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Abstract

Photoplethysmography is now widely utilised by clinical devices such as pulse oximeters, and 

wearable devices such as smartwatches. It holds great promise for health monitoring in daily life. This 

editorial considers whether it would be possible and beneficial to establish best practices for 

photoplethysmography signal acquisition and processing. It reports progress made towards this, 

balanced with the challenges of working with a diverse range of photoplethysmography device designs 

and intended applications, each of which could benefit from different approaches to signal acquisition 

and processing. It concludes that there are several potential benefits to establishing best practices. 

However, it is not yet clear whether it is possible to establish best practices which hold across the 

range of photoplethysmography device designs and applications.
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1 This Editorial considers whether it would be possible and beneficial to establish best practices 

2 for acquiring and processing photoplethysmography signals.

3 Photoplethysmography is an optical technique which provides non-invasive measurements of 

4 the arterial pulse wave, which is related to the blood volume change in the observed microvascular 

5 tissue. The photoplethysmogram (PPG) signal is already widely utilised by clinical devices such as pulse 

6 oximeters (1), and wearable devices such as smartwatches (2). Photoplethysmography holds great 

7 promise for health monitoring in daily life. Indeed, several potential applications of 

8 photoplethysmography were presented in 2021 alone in Physiological Measurement, including: blood 

9 pressure monitoring (3, 4); detecting peripheral arterial disease (5); sleep staging (6); screening for 

10 sleep apnea and cardiovascular disease (7, 8); and detecting driver sleepiness (9).

11 Despite the widespread use of photoplethysmography, best practices have not yet been 

12 established for acquiring and processing photoplethysmography signals. This may in part be due to 

13 the diversity of photoplethysmography device designs, ranging from smartwatches to earbuds, and 

14 applications, ranging from oxygen saturation measurement in clinical practice to heart rate monitoring 

15 during exercise (10). Potentially, the best approach to signal acquisition and signal processing could 

16 differ between each device design and application. Nonetheless, there could be benefits to 

17 establishing best practices, such as establishing hardware configurations that consistently provide 

18 high quality signals, and establishing signal processing algorithms that can accurately derive 

19 parameters from a variety of PPG signals. This is illustrated by the findings of Liu et al. in their recent 

20 article in Physiological Measurement. They found that the use of different PPG signal filtering settings 

21 can result in different measurements being obtained from PPG pulse wave analysis. Based on this, 

22 they highlighted the potential benefits of the ‘standardisation’ of PPG filtering (11). In this case, 

23 establishing best practices for filtering PPG signals would have the benefit of allowing pulse wave 

24 indices to be compared between studies and between devices. However, this may not be 

25 straightforward as different filtering settings may be required for different applications, such as heart 
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26 rate monitoring (which uses the fundamental frequency of the PPG, ≈0.5-3Hz) and blood pressure 

27 assessment (which uses higher frequency content).

28 Potential areas in which best practices could be established include factors relating to device 

29 design (hardware and software) and measurement protocols (recording setting and duration). These 

30 are summarised in Figure 1, and now described.

31

32

33 Figure 1: Factors influencing photoplethysmography measurements, and important advances towards 

34 establishing best practices.

35 Source: This Max Health Band image has been obtained by the authors from the Wikimedia website where it was made available 

36 by Peter H Charlton under a CC BY 4.0 licence.  It is included within this article on that basis. It is attributed to Peter H Charlton.

37 Several factors in the hardware design influence the PPG signal (2, 12), and are therefore 

38 potential areas in which best practices could be established. Firstly, the wavelength of emitted light 

39 determines the depth of light penetration, and consequently the level of the vasculature contributing 

40 to the PPG signal (13), which influences signal quality (14). Current best practice is to use longer 

41 wavelengths (e.g. infrared) for transmission photoplethysmography as these penetrate deeper (15), 

42 and shorter wavelengths (e.g. green) for reflectance photoplethysmography as these produce higher 

43 signal quality for heart rate measurement (17). However, this practice may need to be revisited as the 
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44 use of green light has been found to result in less accurate heart rate monitoring in subjects with 

45 darker skin tones (19). Secondly, in reflectance photoplethysmography the signal quality is influenced 

46 by the geometry of the light emitter, light detector, and sensor casing. Current best practice is to 

47 design the surrounding casing to eliminate ambient light as far as possible (18). In the future this may 

48 be extended to using geometries in which the LED surrounds the photo detector, as these have been 

49 found to give higher signal quality (16). Thirdly, the contact pressure applied by the device to the skin 

50 impacts the shape of the PPG pulse wave (20) and consequently its second derivative (21). Best 

51 practice in the area of contact pressure has not yet been established: higher pressures may reduce 

52 probe-tissue movement artifact, and have been found to increase the accuracy of PPG-based heart 

53 rate monitoring (22). However, it is not clear whether such pressures would be suitable for long-term 

54 monitoring. Ideally, the contact pressure should remain constant when analysing pulse wave shape, 

55 such as when tracking changes nocturnal changes in blood pressure (23). Fourthly, the body site 

56 chosen for PPG measurement influences pulse wave shape (27), and the utility of the acquired signal 

57 (2). Best practice has not yet been established in this area: in clinical devices the finger is often used 

58 (29), whereas in consumer devices the wrist is often used due to user preference (24). In summary, 

59 the challenge of establishing best practices is not trivial, as several factors can influence the PPG signal, 

60 and it is likely that different device configurations would be best suited to different applications.

61 The software used in PPG devices influences the PPG signal and the parameters derived from 

62 it, and therefore presents potential areas in which to establishing best practices. Firstly, there is a 

63 compromise between increasing the sampling frequency to capture details of the shape of PPG pulse 

64 waves, and reducing it to reduce power consumption (30). Best practices differ between applications, 

65 with minimum acceptable sampling frequencies of 10, 16, and 25 Hz reported for heart rate, 

66 respiratory rate, and pulse rate variability measurements respectively (25), (26), (28). Secondly, 

67 different approaches can be used to remove motion artifact, ranging from eliminating periods of 

68 motion (31), to denoising the PPG (32), to cancelling motion artifact using a reference accelerometer 
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69 or gyroscope signal (33). Here, best practices also differ between applications: in hospital monitoring 

70 it has been proposed that periods of motion should be eliminated from analyses (40), whereas in 

71 exercise monitoring the alternative approaches of denoising the PPG or cancelling motion artifact are 

72 used (32). Whilst it may be challenging to develop a universal strategy to PPG signal quality 

73 assessment, recent work has demonstrated that a single approach can perform well across different 

74 heart rhythms and different PPG devices (42). Thirdly, the analog and digital filtering used to pre-

75 process signals influences both the amplitudes and timings of PPG pulse wave features (11, 34). For 

76 instance, an optimal low-pass filter cut-off of 6 Hz has been proposed to preserve the higher harmonic 

77 components of the PPG, and minimise variability in indices calculated from its second derivative (35). 

78 Fourthly, the choice of signal processing algorithm used to estimate a physiological parameter from 

79 the signal can greatly influence the accuracy and precision of the parameter (36). Best practices for 

80 deriving pulse wave features from finger PPG signals have been proposed (37, 38). However, best 

81 practices have not yet been established for signals acquired at the wrist, which differ from finger 

82 signals (39). Similarly, it could be beneficial to optimise neural network architectures for PPG analyses, 

83 building on existing architectures (6). Further work is also required to identify the best pulse wave 

84 features for different tasks from amongst the wide range of features proposed in the literature (41, 

85 43). For instance, recent studies have investigated the best features for blood pressure estimation (3) 

86 and pulse rate variability analysis (44). The best algorithm design may also depend on a subject’s 

87 characteristics, as shown by recent proposals of different blood pressure estimation algorithms for 

88 subjects of different ages (45) and subjects of different blood pressure categories (46). In summary, it 

89 may be difficult to establish best practices for the software used in PPG devices, as the best approach 

90 may vary according to the sensor configuration, application, and subjects being monitored.

91 A further area in which best practices could be established is the protocols used to obtain PPG 

92 measurements, where best practices could be used to obtain repeatable and reproducible 

93 measurements. Measurement protocols can be tightly controlled in clinical settings, where 
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94 consideration can be given to room temperature, subject position, and the duration of rest prior to 

95 measurement (47). However, protocols cannot be so tightly controlled when obtaining measurements 

96 from consumer devices in daily life. Nevertheless, measurements can be obtained in a repeatable 

97 manner during periods of rest, such as resting and night-time resting heart rates (48) (49). Future work 

98 may consider the required recording durations and acceptable levels of signal quality to estimate 

99 different physiological parameters from the PPG (50). Whilst it is possible to obtain some parameters 

100 during exercise (e.g. heart rate) (32), it may only be possible to obtain other parameters accurately 

101 whilst at rest (e.g. those derived from the second derivative of the PPG, such as the aging index) (51).

102 It is clear that there are several potential areas in which best practices could be established 

103 for the acquisition and processing of PPG signals. However, it is not yet clear whether it would be 

104 possible and beneficial to establish best practices. On the one hand: it may not be possible to establish 

105 best practices as they may vary greatly between device designs and applications; it may not be 

106 possible to use them widely if they are patented; and, they may not be beneficial if they don’t 

107 substantially improve device performance. On the other hand, establishing best practices could: 

108 reduce the time taken to design and manufacture devices; ensure PPG-based measurements are as 

109 accurate and reproducible as possible; and, help advance the field as researchers and developers 

110 could build on existing best practices when making novel developments. 

111 Several advances could aid research into determining whether it would be possible and 

112 beneficial to establish best practices for PPG signal acquisition and processing. Firstly, wearable 

113 devices which provide the raw PPG signal are invaluable for such research, as demonstrated through 

114 the use of the Empatica E4 wristband in many research studies (52). Whilst several research devices 

115 can provide the raw PPG signal (10), large-scale studies could be conducted more easily in daily life if 

116 consumer devices were similarly able to provide raw PPG signals. Secondly, freely available datasets 

117 allow researchers to benchmark their own PPG signal processing algorithms against others on a 

118 common dataset. Several such datasets are available (10), including: the WeSAD and PPG-DaLiA 
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119 datasets, acquired using an Empatica E4 device in healthy subjects (53) (54); and the VitalDB and the 

120 MIMIC Waveform databases, acquired from critically-ill patients (55, 56). However, there are 

121 limitations to current datasets: they are often collected from either healthy volunteers or a particular 

122 patient population, rather than a broad cross-section of society; they often contain PPG signals 

123 acquired by only one device, rather than signals acquired using different hardware configurations; and 

124 they are often recorded in either laboratory or clinical settings, but few are recorded in daily life. 

125 Thirdly, there is a need for widely accepted validation protocols with which to assess the performance 

126 of PPG-based devices. Such protocols already exist for devices measuring blood pressure and heart 

127 rate (57) (58). However, different standards may be required for different applications, such as varying 

128 the accuracy and data availability thresholds according to the intended use case and measurement 

129 scenario (59, 60).

130 To conclude, there are several potential benefits to establishing best practices for acquiring 

131 and processing PPG signals. However, it is not yet clear whether it is possible to establish best practices 

132 which hold across the range of PPG device designs and applications. Therefore, much further work is 

133 required to investigate whether it would be possible and beneficial to establish best practices, and to 

134 understand how they may differ between device designs and intended applications.

135
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