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1 INTRODUCTION  

Civil structures located in the proximity of seismic 
faults are expected to experience a number of high 
intensity strong ground motions (GMs) during their 
life-time. Seismological considerations and statisti-
cal signal analysis of databanks of recorded 
accelerograms suggest that, under certain conditions, 
near-fault GMs may be characterized by one or more 
long-period high-amplitude pulse(s) (e.g. 
Mavroeidis & Papageorgiou 2003, Baker 2007, 
Moustafa & Takewaki 2010, Vasiliou & Makris 
2011). It has been observed in recorded "pulse-like 
ground motions" (PLGMs) that, in many cases, such 
low frequency pulses carry a significant fraction of 
the total energy carried by GM signal traces. Conse-
quently, compared with typical far-field GMs, 
PLGMs impose higher ductility demands to relative-
ly flexible structures, with periods close to the dom-
inant period of the pulse(s).  

In this regard, it is important to account for the ef-
fects of PLGMs in the aseismic design of new rela-
tively flexible structures and in assessing the seismic 
vulnerability of the existing ones in near-fault envi-
ronments (e.g. He & Agrawal 2008, Sehhati et al. 
2011, Taflanidis & Jia 2011). To facilitate this aim, 
considerable research effort has been devoted to 
modeling and simulation of PLGMs. In doing so, the 
higher frequency (HF) content and the low-
frequency (LF) content in PLGM models are consid-
ered separately. Commonly, the HF content is mod-

eled by standard approaches used for modeling and 
simulating pulse-free GMs (e.g. Mavroeidis & 
Papageorgiou 2003, Fu & Menun 2004, Dickinson 
& Gavin 2011, Dabaghi et al. 2011). Further, with 
very few exceptions (e.g. Moustafa & Takewaki 
2010), the LF content of PLGM models is defined in 
the time-domain by means of parametrically defined 
“pulse-like” functions. The assumed analytical ex-
pressions for these functions take the form of simple 
waveforms (e.g. Alavi & Krawinkler 2001) or of 
more involved oscillatory functions with decaying 
envelopes: “wavelets” (e.g. Mavroeidis & 
Papageorgiou 2003, He & Agrawal 2008, Moustafa 
& Takewaki 2010, Dickinson & Gavin 2011). The 
underlying parameters used to define these functions 
are related to salient pulse features such as the pulse 
peak value (amplitude) and its time location, the 
“dominant” pulse frequency or period, and the num-
ber of pulse cycles (oscillations). These parameters 
are obtained by “fitting” operations to field recorded 
GMs (e.g. Mavroeidis & Papageorgiou 2003, Dick-
inson & Gavin 2011) or by joint time-frequency sig-
nal analyses techniques used as “matched filtering” 
tools to detect/extract pulses from recorded GMs. 
For instance, Baker (2007) has considered the appli-
cation of the discrete wavelet transform using a 
Daubechies wavelet family for pulse identification, 
extraction, and characterization, while Vasileiou and 
Makris (2012) considered a heuristic form of the 
Gaussian chirplet transform for the purpose (see 
Spanos et al. 2007 and references therein). 

A non-separable stochastic model for pulse-like ground motions 

 

A. Lungu & A. Giaralis 
City University London, United Kingdom 

ABSTRACT: A phenomenological non-separable non-stationary stochastic model is proposed to represent
near-fault pulse-like ground motions (PLGMs) by means of a parametrically defined evolutionary power 
spectrum (EPSD). Numerical data pertaining to ensembles of EPSD compatible realizations and considering 
statistical analysis of peak elastic and inelastic spectral ordinates demonstrate the applicability of the model to 
capture the salient effects of PLGMs to structural responses. To this aim, the model parameters are calibrated 
against a field recorded PLGM. Further numerical data considering stochastic processes compatible with the 
response spectrum of the European aseismic code (EC8) are furnished to demonstrate the potential of the pro-
posed model for including near-fault effects to spectrum compatible representations of the seismic action. It is 
foreseen that this model can be a useful tool in accounting for the low-frequency content of PLGMs in both 
Monte Carlo simulation-based analyses and in statistical linearization based studies.  



In accounting for the observed variability in the 
properties of pulses extracted from recorded 
PLGMs, several researchers have considered the 
treatment of the parameters of the considered pulse-
like functions to represent the LF content of PLGMs 
as random variables within a Monte Carlo simula-
tion based framework (see e.g. Taflanidis & Jia 
2011, Dabaghi et al. 2011). Nevertheless, the statis-
tical properties for only some of the commonly con-
sidered pulse parameters have been estimated by re-
gression analyses to pulses extracted by certain 
databanks of recorded PLGMs. As such databanks 
are currently not very well populated and do not 
cover all possible “scenario seismic events” this 
probabilistic approach to model the uncertainty of 
the LF content in PLGMs may not be possible in 
practical applications. In this respect, an alternative 
probabilistic model has been proposed by Moustafa 
& Takewaki (2010), who represented the pulses in 
the frequency domain by means of “delta functions”. 
However, the latter representation allows for limited 
flexibility to realistically capture the diversity of the 
frequency content of the pulses observed in PLGMs. 

In this work, a novel PLGM stochastic model is 
proposed which treats the inclusion of the LF con-
tent to the typical HF content of GMs as a “low-
frequency enrichment” step of the energy distribu-
tion of the acceleration stochastic processes on the 
time-frequency plane. This model circumvents some 
of the aforementioned limitations of the stochastic 
PLGM models found in the literature while it aims 
to simplicity and to “ease of use”. From the physics 
viewpoint, the proposed model is motivated by the 
fact that recorded pulse-like accelerograms are char-
acterized by prominent low-frequency “bursts of en-
ergy” on the time-frequency plane as captured by 
wavelet transform-based kinds of analyses (Giaralis 
and Lungu 2012). From the structural analysis view-
point, this model can be readily used not only for 
simulation based analyses (e.g. Taflanidis and Jia 
2011), but also in conjunction with non-linear sto-
chastic dynamics techniques, such as statistical line-
arization (see e.g. Spanos & Kougioumtzoglou 
2011). In particular, the considered PLGM model is 
defined as the superposition of amplitude modulated 
zero-mean uncorrelated acceleration stationary ran-
dom processes characterizing separately the HF and 
the LF content (see also Conte & Peng 1997, Spanos 
& Failla 2004). Appropriate parametric expressions 
are used to define the frequency content and time-
evolving intensity of the considered separable evolu-
tionary random processes. Pertinent numerical re-
sults are included to illustrate the calibration of the 
model parameters against a specific field recorded 
pulse-like accelerogram. Further, linear and non-
linear response spectra are considered to assess the 
effectiveness of the model to capture the structural 
impact/damage potential in a simulation-based con-
text. Finally, the versatility of the proposed model to 

incorporate near-field effects (pulses) in code-
compliant response spectrum compatible stochastic 
representations is also discussed in view of numeri-
cal data considering the response/design spectrum of 
the current European aseismic code (CEN 2004). 

2 STOCHASTIC MODEL FOR PLGMS 

Consider the non-separable non-stationary stochastic 
process expressed by  
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where yHF and yLF are independent evolutionary sto-
chastic processes of the separable kind.  Specifically, 
each of these processes are defined by a stationary 
zero-mean random process gr(t), uniformly modulat-
ed by a deterministic time-varying envelope function 
ar(t). It can be shown that for envelop functions ar(t) 
which vary sufficiently slowly in time, the energy 
distribution of the process y(t) on the time-frequency 
plane can be represented by the concept of the evo-
lutionary power spectrum (EPSD), given by the ex-
pression (Priestley 1965, Conte & Peng 1997) 
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In the above equation, Gr(ω) denotes the power 
spectrum density function characterizing the station-
ary random process gr(t) in the frequency domain. 

It is noted that EPSDs of the form of Equation 2, 
assuming appropriately defined analytical  expres-
sions for the envelope function ar and the power 
spectrum Gr, have been extensively used in the liter-
ature for the stochastic modeling of the earthquake 
induced acceleration trace of strong ground motions. 
For instance, Spanos & Vargas Loli (1985) have 
considered the stochastic model of Equation 2 for 
the generation of artificial spectrum compatible 
accelerograms in a stochastic framework. Conte & 
Peng (1997) have used the aforementioned model 
for the characterization and representation of certain 
field recorded accelerograms associated with specif-
ic historic seismic events. More recently, Spanos & 
Failla (2004) considered ensembles of seismic 
accelerograms compatible with an EPSD of the form 
of Equation 2 to assess the potential of the wavelet 
transform to characterize the underlying evolution-
ary frequency content of non-stationary processes in 
a Monte Carlo based context. 

Herein, the non-stationary stochastic process of 
Equation 1 is used to represent the acceleration trace 
of PLGMs. This is achieved by defining the HF and 
the LF content of the PLGMs, corresponding to the

( )HFy t  and the ( )LFy t  processes respectively, separate-



ly as detailed in the remainder of this section. The 
proposed model assumes that the HF content is rep-
resented by methods applicable to modeling far-field 
GMs and is statistically uncorrelated to the LF puls-
es observed in PLGMs (“near-fault” effects). 

2.1 Definition of the high frequency process yHF 
For the purposes of this work, a Clough-Penzien 

(CP) spectral form is considered to represent the HF 
content of the proposed model corresponding to the 
stationary process gHF(t) in Equation 1. Specifically, 
the CP two-sided power spectrum density with cut-
off frequency ωc,HF is given as (Clough & Penzien 
1993) 
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The first ratio in Equation 3 corresponds to a 
high-pass filter with a low cut-off frequency ωf to 
suppress low frequency components. The ζf  parame-
ter controls the “slope steepness” of the filter. Both 
parameters should be chosen to ensure that the HF 
content of the PLGM model does not “scramble” 
with the LF content defined by GLF(ω). In this re-
spect, ωf and ζf does not bear any physical signifi-
cance (see also Giaralis & Spanos 2009). The second 
ratio in Equation 3 is the well-known Kanai-Tajimi 
spectrum which accounts for local site conditions by 
means of the ωg and ζg parameters. They can be in-
terpreted as the “stiffness” and “damping” of the 
surface soil layers, respectively (e.g. Lai 1982, 
Giaralis & Spanos 2009). 

The transient time-varying nature of the HF con-
tent is accounted for by the exponential envelope 
function (Bogdanoff et al. 1961) 
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The CHF parameter is proportional to the peak ampli-
tude of the envelope, while the parameter bHF con-
trols its shape (see e.g. Giaralis & Spanos 2009). 
Spanos et al. (2009) showed that a one-to-one non-
linear relationship exists between bHF and the effec-
tive duration of the ground motion Teff (Trifunac and 
Brady 1975) commonly used in earthquake engi-
neering applications (Teff= time interval in which the 
central 90% of the total energy of the GM is re-
leased; see also Giaralis and Spanos 2012).  

It is noted in passing that more involved physics-
based stochastic models (e.g. Boore 2003) can be 
readily accommodated by the herein proposed model 
and be used as surrogates to Equations 3 and 4.  

2.2 Definition of the low frequency process yLF 
Two different analytical expressions are considered 
to define the LF content in the proposed PLGM 
model characterized by the power spectrum GLF(ω) 
(Figure 1a,b): a “simple” box-like function (BOX) 
and a more involved raised cosine function (COS), 
both centered at ωp the pulse dominant frequency. 

The BOX spectrum is given by the expression  
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where the term B determines the bandwidth of the 
LF content. The COS spectrum is given as 
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where α ≤ 1 is a shape parameter (see Figure 1b). 
 

 
Figure 1 BOX (a) and COS (b) LF power spectra GLF(ω) and 
LF envelope function αLF (c). 
 

The transient nature of the pulse-like LF content 
in the time-domain is accounted for by the envelope 
function (Figure 1c) 
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The parameter CLF is proportional to the peak ampli-
tude of the pulse content. Further, the adopted expo-
nential function hLF(t) involves three parameters ωp, 
t0, and γ which are commonly used for time-domain 
pulse characterization (e.g. Mavroeidis & 
Papageorgiou 2003, Moustafa & Takewaki 2010). In 
particular, ωp and t0 control the shape of the enve-
lope and represent the pulse dominant frequency and 
the time instant when its peak is attained. Moreover, 
the γ>1 has limited physical significance and should 
be chosen such that the frequency content of the en-
velope falls outside the bandwidth spanned by the 



GLF(ω) in the frequency domain (Mavroeidis & 
Papageorgiou 2003). 

3 GENERATION OF PLGMS COMPATIBLE 
WITH THE STOCHASTIC MODEL 

Pulse-like acceleration time-histories compatible 
with the previously described stochastic model can 
be readily generated using any qualified technique 
for stationary power spectrum compatible random 
field simulation (Spanos and Zeldin 1998). Figure 2 
illustrates the steps that need to be taken for the pur-
pose. Non-stationary samples compatible with the 
HF separable EPSD (Equations 3,4) and LF separa-
ble EPSD (Equations 6-8) are generated separately 
and independently and added together to obtain sim-
ulated PLGMs compatible with the non-stationary 
non-separable EPSD S(t,ω) of Equation 2. 
 

 
Figure 2 Flowchart for obtaining pulse-like acceleration time-
histories compatible with the considered stochastic model. 
 

In all the ensuing numerical results, the spectral 
representation method is employed to generated uni-
formly modulated samples in two steps. First, sta-
tionary samples compatible with the Gr(ω) spectra 
are generated as a sum of appropriately scaled har-
monically related cosines with uniformly distributed 
on the [0,2π) interval random phases Φn (Shinozuka 
& Deodatis 1991). Specifically, a discrete-time sam-
ple gr[k]= gr(kΔt), k=0,1,…,M-1 is computed as 
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This is a To-periodic sample with Τo=MΔt. Further, 
Δt ≤π/ωc is the time-domain discretization step with 
ωc being the cut-off frequency of the Gr(ω) spec-
trum, and Δω=2π/To is the frequency-domain dis-
cretization step. Note that uncorrelated vectors of 
random phases Φn have to be generated for each 
sample to ensure that the HF and LF time-histories 
are uncorrelated. Next, the thus generated HF and 
LF stationary samples are multiplied by the corre-
sponding envelop functions gr and added (Figure 2). 

4 MODEL CALIBRATION AND STRUCTURAL 
RESPONSE ASSESSMENT FOR A 
RECORDED PLGM  

In this section the versatility of the stochastic model 
defined in section 2 to capture PLGMs and to repre-
sent their structural damage potential is illustrated by 
considering a field recorded accelerogram classified 
in Baker (2007) as a PLGM, namely the El Centro 
array #6 component of the 1999 Imperial Valley 
earthquake. The acceleration trace ag(t) of this rec-
ord is plotted in Figure 3, along with its low-
frequency pulse p(t) extracted by Baker (2007) using 
the discrete wavelet transform. The HF residual r(t)= 
ag(t)- p(t) is also plotted in the same figure. In the 
next sub-section the above pulse and residual time-
histories are considered to calibrate the parameters 
of the stochastic model presented in section 2.   

 
Figure 3 Acceleration trace, LF pulse, and HF residual trace of 
the El Centro array #6- 1999 Imperial Valley earthquake. 
http://www.stanford.edu/~bakerjw/pulseclassification_old.html 

4.1 Stochastic model parameter calibration 
A total number of 11 parameters are required to fully 
define the PLGM model of section 2. The definition 
of the HF content involves 6 parameters (4 for the 
GHF function and 2 for the aHF function), while the 
LF content involves 5 parameters (2 for the GLF 
function and 3 for the aLF function) 

The parameters for defining the power spectrum 
of the HF content are obtained by fitting the C-P 
spectrum of Equation 3 to the squared Fourier trans-
form of the residual time-history, shown in Figure 3, 
using standard nonlinear least squares regression. 
The initial guess for the parameters characterizing 
the soil conditions (ωg and ζg) are provided using the 
empirical formulations given by Lai (1982).    

Two alternative spectral forms have been pro-
posed to define the power spectrum of the LF con-
tent: Equation 5-BOX and Equation 6-COS. The pa-
rameter ωp (pulse dominant frequency) appearing in 
both of them is taken equal to 2π/Τp where Tp is the 
pulse period estimated by Baker (2007). Further, for 
the BOX spectrum, the bandwidth B parameter is 



taken equal to its ωp, while for the COS spectrum 
the shape parameter α is taken equal to 0.50. 

The parameter estimation for the definition of the 
modulating functions aHF(t) and aLF(t) is achieved by 
first considering the envelopes of the residual and of 
the extracted pulse shown in Figure 3. Following the 
standard analytic signal theory, these envelopes are 
derived by using the expression (Dugundji 1958) 

( ) ( )( )22( )e t s t H s t= +  (9) 

where H(·) denotes the Hilbert transform and s 
stands for “signal”. The pulse p(t) and the residual 
r(t) take the place of the signal in the above equation 
to obtain the envelopes ep(t) and er(t), respectively. 
Next, the functions defined in Equations 4 and 7 are 
fit to the above estimated envelopes, respectively. In 
fitting aHF(t), the parameter bHF is treated as a con-
stant whose value is estimated based on the effective 
duration Teff of the residual.  

Table 1 reports the values of all 11 parameters 
used to calibrate the proposed stochastic model 
against the recorded PLGM of Figure 3. In the next 
sub-section the potential of the calibrated model to 
capture the salient features of the considered PLGM 
in terms of peak structural responses is assessed.  

 
Table 1.Parameter calibration of the PLGM model to represent 
the recorded accelerogram of Figure 3. 

High-frequency 
content 

aHF(t) 
CHF = 0.53
(m/s2.5) 
b = 0.5        (s-1)

GHF(ω) 

ζf = 0.55 
ωf  = 2.33  (rad/s) 
ζg = 0.32 
ωg = 21      (rad/s)

Low-frequency 
content 

aLF(t) 

CLF = 1.65 (m/s2)
ωp = 1.65   (rad/s) 
γ = 2.89 
t0 = 6.96    (s)

GLF(ω) 
BOX ωp = 1.65   (rad/s)

B = 1.65    (rad/s)

COS ωp = 1.65   (rad/s)
α = 0.50 

4.2 Model verification via Monte Carlo analysis for 
linear and inelastic peak structural response 

Ensembles of 200 realizations, compatible with each 
of the three separable EPSDs defined in Table 1 
(HF- Equations 3 and 4; BOX (LF)- Equations 5 and 
7; COS (LF)- Equations 6 and 7), are generated us-
ing the spectral representation method briefly re-
viewed in section 3. Each realization has a duration 
of 40s and a time step of 0.005s. These signals are 
base-line adjusted by acausal forward/backward 
high-pass filtering using a Butterworth filter to re-
move spurious low-frequency trends yielding unreal-
istic velocity and/or displacement traces (see also 
Giaralis and Spanos 2009 and therein references). 

Lastly, the LF samples are added to the HF samples 
to obtain two different ensembles (HF+BOX and 
HF+COS) of 200 simulated pulse-like 
accelerograms each. An arbitrary accelerogram be-
longing to the HF+BOX ensemble and its velocity 
and displacement traces is shown in Figure 4. 

 
Figure 4 Sample of the HF+BOX process generated for the 
simulation of the Imperial Valley record 

 

 
Figure 5 Displacement samples of the HF+BOX process (solid 
line) and the Imperial Valley displacement (dashed line) 

 

 
Figure 6 Displacement samples of the HF+COS process (solid 
line) and the Imperial Valley displacement (dashed line) 
 

Focusing on the detrimental LF content of the 
considered PLGM model, Figures 5 and 6 plot dis-
placement traces of several arbitrarily chosen 
accelerograms of the HF+BOX and the HF+COS 
ensembles, respectively. From a signal processing 
view point, these time-histories represent low-pass 
filtered versions of the acceleration traces (Worden 
1990), and, thus, they characterize the LF pulse-like 



content of the signals in the time-domain. Superim-
posed on the above two figures is the displacement 
trace of the El Centro array #6 recorded PLGM to 
allow for a qualitative comparison between the orig-
inal and the simulated signals. It can be seen that the 
time-domain traces of the LF “pulse-like” content, 
as captured in the displacement time-histories, varies 
across the realizations of the two generated ensem-
bles in terms of its peak value, of the time instant 
that this value is attained, of the number oscillations, 
etc. However, on the average, the LF content of the 
simulated signals approximate well the displacement 
time-history of the “target” recorded signal while 
they resemble LF content observed/extracted in rec-
orded PLGMs (see e.g. Mavroeidis & Papageorgiou 
2003, Baker 2007, Moustafa & Takewaki 2010). 
The above qualitative observations verify the use-
fulness and applicability of the considered stochastic 
model to generate realistic PLGM time-histories  
which further bring about a desirable level of “ran-
domness” within a Monte Carlo analyses context.     

Furthermore, Figures 7-9 furnish data in terms of 
peak elastic and inelastic response spectral ordinates 
to assess the potential of the HF+BOX and HF+COS 
models of Table 1 to yield structural responses com-
parable to those obtained by the recorded PLGM 
considered to “calibrate” these stochastic models. 
Specifically, Figure 7 include elastic response spec-
tral statistics for 5% critical damping ratio derived 
from the HF+BOX and HF+COS ensembles (200 
realizations each) together with the elastic response 
spectra of the recorded PLGM of Figure 4. Further, 
Figure 8 includes similar plots in terms of constant 
ductility (μ=2) inelastic spectral ordinates assuming 
critically damped to 5% bilinear hysteretic oscilla-
tors with pre/post-yielding stiffness ratio equal to 
5%. Finally, Figure 9 plots the mean values of the 
response spectral ordinates of the HF+BOX and 
HF+COS ensembles including in the previous two 
figures normalized to the corresponding response 
spectral ordinates of the considered “target” re-
corded PLGM according to the ratio (see also Fu and 
Menun 2004) 
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  Overall, the average peak responses for both the 
ensembles considered compatible with the calibrated 
HF+BOX and HF+COS processes of Table 1 com-
pare reasonably well with the “target” values of the 
recorded PLGM of Figure 4. In the range of long pe-
riods (greater than 2s) better agreement is observed 
for the elastic response spectra considered, though in 
all cases the average spectral ordinates “fluctuate” 
about the target value well within the plus/minus one 
standard deviation interval. More importantly, prac-
tically insignificant differences are observed in 
terms of peak structural response data derived by the 

two alternative spectral forms used to represent the 
LF content (Equations 6 and 7). This observation 
suggests that the shape of the spectral form adopted 
to model the LF content may not be an influential 
factor in the use of the model as input for structural 
analyses. 

 

 
Figure 7 Statistics of elastic response spectral ordinates of the 
HF+BOX and HF+COS processes (Table 1)- 200 realizations 

 

 
Figure 8 Statistics of constant ductility (μ=2) inelastic response 
spectral ordinates of the HF+BOX and HF+COS processes 
(Table 1)- 200 realizations. 
 

 
Figure 9 Response ratios ψ (Equation 10) for the HF+COS and 
HF+BOX processes (Table 1)- 200 realizations. 

 
Further, for structures of shorter fundamental nat-

ural periods (less than 2s) whose peak response is 
dominated by the HF content, larger discrepancies 
are observed, partly due to the relatively simplistic 
HF spectral model adopted in this numerical study. 
This issue can be readily rectified, if so desired, by 



adopting HF spectral models incorporating more 
“degrees of freedom” to achieve a better fit to re-
corded GMs (see e.g. Conte & Peng 1997, Boore 
2003). Such spectra can be readily accommodated 
by the PLGM model of Equation 1. The next section 
furnishes further numerical results associated with 
the use of HF spectral shapes compatible with the 
response/design spectrum of the European aseismic 
code- EC8.  

5 GENERATION OF PLGMS COMPATIBLE 
WITH THE EC8 SPECTRUM 

This section illustrates the applicability of the 
proposed PLGM model of section 2 to represent 
code-compliant response spectrum compatible seis-
mic excitations in which accounting for pulse-like 
LF content is deemed essential. To this aim, a C-P 
evolutionary power spectrum compatible with the 
elastic response spectrum of the European EC8 
aseismic code (CEN 2004) is adopted to represent 
the HF content of the PLGM model (Giaralis & 
Spanos 2012). The parameters used to define the HF 
content are reported in Table 2. The LF processes 
derived in the previous section are considered to de-
fine the LF content (Table 1). 
 
Table 2. Parameters for defining the HF content compatible 
with EC8 spectrum (Giaralis & Spanos 2012) 

High-frequency 
content compatible 
with EC8 spectrum 
(PGA= 0.36g; Soil B; 
damping ratio 5%) 

aHF(t) CHF = 0.18 (m/s2.5)
b = 0.58            (s-1)

GHF(ω) 

ζf = 0.90 
ωf  =  2.33  (rad/s) 
ζg = 0.78    
ωg = 10.73     (rad/s)

 
Sample realizations compatible with the two PLGM 
processes and the pulse-free processes are shown in 
Figure 10. The LF content introduced is not readily 
discernible in the acceleration traces, however, its 
effect on structural responses is detrimental for peri-
ods longer than 1s, as shown in the elastic response 
spectra (200 realizations) shown in Figure 11. 

 
Figure 10 Acceleration samples compatible with EC8: pulse-
free (a) and with added pulses (b, c). 

 

 
Figure 11 Statistics of elastic response spectral ordinates of the 
EC8 compatible processes (Tables 1 and 2)- 200 realizations 

6 CONCLUDING REMARKS 

A non-separable non-stationary stochastic model 
for representing pulse-like ground motions (PLGMs) 
has been proposed. It is defined parametrically as a 
sum of uncorrelated amplitude modulated stationary 
stochastic processes, representing separately the low 
frequency (LF) content dominated by the presence 
of “pulses” (low frequency high energy components) 
from the high frequency (HF) content. The attractive 
feature of the model is that it accounts for the nar-
row-band LF content of PLGMs in a stochastic con-
text as it is commonly considered for the HF content 
of GMs. In fact, it is amenable to be represented by 
an evolutionary power spectrum and, thus, it can be 
readily used as input for stochastic dynamics anal-
yses such as in statistical linearization techniques. 
Further, it only requires standard methods for spec-
trum compatible simulation of stationary stochastic 
processes to yield artificial PLGMs used as input for 
response history kinds of analyses. 

The HF content has been herein represented by a 
uniformly modulated Clough-Penzien spectral 
shape, though physics-based seismological models 
can alternatively be used (e.g. Boore 2003). Two dif-
ferent spectral shapes have been considered for rep-
resenting the LF content. Pertinent numerical data 
presented indicate that these shapes have insignifi-
cant influence on record-to-record variability of 
pulse shapes and on the statistical attributes of linear 
and non-linear peak spectral ordinates. These data 
involve the consideration of large ensembles of (arti-
ficial) PLGMs compatible with the proposed model 
whose parameters have been calibrated against a 
specific recorded PLGM. Furthermore, the applica-
bility of the model to yield pulse-like response spec-
trum compatible accelerograms have been demon-
strated by adopting appropriately defined HF 
stochastic processes compatible in the mean sense 
with the EC8 response spectrum (Giaralis & Spanos 
2012). In this respect, the proposed model might be 
a valid alternative to represent the seismic action by 



means of PLGM spectrum matched accelerograms 
which is an issue of current concern to the earth-
quake engineering community (NIST 2011).  

Overall, the herein reported numerical results 
demonstrate the usefulness of the model to generate 
artificial PLGMs for elastic and inelastic analysis in 
the case of limited availability of recorded PLGMs. 
Further numerical work is warranted to demonstrate 
the applicability of the model to represent PLGMs 
for various scenario earthquakes by judicial parame-
ter calibration against databanks of field recorded 
PLGMs and incorporation of predictive relationships 
for pulse characteristics.  
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