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Abstract

We investigate different types of complex soliton solutions with regard to their stability against linear 
perturbations. In the Bullough-Dodd scalar field theory we find linearly stable complex PT -symmetric 
solutions and linearly unstable solutions for which the PT -symmetry is broken. Both types of solutions 
have real energies. The auxiliary Sturm-Liouville eigenvalue equation in the stability analysis for the PT -
symmetric solutions can be solved exactly by supersymmetrically mapping it to an isospectral partner 
system involving a shifted and scaled inverse cosh-squared potential. We identify exactly one shape mode in 
form of a bound state solution and scattering states which when used as linear perturbations leave the solu-
tions stable. The auxiliary problem for the solutions with broken PT -symmetry involves a complex shifted 
and scaled inverse sin-squared potential. The corresponding bound and scattering state solutions have com-
plex eigenvalues, such that when used as linear perturbations for the corresponding soliton solutions lead to 
their decay or blow up as time evolves.
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(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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1. Introduction

The success of PT -symmetric quantum mechanics [1] and the applications of the concepts 
in optical analogues [2] have inspired research in many different areas of physics. One of them 
is the study of complex PT -symmetric soliton solutions in nonlinear integrable systems in 1+1 
dimensions [3–13] or models that admit complex Skyrmion type solutions in 2+1 dimensions 
[14]. Despite being complex, these sorts of solutions possess nonetheless real energies, a property 
that can be attributed to general arguments that make use of the underlying antilinear symmetry, 
generally referred to as PT -symmetry [3,7,13,14].

The other aspect, that makes such type of solutions potentially interesting physical objects, 
is their stability. So far this vital property has been largely ignored in their studies and here the 
main purpose is to investigate the stability properties of particular complex one-soliton solutions 
for a specific integrable scalar field theory, the Bullough-Dodd model [15,16]. Besides shedding 
light on the important question of whether a complex soliton solution will collapse, i.e. grow or 
decay, when slightly perturbed, it is also well-known that as a by-product of a stability analysis 
one may obtain the so-called shape mode as a bound state solution for the auxiliary Sturm-
Liouville eigenvalue equation. These solutions are instrumental in the understanding of energy 
transfer effects in the dynamics of multi-soliton solutions that can be unravelled using a collective 
coordinate or moduli space approach [17,18]. For the model studied here we will investigate these 
moduli space properties in upcoming work [19].

Our manuscript is organised as follows: In section 2 we assemble some generalities about 
the stability analysis to be carried out. In addition, we briefly recall the general set up for a 
supersymmetric formulation of quantum mechanics. While this is not essential for a stability 
analysis, it greatly facilitates the construction of exact solutions to the auxiliary Sturm-Liouville 
eigenvalue equations. In section 3 we construct complex one-soliton solutions for the Bullough-
Dodd model and analyse in detail their stability.

2. Stability analysis, zero modes, shape modes and supersymmetry

The systems considered here are complex scalar field theories with a Lagrangian density of 
the general form

L = 1

2
∂μϕ∂μϕ − V (ϕ), (2.1)

with ϕ(x, t) ∈ C and potential V (ϕ) ∈ C. We denote the Lagrangian, i.e. the volume integral 
over this density, as L = ∫∞

−∞ Ldx. Our space-time metric is taken to be Lorentzian of the form 
diag(1, −1), so that the Euler-Lagrange equation resulting from (2.1) reads

ϕ̈ − ϕ′′ + ∂V (ϕ)

∂ϕ
= 0. (2.2)

We use standard conventions and denote partial derivatives with respect to time t and space x
by overdots and dashes, respectively. The static solutions to these equations, i.e. the solutions to 
(2.2) with ϕ̇ = 0, are fields φ(x, u) depending on the space coordinate x and a set of constants 
that are identified as moduli or collective coordinates u = (u1, . . . , un). As is well-known, one 
may construct the time-dependent solutions ϕ from the time-independent solutions φ simply by 
2
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a Lorentz boost φ[(x − vt)/
√

1 − v2] = ϕ(x, t) with v denoting the velocity. The energies of 
particular solutions are computed as

E[ϕ] =
∫ ∞

−∞
dxε(ϕ), ε(ϕ) =

(
1

2
ϕ̇2 + 1

2
(ϕ′)2 + V (ϕ)

)
, (2.3)

where ε(ϕ) denotes the energy density. When the Hamiltonian associated to (2.1) admits a 
modified CPT -symmetry and ϕ is mapped by this symmetry to itself or possibly to a second 
degenerate solution, the energy E[ϕ] is guaranteed to be real, irrespective of whether ϕ ∈ R, 
ϕ ∈C or V †(ϕ) = V (ϕ) [14]. This reasoning may also be extended to ensure the reality of other 
conserved quantities.

With regard to the main purpose of this paper, we now briefly recall the main argument of a 
standard stability analysis beginning with the linearisation of the Euler-Lagrange equation (2.2)
by replacing

ϕ → ϕs + εδϕ ε � 1, (2.4)

where ϕs solves (2.2) and δϕ =: χ is a small perturbation. This converts the Euler-Lagrange 
equation into

ϕ̈s − ϕ′′
s + ∂V (ϕ)

∂ϕ

∣∣∣∣
ϕs

+ ε

(
χ̈ − χ ′′ + χ

∂2V (ϕ)

∂ϕ2

∣∣∣∣
ϕs

)
+O(ε2) = 0. (2.5)

Evidently the first three terms in (2.5) vanish by construction and when assuming the perturbation 
to be separable of the form χ(x, t) = eiλt	(x), the term of first order in ε reduces to a Sturm-
Liouville eigenvalue problem of the same form as the time-independent Schrödinger equation

−	xx + V1	 = λ2	, with V1(x) := ∂2V (ϕ)

∂ϕ2

∣∣∣∣
ϕs

. (2.6)

For the eigenfunction solutions to this equation with λ ∈ R the linear perturbation will simply 
introduce an oscillation in time around the solution ϕs , whereas when λ ∈ C the solutions will 
grow or decay with time and are therefore unstable.

Let us next see how the energy of the perturbed solution behaves. Expanding up to second 
order in ε and integrating two terms by parts, we easily derive

E[ϕs + χ] = E[ϕs] +
∞∫

−∞
dx

[(
∂V (ϕ)

∂ϕ

∣∣∣∣
ϕs

− ϕ′′
s

)
χ + 1

2
χ

(
χ̇2

χ
− χ ′′ + χ

∂2V (ϕ)

∂ϕ2

∣∣∣∣
ϕs

)]

+ χ(χ ′ + ϕ′
s)
∣∣∞−∞ +O(ε3). (2.7)

We notice that first bracket of the integrand is simply the Euler-Lagrange equation for the static 
solution. The second bracket of the integrand vanishes when χ is separable as stated above and 
	(x) satisfies the Sturm-Liouville equation (2.6). The surface term in the second line of (2.7) is 
zero when 	(x) vanishes asymptotically limx→±∞ 	(x) = 0, so that the energy of the perturbed 
solution becomes identical to the one of the static solution ϕs .

The zero mode, or translation mode, defined as the solution 	0 to (2.6) with λ = 0, plays a 
special role for a number of reasons. First of all, it is well-known [20–22] that the dimensionality 
of the corresponding moduli spaces may be obtained from these modes. Moreover it allows to 
directly compute the superpotential and to set up a supersymmetric scheme that will be important 
for the concrete system we consider below.
3
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The zero mode is easily computed: Assuming that the static solution φ(x) belongs to a class 
of solutions characterised by a continuous parameter, say a, such that φ(x) = ψ(x, a)|a=0, we 
may think of φs + εδφ in (2.4) as

ψ(x, a) = φ(x) + a
∂ψ(x, a)

∂a

∣∣∣∣
a=0

+O(a2), (2.8)

so that we can identify the zero mode as

	0(x) := ∂ψ(x, a)

∂a

∣∣∣∣
a=0

. (2.9)

We may now repeat the argument for different continuous parameters a → a1, . . . an, so that the 
number n of independent zero modes constitutes the dimension of the moduli space.

The excited bound states or scattering states for the eigenvalue equation in (2.6) may be con-
structed in a number of ways. Here it turns out that the potentials we are interested in possess 
superpartner potentials that have been solved in the literature, so that we may employ the scheme 
and simply map the known solutions to our problem. Let us therefore briefly recall the general set 
up of supersymmetric quantum mechanics by following the ideas of Witten and others [23–26]. 
Assuming that the eigenvalue equation (2.6) has a discrete eigenvalue spectrum, E(1)

n = λ2
n, we 

re-write it as

H1	
(1)
n =

(
− d2

dx2 + V1

)
	(1)

n = L+L−	(1)
n = E(1)

n 	(1)
n , (2.10)

with 	0 =: 	
(1)
0 and E0 = 0. We assumed here that the Hamiltonian factorises into the product 

of two first order differential operators defined as

L± := ∓ d

dx
+ W(x), with W(x) := −	′

0

	0
, (2.11)

where W(x) is referred to as the superpotential related to the potential in (2.10) as V1 = W 2 −
W ′. Defining next a new Hamiltonian H2 with the product of the operators L± in reverse order, 
we have

H2	
(2)
m =

(
− d2

dx2 + V2

)
	(2)

m = L−L+	(2)
m = E(2)

m 	(2)
m , (2.12)

with a second potential V2 = W 2 + W ′. Considering now

H2

(
L−	(1)

n

)
= L−L+L−	(1)

n = E(1)
n

(
L−	(1)

n

)
, (2.13)

H1

(
L+	(2)

m

)
= L+L−L+	(2)

m = E(2)
m

(
L+	(2)

m

)
, (2.14)

and comparing these equations with (2.10), (2.12) we conclude

	
(1)
n+1 = N

(1)
n+1L+	(2)

n , 	(2)
n = N(2)

n L−	(1)
n , E(2)

n = E
(1)
n+1, E

(1)
0 = 0, n ∈N0.

(2.15)

Thus apart from E(1)
0 the two Hamiltonians H1 and H2 are isospectral, hence the referral as 

supersymmetric. When L†
− = L+ the normalisation constants are simply N(1) = 1/

√
E

(2)
n , 
n+1

4
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N
(2)
n = 1/

√
E

(1)
n+1, but we will not assume this as we allow here for complex superpotentials 

W . The scheme is directly extended to scattering solutions with continuous eigenvalues spectra.
The crucial feature for our purposes is here the observation from (2.15) that when one of the 

eigenvalue problems (2.10) or (2.12) has been solved, one may directly deduce the solutions for 
the other. It is in this sense that we will apply this scheme as the potentials V1 we construct from 
the zero modes are not obvious to solve, whereas the solutions for the supersymmetric partner 
potentials V2 can be found in the literature.

3. The Bullough-Dodd model

As an example, we are interested here in the stability properties of the complex soliton so-
lutions of the Bullough-Dodd model [15,16], that is a one scalar field integrable field theory 
already quite well studied in its classical [27] and quantum [28] aspects. It is described by the 
Lagrangian density of the form

LBD = 1

2
∂μϕ∂μϕ − eϕ − 1

2
e−2ϕ + 3

2
with ϕ ∈C. (3.1)

The resulting classical nonlinear equation of motion

ϕ̈ − ϕ′′ + eϕ − e−2ϕ = 0, (3.2)

can be solved by standard techniques from classical theory of integrable systems. Here we exploit 
the fact that the equation may be solved using Hirota’s direct method [29] when parameterizing 
the fields as ϕ = ln(τ0/τ1) with τi denoting the so-called τ -functions. To identify various one-
soliton solutions we can therefore make the general Ansatz

ϕ(x, t) = ln

(
α0 + α1e

kx+lt + α2e
2kx+2lt

β0 + β1ekx+lt + β2e2kx+2lt

)
, (3.3)

with unknown constants αi, βi , i = 0, 1, 2, and k, l. Substituting this Ansatz into equation (3.2)
and subsequently reading off the coefficients of ejkx+j lt for j = 0, . . . , 8 leads to 9 equations, 
that we do not report here, which may be solved for the unknown constants in (3.3). In this 
manner we find various types of solutions.

3.1. Complex one-soliton solutions of type I

The first type of solutions we obtain are one-soliton solutions of the form

ϕ±
I (x, t) = ln

⎡
⎣cosh

(
β + √

k2 − 3t + kx
)

± 2

cosh
(
β + √

k2 − 3t + kx
)

∓ 1

⎤
⎦ , β ∈ C. (3.4)

When β is real and |k| > √
3 the solution ϕ+

I is real but becomes singular for x0 = −[β +√
k2 − 3t]/k, whereas ϕ−

I is only real for x < xl = −[β + arccosh(2) + √
k2 − 3t]/k and x >

xr = [−β + arccosh(2) −√
k2 − 3t]/k as the argument of the logarithm becomes negative in the 

complementary regime. Samples of these types of solutions in the different regimes are depicted 
in Fig. 1. In the case |k| < √

3 both solutions ϕ±
I are always complex, see Fig. 3. The type I 

solutions found here formally coincide with the solutions constructed in [30].
5
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Fig. 1. Scattering solutions (3.4) of the Bullough-Dodd classical equation of motion (3.2) for |k| > √
3. Panel (a): Trav-

elling real one-cusp solution ϕ+
I

for k = 2 with β = 3 and panel (b) PT regularized travelling complex solution ϕ+
I

for 
k = 2 with β = i3/5. Solid lines correspond to real and dotted lines to imaginary parts.

Fig. 2. Scattering solutions (3.4) of the Bullough-Dodd classical equation of motion (3.2) for |k| > √
3. Panel (a): Com-

plex solution ϕ−
I

for k = 2 with β = 3 and panel (b) PT regularized complex solution ϕ−
I

for k = 2 with β = i3/5. 
Solid lines correspond to real and dotted lines to imaginary parts.

Despite the fact that these solutions are complex, their energies are real governed by an anti-
linear (PT -symmetry), and for N-soliton solutions together with the fact that these theories are 
integrable [7,13]. The PT -symmetry is easily identified as

PT : x → −x, t → −t, i → −i, ϕ → ϕ. (3.5)

The Bullough-Dodd Lagrangian (3.1) is trivially invariant under this symmetry and the solutions 
ϕ±

I (x, t) evidently respect it for purely imaginary constants β , i.e. PT : ϕ±
I → ϕ±

I . Thus to 
take β ∈ iR seems to be very suggestive as this choice not only converts the solutions into PT -
symmetric ones, but also regularises the singularities of the solutions at the cost of a discontinuity 
resulting from the branch cut of the logarithm as depicted in Figs. 1 and 2. The behaviour of these 
complex shifted solutions is identical to those for the |k| < √

3 and β ∈ R already depicted in 
Fig. 3, when we identify in these solutions β → √

k2 − 3t and 
√

k2 − 3t → iβ for fixed time.
Indeed the energies for the solutions (3.4), evaluated according to (2.3), are always real

E[ϕ±
I ] = −6|k|, (3.6)

and independent of the complex parameter β .
6
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Fig. 3. Complex breather solutions (3.4) of the Bullough-Dodd classical equation of motion (3.2) for |k| < √
3. Panel (a): 

ϕ+
I

for k = 1 <
√

3 with β = 2 and panel (b) ϕ−
I

for k = 1 <
√

3 with β = 2. Solid lines correspond to real and dotted 
lines to imaginary parts.

3.1.1. Zero modes for type I complex one-soliton solutions
The Sturm-Liouville eigenvalue problem (2.6) of the stability analysis for the Bullough-Dodd 

model reads

−	xx + V (x)	 = λ2	 with V (x) =
(
eφ(x) + 2e−2φ(x)

)
. (3.7)

The static solution for the cusp and oscillatory solutions ϕ±
I (x, t) acquire the form

φ±
I (x) = ln

⎡
⎣cosh

(
β + √

3x
)

± 2

cosh
(
β + √

3x
)

∓ 1

⎤
⎦ , (3.8)

which when substituted into (3.7) yield the potentials

V +
1 (x) = 1 − 3

1 − cosh
(
β + √

3x
) +

8 sinh4
[

1
2

(
β + √

3x
)]

[
2 + cosh

(
β + √

3x
)]2 , (3.9)

V −
1 (x) = 1 − 3

1 + cosh
(
β + √

3x
) +

8 cosh4
[

1
2

(
β + √

3x
)]

[
2 − cosh

(
β + √

3x
)]2 . (3.10)

We think now of the larger class of functions depending on the continuous parameter a as 
ψ±(x, a) = φ±(x + a/

√
3). By means of (2.9) the zero mode is then easily computed to

	±
0 (x) = −

3
{

tanh
[

1
2

(
β + √

3x
)]}∓1

2 ± cosh
(
β + √

3x
) . (3.11)

One verifies that the 	±
0 (x) indeed satisfy (3.7) for the potentials (3.10) with eigenvalue λ =

0. Notice that when taking a → ia, as seems to be natural when k <
√

3, so that we identify 
ψ±(x, a) = φ±(x + ia/

√
3), the resulting zero mode is the same as in (3.11) only multiplied by 

i, which simply corresponds to a different normalization constant.
7
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3.1.2. Bound state solutions for type I complex one-soliton solutions
It is not straightforward or obvious how to solve the eigenvalue equation for the potentials 

V ±
1 (x) directly. However, we notice now that the supersymmetric partner Hamiltonians are in-

verse cosh2-potentials that have been treated extensively in the literature. Since V +
1 (x, β) =

V −
1 (x, β + iπ), we just focus on the “+”-case from now on, as all quantities related to the 

“-”-system are computed simply by a shift in β . Using the relation (2.11) we compute the super-
potential from the zero modes to

W+(x) =
√

3

2

3 + 2 cosh
(
β + √

3x
)

+ cosh
[
2
(
β + √

3x
)]

[
cosh

(
β + √

3x
)

+ 2
]

sinh
(
β + √

3x
) , (3.12)

which is sufficient to define the corresponding intertwining operators L± in (2.11). Using next 
the defining relation for the second Hamiltonian H2 we compute the associated second potential 
from (2.12) to

V2 = 3 − 3

2
sech2

(
β

2
+

√
3x

2

)
. (3.13)

When shifting the overall energy by 3, this is an inverse cosh2-potential discussed in the liter-
ature. It possesses bound states as treated in section 23 in problem 5 [31] and scattering states 
for which the potential is entirely reflectionless [32], see also [33]. From [31] we read off the 
eigenfunction for the energy E with potential U = −U0 sech2(αx), α, U0 ∈ R as

�(x) =
[
1 − tanh2(αx)

]ε/2
2F1

[
ε − s, s + ε + 1; ε + 1; 1

1 + e2xα

]
, (3.14)

where 2F1(a, b; c; z) denotes the hypergeometric function and

ε :=
√−2Em

αh̄
, s := 1

2

(√
1 + 8mU0

α2h̄2 − 1

)
. (3.15)

The quantization condition for the energy emerges from the requirement limx→±∞ �(x) = 0 as 
ε − s = −n for n ∈ N0, which when solved yields

En = −α2h̄2

8m

(√
8mU0

α2h̄2 + 1 − 2n − 1

)2

. (3.16)

As argued in [31], the number of bound states is limited by the constraint n < s. When shifting 
the overall energy by 3 we obtain V2 = U for the parameter identifications h̄ = 1, m = 1/2, 
U0 = 3/2, α = √

3/2. Since for these values s = 1, there is only one bound state for n = 0. Thus 
we obtain the eigensystem solutions

	
(2)
0 (x) = N0sech

[
1

2

(
β + √

3x
)]

, E
(2)
0 = 9

4
, (3.17)

	
(1)
1 (x) = L+	

(2)
0 = N0

3
√

3 cosh
[

1
2

(
β + √

3x
)]

coth
(
β + √

3x
)

cosh
(
β + √

3x
)

+ 2
, E

(1)
1 = 9

4
.

(3.18)
8
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Notice that the singularity in 	(1)
1 (x) for x0 = −β

√
3 when β ∈ R, inherited from the superpo-

tential W(x), is eliminated in the PT -symmetric solution when β ∈ iR. Since we have obtained 
a well-defined asymptotically vanishing solution, limx→±∞ 	

(1)
1 (x) = 0 with real eigenvalues, 

we conclude that the complex type I soliton solution remains stable when linearly perturbed by 
the shape mode 	(1)

1 . Let us next consider the case when λ is taken to be a continuous parame-
ter.

3.1.3. Scattering state solutions for type I complex one-soliton solutions
The scattering states for the inverse cosh-squared potential are discussed in detail in [32]. 

When adjusting the parameters therein to our equation (3.7) for V2, we obtain the two scattering 
solutions

�(2)
e = cosh2

(
x̂

2

)
2F1

[
γ−, γ+; 1

2
;−ζ 2(x̂)

]
= cos (x̃) −

√
3

2κ
tanh

(
x̂

2

)
sin (x̃) , (3.19)

�(2)
o = ζ(x̂) cosh2

(
x̂

2

)
2F1

[
1

2
+ γ−,

1

2
+ γ+; 3

2
;−ζ 2(x̂)

]
(3.20)

=
2
√

3κ sin (x̃) + 3 tanh
(

x̂
2

)
cos (x̃)

4κ2 + 3
,

with γ± := 1 ± iκ/
√

3, ζ(x) := sinh (x/2), x̃ := κ
(

β√
3

+ x
)

, x̂ := β + √
3x and continu-

ous eigenvalues λ2 = 3 + κ2 for κ being a free parameter. As we expect from Abel’s iden-
tity, the Wronskian for these two solutions is constant, W(�

(2)
e , �(2)

o ) = �
(2)
e d�

(2)
o /dx −

d�
(2)
e /dx�

(2)
o = √

3/2, indicating that they are indeed linearly independent. Thus according 
to (2.15), the two scattering states for the potential V1 are obtained as

�(1)
e = L+�(2)

e = 1

κ

[
f−(x̂) cos (x̃) − f+(x̂) sin (x̃)

]
, (3.21)

�(1)
o = L+�(2)

o = 2
√

3

3 + 4κ2

[
f+(x̂) cos (x̃) + f−(x̂) sin (x̃)

]
, (3.22)

where

f+(x) := 3

2
− κ2 − 9

2 cosh (x) + 4
, f−(x) := 3

√
3κ cosh(x) coth

(
x
2

)
2 cosh(x) + 4

. (3.23)

Once again the singularity at x0 = −β
√

3 is eliminated in the PT -symmetric solution by 
taking β ∈ iR. Now the Wronskian for these two solutions is computed to W(�

(1)
e , �(1)

o ) =
(3 + κ2)

√
3/2. When κ = κ0 := ±i

√
3 we recover the zero mode 	+

0 from �(1)
e , whereas 

limx→κ0 �
(1)
o (x) = 0.

Since the scattering solutions are well-defined with real continuous eigenvalues one may be 
tempted to conclude that the complex type I soliton solution remains stable when linearly per-
turbed by either of the two scattering solutions �(1)

e or �(1)
o . However, as the limits for the 

asymptotic values of x are not well defined, the energies of the perturbed solution (2.7) do not 
give definite values so that the perturbation by these scattering solutions leads to ill-defined ob-
jects. A natural way to overcome this issue would be to restrict the domain of the theory to finite 
interval.
9
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Fig. 4. Complex one-soliton solutions of type II (3.25) with β = 2, k = 1/2 for the Bullough-Dodd classical equation of 
motion (3.2). Solid lines correspond to real and dotted lines to imaginary parts.

An interesting solution arises for κ = 0

lim
κ→0

�(1)
o = √

3

⎛
⎝1 − 3

cosh
(
β + √

3x
)

+ 2

⎞
⎠=: �(1)

0 , (3.24)

which has a well-defined finite limit 
√

3 for x → ±∞. Since the derivative of this solution is 
asymptotically vanishing as well as the derivative of the static solution φI , the second line in 
(2.7) is vanishing up to order ε2 so that the energy of the perturbed solution is the same as the 
original solution. Since we have also a positive eigenvalue for the auxiliary eigenvalue problem 
we conclude that the solution remains stable when perturbed by �(1)

0 .

3.2. Complex one-soliton solutions of type II

The second type of one-soliton solutions obtained from (3.3) by fixing the unknown constants 
from direct substitution into the Bullough-Dodd equation (3.2) is always complex and does not
possess a real regime in their range

ϕ±
II (x, t) = ln

⎧⎪⎨
⎪⎩ω∓2

⎡
⎢⎣1 − 6et

√
k2+3ω±1+kx±β(

1 + et
√

k2+3ω±1+kx±β
)2

⎤
⎥⎦
⎫⎪⎬
⎪⎭ . (3.25)

Here ω = eiπ/3 denotes the third root of unity. A sample solution is depicted in Fig. 4, from 
which we observe that the real part of this solution is an oscillation between a regular shaped 
soliton solution and a double peakon solution.

The energies when directly computed with (2.3) for the Lagrangian densities LBD are infinite. 
However, when shifting the vacuum from ϕ0 = 0 to the complex plane ϕ±

0 = ∓i2π/3 amounts 
to defining the new Lagrangians densities

L±
BD = LBD + 3

2

(
ω∓2 − 1

)
. (3.26)

Computing the energies of the solution ϕ±
II with these Lagrangians leads to the same real values 

as those computed for the type I solution with LBD
10
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E+[ϕ+
II ] = E−[ϕ−

II ] = −6|k|. (3.27)

The PT -symmetry for the individual Lagrangians is now broken, but instead we have PT : 
L+

BD → L−
BD. Since the energies are real this suggests that the criteria provided in [14] may 

still be slightly enlarged. One may easily convince oneself that the energies of two PT -
symmetrically related degenerate solutions are real even when they originate from two different 
PT -symmetrically related Hamiltonians. Having obtained real energies suggests that these so-
lutions are potentially well-defined physical objects, but let us investigate whether the solutions 
are also stable.

3.2.1. Zero modes for complex type II one-soliton solutions
The static solutions corresponding to ϕ±

II (x, t) are now obtained as

φ±
II (x) = ln

[
ω∓2 cos(

√
3ω±1/2x ± β) − 2

cos(
√

3ω±1/2x ± β) + 1

]
. (3.28)

Taking β ∈ R the two solutions are related to each other by the PT -symmetry in (3.5) as PT :
φ+

II → φ−
II . Alternatively, we may also change the sign in β in φ−

II and take β ∈ iR in which 
case the two solutions are still related by the same symmetry. The potentials for the eigenvalue 
equation as introduced in (3.7) result to

V ±
1 = ω∓2

⎧⎨
⎩1 − 3

cos
(√

3ω±1/2x ± β
)

+ 1
+ 2

[cos(
√

3ω±1/2x ± β) + 1]2

[cos(
√

3ω±1/2x ± β) − 2]2

⎫⎬
⎭ . (3.29)

Since the two potentials are not PT -symmetric by themselves one may be tempted to conclude 
already at this stage that there are no real eigenvalue solutions to (3.7). However, all we can 
deduce with certainty at this point is that the symmetry as defined in (3.5) is broken and will not 
ensure the reality of λ. We can not guarantee that there are no other types antilinear symmetries 
that would explain a real spectrum.

Thus let us show explicitly how the eigensystem may be solved in this case. The function ψ
in (2.9) is now taken to ψ±(x, a) = φ±(x + aω∓1/2), from which we easily calculate the zero 
mode to

	±
0 (x) = ∓

33/2 tan
[

1
2 (

√
3ω±1/2x ± β)

]
cos
(√

3ω±1/2x ± β
)

− 2
. (3.30)

We notice that in these solutions there is no need to take β to be purely imaginary as the 
singularities in the zero mode are already regularized because x is multiplied by a complex 
constant.

3.2.2. Bound state solutions for type II complex one-soliton solutions
Next we employ relation (2.11) to compute the superpotentials from the zero modes

W±(x) = ±
√

3ω±1/2

2

[3 + cos
[
2
(√

3ω±1/2x ± β
)]

− 2 cos
(√

3ω±1/2x ± β
)
]

[cos
(√

3ω±1/2x ± β
)

− 2] sin
(√

3ω±1/2x ± β
) , (3.31)
11
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from which we calculate the corresponding intertwining operators L± in (2.11). The partner 
potentials are then obtained by a direct calculation from (2.12) to

V ±
2 = 3ω∓2

1 − sec
(√

3ω±1/2x ± β
) = 3

2

ω±1

sin2
[

1
2 (±β + √

3ω±1/2x)
] − 3ω±1. (3.32)

Again, this is a well studied potential corresponding to a special version of the Pöschl-Teller po-
tential [33–36]. Adapting the shift and scaling to the solutions that can be found in the literature, 
we obtain the eigensystem solutions

	
(2)±
0 = N0

1

sin
[

1
2

(
±β + √

3ω±1/2x
)] , E

(2)
0 = −9

4
ω±1, (3.33)

	
(1)±
1 = L+	

(2)
0

= N0

2

33/2ω±1/2 cos
(
±β + √

3ω±1/2x
)

[
2 − cos

(
±β + √

3ω±1/2x
)]

sin
[

1
2

(
±β + √

3ω±1/2x
)] , E

(1)
1 = E

(2)
0 .

The solutions are asymptotically vanishing, limx→±∞ 	
(1)±
1 (x) = 0 and come in complex con-

jugate pairs, which is the signature property of a spontaneously broken PT -symmetry. Instead 
we have PT : 	(1)+

1 (x) → 	
(1)−
1 (x). We conclude that the complex soliton solutions of type II 

become unstable when perturbed by the bound state solutions 	(1)±
1 .

3.2.3. Scattering solutions for type II complex one-soliton solutions
Finally we discuss the scattering solutions for the auxiliary Sturm-Liouville eigenvalue equa-

tion obtained from the type II complex one-soliton solutions. By similar means as in the previous 
section we exploit the fact that the potential becomes a shifted and scaled inverse sin-squared 
potential. For the V ±

1 -potential we then find the two linearly independent scattering solutions

�(2)±
e = g±(x) sin(κx) + h±(x) cos(κx), (3.34)

�(2)±
o = g±(x) cos(κx) + h±(x) sin(κx), (3.35)

with

g±(x) = ±33/2ω±1/2κ

2

cos
(
β + √

3ω±1/2x
)

tan
[

1
2

(
β + √

3ω±1/2x
)]

cos
(
β + √

3ω±1/2x
)

− 2
(3.36)

h±(x) = 3

2
ω±1

⎡
⎣ 3

2 − cos
(
β + √

3ω±1/2x
) − 1

⎤
⎦− κ2 (3.37)

for the complex continuous eigenvalues (λ±)2 = κ2 − 3ω±. One may be tempted to choose the 
free parameter κ in such a way that (λ±)2 becomes real. However, when κ acquired a complex 
part the solutions are easily seen to diverge at x → ±∞. Thus overall we conclude that the com-
plex type II one-solitons solutions become unstable when linearly perturbed with these scattering 
solutions �(2)±

e,o .
12
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4. Conclusions

We investigated several types of complex one-soliton solutions in the Bullough-Dodd model 
with regard to their stability when linearly perturbed. The type I solutions were previously 
known, whereas the type II solutions have been newly constructed. The overall energy for both 
types of solutions were found to be real when shifting the vacuum of the potential appropri-
ately.

We found that the auxiliary Sturm-Liouville eigenvalue equation of the stability analysis for 
the type I solutions can be supersymmetrically mapped to an isospectral partner system in-
volving a shifted and scaled inverse cosh-squared potential. Remarkably these potentials also 
emerge in the stability analysis of the φ4-theory and sine-Gordon model, but simply with differ-
ent scalings and overall shifts [20]. We concluded that the type I solutions remain stable when 
linearly perturbed with bound state and scattering solutions with vanishing continuous parame-
ter.

For the type II solutions the original auxiliary Sturm-Liouville eigenvalue equation can be 
supersymmetrically mapped to a complex shifted and scaled inverse sin-squared potential. The 
corresponding bound state and scattering solutions for these equations have complex eigenvalues 
or are asymptotically divergent, such when used to perturb the type II solutions they become 
unstable or the energies become infinite.

The underlying PT -symmetry serves for several purposes: i) When introducing complex 
rather than real shifts the singularities in the solutions are regularized. ii) As previously pointed 
out, it governs the reality of the energy of the solutions, but as we found here the set criteria pro-
vided in [14] may still be enlarged. The energies of two PT -symmetrically related degenerate 
solutions are guaranteed to be real even when they solve the Euler-Lagrange equations of two 
PT -symmetrically related Hamiltonians that might even be different. iii) As we have seen here 
the PT -symmetry also governs the stability of the solutions. However, in order to obtain stable 
solutions, that is real eigenvalues in the auxiliary Sturm-Liouville equation, the perturbation must 
be PT -symmetric by themselves.

Here we observed that the PT -symmetry of the soliton solution ϕ was inherited by the per-
turbing field χ . The type I solutions and their perturbing fields were found to be PT -symmetry 
by themselves, which guaranteed the reality of the energy and their stability. On the other hand 
the type II solutions were mapped into different degenerate solutions, so that the reality of their 
energy was still ensured. However, on the level auxiliary of the Sturm-Liouville equation the 
PT is broken for a specific solution so that the eigenvalues become complex and the solutions 
unstable.

While the Bullough-Dodd model appears to unavoidably lead to complex soliton solutions, 
our finding here also shed more light on theories that have both, complex and real solutions. We 
refined the criteria under which the measurable physical quantities are guaranteed to be real. In 
addition, we found here that such complex type of solutions are also physical in the sense of 
being stable and not artificial artefacts with zero measure. In the corresponding quantum field 
theories we expect such solutions to play similar roles as complex scalar fields in the description 
of charged particles, such as Higgs field of the Standard Model or charged pions.
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