquidity providers are less willing to hold risky as-

sets when volatility is perceived to be high. However, the liquidity measure used

in these papers captures both the persistent and temporary price impacts of trades;

thus, it cannot distinguish between adverse selection and inventory control. In ad-

dition, Chung and Chuwonganant (2014) further demonstrate that how liquidity

reacts to volatility change depends on market structure.

After the global financial crisis, liquidity evaporation has attracted more atten-

tion from researchers, investors and regulators than ever before because no one

wants to see that a local financial toxicity drags the whole system into a mess due to

liquidity dry-up again. Empirical studies have presented mixed evidence regarding

how liquidity providers’ unwillingness to provide liquidity lead to liquidity evapo-

ration during financial crisis. On the one hand, Gorton and Metrick (2012) show that

in securitised debt markets, information asymmetry was amplified during the finan-

cial crisis, increasing the information sensitivity of asset prices. On the other hand,

Nagel (2012) finds that the time variation in liquidity provision can be predicted

by the VIX index. This demonstrates that the evaporating liquidity in 2008 can

be partly explained by liquidity providers’ inventory control, but it is still unclear

whether the VIX itself is the state variable that drives the time variation in liquidity

or other state variables correlated with the VIX influence liquidity. Mitchell et al.

(2007) note that convertible arbitrage hedge funds, which provide liquidity in nor-

mal times, were forced to liquidate their convertible bond positions due to binding
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capital constraints following large capital redemptions from investors in 2005 and

the significant decline in security values during the LTCM crisis. Many regulatory

changes followed to make the system more resistant to negative shocks. However,

more debates arose regarding whether these regulations make the financial system

more resistant or more fragile. Musto et al. (2018) suggest that policies to offset the

liquidity feedback in less liquid securities could help mitigate a potential illiquidity

spiral during a crisis. Regarding the Volcker Rule that limits liquidity provision of

banks in the US bond market, Trebbi and Xiao (2019) believe that liquidity did not

deteriorate after negative shocks because non-banker liquidity providers could fill

the gap while Bao et al. (2018) holds a different opinion.

My research makes the contribution that I separate the effects of customers’ order

flows on pricing error and on fundamental value, enabling me to study separately

how information asymmetry and inventory control lead to liquidity decline. In ad-

dition, my research does not rely on market makers’ inventory data or returns of

reversal strategies. Such convenience is given by the minute data of prices and or-

der flows, which are more informative than the daily public stock prices mostly used

in previous papers. As I have a straightforward measure of market liquidity, I can

further study how market liquidity varies with underlying state variables such as

volatility and funding. As not many studies have discussed the liquidity evapora-

tion in the UK equity market, my research tries to test liquidity evaporation theories

by UK equity data.
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2.3 Data and summary statistics

2.3.1 Data

I use trading data for 100 common stocks1 , FTSE100 constituents, from the London

Stock Exchange (LSE) to construct mid-quotes (average of bid and ask prices) and

market order flows every minute for all trading hours from June to December 2008.2

Order flow data is from the electronic platform of LSE. Majority of trading activities

of FTSE100 stocks are included in my dataset. Other trading platforms such as Chi-

X, BATS, and Turquoise only account for less than 20% of all transactions of most

FTSE100 constituents till 2008. Therefore, my dataset includes almost all orders that

determine the prices of these equities in my research.

The daily closing price of FTSE100 during the global financial crisis is shown in

Figure 2.1. The financial crisis of 2007-2008 started from plummet of mortgage re-

lated secrurities, and then gradually developed into an international banking crisis.

It culminated with the bankruptcy of Leman Brothers In Sep 2008. Global equity

markets all crashed during the crisis. Both the TED spread and LIBOR spiked to

historical record highs in September 2008. Additionally, after Leman Brothers went

to bankruptcy in mid September, all big banks were perceived to be risky and west-

ern governments started to inject capital to prevent them from collapsing. These six

months’ data provide a good window for us to look at how liquidity disappeared.

To facilitate comparison across stocks, stocks are sorted into five quantiles based on

market capitalisation. Quantile 1 refers to small market-cap companies and Quantile

5 corresponds to big market-cap companies. Although I call them small cap equities

in this chapter, their market capitalisations are bigger than many equities in the UK

market, but relatively small compared with the other constituents of FTSE100. I only

apply the SSF to FTSE 100 constituents because those equities are traded frequently

enough for me to estimate the parameters of my SSF.

1One stock is removed due to infrequent trading.
2Minutely prices and order flows are removed if returns (in b.p.) with absolute values are bigger

than 500, or bid-ask spreads (in b.p.) are smaller than 0 or bigger than 500 within this minute.

56



2.3. Data and summary statistics

FIGURE 2.1: Price Change of FTSE100 from 2007 to 2008

The chart shows price change of FTSE100 during the financial crisis.

2.3.2 Summary statistics

Table 2.1 reports mean, standard deviation and first autocorrelation of both returns

and order flows for all five quantiles. Mean returns are all negative, indicating a

declining market. The first autocorrelation of return is negative, which confirms

return reversal within an extremely short period. The first autocorrelation of order

flow is positive because traders are working to minimize price impact by converting

big trades to continuous small trades.

Figure 2.2 and Figure 2.3 display distribution of minute order flows and trading
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TABLE 2.1: Summary Statistics

This table presents summary statistics of returns and order flows every minute
from June to December 2008 of 99 stocks traded on LSE. Stocks are sorted into
five quantiles based on market capitalisation where Q1 includes companies with
the smallest market-caps. All six statistics reported in this table are calculated by
minute return, order flow or volume of each stock first, and then averaged within
each quantile. Returns are in b.p. while order flows are in 10,000 shares.

return order flow
mean st. dev. 1st autoco. mean st.dev. 1st autoco.

All -0.0434 22.9081 -0.0293 -0.0141 1.8217 0.0922
Q1 -0.0847 28.3903 -0.0158 -0.0127 1.7304 0.0885
Q2 -0.0784 28.1486 -0.0173 -0.0113 1.6403 0.0891
Q3 -0.0169 20.7071 -0.0273 -0.0152 1.5888 0.0947
Q4 -0.0319 19.6624 -0.0415 -0.0068 1.0304 0.0966
Q5 -0.0073 17.9065 -0.0440 -0.0246 3.1142 0.0916

volumes (in number of shares) for all companies and companies in each quantile.

Distribution of order flows is nearly bell-shaped with most companies’ order flows

around zero. Even during the crisis, order flows of FTSE100 stocks seemed not very

left skewed. Order flow and volume are much bigger for big-cap equities, suggest-

ing that although all these FTSE100 constituents are frequently traded, Q5 equities

are much more frequently traded with bigger volumes.
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FIGURE 2.2: Distribution of Order Flow

The histograms in this figure show distribution of order flows for all companies and

companies in each quantile. Stocks are sorted into five quantiles based on market

capitalisation where Q1 includes companies with the smallest market-caps.
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FIGURE 2.3: Distribution of Volume

The histograms in this figure show distribution of trading volume for all compa-

nies and companies in each quantile. Stocks are sorted into five quantiles based on

market capitalisation where Q1 includes companies with the smallest market-caps.

Figure 2.4 presents how bid-ask spreads change over time during the crisis. The

average spreads for all stocks increased sharply in September 2008. The increase was

significant for companies with small market caps and the spreads did not go back to

their original level. Spreads for companies with big market caps reverted gradually

to their original level after the spike in September, indicating that the financial crisis
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had a much bigger and prolonged impact on liquidity of small market caps.

FIGURE 2.4: Bid-ask Spread

This figure presents bid-ask spreads (in b.p.) of 99 stocks traded on London Stock Ex-

change from June to December 2008. The bid-ask spread is averaged each day with

minute data for each stock first. Then the spreads are averaged cross-sectionally

for all stocks and stocks in five quantiles. Companies are sorted into five quantiles

based on market capitalisation where Q1 refers to companies with the smallest mar-

ket caps. The bid-ask spread is the bid-ask difference as percentage of mid-quotes.

———————————————-
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2.4 Methodology

Since price change is caused by both private information and liquidity providers’

inventory control, my challenge is to isolate the two unobserved parts from the

observed price. I use a state space form (SSF) approach, similar to that used by

Hendershott and Menkveld (2014) which models the observed price as the sum of

two unobserved time series: one random walk process that represents fundamental

value and one stationary process that captures the pricing error. The SSF is shown

below:

pt = mt + st (2.1)

mt = mt−1 + βX̂t + et (2.2)

st = αXt + ut (2.3)

where pt is the observed log price of stock; mt is fundamental value and st is pricing

error; et and ut are uncorrelated i.i.d. process. Xt is investors’ order flow. X̂t is

investors’ order flow ’surprise’. X̂t is estimated by the residual term of the equation

below:

Xt = γ1Xt−1 + γ2Xt−2 + γ3Xt−3 + ... + vt (2.4)

The number of lagged order flows in equation (2.4) is determined by the Schwarz

information criterion.

I add up all previous minute log returns as minute log price pt and all order flows

of all trades within a minute as minute order flow Xt for each stock every minute.

At the end of each day, a set of parameters in the SSF are estimated by Kalman

Filter with minute data for each stock separately. Then parameters for each stock

every day are averaged cross-sectionally, and standard errors are calculated with

the cross-section. The daily parameters thus show the time variation of the impact

of order flows on fundamental value and pricing error. The details of Kalman Filter

and simulation results given by the method are shown in Appendix I.
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Unobserved efficient price process. Fundamental value mt in equation (2.2) is a

random walk process. Fundamental value change is determined by contemporane-

ous private information. Since informed traders tend to split big trades into contin-

uous small trades to decrease price impact, order flow is usually positively autocor-

related. Additionally, informed traders want immediate liquidity to take advantage

of their private information. Only unexpected trading activity of informed traders

should represent private information that has an impact on fundamental value of

a security and the impact is permanent. Based on this assumption, order flow in-

novation X̂t is the independent variable in equation (2.2). Liquidity providers are

disadvantaged regarding information compared with investors who require imme-

diate liquidity. Therefore, they adjust the fundamental value when new information

arrives, and then quote a price based on the probability that the order is driven by

private information. The parameter β thus reflects how fundamental value responds

to private information. During the global financial crisis, β may increase due to mar-

ket panic regarding the intrinsic value of risky assets, and thus the amplified adverse

selection problem may cause the liquidity dry-up.

Unobserved pricing error process. Pricing error st, is primarily caused by liquid-

ity providers’ inventory control. Liquidity providers’ inventory is determined by

investors’ order flows. When liquidity providers provide immediate liquidity to in-

vestors, they have to bear the risk associated with their inventory change. When

liquidity providers have more (less) inventory of a security than their target level,

they will decrease (increase) price to induce more buy (sell) orders to bring their in-

ventory back to their original level. Therefore, we should expect that price deviates

from fundamental value when liquidity providers’ inventory deviates from their tar-

get level. Therefore, α measures how pricing error responds to liquidity providers’

inventory change (as well as other microstructure frictions). If liquidity providers

become more risk averse or have less risk-bearing capacity, we should expect that α

increases. But once inventory goes back to the original level, the pricing error should

disappear. Therefore, st is a stationary process.

The above SSF is similar to what is adopted in Hendershott and Menkveld (2014).
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The difference is that their research is based on daily data and they use specialists’

inventory as independent variable while I use minute order flows as independent

variable. However, since they use daily data, the pricing error may disappear in

one day. therefore, there is no autocorrelation term in equation (2.3) in their model.

The pricing error on day t is only determined by how specialists’ inventory deviates

from their original level on that day. While my model is applied to minute data, the

pricing error from the previous minute may not disappear immediately. As a result,

I add an AR(1) term and adopt the following pricing error process to capture the

dynamics of my minute data.

st = φst−1 + αXt + ut (2.5)

The disadvantage of this specification is the greater difficulty in obtaining accu-

rate estimates due to the extra parameter added. I report estimates of SSF given by

equations (2.1), (2.2) and (2.5) in the following section and estimates of SSF given by

equations (2.1), (2.2) and (2.3) in Appendix II as the latter is a less reasonable model.
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2.5 Empirical results

Tables 2.2 and 2.4 report the means and standard errors of SSF estimates, as defined

by equations (2.1), (2.2), and (2.5) for all companies and those companies from Q1

to Q5, each month. Daily parameters for each stock are first estimated from minute

data, then averaged cross-sectionally. Monthly mean and standard errors (in brack-

ets) are then calculated based on the daily parameters. Both parameters α and β

have conjectured positive signs. α is positive and statistically significant, indicating

that customers’ buy (sell) orders cause a temporary positive (negative) pricing er-

ror. The temporary positive (negative) pricing error occurs as customers’ buy (sell)

orders decrease (increase) liquidity providers’ inventory, and to bring the inventory

back to the original level, liquidity providers must offer a higher (lower) price to

induce more sell (buy) orders. According to Table 2.2, α rises from 5.40 in July to

its apex of 10.47 in November; thus, in July, every 10,000 shares of net order in-

flow increased the pricing error by 0.054%, while, in November, every customer buy

order increased the pricing error by 0.1047%. Hendershott and Menkveld (2014)

find that a US$100,000 inventory shock causes price pressure of 0.02% for the large-

cap stocks traded on the NYSE. My estimates suggest that from July to December,

customer orders of US$100,000 caused an average price pressure of 0.0013%.3 This

result is smaller than that identified by Hendershott and Menkveld (2014), as the

NYSE is a specialist market and adopts specialists’ inventory data in their SSF, while

I use customers’ order flows as proxy for liquidity providers’ inventory change. The

time variation of α in the table also suggests that the pricing error was more sensi-

tive to customers’ order flows in November than in July. This shows that liquidity

providers controlled their inventories more cautiously and were less willing to pro-

vide liquidity, leading to larger pricing errors for every subsequent order. It can also

be interpreted as liquidity providers requiring larger expected returns from pricing

3Average α during the six months is 7.87, meaning that 10,000 shares of buy (sell) order cause the
pricing error to increase (decrease) by 0.0787%. Average stock price of FTSE100 is GBP455 from July
to December and average exchange rate of GBP/USD is 0.78. Therefore, the pricing error caused by
USD100,000 is

0.0787% ∗ 100, 000 ∗ 0.78/455/10, 000 = 0.0013%

.
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errors to compensate for their liquidity provision during the financial crisis. In ad-

dition, α is cross-sectionally different among the five quantiles. For companies with

the largest market caps, α is small and increases from 4.29 in July to 7.05 in Decem-

ber, while α of Q2 and Q3 companies exhibit the most significant increase between

July and December. This confirms that liquidity providers’ inventory control had

less impact on companies with larger market caps. This cross-sectional difference

is similar to that of bid-ask spreads, implying that both liquidity measures (bid-ask

spreads and temporary price changes) for companies with big market capitalisation,

did not increase substantially during the crisis. Hendershott and Menkveld (2014)

use money amounts rather than number of shares in the SSF. Money amounts and

number of shares might generate different estimates of parameters in the SSF. How-

ever, my results suggest that α increased during the six months when most equity

prices fell. If I replace number of shares with money amounts, α should increase

more. The results are shown in Table 2.3. α increases over the six months for all

stocks.

The estimates for β in Table 2.4 are positive and statistically significant for all five

quantiles. This is consistent with my hypothesis that order flow innovations con-

tain private information that is impounded into stock prices, permanently changing

them. The table also shows that just β of Q1 companies increases significantly from

1.41 in July to 4.84 in December, and β of Q2 companies increases slightly from 1.14

in July to 2.24 in December, while β of the other companies remains at the same level

throughout the crisis. The results indicate that, as the crisis deepened, for small-cap

companies, fundamental values increased (decreased) more significantly when cus-

tomers’ buy (sell) orders were accommodated, due to a greater probability that cus-

tomers’ orders of these stocks contained private information. As a result, liquidity

providers with no private information were more worried about their information

disadvantage and thus unwilling to provide liquidity, leading to decreasing liquid-

ity for these companies. However, the adverse selection problem was not amplified

for most stocks, especially big-cap stocks in the UK market, as fundamental values

retained the same sensitivity to customers’ order flow innovations. For example, β of
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Q5 companies in July is 0.42; thus, 10,000 more customer buy order surprise would

increase the fundamental value by 0.0042%, and β does not change substantially in

the following five months, indicating that the effect of one more customer buy (sell)

order on fundamental value did not change during the crisis. Therefore, for most

companies, the evaporation of liquidity was due to liquidity providers’ inventory

control, while, for the companies with the smallest market capitalisation, liquidity

dried up due to both information asymmetry and inventory control.

TABLE 2.2: Monthly α

This table presents mean and standard error (in bracket) of parameter α in the fol-
lowing state space model:

pt = mt + st
mt = mt−1 + βX̂t + et
st = φst−1 + αXt + ut

where pt is the observed log price of stock; mt is fundamental value; st is pricing
error; et and ut are uncorrelated i.i.d. processes. X̂t is investors’ order flow innova-
tion. Xt is investors’ order flow.
Companies are sorted into five quantiles based on their market capitalisation. Q1
refers to companies with smallest market caps. α is reported for each month from
June to December 2008. Daily parameters for each stock are estimated from minute
data first and averaged cross-sectionally. Monthly mean and standard errors are
then calculated by the daily parameters.

JUL AUG SEP OCT NOV DEC
All mean 5.4044 6.1140 6.2155 9.5329 10.4705 9.5022

(0.1516) (0.1751) (0.2017) (0.2858) (0.3266) (0.3192)
Q1 mean 4.2119 4.9151 4.9576 7.1750 7.2880 5.1561

(0.3406) (0.3843) (0.4381) (0.5796) (0.7775) (0.5867)
Q2 mean 5.3666 6.9379 6.8385 10.4859 12.0096 10.0439

(0.3484) (0.3859) (0.4999) (0.6702) (0.8378) (0.7244)
Q3 mean 6.0835 6.5487 7.3996 11.2150 12.0738 13.3162

(0.3523) (0.3814) (0.5142) (0.6935) (0.7401) (0.9728)
Q4 mean 7.1605 8.1680 7.4404 11.8421 13.8196 12.0453

(0.4144) (0.5680) (0.4873) (0.7093) (0.7861) (0.7792)
Q5 mean 4.2916 4.2396 4.3402 6.9804 7.0205 7.0491

(0.2383) (0.2515) (0.2707) (0.5345) (0.4421) (0.4664)

Figure 2.5 illustrates how α varies over time. I find that α increases with the de-

velopment of the crisis, with a trend similar to that of the VIX. Figure 2.6 plots α
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TABLE 2.3: Monthly α – Order Flow in Money Amount

This table presents mean and standard error (in bracket) of parameter α in the fol-
lowing state space model:

pt = mt + st
mt = mt−1 + βX̂t + et
st = φst−1 + αXt + ut

where pt is the observed log price of stock; mt is fundamental value; st is pricing er-
ror; et and ut are uncorrelated i.i.d. processes. X̂t is investors’ order flow innovation
(in money amount). Xt is investors’ order flow (in money amount).
Companies are sorted into five quantiles based on their market capitalisation. Q1
refers to companies with smallest market caps. α is reported for each month from
June to December 2008. Daily parameters for each stock are estimated from minute
data first and averaged cross-sectionally. Monthly mean and standard errors are
then calculated by the daily parameters.

JUL AUG SEP OCT NOV DEC
All mean 0.0196 0.0206 0.0203 0.0444 0.0605 0.0553

(0.0007) (0.0007) (0.0009) (0.0018) (0.0018) (0.0030)
Q1 mean 0.0326 0.0350 0.0380 0.0926 0.1179 0.0862

(0.0044) (0.0038) (0.0052) (0.0100) (0.0204) (0.0209)
Q2 mean 0.0212 0.0234 0.0220 0.0467 0.0628 0.0679

(0.0013) (0.0014) (0.0015) (0.0030) (0.0046) (0.0048)
Q3 mean 0.0272 0.0276 0.0247 0.0564 0.0773 0.0718

(0.0017) (0.0018) (0.0019) (0.0036) (0.0057) (0.0061)
Q4 mean 0.0160 0.0152 0.0146 0.0275 0.0423 0.0384

(0.0011) (0.0011) (0.0009) (0.0020) (0.0038) (0.0029)
Q5 mean 0.0064 0.0058 0.0062 0.0102 0.0147 0.0156

(0.0003) (0.0004) (0.0004) (0.0006) (0.0009) (0.0010)
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TABLE 2.4: Monthly β

This table presents mean and standard error (in bracket) of parameter β in the fol-
lowing state space model:

pt = mt + st
mt = mt−1 + βX̂t + et
st = φst−1 + αXt + ut

where pt is the observed log price of stock; mt is fundamental value; st is pricing
error; et and ut are uncorrelated i.i.d. processes. X̂t is investors’ order flow innova-
tion. Xt is investors’ order flow.
Companies are sorted into five quantiles based on their market capitalisation. Q1
refers to companies with smallest market caps. β is reported for each month from
June to December 2008 . Daily parameters for each stock are estimated from minute
data first and averaged cross-sectionally. Monthly mean and standard errors are
then calculated by the daily parameters.

JUL AUG SEP OCT NOV DEC
All mean 0.9732 0.7905 1.2421 1.7154 1.3328 1.6960

(0.1395) (0.1544) (0.1825) (0.2454) (0.2928) (0.2757)
Q1 mean 1.4085 1.4535 2.2411 3.4166 4.4487 4.8365

(0.3392) (0.3670) (0.4403) (0.5494) (0.7871) (0.6452)
Q2 mean 1.1403 0.7520 1.8468 3.1866 1.9081 2.2381

(0.3298) (0.3412) (0.4689) (0.5863) (0.7683) (0.6405)
Q3 mean 0.2637 0.3189 0.2343 0.2872 0.4373 0.0755

(0.3196) (0.3196) (0.4334) (0.5448) (0.6143) (0.7833)
Q4 mean 1.6375 0.8115 1.2894 1.4158 -0.0741 0.9069

(0.3947) (0.5086) (0.4544) (0.6399) (0.6867) (0.6705)
Q5 mean 0.4163 0.4881 0.6746 0.3729 0.2098 0.4618

(0.1819) (0.2071) (0.2276) (0.4276) (0.3603) (0.3638)

69



Chapter 2. Evaporating liquidity: information asymmetry or inventory control

against the VIX, and indicates a positive correlation between the two. The correla-

tion coefficient is 0.7976, suggesting that the impact of order flows on pricing errors

is highly correlated with market volatility. Thus, liquidity providers control their

inventory more cautiously and are less willing or less capable to provide liquidity

when the market becomes more volatile. This result is consistent with the findings of

Nagel (2012) and Hameed et al. (2010), suggesting that the VIX can predict the profit

of a reversal strategy. However, a larger pricing error can, at the same time, make

the stock market more volatile, leading to a strong correlation between volatility and

market liquidity. For companies with the biggest market caps, the correlation coef-

ficient (0.5685) is the smallest among all five quantiles, indicating that big-cap stock

prices deviate less from fundamental value after a substantial negative market shock

and liquidity dry-up. These results also provide evidence that liquidity providers

can make larger profits when the market is volatile and in decline, perhaps due to

elevated risk, reduced competition, or tighter funding constraints.
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FIGURE 2.5: Time Variation of α

This figure depicts how α changes over time. The estimate is obtained from the

following state space model

pt = mt + st

mt = mt−1 + βX̂t + et

st = φst−1 + αXt + ut

Companies are sorted into five quantiles based on market caps where Q1 refers to

companies with the smallest market caps. The VIX is also plotted to show the trend.
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FIGURE 2.6: α against VIX

This figure shows how α (in the following state space model) is correlated with the

VIX from June to December 2008.

pt = mt + st

mt = mt−1 + βX̂t + et

st = φst−1 + αXt + ut

Companies are sorted into five quantiles based on market caps where Q1 refers to

companies with the smallest market caps.
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Figure 2.7 shows how β varies; we see that for Q1 companies, β increases over

time. For the other quantiles, β maintains the same level over the six-month period.

Figure 2.8 demonstrates the correlation between β and the VIX. β for Q1 has a posi-

tive correlation with the VIX. The correlation coefficient for this is 0.4118, while those

of the other quantiles are all around zero. These two figures indicate that β, unlike α,

does not change over time; therefore, information asymmetry was not a significant

problem in the UK equity market during the crisis and, thus, not the cause of the

liquidity dry-up. In addition, there is no obvious relationship between the VIX and

the adverse selection problem. The VIX, either as a state variable itself or through

its correlation with other state variables, cannot predict when traders will have more

private information or when insiders will trade more aggressively in the equity mar-

ket. In addition, since it appears that only companies with small market caps have

a positive correlation with the VIX, we infer that only ’low-quality’ securities had

greater adverse selection problems during the crisis. I further sort companies based

on trading volume and plot their β against the VIX, as shown in Figure 2.9. This re-

veals that β was not influenced by the crisis or the increasing volatility of most stocks

during the crisis. However, for companies with small trading volumes, β increases

with the VIX, indicating a larger probability that these stocks were traded by insiders

during the market turmoil. Both Figures 2.8 and 2.9 present evidence that only small

companies with illiquid stocks suffered greater adverse selection problems during

the crisis, while most other stocks were not influenced.
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FIGURE 2.7: Time Variation of β

This figure depicts how β changes over time. The estimate is obtained from the

following state space model

pt = mt + st

mt = mt−1 + βX̂t + et

st = φst−1 + αXt + ut

Companies are sorted into five quantiles based on market caps where Q1 refers to

companies with the smallest market caps. The VIX is also plotted to show the trend.

74



2.5. Empirical results

FIGURE 2.8: β against VIX - market capitalisation

This figure shows how β (in the following state space model) is correlated with the

VIX from June to December 2008.

pt = mt + st

mt = mt−1 + βX̂t + et

st = φst−1 + αXt + ut

Companies are sorted into five quantiles based on market caps where Q1 refers to

companies with the smallest market caps.
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FIGURE 2.9: β against VIX - trading volume

This figure shows how β (in the following state space model) is correlated with the

VIX from June to December 2008.

pt = mt + st

mt = mt−1 + βX̂t + et

st = φst−1 + αXt + ut

Companies are sorted into five quantiles based on trading volume where Q1 refers

to companies with the smallest trading volume.
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When the model defined by equations (2.1), (2.2), and (2.5) are applied to the

data, Table 2.5 reveals that the coefficient for the AR(1) term in the pricing error

equation is significantly positive. This demonstrates that the pricing error in the

previous minute does not immediately disappear. The parameter φ is around 0.7 for

the entire six-month period, indicating that 70% of the pricing error at time t can be

explained by the pricing error at time t− 1. Therefore, this specification should bet-

ter capture the dynamics of the two unobserved processes than SSF without AR(1) in

the pricing error. The above results prove that liquidity provision generates larger

TABLE 2.5: Monthly φ

This table presents mean and standard error (in bracket) of parameter φ in the fol-
lowing state space model:

pt = mt + st
mt = mt−1 + βX̂t + et
st = φst−1 + αXt + ut

where pt is the observed log price of stock; mt is fundamental value; st is pricing
error; et and ut are uncorrelated i.i.d. processes. X̂t is investors’ order flow innova-
tion. Xt is investors’ order flow.
Companies are sorted into five quantiles based on their market capitalisation. Q1
refers to companies with smallest market caps. φ is reported for each month from
June to December 2008 . Daily parameters for each stock are estimated from minute
date first and averaged cross-sectionally. Monthly mean and standard errors are
then calculated by the daily parameters.

JUL AUG SEP OCT NOV DEC
All mean 0.7595 0.7367 0.7184 0.7325 0.7038 0.6664

(0.0111) (0.0119) (0.0124) (0.0116) (0.1128) (0.0134)
Q1 mean 0.7515 0.6675 0.6931 0.7226 0.6498 0.6411

(0.0238) (0.0293) (0.0285) (0.0256) (0.0290) (0.0296)
Q2 mean 0.7325 0.7681 0.6760 0.7808 0.7396 0.6991

(0.0264) (0.0253) (0.0293) (0.0216) (0.0261) (0.0275)
Q3 mean 0.7830 0.7268 0.7467 0.7566 0.7052 0.6497

(0.0240) (0.0274) (0.0264) (0.0255) (0.0291) (0.0304)
Q4 mean 0.7102 0.6955 0.6928 0.6768 0.6862 0.6376

(0.0280) (0.0289) (0.0297) (0.0295) (0.0304) (0.0321)
Q5 mean 0.8158 0.8216 0.7820 0.7252 0.7356 0.7031

(0.0214) (0.0208) (0.0240) (0.0271) (0.0279) (0.0301)

profits in a falling and volatile market, since liquidity providers can seize a larger
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return from the pricing error without incurring more substantial losses from the in-

formation asymmetry. However, the higher return may simply be the result of the

larger risk borne by the liquidity providers. Another possible reason is that most

financial intermediaries are financially constrained, so there is less competition in

liquidity provision. Liquidity providers can therefore earn a larger risk-adjusted re-

turn. For example, quantitative hedge funds may stop providing liquidity due to

insufficient capital, as documented by Ben-David et al. (2012).
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2.6 Conclusion

I use SSF to decompose observed stock prices into unobserved fundamental value (a

random walk process determined by information contained in orders), and pricing

error (a mean-reversal process influenced by liquidity providers’ inventory control).

My results are similar to those reported by Hendershott and Menkveld (2014), but

the pricing error caused by order flow on the LSE (0.0013% by orders of USD100,000)

is smaller than the pricing error caused by specialists’ inventory change on the NYSE

(0.02% by inventory change of USD100,000). The time variation of my estimation

during the financial crisis indicates that liquidity providers’ inventory control was

the main cause of the liquidity dry-up in the UK equity market in 2008. Increases

in asymmetric information played a much smaller role. When the market became

more volatile with the development of the crisis, liquidity providers became less

willing to absorb the extra risky assets, not because there was a greater probability

of adverse selection but because the liquidity providers were less willing to devote

capital to maintaining risky market-making positions. However, for small market

capitalisation companies with illiquid stock issues, liquidity seems to have declined

due to asymmetric information concerns.

My results in the UK equity market are consistent with those in Nagel (2012).

Although the sample of Nagel (2012) covers US equity market including NYSE,

AMEX and Nasdaq stocks while my sample covers FTSE100 stocks traded on LSE,

we both find that inventory control is the primary cause of liquidity evaporation for

big stocks with big market capitalisation. Our results also confirms the connection

between volatility and market liquidity, as suggested by the model in Brunnermeier

and Pedersen (2009). My results in the UK equity market do not support the adverse

selection theory prosed by Gorton and Metrick (2012) probably because the assets

in their study were information insensitive before the crisis and became information

sensitive after the external shock. As suggested by Pagano and Volpin (2012), issuers

of asset-backed securities choose to release coarse information to enhance liquidity.

Dang et al. (2009) suggest that the debt market is more liquid without private in-

formation generation. However, equity market heavily relies on private information
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generation and adverse selection always exists. Therefore, liquidity providers do not

lose ’market confidence’ due to the external shock. My results can be generalised to

other markets where assets are information sensitive. In addition, policy makers do

not need to rebuild ’market confidence’ but inject capital to restore liquidity pro-

vision instead. Liquidity providers of big market cap stocks do not need to worry

about adverse selection problem during a crisis, and the survivors can make even

bigger profits. It is a relief for all liquidity demanders that market liquidity can be

restored quickly after crisis as long as liquidity provision sector has sufficient capital

and risk-bearing capacity.

Although I conclude that liquidity providers could make larger profits due to

pricing errors during the financial crisis, which is consistent with what Nagel (2012)

has found via a reversal strategy, it is unclear whether the profit is generated by

greater risks borne by liquidity providers or by scarcity of capital in the market.

As predicted by the model of Brunnermeier and Pedersen (2009), funding triggers

a switch from a high-liquidity/low-volatility equilibrium to a low-liquidity/high-

volatility equilibrium, leading to liquidity dry-up. Therefore, we can further add

state variables such as VIX and LIBOR-OIS to SSF to test whether scarcity of capital

leads to liquidity providers’ inventory control.
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2.7 Appendix I: Kalman Filter and simulation results

Kalman Filter is used to estimate the parameters in the SSF. The method first takes

all observations into account to decompose the observed price time series into two

unobserved processes which represent the underlying states, and then generates the

estimates through maximum likelihood. Therefore, the estimates should be unbi-

ased and efficient.

As this paper aims to find out how α and β in SSF vary during the financial

crisis, I need relatively accurate estimates of parameters obtained through Kalman

Filter for each trading day. Therefore, before applying the method to real data, I test

its accuracy through simulation.

I put actual order flow data of a certain stock into SSF with pre-specified param-

eters to simulate a time-series stock price. I then estimate the parameters in SSF with

stock price and customers’ order flow using the same methodology as described in

Section 2.4. I replicate the simulation for 100 times, and report the mean and variance

of the 100 replications for each parameter.

The true parameters and corresponding simulated results are reported in Table

2.6 for equations (2.2) and (2.3) and in Table 2.7 for equations (2.2) and (2.5) .

The simulation results show that if there is no AR(1) term as in equation (2.3),

Kalman Filter generates very accurate estimates for α and β. However, as I add the

AR(1) term in the unobserved pricing error process, the estimates are less accurate

and variances become larger. However, as equation (2.5) should be more appropriate

to represent the dynamics of the pricing error process theoretically, I still use this

specification to decompose the stock price.
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TABLE 2.6: Simulation Results (1)

This table presents simulation results for parameters in the following state space
model:

pt = mt + st
mt = mt−1 + βX̂t + et

st = αXt + ut

where pt is the observed log price of stock; mt is fundamental value; st is pricing
error; et and ut are uncorrelated i.i.d. process. X̂t is investors’ order flow innovation.
Xt is investors’ order flow.
Order flows of three stocks are picked as independent variables for simulation.
Stock 1 is Home Retail Group (GB00B19NKB76); Stock 2 is Vodaphone Group
(GB00B16GWD56); Stock 3 is BT Group (GB0030913577).

True Stock 1 Stock 2 Stock 3
mean variance mean variance mean variance

Panel A: Simulation 1
β 16 16.0833 0.3776 15.9621 0.5721 16.0008 5.7084
α 0.2 0.2060 0.2648 0.2085 0.2898 0.2661 3.0979

var(e) 100 97.3417 67.1841 97.8731 74.4382 96.5315 69.7272
var(u) 1 2.7294 10.6975 2.2380 8.4848 2.5239 8.8021
Panel B: Simulation 2

β 10 10.0303 0.0409 9.9920 0.0573 9.9817 0.6233
α 0.5 0.5028 0.0280 0.5065 0.0320 0.5395 0.3544

var(e) 10 10.0267 1.3110 10.0597 1.2710 9.8484 1.1979
var(u) 1 1.0152 0.3466 0.9463 0.2714 1.0501 0.2690
Panel C: Simulation 3

β 3 3.0088 0.0041 2.9974 0.0057 .9942 0.0630
α 0.8 0.8009 0.0028 0.8021 0.0032 0.8125 0.0355

var(e) 1 0.9978 0.0127 1.0024 0.0126 0.9817 0.0119
var(u) 0.1 0.1032 0.0033 0.0956 0.0027 0.1059 0.0027
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TABLE 2.7: Simulation Results (2)

This table presents simulation results for parameters in the following state space
model:

pt = mt + st
mt = mt−1 + βX̂t + et
st = φst−1 + αXt + ut

where pt is the observed log price of stock; mt is fundamental value; st is pricing
error; et and ut are uncorrelated i.i.d. process. X̂t is investors’ order flow innovation.
Xt is investors’ order flow.
Order flows of three stocks are picked as independent variables for simulation.
Stock 1 is Home Retail Group (GB00B19NKB76); Stock 2 is Vodaphone Group
(GB00B16GWD56); Stock 3 is BT Group (GB0030913577).

True Stock 1 Stock 2 Stock 3
mean variance mean variance mean variance

Panel A: Simulation 1
β 16 16.3225 6.8684 16.6296 35.3779 15.7020 100.7817
α 0.2 -0.1807 6.5013 -0.3692 35.1359 0.5608 102.5754
φ 0.8 0.5748 0.4341 0.5931 0.4439 0.9385 0.0099

var(e) 100 70.2227 1200 67.9790 1653 53.2882 1563
var(u) 1 29.1293 1208 31.6668 1647 46.7702 1555
Panel B: Simulation 2

β 10 10.5319 1.2589 9.8592 2.0768 9.9721 7.7493
α 0.5 -0.0471 1.2404 0.6596 2.0541 0.5692 7.9637
φ 0.5 0.7683 0.0912 0.6476 0.1154 0.6544 0.3262

var(e) 10 7.1178 10.6338 8.0088 10.9792 6.6941 17.3782
var(u) 1 3.9017 11.6083 2.9453 11.5354 4.3764 17.1434
Panel C: Simulation 3

β 3 5.1760 1.6049 3.0171 0.0457 3.2157 0.8363
α 0.8 -1.3895 1.5908 0.7886 0.0376 0.5936 0.8069
φ 0.2 0.7917 0.1143 0.2161 0.0180 0.5588 0.1692

var(e) 1 1.2942 0.0546 0.9701 0.0324 0.7387 0.1358
var(u) 0.1 0.0392 0.0037 0.1278 0.0359 0.3715 0.1541
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2.8 Appendix II: Estimates of SSF without AR(1)

Table 2.8 and 2.9 report estimates of SSF defined by equations (2.1), (2.2) and (2.3)

each month. βs are positive for all stocks, consistent with our hypothesis that order

flow innovations contain private information which will be impounded into stock

prices. α has constantly negative sign which is statistically significant. The result

can be interpreted as saying that order flows reduce pricing error, which is inconsis-

tent with theories of liquidity providers’ inventory control. Theoretically, if liquidity

demanders’ buy (sell) order decreases (increases) liquidity providers’ inventory, liq-

uidity providers should purposely increase (decrease) the price they offer to induce

more sell (buy) orders which bring their inventory to original level. Therefore, net

positive (negative) order flows should increase (decrease) pricing error. Figure 2.10

and 2.11 show how α varies over time and how it changes with VIX. The result indi-

cates that α was constant during the financial crisis, meaning that liquidity providers

did not change their liquidity provision in the declining and volatile market. This

result is very different from the ones reported by Nagel (2012) and Hameed et al.

(2010), which find that market volatility and market return can predict liquidity pro-

vision. Figure 2.12 and 2.13 demonstrate that β increased all the time during the six

months and was positively correlated to the VIX, suggesting that information asym-

metry in the UK equity market was more significant and there was a bigger proba-

bility that private information drove investors’ order flows at that time. Therefore,

adverse selection problem was the main cause of liquidity dry-up. However, the

results for α is very unreasonable, which might be caused by the mis-specified equa-

tion (2.3). The equation does not allow autocorrelation in pricing errors, and thus

cannot capture the dynamics of the unobserved pricing error process. Therefore, all

the variations go to the fundamental value process, leading to the increase of β. As

a result, we should not rely on the results of model specified by equations (2.1), (2.2)

and (2.3).
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2.8. Appendix II: Estimates of SSF without AR(1)

TABLE 2.8: Monthly α

This table presents mean and standard error (in bracket) of parameter α in the fol-
lowing state space model:

pt = mt + st
mt = mt−1 + βX̂t + et

st = αXt + ut

where pt is the observed log price of stock; mt is fundamental value; st is pricing
error; et and ut are uncorrelated i.i.d. processes. X̂t is investors’ order flow innova-
tion. Xt is investors’ order flow.
Companies are sorted into five quantiles based on their market capitalisation. Q1
refers to companies with smallest market caps. α is reported for each month from
June to December 2008. Daily parameters for each stock are estimated from minute
date first and averaged cross-sectionally. Monthly mean and standard errors are
then calculated by the daily parameters.

JUL AUG SEP OCT NOV DEC
All mean -0.6059 -0.6600 -0.6211 -0.7841 -1.4233 -0.9201

(0.0243) (0.0279) (0.0373) (0.0518) (0.0578) (0.0510)
Q1 mean -0.9830 -0.9877 -1.1436 -2.2473 -2.3935 -1.8214

(0.0543) (0.0683) (0.0880) (0.1327) (0.1549) (0.1292)
Q2 mean -0.6809 -0.9636 -0.8518 -1.4115 -2.6191 -1.5425

(0.0507) (0.0633) (0.0876) (0.1260) (0.1482) (0.1164)
Q3 mean -0.5789 -0.5893 -0.3972 -0.2945 -1.0661 -0.6971

(0.0531) (0.0610) (0.0903) (0.0935) (0.1095) (0.1245)
Q4 mean -0.6429 -0.7416 -0.6435 -0.0369 -0.9785 -0.5797

(0.0717) (0.0715) (0.0895) (0.1078) (0.1175) (0.1156)
Q5 mean -0.1704 -0.0449 -0.0959 -0.0091 -0.1525 -0.0169

(0.0342) (0.0360) (0.0491) (0.0828) (0.0714) (0.0646)
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TABLE 2.9: Monthly β

This table presents mean and standard error (in bracket) of parameter β in the fol-
lowing state space model:

pt = mt + st
mt = mt−1 + βX̂t + et

st = αXt + ut

where pt is the observed log price of stock; mt is fundamental value; st is pricing
error; et and ut are uncorrelated i.i.d. processes. X̂t is investors’ order flow innova-
tion. Xt is investors’ order flow.
Companies are sorted into five quantiles based on their market capitalisation. Q1
refers to companies with smallest market caps. β is reported for each month from
June to December 2008. Daily parameters for each stock are estimated from minute
date first and averaged cross-sectionally. Monthly mean and standard errors are
then calculated by the daily parameters.

JUL AUG SEP OCT NOV DEC
All mean 6.9653 7.5219 8.0520 12.0465 13.2608 12.1460

(0.1010) (0.1154) (0.1338) (0.2016) (0.2183) (0.1943)
Q1 mean 6.6069 7.2506 8.2395 12.9076 14.0539 11.8085

(0.1748) (0.1914) (0.2238) (0.4093) (0.4175) (0.3791)
Q2 mean 7.1562 8.6723 9.5085 15.1837 16.6022 13.7788

(0.1828) (0.2408) (0.3195) (0.4952) (0.5586) (0.4148)
Q3 mean 6.8764 7.4021 8.0531 11.7005 13.5883 14.0994

(0.2254) (0.2689) (0.3263) (0.4311) (0.4815) (0.5010)
Q4 mean 9.4699 9.6567 9.3845 13.2028 14.7742 13.5971

(0.3207) (0.3256) (0.3402) (0.4902) (0.5174) (0.4803)
Q5 mean 4.9349 4.7456 5.1506 7.3480 7.4095 7.5149

(0.1795) (0.1952) (0.2169) (0.3185) (0.3128) (0.2860)
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2.8. Appendix II: Estimates of SSF without AR(1)

FIGURE 2.10: Time Variation of α

This figure depicts how α changes over time. The estimate is obtained from the

following state space model

pt = mt + st

mt = mt−1 + βX̂t + et

st = αXt + ut

Companies are sorted into five quantiles based on market caps where Q1 refers to

companies with the smallest market caps. The VIX is also plotted to show the trend.
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Chapter 2. Evaporating liquidity: information asymmetry or inventory control

FIGURE 2.11: α against VIX

This figure shows how α (in the following state space model) is correlated with the

VIX from June to December 2008.

pt = mt + st

mt = mt−1 + βX̂t + et

st = αXt + ut

Companies are sorted into five quantiles based on market caps where Q1 refers to

companies with the smallest market caps.
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2.8. Appendix II: Estimates of SSF without AR(1)

FIGURE 2.12: Time Variation of β

This figure depicts how β changes over time. The estimate is obtained from the

following state space model

pt = mt + st

mt = mt−1 + βX̂t + et

st = αXt + ut

Companies are sorted into five quantiles based on market caps where Q1 refers to

companies with the smallest market caps.VIX is also plotted to show the trend.
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Chapter 2. Evaporating liquidity: information asymmetry or inventory control

FIGURE 2.13: β against VIX

This figure shows how β (in the following state space model) is correlated with the

VIX from June to December 2008.

pt = mt + st

mt = mt−1 + βX̂t + et

st = αXt + ut

Companies are sorted into five quantiles based on market caps where Q1 refers to

companies with the smallest market caps.
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Chapter 3

What drives price changes in

cryptocurrency market

3.1 Introduction

The total market capitalisation of cryptocurrency had risen to more than US$800 bil-

lion by January 2018, becoming an emerging asset class that investors cannot over-

look. Bitcoin is the most popular of thousands of different cryptocurrencies. The

price shot up to US$20,000 per Bitcoin in December 2017 and fell back to US$4,000

in November 2018. Although the huge returns and volatility of cryptocurrency have

attracted the attention of many investors, little is known about how prices are de-

termined. Previous literature has tried to study the statistical characteristics of cryp-

tocurrency returns and risk factors associated with returns (e.g. Liu et al. (2019),

Shen et al. (2020), Urquhart (2017), Bouoiyour et al. (2016) etc.), fair value of some

cryptocurrencies (e.g. Biais et al. (2020), Dimpfl and Peter (2020), Sockin and Xiong

(2020), Ciaian et al. (2016) etc.), and correlations between cryptocurrencies and other

asset classes (e.g. Baur et al. (2018), Dyhrberg (2016) Pal and Mitra (2019), Klein et al.

(2018) etc.). However, as no strong evidence that cryptocurrency can bring future

cash flow is presented, it is difficult to determine its price from a traditional asset

price perspective. Interestingly, cryptocurrencies, for the first time, show the world

that some assets that have not generated any cash flows in the past and no sign of

generating certain cash flows in the future are traded with a big volume at a high

price. Therefore, the cryptocurrency market provides us with a good place to study
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Chapter 3. What drives price changes in cryptocurrency market

how trading activity drives price, and thus I take a microstructure perspective to

find out how cryptocurrency price is determined through trading. In this chapter, I

attempt to answer the question ’how cryptocurrency price is determined’ from the

microstructure finance perspective, identifying how order flow – the most impor-

tant variable in the field of microstructure finance, according to Evans and Lyons

(2002b) – affects cryptocurrency prices. This will help us to understand what caused

the bubble in December 2017, as well as its bursting in January 2018. Previous stud-

ies have found that order flows play an important role in determining asset prices,

either through price discovery or price pressure. Evans and Lyons (2002b) suggest

that private information from informed investors is impounded into price by or-

der flows. Love and Payne (2008) argue that public announcements are impounded

into price largely by order flows. This strand of the literature suggests that order

flows influence price through price discovery because order flows contain informa-

tion that reflects investors’ views of the asset’s fundamental value, thus permanently

changing the fundamental value. Additionally, Campbell et al. (1993) and Pastor and

Stambaugh (2001) consider temporary pricing errors induced by order flows, con-

cluding that order flows influence price due to liquidity providers’ inventory control

through price pressure. Thus, in this chapter, I ask whether cryptocurrency price

changes are driven by information contained in order flows and whether liquidity

providers’ willingness to hold risky inventory on the cryptocurrency exchanges af-

fects price changes. Second, since information asymmetry and liquidity providers’

inventory control vary when market conditions change, I wish to determine how the

impact of orders on cryptocurrency price through these two channels changes over

time, as well as how this change contributed to the bubble and its bursting. Finally,

it is worth considering whether the order flows of one cryptocurrency on one ex-

change affect the price of another cryptocurrency or another exchange and whether

these effects are through price discovery or price pressure, as the previous literature

does provide evidence of liquidity and volatility spill-over effects across countries

and assets due to constrained funding and increased risk aversion (Chordia et al.

(2005); Kyle and Xiong (2001); Brunnermeier and Pedersen (2009); Comerton-Forde
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et al. (2010); etc.). In the cryptocurrency market, Makarov and Schoar (2019a) doc-

ument a heterogeneity where price discovery happens across exchanges and time,

and they indicate that the most important market for price discovery of Bitcoin is

Bitfinex. Therefore, I also test the existence of spill-over effects across exchanges and

cryptocurrencies.

Hendershott and Menkveld (2014) have applied State Space Form (SSF) to de-

compose stock prices into fundamental value and pricing error, both as functions

of order flows, to reflect processes of price discovery and price pressure. I use the

method to analyse the price determination of Bitcoin and Ethereum. Bitcoin and

Ethereum represent more than 70% of the total cryptocurrency market capitalisation,

and they are the primary funding cryptocurrencies for Initial Coin Offerings (ICOs).

Bitcoin is the first and largest cryptocurrency, and it attracts investors by providing a

safe means of wealth storage. The technical revolution of Ethereum Smart Contracts

in 2017 brought block-chain technology and cryptocurrencies to a new generation,

allowing developers to build and deploy decentralised applications. I choose SSF

to analyse cryptocurrency price because it is difficult to tell what is ’fundamental

value’ of cryptocurrencies, and thus I regard the price as a long-term information

aggregation plus a temporary pricing error.

Many exchanges exist in the cryptocurrency market in the first place because no

licenses are needed to open new exchanges (especially if no fiat currency is involved

in trading). Different exchanges target different types of investors. For example,

Kraken mainly targets European investors. The extreme situation is that in China

where fiat trading is controlled by the government, some exchanges provide Chi-

nese investors with a platform to buy/sell cryptocurrencies with CNY. In addition,

every year new cryptocurrencies are listed on different exchanges, and new deriva-

tives are constantly introduced into the market by new exchanges. Therefore, many

exchanges still have their own customer base as they provide unique products and

services, similar to brokers in the decentralized foreign exchange market. However,

as the market is still evolving, people are still discussing the most efficient struc-

ture of the cryptocurrency market. Jeon et al. (2021) holds the view that fragmented
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bitcoin orders increase transaction cost and thus decrease market efficiency. As the

market is still new and evolving, more research needs to be done and more regula-

tions need to be introduced to make the market more fair and efficient. My research

is also initiated for this purpose.

As the structure of the cryptocurrency market is similar to the decentralized

currency market, it is worth asking whether there is information transmission be-

tween exchanges and between cryptocurrencies. Makarov and Schoar (2018) doc-

uments large deviations in bitcoin prices across exchanges in different countries.

No previous literature has discussed how different cryptocurrencies influence each

other. Therefore, I want to use the SSF to explore information transmission and

price discovery between exchanges and between cryptocurrencies through trading.

I gather data from Bitfinex and Kraken, which are among the largest cryptocurrency

exchanges in the world today. Although they are leading exchanges in the cryp-

tocurrency market, their market share combined are less than 50%. Like other ex-

changes, cryptocurrency exchanges have liquidity demanders and providers, and

both Bitfinex and Kraken encourage liquidity provision by charging lower fees to

’maker orders’ (who have no private information) than to ’taker orders’ (who have

private information and try to profit from the information immediately through or-

ders). In addition, although order flows should reflect heterogeneous expectations

on asset fundamentals, those who provide liquidity have no idea of their counter-

parties who consume liquidity and thus cannot know whether the orders contain

private information. Therefore, it is worth studying the responsiveness of funda-

mental value to order flows and how ’informativeness’ in orders changes in the

cryptocurrency market. By comparison, price pressure – primarily caused by liquid-

ity providers’ inventory control, as demonstrated in the literature1– is also affected

by orders and varies over time, which could have played an important role in the

bubble.
1Grossman and Miller (1988) proposed the market marking inventory model, which suggests that

liquidity providers’ inventory could predict return reversal. Hendershott and Seasholes (2007) and
Comerton-Forde et al. (2010) confirmed the predictions of the model with the New York Stock Ex-
change specialists’ inventory data. Naik and Yadav (2003) and Reiss and Werner (1998) confirmed the
predictions with the London Stock Exchange market maker data.
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My results suggest that for both Bitcoin and Ethereum on both Bitfinex and

Kraken, information is impounded into price through order flows, and unexpected

buy (sell) orders thus cause fundamental value to increase (decrease). At the same

time, order flows generate temporary pricing errors, which diminish in minutes.

Therefore, order flows influence prices through both price discovery and price pres-

sure processes in the cryptocurrency market, similar to other asset classes. Although

cryptocurrency market is an emerging asset class, the process how price is deter-

mined from the microstructure perspective has no difference from other asset classes.

Therefore, investors can regulators can borrow experience from the development of

other asset classes to better invest in or regulate this emerging market. In addi-

tion, both the fundamental value and pricing error were more sensitive to orders at

the beginning of the boom and of the crash. Therefore, both increased information

asymmetry and tighter inventory control by liquidity providers contributed to the

growth and bursting of the bubble. In contrast, Nagel (2012) argues that liquidity

dry-up in the US equity market during the financial crisis was primarily caused by

the inventory channel. In addition, my results in the previous chapter demonstrate

that liquidity evaporation of FTSE 100 stocks during the crisis was also caused by liq-

uidity providers’ tighter inventory control. My results for the cryptocurrency mar-

ket suggest that the Bitcoin bubble on Bitfinex could have been caused by liquidity

providers’ different responses to informed investors’ buy and sell orders, although

this hypothesis could be tested directly in future research. The result is consistent

with Griffin and Shams (2018) that accused the sister company of Bitfinex of manipu-

lating Bitcoin price with Tether in 2017, and thus confirms that regulation is urgently

needed in the market as the market capitalisation keeps growing, especially when

more leveraged products are introduced. My results confirm that cryptocurrency

market is still a very immature market where information asymmetry is rampant,

leading to the bubble. Therefore, although it is difficult to decide the fair value of

cryptocurrencies, regulators still need to regulate trading activities and platforms to

make the market more fair and efficient. Finally, I find out that Bitcoin order flows
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contain relevant information that changes Ethereum prices and vice versa, suggest-

ing an information spill-over between cryptocurrencies. Although both cryptocur-

rencies are more influenced by the information contained in orders of their own,

some of the information simultaneously influences the cryptocurrencies. Informa-

tion also spreads between exchanges through order flows, so different exchanges

could keep the same prices for certain cryptocurrencies. This confirms the impor-

tant role of order flows in price discovery. This result is consistent with that of

Makarov and Schoar (2018), who suggests that Bitcoin prices differ across countries

but to a much less extent between the US and Europe. Information asymmetry is

more pronounced on Kraken than on Bitfinex, as information contained in orders

on Kraken has a more substantial impact on both Bitcoin and Ethereum fundamen-

tal values. This study helps investors develop trading strategies across exchanges

and cryptocurrencies, and helps regulators understand the landscape of the frag-

mented market and thus how different exchanges and different cryptocurrencies are

connected.

This paper is structured as follows. Section 3.2 presents a review of previous lit-

erature on cryptocurrency as an asset, highlighting the theories of how order flows

influence asset prices in traditional asset classes and the empirical evidence. Sec-

tions 3.3 and 3.4 describe the data and methodology used in this paper, respectively.

Section 3.5 provides the empirical results. A final section concludes.
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3.2 Literature review

When it was created, cryptocurrency was seen only as a kind of currency (similar to

US dollars and British pounds, for example) because of its function as a medium of

exchange. However, it is now generally believed to be an emerging asset class of its

own due to its price characteristics. Gronwald (2014) argues that the return on Bit-

coin price is characterised by extreme movements and conditional heteroscedastic-

ity; thus, it can be categorised as an immature asset class. Yermack (2015) notes that

cryptocurrency appears to behave more as a speculative investment than a currency.

Some researchers have applied regression or portfolio models to study cryptocur-

rency returns, highlighting the similarities with other asset classes. Makarov and

Schoar (2018) find substantial arbitrage opportunities across exchanges in cryptocur-

rency markets. Borri and Shakhnov (2018) probe the risks associated with the across-

exchange arbitrage activities, as well as the limits to arbitrage, and find that the

largest price deviations occur in exchanges with greater probability of shut down,

smaller Bitcoin supply, and larger volume and return volatility. Balcilar et al. (2017)

study time-series Bitcoin data and find that volume contains information with which

to predict Bitcoin return but fails in bear and bull market regimes. Hubrich (2017)

uses carry, value, and momentum factors to construct cryptocurrency portfolios and

concludes that these factors are effective for forecasting cryptocurrency returns. The

above literature inspires us to consider the price formation of cryptocurrency as sim-

ilar to other asset classes, such as foreign exchanges, stocks and bonds.

The literature on how asset price is determined, from the perspective of mi-

crostructure finance, has achieved some impressive results in the traditional asset

classes. According to the theoretical model proposed by Hendershott and Menkveld

(2014), price can be decomposed into two parts – fundamental value and pricing er-

ror, which are driven by order flows through ’price discovery’ and ’price pressure’,

respectively. The findings of Hasbrouck (1991a) and Hasbrouck (1991b) suggest that

private information contained in order flows can permanently affect stock price. Al-

buquerque et al. (2009) further argue that equity order flows driven by market-wide

private information predict both equity and currency returns because order flows
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represent investors’ heterogeneous expectations regarding firm values. Brandt and

Kavajecz (2004) find that the yield curve in the US treasury market is permanently

influenced by order flow imbalances, which they describe as the aggregation of het-

erogeneous private information. Regarding currencies, Evans and Lyons (2002b)

suggest a similar framework in the FX market, where price can be largely explained

by contemporaneous order flows and order flows do a better job than macro factors

of explaining currency returns, especially at the high-frequency level. Even macroe-

conomic news and public information are impounded into FX price changes through

order flows, as shown by Love and Payne (2008). Menkhoff et al. (2016) report sub-

stantial heterogeneity across different end-user segments in their trading style and

risk exposure, such that order flows influence price in different ways.

In my research, I use SSF to decompose the observed price into fundamental

value and pricing error, as done by, Hendershott and Menkveld (2014) because my

purpose is to explore how order flows directly and simultaneously affect prices

through both ’price discovery’ and ’price pressure’. Evans and Lyons (2002b) adopt a

regression method to explain currency returns by order flows, but they focus on how

the fundamental values of currencies are determined by information. Hasbrouck

(1991a), Hasbrouck (1991b), and Love and Payne (2008) study the informativeness

of orders with a VAR model by decomposing return variance into trade-related and

untrade-related components. Nagel (2012) uses a return reversal strategy to mea-

sure pricing errors, and Menkhoff et al. (2016) sort portfolios based on order flows

to track informativeness. These methods all work well for tracking informativeness

or pricing errors over time, capturing the time variation and relating this variation

to other factors, but these methods can not simultaneously measure the direct effects

of order flows on both parts of the prices. Therefore, although the purpose of this

research is similar to those of these previous studies, I take a different approach.

Little research has studied the cryptocurrency market or its bubble in 2017 to

2018. It is typically believed that the value of cryptocurrency depends on two fac-

tors. First, characterised as a decentralised currency because no central bank could

control the number of Bitcoin in the market, it can be seen as a libertarian response
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to central bank’s failure to manage the financial crisis. Bitcoin can bypass national

restrictions on international transfers, probably at a lower cost, according to Bariv-

iera et al. (2017). Second, Bitcoin is a reward in the block-chain system; thus, as

explained by Hileman and Rauchs (2017), its value depends on the development of

block-chain technology. However, there are different views on the value of cryp-

tocurrency, and various researchers attribute the bubble to different causes. Cheah

and Fry (2015) argue that the fundamental value of Bitcoin is zero and that its price

is a speculative bubble. Fry and Cheah (2016) find that certain events do have a de-

tectable impact on the market previous bubble before it is brought to an end by an

exogenous shock — a picture that seems qualitatively similar to the bursting of the

internet stocks bubble in 2000. This comparison of the Bitcoin and dot com bubbles

is made in purely qualitative terms by Yermack (2015). Li et al. (2018) and Xu and

Livshits (2018) conclude that pump-and-dump schemes are pervasive in cryptocur-

rency, while the latter authors argue that these schemes drive the substantial Bitcoin

price change between July and November 2017. In addition, Baur and Dimpfl (2018)

find that positive shocks increase volatility by more than negative shocks, reflecting

uninformed investors’ fear-of-missing-out (FOMO) and the existence of pump-and-

dump schemes. Most studies explain the bubble through the price discovery channel

since they all contribute the bubbles to investors’ misperception about fundamental

values of cryptocurrencies.

The key contribution of this work is that it separates the fundamental value and

the pricing error of a specific cryptocurrency, showing directly how order flows in-

fluence price through the processes of ’price discovery’ and ’price pressure’. Al-

though it is questionable whether the fundamental value reflects the real value, in-

formation permanently changes prices and makes the value part a random walk

process. Using SSF, I can further study how order flows influence price across cryp-

tocurrencies and across exchanges. The results may help cryptocurrency investors

and regulators to better understand how the bubble formed and burst.
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3.3 Data and summary statistics

3.3.1 Data

I obtain tick by tick trading data (including price, order flow and volume) of BT-

CUSD and ETHUSD for all trading hours between January 2017 and January 2018

on Bitfinex and Kraken from Kaiko, a data provider in cryptocurrency market that

collects data directly from exchanges. Both cryptocurrencies are traded 24 hours per

day and seven days per week, but sometimes there is no data available from the ex-

changes. For example, the longest closed period for BTCUSD trading on Bitfinex is

about three days from 4th August to 6th August, because the exchange was hacked

according to the company’s announcement. Although Kraken was never hacked, no

BTCUSD trading data on 6th August was available from the provider. I also exclude

those days with less than 1,000 transactions per day and those minutes when returns

(in b.p.) are larger than 500 .

3.3.2 Summary statistics

Figure 3.1 shows how Bitcoin and Ethereum prices vary over time on Bitfinex and

Kraken, respectively. Both Bitfinex and Kraken are leading exchanges in cryptocur-

rency market. Bitfinex is based in Hong Kong (owned by a US parent company)

with world wide clients. Kraken is based in San Francisco but it is the largest Bitcoin

exchange in Euro volume. The figures demonstrate that prices on two exchanges are

nearly the same, consistent with Makarov and Schoar (2018) who have found that

price deviations between the most liquid exchanges in the US and Europe are small.

Figure 3.1a demonstrates that Bitcoin price becomes volatile in May, and then

increases significantly from May to December 2017. After mid-December, the price

becomes even more volatile and declines rapidly. Before May, the price is volatile

in January and March, due to two exogenous impacts. In January 2017, the People’s

bank of China, China’s central bank, tightened its oversight of the country’s Bitcoin

exchanges. Some biggest Bitcoin exchanges then halted withdrawals followed by

shut-downs later that year. The regulations led to a big fall in Bitcoin trading volume
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but its price was not much influenced in the end. In March 2017, a Bitcoin ETF was

rejected by the US Securities and Exchange Commission (SEC). But the SEC left the

door open for future Bitcoin exchange products. Therefore, although Bitcoin price

fell immediately after the rejection, it recovered to its previous level after a few days.

From May to December, Bitcoin price climbed all the way till a history record of

US$20,000 accompanied by a big number of initial coin offerings (ICOs).

Figure 3.1b shows that Ethereum price increases rapidly from May to June 2018

to US$400, then lingers for four months, and shoots up to US$1,600 from mid-

November 2017 to mid-January 2018. Ethereum became an important cryptocur-

rency after May 2017 because with the idea of smart contracts, Ethereum could pro-

vide some technology companies with a good platform for ICOs.

Figure 3.2 shows daily returns of Bitcoin and Ethereum traded on both exchanges.

Returns are volatile during the whole period, but we can still find volatility clusters,

common in other asset classes, on both exchanges.
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FIGURE 3.1: Bitcoin & Ethereum Prices

This figure depicts how Bitcoin and Ethereum prices

change over time from January 2017 to January 2018.

(A) BTCUSD

(B) ETHUSD
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FIGURE 3.2: Bitcoin & Ethereum Returns

This figure depicts how Bitcoin and Ethereum returns

change over time from January 2017 to January 2018.

(A) BTCUSD

(B) ETHUSD
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Table 3.1 reports mean, standard deviation, first autocorrelation, skewness and

kurtosis of returns (in b.p.), order flows and trading volumes (in number of cryp-

tocurrency and in USD) of both cryptocurrencies on Bitfinex and Kraken, aggre-

gated every 10 minutes. Both cryptocurrencies have positive returns during the

period with big standard deviations, slightly negative 1st autocorrelation, negative

skewness, and huge kurtosis (due to some outliers). Mean returns, return standard

deviations, and mean order flows are all similar between the two exchanges, but

order flow standard deviations on Kraken are much smaller than those on Bitfinex.

Volumes of both cryptocurrencies on Bitfinex are five times more than on Kraken.

During my sample period, mean return of Bitcoin is positive while mean order flow

on both exchanges are negative.

Figure 3.3 demonstrates trading volumes of BTCUSD and ETHUSD for each day

within a week. As shown in the figure, unlike most assets, Bitcoin is most actively

traded during weekends in 2017. It seems that most participators in the market are

non-institutional investors. Ethereum has the largest trading volumes on Wednes-

days and Thursdays. Figure 3.4 shows trading volumes every two hours in one

day from mid-night (12:00 UTC). The figures indicate that on both exchanges, Bit-

coin and Ethereum are actively traded throughout a day, with 14:00-16:00 slightly

more actively traded than other time. Table 3.2 summarises trading information of

BTCUSD and ETHUSD on Bitfinex and Kraken. The average trade size during my

sample period is very small, with a big number of daily transactions. It confirms

that most participants in the market are non-institutional investors.
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TABLE 3.1: Summary Statistics

This table presents summary statistics of return, order flow and trading volume of
Bitcoin and Ethereum, aggregated every 10 minutes from January 2017 to January
2018, traded on Bitfinex and Kraken. Returns (in b.p.) are calculated by the price of
the last trade within the 10 minutes, while order flows and volumes are combined
every 10 minutes.

Panel A: BTCUSD on Bitfinex
mean st. dev. 1st autoco. skew kurtosis

Return 0.7232 48.0123 -0.0574 -0.2481 15.6890
Order Flow -2.0210 167.1504 0.1793 -1.5468 78.7349

Volume (in no. of cryptocurrency) 212.6146 325.7770 0.6438 6.0280 91.4554
Volume (in USD) 1298100 2614100 0.8118 4.5111 35.9912

Panel B: ETHUSD on Bitfinex
mean st. dev. 1st autoco. skew kurtosis

Return 1.1587 65.9245 -0.0580 -0.0125 10.9796
Order Flow 12.7988 1218.2 0.2267 -1.1010 69.0527

Volume (in no. of cryptocurrency) 1364.1 2017.8 0.5938 4.7295 42.6998
Volume (in USD) 427710 765690 0.7971 4.3693 42.6998

Panel C: BTCUSD on Kraken
mean st. dev. 1st autoco. skew kurtosis

Return 0.5752 47.2959 -0.0505 -0.3605 14.6890
Order Flow -1.7517 29.0941 0.1974 -0.5367 51.4132

Volume (in no. of cryptocurrency) 33.0141 40.4923 0.5342 3.8729 34.0581
Volume (in USD) 140490 216190 0.6480 4.2766 33.5024

Panel D: ETHUSD on Kraken
mean st. dev. 1st autoco. skew kurtosis

Return 1.1135 68.8310 -0.1071 -0.0378 10.6146
Order Flow 25.6904 561.3235 0.2340 1.7841 74.5016

Volume (in no. of cryptocurrency) 459.5386 767.8794 0.5380 5.3164 56.4448
Volume (in USD) 104890 169890 0.6186 4.4294 56.4448
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FIGURE 3.3: Trading Volume by Weekday

This figure depicts trading volume (in no. of cryptocurrency) of Bitcoin and

Ethereum on Bitfinex and Kraken each day within a week from Sunday to Saturday.

(A) BTCUSD on Bitfinex (B) BTCUSD on Kraken

(C) ETHUSD on Bitfinex (D) ETHUSD on Kraken
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FIGURE 3.4: Trading Volume by Hour

This figure depicts trading volume (in no. of cryptocurrency) of Bitcoin and

Ethereum on Bitfinex and Kraken every two hours from 12:00 (in UST).

(A) BTCUSD on Bitfinex (B) BTCUSD on Kraken

(C) ETHUSD on Bitfinex (D) ETHUSD on Kraken

TABLE 3.2: Trading Frequency

This table presents average trade size (in number of shares) and number of
trades every day for BTCUSD and ETHUSD traded on Bitfinex and Kraken from
01/01/2017 to 15/01/2018.

BTC/Bitfinex BTC/Kraken ETH/Bitfinex ETH/Kraken

Trade Size 0.5500 0.3434 5.8590 5.4777
No. of Trades 55720 13689 31850 11097
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3.4 Methodology

I use a state space form (SSF) approach, the same as the one used in the previous

chapter. The SSF is shown below:

pt = mt + st (3.1)

mt = mt−1 + βX̂t + et (3.2)

st = φst−1 + αXt + ut (3.3)

where pt is the observed log price of cryptocurrency; mt is unobserved efficient price

process and st is unobserved pricing error process; et and ut are uncorrelated i.i.d.

process. Xt is investors’ order flow. X̂t is investors’ order flow ’surprise’. X̂t is

estimated by the residual term of the equation below:

Xt = γ1Xt−1 + γ2Xt−2 + γ3Xt−3 + ... + vt (3.4)

The number of lagged order flows in equation (3.4) is determined by the Schwarz

information criterion.

I add up order flows every 10 minutes as Xt, and obtain the price of the last

trade within the 10 minutes as the corresponding price pt.2At the end of each day,

I obtain the SSF estimates and a Hessian matrix associated with the estimates with

those 10-minute prices and order flows within the most recent week by Kalman

Filter. Standard errors are then calculated by the Hessian matrix. Therefore, the daily

parameter β in equation 3.2 indicates the impact of private information contained in

orders on the fundamental value and α in equation 3.3 demonstrates the impact of

liquidity providers’ inventory control on the pricing error.

Although the unobserved efficient price process mt is referred to as ’fundamental

value’ in my research, in the same way as the model of Hendershott and Menkveld

(2014), it does not necessarily mean that mt reflects the ’true’ intrinsic value of the

2In application, pt is cumulative log returns from the beginning of the week.
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security determined by its future cash flows, especially in our case – an irrational ex-

uberance in cryptocurrency market. The ’fundamental value’ in my research refers

to an unobserved random walk process determined by information contained in in-

formed investors’ orders and how uninformed investors react to those orders. While

the remaining part of price is a mean-reversal process mainly caused by liquidity

providers’ inventory control. In 2017, the total market value of cryptocurrencies in-

creased by more than 30 times and then in 2018 decreased by nearly 80%. Therefore,

over a long time span, much of Bitcoin or Ethereum price during the bubble is tran-

sitory. However, in my setting, only the immediate mean-reversal part of price is

deemed as ’pricing error’ because liquidity providers would not hold extra inven-

tory for long, while the random walk part is deemed as ’fundamental value’, because

all the historical information is impounded into this part.

To study how order flows of one cryptocurrency on one exchange influence the

price of another cryptocurrency on the same exchange or the price of the same cryp-

tocurrency on another exchange, I add one more order flow factor to the SSF as

follows:

mt = mt−1 + β1X̂t1 + β2X̂t2 + et (3.5)

st = φst−1 + α1Xt1 + α2Xt2 + ut (3.6)

where pt is the observed log price of a certain cryptocurrency; et and ut are un-

correlated i.i.d. process. Xt1 is investors’ order flow of the same cryptocurrency on

the same exchange. Xt2 is investors’ order flow of another cryptocurrency or on an-

other exchange. X̂t1 is investors’ order flow ’surprise’. X̂t2 is investors’ order flow

’surprise’ of another cryptocurrency or on another exchange.
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3.5 Empirical results

Table 3.3 presents the estimates of SSF, defined by equations (3.1), (3.2), and (3.3), for

BTCUSD traded on Bitfinex each month. Parameters are estimated based on price

and order flow data, aggregated every 10 minutes for a one-week rolling window,

at the end of each day. The monthly mean is then calculated using the parameters

estimated every day. The estimates for β in Table 3.3 are all significantly positive and

thus consistent with our hypothesis that order flow innovations contain information

impounded into Bitcoin prices. In addition, this suggests either that some people in

the market have private information about Bitcoin (according to Evans and Lyons

(2002a)) or that some people make ’smarter’ decisions than others when public in-

formation is released (according to Love and Payne (2008)). Similar to other asset

classes, buy (sell) orders increase (decrease) the fundamental value of Bitcoin; thus,

on Bitfinex, order flows of Bitcoin influence price through price discovery. For exam-

ple, in June 2017, β is 0.2544, suggesting that, on average, one more buy (sell) order

(in number of Bitcoin) initiated by investors increased (decreased) its fundamental

value by 0.2544 (in b.p.) in that month. Therefore, buy order ’surprise’ contains

’good news’, and reflects informed investors’ optimistic views of the fundamental

value of Bitcoin, leading to an increase in its fundamental value, while sell order

’surprise’ leads to a decrease in its fundamental value.

The relationship between fundamental value and order flow surprise is shown in

Figure 3.5a. However, the figure indicates that, from January 2017 to January 2018,

monthly average order surprises of Bitcoin are negative in most months, suggesting

that, on average, ’bad news’ led informed investors to ’unexpectedly’ sell Bitcoin on

Bitfinex, while monthly fundamental value changes are positive in most months be-

fore 2018. For example, in May, β is significantly positive and larger than in previous

months, and monthly mean of order flow surprises is negative; however, fundamen-

tal value change is positive on average. A possible explanation for these seemingly

contradictory results is that fundamental value is more sensitive to unexpected buy

orders of informed investors than to unexpected sell orders. Therefore, we can infer

two possible causes of the bubble: liquidity providers significantly increasing their
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TABLE 3.3: Monthly SSF parameters - Bitcoin on Bitfinex

This table presents estimated parameters in the following state space model:

pt = mt + st
mt = mt−1 + βX̂t + et
st = φst−1 + αXt + ut

where pt is the observed log price (cumulative log return from the beginning of the
week); mt is the fundamental value; st is pricing error; et and ut are uncorrelated
i.i.d. processes. X̂t is investors’ order flow innovation. Xt is investors’ order flow.
Daily parameters are estimated by 10-minute price and order flow of BTCUSD from
January 2017 to January 2018 on Bitfinex, and then averaged every month.

β t-stats α t-stats φ σe σu

17-Jan 0.1291 23.2197 0.0406 8.5781 0.5692 642.2040 250.3840
17-Feb 0.1070 31.6820 0.0135 5.5648 0.2883 161.6082 72.7879
17-Mar 0.0978 24.1884 0.0278 8.3805 0.1846 581.6286 166.8791
17-Apr 0.0919 18.3876 0.0381 6.9139 0.5847 163.9524 106.1653
17-May 0.1948 16.9662 0.0718 6.9775 0.4506 1255.6012 199.8808
17-Jun 0.2592 19.9043 0.1164 8.7528 0.4839 1338.5778 657.0468
17-Jul 0.1884 18.8293 0.0605 9.5242 0.3817 1375.4687 345.5362
17-Aug 0.1336 14.3883 0.0559 7.7015 0.5475 504.4355 389.1771
17-Sep 0.1304 22.2606 0.0167 4.1490 0.2503 849.7834 425.7388
17-Oct 0.0882 28.3848 0.0194 8.1781 0.5157 282.3755 257.0814
17-Nov 0.1235 31.8711 0.0252 5.7069 0.2597 731.3254 300.2367
17-Dec 0.2251 23.2744 0.1474 11.7585 0.6461 2471.5626 1491.8629
18-Jan 0.2669 26.2210 0.1391 14.2113 0.4893 1964.9388 561.0867
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quotes when buy orders arrived, and not adjusting their quotes accordingly when

sell orders arrived.
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FIGURE 3.5: Bitcoin Monthly Order Flows and Returns

The figures display average order flow innovations and fundamental value changes

of Bitcoin every month from January 2017 to January 2018 on Bitfinex and Kraken.

Fundamental value is obtained from the following state space form:

pt = mt + st

mt = mt−1 + βX̂t + et

st = φst−1 + αXt + ut

where pt is the observed log price (cumulative log return from the beginning of

the week) of the currency; mt is the information part (and δmt = mt − mt−1); st is

pricing error; et and ut are uncorrelated i.i.d. processes. X̂t is investors’ order flow

innovation. Xt is investors’ order flow.

Investors’ order flowX̂t is the residual term of the following equation:

Xt = γ1Xt−1 + γ2Xt−2 + γ3Xt−3 + ... + vt

Fundamental value change is thus δmt and order flow innovation is X̂t.

(A) BTCUSD on Bitfinex

(B) BTCUSD on Kraken
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First, liquidity providers may significantly increase their quotes in response to

buy orders due to FOMO. From May 2017, many ICOs were launched, which con-

firmed investors’ expectations that the cryptocurrency market would prosper and

become an important payment and clearing method. Figure 3.6 shows the total

funds raised for ICOs every month after January 2017, with most funded through

Bitcoin or Ethereum. Some cryptocurrency prices increased sharply and immedi-

ately after their ICOs. For example, the price of Nexus increased by more than 50%

immediately after the Project Research and Development scheme began. As more in-

vestors sought to invest in those ICOs and trade the newly issued cryptocurrencies,

the convenience yield of Bitcoin (and Ethereum) increased significantly, correspond-

ing to the theory proposed by Cochrane (2002) to explain the tech-stock bubble. The

Cochrane (2002) theory of convenience yield associates high prices with high vol-

ume, high volatility, low supply of shares, wide dispersion of opinion, and restric-

tions on long-term short selling. The cryptocurrency market shared these charac-

teristics during the bubble in 2017. In addition, Li et al. (2018) review the existence

of a ’pump-and-dump’ scheme during the bubble. They argue that the fake ICOs,

due to lack of regulation in the market, led to a surging demand for Bitcoin (and

Ethereum) and ’pumped’ the prices of some newly issued cryptocurrencies to at-

tract more people to join the exuberance. As noted by Kyle (1985b) and Hasbrouck

(1991b), the influence of order flows on fundamental value reflects the extent of in-

formation asymmetry, and the impact reflects the probability that such an order is

informed. Therefore, the information about ICOs and technology revolutions misled

the uninformed liquidity providers to believe that an unexpected buy order always

contained much information and that an unexpected sell order was probably from

noise traders. Second, the fundamental value of Bitcoin being less responsive to sell

orders may be due to manipulated support from Tether. As mentioned by Griffin

and Shams (2018), Bitfinex’s sister company, Tether Ltd., backed the Bitcoin price by

falsely issuing Tether whenever the price dropped. My results are consistent with

this theory as, despite many sell orders, Tether Ltd. could always quote a price to

prevent a Bitcoin price drop. It is emphasised that, although I call the random walk
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process decided by order innovation ’fundamental value’, it does not reflect the real

’value’, especially during a bubble. In my case, the fundamental value part of the

asset price cannot guarantee a rational expectation of future cash flows, but it does

reflect investors’ irrational responses to both private and public information.

FIGURE 3.6: ICO Fund Raised in USD

This figure depicts the total fund (in USD) raised during ICOs each month from

January 2017 to April 2018. The data is obtained from www.icodata.io. In this

database, the total fund raised each month is calculated as the sum of the funds

raised for all ICOs that ends within that month. For example, the ICO of Dragon

coin (DRG) began in December 2017, and finished in March 2018. Therefore, the

total USD$320, 000, 000 is said to have been raised in March 2018.

Table 3.3 also indicates that β in each month changes over time. During May to

July 2017 and mid-December 2017 to January 2018, β is much larger than in other

months, demonstrating that information asymmetry exacerbated during these peri-

ods. For example, β in October is 0.0882; thus, one more customer buy order surprise

would increase the fundamental value by 8.82% (in b.p.), while, in January 2018, β

rises to 0.2469. This suggests that the fundamental value part is more sensitive to or-

ders in May, June, July, and December 2017 and January 2018. Figure 3.7a illustrates

how the β of Bitcoin on Bitfinex and its 95% confidence interval change over the pe-

riod. In addition, in May to July and late December 2017 to January 2018, β is larger
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than in other months, confirming that the fundamental value of Bitcoin is more sen-

sitive to order flows in those months on Bitfinex. According to Gorton and Metrick

(2009), one theory that may explain the sudden increase in information asymmetry

is that a large adverse shock increases information sensitivity and thus aggravates

the adverse selection problem. For example, the previous chapter concludes that

the average β of small-cap FTSE100 stocks increased from 6.61 to 14.05 during the

2008 global financial crisis, likely due to the aggravated adverse selection problem.

However, this theory only explains increased information asymmetry after a neg-

ative shock, and it cannot explain the situation in May, June, and July, when the

bubble began in the cryptocurrency market. The results indicate that uninformed

investors in the cryptocurrency market believed orders (especially buy orders) con-

tained more private information regarding the cryptocurrency’s value from May to

July, leading to the bubble. However, this paper does not test how impacts of buy

orders and sell orders on price change, respectively. By discriminating between buy

orders and sell orders in SSF, future research could directly test the hypothesis that

the fundamental value of Bitcoin price was more sensitive to buy orders than sell

orders when the bubble began.
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FIGURE 3.7: Time Variation of β

This figure depicts how β changes over time from January 2017 to January 2018 with

its 95% confidence interval. The estimate is obtained from the following state space

model

pt = mt + st

mt = mt−1 + βX̂t + et

st = φst−1 + αXt + ut

(A) BTCUSD on Bitfinex (B) BTCUSD on Kraken

(C) ETHUSD on Bitfinex (D) ETHUSD on Kraken

As demonstrated in Table 3.3, α is significantly positive in every month, indicat-

ing that customers’ buy (sell) orders caused temporary positive (negative) pricing

errors in intra-day trading. The results are consistent with the inventory-control the-

ory. The temporary positive (negative) pricing error occur because customers’ buy

(sell) orders decrease (increase) liquidity providers’ inventory, and, to bring their in-

ventory back to the original level, liquidity providers are obliged to offer a higher

(lower) price to induce more sell (buy) orders. Additionally, α is much larger in

June, December, and January. For example, if investors bough one more Bitcoin in

November, this increased the pricing error by 2.5% (in b.p.), while, in December,

every Bitcoin that investors bought increased it by 14% (in b.p.). The results sug-

gest that liquidity providers were less willing to provide liquidity and tended to

control their inventory more cautiously, which led to larger pricing errors for every

order in June, December, and January. This could also be interpreted as liquidity

117



Chapter 3. What drives price changes in cryptocurrency market

providers requiring a higher expected return through pricing errors to compensate

for increased liquidity provision costs in those months. The variation of α in Figure

3.8a confirms that α increases from May to June 2017 and from December 2017 to

January 2018. The increased α after December followed a negative shock, while the

increased α from May to June did not. Therefore, the literature proposing models to

explain tighter inventory control after a large negative shock (such as Brunnermeier

and Pedersen (2009) and Chordia et al. (2002)) cannot explain the increased α from

May to June.

FIGURE 3.8: Time Variation of α

This figure depicts how α changes over time from January 2017 to January 2018 with

its 95% confidence interval. The estimate is obtained from the following state space

model

pt = mt + st

mt = mt−1 + βX̂t + et

st = φst−1 + αXt + ut

(A) BTCUSD on Bitfinex (B) BTCUSD on Kraken

(C) ETHUSD on Bitfinex (D) ETHUSD on Kraken

Table 3.4 presents the β and α of Bitcoin traded on Kraken from January 2017

to January 2018. β is positive and significant in each month throughout the whole

period. This confirms that, on Kraken, private information is also impounded into

price through order flows. Compared to the results estimated by Bitfinex data, β is

much larger, suggesting that information contained in order flows on Kraken has
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a greater impact on the fundamental value. Therefore, information asymmetry is

more pronounced on Kraken. As suggested by Table 3.1 and Figure 3.5b, the trading

volume and absolute values of both order flow and order flow surprise on Kraken

are much smaller than those on Bitfinex, but Bitcoin prices are very similar between

two exchanges. Thus, it is reasonable that orders on Kraken are more informative.

Figure 3.7b shows that β on Kraken does not vary as extensively as β on Bitfinex.

The results suggest that, on Kraken, information asymmetry was not aggravated

when the boom started. Therefore, the variations in information asymmetry over

time differ slightly between the two exchanges, probably because most investors

on Bitfinex are from the US and Asia Pacific, while most of Kraken’s customers are

in Europe. The results also provide evidence for the argument that Tether, related

only to Bitfinex, played an important role in ’supporting’ Bitcoin price. Makarov

and Schoar (2019a) also conclude that Bitfinex (Tether) is the most important market

for price discovery. α is also positive and significant most of the time, larger than α

on Bitfinex, meaning that one unit of order flow had a more significant impact on

pricing error on Kraken. In late December 2017 and January 2018, when the market

declined, α increased (as shown in the table and in Figure 3.8b), suggesting that

liquidity providers were less willing to provide liquidity during that period, as in

other asset classes after a negative market shock.

Figure 3.9 displays the fundamental value and pricing error obtained from ob-

served price (weekly cumulative log returns in my research) separately. Figures 3.9a

and 3.9b demonstrate that the fundamental value is the dominant component of Bit-

coin price, and the pricing error diminishes very quickly and does not accumulate

over time. Thus, Bitcoin price is primarily determined by information.
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TABLE 3.4: Monthly parameters - Bitcoin on Kraken

This table presents estimated parameters in the following state space model:

pt = mt + st
mt = mt−1 + βX̂t + et
st = φst−1 + αXt + ut

where pt is the observed log price (cumulative log return from the beginning of the
week); mt is the fundamental value; st is pricing error; et and ut are uncorrelated
i.i.d. processes. X̂t is investors’ order flow innovation. Xt is investors’ order flow.
Daily parameters are estimated by 10-minute price and order flow of BTCUSD from
January 2017 to January 2018 on Kraken, and then averaged every month.

β t-stats α t-stats φ σe σu

17-Jan 0.7354 22.7436 0.0064 0.2481 0.2006 9642.1093 9182.9866
17-Feb 0.4548 29.0582 0.0253 1.4811 0.1191 359.1098 198.1281
17-Mar 0.6127 33.6936 0.1478 7.5574 0.0539 1106.4072 741.8906
17-Apr 0.3463 24.8722 0.0758 3.7341 0.2099 198.5200 282.1554
17-May 0.5694 33.4660 0.0757 5.4600 -0.0037 1592.3095 452.2081
17-Jun 0.4530 27.8300 0.3029 14.1216 0.4750 1529.5792 293.4830
17-Jul 0.2328 6.1445 0.2602 10.2742 0.4462 5542.7547 4687.7926
17-Aug 0.4552 35.8495 0.1987 19.2096 0.6555 465.3547 516.9785
17-Sep 0.4706 21.2305 0.2487 14.1716 0.8102 603.5621 805.3443
17-Oct 0.8189 52.3842 -0.1281 -12.4450 0.0072 547.7920 66.0117
17-Nov 0.3139 5.1486 0.2585 5.6668 0.6268 20876.3207 3215.0226
17-Dec 0.6050 16.4278 1.0615 30.3378 0.9045 14140.1583 6783.4480
18-Jan 0.5903 23.7461 1.2275 51.3894 0.9278 1277.6579 1114.1873
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FIGURE 3.9: Fundamental Value and Pricing Error

The figures display fundamental values and pricing errors obtained from the state

space form below:

pt = mt + st

mt = mt−1 + βX̂t + et

st = φst−1 + αXt + ut

where pt is the observed log price (cumulative log return from the beginning of

the week) of the cryptocurrency; mt is the fundamental value part; st is the pricing

error part; et and ut are uncorrelated i.i.d. processes. X̂t is investors’ order flow

innovation. Xt is investors’ order flow.

(A) BTCUSD on Bitfinex (B) BTCUSD on Kraken

(C) ETHUSD on Bitfinex (D) ETHUSD on Kraken

Tables 3.5 and 3.6 indicate that βs of Ethereum traded on Bitfinex and Kraken

from January 2017 to January 2018 are also positive and significant, demonstrating

that information is impounded into the Ethereum price through order flows. Figure

3.7c shows that the β of Ethereum on Bitfinex is much larger in June and July 2017,

and January 2018, immediately following the increase of β for Bitcoin on Bitfinex.

Table 3.5 also shows that α is significantly positive on Bitfinex most of the time,

consistent with Bitcoin results. However, estimates for α of Ethereum on Kraken are

not statistically significant. Figure 3.8c suggests that α varies over time and increases

in June 2017, December 2017, and January 2018. Figures 3.7d and 3.8d illustrate the
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variation in β and α of Ethereum traded on Kraken between June 2017 and January

2018. The results are similar to those for Bitcoin traded on Kraken, which proves

that information was the key to the bubble and its bursting.

TABLE 3.5: Monthly SSF parameters - Ethereum on Bitfinex

This table presents estimated parameter in the following state space model:

pt = mt + st
mt = mt−1 + βX̂t + et
st = φst−1 + αXt + ut

where pt is the observed price (cumulative log return from the beginning of the
week); mt is the fundamental value; st is pricing error; et and ut are uncorrelated
i.i.d. processes. X̂t is investors’ order flow innovation. Xt is investors’ order flow.
Daily parameters are estimated by 10-minute price and order flow of ETHUSD from
January 2017 to January 2018 on Bitfinex, and then averaged every month.

β t-stats α t-stats φ σe σu

17-Jan 0.0096 4.9010 0.0026 1.1562 0.4896 1219.1967 909.3222
17-Feb 0.0165 10.6048 0.0029 1.6740 0.3048 417.7813 404.6383
17-Mar 0.0178 22.6461 0.0021 2.8561 -0.0891 3215.2168 877.5785
17-Apr 0.0160 17.5382 0.0042 3.9174 0.2772 797.1743 665.6256
17-May 0.0297 19.6685 -0.0001 -0.1041 0.1340 3060.9228 1076.5851
17-Jun 0.0528 19.9906 0.0104 3.7632 0.4078 2960.2500 1283.6409
17-Jul 0.0382 20.3581 0.0059 3.9119 -0.0553 3548.2909 373.6030
17-Aug 0.0293 20.3061 0.0010 0.5987 0.2910 890.1353 389.1772
17-Sep 0.0237 15.8610 0.0118 10.5951 0.6100 1536.6385 597.9873
17-Oct 0.0179 12.5917 0.0060 5.5064 0.4856 523.3284 211.2586
17-Nov 0.0148 11.3539 0.0060 6.1226 0.7138 675.4424 350.3982
17-Dec 0.0281 11.8684 0.0174 7.8979 0.8651 1796.1728 2933.6846
18-Jan 0.0196 7.6064 0.0266 13.3388 0.8592 2952.6091 694.4994

As shown in Figures 3.1a and 3.1b, the cryptocurrency market was volatile be-

tween May and June 2017, which was the start of the cryptocurrency boom, fol-

lowing the Ethereum revolution. Due to active ICOs, the cryptocurrency market

as a whole increased from June to December 2017, with less volatility. After mid-

December, the bubble burst. Bitcoin price fell and became volatile first, followed

by Ethereum price. The previous tables and figures show that β and α are also

larger in May, June, December, and January than in other months. Figures 3.10 and

3.11 demonstrate how β and α of Bitcoin and Ethereum correlate with daily realised
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TABLE 3.6: Monthly parameters – Ethereum on Kraken

This table presents estimated parameters in the following state space model:

pt = mt + st
mt = mt−1 + βX̂t + et
st = φst−1 + αXt + ut

where pt is the observed price (cumulative log return from the beginning of the
week); mt is the fundamental value; st is pricing error; et and ut are uncorrelated
i.i.d. processes. X̂t is investors’ order flow innovation. Xt is investors’ order flow.
Daily parameters are estimated by 10-minute price and order flow of ETHUSD from
June 2017 to January 2018 on Kraken, and then averaged every month.

β t-stats α t-stats φ σe σu

17-Jan 0.0382 7.9307 -0.0007 -0.1642 0.5038 1451.8213 2149.8679
17-Feb 0.0268 7.3619 0.0001 0.0327 0.4140 571.0846 1120.6063
17-Mar 0.0341 14.8920 0.0032 1.3590 0.1261 4141.2617 2579.8925
17-Apr 0.0485 13.7706 0.0208 4.9539 0.3096 800.5308 1346.3850
17-May 0.0716 21.7103 -0.0017 -0.4461 0.1687 2886.3923 1458.9455
17-Jun 0.0871 2.3157 0.0061 0.1656 0.0807 3223.5338 878.4638
17-Jul 0.0645 23.4090 0.0005 0.2093 0.1417 4229.6961 1415.3066
17-Aug 0.0630 18.5133 -0.0001 -0.0247 0.3201 647.6130 666.9573
17-Sep 0.0453 12.3887 0.0150 4.7846 0.5988 1363.4341 2750.9476
17-Oct 0.0762 5.6710 0.0102 0.7205 0.2272 145358.7071 72141.4262
17-Nov 0.0713 21.3767 -0.0149 -4.5365 0.1878 665.9035 316.3801
17-Dec 0.1005 14.5109 0.0425 5.4762 0.6001 1670.2785 7969.7828
18-Jan 0.1289 22.6361 -0.0221 -5.0187 -0.2377 2983.9332 245.8693
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volatility over time, from January 2017 to January 2018, on Bitfinex and Kraken. The

figures suggest that both β and α are positively correlated with the realised volatility.

The results indicate that, when the market is more volatile, information asymmetry

is more pronounced and liquidity provision becomes tighter. Notably, in the cryp-

tocurrency market, according to Makarov and Schoar (2019b), volatility is increased

more by positive shocks than by negative shocks. Therefore, fundamental values

and pricing errors may have been more sensitive to orders after positive shocks from

May to July due to greater volatility. In addition, if volatility in order flows (or, say,

uncertainty in information) remains unchanged, larger β and α will make the mar-

ket more volatile. Therefore, if β and α increase, market volatility also increases.

My results provide evidence for the model proposed by Deuskar (2006), who argues

that clusters of volatility and liquidity arise endogenously even through fundamen-

tals are homoskedastic, as well as the feedback theory proposed by Garleanu and

Pedersen (2007a).
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FIGURE 3.10: β against Volatility

This figure depicts how β changes over time against daily realized volatility of the

cryptocurrency during the same period. The estimate is obtained from the following

state space model

pt = mt + st

mt = mt−1 + βX̂t + et

st = φst−1 + αXt + ut

(A) BTCUSD on Bitfinex (B) BTCUSD on Kraken

(C) ETHUSD on Bitfinex (D) ETHUSD on Kraken
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FIGURE 3.11: α against Volatility

This figure depicts how α changes over time against daily realized volatility of the

cryptocurrency during the same period. The estimate is obtained from the following

state space model

pt = mt + st

mt = mt−1 + βX̂t + et

st = φst−1 + αXt + ut

(A) BTCUSD on Bitfinex (B) BTCUSD on Kraken

(C) ETHUSD on Bitfinex (D) ETHUSD on Kraken

Tables 3.7 and 3.8 present estimates of SSF, defined by equations (3.1), (3.5), and

(3.6), and thus indicate how Bitcoin and Ethereum orders affect Bitcoin price on

Bitfinex and Kraken, respectively. Both β1 and α1 in the tables demonstrate that,

when I add Ethereum orders to the model, Bitcoin orders retain a significantly posi-

tive impact on both the fundamental value and the pricing error of the Bitcoin price,

consistent with our previous results. Meanwhile, Ethereum orders have only a sig-

nificantly positive impact on the fundamental value of the Bitcoin price, as β2 is
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significantly positive most of the time, while α2 is not. The Bitfinex and Kraken re-

sults are very similar, suggesting that, on both exchanges, Ethereum orders contain

private information that influences Bitcoin price, as well as proving the existence

of information spill-over between these two cryptocurrencies. Table 3.7 shows that,

in July 2017, β1 is around 10 times β2. Thus, the percentage change in fundamen-

tal value of Bitcoin caused by investors’ buying (or selling) one Bitcoin is 10 times

the change caused by investors’ buying (or selling) one Ethereum. At that time, the

Bitcoin price was around 10 times that of Ethereum; therefore, investing one dol-

lar in Bitcoin had a similar impact on its fundamental value to investing one dollar

in Ethereum. In most months, β1 is more than 20 times β2, so, although Ethereum

orders also contained relevant information that influenced Bitcoin orders, the influ-

ence was much smaller than that of Bitcoin orders. The results presented in Table

3.8 are similar, indicating that Bitcoin orders on Kraken had a much stronger impact

than Ethereum orders on Bitcoin price.

Tables 3.9 and 3.10 summarise how Bitcoin orders influenced Ethereum price

on Bitfinex and Kraken, respectively. Similarly, β2 in the tables demonstrates that

Ethereum orders had a significantly positive impact on the Bitcoin price through the

price discovery channel. Therefore, information contained in Ethereum orders also

determined Bitcoin price. In addition, β2 was bigger than β1, but by less than 10

times, so one dollar invested in Ethereum had a greater impact on Ethereum price

than one dollar invested in Bitcoin. All of the cross-cryptocurrency results suggest

that order flows of one cryptocurrency carry information that may influence the

value of other cryptocurrencies. It is possible that some information is market-wide

and influences the entire cryptocurrency market. For example, a news report on

new technology or a new regulation could simultaneously affect investors’ expecta-

tions of both Bitcoin and Ethereum, thus permanently changing both prices through

order flows (according to Love and Payne (2008), public announcements are also im-

pounded into prices through order flows). In addition, news related to ICOs could

influence investors’ expectations of the whole cryptocurrency market, thus simul-

taneously changing Bitcoin and Ethereum prices through orders. Meanwhile, α2 is
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TABLE 3.7: Impact of Ethereum Order Flows on Bitcoin Price –
Bitfinex

This table presents estimated parameters in the following state space model:

pt = mt + st
mt = mt−1 + β1X̂1,t + β2X̂2,t + et
st = φst−1 + α1X1,t + α2X2,t + ut

where pt is the observed log price (cumulative log return from the beginning of the
week) of BTCUSD on Bitfinex; mt is the fundamental value; st is the pricing error;
et and ut are uncorrelated i.i.d. processes. X̂1,t is investors’ order flow innovation
of BTCUSD. X̂2,t is investors’ order flow innovation of ETHUSD. X1,t is investors’
order flow of BTCUSD. X2,t is investors’ order flow of ETHUSD.
Daily parameters are estimated by 10-minute price and order flow of BTCUSD and
ETHUSD from January 2017 to January 2018 on Bitfinex, and then averaged every
month.

β1 t-stats β2 t-stats α1 t-stats α2 t-stats φ σe σu

17-Jan 0.1361 31.8433 0.0033 2.5744 0.0328 7.1458 0.0002 0.1329 0.3928 778.0964 244.4820
17-Feb 0.1119 28.9286 0.0020 2.4376 0.0134 4.1157 -0.0018 -2.6906 0.1563 183.8617 85.3454
17-Mar 0.0983 32.1229 0.0012 3.1064 0.0274 10.9837 -0.0006 -1.7243 0.1609 574.3827 143.7115
17-Apr 0.0852 18.5230 -0.0010 -2.0467 0.0412 9.5344 0.0007 1.5462 0.5971 153.5813 111.7173
17-May 0.1930 19.6271 0.0033 4.1682 0.0680 8.3780 -0.0022 -2.7256 0.5204 962.9800 321.1883
17-Jun 0.2527 21.4875 0.0068 4.3549 0.1094 11.5653 0.0014 0.9672 0.4958 1111.3360 626.6426
17-Jul 0.1429 18.4612 0.0145 13.9663 0.0829 9.2808 -0.0061 -6.1761 0.5422 1028.8693 514.0453
17-Aug 0.1282 31.5640 0.0023 2.0030 0.0560 14.7131 0.0035 3.2243 0.6974 449.3412 404.6394
17-Sep 0.1037 37.9762 0.0061 6.4456 0.0136 4.6490 0.0053 6.4977 0.3465 633.1115 509.2772
17-Oct 0.0862 36.6356 0.0023 2.4462 0.0164 8.3598 0.0024 2.8513 0.4700 290.4000 200.5766
17-Nov 0.1210 37.8705 0.0033 3.6876 0.0238 8.5001 0.0001 0.0759 0.3057 643.6275 337.3888
17-Dec 0.2240 29.2546 0.0143 6.9272 0.1254 17.5765 -0.0003 -0.1424 0.6416 2314.8872 1345.9089
18-Jan 0.2396 29.7370 0.0081 3.8685 0.1401 19.0653 0.0095 5.5647 0.6498 1960.0380 340.2294
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TABLE 3.8: Impact of Ethereum Order Flows on Bitcoin Price –
Kraken

This table presents estimated parameters in the following state space model:

pt = mt + st
mt = mt−1 + β1X̂1,t + β2X̂2,t + et
st = φst−1 + α1X1,t + α2X2,t + ut

where pt is the observed log price (cumulative log return from the beginning of
the week) of BTCUSD on Kraken; mt is the fundamental value; st is pricing error;
et and ut are uncorrelated i.i.d. processes. X̂1,t is investors’ order flow innovation
of BTCUSD. X̂2,t is investors’ order flow innovation of ETHUSD. X1,t is investors’
order flow of BTCUSD. X2,t is investors’ order flow of ETHUSD.
Daily parameters are estimated by 10-minute price and order flow of BTCUSD and
ETHUSD from January 2017 to January 2018 on Kraken, and then averaged every
month.

β1 t-stats β2 t-stats α1 t-stats α2 t-stats φ σe σu

17-Jan 0.7486 43.8478 0.0103 3.6603 0.0708 4.3898 0.0062 2.5919 -0.0452 1756.0183 465.8755
17-Feb 0.5745 16.5663 -0.0134 -4.5256 0.0072 0.2792 0.0164 5.3153 0.5092 289.1848 1091.2037
17-Mar 0.6017 49.1177 0.0013 0.9832 0.1692 11.6612 -0.0011 -1.0461 0.0569 1104.9066 682.9322
17-Apr 0.3306 33.9917 -0.0025 -1.3439 0.0793 7.0338 -0.0024 -1.1640 0.2153 176.0017 288.2551
17-May 0.6267 41.5725 0.0170 8.4823 0.0297 2.4781 -0.0071 -3.6782 0.0491 1206.0491 461.7257
17-Jun 0.5795 54.3460 0.0270 10.9733 0.1313 10.6947 -0.0084 -3.7230 0.4849 1167.8217 404.7511
17-Jul 0.2843 42.7333 0.0157 12.8000 0.1637 22.1077 -0.0004 -0.3050 0.6004 880.3938 231.6048
17-Aug 0.4516 38.5229 0.0028 1.1366 0.1888 19.7611 0.0057 2.4636 0.6890 453.8941 463.2419
17-Sep 0.4647 37.9026 0.0202 11.2309 0.1308 9.1179 0.0041 2.4697 0.6186 576.4536 631.3309
17-Oct 0.6706 62.5212 0.0085 2.5129 -0.0124 -1.1335 0.0106 3.5189 0.3930 380.5748 201.0460
17-Nov 0.4331 39.0775 -0.0007 -0.2023 0.1252 12.2129 0.0047 1.3821 0.4014 857.0921 488.2063
17-Dec 1.2865 66.6108 0.0742 10.4818 0.2462 15.5362 -0.0244 -5.2402 0.4962 2215.6415 1296.1090
18-Jan 0.1315 7.3124 0.0398 6.7802 1.5025 54.1698 -0.0164 -2.8070 0.9553 948.0654 1243.3583
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either wrongly signed or insignificant in each month. Therefore, taken together, the

above results suggest information spill-over between Bitcoin and Ethereum, while

liquidity spill-over is not evident and liquidity providers separately manage the in-

ventory levels of each cryptocurrency.

TABLE 3.9: Impact of Bitcoin Order Flows on Ethereum Price –
Bitfinex

This table presents estimated parameters in the following state space model:

pt = mt + st
mt = mt−1 + β1X̂1,t + β2X̂2,t + et
st = φst−1 + α1X1,t + α2X2,t + ut

where pt is the observed log price (cumulative log return from the beginning of
the week) of ETHUSD on Bitfinex; mt is the fundamental value; st is pricing error;
et and ut are uncorrelated i.i.d. processes. X̂1,t is investors’ order flow innovation
of ETHUSD. X̂2,t is investors’ order flow innovation of BTCUSD. X1,t is investors’
order flow of ETHUSD. X2,t is investors’ order flow of BTCUSD.
Daily parameters are estimated by 10-minute price and order flow of BTCUSD and
ETHUSD from January 2017 to January 2018 on Bitfinex, and then averaged every
month.

β1 t-stats β2 t-stats α1 t-stats α2 t-stats φ σe σu

17-Jan 0.0110 5.7515 0.0737 10.1030 -0.0015 -0.9197 0.0180 2.9072 0.1630 1202.2371 455.9228
17-Feb 0.0126 7.4147 0.0123 2.5145 0.0045 3.2173 0.0256 5.2542 0.2368 403.7284 330.2135
17-Mar 0.0175 20.8275 0.0060 0.9480 0.0019 2.6844 0.0111 2.0020 -0.0059 2983.8653 843.4557
17-Apr 0.0153 15.2348 -0.0066 -0.7446 0.0044 4.9525 -0.0122 -1.5879 0.2709 754.6034 653.4981
17-May 0.0291 19.0106 0.0927 8.0862 -0.0009 -0.6820 -0.0042 -0.4188 0.1076 2781.5575 913.5814
17-Jun 0.0526 21.8474 0.1544 12.3512 0.0077 3.2669 0.0819 6.2284 0.4328 2705.8912 1266.2274
17-Jul 0.0350 20.2728 0.2005 20.8796 0.0057 3.9434 0.0221 2.7997 0.0078 3120.7402 403.4100
17-Aug 0.0295 21.9024 0.0372 5.9136 -0.0001 -0.0419 0.0333 5.7766 0.3270 804.3946 358.9381
17-Sep 0.0173 14.7737 0.0757 17.2212 0.0071 6.5365 0.0226 5.1972 0.5249 1184.3996 541.5482
17-Oct 0.0200 20.6992 0.0152 6.5491 0.0010 1.2078 0.0152 6.7991 0.3345 561.6335 114.4575
17-Nov 0.0149 16.3176 0.0122 3.4789 0.0049 5.3549 0.0095 3.0528 0.5919 659.9713 297.3495
17-Dec 0.0237 11.5382 0.1103 14.0562 0.0115 6.5251 0.0651 8.3591 0.7958 2359.5458 1273.2965
18-Jan 0.0286 12.3767 0.0718 9.1773 0.0117 5.6470 0.1006 14.7564 0.5115 3303.3856 57.7085

Tables 3.11, 3.12, 3.13, and 3.14 demonstrate how order flows on one exchange

influence the fundamental value and pricing error of Bitcoin (or Ethereum) price on

the other. Table 3.11 shows that β2 is significantly positive in each month, demon-

strating that orders placed on Bitfinex reveal relevant information that can influence

the fundamental value of Bitcoin price on Bitfinex. In other tables, β2 is signifi-

cant, suggesting that information contained in order flows on one exchange helps

to determine the price on the other through price discovery. Thus, information on
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TABLE 3.10: Impact of Bitcoin Order Flows on Ethereum Price –
Kraken

This table presents estimated parameters in the following state space model:

pt = mt + st
mt = mt−1 + β1X̂1,t + β2X̂2,t + et
st = φst−1 + α1X1,t + α2X2,t + ut

where pt is the observed log price (cumulative log return from the beginning of
the week) of ETHUSD on Kraken; mt is the fundamental value; st is pricing error;
et and ut are uncorrelated i.i.d. processes. X̂1,t is investors’ order flow innovation
of ETHUSD. X̂2,t is investors’ order flow innovation of BTCUSD. X1,t is investors’
order flow of ETHUSD. X2,t is investors’ order flow of BTCUSD.
Daily parameters are estimated by 10-minute price and order flow of BTCUSD and
ETHUSD from January 2017 to January 2018 on Kraken, and then averaged every
month.

β1 t-stats β2 t-stats α1 t-stats α2 t-stats φ σe σu

17-Jan 0.0382 7.8187 0.2684 8.1601 -0.0029 -0.5372 -0.0070 -0.2551 0.4760 1163.2279 2075.0605
17-Feb 0.0248 7.9174 0.0715 2.6705 -0.0034 -1.0941 0.1103 3.7101 0.2058 754.7239 920.7751
17-Mar 0.0362 13.0749 0.2292 15.7780 0.0022 0.8589 0.0755 4.7526 0.1282 3662.8147 2517.3416
17-Apr 0.0440 11.8588 -0.2587 -18.0610 0.0230 6.1491 0.0932 6.1523 0.3053 751.7436 1337.3263
17-May 0.0709 20.8730 0.1637 8.6119 -0.0032 -1.0700 -0.0055 -0.2736 0.1822 2633.7950 1526.8350
17-Jun 0.0851 21.8615 0.4347 30.3471 0.0072 2.2223 -0.0334 -3.5999 0.0405 2931.1538 935.8725
17-Jul 0.0575 22.8346 0.3365 18.1428 0.0030 1.1956 -0.0036 -0.2049 0.1090 2777.8688 972.4887
17-Aug 0.0637 22.6719 0.2111 16.7999 -0.0012 -0.4051 -0.1018 -8.1810 0.3453 593.6511 683.9281
17-Sep 0.0433 19.1274 0.3551 30.5080 0.0069 3.0044 0.1201 10.6801 0.5286 1070.6274 1082.3135
17-Oct 0.0676 0.5942 0.1482 1.2319 0.0078 0.0685 0.0405 0.3374 0.0774 416.4258 120.0389
17-Nov 0.0688 18.9449 0.1265 10.2020 -0.0144 -4.8780 -0.0984 -9.6525 0.2232 596.8714 344.4566
17-Dec 0.1229 19.7001 0.0470 3.4241 0.0027 0.4704 0.4298 28.8701 0.6432 1620.4099 1708.5765
18-Jan 0.1016 15.8993 0.6122 27.4832 -0.0017 -0.2936 0.1788 6.6935 0.0669 2135.8995 766.5785
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both exchanges is impounded into cryptocurrency price through order flows. This

finding also confirms the significant heterogeneity in where price formation hap-

pens across exchanges, as proposed by Makarov and Schoar (2019a). The results

suggest information spill-over across cryptocurrency exchanges. In addition, since

cryptocurrencies traded on Bitfinex and Kraken are identical assets, the Law of One

Price says the prices should be the same. Therefore, any differences should be wiped

off by arbitrage opportunities, and, thus, arbitrage trading helps to transmit infor-

mation among exchanges. The results confirm that order flows carry information

that determines price in the price discovery process. In all four tables, the impact

of orders on Kraken is larger than that on Bitfinex, suggesting worse information

asymmetry on Kraken. However, my results do not indicate whether information

was passed from Bitfinex to Kraken or from Kraken to Bitfinex. At the same time,

α2 in those tables is not significant, suggesting that price pressure does not spill over

across exchanges. For example, the Bitcoin inventory change of liquidity providers

on Bitfinex does not influence liquidity providers’ willingness to provide Bitcoin liq-

uidity on Kraken.
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TABLE 3.11: Impact of Kraken Order Flows on Bitfinex Price for Bit-
coin

This table presents estimated parameters in the following state space model:

pt = mt + st
mt = mt−1 + β1X̂1,t + β2X̂2,t + et
st = φst−1 + α1X1,t + α2X2,t + ut

where pt is the observed log price (cumulative log return from the beginning of the
week) of BTCUSD on Bitfinex; mt is the fundamental value; st is pricing error; et
and ut are uncorrelated i.i.d. processes. X̂1,t is investors’ order flow innovation on
Bitfinex. X̂2,t is investors’ order flow innovation on Kraken. X1,t is investors’ order
flow on Bitfinex. X2,t is investors’ order flow on Kraken.
Daily parameters are estimated by 10-minute price and order flow of BTCUSD from
January 2017 to January 2018 on Bitfinex and Kraken, and then averaged every
month.

β1 t-stats β2 t-stats α1 t-stats α2 t-stats φ σe σu

17-Jan 0.1116 21.9304 0.2722 20.6372 0.0390 8.8196 0.0096 0.8776 0.5173 542.1018 245.3659
17-Feb 0.0999 34.5146 0.0404 4.1789 0.0135 4.6927 0.0534 6.1711 0.3721 162.8437 67.0808
17-Mar 0.0924 30.5407 0.1438 16.4434 0.0317 8.3157 -0.0045 -0.5555 0.2758 446.2483 190.9834
17-Apr 0.0814 18.6069 0.2145 23.6962 0.0432 9.6707 -0.1118 -11.5320 0.5039 160.5536 95.8521
17-May 0.1801 15.2737 0.2217 13.8573 0.0687 6.9302 -0.0783 -5.7149 0.4262 1113.9115 185.7866
17-Jun 0.2409 22.0573 0.3873 22.2526 0.1134 11.0759 -0.0923 -6.2383 0.4122 1273.1314 527.6300
17-Jul 0.1552 14.5142 0.3829 29.1480 0.0705 8.5777 -0.1733 -17.0688 0.3549 1150.3375 392.8510
17-Aug 0.1186 20.3844 0.2459 19.8753 0.0497 8.0462 -0.0190 -1.5710 0.5444 398.7473 383.1617
17-Sep 0.1156 22.7982 0.1835 18.6022 0.0172 5.3413 0.0749 7.2121 0.2308 766.0482 418.5900
17-Oct 0.0740 26.9527 0.2926 32.9424 0.0219 8.5793 -0.0492 -5.0903 0.4678 260.9236 205.6883
17-Nov 0.1134 23.9783 0.1489 11.6938 0.0283 7.6233 0.0237 1.8815 0.1881 631.7745 305.1091
17-Dec 0.2071 17.1213 0.6332 22.3385 0.1374 12.3436 -0.1731 -5.7711 0.5159 2225.9687 1413.6538
18-Jan 0.2326 24.2463 0.7466 33.5483 0.1365 10.9059 0.2090 13.0457 0.5881 1590.1095 627.2682
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TABLE 3.12: Impact of Bitfinex Order Flows on Kraken Price for Bit-
coin

This table presents estimated parameters in the following state space model:

pt = mt + st
mt = mt−1 + β1X̂1,t + β2X̂2,t + et
st = φst−1 + α1X1,t + α2X2,t + ut

where pt is the observed log price (cumulative log return from the beginning of the
week) of BTCUSD on Kraken; mt is fundamental value; st is pricing error; et and ut
are uncorrelated i.i.d. processes. X̂1,t is investors’ order flow innovation on Kraken.
X̂2,t is investors’ order flow innovation on Bitfinex. X1,t is investors’ order flow on
Kraken. X2,t is investors’ order flow on Bitfinex.
Daily parameters are estimated by 10-minute price and order flow of BTCUSD from
January 2017 to January 2018 on Bitfinex and Kraken, and then averaged every
month.

β1 t-stats β2 t-stats α1 t-stats α2 t-stats φ σe σu

17-Jan 0.3626 15.5429 0.1243 18.4310 0.0679 3.9580 -0.0066 -1.1200 0.0948 587.2864 438.1723
17-Feb 0.1465 11.1787 0.1003 25.5924 0.0635 5.4147 -0.0176 -4.4359 0.1816 167.0887 249.7454
17-Mar 0.3595 30.5098 0.0899 16.3125 0.1813 16.2912 -0.0016 -0.3699 0.0662 739.0769 726.2314
17-Apr 0.2458 21.2515 0.0700 12.9836 0.0957 6.1142 -0.0019 -0.3540 0.1828 136.3737 278.6093
17-May 0.5191 33.4610 0.1376 12.3856 0.0826 6.3265 -0.0141 -1.3869 -0.0088 1291.9831 451.2010
17-Jun 0.5211 47.9807 0.1322 16.1212 0.1761 16.0412 0.0509 6.7063 0.4723 916.2978 641.3206
17-Jul 0.2697 33.2812 0.1271 18.0842 0.1959 18.9311 -0.0151 -2.7552 0.1958 1091.3341 105.6910
17-Aug 0.4897 57.9674 0.1032 16.4046 0.0202 2.6122 -0.0263 -5.6248 0.0791 617.3287 179.2955
17-Sep 0.4019 31.5279 0.0962 25.5310 0.0604 4.5590 -0.0245 -7.0187 0.0913 823.3647 229.4785
17-Oct 0.4219 47.4052 0.0654 29.4802 0.0392 3.8617 -0.0127 -5.2206 0.1500 299.3503 151.3357
17-Nov 0.3719 40.3750 0.1005 27.5144 0.0029 0.3032 -0.0295 -9.1359 -0.0780 851.9302 153.9901
17-Dec 1.3619 76.8365 0.2065 24.9655 -0.1286 -11.3544 -0.0599 -8.7852 -0.0698 2761.6725 274.9998
18-Jan 1.6303 59.1666 0.2357 33.0853 -0.2246 -12.3211 -0.0327 -4.6237 -0.0615 1822.5079 126.7439
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3.5. Empirical results

TABLE 3.13: Impact of Kraken Order Flows on Bitfinex Price for
Ethereum

This table presents estimated parameters in the following state space model:

pt = mt + st
mt = mt−1 + β1X̂1,t + β2X̂2,t + et
st = φst−1 + α1X1,t + α2X2,t + ut

where pt is the observed log price (cumulative log return from the beginning of the
week) of ETHUSD on Bitfinex; mt is fundamental value; st is pricing error; et and ut
are uncorrelated i.i.d. processes. X̂1,t is investors’ order flow innovation on Bitfinex.
X̂2,t is investors’ order flow innovation on Kraken. X1,t is investors’ order flow on
Bitfinex. X2,t is investors’ order flow at Kraken.
Daily parameters are estimated by 10-minute price and order flow data of ETHUSD
from January 2017 to January 2018 on Bitfinex and Kraken, and then averaged every
month.

β1 t-stats β2 t-stats α1 t-stats α2 t-stats φ σe σu

17-Jan 0.0161 0.2284 0.0288 0.3847 0.0003 0.0047 -0.0051 -0.0723 0.3317 1691.0019 1206.6365
17-Feb 0.0152 7.8032 0.0151 5.5606 0.0047 2.3664 -0.0038 -1.4933 0.2699 449.9112 740.7910
17-Mar 0.0152 18.0878 0.0167 9.5983 0.0021 2.6634 -0.0004 -0.2726 -0.0352 2653.1685 865.5275
17-Apr 0.0126 13.5166 0.0246 9.3782 0.0044 4.4066 0.0054 1.9628 0.2886 598.0511 734.4656
17-May 0.0206 14.4574 0.0373 13.0540 0.0017 1.4889 -0.0019 -0.8474 0.0812 2360.8505 870.8511
17-Jun 0.0472 20.8853 0.0397 10.6219 0.0063 2.9884 0.0067 1.9613 0.2426 2554.7485 1020.2221
17-Jul 0.0273 16.3999 0.0348 14.1789 0.0090 6.9124 -0.0006 -0.3148 -0.0242 2612.9175 538.9586
17-Aug 0.0245 18.7715 0.0249 10.5449 0.0015 1.2202 0.0064 2.5872 0.3826 598.8495 493.7958
17-Sep 0.0233 19.9949 0.0171 8.1651 0.0082 6.7866 0.0066 3.4512 0.3546 1493.7084 467.7527
17-Oct 0.0175 15.8688 0.0268 9.9194 0.0026 2.8975 0.0081 3.1627 0.5104 358.0669 256.8349
17-Nov 0.0143 15.6033 0.0176 5.4659 0.0050 5.9487 0.0081 2.7793 0.6784 585.0209 350.2297
17-Dec 0.0287 13.6295 0.0441 5.8648 0.0135 6.3926 0.0124 1.6878 0.7886 1883.6661 2361.4591
18-Jan 0.0177 7.0511 0.0551 8.0123 0.0247 10.8190 0.0054 0.8661 0.8016 2408.5337 1027.0058
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TABLE 3.14: Impact of Bitfinex Order Flows on Kraken Price for
Ethereum

This table presents estimated parameters in the following state space model:

pt = mt + st
mt = mt−1 + β1X̂1,t + β2X̂2,t + et
st = φst−1 + α1X1,t + α2X2,t + ut

where pt is the observed log price (cumulative log return from the beginning of the
week) of ETHUSD on Kraken; mt is the fundamental value; st is pricing error; et
and ut are uncorrelated i.i.d. processes. X̂1,t is investors’ order flow innovation on
Kraken. X̂2,t is investors’ order flow innovation on Bitfinex. X1,t is investors’ order
flow on Kraken. X2,t is investors’ order flow on Bitfinex.
Daily parameters are estimated by 10-minute price and order flow of ETHUSD from
January 2017 to January 2018 on Bitfinex and Kraken, and then averaged every
month.

β1 t-stats β2 t-stats α1 t-stats α2 t-stats φ σe σu

17-Jan 0.0355 6.9276 0.0149 4.1674 -0.0002 -0.0364 -0.0043 -1.1856 0.4134 1597.0236 1484.3379
17-Feb 0.0135 4.0979 0.0111 5.3010 0.0060 1.9048 0.0015 0.6797 0.5114 485.2349 1209.5482
17-Mar 0.0207 10.6242 0.0138 14.2090 0.0058 2.8119 -0.0003 -0.3105 0.1568 2709.9751 2733.5641
17-Apr 0.0300 11.1301 0.0106 9.3135 0.0201 7.1694 0.0009 0.8383 0.2980 589.3406 1245.1800
17-May 0.0534 19.1855 0.0142 9.7503 0.0048 1.7359 -0.0001 -0.0453 0.2521 2143.4550 1659.3837
17-Jun 0.0652 19.1288 0.0375 15.4164 0.0068 2.0114 -0.0048 -2.3881 0.1021 2170.9672 1101.3282
17-Jul 0.0481 19.6608 0.0241 13.6831 0.0042 1.7128 -0.0034 -2.1915 0.1567 2417.8517 1081.6064
17-Aug 0.0439 16.4306 0.0189 15.0978 0.0081 3.1778 -0.0049 -3.6989 0.2912 522.7086 606.0300
17-Sep 0.0370 14.2151 0.0214 16.9736 0.0064 2.8484 -0.0025 -2.2260 0.3942 1126.7628 800.8948
17-Oct 0.0510 18.0339 0.0100 10.5961 0.0105 3.9920 0.0018 1.4331 0.3630 316.1656 192.9321
17-Nov 0.0487 18.2029 0.0125 14.1696 -0.0050 -1.8678 -0.0051 -6.5184 0.1098 532.9543 311.8105
17-Dec 0.1065 20.4433 0.0030 1.8207 0.0051 1.0164 0.0160 9.8245 0.7291 1717.8272 1648.7310
18-Jan 0.0709 16.2097 -0.0019 -1.1615 0.0160 3.1815 0.0253 15.7319 0.8770 1352.0585 1586.4684
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3.6 Conclusion

I conclude that order flows of Bitcoin and Ethereum have a significant positive im-

pact on the fundamental value and pricing error components of the prices defined

by my SSF for January 2017 to January 2018. This finding proves that order flows

influence cryptocurrency prices through both information and liquidity providers’

inventory control, thus determining the price through both price discovery and price

pressure.

At the beginning of both the market boom and the market crash, the fundamental

values of Bitcoin and Ethereum were more sensitive to orders. The results suggest

that liquidity providers adjusted quotes more in response to the ’good news’ con-

tained in buy orders than to the ’bad news’ contained in sell orders, leading to the

growth of the bubble. When the market began to crash, both buy and sell orders had

a greater impact on fundamental values; thus, price decreased rapidly. At the same

time, the pricing error components of both cryptocurrencies were more sensitive

to orders. Therefore, the bubble growth can be attributed to increased information

asymmetry, while the bubble bursting is accelerated by both increased information

asymmetry and tighter inventory control.

Finally, I conclude that order flows of one cryptocurrency contain relevant infor-

mation that can influence the price of another; thus, there is an information spill-over

between Bitcoin and Ethereum. However, both cryptocurrencies are influenced by

order flows of their own. In addition, the price of one cryptocurrency on one ex-

change is influenced by information contained in order flows on the other exchange,

which eliminates any price deviation between the exchanges. This confirms that or-

der flows determine price through the price discovery process. Order flows have

a greater impact on fundamental value on Kraken, suggesting worse information

asymmetry on Kraken than on Bitfinex. However, a liquidity spill-over effect is not

found across either cryptocurrencies or exchanges. Thus, I conclude that liquidity

providers separately manage their inventory levels of the different cryptocurrencies

on different exchanges.
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Conclusion

Chapter 1 of my thesis is dedicated to explaining returns through risk factors. My

within-asset-class results are consistent with the finding in the existing literature,

showing that within each asset class, cross-sectional differences in returns of carry

and momentum portfolios load significantly on market return risk and volatility risk

factors. I also find that investors can take advantage of diversification and sort as-

sets into value, carry, and momentum portfolios, regardless of asset classes, thereby

obtaining HML portfolios with larger risk-adjusted returns than within-asset-class

portfolios. However, it is difficult to justify the return cross-section of those non-

segmented portfolios by volatility or liquidity risk factor, suggesting that the returns

within different asset classes have different sources.

In Chapter 2, I attempt to determine the cause of the liquidity dry-up in the UK

equity market during the 2008 financial crisis. My results suggest that the pricing

error component of the equity price was more sensitive to orders, indicating that the

liquidity providers’ inventory control was the primary cause of the liquidity evapo-

ration, though information asymmetry worsened for some small capitalisation com-

panies. Therefore, liquidity decreased dramatically because the liquidity providers’

inventory absorption capacity was constrained, or providers required greater profits

to compensate for increased liquidity provision costs.

Chapter 3 applies SSF to the emerging cryptocurrency market and confirms that,

as in other asset classes, cryptocurrency price is significantly influenced by order

flows through price discovery and price pressure. Although the fundamental value

defined here does not necessarily represent the real value of the asset, my time vari-

ation of estimates reveals that the fundamental values of both Bitcoin and Ethereum
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were more sensitive to information contained in orders at the beginning of the mar-

ket boom and the market crash. Therefore, the bubble may have been triggered

by uninformed liquidity providers reacting more to buy orders than to sell orders.

Following this, the burst may have been worsened by an adverse selection prob-

lem. At the same time, the liquidity providers’ inventory control also contributed

to the bubble burst, as in the equity market. I find that, information flows between

the two exchanges through order flows, eliminating most of the price deviations.

In addition, information contained in orders of one cryptocurrency influences the

fundamental values of others.
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