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A B S T R A C T   

The optimum structural design of real-world 3D concrete building frames to modern design standards is a 
complex and computationally expensive task. Hence, the use of surrogate-based optimization (SBO) methodol-
ogies must be investigated to reduce computational cost. The present study applies, for first time, a fully-fledged 
SBO algorithm to the optimum design of 3D concrete building frames. More particularly, the algorithm is applied 
to the minimum material cost design of a 4-storey and a 12-storey 3D RC building according to Eurocodes. It is 
found that the SBO algorithm can converge earlier than other well-established metaheuristic optimization al-
gorithms reducing considerably the required computational effort. Nevertheless, it is likely to get trapped in local 
optima for large-scale RC frames. To overcome this drawback, a novel hybrid approach is also proposed herein 
that offers improved computational performance for large-scale concrete building frames.   

1. Introduction 

Reinforced concrete (RC) building frames represent a large part of 
the built environment and they are associated with significant economic 
costs and environmental impacts (Olivier et al., 2015). Therefore, design 
of these structural systems for minimum economic cost and/or envi-
ronmental impact represents an urgent need for modern societies 
(Mergos, 2018a, b). At the same time, the optimum structural design of 
RC building frames to modern design standards, such as the Eurocodes, 
may be so highly complex that cannot be addressed adequately by 
manual trial and error procedures. In these cases, the use of automated 
optimization algorithms is recommended. Optimization algorithms can 
be divided into gradient-based and metaheuristic. The latter category 
includes algorithms such as the Genetic Algorithm (GA) (Holland, 
1975), Simulated Annealing (SA) (Kirkpatrick et al., 1983), Particle 
Swarm Optimization (PSO) (Kennedy, 2001), the Flower Pollination 
Algorithm (FPA) (Yang, 2012), and many others. Metaheuristic opti-
mization algorithms may require more computational cost to converge 
but they are less likely to get trapped in local optima than gradient-based 
algorithms (Yang, 2008). 

A significant amount of research has been dedicated in the previous 
years on optimizing the structural design of concrete frames (Sarma and 
Adeli 1997). Nevertheless, the vast majority of these studies concentrate 
on either single concrete members (i.e. beams, columns and others) (e.g. 
Mergos, 2018a; Yeo and Gabbai, 2011; Medeiros and Kripka, 2014; 

Kayabekir et al., 2021a,b) or 2D concrete frames (e.g. Paya-Zaforteza 
et al., 2008, Akin and Saka, 2015; Mergos, 2018c; Rakici et al., 2020). To 
the best of the author’s knowledge, the research studies addressing 
optimum structural design of realistic 3D RC buildings to modern design 
codes are only limited to: Fadaee and Grierson (1996), BaIling and Yao 
(1997), Sahab et al. (2005), Govindaraj and Ramasany (2007), Sharafi 
et al. (2012), Kaveh and Behnam (2013), Lagaros (2014), Esfandiari 
et al. (2018), Dehnavipour et al. (2019), Martins et al. (2020) and 
Mergos (2021). The limited number of these research studies can be 
attributed to the high level of complexity and significant computational 
effort involved in the structural design of 3D RC buildings frames (Sarma 
and Adeli 1997). 

The previous observations reveal the need to investigate the appli-
cability and efficiency of surrogate-assisted methodologies in the opti-
mum design of real-world concrete building frames. Surrogates or else 
metamodels are prediction models that provide fast approximations of 
computationally expensive objective and/or constraint functions at new 
design points based on a limited number of previous design points of 
these functions. In this manner, the computational burden drastically 
decreases making parametric, sensitivity and optimization studies more 
feasible. There exists a wide range of available surrogate models in 
literature, characterized by different levels of accuracy and complexity, 
such as the classic polynomial Response Surface Models (RSM), Radial 
Basis Functions (RBFs), Kriging model, Support Vector Regression and 
Artificial Neural Networks (ANN) (Forrester et al., 2008). 
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Surrogate-based optimization (SBO) is the process of employing sur-
rogates to drastically reduce the computational effort of optimization 
problems involving computationally intensive objective and/or 
constraint functions. SBO is a far more elaborated procedure than 
developing a surrogate model. Furthermore, it is not limited to the 
identification of the optimum solution of a surrogate model. The latter is 
not the case because surrogates are only approximations of real functions. 

SBO has been widely used in aerospace and mechanical engineering 
designs mainly due to the intensive finite element analyses involved 
(Queipo et al., 2005; Forrester and Keane, 2009). In civil engineering, 
there exists a significant number of studies developing surrogate models 
to predict structural response and performance (e.g. Gudipati and Cha, 
2018; Du and Padgett, 2020; Shekhar and Gosh, 2020). Nevertheless, 
application of SBO to the optimum design of civil engineering structures, 
such as buildings and bridges, is still quite limited. In the latter applica-
tions, SBO has been mainly used within probabilistic optimization 
frameworks such as the robust (e.g. Battacharjya and Chakraborty, 2011; 
Battacharjya et al., 2018; Penadés-Plà et al., 2020), reliability-based (e.g. 
Papadrakakis and Lagaros, 2002; Khatibinia et al., 2013; Jia et al., 2014), 
risk-based (e.g. Ruiz et al., 2018) and life-cycle cost based (e.g. Gidaris 
and Taflanidis, 2015) optimum structural design. These studies employ 
surrogates to address the high computational cost arising from the 
numerous numerical simulations required to obtain reliable statistical 
results of the objective functions and/or design constraints involved. 
Furthermore, SBO has been used in the context of the optimum 
performance-based design of structures (e.g. Gholizadeh and Salajegheh, 
2009; Mokarram and Banan, 2018), where structural performance has to 
be evaluated by computationally expensive nonlinear structural analyses. 

Recently, SBO has been used in the optimum, code-based design of 
complex bridge structures. García-Segura et al. (2018) developed a 
multi-objective, surrogate-assisted optimization framework for the sus-
tainable design of post-tensioned concrete box-girder bridges. The 
application of surrogates in this study is justified by the large compu-
tational cost from the existence of numerous design variables and 
objective functions in addition to the need for time-consuming finite 
element analyses. Therefore, a surrogate model is used to predict the 
structural behaviour of the bridge designs. Furthermore, Penadés-Plà 
et al. (2019) examined kriging-based heuristic optimization to obtain 
the optimal solution of a continuous box-girder pedestrian bridge of 
three spans. The authors conclude that kriging-based optimization offers 
similar results to metaheuristic optimization algorithms using less 
computational effort. More particularly, the SBO reduces the computa-
tional effort by approximately 100% while it offers only 3% more 
expensive optimal solutions with respect to metaheuristic algorithms. 

From the previous literature review, it can be concluded that SBO 
methodologies have not yet been applied to the structural design of 3D RC 
building frames. This is despite the fact that the design of these systems is 
accompanied by high computational costs prohibiting efficient optimiza-
tion efforts in reasonable computational times. The latter may hinder the 
widespread use of optimization solutions in the design of real-world con-
crete buildings. Furthermore, most of the existing SBO studies in civil en-
gineering adopt simplified frameworks, where surrogate models are only 
built once, and the optimum solutions of the surrogates are treated as the 
optimum solutions of the real functions. As discussed, this approach can be 
misleading since surrogates are only approximations of real functions. 

The main objective of the present study is to investigate the efficiency 
and applicability of SBO frameworks to the optimum design of real-world 
RC buildings. To serve this goal, a computational platform for optimizing 
the structural design of real-scale 3D RC frame buildings is used that 
employs, for first time, a fully-fledged SBO algorithm to this challenging 
optimization problem. The performance of the SBO algorithm is 
compared with several established metaheuristic optimization algorithms 
and useful conclusions are drawn with respect to its computational effi-
ciency and limitations. Furthermore, recommendations are made 
regarding the most efficient use of the SBO algorithm in the context of the 
optimum design of real-world RC building frames according to modern 

design guidelines. Finally, a novel hybrid approach is also proposed in this 
study that offers high computational performance and efficiency in 
optimizing complex and/or large-scale RC frames. 

2. Framework for optimum structural design of RC building 
frames 

The optimum structural design of concrete frames is treated herein as 
a single-objective optimization task with discrete design variables. The 
vector x of these design variables consists of the cross-sections assigned 
to different groups of structural members in the frame. These cross- 
sections are taken from discrete lists of cross-sections specified by the 
designers following standard construction practices. Any shape of cross- 
sections can be used in this optimization framework. However, for 
reasons of simplicity, in the present study square sections are considered 
for columns and rectangular sections for beams with the corresponding 
steel reinforcement configurations shown in Fig. 1. Furthermore, sizing 
optimization is only considered herein by assuming that the geometry, 
material properties, concrete cover, boundary conditions and loadings 
of the concrete frames are fixed. 

The objective function f(x) of the optimization problem is the total 
construction cost of concrete and reinforcing steel materials. These costs 
are calculated by summing the individual costs of all structural members 
in frames. The steel reinforcement of concrete members is calculated for 
the ULS based on standard structural design procedures in accordance 
with Eurocode 2 (EC2) (CEN, 2000) and Eurocode 8 (EC8) (CEN, 2004) 
for low ductility class (DCL) design rules. More particularly, concrete 
beams are designed for major direction bending, shear and torsion and 
concrete columns are designed for biaxial bending moments accounting 
for axial load effects and biaxial shear forces using the procedures 
described in CSI (2016). 

Following this approach, f(x) is determined by Eq. (1), where Vc (m3) 
stands for the total concrete volume and ms (kg) the total mass of rein-
forcing steel accounting for both the longitudinal and transversal steel 
reinforcement of concrete members. In Eq. (1), fco and fso represent the 
prices of concrete per unit volume and reinforcing steel per unit mass, 
respectively. 

f (x)=Vc(x)⋅fco + ms(x)⋅fso (1) 

It is worth noting at this point that other design objectives such as the 
life-cycle economic cost and environmental impact of concrete buildings 
can be considered in the optimum design of concrete buildings to offer 
more holistic design solutions (Mergos, 2018a). Furthermore, the design 
of concrete buildings to maximize structural robustness (i.e. the capacity 
of sustaining local failures of elements e.g. via alternate load path 
strategy or redundancy) should be further investigated to prevent 
catastrophic progressive collapses in extreme events such as earthquakes 
and blasts (Biagi and Chiaia, 2013; Kiakojouri et al., 2020). Neverthe-
less, the objective function used herein is deemed as adequate for the 
purposes of the present study that is focussing on the numerical effi-
ciency of the surrogate-based optimization framework. 

The design constraints in the optimization problem herein reflect the 
rules for the design of concrete frames in EC2 – Part 1 (CEN, 2000) and 
EC8 – Part 1 (CEN, 2004) for DCL. They include structural detailing 
prescriptions and safety verifications for the ultimate (ULS) and 
serviceability (SLS) limit states in terms of both displacements and 
forces. More particularly, for the ULS, a design constraint is assumed not 
to be satisfied when the corresponding safety check (i.e. for bending, 
shear and torsion) cannot be fulfilled by any permissible amount of steel 
reinforcement in the concrete sections. This is the case because only 
concrete sections are treated as independent variables herein. Further-
more, a design constraint for a column or a beam member is assumed not 
to be satisfied when the design shear forces and torsional moments 
exceed the maximum capacity of compressive concrete struts. For the 
SLS, a beam member is assumed not to fulfil the design constraints when 
the corresponding check for deflections is not satisfied. Beam members 
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are checked for deflections using the limiting span-to-depth ratio 
approach (Moss and Brooker, 2006). 

The design constraints are treated indirectly in the formulation of the 
optimization problem by following the penalty function approach. A 
more detailed description of the optimization framework used in this 
study for concrete buildings can be found in Mergos (2021). 

For the implementation of the optimization framework described 
above, a MATLAB (MathWorks, 2020a) application, namely STROLAB 
(STRuctural Optimization LABoratory), has been developed (Mergos, 
2021). STROLAB is interacting, for the purposes of structural analysis 
and design, with the well-established integrated structural analysis and 
design software SAP2000 (CSI, 2020) via its Application Programming 
Interface. A detailed presentation of the computational procedures fol-
lowed by STROLAB can be found in Mergos (2021). 

Closing this section, it is important to clarify that a code-based 
approach is followed in the present study that is consistent with stan-
dard engineering practice. However, code-based design is not guaran-
teed to offer maximum structural performance of concrete frames. 
Additional considerations are required for the optimum performance- 
based design of concrete frames as explained in Mergos (2018c). 

3. Surrogate-based optimization (SBO) 

From the description of the optimization framework of the previous 
section, it is clear that the evaluation of the objective function f(x), 
which is the materials cost of the 3D concrete building frames, entails 
significant computational effort. This is the case because of the several 
computationally costly 3D finite element analyses required to calculate 
design action effects and the numerous structural design checks needed 
to examine compliance with the ULS and SLS constraints of the Euroc-
odes. Therefore, the applicability and potential benefits of SBO ap-
proaches to the computational cost of the optimum design of real-world 
concrete building frames have to be further investigated. 

Most fully-fledged SBO methodologies follow a similar generic pro-
cedure. First, a set of initial sampling designs is decided where the 
computationally expensive objective function f(x) is evaluated. This 
procedure is also called the Design of Experiments (DoE) or the initial 
sampling plan (Queipo et al., 2005; Forrester and Keane, 2009). Next, 
the examined initial designs are used to construct the surrogate model 
s(x). The surrogate model should offer reliable predictions of the real 
objective function f(x) landscape especially in the vicinity of the opti-
mum design. Then, a search of the surrogate model takes place to 
identify new promising design solutions. These new designs are called 
adaptive sampling designs or infill points. The adaptive sampling de-
signs have been determined by using the surrogate models. Therefore, 
they must be re-evaluated by calling the true functions. Finally, the 
adaptive sampling designs are added to the previous designs and the 

procedure returns to the construction of the surrogate model phase until 
convergence is reached. 

The SBO computational framework adopted herein is part of the 
Global Optimization Toolbox of MATLAB version R2020b (MathWorks, 
2020b). It follows the same generic methodology steps as the general 
SBO procedure described above. In the following, the numerical tech-
niques used by the adopted SBO framework to implement these generic 
methodology steps are discussed in more detail. 

To construct the surrogate, the SBO framework generates first a 
number of quasi-random initial designs within bounds as part of the DoE 
phase. For these designs, the real objective function f(x) is evaluated. It is 
clarified that f(x) is evaluated in this study by STROLAB calling SAP2000 
to conduct structural analysis and design and by calculating the materials 
cost from Eq. (1) and adding potential penalties due to constraints 
violation. Then, the SBO framework uses the random points to construct a 
surrogate s(x) as an approximation to the real function by using a Radial 
Basis Function (RBF) interpolator. RBF interpolators are beneficial 
because they use the same basic formula for any number of problem di-
mensions and points. Furthermore, they can take prescribed f(x) values at 
the points where the function has been evaluated. Moreover, constructing 
an RBF interpolator is computationally efficient since it only requires a 
system of N-by-N linear equations to be solved, where N represents the 
number of evaluation points. In the adopted SBO framework, a cubic RBF 
with a linear trail is assumed (Gutmann, 2001) as shown in Eq. (2), where 
λi are coefficients (weights) to be determined by the construction of the 
surrogate, the norm ⋅ is the Euclidean norm, x is the prediction point 
location, xi are the locations of the previously evaluated points, φ (r) = r3 

for a cubic RBF and p(x) is a linear polynomial. 

s(x)=
∑N

i=1
λiφ(x − xi) + p(x) (2) 

In the next stage, the algorithm searches the surrogate for new 
promising design solutions. The search procedure followed is mainly 
based on the recommendations by Regis and Shoemaker (2007). The 
search begins from the incumbent, which is the best evaluated point 
since the last surrogate reset. The algorithm generates randomly a great 
number of sample points within a scaled area around the incumbent and 
within specified bounds of the design variables. Special sampling and 
rounding provisions are also taken so that the sample points consist of 
integer variables as required in the present study (MathWorks, 2020b). 
Next, the sample points are evaluated based on the merit function. The 
merit function fmer(x) is the weighted sum of two terms as shown in Eq. 
(3), where w is a weight value between 0 and 1. s(x) is the scaled sur-
rogate value given by Eq. (4), where smax and smin are the maximum and 
minimum respectively surrogate values of the sample points. Further-
more, d(x) represents the scaled distance value given by Eq. (5), where 

Fig. 1. Concrete cross-sections and steel reinforcement configurations assumed for; a) columns; b) beams.  
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d(x) is the minimum distance of the sample point x from any evaluated 
point, dmax is the maximum of all distances between the sample points 
and the evaluation points and dmin is the minimum of all distances be-
tween the sample points and the evaluation points. Clearly, as w in-
creases the search method focusses on the surrogate values leading the 
search to minimize the surrogate. On the other hand, as w decreases the 
search places more emphasis to points that are distant from the evalu-
ated points driving the search to new regions. 

fmer(x)=w⋅s(x) + (1 − w)⋅d(x) (3)  

s(x)=
s(x) − smin

smax − smin
(4)  

d(x)=
dmax − d(x)
dmax − dmin

(5) 

The algorithm evaluates the merit function for all sample points and 
selects the point with the lowest value that is the adaptive point. Then, it 
evaluates the real objective function at the adaptive point. If the f(x)
value at the adaptive point is smaller than the incumbent, then the 

search is deemed as successful and the incumbent point is updated. If the 
latter is not the case then the search is deemed as unsuccessful. If a 
number of consecutive successful searches take place then the algorithm 
increases the scale of the search area to accelerate the exploration of the 
search space. On the other hand, if a number of unsuccessful searches 
occur then the algorithm decreases the scale of the search area to exploit 
better the examined location. Following this approach, the algorithm 
eventually converges to an incumbent with near optimal f(x) value. 
When the search area becomes sufficiently small and all sample points 
are tightly clustered around the incumbent then convergence is assumed 
and the algorithm resets the surrogate which means that it returns to the 
stages of generating new random initial points and reconstructing the 
surrogate (MathWorks, 2020b). 

The analysis terminates when one of the stopping criteria set by the 
user is met such as the maximum number of the real objective function 
evaluations. The final solution is the best incumbent point of all surro-
gate resets. The afore-described procedure of the adopted SBO frame-
work is illustrated in the flowchart of Fig. 2. 

Fig. 2. SBO flowchart.  
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4. Case studies 

4.1. Four-storey RC frame 

In this section, a 3D regular 4-storey concrete building frame is 
examined with 3 equal spans of 5 m in each direction and uniform storey 
height of 3 m (Fig. 3). Concrete class C25/30 and reinforcing steel class 
B500C are used following the specifications of EC2. Concrete cover to 
the centroid of the longitudinal steel bars is taken as 50 mm. Due to 
symmetry, one cross-section is used for all interior columns, one section 
for all corner columns and one section for the rest of perimeter columns. 
Furthermore, one section is used for all exterior beams and one section 
for all interior beams of the first 3 storeys. Two more sections are used 
for the exterior and interior beams respectively of the top storey due to 
the high dead loads applied at this level, as explained in the following. In 
total, 7 different cross-sections are used for this frame setting the 
number of dimensions d in this optimization problem (i.e. d = 7). 

The beam and column cross-sections are assumed to have the general 
form of Fig. 1. For beams, a list of 8 different rectangular cross-sections is 
considered having a width of 0.30 m and heights that increase from 0.30 
m to 0.65 m with a constant step of 0.05 m. For columns, a list of 8 
possible square cross-sections is considered with heights ranging from 
0.30 m to 0.65 m again with a constant step of 0.05 m. Following these 
considerations, the size of the search space for this optimization problem 
is 87 possible design configurations. 

The concrete building is designed to withstand static and wind loads. 
Slab dead loads are taken as 6 kN/m2 (inclusive of self-weight) for all 
storeys apart from the top storey where they become 16 kN/m2 because 
of the existence of a roof garden. Slab live loads are 5 kN/m2 for all 
storeys except for the top storey, where they are set as 2 kN/m2. The slab 
loads are transferred to the beams following standard procedures. In 
addition, a wind uniform lateral pressure, of 1.5 kN/m2 magnitude, is 
assumed to be acting to the external surface of the building. Concrete 
and reinforcing steel unit prices are considered to be fco = 100 €/ m3 and 
fso = 1 €/kg respectively. The building is designed according to the 
specifications of EC2. 

Fig. 4 shows an indicative optimization history exhibited by the 
adopted SBO framework for the 3D RC frame under examination in 
terms of material cost versus the number of real function evaluations (i. 
e. number of structural designs of the RC frame). For this analysis, 50 
initial random points were used for the first construction of the surrogate 
function s(x). This is clear in Fig. 4, where the first 50 function 

evaluations correspond to initial random points indicated by inverted 
triangles. Next, function evaluations related to adaptive sample points 
take place that are indicated by small black asterisks in the figure. At the 
same time, the progression of the incumbent (blue x markers) and the 
best of all evaluated points (green circle markers) with the number of 
function evaluations is demonstrated. The best points always coincide 
with the incumbent points since there is no surrogate reset taking place 
within the function evaluations shown in figure. As anticipated, the cost 
of the best points gradually decreases until the SBO framework reaches 
the optimum solution to this problem, with a minimum cost of 
approximately 12,477 Euros, after 285 function evaluations. 

Table 1 presents the cross-sections and costs of the design solutions 
obtained at the start, at 100 function evaluations and at the end of the 
optimization history of Fig. 4. It can be seen that the 1st feasible solution 
uses larger beam sections and smaller interior and perimeter column 
sections than the final optimal solution. The best solution after 100 
evaluations uses smaller sections for the interior beams of the first three 
storeys, the exterior beams of the top storey and the interior columns 
than the final solution. On the other side, it employs larger sections for 
the interior beams of the top storey. All other sections are the same as the 
final solution. It can be concluded from the previous comparisons that 
the identification of the optimal design solution for this concrete frame 
is not a straightforward task as it affected by the complex interaction of 
concrete members in structural analysis and the subsequent calculation 
of the steel reinforcement that contributes to the frame cost. 

Furthermore, Fig. 5 demonstrates the exterior and interior frames of 
the final optimum solution of the concrete building with the 

Fig. 3. 3D view of the 4-storey concrete frame.  

Fig. 4. Optimization history of the SBO framework with 50 initial 
random points. 

Table 1 
Design solutions cross-sections and costs.  

Members group Cross sections (m) 

1st feasible 
solution 

Best solution after 
100 iterations 

Final optimal 
solution 

Exterior beams – 
storeys 1 - 3 

0.40 × 0.30 0.30 × 0.30 0.30 × 0.30 

Interior beams – 
storeys 1 - 3 

0.45 × 0.30 0.35 × 0.30 0.40 × 0.30 

Exterior beams – 
storey 4 

0.40 × 0.30 0.30 × 0.30 0.35 × 0.30 

Interior beams – 
storey 4 

0.60 × 0.30 0.60 × 0.30 0.45 × 0.30 

Interior columns 0.40 × 0.40 0.35 × 0.35 0.45 × 0.45 
Perimeter columns 0.30 × 0.30 0.35 × 0.35 0.35 × 0.35 
Corner columns 0.35 × 0.35 0.30 × 0.30 0.30 × 0.30 
Frame Cost (Euros) 14,888 13,139 12,477  
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corresponding cross-sections drawn to scale. It can be concluded that the 
interior frames require larger sections than the exterior and that the 
beam sections of the top storey are larger than the lower storeys due to 
the existence of the additional dead load at the roof of the building. The 
same figure presents the calculated flexural and shear steel reinforce-
ment areas of the exterior and interior frames of the optimum solution of 
the concrete building as calculated by SAP2000. It is emphasised herein 
that it is not implied that this optimal solution is the most efficient 
structural solution for the concrete building under investigation. It is 
simply the best solution following the specifications of the optimization 
problem described at the beginning of this section. 

Fig. 6 compares the computational performance of the SBO frame-
work with well-established metaheuristic optimization algorithms such 

as the GA, PSO, SA and FPA optimization algorithms. For each algo-
rithm, 5 independent runs are conducted to account for their stochastic 
formulation. For the SBO algorithm, 50 initial random points are 
employed based on the findings of a preliminary analysis. For the GA, 
PSO and SA algorithms, the parameters values used are the ones rec-
ommended in MATLAB R2020b – Global Optimization Toolbox (Math-
Works, 2020b) that maximize their overall computational performance. 
For the FPA algorithm, which is not included in the Global Optimization 
Toolbox, a population size of n = 25 and a switch probability value of p 
= 0.5 is assumed as these values provide in general good performance 
for this algorithm (Yang, 2008; Mergos, 2021). It is noted herein that the 
parameter values of all previous metaheuristic algorithms have not been 
specifically tuned for the optimization problems of this study. Parameter 

Fig. 5. Optimal design solution a) exterior frame with cross-sections drawn to scale; b) interior frames with cross-sections drawn to scale; c) flexural reinforcement 
(mm2) - exterior frames; b) flexural reinforcement – interior frames (mm2); c) shear reinforcement – exterior frames (mm2/mm); d) shear reinforcement – interior 
frames (mm2/mm). 
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tuning tailored to these optimization problems could further improve 
the computational performance of the optimization algorithms. For all 
algorithms, 3500 (= 500 d) maximum objective function evaluations are 
set as a stopping criterion for each run. This limit is deemed as a 
reasonable computational cost for practical applications of the present 
optimization framework. 

Fig. 6a compares the mean optimization histories of the 5 indepen-
dent runs of the different algorithms. It is interesting to note that all 
mean optimization histories converge to almost the same minimum cost 
after approximately 600–800 function evaluations. It is seen in this 
figure that the SBO and SA algorithms converge on average significantly 
faster than then other algorithms in the first 100 function evaluations. At 
approximately 200 evaluations, all algorithms seem to offer similar 
performance apart from the FPA algorithm, which converges more 
slowly. After 200 function evaluations, the SBO algorithm exhibits best 
average performance converging after approximately 400 function 
evaluations, which is considerably faster than all other algorithms 

converging after more than 600 evaluations. It is also worth noting that 
all algorithms’ independent runs, within the 3500 function evaluations 
limit, converge to the same optimum design solution, shown in Table 1, 
apart from one run of the PSO algorithm. Fig. 6b presents, in the form of 
box plots, the numbers of function evaluations at which convergence to 
the optimum solution was achieved by all independent runs of the 
different algorithms. The box plots show the minimum, maximum and 
median (red line) function evaluations. Inside the boxes, the 25th to 
75th percentiles are contained. It is clear that the SBO algorithm con-
vergences faster than all algorithms and it does so more robustly with 
smaller variations in the numbers of function evaluations at 
convergence. 

4.2. Twelve-storey RC frame 

In the present section, a 3D regular 12-storey concrete building 
frame is examined with 3 equal spans of 5 m in each direction and 
uniform storey height of 3 m (Fig. 7). Concrete class C25/30 and rein-
forcing steel class B500C are used following the specifications of EC2. 
Concrete cover to the centroid of the longitudinal steel bars is taken as 
50 mm. Due to symmetry, one cross-section is used for all interior col-
umns, one section for all corner columns and one section for the rest of 
perimeter columns. Furthermore, for simplicity, one cross-section is 
assumed for all exterior beams and one cross-section for all interior 
beams of every two consecutive storeys. Totally, 15 different cross- 
sections are used (i.e. d = 15) for this frame constituting the design 
variables of this optimization problem. 

For beams, a list of 10 different rectangular cross-sections is 
considered having a width of 0.30 m and heights that increase from 0.30 
m to 1.2 m with a constant step of 0.10 m. For columns, a list of 10 
possible square cross-sections is considered with heights ranging from 
0.30 m to 1.20 m again with a constant step of 0.10 m. It is clarified 
herein that it is it not implied that square columns are more structurally 
efficient than rectangular columns for the present case study. Square 
columns are used as they are assumed to serve better architectural 
considerations of the building. Following these considerations, the size 
of the search space for this optimization problem is 1015 potential design 
solutions. 

The concrete building is designed to withstand static and seismic 
loads. Slab dead loads are taken as 6 kN/m2 (inclusive of self-weight) for 
all storeys apart from the top storey where they become 16 kN/m2 

because of the existence of a roof garden. Slab live loads are 2 kN/m2 for 
all storeys. Fos static loads, the building is designed in accordance with 
EC2. Moreover, the concrete building is designed against earthquake 
loads following EC8 for the low ductility class (DCL). The seismic action 
is applied via the Type 1 response spectrum of EC8 assuming type D soil 
conditions. The building is assumed to be of importance class II. The 

Fig. 6. Comparison of the SBO framework with other optimization algorithms: a) mean optimization histories; b) number of function evaluations at convergence.  

Fig. 7. 3D view of the 12-storey concrete frame.  
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design peak ground acceleration (PGA) is 0.36 g as recommended for 
seismic zone III in Greece. The behaviour factor is taken as 1.5 in 
accordance with DCL requirements in EC8. To satisfy the damage limi-
tation (DL) prescriptions of EC8, it is specified that inter-storey drifts 
should remain below 0.75% for the frequent earthquake, assuming 
ductile non-structural elements attached to the frame. Moreover, to 
prevent large lateral displacements under the design seismic action, the 
roof displacement of the frame is constrained to 1% of the total height. 

Fig. 8 presents a sample optimization history exhibited by the SBO 
algorithm for the RC frame in terms of material cost versus number of 
function evaluations. In this history, 20 initial random points were used 
for the construction of the surrogate. Again, initial points are repre-
sented by inverted triangles, adaptive points by asterisks, incumbents by 
blue x markers and best points by green circles. As in the previous 
example, the analysis starts with initial points followed by adaptive 
points and the best points match with incumbent points. However, in 
this design example, the search of surrogate, for promising new designs, 
phase of the algorithm converges multiple times before the stopping 
criterion is met leading to an equal number of surrogate resets as 
highlighted by the vertical blue lines in the figure. For each surrogate 
reset, new initial points are calculated followed by corresponding 
adaptive points. Interestingly, in the subsequent surrogate resets, the 
incumbent points do not always coincide with the best achieved points 
of the algorithm. This is because incumbent points represent the best 
points achieved from the last surrogate reset and not from the start of the 
analysis. In this optimization history, surrogate resets seem to fail 
updating the best solution after approximately 3200 function 
evaluations. 

Fig. 9 compares the performance of the SBO framework with the GA, 
PSO, SA and FPA optimization algorithms. For all algorithms, 5 inde-
pendent runs with 7500 (= 500⋅d) maximum function evaluations are 
conducted to account for the random procedures of these algorithms. 
This maximum number of function evaluations is used herein as a 
termination criterion to account for computational budget limitations 
when the optimization framework is applied in standard engineering 
practice. 

For the SBO framework, 20 random points are used for the initial 
surrogate construction based on the results of a preliminary analysis. For 
the FPA, a population size of n = 25 flowers and a switch probability of p 
= 0.5 are assumed in this comparison (Mergos, 2021). For all other al-
gorithms, the recommended parameter values in MATLAB R2020b – 
Global Optimization Toolbox (MathWorks, 2020b) are used that maxi-
mize their performance. Fig. 9a and b compare the mean optimization 
histories of these algorithms after the 5 independent runs. The latter 
figure is only a zoom of the former figure in the first 1000 function 
evaluations. It can be seen that the SBO outperforms significantly all 
other algorithms in the first approximately 300 function evaluations 

showing initially a high exploitation capability. This can be considered 
as a clear advantage of this algorithm when the computational budget 
for the optimization analysis is limited to a very low number of function 
evaluations. After the first 300 evaluations, however, the SBO frame-
work gets stuck in local optima exhibiting rather poor performance and 
gradually it is outperformed by all other optimization algorithms. Fig. 9c 
presents, in the form of box plots, the final costs obtained by the various 
optimization runs after 7500 function evaluations. It is verified that the 
SBO demonstrates the worst median performance of all algorithms. The 
best performance is obtained by the FPA algorithm with a final cost of 
192,694.3 Euros. This is due to the high degree of diversification and 
exploration capacity of the FPA algorithm, which is able to track global 
optimum solutions in complex and large-scale problems (Mergos, 2021; 
Mergos and Yang, 2021, 2022). 

The cross-sectional dimensions of the best design solution are pre-
sented in Table 2. For comparison purposes, the cross-sectional di-
mensions of the 1st feasible solution and the best design solution after 
3750 (= 50% of total) function evaluations and corresponding frame 
costs are also presented in this table. As anticipated, the beam section 
sizes of the final optimal solution are larger at the lower stories than the 
upper stories. This is justified by the higher seismic actions at the lower 
stories. Moreover, the interior beams at the upper floors are larger than 
the exterior beams at the same floors as they attract higher static loads. It 
is also noted that the interior columns are larger than the perimeter 
columns and that the perimeters columns are larger than then corner 
columns. The previous anticipated trends are not consistently met in the 
earlier design solutions. For example, the exterior beams of the 5th and 
6th storey in the first feasible design solution are larger than the interior 
beams of the same floors and all the beams of the lowest four storeys. 
Similarly, the beams of the 9th and 10th storey of the best solution after 
3750 evaluations are larger than all other beams in the frame. Again, it is 
emphasised that it is not implied herein that this optimal solution is the 
most efficient structural solution for the concrete building under 
investigation. It is simply the best solution following the specifications of 
the optimization problem described at the beginning of this section. 

Furthermore, Fig. 10 shows the lateral deflections of the exterior and 
interior frames of the obtained optimum solution of the RC building 
when subjected to the design earthquake where the corresponding cross- 
sections are drawn to scale. It is interesting to note in Fig. 10 that the top 
lateral displacement under the design earthquake is slightly lower than 
the 1% limit of the building height satisfying marginally the respective 
constraint of the optimization problem. Based on the previous discus-
sion, it is further investigated in this study a novel hybrid approach 
combining the SBO and FPA algorithms. The goal is to examine whether 
the proposed hybrid approach combines the benefits of these algorithms 
(i.e. exploitation capacity of the SBO algorithm and exploration capa-
bility of the FPA algorithm). Two potential combinations of these al-
gorithms are considered. In the first combination, termed SBO-FPA, the 
analysis starts with the SBO algorithm followed by FPA algorithm and in 
the second combination, termed as FPA-SBO, the analysis starts with the 
FPA algorithm followed by the SBO algorithm. In both cases, 1000 
function evaluations are allocated to the SBO algorithm and 6500 
evaluations to the FPA algorithm leading to a total of 7500 total eval-
uations as the case with the single algorithms. In the hybrid approach, 
the best solution obtained by the first algorithm serves as a starting point 
of the second algorithm ensuring the continuity of the solution 
procedure. 

Fig. 9d compares the mean optimization histories obtained by the 
single and hybrid algorithms after 5 independent runs with 7500 func-
tion evaluations in total. As expected, the SBO and SBO-FPA algorithms 
exhibit similar performance in the first 1000 evaluations, which out-
performs the other two algorithms. After 1000 evaluations, the SBO-FPA 
algorithms performs better than the SBO algorithm taking advantage of 
the exploration capabilities of the FPA algorithm. Nevertheless, the final 
solutions obtained after 7500 evaluations are on average significantly 
worse than the original FPA algorithm. This practically means that there 

Fig. 8. Optimization history of the SBO framework with 20 initial 
random points. 
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Table 2 
Design solutions cross-sectional dimensions (in m) and costs.   

Storeys 
Beam Groups 

1st feasible solution Best solution after 3750 iterations Final Optimal Solution 

Exterior Beams Interior Beams Exterior Beams Interior Beams Exterior Beams Interior Beams 

1–2 0.4 × 0.3 1.1 × 0.3 0.7 × 0.3 0.8 × 0.3 1.2 × 0.3 1.2 × 0.3 
3–4 0.9 × 0.3 0.9 × 0.3 0.8 × 0.3 0.3 × 0.3 1.2 × 0.3 1.2 × 0.3 
5–6 1.1 × 0.3 0.4 × 0.3 0.3 × 0.3 0.8 × 0.3 0.3 × 0.3 1.0 × 0.3 
7–8 0.4 × 0.3 0.4 × 0.3 0.7 × 0.3 0.3 × 0.3 0.3 × 0.3 0.7 × 0.3 
9–10 0.6 × 0.3 0.4 × 0.3 0.8 × 0.3 0.9 × 0.3 0.3 × 0.3 0.7 × 0.3 
11–12 0.9 × 0.3 0.4 × 0.3 0.4 × 0.3 0.6 × 0.3 0.3 × 0.3 0.4 × 0.3  

Column Groups  

1st feasible solution Best solution after 3750 iterations Final Optimal Solution 

Interior columns 0.9 × 0.9 1.1 × 1.1 0.9 × 0.9 
Perimeter columns 1.1 × 1.1 0.7 × 0.7 0.7 × 0.7 
Corner columns 0.9 × 0.9 0.8 × 0.8 0.5 × 0.5 
Frame Costs (Euros) 228,700 205,910 192,694  

Fig. 9. Comparisons of algorithm performances: a) mean histories; b) mean histories in the first 1000 evaluations; c) final costs after 7500 evaluations; d) mean 
histories of hybrid algorithms; e) FPA and surrogate mean response after 6500 FPA evaluations; f) final costs of hybrid algorithms after 7500 evaluations. 
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is no benefit of using the SBO-FPA hybrid algorithm since it seems to be 
outperformed by the single algorithms (i.e. either SBO or FPA) in the full 
range of the response. 

The FPA-SBO algorithm exhibits initially a very similar performance 
to the FPA algorithm but after the first 2000 evaluations it seems to 
outperform the FPA algorithm. This is just due to the random procedures 
of the FPA algorithm since both solutions use the FPA in the first 6500 
evaluations. It is therefore more meaningful to compare the mean per-
formance of these algorithms after the 6500 function evaluations. This 
comparison is given in Fig. 9e. It can be seen in this figure that both the 
FPA and the SBO algorithms improve considerably the previously ob-
tained solutions after the 6500 evaluations. However, the SBO does so 
significantly earlier than the single FPA (i.e. approximately 250 function 
evaluations in this example as opposed to 1000 evaluations of the FPA 
algorithm after the first 6500 function evaluations). This is an inter-
esting conclusion since it means that the SBO has the potential to 
improve FPA’s performance even in the later stages of the response and 
with a very limited amount of additional function evaluations. 
Furthermore, Fig. 9f shows the final costs obtained at the end of the 
analysis for the single and hybrid algorithms. It can be seen in this figure 
that the best solution obtained by the FPA-SBO algorithm out of the 5 
independent runs is the same as the single FPA algorithm presented in 
Table 2. Even more, the FPA-SBO algorithm performs on average better 
and more robustly than the single FPA algorithm. This means that the 
recommended hybrid algorithm is a more reliable alternative to the 
single FPA algorithm. 

5. Conclusions 

Reinforced concrete frame buildings are associated with high eco-
nomic and environmental costs on a global scale. Therefore, the opti-
mum design of these structural systems is an imperative need. 
Nevertheless, the structural design of real-world concrete building 
frames to modern design guidelines is highly complex and accompanied 
by significant computational costs undermining the application of 

optimization methodologies in everyday practice. Therefore, the appli-
cability and efficiency of surrogate-based optimization (SBO) ap-
proaches in this optimization problem is investigated. 

To support the purposes of the current research, a versatile compu-
tational platform, namely STROLAB (i.e. Structural Optimization Lab-
oratory), is applied. The platform applies, for first time, a fully-fledged 
SBO algorithm to the optimum design of 3D concrete building frames. In 
particular, the SBO algorithm is applied in the design of a 4-storey and 
12-storey 3D building RC frames for minimum cost and according to 
Eurocodes. The performance of the SBO algorithm is then compared 
with several metaheuristic algorithms including SA, GA, PSO and FPA. 
Useful conclusions are made with respect to the solution efficiency of the 
SBO framework in the optimum structural design of concrete frames. 

It is found that for the smaller-scale concrete building the SBO al-
gorithm drives to the same optimum design solution as the other algo-
rithms and in a smaller number of function evaluations leading to 
significant savings in the required computational effort. For the larger- 
scale concrete building, it is observed that the SBO outperforms the 
other algorithms for very small numbers of function evaluations 
showing high early exploitation capability. Therefore, it represents the 
best choice for this building when the computational budget is very 
limited. Nevertheless, as the number of function evaluations increases, 
the SBO seems to get trapped in local optima. As a result, it is out-
performed by other optimization algorithms, with larger exploration 
capacity, such as the FPA algorithm. 

To combine the high exploration ability of the FPA algorithm and the 
exploitation capacity of the SBO algorithm, a novel hybrid approach, 
termed FPA-SBO, is also proposed in this study where the efficient global 
search of the FPA algorithm is followed by an intensive local search of 
the SBO algorithm. It is found that the SBO algorithm, when applied 
after the FPA algorithm, considerably improves the outcomes of the FPA 
search within a very limited number of additional function evaluations 
and that the FPA-SBO hybrid approach offers improved quality and 
more robust computational performance. 

At this point, it is important to clarify that a code-based approach is 

Fig. 10. Lateral deflections response of the optimal design solution with cross-sections drawn to scale: a) exterior frames; b) interior frames (note: displacements 
in m). 
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followed in the present study that is consistent with standard engi-
neering practice. A performance-based design approach is more appro-
priate to control structural performance of concrete frames. Therefore, 
the use of SBO algorithms in the optimum performance-based design of 
concrete frames needs to be examined. Furthermore, additional design 
objectives such as the life-cycle cost and/or environmental impact as 
well as structural robustness should be further investigated. 

Closing this study, the need for adopting efficient SBO procedures in 
the optimum design of real-world reinforced concrete structures is 
highlighted that can reduce drastically the computational cost and 
promote optimization efforts in standard engineering practice. Hence, 
further research is required to explore the applicability and efficiency of 
different existing SBO methodologies in the optimum design of concrete 
structures as well as to develop new SBO techniques that are specifically 
tailored to this optimization problem. 

Replication of results 

The SBO, GA, SA, PSO algorithms used in this study are parts of the 
MATLAB Global Optimization Toolbox (MathWorks 2020b). The Flower 
Pollination Algorithm (FPA) code is readily available in the MATLAB file 
exchange system. It is also noted that all the algorithms used in this 
study are based on stochastic processes. Hence, exact replication of the 
results presented herein is not possible. 
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Kayabekir, A.E., Bekdaş, G., Nigdeli, S.M., 2021b. Optimum design of reinforced concrete 
T-beam considering environmental factors via flower pollination algorithm. Int. J. 
Appl. Sci. Eng. 13, 166–178. 

Kennedy, J., 2001. Particle swarm optimization. In: Encyclopedia of Machine Learning. 
Springer, pp. 760–766. 

Khatibinia, M., Salajegheh, E., Salajegheh, J., Fadaee, M.J., 2013. Reliability-based 
design optimization of reinforced concrete structures including soil–structure 
interaction using a discrete gravitational search algorithm and a proposed 
metamodel. Eng. Optim. 45, 1147–1165. 

Kiakojouri, F., Biagi, V.D., Chiaia, B., Sheidaii, M.R., 2020. Progressive collapse of 
framed building structures: current knowledge and future prospects. Eng. Struct. 
206, 110061. 

Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., 1983. Optimization by simulated annealing. 
Science 220, 671–680. 

Lagaros, N.D.A., 2014. General purpose real-world structural design optimization 
computing platform. Struct. Multidiscip. Optim. 49, 1047–1066. 

Martins, A., Simões, L., Negrão, J., Lopes, A., 2020. Sensitivity analysis and optimum 
design of reinforced concrete frames according to Eurocode 2. Eng. Optim. 52, 
2011–2032. 

MathWorks, 2020a. https://uk.mathworks.com/products/matlab.html?s_tid=hp_produc 
ts_matlab. 

MathWorks, 2020b. MATLAB R2020b – Global Optimization Toolbox. Natick, MA, USA.  
Medeiros, G., Kripka, M., 2014. Optimization of reinforced concrete columns according 

to different environmental impact assessment parameters. Eng. Struct. 59, 185–194. 
Mergos, P.E., 2018a. Contribution to sustainable seismic design of reinforced concrete 

members through embodied CO2 emissions optimization. Struct. Concr. 19, 
454–462. 

Mergos, P.E., 2018b. Seismic design of reinforced concrete frames for minimum 
embodied CO2 emissions. Energy Build. 162, 177–186. 

Mergos, P.E., 2018c. Efficient optimum seismic design of reinforced concrete frames with 
nonlinear structural analysis procedures. Struct. Multidiscip. Optim. 58, 2565–2581. 

Mergos, P.E., 2021. Optimum design of 3D reinforced concrete building frames with the 
flower pollination algorithm. J. Build. Eng. 102935. 

Mergos, P.E., Yang, X.S., 2021. Flower pollination algorithm parameters tuning. Soft 
Comput. 25, 14429–14447. 

Mergos, P.E., Yang, X.S., 2022. Flower pollination algorithm with pollinator attraction. 
Evol. Intell. https://doi.org/10.1007/s12065-022-00700-7. 

Mokarram, V., Banan, M.R., 2018. An improved multi-objective optimization approach 
for performance-based design of structures using nonlinear time-history analyses. 
Appl. Soft Comput. 73, 647–665. 

Moss, R., Brooker, O., 2006. How to Design Concrete Structures Using Eurocode 2: 
Beams. The Concrete Centre, Surrey, UK.  

Olivier, J.G.J., et al., 2015. Trends in Global CO2 Emissions: 2015 Report, Ispra. 
European Commission, Joint Research Centre, Hague.  

Papadrakakis, M., Lagaros, N., 2002. Reliability-based structural optimization using 
neural networks and Monte Carlo simulation. Comput. Methods Appl. Math. 191, 
3491–3507. 

Paya-Zaforteza, I., Yepes, V., Gonzalez-Vidosa, F., 2008. Hospitaler A. Multiobjective 
optimization of concrete frames by simulated annealing. Comput. Aided Civ. 
Infrastruct. Eng. 23, 596–610. 
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