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Abstract

This thesis is a collection of three essays on optimal reinsurance design, solvency

analysis of deferred annuities and pension buy-outs. Two approaches to the optimal

reinsurance strategy are investigated in the first essay. First approach demonstrates an

optimal reinsurance model from insurer’s viewpoint whereas the second approach discusses

an optimal reinsurance model using Pareto optimality principle. Depending on how the

reinsurance premium is calculated, several optimal reinsurance problems are formulated

for the first and second approaches and Second Order Conic Programming is applied to

solve them. The second essay analyses the effect of stochastic mortality and interest

rates in the solvency analysis of a portfolio of simple deferred annuity contracts and

compares the results for deterministic and stochastic models. The analysis consist of

three risk scenarios: the benchmark case where mortality rates and interest rates are

both deterministic, the second case where only mortality rates are stochastic and the

last case where mortality rates and interest rates are both stochastic. The third essay

evaluates model risk associated with pricing pension buy-outs using different stochastic

mortality models. We use numerical examples to demonstrate that changes in various

model parameters have a significant effect in the pricing of pension-buyouts.
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Chapter 1

Introduction

An effective reinsurance strategy is critical for managing and mitigating an insurer’s risk

exposure. Insurers purchase reinsurance contracts to protect themselves from large losses.

Reinsurers receive premiums from the insurers and earn profits by undertaking risks. Opti-

mal reinsurance strategy enables risks of loss to be spread more widely across companies,

limit liability on a specific risk, stabilize loss experience, and to protect against catas-

trophic events. Therefore, reinsurance helps insurance companies to restrict the loss in

their balance sheets helps them to stay solvent. Without reinsurance insurers would have

been unable to accept a risk beyond their financial strength or resources for that class

of business. Consequently, insurers’ service to the public would also have been limited.

For this reason, the insurance industry and academia are constantly researching optimal

reinsurance strategies. Many optimal reinsurance models have been proposed so far and

in chapter 2 we discuss some of them and suggest some new approaches to this problem.

Two main approaches to the optimal reinsurance strategy are investigated in the chapter

2. Risk margins for these purposes are defined based on the principles of the Solvency

II regulations, which developed a methodology applied to all insurance and reinsurance

companies described in Quantitative Impact Studies (QIS 5) (see QIS [2010]) Solvency II

determines quantitative requirements, such as the rules to value assets and liabilities (in
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particular, technical provisions), to calculate capital requirements and to identify eligible

own funds to cover those requirements. Capital requirements are determined on the basis

of a 99.5% value-at-risk measure over one year and depend on diversification between

different sources of risk.

The first approach to the optimal reinsurance strategy demonstrates an optimal reinsur-

ance model from the point of view of an insurer who wants to minimise the sum of its

technical provisions and reinsurance premium. The second approach discusses an optimal

reinsurance model using Pareto optimality principle and aims to minimise the single-

objective optimisation function of the liabilities of insurer and reinsurer. The number of

claims in both methods is assumed to be random and individual claims are mutually in-

dependent. Our optimisation problem is an infinite dimensional problem and a standard

solution is to assume that all random variables are discrete, which reduces the infinite

dimensional problem to a finite dimensional optimisation problem. This can be achieved

by sampling from a parametric risk model or from claim history if it is available to the

decision-maker. The resulting optimisation models are convex and Second Order Conic

Programming is applied to solve them. Numerical examples demonstrate that different

types of reinsurance models are optimal under expected value and standard deviation

premium principle. Namely, quota-share reinsurance appears to be optimal for expected

value premium principle and capped stop loss reinsurance is optimal when standard de-

viation premium principle is in place.

Annuity products are used as protection from longevity risk, providing minimum guaran-

teed income for policyholders and reducing the risk of outliving their retirement assets.

Insurers and regulators, therefore, try to better understand solvency characteristics of

annuity products due to the fact that systematic longevity risk substantially affects an-

nuity providers’ solvency. While solvency characteristics of immediate life annuities have

been studied thoroughly, the role of deferred annuity liabilities in the portfolios of annuity
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providers has not been widely discussed in the literature. Chapter 3 estimates the im-

portance and effect of stochastic mortality rates in the solvency analysis of a portfolio of

simple deferred annuity contracts comparing the results for deterministic and stochastic

mortality models. Moreover, we conduct a solvency analysis assuming a stochastic model

for the interest rates and estimate the combined effect of stochastic mortality and interest

rates for solvency analysis. Our analysis contains three risk scenarios: the benchmark case

where mortality rates and interest rates are both deterministic, the second case where only

mortality rates are stochastic and the last case where mortality rates and interest rates

are both stochastic. The results demonstrate the dramatic importance of the mortality

models on evaluation of solvency margins for life annuities and the fact that model risk

is a prevalent issue when forecasting solvency margins. This also has significant effect on

the increase of solvency margins depending on deferred periods which is caused by the

extra longevity risk and the greater uncertainty about numbers of future survivors.

Pension buy-ins and buy-outs are tools used by defined benefit pension schemes for buy-

ing bulk annuities from insurance companies. Buy-outs and buy-ins transfer some or all

of the longevity and investment risk of a pension scheme to an insurance company and

cover a subset of the liabilities allowing partial de-risking. The financial crisis in 2007 -

2009 and the subsequent reduction in discount rates and the continuing increases in life

expectancy have led to substantially increased deficits of the pension funds. Nowadays

pension schemes increasingly hold buy-in and buy-out products as part of their de-risking

plan which is driven by pension deficits due to market downturns, low interest rate envi-

ronments, increased life expectancy of retirees and new pension accounting standards. In

response to these challenges and in order to off-load risks capital markets have developed

solutions for defined benefit pensions plans such as pension buy-ins and pension buy-outs.

According to LCP [2020], 2019 was a record-breaking year for pension buy-out and buy-in

deals , with both transaction sizes and volumes sizes increasing dramatically. The total
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value of transactions completed exceeded £43.8 billions. There were five transactions

over £3 billions in 2019 compared with only one such transaction ever occurring in prior

years. For example, in September 2019, the Allied Domecq Pension Fund completed a

£3.8 billions buy-in covering over 27000 members, including 10000 deferred pensioners.

Another example is Legal & General completing a £4.6 billion pounds partial buy-out

with the Rolls-Royce UK Pension Fund in June 2019. According to LCP [2020], the

largest transaction in 2018 was £4.4 billion British Airways Pensioner buy-in contact.

LCP [2020] discusses how the buy-in and buy-out market has performed in 2020, which

has been one of the most challenging periods of market volatility on record and conclude

that the buy-in market has been remarkably resilient. The survey looks at the proportion

of transactions that have been paused in the wake of the Covid-19 crisis and the impact

on target volumes for the year and conclusion was that significant activity has continued

throughout the crisis, and lockdowns did not impact the ability of the insurers to operate

or to write transactions. 2019 is the most recent year for which data for buy-ins and buy-

outs is available in the report, but LCP estimated that buy-in and buy-out volumes will

be £20bn−£25bn in 2020 making it one of the busiest years ever. Conversion of longevity

swaps to buy-ins has become an established model and over 20% of longevity swaps have

been successfully converted to buy-ins up to date. 2020 has also provided opportunities

for small schemes to de-risk with a 25% increase in transactions. The main difference

between pension buy-outs and pension buy-ins arises from credit risk. By using pension

buy-outs firms sponsoring defined benefit pension plans can take pension liabilities off

balance sheets and can eliminate counter-party risk. However,in the case of pension buy-

ins the obligations of buy-in insurers are usually not fully collateralised and guaranteed

by third parties, and therefore credit risk arises.

In chapter 4 we choose different stochastic mortality models to be representative of differ-

ent model types and conduct sensitivity analysis in order to evaluate model risk associated
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with pricing pension buy-outs. Calculation of the s-year survival probabilities associated

with using these models involves calculation of conditional expectations that usually have

no closed form. When we simulate the probability out to some future horizon period T ,

we then need to obtain the future time-T probabilities and annuity values contingent on

the value of the state variables at time T . If stochastic simulation is applied to solve

this, we will need to implement ”simulations within simulations”, i.e. nested simulations.

To avoid nested simulations technique which is computationally expensive we use the

methods proposed by Cairns [2011] and we extend it to Lee-Carter and Plat stochastic

mortality models. This pricing framework is then used to determine the prices of the pen-

sion buy-outs and assess sensitivity of buyout premiums to choice of stochastic mortality

model. We use the method described by Lin et al. [2017b] for assessing the longevity risk

premium of a buy-out bulk annuity and the risk-neutral price of the buy-outs. Our sensi-

tivity analysis and numerical examples illustrate that changes in the various parameters

have a significant effect in the pricing of pension-buyouts.

Chapter 5 summarises the thesis and discusses potential future research work.
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Chapter 2

Optimal reinsurance for the classical

risk model

2.1 Introduction

An appropriate reinsurance strategy is an effective tool for managing and mitigating an

insurer’s risk exposure. Therefore, practitioners and academics are constantly looking for

optimal reinsurance strategies. Different optimal reinsurance models have been proposed

and we discuss some of them in this chapter. Some models are based on optimal criterion

and derive an optimal reinsurance strategy from the point of view of insurer under such

criterion. Therefore, the insurer is the active part whereas the reinsurer is the passive

counterpart in these models. Even if such optimal reinsurance treaty is not available in

the market, these insurer-oriented type models can be a good guideline for the insurer.

Another category of models discusses an optimal reinsurance from the reinsurer’s point of

view under a certain optimal criterion. Also, some authors attempted to construct optimal

models by combining different reinsurance strategies, which is also very informative.

The first studies of optimal reinsurance were conducted by Borch [1960] and Arrow
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2.1. INTRODUCTION

[1963] and they caused great interest in this field. Borch [1960] proved that the stop-loss

reinsurance is optimal, by minimising the variance of insurer’s loss and making an as-

sumption that the reinsurance premium is calculated using expected value of reinsurer’s

losses. Arrow [1963] demonstrated that a stop-loss reinsurance is optimal by maximising

the expected utility of insurer’s final wealth and also computed the reinsurer’s premium

using the expected value principle. These classical works have been then extended to

models with default risks or to multiple-risk models. Dayananda [1970] discusses devel-

opment of ”risk theory” which led to research concerning the probability of ‘ruin’ of an

insurance company. Hesselager [1990] discusses optimal reinsurance structures when the

ceding insurer, and the reinsurer, seek to minimize the probability of eventual ruin. Cai

and Weng [2016] constructed optimal reinsurance portfolio from the insurer’s perspective

using sum of actuarial reserves and risk margins to define the risk exposure of the in-

surer. To measure the risk margins expectile function was used in the latter paper. Chi

and Meng [2014] investigated optimal reinsurance model with multiple reinsurers. Cai

et al. [2008], Cheung et al. [2014], Chi and Tan [2011] and Lu et al. [2014] used VaR

and conditional VaR as risk measures. Guerra and Centeno [2008] show that excess of

loss reinsurance is not the optimal form of reinsurance if the premium loadings of the

reinsurer are not proportional to the expected ceded claims; it also explored the relation-

ship between maximising the expected utility of wealth and maximising the adjustment

coefficient. Kaluszka [2004] demonstrates that both stop loss and quota share models can

be optimal depending on different assumptions for the constraints. Centeno and Guerra

[2010] further extended the results of Guerra and Centeno [2008] to the case where number

of risks in the portfolio are dependent. Asimit et al. [2013], Bernard and Ludkovski [2012]

and Biffis and Millossovich [2012] created optimisation models where the counterparty

default risk is taken into account. An empirical approach to optimal reinsurance design

was investigated by Tan and Weng [2014]. More extensions of optimisation models were
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2.1. INTRODUCTION

developed depending on different decision criteria, such as Verlaak and Beirlant [2003],

Kaluszka and Okolewski [2008], Ludkovski and Young [2009] etc.

The aim of this chapter is to introduce two approaches to optimal reinsurance mod-

elling taking into account randomness of the number of claims. First approach investigates

optimal reinsurance model from insurer’s point of view depending on how risk measure

corresponding to reinsurance premium is calculated. We define risk margins based on

principles of Solvency II regulations, which developed a methodology applied to all in-

surance and reinsurance companies in the European Union. Quantitative Impact Studies

(QIS 5) (see QIS [2010]) determines the principles and calculation basics for implementa-

tion of Solvency II. The second approach demonstrates Pareto optimal reinsurance model

based on different risk measure calculation principles. Borch [1962] investigated Pareto

optimal risk sharing in a reinsurance market, but monotonicity condition of the utility

function was omitted in this work. DuMouchel [1968] extended Pareto optimal risk sharing

model, adding the condition of monotonicity of the utility function. With the introduc-

tion of coherent and convex risk measures by Artzner et al. [1999] further analysis of the

problem of optimal sharing and allocation of risk developed. Using Pareto optimality

principle and coherent and convex risk measures, Barrieu and El Karoui [2005] developed

a methodology to minimise the risk of the issuer under the constraint established by a

buyer who enters the transaction only if his risk level remains below a given threshold.

Acciaio and Svindland [2009] study the existence of Pareto optimal risk allocations for the

agents with different (subjective) reference probability measures. We introduce a coher-

ent risk measure in this chapter to construct Pareto optimal reinsurance model applied

to aggregate losses and assuming random number of claims. Zeng and Luo [2013] apply

stochastic control theory to Pareto-optimal reinsurance games. By maximising a weighted

sum of two utilities which is an arithmetic Brownian motion they demonstrate that the

Pareto-optimal contracts can be classified into either proportional/quota-share functions
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or excess of loss functions based on standard deviation or expected value premium prin-

ciples respectively. Our numerical results show that proportional reinsurance is optimal

when reinsurance premium is calculated under expected value principle and the objective

is to minimise the sum of technical provisions under Solvency II and resinurance premium.

On the other hand, when standard deviation principle is in place, optimality in our model

is obtained when reinsurance model gets the form functional form
∑

R =
∑

X∧c, where

c is a constant, X is loss amount and R is loss of the reinsurer. This can be considered

a special case of capped stop loss reinsurance. Same applies when one-sided moments

introduced by Fischer [2003] are used to calculate reinsurance premium.

This chapter is organised as follows: Section 4.2 describes the main functions that are

used in this chapter to build optimal resinurance models, i.e. risk margins, risk measures

etc. Section 2.3 describes the process of constructing of optimal reinsurance models and is

divided into two parts. The first subsection discusses an optimal reinsurance model from

insurer’s viewpoint, whereas the second subsection demonstrates an optimal reinsurance

model using Pareto optimality principle. Section 2.4 provides numerical illustrations

related to the optimisation models in the section 2.3. Section 2.5 concludes this chapter.

The proofs of the propositions from the Section 2.3 are relegated to Section 2.6.

2.2 Background

The current section determines risk margins, risk measures and other functions that are

needed to construct optimal reinsurance models for the purposes of this chapter.

Different methods have been proposed in the literature to determine the risk margin.

For the purposes of this thesis we define risk margin based on Solvency II principles. Let

X be a generic random risk X that is paid in full by an insurer, i.e. net of reinsurance.

According to the QIS5 specifications, the Risk Margin(RM) for the Underwriting Risk
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(UwR) is given by

RMUwR(X) := g
(
a1 · Pnet, b1 · E(X)

)
, (2.1)

where Pnet is the net premium retained by the insurer. In addition, g(x, y) :=
√
x2 + y2 + xy,

a1 := δ

exp
{

Φ−1(p)
√

log(1 + σ2
PR)

}
√

1 + σ2
PR

− 1


b1 := δ

exp
{

Φ−1(p)
√

log(1 + σ2
RR)

}
√

1 + σ2
RR

− 1
. (2.2)

Moreover, p = 99.5%, Φ−1(·) is the quantile function of the standard Normal distribution

and δ is the adjusted Cost-of-Capital-rate. Note that σ2
PR and σ2

RR are standard deviations

for the premium risk (PR) and reserve risk (RR) respectively. The QIS5 recommendations

have shown that σPR and σRR estimates are within (5%, 21.5%).

The next source of risk is the Unavoidable Market Risk, for which the corresponding

RM is given by

RMUMR(X) := c · E(X), (2.3)

where c = CoC × (d − n)(d − n + 1)∆n and CoC is the Cost-of-Capital rate and d is

the modified duration of the insurer’s net liability. In addition, n represents the longest

duration of available risk-free financial instruments to cover X, and ∆n is the absolute

decrease of the risk-free interest for maturity n under the downward stress scenario of the

interest rate risk sub-module.

Now, assume that in fact the random risk X = XI +XR is shared between the insurer

and one reinsurer, where XI and XR are the amounts paid in full by the insurer and

reinsurer, respectively. Consequently, the RM corresponding to another source of risk,

namely Counterparty Default Risk, is measured as follows

RMCDR (XR) := g (a2 · PReins, b2 · E(XR)) , (2.4)
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where PReins is the reinsurance premium. In addition,

a2 := δ(1−RecR)l
√
q(1− q)×

Φ
(√

log(1 + σ2
PR)− Φ−1(p)

)
1− p −

exp
{

Φ−1(p)
√

log(1 + σ2
PR)

}
√

1 + σ2
PR

 (2.5)

and

b2 := δ(1−RecR)l
√
q(1− q)×

Φ
(√

log(1 + σ2
RR)− Φ−1(p)

)
1− p −

exp
{

Φ−1(p)
√

log(1 + σ2
RR)

}
√

1 + σ2
RR

. (2.6)

where q and RecR are the reinsurer’s one-year probability of default and recovery rate,

respectively, and l is a constant and usually, 3 < l < 5.

To assess insurer’s risk exposure we use risk margins of the insurer and expected

value of its losses. As mentioned above, such a risk margin-based approach is justified by

Solvency II regulations. Moreover, reinsurance optimisation in this chapter is applied to

independent and identically distributed claims.

Let us assume that the claim amounts Xi, i = 1, 2, . . . are non-negative independent

and identically distributed (i.i.d.) random variables and the number of claims N arising in

one period is random. The reinsurer agrees to pay R[Xi], the amount by which the entire

loss exceeds the insurer’s amount, I[Xi], and therefore I[Xi] +R[Xi] = Xi. The functions

I(·) and R(·) are called the retained loss function and ceded loss function, respectively.

To prevent moral hazard in a reinsurance contract, both I(·) and R(·) are assumed to be

non-decreasing and therefore, Lipschitz continuous and we have that

I, R ∈ F :=
{
f : 0 ≤ f(x) ≤ x and x− f(x) are non-decreasing functions

}
(2.7)

For practical prospectives, our risk model assumes that actual number of risks is ran-

dom, as explained earlier, and the insurer’s risk includes its reserves (expected claim
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payments and their variability that is measured by the risk margins) and the reinsurance

premium. Specifically, the insurer measures the “common” risk, known as the best es-

timate, as (1 + ρ1)E(·) and it can be seen as an insurer’s cost to set up the reserves in

normal circumstances with ρ1 being marginal cost per risk exposure. According to QIS5

best estimate can be calculated either net or gross of reinsurance. For the purposes of this

chapter we calculate it net of reinsurance. Moreover, the reinsurer premium, denoted as

π, is charged for the entire risk portfolio ans should be less than P , the premium charged

by the insurer. Therefore, one needs to make further assumptions. There is a variety of

risk-based premium calculations, but two common premium principles known in practice

are:

i) Expected value principle: π(·) = (1 + λ)E(·);

ii) Standard deviation principle: π(·) = E(·) + λ Sd(·).

Moreover, we demonstrate Pareto optimal models using parametric class of non-comonotone

coherent risk measures that are not comonotone from Fischer [2003]

π(·; e, d) = E(·) + e

(
E (· − E(·))d+

)1/d

with 0 ≤ e ≤ 1, 1 ≤ d ≤ ∞, (2.8)

where, x+ = max(x, 0), therefore the above formula represents the right-end point of the

sample space.

2.3 Main results

This section discusses the main optimisation models for the purposes of this chapter. It is

divided into two parts. The first subsection demonstrates an optimal reinsurance model

from insurer’s point of view, while the second subsection analyses an optimal reinsurance

strategies using Pareto optimality principle.
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2.3.1 Optimal reinsurance model from insurer’s viewpoint

The current subsection demonstrates the scope of optimal reinsurance from insurer’s

point of view. In this case our aim is to minimise the insurer’s liabilities and reinsurance

premium. In other words, we need to minimise the sum of risk margins, best estimate and

reinsurance premium. Considering all the mentioned in the previous section, a plausible

optimisation problem can be formulated as follows:

min
(I,R)∈F

H(I, R), where (2.9)

H(I, R) := RMUwR

(
I

N∑
i=1

Xi

)
+RMUMR

(
I

N∑
i=1

Xi

)
+RMCDR

(
R

N∑
i=1

Xi

)

+(1 + ρ1)E
(
I

N∑
i=1

Xi

)
+ π

(
R

N∑
i=1

Xi

)
,

= g

(
a1

(
P − π

(
R

N∑
i=1

Xi

))
, b1 · E

(
I

N∑
i=1

Xi

))
+ (1 + ρ1 + c1) · E

(
I

N∑
i=1

Xi

)

+g
(
a2 · π

(
R

N∑
i=1

Xi

)
, b2 · E

(
R

N∑
i=1

Xi

))
+ π

(
R

N∑
i=1

Xi

)
. (2.10)

Clearly, we need to ensure that the insurer premium P is larger than the reinsurer’s

charges and therefore, our optimisation problem is now given by

min
(I,R)∈F

H(I, R), s.t. π

(
R

N∑
i=1

Xi

)
≤ P and I(·) +R(·) = ·, (2.11)

which is the main aim of this subsection.

The optimisation problem displayed in (2.11) is an infinite dimensional problem due

to the function variable R, which is a very difficult problem to solve. A standard solution

is to assume that all random variables are discrete, which reduces to solving a finite

dimensional optimisation problem. This can be achieved by sampling from a parametric

risk model or from claim history if it is available to the decision-maker. That is, let

(n1, n2, . . . , nm) be the “observed” number of claims sample. For each scenario, the claim

sizes are xk = (xk1, xk2, . . . , xkr)T , where 1 ≤ k ≤ m and r := max{nk, 1 ≤ k ≤ m}.
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Note that xki = 0 for all nk ≤ i ≤ r and we make this choice in order to make our

numerical implementations possible. If one needs to sample from a parametric model,

then the threshold r is chosen such that Pr(N > r) is very small. Further, a claim size

sample tk = (tk1, tk2, . . . , tkr)T is drawn for the kth scenario and the actual claim size

sample becomes xk = (xk1, xk2, . . . , xkr)T with xki = tkiIi≤nk for all 1 ≤ i ≤ r, where by

definition, 1A represents the indicator operator corresponding to set A that equals to 1 if

A is true and 0 otherwise.

Next, a portion of each loss xki is paid by the reinsurance company, denoted as zki,

while the remaining amount yki := xki − zki is paid by the insurance company. Con-

sequently, the decision variables in (2.11) are now given by 2r × m decision variables,

Y =
(
y1,y2, . . . ,ym

)
and Z =

(
z1, . . . , zm

)
. The moral hazard constraints are replaced

by

Ayk ≤ Axk, Azk ≤ Axk and yk + zk = xk for all 1 ≤ k ≤ m, (2.12)

where the r × r matrix A is given by

1 0 . . . 0

−1 1 . . . 0
. . . . . .

0 0 . . . 1


. (2.13)

Finally, the RMs and reinsurer’s premium in (2.11) are replaced by their sample esti-

mators. The reinsurance premium based on the Expected value principle and the given

sample becomes
1 + λ

m

m∑
k=1

1Tzk = 1 + λ

m
1T
(
1Tz1, . . . ,1Tzm

)
, (2.14)

where 1 is a column vector of ones. For the second case where the Standard deviation

principle is used for premium calculations, the reinsurance premium is given by

1
m

1T
(
1Tz1, . . . ,1Tzm

)
+ λ

∥∥∥Q(1Tz1, . . . ,1Tzm
)∥∥∥

√
m− 1

, (2.15)
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where the matrix Q is defined as

1− 1
m

− 1
m

. . . − 1
m

− 1
m

1− 1
m

. . . − 1
m

... ... . . . ...

− 1
m

− 1
m

. . . 1− 1
m


(2.16)

and ‖ · ‖ represents the Euclidean distance, i.e. ‖x‖ :=
(

n∑
i=1

x2
i

)1/2

. Recall that for larger

sample, one may use the biased estimator, i.e. divide by m instead of m−1 in the standard

deviation estimator (for details, see Asimit et al. [2018])

We are now ready to state the first finite dimensional optimisation problem where the

Expected value principle is in place.

Problem 2.3.1 Assume that the optimisation problem from (2.11) is defined under the

Expected value principle assumption, i.e. π(·) = (1 + λ)E(·). Therefore, the following has

to be solved:

min
(Y,Z)∈

<r×m×<r×m

{
g

(
a1P−

a1(1+λ)
m

m∑
k=1

1Tzk,
b1

m

m∑
k=1

1Tyk
)

+c3

m∑
k=1

1Tyk
}

s.t. 1 + λ

m

m∑
k=1

1Tzk ≤ P, (2.17)

Ayk ≤ Axk,Azk ≤ Axk,yk + zk = xk for all 1 ≤ k ≤ m,

where c3 :=
(
ρ1 + c1 − λ− g

(
a2(1 + λ), b2

))
/m.

Recall that Problem 2.3.1 is a non-linear and convex optimisation problem that is

almost linear, except of the terms that involve the g function. Various algorithms are

available for solving such problems and some algorithms are more efficient than others.

The non-linearity is a big issue, but some formulation are efficiently solved even for high

dimensional problems. For example, it is well-known that Second Order Conic Program-

ming (SOCP) type problems are implementable in fairly large dimensions. Specifically,
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computations are possible if the number of decision variables is very large, even for a

couple of millions. The SOCP-type problems have the following representation

min
x

{
aT1 x

}
s.t. ‖Blx + bl‖ ≤ cTl x + dl, l = 1, . . . , L, Bx = a2, (2.18)

where B and Bl (a1, a2, bl, cl and cl) are matrices (column vectors) of appropriate

dimensions. We are now able to show that the instance displayed in (2.17) is SOCP

representable as given in Proposition 2.3.1 and its proof is relegated to Section 2.6.

Proposition 2.3.1 The Problem 2.3.1 is solved by the following SOCP:

min
(Y,Z,u)∈

<r×m×<r×m×<

{
u+ c3

m∑
k=1

1Tyk
}

s.t.
∥∥∥∥∥B

(
a1P −

a1(1 + λ)
m

m∑
k=1

1Tzk,
b1

m

m∑
k=1

1Tyk
)∥∥∥∥∥ ≤ u,

1 + λ

m

m∑
k=1

1Tzk ≤ P,

Ayk ≤ Axk,Azk ≤ Axk,yk + zk = xk, for all 1 ≤ k ≤ m, (2.19)

where B :=

 1 1/2

0
√

3/2

 .
Next, we solve the second finite dimensional optimisation problem under the Standard

deviation principle assumption, which is stated as Problem 2.3.2.

Problem 2.3.2 Assume that the optimisation problem from (2.11) is made under the

Standard deviation principle assumption, i.e. π(·) = E(·) + λ Sd(·). Therefore, the

following optimisation problem has to be solved

min
(Y,Z)∈

<r×m×<r×m

g
a1P −

a1

m

m∑
k=1

1Tzk − a1λ

∥∥∥Q(1Tz1, . . . ,1Tzm
)∥∥∥

√
m− 1

,
b1

m

m∑
k=1

1Tyk


+g

a2

m

m∑
k=1

1Tzk + a2λ

∥∥∥Q(1Tz1, . . . ,1Tzm
)∥∥∥

√
m− 1

,
b2

m

m∑
k=1

1Tzk

+ c4

m∑
k=1

1Tyk

+ 1
m

m∑
k=1

1Tzk + λ

∥∥∥Q(1Tz1, . . . ,1Tzm
)∥∥∥

√
m− 1

 (2.20)

s.t. 1
m

m∑
k=1

1Tzk + λ

∥∥∥Q(1Tz1, . . . ,1Tzm
)∥∥∥

√
m− 1

≤ P,

Ayk ≤ Axk,Azk ≤ Axk,yk + zk = xk for all 1 ≤ k ≤ m,
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where c4 :=
(
1 + ρ1 + c1

)
/m

As before, Problem 2.20 could be efficiently solved if one could rewrite the optimisation

problem in a SOCP form, which is shown in Proposition 2.3.2.

Proposition 2.3.2 If the function g(a1P−a1x, y) + g(a2x, z) + x is non-decreasing in x

for all x ∈ [0, P ] and any given y, z, then the Problem 2.3.2 is solved by the following

SOCP:

min
(Y,Z,u,v,w)∈

<r×m×<r×m×<×<×<

{
u+ v + w + c4

m∑
k=1

1Tyk
}

s.t.
∥∥∥∥∥B

(
a1P−a1w,

b1

m

m∑
k=1

1Tyk
)∥∥∥∥∥ ≤ u,

∥∥∥∥∥B
(
a2w,

b2

m

m∑
k=1

1Tyk
)∥∥∥∥∥ ≤ v,

∥∥∥Q(1Tz1, . . . ,1Tzm
)∥∥∥ ≤ √m− 1

λ

(
P − 1

m

m∑
k=1

1Tzk
)
, (2.21)

∥∥∥Q(1Tz1, . . . ,1Tzm
)∥∥∥ ≤ √m− 1

λ

(
w − 1

m

m∑
k=1

1Tzk
)
,

Ayk ≤ Axk,Azk ≤ Axk,yk + zk = xk for all 1 ≤ k ≤ m.

Remark 2.3.1 Note that the non-decreasing property of function g(a1P−a1·, y)+g(a2·, z)+

· is clearly satisfied if −1 ≤ a1, a2 ≤ 1, since the derivatives of g(·, y) with respect to the

first variable is less than 1 for any y. One may verify that 0 ≤ a1, b1 ≤ 1 is true for all

recommended values and market-wide estimates of σPR and σRR, respectively.

A more general way of writing (2.11) is as follows:

min
(I,R,t)∈F×<

H(I, R, t), s.t. π

(
N∑
i=1

R[Xi]
)
≤ t ≤ P and I(·) +R(·) = ·, where

H(I, R, t) := g

(
a1(P−t), b1 ·E

(
N∑
i=1

I
[
Xi

]))
+mc4 · E

(
N∑
i=1

I
[
Xi

])
+

g

(
a2t, b2 ·E

(
N∑
i=1

R[Xi]
))

+t. (2.22)

provided that H(I, R, t) is non-decreasing in t.
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Now, the premium calculation based on π for a generic risk X, discrete distributed

with a state space Ω =
{
x1, . . . , xm

}
, is given by π

(
x
)
. Therefore, the finite dimensional

optimisation problem becomes

min
(Y,Z,t)∈

<r×m×<r×m×<

{
g

(
a1P − a1t,

b1

m

m∑
k=1

1Tyk

)
+ g

(
a2t,

b2

m

m∑
k=1

1Tzk
)

+ c4

m∑
k=1

1Tyk + t

}

s.t. π
(
1Tz1, . . . ,1Tzm

)
≤ t ≤ P, (2.23)

Ayk ≤ Axk,Azk ≤ Axk,yk + zk = xk for all 1 ≤ k ≤ m.

Similar arguments to those used in the proof of Proposition 2.3.2, one may show that the

above is equivalent to solving the following optimisation problem:

min
(Y,Z,u,v,t)∈

<r×m×<r×m×<×<×<

{
u+ v + t+ c4

m∑
k=1

1Tyk

}

s.t.
∥∥∥∥∥B

(
a1P−a1t,

b1

m

m∑
k=1

1Tyk

)∥∥∥∥∥ ≤ u,

∥∥∥∥∥B
(
a2t,

b2

m

m∑
k=1

1Tzk
)∥∥∥∥∥ ≤ v,(2.24)

π
(
1Tz1, . . . ,1Tzm

)
≤ t ≤ P,

Ayk ≤ Axk,Azk ≤ Axk,yk + zk = xk for all 1 ≤ k ≤ m.

provided that g(a1P−a1x, y)+g(a2x, z)+x is non-decreasing function in x for all x ∈ [0, P ]

and any given y, z. Recall that Remark 2.3.1 explains why the latter sufficient condition is

not restrictive. Clearly, (2.21) is SOCP-representable as long as π
(
1Tz1, . . . ,1Tzm

)
≤ t is

SOCP-representable. It is shown in Asimit et al. [2018]) that many common risk measure

choices for π leads to SOCP representations.

2.3.2 Pareto optimal reinsurance model

All the optimisation problems that we have been investigated by now are from the

insurer’s point of view. Since the risk transfer is possible if both parties of the bilateral

insurance contract are incentivised to accept the transfer, finding the Pareto optimal
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contracts would also be informative. The aim of using Pareto optimality principle here

is to construct contracts such that no further changes in the contact can make insurer or

reinsurer better off without making other party worse off. We introduce another coherent

risk measure for reinsurance premium principle in this subsection for construction of

Pareto optimal reinsurance model.

Note, that to avoid confusion in this subsection we use G1 and G2 for insurer and

reinsurer respectively. Moreover, for the sake of simplicity, we use same notation for

a1, a2, b1, b2 for insurer and reisurer. In practice, these coefficients may differ. c2 and

ρ2 are the reinsurer’s model parameters with equivalent definitions of c1 and ρ1. Let us

assume that the insurer seeks to minimise its risk, G1(I, R) := H(I, R), while the reinsurer

aims to reduce its risk

G2(I, R) := g

(
a1 · π

(
R

N∑
i=1

Xi

)
, b1 ·E

(
R

N∑
i=1

Xi

))

+
(
1+ρ2+c2

)
· E

(
R

N∑
i=1

Xi

)
−π

(
R

N∑
i=1

Xi

)
(2.25)

subject to π
(
R

N∑
i=1

Xi

)
≤ P and I(·)+R(·) = ·. Therefore, we call a contract (I∗, R∗) ∈ F

satisfying the constraints of (2.11) and (2.25) feasible. As we can see, conflicting objectives

arise amongst the insurer and the reisurer and we use the concept Pareto optimality. The

contract profile (I∗, R∗) ∈ F is called Pareto Optimal if there is no other feasible contract

profile (Ĩ , R̃) ∈ F such that G1(Ĩ , R̃) ≤ G1(I∗, R∗) and G2(Ĩ , R̃) ≤ G2(I∗, R∗) with at

least one strict inequality.

Finding all Pareto optimal contracts is a much more difficult problem and the difficulty

here lies in the necessity of considering two or more objective functions. This involves

standard multi-objective optimisation methods that could be reduced to a weighted sum

scalarisation of the concurrent objectives as long as all objective functions are convex.

The main idea behind multi-objective optimisation is that there are several conflicting

objectives f1(x), f2(x), ..., fn(x) that need to be simultaneously optimised. An optimal
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solution to the MOP is a solution where there exists no other feasible solution that

improves the value of at least one objective function without making any other objective

function worse off. This is the concept of Pareto optimality. That is, a vector x∗ ∈ S

is Pareto optimal for a multi-objective optimisation problem if all vectors x ∈ S have a

greater value for at least one of the objective functions fi, where i = 1, . . . , n or have

the same value for all the objective functions. Generally, a decision vector x∗ ∈ S is

considered to be Pareto optimal if there does not exist x ∈ S such that fi(x) < fi(x∗)

and fj(x) < fj(x∗) for at least one index j. The vector of objective functions is said to

be Pareto optimal if the corresponding decision vector x is Pareto optimal. Scalarisation

method formulates a single-objective optimisation problem by aggregating all the objective

functions of a multi-objective optimisation problem into a single function , such that

optimal solutions to the single-objective optimisation problem are Pareto optimal solutions

to the MOP. Particularly, a single objective optimisation problem is defined related to

the multi-objective optimisation using a real-valued scalarising function, normally being

a function of the objective functions, auxiliary scalar or vector variables, and/or scalar or

vector parameters.

Linear scalarisation generates efficient solutions if the objective functions are convex.

Thus, the weighted sum scalarisation method minimises a positively weighted sum of the

objectives, which represents a standard optimisation problem. In particular, scalarisation-

based multi-objective optimisation methods formulate a scalarised function F from the

objective functions f1, . . . , fN of the multi-objective optimisation problem (MOP) with

certain non negative weights γ1, . . . , γN ≥ 0 and minimise F . They solve the following

single-objective optimisation problem :

min
x∈S

F (x, γ), γ ∈ Ω+ (2.26)
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where

F (x, γ) =
N∑
n=1

γnfn(x), (2.27)

Ω+ =
{
γ

∣∣∣∣∣
N∑
n=1

γ = 1, γ ≥ 0, n = 1, ..., N
}

(2.28)

Here, γ = [γ1, ..., γN ]T denotes weight vector and Ω+ is the set of normalized weight

vectors whose sum of elements is equal to one. Under the convexity assumptions, the

solution to this single objective optimisation problem is Pareto optimal. If the problem

is strictly convex, the solution x∗ ∈ S is also unique.

Thus, having two objective functions G1(I, R) and G2(I, R) we are now able to for-

mulate our optimisation problem using weighted sum scalarisation method as follows:

min
(I,R)∈F

γG1(I, R) + (1− γ)G2(I, R), s.t. π

(
R

N∑
i=1

Xi

)
≤ P

and I(·) +R(·) = ·, (2.29)

where γ ∈ (0, 1). If functions G1 and G2 are convex, their affine combination (2.29) is

also convex. Thus, we can present (2.29) in the following form

min
(I,R,t)∈F×R

γG1(I, R, t) + (1− γ)G2(I, R, t),

s.t. π

(
R

N∑
i=1

Xi

)
≤ t ≤ P and I(·)+R(·) = · (2.30)

where G1(I, R, t) = H1(I, R, t) and G2(I, R, t) = g

(
a1 · t, b1 ·E

(
R

N∑
i=1

Xi

))
+
(
1+ρ2 + c2

)
·

E
(
R

N∑
i=1

Xi

)
− t.

Again, in order to be able to solve this problem using SOCP we need to discretise it and

ensure that the constraint involving π is convex. Thus, the Pareto optimal contracts could

be found via a finite dimensional optimisation problem and is given Problem 2.3.3.

Problem 2.3.3 Assume that π is a convex risk measure. Therefore, the multi-objective
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problem is reduced to the following convex optimisation instance:

min
(Y,Z,t)∈

<r×m×<r×m×<

{
γg

(
a1P − a1t,

b1

m

m∑
k=1

1Tyk
)

+γg
(
a2t,

b2

m

m∑
k=1

1Tzk
)
.

+(1−γ)g
(
a1t,

b1

m

m∑
k=1

1Tzk
)

+c5

m∑
k=1

1Tyk+(2γ − 1)t
}

(2.31)

s.t. π
(
1Tz1, . . . ,1Tzm

)
≤ t ≤ P,

Ayk ≤ Axk,Azk ≤ Axk,yk + zk = xk for all 1 ≤ k ≤ m,

where γ ∈ [0, 1] is a given parameter and c5 :=
(
γ
(
1 +ρ1 + c1

)
− (1−γ)

(
1 +ρ2 + c2

))
/m.

As before, Problem 2.3.3 could be rewritten in a more convenient form, as shown in

Proposition 2.3.3.

Proposition 2.3.3 If γ ≥ 1
2−a1

the Problem 2.3.3 is solved by the following optimisation

problem:

min
(Y,Z,t,u,v,w)∈

<r×m×<r×m×<×<×<×<

{
γ(u+ v) + (1− γ)w + (2γ − 1)t+ c5

m∑
k=1

1Tyk
}

s.t.
∥∥∥∥∥B

(
a1P−a1t,

b1

m

m∑
k=1

1Tyk
)∥∥∥∥∥ ≤ u,

∥∥∥∥∥B
(
a2t,

b2

m

m∑
k=1

1Tzk
)∥∥∥∥∥ ≤ v,∥∥∥∥∥B

(
a1t,

b1

m

m∑
k=1

1Tzk
)∥∥∥∥∥ ≤ w, (2.32)

π
(
1Tz1, . . . ,1Tzm

)
≤ t ≤ P,

Ayk ≤ Axk,Azk ≤ Axk,yk + zk = xk for all 1 ≤ k ≤ m.

We can show that 2.32 is SOCP-representable as long as π
(
1Tz1, . . . ,1Tzm

)
≤ t is SOCP-

representable. As mentioned before, it is shown in Asimit et al. [2018]) that many common

risk measure choices for π lead to SOCP representations.

Lemma 2.3.1 Let us assume that the optimisation Problem 2.3.3 is made under the

Expected value assumption i.e π(·) = (1 + λ)E(·). Then 2.32 is equivalent to solving the
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following problem

min
(Y,Z,t,u,v,w)∈

<r×m×<r×m×<×<×<×<

{
γ(u+ v) + (1− γ)w + (2γ − 1)t+ c5

m∑
k=1

1Tyk
}

s.t.
∥∥∥∥∥B

(
a1P−a1t,

b1

m

m∑
k=1

1Tyk
)∥∥∥∥∥ ≤ u,

∥∥∥∥∥B
(
a2t,

b2

m

m∑
k=1

1Tzk
)∥∥∥∥∥ ≤ v,∥∥∥∥∥B

(
a1t,

b1

m

m∑
k=1

1Tzk
)∥∥∥∥∥ ≤ w, (2.33)∥∥∥∥∥(1 + λ)

m

m∑
k=1

1Tzk
∥∥∥∥∥ ≤ t ≤ P

Ayk ≤ Axk,Azk ≤ Axk,yk + zk = xk for all 1 ≤ k ≤ m.

Lemma 2.3.2 Assume that the optimisation problem 2.3.3 is defined under the Standard

deviation principle assumption, i.e. π(·) = E(·) + λ Sd(·). Then (2.32) is equivalent to

solving the following problem

min
(Y,Z,t,u,v,w)∈

<r×m×<r×m×<×<×<×<

{
γ(u+ v) + (1− γ)w + (2γ − 1)t+ c5

m∑
k=1

1Tyk
}

s.t.
∥∥∥∥∥B

(
a1P−a1t,

b1

m

m∑
k=1

1Tyk
)∥∥∥∥∥ ≤ u,

∥∥∥∥∥B
(
a2t,

b2

m

m∑
k=1

1Tzk
)∥∥∥∥∥ ≤ v,∥∥∥∥∥B

(
a1t,

b1

m

m∑
k=1

1Tzk
)∥∥∥∥∥ ≤ w, (2.34)

∥∥∥Q(1Tz1, . . . ,1Tzm
)∥∥∥ ≤ √m− 1

λ

(
t− 1

m

m∑
k=1

1Tzk
)
, t ≤ P,

Ayk ≤ Axk,Azk ≤ Axk,yk + zk = xk for all 1 ≤ k ≤ m.

Proposition 2.3.4 Let us assume that the risk measure in the optimisation Problem

2.3.3 is defined as

π(Z, e, d) := 1
m

m∑
k=1

1Tzk + e

 1
m

m∑
k=1

(
1Tzk −

1
m

m∑
k=1

1Tzk
)d

+

1/d

(2.35)
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Problems (2.32) and (2.36) are equivalent, where

min
(Y,Z,τ ,u,v,w,r,t)∈

<r×m×<r×m×<m×<×<×<×<×<

{
γ(u+ v) + (1− γ)w + (2γ − 1)t+ c5

m∑
k=1

1Tyk
}

s.t.
∥∥∥∥∥B

(
a1P−a1t,

b1

m

m∑
k=1

1Tyk
)∥∥∥∥∥ ≤ u,

∥∥∥∥∥B
(
a2t,

b2

m

m∑
k=1

1Tzk
)∥∥∥∥∥ ≤ v,∥∥∥∥∥B

(
a1t,

b1

m

m∑
k=1

1Tzk
)∥∥∥∥∥ ≤ w, (2.36)

ZT1− r1 ≤ τ ,0 ≤ τ

r + e1

(
m∑
k=1

τ dk

)1/d

≤ t, t ≤ P

Ayk ≤ Axk,Azk ≤ Axk,yk + zk = xk,
1
m

m∑
k=1

1Tzk = r

for all 1 ≤ k ≤ m.

where e1 := e(1/m)1/d.

The above formulation is almost written in a SOCP form, but the risk measure function

requires more work.

Lemma 2.3.3 If d ∈ {1,+∞}, then (2.36) is SOCP-representable without any change

and the case when d = 2 has the following form:

min
(Y,Z,τ ,u,v,w,r,t,ε)∈

<r×m×<r×m×<m×<×<×<×<×<×<

{
γ(u+ v) + (1− γ)w + (2γ − 1)t+ c5

m∑
k=1

1Tyk

}

s.t.
∥∥∥∥∥B

(
a1P−a1t,

b1

m

m∑
k=1

1Tyk

)∥∥∥∥∥ ≤ u,

∥∥∥∥∥B
(
a2t,

b2

m

m∑
k=1

1Tzk
)∥∥∥∥∥ ≤ v,∥∥∥∥∥B

(
a1t,

b1

m

m∑
k=1

1Tzk
)∥∥∥∥∥ ≤ w, (2.37)

1
m

m∑
k=1

1Tzk = r,ZT1− r1 ≤ τ ,0 ≤ τ , ‖τ‖ ≤ ε

‖ε‖ ≤ 1
e1

(t− r) , t ≤ P

Ayk ≤ Axk,Azk ≤ Axk,yk + zk = xk for all 1 ≤ k ≤ m.
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According to Morenko et al. (2013),
(

m∑
k=1

τ d
)1/d

≤ ε is SOCP-representable, therefore

we can discuss the cases when d is a rational number. For example, if d = 3, then the

constraints in the (2.36) could be rewritten as follows:

1Tξ ≤ ε,0 ≤ ξ,0 ≤ δ, τ 2
k ≤ εδk, δ

2
k ≤ τkξk, 1 ≤ k ≤ m (2.38)

Lemma 2.3.4 If d = 3, the SOCP reformulation of (2.36) is given by:

min
(Y,Z,τ ,ξ,δ,u,v,w,r,ε,t)∈

<r×m×<r×m×<m×<m×<m×<×<×<×<×<×<

{
γ(u+ v) + (1− γ)w + (2γ − 1)t+ c5

m∑
k=1

1Tyk

}

s.t.
∥∥∥∥∥B

(
a1P−a1t,

b1

m

m∑
k=1

1Tyk

)∥∥∥∥∥ ≤ u,

∥∥∥∥∥B
(
a2t,

b2

m

m∑
k=1

1Tzk
)∥∥∥∥∥ ≤ v,∥∥∥∥∥B

(
a1t,

b1

m

m∑
k=1

1Tzk
)∥∥∥∥∥ ≤ w,

1
m

m∑
k=1

1Tzk = r,ZT1− r1 ≤ τ ,0 ≤ τ , (2.39)

1Tξ ≤ ε,0 ≤ ξ,0 ≤ δ,

‖ 2τk, ε− δk‖ ≤ ε+ δk, ‖ 2δk,τk − ξk‖ ≤ τk + ξk, 1 ≤ k ≤ m

‖ε‖ ≤ 1
e1

(t− r) , t ≤ P

Ayk ≤ Axk,Azk ≤ Axk,yk + zk = xk for all 1 ≤ k ≤ m.

2.4 Numerical Illustrations

This section provides numerical illustrations to give some intuitive interpretation of opti-

misation problems from section 2.3. We demonstrate that different types of reinsurance

contract are optimal when using different principles for the risk measure.

Results are illustrated using four different distributions for claim amounts. First dis-

tribution is Log-Normal with parameters µ = 6.7084 and σ = 0.6315. The second one
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is exponential distribution with expected value of 1000. The third distribution is Pareto

distribution with the shape parameter 0, scale parameter 700 and location parameter

300. Finally, the last distribution is Gamma with the shape parameter 2.041 and scale

parameter 490. The parameters are chosen such that the four distributions have the

same expected value of 1000 and three of the distributions, namely, Log-Normal, Pareto

and Gamma have the same standard deviation of 700. We also choose λ = CoC/1.04,

CoC = 6%, σPR = 0.1 and σRR = 0.095, while n = 1 and ∆n = 3% as suggested in Asimit

et al. (2015). We set RecR = 50%, which is the benchmark value used in Solvency II,

and q = 6.04% that represents the one-year default probability of a B-rating reinsurer

calibrated in QIS5. Finally, it is also assumed that ρ1 = ρ2 = 0.17, d1 = d2 = 2.53, and

l = 3. Number of scenarios m in our numerical example is 50 for all four distributions

since we have experienced computational difficulties for scenario numbers larger than 50

and we trust that this number of scenarios is sufficiently informative for the purposes of

this chapter.

In the first example we consider four different distributions for aggregate losses in

Proposition 2.3.1, where we discuss optimisation problem from insurer’s point of view,

with expected value principle for the reinsurance premium. The Figure 2.4.1 contains the

plots of individual losses to reinsurer’s share in individual losses. We can see that the

individual losses mimic the functional form zkr = axkr, where a ≤ 1 is a constant.

We use linear regression to find a and adjusted R-squared and Normalised Root-mean-

square deviation (NRMSD) in order to assess goodness of fit.

Adjusted R-squired is greater than 99% and NRMSD is less that 5% for all distribu-

tions. Thus, evidence provided by the Table 2.4.1 is enough to accept functional form

zkr = axkr in this model. We can conclude that proportional reinsurance, specifically,
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Figure 2.4.1: Empirical solutions of zkr, 1 ≤ k ≤ m for proposition 2.3.1 for different

distributions.

quota-share is optimal here. The share of the reinsurer seems to be very high, but this,

apparently, happens due to the choice of parameters at the beginning of this section. This

value changes significantly with the change of parameters.

Next, we plot the Figure 2.4.2 of aggregate losses to reinsurer’s share in aggregate

losses for Proposition 2.3.2, where we discuss optimisation problem from insurer’s point

of view, with standard deviation principle based reinsurance premium. Choice of the

parameters is the same as in the previous example.

In this example optimal reinsurance contact mimics the functional form 1Tzk = 1Txk∧

c, where c is a constant. This means that the reinsurer should cover aggregate portfolio

losses up to amount c, and if aggregate losses are higher than c, insurer pays the rest and
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Table 2.4.1: Linear regression results for individual losses

Distribution a (share of the reinsurer) Adj R-squared NRMSD

Lognormal 0.9484 0.995 0.0047

Exponential 0.9485 0.9995 0.0056

Gamma 0.9483 0.9993 0.0063

Pareto 0.9483 0.9996 0.0041
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Figure 2.4.2: Empirical solutions of 1Tzk, 1 ≤ k ≤ m for proposition 2.3.2 for different

distributions.

keeps the heavy tailed risks. In order to explain the limit on aggregate losses we need to

define a slightly different problem which allows risk transfer to control not only individual

42



2.4. NUMERICAL ILLUSTRATIONS

but also aggregate losses. That is, we need to add additional constraints to our problem

and formulate the below infinite-dimensional optimisation model, where minimisation is

taken with respect to all possible ceded and retained loss functions for aggregate claims:

min
I,R,s,g

H (I,R) , s.t. π

(
N∑
i=1

R[Xi]
)
≤P, I(·)+R(·)= ·,

s

(
N∑
i=1
Xi

)
+g

(
N∑
i=1
Xi

)
=

N∑
i=1
Xi (2.40)

In order to avoid moral hazard the set of feasible solutions of I, R, s and g must satisfy

I, R, s, g :=
{
f : 0 ≤ f(x) ≤ x and x− f(x) are non-decreasing in x

}
(2.41)

Now we can formulate the discretised version of the above problem

min
(Y,Z,u,v,w)∈

<r×m×<r×m×<×<×<

{
u+ v + w + c4

m∑
k=1

1Tyk

}

s.t.
∥∥∥∥∥B

(
a1P−a1w,

b1

m

m∑
k=1

1Tyk

)∥∥∥∥∥ ≤ u,

∥∥∥∥∥B
(
a2w,

b2

m

m∑
k=1

1Tyk

)∥∥∥∥∥ ≤ v,

∥∥∥Q(1Tz1, . . . ,1Tzm
)∥∥∥ ≤ √m− 1

λ

(
P − 1

m

m∑
k=1

1Tzk
)
, (2.42)

∥∥∥Q(1Tz1, . . . ,1Tzm
)∥∥∥ ≤ √m− 1

λ

(
w − 1

m

m∑
k=1

1Tzk
)
,

Y1 ≤ X1,Z1 ≤ X1,Ayk ≤ Axk,Azk ≤ Axk,yk + zk = xk

for all 1 ≤ k ≤ m.

We can fit b(1Txk − c1)+ ∧ b(c2 − c1) for all k = 1, ...,m and estimate parameters

by introducing Ordinary Least Square (OLS) regression method. Moreover, admissibility

criterion is used to test goodness of fit. The estimates of the parameters (b̃, c̃1, c̃2) are

admissible whenever

∣∣∣1Tz∗k − b̃(1Txk − c̃1)+ ∧ b̃(c̃2 − c̃1)
∣∣∣ < ε (2.43)
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Our results are based on 1000 independent replications of the code, that is we draw 1000

random samples from X for each distribution and estimate the parameters b, c1, c2. Table

(2.4.2) provides numerical results for the parameters for different distributions.

The values of ε are quite small comparing to average total loss of around 50, 000. Thus,

Table 2.4.2: Results of admissibility test for aggregate losses

Distribution
Admissibility

mean (stdev) of b̃ mean (stdev) of c̃1 mean (stdev) of c̃2
ε = 1 ε = 10

Lognormal 98.2% 100% 1 (0) 0.05199 (0.1075) 49,018 (1,627)

Exponential 98% 100% 1 (0) 0.04314 (0.092) 48,672 (1,858)

Gamma 98.3% 100% 1 (0) 0.0538 (0.1167) 48,969 (1,602)

Pareto 98.7% 100% 1 (0) 0.0437 (0.0755) 49,024 (1,567)

in percentage terms ε ≈ 1
50,000 = 0.002% and ε ≈ 10

50,000 = 0.02%. We notice that when

ε ≈ 0.002% the admissibility is around 98%, and when ε ≈ 0.02% it is 100%. The estimate

of b̃ is 1 and c̃1 is close to 0, which is in line with graphical illustrations. Thus, we can

conclude that our empirical results confirm the functional form of 1Tzk = 1Txk ∧ c.

In the next example we consider four different distributions for individual losses for

Lemma 2.3.1 which is made under the expected value assumption for reinsurance premium

and using Pareto optimality principle. The parameter for weighted sum scalarisation in

Pareto optimal model is γ = 1
2−a1

+ ε and the choice of other parameters is the same as

in the previous examples.

Table providing results for linear regression is demonstrated below. We notice that,

as in the case with the first example, evidence provided by the Table 2.4.3 Pareto optimal

model is enough to accept functional form zkr = axkr for this model. Notice, that when

Pareto optimality principle is in place the share of the reinsurer a is less. Thus, from the

Figure 2.4.3 and Table 2.4.3 we can see that the functional form of the optimal reinsurance
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Figure 2.4.3: Empirical solutions of zkr, 1 ≤ k ≤ m for Lemma 2.3.1 for different distri-

butions.

model is proportional.

Next, we plot the graphs of aggregate losses to reinsurer’s share in aggregate losses for

Lemma 2.3.2, where the optimisation problem is defined under the Standard deviation

principle assumption and using Pareto optimality. Similarly, we plot graphs for Lemma

2.3.3.

Graphical illustrations 2.4.4 and 2.4.5 demonstrate that in the last two cases, optimality

is obtained when the function of aggregate losses takes the form 1Tzk = 1Txk ∧ c. Here

again, we need to define a slightly different problem which allows risk transfer to control

not only individual but also aggregate losses in order to explain the limit on aggregate
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Table 2.4.3: Linear regression results for individual losses for Pareto optimal model

Distribution a (share of the reinsurer) Adj R-squared NRMSD

Lognormal 0.8772 0.9971 0.0124

Exponential 0.8787 0.9943 0.0165

Gamma 0.8778 0.9971 0.013

Pareto 0.8772 0.9982 0.0099
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Figure 2.4.4: Empirical solutions of 1Tzk, 1 ≤ k ≤ m for Lemma 2.3.2 for different

distributions.

losses.
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Figure 2.4.5: Empirical solutions of 1Tzk, 1 ≤ k ≤ m for Lemma 2.3.3 for different

distributions.

min
I,R,s,g

γG1(I, R)+(1−γ)G2(I,R), s.t. π

(
N∑
i=1
R[Xi]

)
≤P, I(·)+R(·)= ·,

s

(
N∑
i=1
Xi

)
+g

(
N∑
i=1
Xi

)
=

N∑
i=1
Xi (2.44)

where

I, R, s, g :=
{
f : 0 ≤ f(x) ≤ x and x− f(x) are non-decreasing in x

}
(2.45)
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Discretised form of the optimisation problem is as follows

min
(Y,Z,t,u,v,w)∈

<r×m×<r×m×<×<×<×<

{
γ(u+ v) + (1− γ)w + (2γ − 1)t+ c5

m∑
k=1

1Tyk

}

s.t.
∥∥∥∥∥B

(
a1P−a1t,

b1

m

m∑
k=1

1Tyk

)∥∥∥∥∥ ≤ u,

∥∥∥∥∥B
(
a2t,

b2

m

m∑
k=1

1Tzk
)∥∥∥∥∥ ≤ v,∥∥∥∥∥B

(
a1t,

b1

m

m∑
k=1

1Tzk
)∥∥∥∥∥ ≤ w, (2.46)

∥∥∥Q(1Tz1, . . . ,1Tzm
)∥∥∥ ≤ √m− 1

λ

(
t− 1

m

m∑
k=1

1Tzk
)
, t ≤ P,

Y1 ≤ X1,Z1 ≤ X1,Ayk ≤ Axk,Azk ≤ Axk,yk + zk = xk

for all 1 ≤ k ≤ m.

In the Table 2.4.4 we present the results of the OLS test. As we can see the limit

on the losses of reinsurer c2 is considerably smaller when Pareto optimality principles

is in place. It is around 40, 000 whereas we observed the values around 50, 000 for the

optimisation problem from insurer’s point of view. This result is consistent with Pareto

optimality principle which involves also the objective function of the reinsurer who aims

at minimising its own losses.

Table 2.4.4: Results of admissibility test for aggregate losses for Pareto optimality princile

Distribution
Admissibility

mean (stdev) of b̃ mean (stdev) of c̃1 mean (stdev) of c̃2
ε = 1 ε = 10

Lognormal 99.2% 100% 1 (0) 0.08825 (0.3009) 41,213 (1,676)

Exponential 98.7% 100% 1 (0) 0.0542 (0.194) 39,982 (1,451)

Gamma 98.1% 100% 1 (0) 0.0642 (0.1284) 40,982 (1,582)

Pareto 99.1% 100% 1 (0) 0.0769 (0.0634) 41,128 (1,522)
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2.5 Conclusion

We analyse two approaches to optimal reinsurance in this chapter and demonstrate nu-

merical examples related to each of them. First approach discussed optimal reinsurance

model from insurer’s point of view, and the second approach demonstrated a model which

uses Pareto optimality principle. We use different premium principles for each approach

and solve optimality problems for each premium principles using Second Order Conic Pro-

gramming. Numerical illustrations demonstrate that proportional reinsurance is optimal

when risk measure follows expected value principle. When standard deviation principle

and one-sided moments are used for calculation of reinsurance premium, optimality is

obtained when the model takes the form functional form
∑

R =
∑

X ∧ c, where c is

a constant, X is loss amount and R is loss of the reinsurer. This is a special case of

capped stop loss reinsurance. Thus, the shape of optimal ceded loss function can vary

for different types of reinsurance premium principles. Our results demonstrate that the

functional form of optimal reinsurance contact depends on the adopted reinsurance pre-

mium principle and hence emphasize the important role of the premium principle in the

determination of the optimal design. Moreover, we observed that the limit on the ag-

gregate losses of reinsurer is considerably smaller when Pareto optimality principle is in

place, provided that all the parameters in the numerical examples are the same for both

problems. Similarly, for expected value premium principle the share of the reinsurer in

quota-share reinsurance contract is less for Pareto optimal models. This result is intu-

itive, due to the fact that the Pareto optimality principle involves objective function of

the reinsurer who aims at minimising its own losses.

As the next step, this research can be extended to the cases when there is a de-

pendence among individual risks, different lines of business or claim sizes and numbers

which can be modelled using multivariate distributions and copula functions, and this
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can increase or decrease the share of the insurer/reinsurer in the losses subject to this

correlation being positive or negative. Interdependency of the risks is real and therefore

it is of great interest to have a better understanding on how the shape of the optimal

reinsurance contract would be affected under this assumption. Dependence among risks

of different lines of business can strongly affect the overall risk of the company. More-

over, there are many cases within one line of business when the assumption about the

independence among risks is violated, for example, the remaining life-times of a group life

policies for employees of one company (i.e. oilfield offshore companies) can be considered

to have some positive dependency. Several concepts of dependencies in insurance have

appeared in the actuarial literature up to now. According to Shi et al. [2015] claims for

different business lines are not independent. Krämer et al. [2013] demonstrate that claim

securities are not independent of the claim frequencies and provide a model to capture

this dependency. Frees and Valdez [1998] provide introduction to the theory of copulas

for the application in actuarial science and investigate some of the practical applications

of copulas including reinsurance pricing. The paper also demonstrates that simulation of

multivariate outcomes can be accomplished when the distribution is expressed as a copula.

This can be very useful when solving the optimisation problem numerically. Given the

distribution functions for each line of business or for individual risks, the effect of change

in the dependency assumption on the functional form of reinsurance contracts can be in-

vestigated. Another objective can be the use of the joint distribution of losses or different

lines of business to determine optimal reinsurance contract by minimising Conditional

Tail Expectation. For this purpose applicable functional forms of copulas to be used in

the optimisation model can be chosen or estimated from given data using maximum like-

lihood method and then multivariate distribution for the losses can be derived.It is also

possible to add some probabilistic constraints, such as a guarantee of a minimum level of

expected profit with some probability, to the optimisation problems. Furthermore, this
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research can be extended to applying stochastic optimal control theory to solve optimal

reinsurance problems for life insurance.

2.6 Appendix

Proof of Proposition 2.3.1 Recall that the objective function (2.19) is increasing and

continuous in u and therefore, the first inequality constraint of the SOCP reformulation

becomes identity constraint when the optimal solution is attained. Moreover, it is not

difficult to find that

g(x, y) =
√
x2 + y2 + xy =

√(
x+ y/2

)2
+
(√

3y/2
)2

= ‖B (x, y)‖. (2.47)

Putting these two facts together, it becomes now clear why the optimisation problems

from (2.17) and (2.19) are equivalent.

Proof of Proposition 2.3.2 Recall that x 7→ g(a1P − a1x, y) + g(a2x, z) + x is

non-decreasing, which implies that solving (2.20) is equivalent to solving the following

surrogate optimisation problem

min
(Y,Z,w)∈

<r×m×<r×m×<

{
g

(
a1P − a1w,

b1

m

m∑
k=1

1Tyk

)
+ g

(
a2w,

b2

m

m∑
k=1

1Tzk
)

+ w + c4

m∑
k=1

1Tyk

}

s.t. 1
m

m∑
k=1

1Tzk + b√
m− 1

‖Q
(
1Tz1,1Tz2, . . . ,1Tzm

)
‖ ≤ P, (2.48)

1
m

m∑
k=1

1Tzk + b√
m− 1

‖Q
(
1Tz1,1Tz2, . . . ,1Tzm

)
‖ ≤ w,

Ayk ≤ Axk,Azk ≤ Axk,yk + zk = xk for all 1 ≤ k ≤ m.

As previously mentioned in the proof of Proposition 2.3.1, g(x, y) = ‖B (x, y)‖, which

allows one to reformulate (2.48) in an epigraph form as displayed in (2.21). Therefore,

any optimal solution of (2.48) solves (2.21), which in turn solves (2.20). The proof is now

complete.
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Proof of Proposition 2.3.3 It is not difficult to find that the derivative of the ob-

jective function (2.31) of the generic form γg(a1P−a1x, y)+γg(a2x, z)+(1−γ)g(a1x, z)+

(2γ − 1)x with respect to x is

γa2(2a2x+z)
2
√
a2

2x
2+a2zx+z2

+ (1−γ)a1(2a1x+z)
2
√
a2

1x
2+a1zx+z2

− γa1(2a1(P−x)+y)
2
√
a1y(P−x)+a2

1(P−x)2+y2
+ 2γ − 1 ≥ −γa1 + 2γ − 1

Thus, if γ ≥ 1
2−a1

, the above is non-negative and therefore, the objective function is

non-decreasing. Since the objective function of (2.31) is non-decreasing in x ∈ [0, P ] and,

as previously mentioned, g(x, y) = ‖B (x, y)‖, then the first three inequality constraints

of (2.32) become identity constraints, where the optimal solution is attained. Therefore,

any optimal solution of (2.32) solves (2.31). The proof is now complete.

Proof of Proposition 2.3.4 If (Y∗,Z∗, τ , u∗, v∗, w∗, r∗, t∗) solves (2.36), then

(Y∗,Z∗, u∗, v∗, w∗, t∗) solves (2.32).

Assume that (Y∗,Z∗, τ , u∗, v∗, w∗, r∗, t∗) solves (2.36), but (Y∗,Z∗, u∗, v∗, w∗, t∗) does not

solve (2.32). That is, there exists (Y,Z, u, v, w, t) ∈ <r×m × <r×m × < × < × < × <

feasible to (2.32), i.e.

π(Z, e, d) := 1
m

m∑
k=1

1Tzk + e

 1
m

m∑
k=1

(
1Tzk −

1
m

m∑
k=1

1Tzk

)d
+

1/d

≤ t, (2.49)

such that t < t∗. Recall that (Y∗,Z∗, τ , u∗, v∗, w∗, r∗, t∗) is feasible to (2.36), i.e.

r∗ + e1

(
m∑
k=1

τ ∗dk

)1/d

≤ t,Z∗T1− r∗1 ≤ τ ∗,0 ≤ τ ∗.(2.50)

Note that, (Y,Z, τ , u, v, w, r, t) is feasible to (2.36), where

τ =
(

1Tzk −
1
m

m∑
k=1

1Tzk

)
+
, (2.51)

since

r + e1

(
m∑
k=1

τ ∗∗dk

)1/d

= 1
m

m∑
k=1

1Tzk + e

 1
m

m∑
k=1

(
1Tzk −

1
m

m∑
k=1

1Tzk

)d
+

1/d

≤ t, (2.52)
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τ =
(

1Tzk −
1
m

m∑
k=1

1Tzk

)
+
≥ 0, (2.53)

τ =
(

1Tzk −
1
m

m∑
k=1

1Tzk

)
+
≥ 1Tzk −

1
m

m∑
k=1

1Tzk (2.54)

And since t < t∗ we get contradiction to our assumption.

If (Y∗,Z∗, u∗, v∗, w∗, t∗) solves (2.32), then (Y∗,Z∗, τ ∗, u∗, v∗, w∗, r∗, t∗) solves (2.36),

where

τ =
(

1Tzk −
1
m

m∑
k=1

1Tzk

)
+

(2.55)

Assume that (Y∗,Z∗, u∗, v∗, w∗, t∗) solves (2.32), but there exists (Y,Z, τ ∗, u, v, w, r, t) ∈

<r×m ×<r×m ×<m ×<× <×<×<×< feasible to (2.36), i.e.

r + e1

(
m∑
k=1

τ ∗∗dk

)1/d

≤ t,0 ≤ τ ,Z∗∗T1− r1 ≤ τ (2.56)

such that t < t∗.

As before, it is sufficient to show that (Y,Z, u, v, w, t) is feasible to (2.32).

r + e1

(
m∑
k=1

τ ∗∗dk

)1/d

≥ 1
m

m∑
k=1

1Tzk + e

 1
m

m∑
k=1

(
1Tzk −

1
m

m∑
k=1

1Tzk

)d
+

1/d

, (2.57)

since

r + e1

(
m∑
k=1

τ ∗∗dk

)1/d

≤ t,0 ≤ τ ,Z∗∗T1− r1 ≤ τ (2.58)

and the fact that the objective function is non-decreasing in each argument. If

1
m

m∑
k=1

1Tzk + e

 1
m

m∑
k=1

(
1Tzk −

1
m

m∑
k=1

1Tzk

)d
+

1/d

≤ r + e1

(
m∑
k=1

τ ∗∗dk

)1/d

≤ t, (2.59)

then (Y,Z, u, v, w, t) is feasible to (2.32). The proof is now complete.
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Chapter 3

Solvency analysis of deferred
annuities

3.1 Introduction

Annuity products play a significant role in protecting policyholders from longevity risk,

providing minimum guaranteed income and reducing the risk of outliving their retirement

assets. Regulators therefore have a strong incentive to better understand the solvency

characteristics of annuity products due to the fact that substantial systematic longevity

risk seriously affects annuity providers’ solvency. While the solvency characteristics of

immediate life annuities have been studied to a large extent, the role of deferred annuity

liabilities in the portfolios of annuity providers has not been considered thoroughly in the

literature.

Yaari [1965] demonstrates that a risk averse person should convert all their assets to

an immediate annuity due to the fact that people who die earlier subsidise those who

live longer. However, the evidence shows that retirees are reluctant to convert retirement

savings into annuities voluntarily. This effect is called the ”annuity puzzle” and many

authors have attempted to research it. The main reasons proposed to explain this low

demand for annuities include the mortality risk-sharing among family members (Brown

and Poterba [1999], the possibility of health care expenditure shocks at an old age (David-
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off [2009]) and the existence of provision through social security and DB pension scheme

membership (Dushi and Webb [2004]). Davidoff et al. [2005] conclude that due to psy-

chological or behavioral biases limited annuity purchases are feasible.

As a result of the discounting effect and the possibility that the annuitant may not

live until benefit payments start, a deferred annuity is much cheaper than an immediate

annuity with identical benefits and therefore could play an important role in households’

portfolios. Hu and Scott [2007] apply Cumulative Prospect Theory (CPT) to the analysis

of annuities and demonstrate that CPT can explain the low demand for immediate an-

nuities purchased at retirement and higher preference for deferred annuities. Chen et al.

[2019] extend this analysis and show that immediate annuities are not attractive for re-

tirees at all ages due to loss aversion and that preferences for deferred annuities increase

with the deferred period. Chen et al. [2018] demonstrates that a hyperbolic discount

model can explain the low demand of immediate annuities at retirement and the greater

attractiveness of long-term deferred annuities. In this section we analyse solvency charac-

teristics of deferred annuities using different assumptions and scenarios for longevity and

investment risk.

Assumptions about underlying mortality and interest rate dynamics play an important

role in pricing and solvency assessment of life annuity contracts. Comparing the results

for deterministic and stochastic mortality models we estimate the importance and effect of

random changes in the mortality for solvency analysis. The systematic risk component is

analysed in Coppola et al. [2000], Coppola et al. [2002], Olivieri [2001], or Pitacco [2004].

In Olivieri and Pitacco [2003] instead of stochastic realisations the authors use a finite

range of mortality scenarios and differentiate between pooling and non-pooling risks. In

contrast, De Waegenaere et al. [2010] examine pension annuities in a generalized Lee-

Carter model. A stochastic Gompertz-model is used in Christiansen and Helwich [2008]
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both for temporary life and pure endowment insurance. Bauer and Weber [2008] and

Hari et al. [2008] calculate the VaR and the expected shortfall for immediate starting life

annuities using different static hedging scenarios and analyse solvency aspects. Artzner

et al. [1999] present a unified framework for the analysis, construction, and implementation

of different measures of risk such as VaR and expected shortfall. Artzner et al. [1999] and

McNeil et al. [2005] describe the theoretical grounds and advantages of using expected

shortfall measure.

There is indeed a big choice of stochastic mortality models in the literature. Booth and

Tickle [2008] provides a comparison between different stochastic mortality models such as

two-factor models, regression-based (GLM) methods and three-factor methods. According

to this paper two-factor Lee–Carter method, and, in particular, its variants, have been

successful in terms of accuracy of goodness of fit and forecasting. However, regression

based models have been less successful, due to nonlinearities in time. Haberman and

Renshaw [2011] compares different stochastic mortality models using England and Wales

mortality experience and conducts detailed comparisons at pensioner ages. Furthermore,

the model is extended to include the England and Wales female data and USA mortality

experiences over a wider age range including the working ages. Similarly, Cairns et al.

[2009] provides a quantitative review of some of the most commonly used ones in practice.

The choice of a model requires significant judgement by the analyst and a change in the

model can significantly impact solvency margins and the best-estimate reserves [Richards

and Currie, 2009]. Therefore, the notion of model risk is particularly important, and it

requires the use of more than one stochastic mortality model when estimating longevity

risk.

We use the solvency analysis method from Olivieri and Pitacco [2003] for immediate

annuities in order to compare solvency margins to deferred annuities given a range of

deferred periods. This approach is based on Solvency II principles. In general, Solvency
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II is a directive in European Union law that harmonises the EU insurance regulation and

outlines the amount of capital that EU insurance companies must hold to reduce the

risk of insolvency. Deferred life annuities are policies which provide life-long payments

to the annuitants after a certain period of time conditional on survival. Exposure to

the longevity risk and interest rate risk is an important issue for an insurance company

particularly in the case of deferred annuities when the payments are postponed.

Moreover, the contributions and benefits are highly exposed to interest rate risk be-

cause of the long term nature of the contracts. Therefore, in this chapter we aim to

contribute to the exsisting literature on deferred annuities by conducting a solvency anal-

ysis allowing for stochastic nature of the interest rates and estimating the combined effects

of stochastic mortality and interest rates for solvency analysis.

The results of the stochastic models are compared to the results of deterministic

counterpart model which allows us to analyse the effects of different degrees of randomness.

Essentially, our analysis contains three risk scenarios: the benchmark case where mortality

rates and interest rates are both deterministic, second case where only mortality rates are

stochastic and the last case where mortality rates and interest rates are both stochastic.

Since pension annuities are particularly affected by longevity and investment risk,

for the purposes of this thesis we focus on these risks only, disregarding expense, and

economic risks, such as inflation.

We observe that the risk of random fluctuations in mortality decrease with increasing

cohort size because fluctuations are smoothed in large homogeneous portfolios. Our results

show the importance of systematic risk in comparison to the risk of random fluctuations.

Moreover, the chapter outlines the dramatic importance of model risk and deferred period

in the estimation of solvency margins. This also has a significant effect on solvency margins

with increasing deferred periods which is caused by the extra longevity risk and the greater

uncertainty about numbers of future survivors.
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The structure of this chapter is as follows: Section 3.2 describes the general model

for the calculation of solvency margins. We continue in Section 3.3 with discussing the

model from Olivieri and Pitacco [2003] and our adjustment to the method by using CMI

working paper [CMI, 2016] and fitting it to deferred annuities. Section 3.4 discusses dif-

ferent stochastic mortality models and calculation of solvency margins for these models

with deterministic interest rates, while Section 3.5 considers the improvement of the cho-

sen models by introducing stochastic interest rates. Section 3.6 considers some possible

extensions to this chapter and Section 3.7 concludes the chapter.

3.2 General model for solvency margins

We consider a portfolio of N0 identical deferred life annuities with annual payment R

starting at d ≥ 0 as long as the insured is living and until the contract expiration ω − x0

where x0 is the initial age of the insureds and ω denotes the biological age limit. The

single premium for group of lives P is paid in advance at the launch of the contract. The

remaining lifetimes of the insureds which are independent and identically distributed and

are described with some mortality law to be specified.

Let Nt denote the random number of insureds alive at time t at age x0 + t. Thus,

the random number of people dying in the time interval (t, t + 1) can be expressed as

Dt = Nt −Nt+1.

Several quantities in this chapter, such as the total benefits to policyholders Rt during

the year t, portfolio reserve Vt, are functions of the random numbers Dt and Nt. Specifi-

cally, the portfolio reserve is random due to the fact that it is the sum of a random number

of individual reserves:

Vt = NtVt, t = 0, ..., ω − x0, (3.1)

where Vt is the individual reserve, calculated with a given (conservative) basis.

Using the retrospective approach, the random portfolio fund at time t, denoted Zt, also
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depends on the random number of policyholder alive

Z0 = P + C, (3.2)

Zt = Zt−1(1 + i)−Rt, t = 1, 2, ..., ω − x0, (3.3)

where i is the rate of return earned by the fund and C is the initial capital. In practice,

C can equivalently be partially financed by an additional premium loading. The variable

Zt − Vt is called the free portfolio fund.

One of the possible ways to assess solvency of the fund described in Olivieri and Pitacco

[2003] is described below. The insurance company is considered solvent at a given time t

if the free portfolio fund is positive,

Zt − Vt ≥ 0. (3.4)

The aim of this section is to determine the solvency margin required at time 0 such

that one of the following conditions is satisfied:

Pr

{
T∧
t=1

(Zt − Vt ≥ 0)
}

= 1− ε (3.5)

or

Pr {ZT − VT ≥ 0} = 1− ε, (3.6)

where T is the time horizon and ε is the ruin probability.

The Solvency Margin is based on VaR principle and is the additional capital Z0 − V0

needed at time t = 0 so that one of the conditions (3.5) and (3.6) is satisfied. For the

purposes of analysis in this chapter we will be using condition (3.6) in order to assess

solvency margins. Note that since by definition the initial reserve V0 is equal to the sin-

gle premium, the solvency margin at time 0 is Z0 − V0 = Z0 − P = C and must be

financed with shareholders’ funds, i.e. initial capital or additional premium loading. For
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the purposes of this chapter we consider a portfolio of immediate or deferred annuities

and adopt a run-off approach. In addition, in the case of full stochastic mortality models

we investigate the results for expected shortfall (ES). This risk measure is widely used in

some countries for solvency purposes and in Basel Committee on Banking Supervision’s

accords. It quantifies the amount of tail risk a portfolio has. Expected shortfall is de-

rived by taking a weighted average of the “extreme” losses in the tail of the distribution

of possible losses, beyond the value at risk (VaR) cutoff point. This metrics focuses on

the expected size of a loss assuming that a given p-value has been breached or, in other

words, it is the expected loss of the portfolio in the worst p% of cases. It has a number of

theoretical and practical advantages. When losses are not normally distributed, which is

mostly the case in practice, expected shortfall produces higher results for solvency mar-

gins than VAR. Moreover, expected shortfall is a coherent risk measure meaning that if

several portfolios are combined, the total expected shortfall decreases, hence reflecting the

advantages of diversification, whereas VAR can increase. VaR and ES results are related

and can be calculated from the same set of simulated losses.

3.3 Model for projection of survival rates and its re-
sults for solvency margins

In this section we discuss the model used to project mortality rates and the results of

our projections for solvency margins. In general, we assume that there are two sources of

uncertainty, one due to process risk (random fluctuations risk), related to the individual

times of deaths, and another one due to systematic risk (longevity risk) linked to the

uncertainty in future death rates. Therefore, we model the evolution of the number of

survivors through

Dt|Nt, qx0+t ∼ Bin(Nt, qx0+t). (3.7)
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Depending on the modelling approach chosen in sections 3.3 and 3.4, the future death

rates qx0+t will be modelled as deterministic quantities or as random quantities chosen in

a finite set of scenarios (section 3.3) or resulting from a full stochastic mortality model

(section 3.4).

The stochastic approach discussed in this section is implemented with a set of pro-

jected mortality functions. This approach allows for both the random fluctuation risk

and the longevity risk. A ”degree of belief” is assigned to each mortality function. The

results of this stochastic approach with several scenarios are then compared to the results

obtained from a set of full stochastic mortality models in section 3.4.

For the methods outlined above, we choose three projected mortality functions, denoted

by q[min], q[med] and q[max] which express a small, a medium and a high mortality respec-

tively. Only q[med] function is used in the deterministic approach. The stochastic approach

exploits all three functions, applying ”degree of belief” to each of them. For the purposes

of this chapter we determine q[min], q[med] and q[max] functions using the CMI Mortality

Projections Model [CMI, 2016] developed by IFOA’s Mortality Projections Committee.

We consider England and Wales mortality data for the period 1965-2011 for ages 0− 100

which contain age-specific deaths and exposures for England and Wales from the Human

Mortality Database and use quadratic interpolation to close the life table and obtain death

rates for ages 101−120. We observed that during this period the maximum, medium and

minimum levels of annual mortality improvements across all ages were 4.16%, 2.34% and

0.16% respectively. Note that we have excluded negative mortality improvement rates.

When we use these exact improvement rates the difference in solvency margins between

deterministic and stochastic models is not stable. Therefore, also considering the fact

that according to current trends mortality improvements in the future are likely to be

lower, we apply a 20% decrease to the maximum mortality improvement rate and use the

obtained rates as inputs for CMI model in order to project q[min] for the future. Thus,
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20% decrease is applied to q[min] and the improvement rate of 4.16% per annum.

One of the portfolios we are analysing consists of identical immediate annuities, paid

to policyholder’s of initial age x0 = 65, with annual amount R = 100. The other portfolio

consists of identical deferred annuities with deferred period d > 0. The constant annual

interest rate for calculation of the premium and the reserves is i = 0.03. The single

premium which is paid at the launch of the contract and individual reserves are calculated

according to the survival function S[med](x).

The only source of uncertainty in the deterministic model is the time of death, be-

cause the probability distribution of the future lifetime of each insured is predefined. As

mentioned above, we first produce results for the benchmark case when the deferred pe-

riod is d = 0, and then compare it to d = 5, 10, 15, 20 in order to inspect the behaviour

of the required solvency margin with respect to the corresponding deferred period. The

corresponding solvency margins for are reported in Table 3.3.1 for two time horizons,

T = ω − x0 = n and T = 5. Solvency margins are higher for the longer time horizons

reflecting the higher uncertainty (risk). As far as the size of the portfolio is concerned,

Table 3.3.1 demonstrates that the required margin decreases as N0 increases. This is due

to the fact that in a deterministic approach, the insurance company is only exposed to

a diversifiable pooling risk, which is the result of an insufficiently large insurance cohort.

These results are similar both for immediate and deferred annuities. However, we can ob-

serve from the table that the relative solvency margins Z0−V0
V0

are higher for the deferred

annuities. Clearly, there are fewer benefit payments during the same time horizon in the

case of the deferred annuities due to the postponed payment time, and therefore lower

reserves are required to be held. However, the relative solvency margins are higher due to

the riskiness and uncertainty associated with the postponed time of the benefit payments.

Table 3.3.2 demonstrates the dependence of solvency margins on ruin probabilities. As

we can see, the lower the ruin probability ε is the higher is the required solvency margin.
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Table 3.3.1: Required absolute and relative solvency margins for immediate and deferred
annuities for ε = 0.025. Deterministic model.

Immediate annuities Deferred annuities (d = 5)
T = n T = 5 T = n T = 5

N0 Z0 − V0
Z0−V0
V0

Z0 − V0
Z0−V0
V0

Z0 − V0
Z0−V0
V0

Z0 − V0
Z0−V0
V0

100 10335 7.47% 6302 4.55% 9646 10.21% 4948 5.24%
1,000 33031 2.39% 21305 1.54% 30757 3.26% 17384 1.84%
10,000 106548 0.77% 69087 0.50% 98906 1.05% 56838 0.60%
100,000 334160 0.24% 218185 0.16% 309699 0.33% 180114 0.19%
1,000,000 1054597 0.08% 697866 0.05% 981717 0.10% 578354 0.06%

Table 3.3.2: Required relative solvency margins for d = 5 for different ε’s. Deterministic
model.

T = n T = 5
N0 ε = 0.01 ε = 0.025 ε = 0.05 ε = 0.01 ε = 0.025 ε = 0.05
100 12.12% 10.21% 8.61% 6.34% 5.24% 5.11%
1,000 3.85% 3.26% 2.74% 2.17% 1.84% 1.62%
10,000 1.24% 1.05% 0.88% 0.71% 0.60% 0.51%
100,000 0.39% 0.33% 0.28% 0.23% 0.19% 0.16%
1,000,000 0.12% 0.10% 0.09% 0.07% 0.06% 0.05%

Table 3.3.3 demonstrated the dependence of solvency margins on different deferred

periods d for different initial portfolio sizes N0 and time horizons T . We notice that the

bigger the deferred period is the higher are the relative solvency margins. We also notice

that solvency margins are equal for the all the cases where d ≥ T . This is because the

deferred period does not play any role if the time horizon for which we are analysing

solvency margins is less than or equal to the deferred period. This result is intuitive

considering the fact that in all these cases there are no payments before time T , therefore,

at the launch of the contact in all the cases where d ≥ T the company needs to hold the

same relative solvency margins in order to be solvent at the time T regardless of the time

in future after time T when the first payment is going to take place.

With the deterministic approach, the insurance company is only exposed to a di-

versifiable pooling risk. In reality, there exists also a non-pooling risk which cannot be
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Table 3.3.3: Required relative solvency margins for different deferred periods d, time
horizons T and portfolio sizes N when ε = 0.025. Deterministic model

N0 = 100 N0 = 10, 000 N0 = 1, 000, 000
d T = n T = 10 T = 5 T = n T = 10 T = 5 T = n T = 10 T = 5
0 7.47% 6.02% 4.55% 0.77% 0.64% 0.50% 0.08% 0.06% 0.05%
5 10.21% 7.95% 5.24% 1.05% 0.83% 0.60% 0.10% 0.08% 0.06%
10 13.60% 8.88% 5.24% 1.39% 0.96% 0.60% 0.14% 0.10% 0.06%
20 18.22% 8.88% 5.24% 1.84% 0.96% 0.60% 0.18% 0.10% 0.06%
30 39.54% 8.88% 5.24% 3.81% 0.96% 0.60% 0.38% 0.10% 0.06%

diversified due to the fact that it affects each individual’s mortality in the same manner.

Therefore, stochastic mortality models need to be introduced. In the stochastic model,

solvency margins are evaluated considering not only uncertainty about the time of death

of each insured but also uncertainty in future mortality trends and the actual distribution

of the future lifetimes. It is assumed that each of the three mortality functions q[min],

q[med] and q[max] can be a possible distribution of the future lifetime in the cohort. The

single premium and individual reserve are still calculated using the function q[med] and

the interest rate i = 0.03. We assign weights ρ[min] = 0.2, ρ[med] = 0.6 and ρ[max] = 0.2

representing the ”degree of belief” for the three survival functions respectively and choose

the survival function through simulation. Then the actual number of surviving policy-

holders is simulated assuming that under a given mortality function the policyholders

are independent risks. Changes in parameters ρ and i might strongly affect the results,

therefore as a next step in our research we are going to use different stochastic models for

i in section 3.4 and mortality rates in order to analyse solvency in section 3.5.

Table 3.3.4 compares the results for solvency margins for immediate and deferred an-

nuities for the stochastic model. The comparison between the stochastic and deterministic

case demonstrates a strong increase of the required solvency margin in the former both for

immediate and deferred annuities. This is due to the fact that the stochastic model allows

us to analyse not only the risk of random fluctuations in the number of survived policy-

holders, but also systematic deviations, i.e. the longevity risk which is a non-pooling risk.
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Table 3.3.4: Required absolute and relative solvency margins for immediate and deferred
annuities for ε = 0.025. Stochastic model.

Immediate annuities Deferred annuities (d = 5)
T = n T = 5 T = n T = 5

N0 Z0 − V0
Z0−V0
V0

Z0 − V0
Z0−V0
V0

Z0 − V0
Z0−V0
V0

Z0 − V0
Z0−V0
V0

100 11854 8.56% 6574 4.75% 11123 11.78% 6024 6.38%
1,000 69226 5.00% 29663 2.14% 64816 6.86% 24631 2.61%
10,000 558634 4.04% 211851 1.53% 525365 5.56% 175908 1.86%
100,000 5179169 3.74% 1861356 1.34% 4874397 5.16% 1548893 1.64%
1,000,000 50479496 3.65% 17790597 1.29% 47519369 5.03% 14807651 1.57%

Table 3.3.5: Required relative solvency margins for d = 5 for different ε’s. Stochastic
model.

T = n T = 5
N0 ε = 0.01 ε = 0.025 ε = 0.05 ε = 0.01 ε = 0.025 ε = 0.05
100 13.81% 11.78% 9.92% 7.04% 6.38% 6.27%
1,000 7.70% 6.86% 6.09% 3.05% 2.61% 2.28%
10,000 5.81% 5.56% 5.32% 2.00% 1.86% 1.73%
100,000 5.24% 5.16% 5.08% 1.68% 1.64% 1.60%
1,000,000 5.06% 5.03% 5.01% 1.58% 1.57% 1.55%

Similar to the deterministic case we can observe from the table that the relative solvency

margins Z0−V0
V0

are higher for the deferred annuities whereas absolute solvency margins

Z0 −V0 are lower. Moreover, time horizon T = 5 leads to a solvency margin significantly

lower than for T = n which again outlines the effect of higher riskiness of longer time

horizons.

Table 3.3.5 demonstrates dependence of solvency margins on different ruin probabili-

ties ε for the stochastic model. As in the case with the deterministic approach Table 3.3.6

shows that solvency margins are higher for longer deferred periods.

Systematic risk has a substantial impact on the solvency requirements. By comparing

Table 3.3.1 with Table 3.3.4, and Table 3.3.2 with Table 3.3.5, we can see that the trends

in the stochastic approach are quite similar to the trends in the deterministic approach,

however the magnitude of solvency margins in the stochastic model is much greater. This

is due to the fact that stochastic framework allows us to take into consideration not only
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Table 3.3.6: Required relative solvency margins for different deferred periods d, time
horizons T and portfolio sizes N when ε = 0.025. Stochastic model

N0 = 100 N0 = 10, 000 N0 = 1, 000, 000
d T = n T = 10 T = 5 T = n T = 10 T = 5 T = n T = 10 T = 5
0 8.56% 6.51% 4.75% 4.04% 2.69% 1.53% 3.65% 2.37% 1.29%
5 11.78% 8.58% 5.24% 5.56% 3.57% 1.86% 5.03% 3.16% 1.57%
10 15.72% 10.12% 5.24% 7.31% 4.13% 1.86% 6.61% 3.66% 1.57%
20 21.66% 10.12% 5.24% 8.99% 4.13% 1.86% 8.04% 3.66% 1.57%
30 41.70% 10.12% 5.24% 12.74% 4.13% 1.86% 10.61% 3.66% 1.57%

risk of random fluctuations in deaths but also non-pooling systematic risk.

3.4 Full stochastic mortality models

It is quite clear that the figures quoted so far strongly depend on the assumed choices, in

particular the mortality models, survival functions and relevant weights. The projection

of mortality rates is an important part of pension liabilities valuation and the choice of

stochastic projection model plays significant role here. To a large extent the stochastic

framework discussed above gives a general perspective of the severity of longevity risk.

However, this model is static and does not account for systematic time trends. Therefore,

analysis of solvency margins based on different stochastic mortality models is introduced

below. Particular attention is given to the differences in the magnitude of solvency mar-

gins for different mortality models and how insurance regulators and practitioners might

use them.

Generalised age-period-cohort (GAPC) stochastic mortality models as introduced by

Hunt and Blake [2020] have four components, such as the random component, the sys-

tematic component, the link function and the set of parameter constraints. Consistently

with the choice made in section 3.2, the number of deaths at age x and calendar year t

66



3.4. FULL STOCHASTIC MORTALITY MODELS

in the general population is considered to follow Binomial distribution.

Dxt ∼ Bin(E0
xt, qx,t) (3.8)

where qx,t is the death rate and E0
xt is the initial exposed to risk. The link function of qx,t is

the logit, given by log qx,t
1−qx,t = ηxt, where ηxt is the predictor. As described in Millossovich

et al. [2015], the systematic component captures the effects of age x, calendar year t and

cohort c = t− x through the predictor ηxt

ηxt = αx +
N∑
i=1

β(i)
x k

(i)
t + β(0)

x γt−x (3.9)

where αx is the static age function capturing the general shape of mortality by age, N ≥ 0

an integer indicating the number of age-period terms describing the mortality trends, with

each time index

k
(i)
t , i = 1, ..., N and the term γt−x accounts for the cohort effect with β(0)

x modulating its

effect across ages.

There are many stochastic mortality models but for the purposes of this chapter we use 6

main representative models which have distinct features depending on whether they have

cohort term, age modulating term and whether age is treated as quantitative variable or

categorical variable.

One of the models discussed in this section is the stochastic mortality model by Lee and

Carter [1992] which assumes that the predictor is given by:

ηxt = αx + β(1)
x k

(1)
t . (3.10)

The next model we discuss in this chapter is the stochastic mortality model by Renshaw

and Haberman [2006] which generalises the Lee-Carter model by incorporating a cohort

effect to obtain the predictor:

ηxt = αx + β(1)
x k

(1)
t + β(0)

x γt−x. (3.11)
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Independence between the period and the cohort effects is assumed in this model and

time series forecasts of the estimated k(1)
t and γt−x are used to derive mortality projections.

Haberman and Renshaw [2011] also discussed a substructure of this model when β(0)
x =

1 which is a simpler model and eliminates some stability issues from the original model.

ηxt = αx + β(1)
x k

(1)
t + γt−x. (3.12)

The age-period-cohort (APC) model is another substructure of the Renshaw and

Haberman model, when β(1)
x = 1, β(0)

x = 1,

ηxt = αx + k
(1)
t + γt−x. (3.13)

The Cairns et al. [2006] model (M5) proposes a predictor structure with two age-period

terms with pre-specified age-modulating parameters β(1)
x = 1, β(2)

x = x− x̄, no static age

function and no cohort effect. Therefore, the predictor of the M5 model is:

ηxt = k
(1)
t + (x− x̄)k(2)

t , (3.14)

where x̄ is the average age in the data.

Another model that we use in this chapter is the so-called M7 model, which is a

quadratic CBD model with cohort effects. The original CBD model (M5) was expanded

in Cairns et al. [2009] by cohort effect and a quadratic age effect to obtain the predictor:

ηxt = k
(1)
t + (x− x̄)k(2)

t + ((x− x̄)2 − σ̂2
x)k

(3)
t + γt−x, (3.15)

where σ̂2
x is the average value of (x− x̄)2.

There are also other members of CBD model family, such as M6, M8 and M9 but as

mentioned before we restrict this chapter to a range of models to cover a set of distinct
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characteristics depending on whether they have cohort term, age modulating term and

whether age is treated as quantitative variable or categorical.

The last model that we use is model by Plat [2009] where the CBD model is combined

with some features of the Lee-Carter model. Plat model is suitable for full age ranges and

also captures the cohort effect. The predictor in this model is given by

ηxt = αx + k
(1)
t + (x− x̄)k(2)

t + (x− x̄)+k
(3)
t + γt−x, (3.16)

where αx is a static age function. There are three age period terms with pre-specified

age-modulating parameters β(1)
x = 1, β(1)

x = x̄− x, β(3)
x = (x− x̄)+ = max(0, x− x̄).

In general, the force of mortality µ is targeted with the logit link and the parameters of

the model are estimated using the binomial distribution for the number of deaths.

ARIMA processes, under the assumption of independence between the period and the

cohort effects are used to model and forecast kt and γt−x in order to project mortality

and, consistently with the prevailing literature, a multivariate random walk with drift is

adopted to provide a reasonable fit for the k terms and ARIMA(1,1,0) for γ.

First, we implement a goodness-of fit test which is typically analysed by inspecting

the residuals of the fitted models. Regular patterns in the residuals demonstrate the

inability of the model to describe all the features of the data appropriately. We assess

scaled deviance residuals in order to see if there are regular patterns in them:

rxt = sign(dxt − d̂xt)
√√√√dev(x, t)

φ̂
, φ̂ = D(dxt, d̂xt)

K − ν
, (3.17)

where

dev(x, t) = 2
dxtlog

dxt
d̂xt

− (E0
xt − dxt)log

E0
xt − dxt

E0
xt − d̂xt

 (3.18)
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Furthermore,

D(dxt, d̂xt) =
∑
x

∑
t

ωxtdev(x, t) (3.19)

is the total deviance of the model, K = ∑
x

∑
t ωxt is the number of observations in the

data and ν is the effective number of parameters in the model. ωxt are weights taking the

value 0 if a particular (x, t) data cell is omitted or 1 if the cell is included. dxt denotes

the observed number of deaths.

d̂xt = Extg
−1

αx − N∑
i=1

β(i)
x k

(i)
t + β(0)

x γ(t−x)

 (3.20)

is the expected number of deaths predicted by the model, with g−1 denoting the inverse

of the link function g.

Heat-maps of the deviance residuals for the all the six discussed models fitted to

England and Wales male mortality data for the years 1965-2011 are demonstrated. The

data is for ages 0 − 100 and contains age-specific deaths and exposures for England and

Wales from the Human Mortality Database. From the Figure 3.4.1 we see that models

LC, CBD and APC display strong residual patterns while the residuals of models RH,

M7 and PLAT look reasonably random. The APC model shows a strong clustering of

residuals due to its inability to allow for varying improvement rates with age. The LC

and CBD models, which do not have a cohort effect, demonstrate very marked diagonals

patterns illustrating the inability of these models to capture the well-known cohort effect

observed in the England and Wales population. The right panels in Figure 3.4.2 and

3.4.6 clearly show that the LC and CBD models are unable to capture the cohort effect.

In addition, the left panel in Figure 3.4.6 reveals some strong patterns by age, reflecting

the lack of a quadratic age term in the CBD which may be necessary to capture the

commonly observed curvature of the mortality rates in a logit scale. When evaluating

the goodness-of-fit of different models, it is generally anticipated that models with more

parameters provide a better fit to the data.
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LC

RH
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CBD

M7

PLAT

Figure 3.4.1: Heat-maps of mortality models. Age range is 0− 100. Time period is 1965− 2011.
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Figure 3.4.2: Scatter plots of deviance residuals for LC model

Figure 3.4.3: Scatter plots of deviance residuals for RH model

Figure 3.4.4: Scatter plots of deviance residuals for APC model

Figure 3.4.5: Scatter plots of deviance residuals for M7 model

Figure 3.4.6: Scatter plots of deviance residuals for CBD model

Figure 3.4.7: Scatter plots of deviance residuals for PLAT model

Scatter plots of deviance residuals for different mortality models fitted to England and
Wales males population for the period 1965-2011
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Now we can proceed to analysing solvency margins for these models allowing for

different factors such as the size of portfolio, deferred period, etc.

We apply Monte Carlo simulation technique to generate solvency margins under dif-

ferent scenarios. We first use 100000 runs in order to simulate mortality rates for each

stochastic mortality model. This helps us to calculate stochastic reserves and payments to

policyholders based on the random number of surviving policyholders, and consequently

the random portfolio fund at time t. Then we obtain a matrix of deficits in case no sol-

vency margin is added at the beginning by subtracting reserves at time t from random

portfolio fund at time t. Now in order to calculate solvency margin that needs to be added

in the beginning in order to ensure solvency at time t we need to calculate the relevant

quantiles of these deficit values discounted to time 0. We repeat these steps 100000 times

in accordance with a parametric bootstrapping technique in order to find confidence in-

tervals for solvency margins. In other words, we use random sampling with replacement

and assign measures of accuracy ( 95% confidence interval) to sample estimates. The key

idea a behind this technique is to resample from the original data obtained via the fitted

model to create replicate data sets, from which the variability of the quantities can be

assessed (Brouhns et al. [2005]). Figure 3.4.8 illustrates solvency margins with confidence

intervals for 6 different models and different portfolio sizes. The figure shows that the

solvency margins for all the models start to converge to a certain value for each model

when the portfolio size is big enough. The decreasing behaviour of the relative required

solvency margins and their confidence intervals with respect to the size of portfolio is due

to the pooling effect of random fluctuations; however, the magnitude of solvency margins

stabilises quickly and it does not go to zero due to the non-pooling and systematic effect

of longevity risk. As far as the size of the portfolio is concerned, Table 3.4.1 also shows

that the required margins for all the models decrease as N increases. Table 3.4.1 demon-

strates solvency margins for different mortality models and deferred periods when T=n.
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3.4. FULL STOCHASTIC MORTALITY MODELS

The portfolio size vary from 1, 000 to 1, 000, 000.

Figure 3.4.9 shows the solvency margins for different models depending on deferred period.

As we can see from the figures 3.4.8 and 3.4.9, M7 and CBD models have more extreme

values for solvency margins whereas Lee-Carter model has the lowest values. The ranking

of the magnitude of the solvency margins and confidence intervals from biggest to smallest

is as follows: M7, M5, RH, Plat, APC and LC. These differences in solvency margins can

be attributed to the different characteristics of the underlying stochastic mortality models.

The ranking of the models according to the solvency margins seems to be based mostly

on the number of period terms. The LC model has only one age period term, therefore it

does not fully capture the variability associated with these annuities and, therefore, has

the lowest solvency margins and smallest confidence intervals among the models. The RH

has a cohort term in addition to the age period term and the APC model is a modification

of the RH model with the coefficient of the age period term β(1)
x = 1 being constant, and

therefore, it captures less variability than the original RH model. The M5 model has two

age-period terms and has one of the highest results for solvency margins. The M7 model

has three period terms, including a quadratic age effect, and a cohort term and, therefore,

captures more variability. The Plat model is similar to the M7 model, but the definition

of the β(3)
x is different. This model also introduces an αx term, which is similar to the LC

model. Due to the fact that the Plat model combines the features of the LC and the M7

models the solvency margins results for this model are less extreme than those for M7

model, but are higher than for the LC model. Additionally, there is greater uncertainty

associated with greater deferred period, therefore, due to the compounding effect of the

model risk and the longevity risk the difference in solvency margin increases significantly

for greater deferred periods. This effect is also observed in Richards et al. [2020], where

the authors demonstrate that the results for 99.5% VaR capital requirements and condi-

tional tail expectations (CTEs) at 99% for deferred annuities vary considerably with the
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3.4. FULL STOCHASTIC MORTALITY MODELS

Figure 3.4.8: Solvency margins for different stochastic mortality models for d = 5 and
T = n with 95% confidence intervals

choice of the model and this effect intensifies with the age.
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Figure 3.4.9: Solvency margins for different stochastic mortality models and different
deferred periods when T = n
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3.4. FULL STOCHASTIC MORTALITY MODELS

Tables 3.4.2, 3.4.3, 3.4.4, 3.4.5, 3.4.6 and 3.4.7 demonstrate solvency margins and ex-

pected shortfalls for different time horizons and deferred periods for Lee-Carter, Renshaw-

Haberman, Age-Period-Cohort, Cairns-Blake-Dowd, M7 and Plat models respectively.

Portfolio size used to construct these tables is 1,000,000. Solvency margins increase with

greater time horizons reflecting the positive correlation of the uncertainty risk with hori-

zon.

For a given choice of parameters, the comparison between the stochastic approach adopted

in section 3.3 and the full stochastic models shows a signifficant difference in required sol-

vency margins and their spreads depending on deferred period and time horizon. This is

due to the fact that a full stochastic approach allows us to fully assess the risk of systemic

deviations. In order to reach some conclusions about the choice of the full stochastic

model for further analysis, we need to compare the models. Results in Tables 3.4.2, 3.4.3,

3.4.4, 3.4.5, 3.4.6 and 3.4.7 have been obtained by performing the valuation for deferred

periods d = 0, 5, ..., 30, in order to inspect the behaviour of the required margin. In ad-

dition, we demonstrate the results for expected shortfall (ES) , as this risk measure is

also in use in some countries for solvency purposes. The increase in the relative sol-

vency margin is due to the fact that the size of the portfolio reduces and the age of the

annuitants increases with greater deferred periods, which means greater uncertainty. In

Tables 3.4.2, 3.4.3, 3.4.4, 3.4.5, 3.4.6 and 3.4.7, the solvency margins required at time 0

for different deferred periods are calculated according to condition 3.6. When the small-

est time span (i.e. T = 5) is chosen, the results for the RH and APC models are quite

similar and higher than the results for other models, whereas the CBD and PLAT models

demonstrate lowest values in this case. Although the solvency margins for T = 5 are the

lowest for the PLAT model, it has one of the highest results when T = n. The LC model

has the smallest spread between T = 5 and T = n.

The choice of model often involves significant judgement by the analyst and, as we can
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3.4. FULL STOCHASTIC MORTALITY MODELS

see, a change in model can lead to material changes in solvency margins. The M7 and

Plat models seem to be reasonable models to use for mortality projections and have in

common that they have the highest results for solvency margins when T = n. However,

when T = 5 the Plat model has the lowest result among the 6 models analysed and thus,

the speed with which solvency margin changes depending on T is very significant for the

Plat model.

The M7 model produces the highest solvency margins under both the VaR and ES

approaches to measuring insurer’s solvency. As such, it is the model of most interest to

regulators and supervisory authorities. In contrast, Lee-Carter and APC models produce

the lowest results for solvency margins. Plat model provides a compromise between these

models. The Lee-Carter and APC model can be attractive for insurance companies,

however, actuaries’ duty of prudence would lead them to view the Plat model as one of

the suitable models due to the greater spread in uncertainty it captures depending on

the time horizon. Furthermore, this model fits historical data well, is applicable to a full

age range, and captures the cohort effect. It has a non-trivial correlation structure and

has no robustness problems, while the structure of the model remains relatively simple.

Therefore, in section 3.5, we further compare these models adopting a stochastic approach

to modelling interest rates.

T=5 T=10 T=n
deferral VaR ES VaR ES VaR ES
d=0 0.822% 0.932% 1.85% 2.09% 4.86% 5.55%
d=5 1.04% 1.18% 2.56% 2.90% 7.00% 7.99%
d=10 1.04% 1.18% 3.08% 3.49% 10.24% 11.70%
d=20 1.04% 1.18% 3.08% 3.49% 22.41% 25.78%
d=30 1.04% 1.18% 3.08% 3.49% 49.04% 57.44%

Table 3.4.2: VaR and ES for different deferred periods and time horizons for LC model.
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T=5 T=10 T=n
deferral VaR ES VaR ES VaR ES
d=0 1.02% 1.16% 2.12% 2.40% 8.08% 9.27%
d=5 1.24% 1.40% 2.80% 3.17% 11.25% 12.91%
d=10 1.24% 1.40% 3.24% 3.67% 15.91% 18.25%
d=20 1.24% 1.40% 3.24% 3.67% 33.26% 38.35%
d=30 1.24% 1.40% 3.24% 3.67% 77.18% 90.36%

Table 3.4.3: VaR and ES for different deferred periods and time horizons for RH model.

T=5 T=10 T=n
deferral VaR ES VaR ES VaR ES
d=0 1.01% 1.14% 2.14% 2.42% 7.27% 8.35%
d=5 1.24% 1.41% 2.88% 3.26% 10.27% 11.79%
d=10 1.24% 1.41% 3.38% 3.83% 14.76% 16.96%
d=20 1.24% 1.41% 3.38% 3.83% 31.99% 36.97%
d=30 1.24% 1.41% 3.38% 3.83% 76.62% 90.03%

Table 3.4.4: VaR and ES for different deferred periods and time horizons for APC model.

3.5 Stochastic interest rates

As we mentioned before, the results are sensitive to changes in the parameter i and there-

fore, we investigate the results for the above mortality models considering also stochastic

models of interest rates. In order to analyse the effect of stochastic nature of interest

rates on solvency margins for deferred annuity policies we use the Vasicek model [Vasicek,

1977] which is often used in actuarial applications (Qiu et al. [2011], Russo et al. [2017],

Wu and Liang [2018] ) since it satisfactorily represents the long-term development of the

rate of return. It is an example of one-factor short rate model as it describes interest rate

movements as driven by only one source of market risk. There exist more complex models

for interest rate modelling in the literature but for the purposes of this chapter we use

the simplest one to illustrate the effect of incorporating stochastic interest rates into our

model. Let us assume that rt is the short interest rate and its behaviour can be described
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T=5 T=10 T=n
deferral VaR ES VaR ES Var ES
d=0 0.64% 0.73% 1.60% 1.81% 8.29% 9.63%
d=5 0.81% 0.93% 2.23% 2.53% 12.05% 14.00%
d=10 0.81% 0.93% 2.73% 3.09% 18.43% 21.43%
d=20 0.81% 0.93% 2.73% 3.09% 51.71% 60.67%
d=30 0.81% 0.93% 2.73% 3.09% 215.80% 264.13%

Table 3.4.5: VaR and ES for different deferred periods and time horizons for CBD model.

T=5 T=10 T=n
deferral VaR ES VaR ES VaR ES
d=0 0.85% 0.96% 1.88% 2.13% 8.91% 10.4%
d=5 1.06% 1.20% 2.59% 2.93% 12.92% 15.03%
d=10 1.06% 1.20% 3.12% 3.52% 19.68% 22.92%
d=20 1.06% 1.20% 3.12% 3.52% 55.45% 65.22%
d=30 1.06% 1.20% 3.12% 3.52% 255.67% 314.91%

Table 3.4.6: VaR and ES for different deferred periods and time horizons for M7 model.

by the Ornstein-Uhlenbeck process. Thus,

drt = a(γ − rt)dt + σdWt (3.21)

where Wt is a standard Wiener process and a, γ and σ are positive constants. The long-

term mean of the short rate is represented by γ, a is a friction force bringing the process

back towards γ and σ the diffusion coefficient. The random portfolio fund in this case is

described as follows

Zt = Zt−1(1 + it)−Rt (3.22)

where it = ert−1 is the random return, described by the continuous stochastic differential

equation in (3.21). The requirements for solvency margins are the same as in the previous

sections. As far as mortality in concerned we refer to the M7 and Plat models considered

in section 3.4. We adopt the same set of simulations for mortality, but instead of a single

rate of 0.03 we use 10, 000 simulations of r and the convert it to i. The parameters for the

stochastic interest rate model are given in Table 3.5.1. They are chosen so that they reflect
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T=5 T=10 T=n
deferral VaR ES VaR ES VaR ES
d=0 0.61% 0.73% 1.50% 1.76% 7.39% 8.74%
d=5 0.78% 0.93% 2.12% 2.48% 10.85% 12.84%
d=10 0.78% 0.93% 2.61% 3.05% 16.88% 19.96%
d=20 0.78% 0.93% 2.61% 3.05% 49.76% 59.24%
d=30 0.78% 0.93% 2.61% 3.05% 225.18% 281.33%

Table 3.4.7: VaR and ES for different deferred periods and time horizons for Plat model.

adequate stochastic fluctuations from the rate 0.03 which we used in the previous sections

and match the overall performance of assets, resulting from both market behaviour and

the investment strategy of an insurance company. We also modify volatility σ to compare

the results. Alternatively, the parameters can be estimated from given data.

r0 0.03 a 0.3
γ 0.03 σ 0.05, 0.1, 0.2

Table 3.5.1: Parameters for simulations of interest rates for Vasicek model

The greater severity of the solvency margins is due to the fact that the assets, accu-

mulating at a random rate, are compared with the reserve, which is calculated according

to a financial hypothesis which could be significantly different from the actual investment

performance. The solvency margins in the M7 model combined with Vasicek model are

higher and the corresponding confidence intervals are wider than in the Plat model.

As we can see from Figure 3.5.1 the confidence intervals for the M7 and Plat models

in the case of stochastic interest rates are wider than in the case when interest rates are

deterministic. Although the confidence intervals tend to narrow down as portfolio size

increases eliminating the impact of random fluctuations, the effect of stochastic interest

rates on the overall width of confidence intervals in comparison with those in section 3.4

is significant due to the non-pooling and systematic nature of interest rate risk. Since

we have added an extra source of variability by introducing stochastic interest rates, the

results in figures 3.5.1, 3.5.2 and 3.5.3 demonstrate higher solvency margins and wider
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Figure 3.5.1: Solvency margins for different stochastic mortality models combined with
Vasicek stochastic interest rate model with σ = 0.05 for d = 5 and T = n with 95%
confidence intervals.
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Figure 3.5.2: Solvency margins for different stochastic mortality models combined with
Vasicek stochastic interest rate model with σ = 0.1 for d = 5 and T = n with 95%
confidence intervals.
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p

Figure 3.5.3: Solvency margins for different stochastic mortality models combined with
Vasicek stochastic interest rate model with σ = 0.2 for d = 5 and T = n with 95%
confidence intervals.
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confidence intervals. Moreover, we can observe that with greater σ, the solvency margins

and confidence intervals increase reflecting higher level of uncertainty.

One of the disadvantages of Vasicek model is that its short rates can be negative for

certain combinations of model parameters (Liang et al. [2011], Mallier and Deakin [2002]).

Moreover, there is no term structure of volatility and it is assumed constant. It is a one

factor model. It assumes that short rates are 100% correlated and can only cater for

parallel shifts in the yield curve. We use this stochastic interest rate model to generate

future simulations over long time horizons and the use of a model based on just the

short term interest rate presents some disadvantages, however these disadvantages, are

not critical for usefulness of our model. Our main goal is to demonstrate the impact of

stochastic interest rates on the magnitude of the solvency margin and we achieve this goal

by using the Vasicek model.

3.6 Further extensions

Further research work should concern the effects of various alterations to the insurance

contracts on solvency margins. The results in this chapter can be extended to capture the

effect of guarantees in the design of annuity contracts. Annual premiums are used in many

types of insurance policies so investigation of the effect of annual premiums rather than

a single premium can also be of interest of actuaries. Furthermore, the below mentioned

metrics which are used in some insurance regulations can be applied

• CV [X] =
√
V ar[X]
E[X] = coefficient of variation (or risk index), where X = random

NPV (Net Present Value) of the portfolio outflows for annuity payments

• Relative and absolute solvency margins, i.e. [Z0−V0
V0

]′′ and [Z0 − V0]′′ according to

the stress scenario (Solvency II), consisting in a permanent 20% decrease of all the

qx, with relation to the probabilities adopted in premium and reserve calculations
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Another extension can be incorporation of two-factor interest rate models for the anal-

ysis of the effect of stochastic interest rates on solvency margins. Examples are the

two factor Hull-White model (Hull and White [2001]), Cox–Ingersoll–Ross model (Cox

et al. [2005]). The Hull-White model allows for mean reversion of interest rates and the

Cox–Ingersoll–Ross uses a square-root diffusion process to ensure that the calculated in-

terest rates are always non-negative which can solve the above mentioned problems with

the Vasicek model. Due to the fact that two-factor models assume that more than one

stochastic factor affects the future evolution of the interest rates, they are able to capture

more uncertainty associated with the interest rates risk, and, therefore, this is likely to

increase the solvency margin.

3.7 Conclusions

Solvency requirements for deferred annuities have been analysed and compared to those

of immediate annuities. Particular focus has been placed on the longevity risk. This

has been incorporated in the analysis using different deterministic and stochastic models,

particularly the family of generalized age-period-cohort stochastic mortality models. Sev-

eral numerical examples illustrate the solvency requirements produced by these different

approaches to modelling longevity risk. The results demonstrate the dramatic importance

of the mortality models on evaluation of solvency margins for life annuities and the fact

that model risk is an important issue when forecasting solvency margins. Another focus

of this chapter is the deferred period and its effect on solvency requirements. The solvency

margins increase with greater deferred periods which is caused by the extra longevity risk

and the greater uncertainty about the numbers of future survivors. In essence, deferred

annuities are more uncertain than immediate annuities, so as a result they require higher

solvency margins. As discussed in section 3.1, retirees are reluctant to convert retirement

savings into annuities voluntarily. One of the reasons is that in order to purchase immedi-
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ate annuities they need to give up significant amount of cash. Deferred annuities require

lower premiums as a result of the discounting effect and the possibility that the annuitant

may not live until the benefit payments start. The model considered in this chapter could

be applied to pension schemes with active members, where deferred benefits naturally

arise. While deferred annuities may be difficult for the insurers to sell as stand alone

products due to the lack of incentives on the policyholder side, they may be embedded

in other products such as variable annuities or guaranteed annuity options. From the

insurer’s viewpoint, deferred annuities will tipically feature level premiums (and a death

benefit, usually in the form of a return of premiums during the deferment period). The

presence of level premiums will result in higher solvency margins compared to those ob-

tained in this chapter. In section 3.5 we exploit the impact of stochastic interest rates on

solvency margins and corresponding confidence intervals. The results demonstrate higher

solvency margins and wider confidence intervals compared to the models with determin-

istic interest rates used in section 3.4. Comparison of results of these different models

demonstrate the importance of model risk and help to assess it. For reserving purposes

the models which are more conservative and lead to larger solvency margins on VaR and

ES bases should be chosen even if they are not the best fit to the original data. This

approach is broadly supported in the actuarial literature (Richards [2008], Melnikov and

Romaniuk [2006], Enchev et al. [2017])
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Chapter 4

Pricing buy-outs using different
stochastic mortality models

4.1 Introduction

Pension buyouts, a pension de-risking strategy, have recently gained more and more at-

tention from both scholars and practitioners. Longevity risk poses significant threat to

the provision of retirement income with life expectancy having steadily risen in most of

the world’s countries. Improvements in mortality rates increase pension liabilities (Cox

et al. [2006], Cox et al. [2013], Milidonis et al. [2011]). Increasing life spans make pensions

more expensive for employers because they have to pay out fixed pension benefits to par-

ticipants over a longer period. These pension liabilities are becoming extremely expensive

to maintain, so pension plans are considering transferring these risks to insurance com-

panies. As a result, there has been a surge of interest from defined benefit plan sponsors

to de-risk their pensions with strategies such as longevity hedges and pension buyouts in

recent years (Lin et al. [2015]).

A longevity hedge, such as a longevity swap, allows a pension plan to transfer its tail

longevity risk to a third party. In contrast, a pension buyout involves purchasing annu-

ities from an insurance company. According to LCP [2020] 2019 was an unprecedented

year for pension buy-out and buy-in deals , with both volume sizes and transaction sizes
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increasing dramatically.

A buy-in is a policy that covers a proportion of the liabilities of a pension scheme, such

as the benefits for the pensioners in-payment. The policy pays an income equal to the

benefits of the covered members and therefore removes the risk of insufficient assets to

meet future liabilities. A buyout is a type of financial transfer where a pension fund

sponsor pays a fixed amount in order to avoid any liabilities relating to that fund. Thus,

an insurer receives the payment but takes on responsibility for meeting those liabilities.

Therefore, the main difference between pension buy-ins and pension buy-outs is related

to credit risk. A buyout allows a firm to offload all pension obligations from its balance

sheet and eliminate credit risk. However, the liabilities of buy-in insurers are usually

not fully collateralised and guaranteed by third parties, and therefore, counter-party risk

arises. Single-premium pension buyouts are the most popular type of pension-risk trans-

fer. Employers transfer their pension assets and obligations to an insurance company by

purchasing a group annuity contract for all or a portion of the plan participants. Com-

pared with longevity swaps, pension buyouts are more effective in improving firm value.

Longevity hedges retain most of the pension risk transferring only tail longevity risk and,

so they prevent a firm from taking full advantage of pension de-risking. Pension buyouts,

however, transfer the whole pension risk including longevity risk, interest rate risk and

investment risk. Therefore, pension buyouts provide more freedom for a firm, within its

risk tolerance, to take on more risky projects with high positive net present values. Con-

sistent with this observation, Lin et al. [2017a] find that in the enterprise risk management

framework, buyouts create more value than longevity hedges.

Progress in the area of longevity hedging and calculations of values of pension buy-

outs was hindered by the lack of closed-form formulae for the valuation of mortality-

linked liabilities. Cairns [2011] proposes using a Taylor expansion for the approximation

of longevity-contingent values. The paper makes use of the probit function along with a
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Taylor expansion in the case of the Cairns-Blake-Dowd model (M5) (Cairns et al. [2006].

Thus, as the second objective of this chapter, we show how computationally expensive

nested simulations problem can be avoided by extending the methodology used in Cairns

[2011] to the Lee and Carter [1992] and Plat [2009] stochastic mortality models. Devel-

oping a sensitivity analysis in this area is important since it will help market participants

better understand the effect of mortality trends on different pension risk management

instruments and especially pension buy-outs.

The mortality and survival rates are evaluated using a publicly available projected

mortality table for England and Wales estimated with the Lee and Carter [1992], Cairns

et al. [2006] and Plat [2009] mortality models.

Little attention has been paid to how the price of pension buyouts will change taking

into account new mortality trends. In this chapter we use observed age specific mortality

rates for males in England and Wales (EW) between 1961 and 2016 and observe that

over the period of 1961-2011 mortality rates have been declining at all ages, but since

2012 the mortality trends have reversed. According to Sanders [2018], since 2011 the

rate of improvement of mortality rates has slowed for those aged 55-89 and among those

aged 15-54 mortality rates have worsened years since 2012 . These phenomena have

been analysed further. Thus, Bennett et al. [2018] investigate how much deaths from

different diseases and injuries and at different ages have contributed to the increase in

life expectancy inequalities. Ho and Hendi [2018] discuss recent trends in life expectancy

across high income countries. We therefore, believe that it is important to reflect recent

mortality trends in the pricing of pension buyouts and to develop a comparison analysis.

Generally, analysis of the sensitivity of the price of pension buyouts to the fitted data,

different fitting periods and different mortality models and model risks associated with

these is important in assessing this product for insurers.

The chapter is organized as follows: Section 4.2 presents the basic framework for mod-
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elling a pension buyout. Section 4.3 describes different stochastic mortality models used

in this chapter for estimating longevity risk. Section 4.4 demonstrates the Taylor series

expansion approach to mortality models while section 4.5 discusses the Wang transform

approach. In section 4.6 we describe formulas for the risk-neutral price of the pension

buyout. In section 4.7 we demonstrate some numerical results for the pricing of pension

buyout and provide a sensitivity analysis of the prices of pension buy-outs to different

mortality models and data. Section 4.8 concludes this chapter.

4.2 Model

Consider a defined benefit pension plan with a cohort of N0 members of age x0 at time 0

all receiving the same amount of pension payment. We denote the plan’s annual payment

received by each member by P . The pension liability at time t, PLt, is the present value

of future obligations,

PLt = Nt · Pax0+t t = 0, 1, 2, . . . , (4.1)

where Nt is the number of survivors at time t, and ax0+t is the value at time t of an

immediate life annuity for an individual aged x0 + t, equal to

ax0+t =
∞∑
s=1

vs spx,t (4.2)

where v = 1
1+r , and r is the discount rate used for annuity pricing.

The s-year survival probability for age x conditional on information prevailing at time

t,

spx,t = Et
[
px,t × px+1,t+1 × . . .× px+s−1,t+s−1

]
, (4.3)

where Et denotes expectation conditional on information available at time t.

Calculation of this conditional probability involves calculation of conditional expectations

that usually have no closed form. When the probability is simulated out to some future
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horizon period T , the future time-T probabilities and annuity values contingent on the

value of the state variables at time T need to be obtained. If stochastic simulation

is applied to solve this, a nested simulations technique, which is very computationally

expensive, is required. In the next section we discuss different stochastic mortality models

and then show how to calculate the probability (4.3) for these models avoiding the nested

simulations problem.

4.3 Longevity Risk Model

Currie [2016] shows that many mortality models can be expressed in terms of generalized

linear models or non-linear models. We assume that the numbers of deaths Dxt at age x

in year t follow Binomial distribution:

Dxt ∼ Bin(E0
xt, qx,t), (4.4)

where qx,t and E0
xt are the death rate and the initial exposed to risk at age x in year t. The

systematic component captures the effects of age x, calendar year t and cohort c = t− x

through the predictor ηxt

ηxt = αx +
M∑
i=1

β(i)
x k

(i)
t + β(0)

x γt−x, (4.5)

where αx is the static age function capturing the general shape of mortality by age, M ≥ 0

an integer indicating the number of age-period terms describing the mortality trends, with

each time index k(i)
t , i = 1, . . . ,M and the term γt−x accounting for the cohort effect with

β(0)
x modulating its effect across ages.

The link function is associating the random component to the systematic component so

that

logit

(
E

(
Dxt

Ext

))
= ηxt. (4.6)

It is convenient to use the canonical link and pair the Binomial distribution with the logit
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link function given by log qx,t
1−qx,t = ηxt (Currie [2016]).

Buy-outs involve attempting to quantify future cash flows over a long future time

period, where the cashflows involve uncertainty because the number of future survivors

at future time points is unknown. One important component of the uncertainty is not

knowing the correct mortality model to use for simulating the future numbers of survivors.

Therefore, it is important to investigate the sensitivity of the results to the choice of the

stochastic mortality model and assess the model risks associated with these products.

In order to investigate the effect of mortality models on pricing of pension buy-out

we use three types of mortality models: with one age-period term, with two age-period

terms, and a model that also captures the cohort effect. The stochastic mortality model

with one age-period term we apply in this chapter is the model developed by Lee and

Carter [1992] with predictor

ηxt = αx + β(1)
x k

(1)
t . (4.7)

The time index k
(1)
t is modeled and forecasted using ARIMA processes. Typically, a

random walk with drift has been shown to provide a reasonable fit, that is,

k
(1)
t = δ + k

(1)
t−1 + εt, (4.8)

where δ is the drift parameter and εt is a Gaussian white noise process with variance

σ2
k.

Cairns et al. [2006] (M5) model proposes a predictor structure with two age-period

terms with pre-specified age-modulating parameters:

ηxt = k
(1)
t + (x− x̄)k(2)

t , (4.9)

where x̄ is the average age in the data used to fit the model.
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The CBD model obtains mortality forecasts by projecting the period effects k(1)
t and

k
(2)
t using a bivariate random walk with drift:

k
(1)
t = δ(1) + k

(1)
t−1 + ε

(1)
t

k
(2)
t = δ(2) + k

(2)
t−1 + ε

(2)
t ,

(4.10)

where ε(1)
t and ε

(2)
t are correlated Gaussian white noises.

Plat [2009] model is suitable for the full age range and also captures the cohort effect.

The predictor in this model is given by

ηxt = αx + k
(1)
t + (x− x̄)k(2)

t + (x− x̄)+k
(3)
t + γt−x, (4.11)

where αx is a static age function and there are three age period terms with pre-specified

age-modulating parameters β(1)
x = 1, β(2)

x = x̄− x, β(3)
x = (x− x̄)+ = max(0, x− x̄).

We then use these three models to predict future mortality rates and simulate Nt from

section 4.2, the random number of survivors at time t.

4.4 Taylor series expansion approach to mortality mod-
els

The calculation of the conditional probability in (4.3) using the models introduces in

section 4.3 involves calculation of conditional expectations that usually have no closed

form. An attempt to use stochastic simulation runs into a problem. When we simulate

the probability out to some future horizon period T , we then need to obtain the future

time-T probabilities and annuity values contingent on the value of the state variables

(time indices k(i)
t ) at time T . If stochastic simulations are applied to solve this, we will

need to implement ”simulations within simulations”, i.e. nested simulations which is

computationally expensive. An alternative method to obtain future probabilities and

annuity values contingent on the outcomes of the time-T state variables can be through
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a Taylor series approximation. In this case, we need to simulate the state variables out

to T , and then use the Taylor series approximation to assess probabilities and annuity

values at time T as functions of the values of the state variables.

We first demonstrate this method as is described in Cairns [2011] for the two-factor

model(M5) in Cairns et al. [2006] and then extend the application of the Taylor expansion

method to other stochastic mortality models. In Cairns et al. [2006] model the probability,

as measured in time t + 1, that an individual aged x at time t survives to time t + 1 is

defined as px,t. For the M5 model, this is given by:

px,t = exp[k(1)
t + k

(2)
t (x− x̄)]

1 + exp[k(1)
t + k

(2)
t (x− x̄)]

(4.12)

where kt = (k(1)
t , k

(2)
t ) is a two-dimensional random walk with drift.

It is useful to define the survivor index as

S(T, x) = px,0 · px+1,1 · · · · · px+T−1,T−1, (4.13)

It represents the ex post probability that an individual aged x at time 0 would have

survived to time T .

Spot survival probabilities p(t, s, x, k) are non-linear functions of the future path of kt

that need to be computed using simulation. This is the probability that an individual

aged x− t at time 0, and still alive at time t (age x), survives until time s, based on the

information about aggregate mortality at time t, as summarised by the vector kt = k.

This probability can be expressed as

spx,t = p(t, s, x, k) = E

[
S(T + s, x− t
S(T, x− t)

∣∣∣∣∣kt = k

]
(4.14)

For the calculation of pension buyout prices in our problem we need to ask the question:

what is the distribution of p(t, s, x, k), the probability that an individual alive and aged
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x at time t survives s more years? This depends upon the simulated value of kt at time t

so for each simulated kt we need to conduct further simulations to establish the value of

p(t, s, x, k).

The fact that random walk assumption implies that kt has Markov and time-homogeneity

properties and that qx,t depends on kt mean that p(t, s, x, k) = p(0, T, x, k). Therefore,

although our usual starting point k0 is known, we can evaluate spot survival probabilities

at time 0 using other initial conditions.

The probit transform is applied before making approximations, that is, f(T, x, k) =

Φ−1(p(0, T, x, k)), where Φ−1 is the inverse of the standard normal distribution func-

tion. A probit transformation, in combination with the first and second order Taylor

approximations has been found by Cairns [2011] to produce accurate estimates of the

spot survival probabilities that compare favourably with alternative transformations such

as the log or logistic transforms or no transforms at all. The logit and log transfers were

considered by Cairns (2011) as alternatives to the probit transform, however, they were

relatively poor compared to the probit transform and as a conclusion the probit was con-

sidered to be better suited for these kinds of problems.

Let k̂ = (k̂1, k̂2)′ = E[kt] . A linear approximation of the function f based upon the

Taylor expansion around k̂ is

f(T, x, k) ≈ D0(T, x) +D1(T, x)′(k − k̂) + 1
2(k − k̂)′D2(T, x)(k − k̂) , (4.15)

where D0(T, x) is a scalar function of (T, x), D1(T, x) is a 2 ∗ 1 vector of first derivatives,

and D2(T, x) is a 2 ∗ 2 matrix of second derivatives.

We now consider the corresponding results for the other two stochastic mortality

models being examined. The probability, as measured in time t + 1, that an individual
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aged x at time t survives to time t+ 1 for the Lee-Carter model is

px,t = exp[αx + βxk
(1)
t ]

1 + exp[αx + βxk
(1)
t ]

(4.16)

where kt = (k(1)
t ) is a one-dimensional random walk with drift.

D0(T, x) is a scalar function of (T, x), and due to the fact that there is only one period

term in LC model, both D1(T, x) and D2(T, x) are scalars.

The probability, as measured in time t+1, that an individual aged x at time t survives

to time t+ 1 for the Plat model is

px,t = exp[αx + k
(1)
t + k

(2)
t (x− x̄) + k

(3)
t (x− x̄)+ + γt−x]

1 + exp[αx + k
(1)
t + k

(2)
t (x− x̄) + k

(3)
t (x− x̄)+ + γt−x]

(4.17)

D0(T, x) is a scalar function of (T, x), D1(T, x) is a 3∗1 vector of first derivatives, and

D2(T, x) is a 3 ∗ 2 matrix of second derivatives.

For our particular problem, we need to use the above technique in order to calculate

a
(i)
65+T,T , where T = 1, 2, . . . , ω and ω is final age. Thus,

a
(i)
65+T,T =

55−T∑
s=1

E

[
sp65+T,T |k(i)

T

]
vs , (4.18)

where

Φ−1
(
E

[
sp65+T,T |k(i)

T

])
= f(s, 65 + T, k

(i)
T )

≈ f(s, 65 + T, k̂T ) + ∂f

∂k
(s, 65 + T, k̂T )(k(i)

T − k̂T ) + 1
2
∂2f

∂k2 (s, 65 + T, k̂T )(k(i)
T − k̂T )2 .

(4.19)

For a general, twice-differentiable function g(x1, x2), for small h1 and h2:

∂g

∂x1
(x1, x2) ≈ (g(x1 + h1, x2)− g(x1, x2))/h1, (4.20)

∂g

∂x2
(x1, x2) ≈ (g(x1+, x2h2)− g(x1, x2))/h2, (4.21)

∂2g

∂x2
1
(x1, x2) ≈ (g(x1 + h1, x2)− 2g(x1, x2) + g(x1 − h1, x2))/h2

1, (4.22)
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∂2g

∂x2
2
(x1, x2) ≈ (g(x1, x2 + h2)− 2g(x1, x2) + g(x1, x2 − h2))/h2

2, (4.23)

∂2g

∂x1∂x2
(x1, x2) ≈ (g(x1 + h1, x2 + h2)− g(x1 − h1, x2 + h2)

−g(x1 + h1, x2 − h2) + g(x1 − h1, x2 − h2))/4h1h2 (4.24)

These approximations are not unique, but they are known to be effective in a variety

of circumstances.

4.5 Wang transform

The Wang transform is a market-based equilibrium pricing method that unifies finance

and insurance pricing theories. Wang(1996, 2000, 2001, 2002) introduced a method of

pricing insurance risks by transforming the underlying distribution. It has been used to

price longevity swaps by some authors. Lin et al. [2017a] used the Wang transform method

for the pricing of buy-outs. Wanyama [2018] applied the method for hedging longevity risk

using longevity swaps. Shiqing [2015] derived an analytical pricing formula of longevity

swaps with a trigger mechanism based on the Wang transform. This transform extends the

Capital Asset Pricing Model (CAPM) to the pricing of all kinds of assets and liabilities,

having any type of probability distribution in finance or insurance. This transform is

easily applied to contingent payoffs that are co-monotone with their underlying assets

or liabilities. Unlike many other possible transforms including the Proportional Hazard

transform also developed in Wang [1996], the simple and more generalized families of

the Wang Transform build directly upon CAPM and Black-Scholes Theory. The main

parameter in the Wang Transform is the market price of risk which is a familiar concept in

financial economics. Furthermore, the market price of risk in the Wang Transform is not

subject to the same disadvantages of “underwriting beta” due to the fact that the market

price of risk can be easily calibrated from industry capital requirements. This calibration is

more robust than historical estimates of the “underwriting beta”. The transform is equally
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applicable to primary insurance business and excess-of-loss reinsurance when calculating

fair value of liabilities (Wang [2002]). To apply it for the pricing of pension buy-outs, the

observed prices of pure longevity securities can be used to determine the parameter of

the Wang transform and the longevity risk premium of a buy-out contract can then be

derived [Lin et al., 2017b].

In general, the Wang transform distorts a cumulative distribution function FX(x) to

obtain a transformed distribution F ∗X(x) according to the following equation:

F ∗X(x) = Φ[Φ−1(FX(x))− λ], (4.25)

where Φ(x) is the standard normal cdf and λ can be interpreted as the market price of

risk. The fair price of X then equals the discounted expected value using the transformed

distribution F ∗X(x). We follow Lin et al. [2015], and apply the Wang transform to the

death probabilities

F ∗T (x,0)(s) = Φ[Φ−1(FT (x,0)(s))− λ], (4.26)

where T (x, 0) is the lifetime of a person at age x in time 0 and λ is the market price of

longevity risk. In the context of this chapter, the Wang transform can be expressed as

q∗x,s = Φ[Φ−1(qx,s)− λ], (4.27)

where q∗x,s is the expected probability that a person aged x at time 0 dies before age x+ s

and s = 1, 2, . . .

According to Lin and Cox [2008] in bulk annuities the market price of risk in the

Wang transform reflects the level of market systematic risk and firm-specific unhedgeable

risk. The idea is that, after transformation, the fair price of a claim X should be the

discounted expected value using the transformed distribution. Assume an insurer transfers

its longevity risk to financial markets by issuing a longevity bond. The market price of

100



4.6. PRICE OF A BUY-OUT

risk λ can be derived based on the annuity retail market, and then we can use the same λ

to price the longevity bond. If there are no transaction costs between the two markets and

annuities were actually traded, this method guarantees no arbitrage opportunity between

these markets.

Assume the market price of longevity risk, λ is constant in time. In that case, the

transformed s-year survival rate for age x at time 0, p∗x,0 , is

p∗x,0 = 1− q∗x,0 = 1− Φ[Φ−1(qx,0)− λ] . (4.28)

The market price of longevity risk λ can be determined from a longevity security with

equation (4.28), so that at time 0 the price of the longevity security is the discounted

expected value under the transformed probability sp
∗
x,0 in the case of annuity:

S∑
s=1

vs sp
∗
x,0 =

S∑
s=1

vs
(

1− Φ[Φ−1(qx,0)− λ]
)

. (4.29)

To apply this in our buy-out pricing we can first set desired values for longevity risk

premium Plr

Plr =
a∗x0

ax0

− 1 , (4.30)

where a∗x0 is the present value of an immediate annuity at time 0 for the cohort cohort

aged x0 calculated using the transformed survival rates, and then work backwards to

calculate λ and consequently the transformed s-year survival probabilities.

4.6 Price of a buy-out

In this section we derive the formulas for the risk-neutral price of the funding guarantee

option of the pension buy-outs.

Assume that the annual survival payments from the insurer to the retirees are made

at the end of each year. Let At denote the value of pension assets at time t and Lt the
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present value of liabilities at time t. We assume that the pension scheme is fully funded

at inception with A0 = L0. At the end of each year, the pension assets are reduced by

the annuity (or survival) payments. Furthermore, in the event of pension shortfalls, the

bulk annuity insurer has obligations to inject cash to cover up the deficits.

Thus, the option component of the buyout at time t is

Ot = max{Lt +Nt · P − At, 0}, (4.31)

where Ot is the deficit at time t covered by the pension buyout. Denote by At+ the value

of pension assets after the annuity payments are made at time t and the deficit is covered

(if any), so that At+ satisfies the equation

At+ = Ot + At −Nt · P = max{At −NtP,Lt} . (4.32)

The value of the pension assets between annuity payment dates grows according to a

General Brownian Motion dynamics under the risk neutral probability Q used for the

pricing of the buy-out:

At+1 = At+e
(r−σ

2
2 )+σ∆zt t = 0, 1, 2, . . . , (4.33)

where r is the risk-free rate, σ is volatility and ∆zt ∼ N(0, 1) is standard normal distri-

bution. Investment risk is assumed to be independent of the longevity risk.

Thus, the risk-neutral price of the funding guarantee option of the buy-outs equals

B =
ω−x∑
t=1

vtEQ[Ot]− vω+1EQ[Aω+1] , (4.34)

where vt is the t-year discount factor based on the risk-free rate r and Q is the risk adjusted

probability obtained through the Wang transform. The first component on the right-hand

side of (4.34) represents the present value of supplementary contributions whenever an
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underfunded event occurs and the second component is the released reserve after all the

pensioners are deceased.

The relative investment risk premium Brel can then be obtained by dividing (4.34) by

the initial pension liabilities L0,

Brel = B

L0
− 1 . (4.35)

This is the cost, per pound of pension liability, of the buy-out protection guarantee.

4.7 Numerical illustrations

In this section, we use a numerical example to illustrate how to determine the values of

the buy-outs.

We calculate the cost of the buyout for the 3 stochastic mortality models introduced

before (Lee Carter, CBD, Plat), using different scenarios and different approaches to

fitting and forecasting mortality in order to be able to estimate the sensitivity of key

parameters. Namely,

1) Fitting using ages: 65-100, 60-100, 55-100;

2) Fitting using input data: 1960-2000, 1965-2005, 1970-2010, 1975-2015.

Particularly in order to demonstrate the effect of the latest trends in mortality to the

pricing of pension buyouts we analyse the data after 2010 separately.

The results for the derivatives D0, D1, D2 for Lee-Carter, M5 and Plat models for age

x = 70 in 5 years time and the results for D0,D1 ,D2 for Lee-Carter, M5 and Plat models

for age x = 80 in 15 years time and for age x = 90 in 25 years time are demonstrated in

the Appendix and we can analyse them in order to see how sensitive are these values to

age and period. The first subscript in the D terms demonstrate the order of derivatives,

and the second subscript is the κ term. For example, D1,1 is the first order derivative for

the first κ term. We can comment on these tables as follows:
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• D0(T, x) for all three mortality models become more negative as T increases, re-

flecting the gradually lower probability of survival to T .

• D0(T, x) decrease with age x for all three models.

• D1(T, x) for LC model and D1,1(T, x) for CBD and Plat are all negative, indicating

that a lower values of k(τ) and k1(τ) respectively means mortality rates will normally

be lower at all future ages and consequently survival rates will be higher. Consider-

ing that all future mortality rates will be lower then there will be a proportionately

bigger negative impact on survival probabilities to smaller ages.

• D2 for LC model and D2,11 for CBD model are also negative.

• D1,2, D2,12 for CBD and Plat models and D2,13 for Plat model change sign.

• D2,22, D2,23, D2,33 are negative indicating that a lower values of k(2)
t and k(3)

t respec-

tively means mortality rates will normally be lower at all future ages and conse-

quently survival rates will be higher.

The following tables demonstrate values for a65 = a60+5, conditional on information

prevailing at time 5, for different fitting periods and fitting ages for the three models.

Table 4.7.1: a65 values for LC model for different fitting periods and ages.

55-100 60-100 65-100
1960-2000 13.46 13.53 13.62
1965-2005 13.58 13.64 13.78
1970-2010 13.62 13.76 13.85
1975-2015 13.56 13.67 13.78

The method introduced in Lin et al. [2017b] uses the Lee Carter stochastic mortality

model in order to assess the value of a65. In Lin et al. [2017b] the value of λ is first

calculated which then is used to assess the values of Plong of 3.14% and a65. The UK male

population mortality tables for ages 65–104 from 1950 to 2013 from the Human Mortality
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Table 4.7.2: a65 values for CBD model for different fitting periods and ages.

55-100 60-100 65-100
1960-2000 14.77 14.86 14.96
1965-2005 14.91 14.98 15.13
1970-2010 14.97 15.11 15.21
1975-2015 14.86 14.90 15.01

Table 4.7.3: a65 values for Plat model for different fitting periods and ages.

55-100 60-100 65-100
1960-2000 16.424 16.524 16.64
1965-2005 16.58 16.66 16.825
1970-2010 16.647 16.802 16.914
1975-2015 16.33 16.48 16.57

Database are used in the paper.

The aim of this chapter is to assess the values of ax for different stochastic mortality

models and effect of fitting different ages and periods on those values. We use the method

by Lin et al. [2017b] but we set desired values for longevity risk premium Plong and then

work backwards to calculate λ and consequently the transformed the values of ax. We

also use three different stochastic mortality model in order to perform comparison analysis

assess sensitivity to the choice of model.

Further, we undertake a sensitivity analysis. The goal of this analysis is to show how

the the values for ax change as we vary the mortality model, fitting period, and fitting ages.

To this end, we consider a Lee Carter model with fitting period 1960 − 2000 and fitting

ages 55− 100 as baseline model. We analyse three mortality models with different fitting

periods and fitting ages for England and Wales data. We carry out 100000 simulations.

We set the risk-free interest rate r = 3%, whilst for the simulation of assets in B (equation

4.34) we use a Geometric Brownian Motion with volatility σ = 30%. In order to assess

the sensitivity of ax, we consider the value of ax for Lee Carter model with fitting period

1960−2000 and fitting ages 55−100 as a benchmark and construct a table of the fractions

of ax values. Thus, for example, the sensitivity of ax value for Plat model would be aPlatx

aLCx
.
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Table 4.7.4: Sensitivity of a65 value for LC model for different fitting periods and ages.

55-100 60-100 65-100
1960-2000 1 1.005 1.011
1965-2005 1.009 1.013 1.024
1970-2010 1.012 1.022 1.029
1975-2015 1.007 1.0156 1.024

Table 4.7.5: Sensitivity of a65 value for CBD model for different fitting periods and ages.

55-100 60-100 65-100
1960-2000 1.097 1.104 1.111
1965-2005 1.108 1.113 1.124
1970-2010 1.109 1.123 1.130
1975-2015 1.104 1.107 1.115

The tables demonstrate that the sensitivity of ax values increase with the length of

the fitting periods and as we move shift the age range being fitted to older age. However,

the values for fitting period 1975− 2015 are slightly lower that the values for 1970− 2010

which reflects the effect of recent mortality trends. The values for CBD model are about

9% − 11% higher and the values for Plat model are 22% − 25% higher than the values

for the base Lee Carter model. These differences in the values of ax come from the

different characteristics of the underlying stochastic mortality models. The LC model has

only one age period term, therefore it does not fully represent all the characteristics of

the data such as changing mortality improvements, therefore, has the lowest values for

ax. The Plat model has also a cohort effect and an additional κ term, and, therefore,

is able to better capture recent mortality improvements at different ages. In essence,

more elaborate models such as the Plat model with more time trends are capable of

capturing more complex patterns in mortality while simpler ones such as the LC model

necessarily must achieve a compromise and may result in less accurate projected mortality

trends. Model risk is very important and the right model can ultimately only be chosen

by actuarial judgement depending on the actuary’s objectives. Such judgement should be

informed by the results of using several different models. In this particular case, actuaries’
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4.7. NUMERICAL ILLUSTRATIONS

Table 4.7.6: Sensitivity of a65 value for Plat model for different fitting periods and ages.

55-100 60-100 65-100
1960-2000 1.22 1.228 1.236
1965-2005 1.232 1.238 1.25
1970-2010 1.237 1.248 1.257
1975-2015 1.213 1.224 1.231

duty of prudence would lead them to view the Plat model as one of the most suitable

due to the fact that this model fits historical data well, is applicable to a full age range,

captures the cohort effect and leads to higher ax values.

In the next few tables we demonstrate the results for Brel for different models. The

periods we use for fitting are 1960-2000, 1965-2005, 1970-2010, 1985-2015. The age ranges

we use for fitting are 55-100, 60-100, 65-100. The value of Plong that we use in order to

calculate the transformed survival probabilities are 3%, 4% and 5%. The implied values

of λ for these values of Plong are given in the Table 4.7.7

Table 4.7.7: λ values for different stochastic mortality values and different Plong values.

λ values
Plong 3% 4% 5%
LC 0.083 0.1113 0.14
CBD 0.0804 0.1082 0.1361
Plat 0.0760 0.1035 0.1312

We perform the following analysis using an assumption of a risk free rate of 3% and a

volatility for assets of 30%.

Table 4.7.8: Values of investment premium Brel (Buy-out funding cost). Fitting period
1960− 2000. Ages 55− 100.

3% 4% 5%
Lee Carter 4.23% 5.72% 7.99%
Cairns Blake Dowd 4.39% 6.25% 8.21%
Plat 4.88% 6.58% 9.03%
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Table 4.7.9: Values of investment premium Brel (Buy-out funding cost). Fitting period
1960− 2000. Ages 60− 100.

3% 4% 5%
Lee Carter 3.85% 5.54% 8.31%
Cairns Blake Dowd 4.41% 6.21% 8.76%
Plat 4.65% 6.93% 9.56%

Table 4.7.10: Values of investment premium Brel (Buy-out funding cost). Fitting period
1960− 2000. Ages 65− 100.

3% 4% 5%
Lee Carter 3.88% 5.56% 8.02%
Cairns Blake Dowd 4.07% 5.79% 8.31%
Plat 4.65% 6.34% 9.52%

The tables demonstrate the sensitivity of Brel values to mortality models and Plong val-

ues. In carrying out these analyses, we explore how the choice of parameter and stochastic

mortality models affects buy-out prices. In general, the analyses illustrate intuitive re-

sults including how the buy-out prices reflect mortality improvements depending on the

fitted age ranges and fitting period. The price of the pension buy-out also increases with

increasing longevity risk premium which in its turn depends on the market price of risk

λ estimated from the Wang transform. This result makes intuitive sense as a higher risk

premium is associated with a higher level of longevity risk and these effects are similar

across different mortality models. The values for the Plat model seem to be highest due to

the greater spread in uncertainty it captures and the values for the LC model are lowest.

However, although we saw a clear effect of fitting period and fitting ages on the values of

ax their effect on the value of Brel seems to be erratic.
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4.7. NUMERICAL ILLUSTRATIONS

Table 4.7.11: Values of investment premium Brel (Buy-out funding cost). Fitting period
1965− 2005. Ages 55− 100.

3% 4% 5%
Lee Carter 4.76% 5.31% 8.67%
Cairns Blake Dowd 4.96% 6.42% 8.78%
Plat 5.01% 6.82% 9.33%

Table 4.7.12: Values of investment premium Brel (Buy-out funding cost). Fitting period
1965− 2005. Ages 60− 100.

3% 4% 5%
Lee Carter 4.04% 5.34% 8.43%
Cairns Blake Dowd 4.34% 6.67% 8.65%
Plat 4.56% 6.92% 9.32%

Table 4.7.13: Values of investment premium Brel (Buy-out funding cost). Fitting period
1965− 2005. Ages 65− 100.

3% 4% 5%
Lee Carter 3.78% 5.34% 8.54%
Cairns Blake Dowd 4.21% 6.21% 8.67%
Plat 4.78% 6.55% 9.32%

Table 4.7.14: Values of investment premium Brel (Buy-out funding cost). Fitting period
1970− 2010. Ages 55− 100.

3% 4% 5%
Lee Carter 4.22% 5.78% 8.43%
Cairns Blake Dowd 4.34% 6.43% 8.56%
Plat 4.86% 6.67% 9.32%

Table 4.7.15: Values of investment premium Brel (Buy-out funding cost). Fitting period
1970− 2010. Ages 60− 100.

3% 4% 5%
Lee Carter 4.34% 5.91% 8.31%
Cairns Blake Dowd 4.37% 6.57% 8.41%
Plat 4.96% 6.86% 9.21%
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4.7. NUMERICAL ILLUSTRATIONS

Table 4.7.16: Values of investment premium Brel (Buy-out funding cost). Fitting period
1970− 2010. Ages 65− 100.

3% 4% 5%
Lee Carter 4.20% 5.34% 8.55%
Cairns Blake Dowd 4.21% 6.54% 8.78%
Plat 4.78% 6.77% 9.54%

Table 4.7.17: Values of investment premium Brel (Buy-out funding cost). Fitting period
1975− 2015. Ages 55− 100.

3% 4% 5%
Lee Carter 4.23% 5.55% 8.42%
Cairns Blake Dowd 4.43% 6.32% 8.56%
Plat 4.87% 6.89% 9.33%

Table 4.7.18: Values of investment premium Brel (Buy-out funding cost). Fitting period
1975− 2015. Ages 60− 100.

3% 4% 5%
Lee Carter 4.67% 5.32% 8.32%
Cairns Blake Dowd 4.96% 6.25% 8.47%
Plat 5.01% 6.68% 9.44%

Table 4.7.19: Values of investment premium Brel (Buy-out funding cost). Fitting period
1975− 2015. Ages 65− 100.

3% 4% 5%
Lee Carter 4.88% 5.34% 8.22%
Cairns Blake Dowd 4.96% 6.44% 8.67%
Plat 5.13% 6.78% 9.33%
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4.8. CONCLUSION

4.8 Conclusion

Operating defined benefit pensions has become a more and more difficult business for a

firm. Unexpected mandatory contributions to defined benefit plans reduce resources avail-

able for business investments and adversely affect a firm’s business performance. Pension

buy-outs can be an important solution to these problems provided by the insurance in-

dustry. As a result, pension buyouts have become significant part of pension markets.

To help develop this market, in this chapter, we focus on quantifying and pricing risks

embedded in the pension buy-out transactions. The price of a buy-out contract depends

on the investment risk and longevity risk shifted to an insurer. Developing analytical tools

in this direction is important because it will extend traditional annuity market models,

and it could be very useful in explaining these pension de-risking instruments to potential

pension plan sponsors. Analysis of sensitivity of the price of pension buyouts to the fitted

data, different fitting periods and different mortality models and model risks associated

with these is important in assessing this product for insurers.

We use different fitting periods, fitting age ranges and three different stochastic mortality

models in order to perform sensitivity analysis. Our results demonstrate that sensitivity

of ax values increase with the length of the fitting periods and with a shift of the fitted

age range to include older ages. However, the values for fitting period 1975 − 2015 are

lower than the values for earlier fitting period which reflects the effect of recent mortality

trends. In general, the price of the pension buy-out increases with increasing longevity

risk premium which in its turn depends on the market price of risk λ. This results is intu-

itive as a higher risk premium is associated with a higher risk and these effects are similar

across different mortality models. The values for the Plat model are the highest and the

values for the LC models are the lowest amongst the three models. However, although

there is a clear effect of fitting period and fitting ages on the values of ax, their effect on
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4.8. CONCLUSION

the value of Brel is erratic. Further research can focus on applying stress test scenarios,

such as the occurrence of a global pandemics like Covid-19 or the reduction in the historic

trend of mortality improvements as seen in many developed countries during the recent

period of 2015-2019, and analysis of the effects of these in the pricing of pension buy-outs

can be investigated. Separately, the analysis can be extended to capture the sensitivities

of the results to the financial parameters, i.e to the changes in risk free rates and volatility

parameters and this will likely to have greater effect on the cost of pension buy-outs.
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4.9. APPENDIX

4.9 Appendix

Table 4.9.1: Values for D0,D1 ,D2. LC model for age x = 70 in 5 years time.

T D0 D1 D2

1 2.3365 -0.0104 -0.0011
5 1.5749 -0.0209 -0.0024
10 1.0713 -0.0240 -0.0030
15 0.6268 -0.0260 -0.0035
20 0.1487 -0.0272 -0.0039
25 -0.3985 -0.0278 -0.0042
30 -1.0696 -0.0270 -0.0043
35 -1.8798 -0.0249 -0.0042
40 -2.7553 -0.0246 -0.0044
45 -3.7417 -0.0258 -0.0048
50 -4.9416 -0.0266 -0.0052

Table 4.9.2: Values for D0,D1 ,D2. CBD model x = 70 in 5 years time.

T D0 D1,1 D1,2 D2,11 D2,12 D2,22

1 2.6390 -0.3393 7.5643 -0.03401 0.9228 -22.1877
2 2.379 -0.3682 7.932 -0.0423 1.1498 -26.8775
5 1.964 -0.4237 8.3189 -0.0604 1.5622 -34.4612
10 1.5316 -0.4950 8.2022 -0.0867 1.9454 -40.3368
15 1.1676 -0.5667 7.5525 -0.1153 2.1284 -42.9646
20 0.8035 -0.6488 6.3798 -0.1493 2.1278 -44.2590
30 -0.0444 -0.8690 1.5890 -0.2351 1.3453 -50.5535
40 -1.1929 -1.1583 -8.8489 -0.2923 -0.2934 -79.0863
50 -2.6269 -1.3644 -21.8139 -0.2401 -0.4520 -103.8841
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Table 4.9.3: Values for D0,D1 ,D2. Plat model x = 70 in 5 years time.

T D0 D1,1 D1,2 D1,3 D2,11 D2,12 D2,22 D2,13 D2,23 D2,33
1 2.763 -0.355 7.920 4.926 -0.036 0.966 -23.231 0.857 -16.726 -14.449
2 2.491 -0.386 8.305 5.166 -0.044 1.204 -28.141 1.068 -20.261 -17.504
5 2.056 -0.444 8.710 5.418 -0.063 1.636 -36.081 1.451 -25.978 -22.442
10 1.604 -0.518 8.588 5.342 -0.091 2.037 -42.233 1.807 -30.408 -26.269
15 1.223 -0.593 7.908 4.918 -0.121 2.229 -44.984 1.977 -32.388 -27.980
20 0.841 -0.679 6.680 4.155 -0.156 2.228 -46.339 1.976 -33.364 -28.823
30 -0.047 -0.910 1.665 1.035 -0.246 1.409 -52.930 1.249 -38.109 -32.922
40 -1.249 -1.213 -9.265 -5.763 -0.306 -0.307 -82.803 -0.273 -59.618 -51.504
50 -2.750 -1.429 -22.839 -14.206 -0.251 -0.473 -108.767 -0.420 -78.312 -67.653

Table 4.9.4: Values for D0,D1 ,D2. LC model for age x = 80 in 15 years time.

T D0 D1 D2

1 2.1299 -0.0100 -0.0010
5 1.2381 -0.0201 -0.0022
10 0.4972 -0.0229 -0.0026
15 0.3798 -0.0248 -0.0030
20 0.3649 -0.0249 -0.0031
25 -0.6728 -0.0253 -0.0033
30 -1.5384 -0.0256 -0.0032
35 -2.5269 -0.02536 -0.0034
40 -3.6142 -0.0249 -0.0041
45 -5.0439 -0.0245 -0.0047

Table 4.9.5: Values for D0,D1 ,D2. CBD model x = 80 in 15 years time.

T D0 D1,1 D1,2 D2,11 D2,12 D2,22

1 2.3491 -0.3291 5.3675 -0.03365 0.9082 -20.6675
2 2.097 -0.3488 5.9765 -0.0415 1.1288 -24.9563
5 1.6466 -0.4173 8.8564 -0.0602 1.4720 -32.9934
10 1.1131 -0.4833 8.6856 -0.0845 1.8545 -37.3304
15 0.9267 -0.5476 7.3495 -0.1001 2.0348 -41.8676
20 0.3245 -0.6289 6.1274 -0.1245 2.0978 -42.9564
30 -0.1338 -0.8599 1.1763 -0.2286 1.2678 -48.8564
40 -1.3992 -1.1397 -6.9784 -0.2700 -0.2744 -77.9754
50 -3.1921 -1.3348 -18.9452 -0.2368 -0.4221 -101.9453

114



4.9. APPENDIX

Table 4.9.6: Values for D0,D1 ,D2. Plat model x = 80 in 15 years time.

T D0 D1,1 D1,2 D1,3 D2,11 D2,12 D2,22 D2,13 D2,23 D2,33

1 2.3764 -0.3345 7.7456 4.7434 -0.0342 0.9236 -20.9567 0.8245 -13.7524 -11.8564
2 2.183 -0.3768 8.006 4.8167 -0.0422 1.1866 -25.8567 0.9847 -17.8673 -14.8673
5 1.9855 -0.4267 8.578 5.1455 -0.0601 1.4522 -36.081 1.157 -21.9678 -20.7564
10 1.4102 -0.4967 8.3785 5.043 -0.0877 1.9845 -36.8646 1.405 -27.7653 -24.8674
15 1.0127 -0.5657 7.7996 4.7656 -0.1031 2.0012 -40.8563 1.6574 -29.3278 -24.8673
20 0.5764 -0.6578 6.4565 3.0815 -0.1345 2.0085 -42.7455 1.7345 -31.8674 -26.8673
30 -0.07976 -0.8876 1.4786 0.9876 -0.2060 1.2114 -49.8556 1.0347 -35.9567 -30.8674
40 -1.5623 -1.1923 -8.9655 -5.4556 -0.2806 -0.6079 -76.4742 -0.2590 -53.8674 -47.9788
50 -2.975 -1.4091 -18.8763 -12.8763 -0.2211 -0.7970 -97.8645 -0.4034 -74.8573 -62.8674

Table 4.9.7: Values for D0,D1 ,D2. LC model for age x = 90 in 25 years time.

T D0 D1 D2

1 1.9721 -0.01002 -0.00098
5 1.0177 -0.0200 -0.0020
10 0.1982 -0.0219 -0.0023
15 0.3176 -0.0234 -0.0027
20 0.2623 -0.0241 -0.0030
25 -0.8786 -0.0249 -0.0031
30 -1.7856 -0.02557 -0.0029
35 -2.9286 -0.02516 -0.0031
40 -4.2166 -0.02327 -0.0037
45 -5.7846 -0.02267 -0.0042

Table 4.9.8: Values for D0,D1 ,D2. CBD model x = 70 in 5 years time.

T D0 D1,1 D1,2 D2,11 D2,12 D2,22

1 2.0476 -0.3076 4.7534 -0.03065 0.8756 -17.3465
2 1.9745 -0.31865 4.8564 -0.03956 1.0145 -20.3478
5 1.2436 -0.3976 7.7745 -0.0598 1.2366 -29.2346
10 1.0153 -0.4587 7.6874 -0.0801 1.6434 -32.2376
15 0.8463 -0.5145 6.7645 -0.0956 1.9835 -38.4587
20 0.1244 -0.6065 5.8754 -0.1067 1.9856 -39.3476
30 -0.1587 -0.8256 1.0534 -0.2067 1.0267 -44.3454
40 -1.4566 -1.1165 -5.6745 -0.2566 -0.2489 -72.9243
50 -3.6469 -1.3065 -15.7634 -0.2067 -0.3956 -95.7634
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Table 4.9.9: Values for D0, D1 ,D2. Plat model x = 70 in 5 years time.

T D0 D1,1 D1,2 D1,3 D2,11 D2,12 D2,22 D2,13 D2,23 D2,33

1 2.0776 -0.3134 6.3672 3.8734 -0.0313 0.8723 -18.2352 0.7812 -11.8982 -9.7645
2 1.9833 -0.3434 7.356 4.0198 -0.0402 1.0122 -21.8972 0.8712 -14.8911 -12.8912
5 1.9156 -0.3902 8.0345 4.9834 -0.0589 1.3200 -30.0927 1.0123 -19.9023 -17.0129
10 1.0103 -0.4523 7.8765 4.95763 -0.0801 1.8293 -33.9023 1.3488 -24.8923 -21.8912
15 0.9722 -0.5290 6.9834 4.0122 -0.1002 1.9911 -37.7873 1.5722 -27.1278 -23.8710
20 0.1575 -0.6035 5.0122 2.9780 -0.1134 1.9918 -40.9023 1.6592 -29.1290 -25.1291
30 -0.0487 -0.8178 0.7634 0.8755 -0.1899 1.1789 -47.7823 0.9823 -32.2301 -28.1287
40 -1.1628 -1.0234 -6.8765 -4.7874 -0.2478 -0.4978 -67.9023 -0.1514 -48.1287 -40.1238
50 -2.0656 -1.3509 -16.8764 -10.7645 -0.2012 -0.6873 -88.1310 -0.3290 -69.5622 -57.4367
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Chapter 5

Conclusion and Future Research

Two approaches to optimal reinsurance are analysed in chapter 2 of this thesis. The first

approach discussed optimal reinsurance model from the insurer’s point of view, and the

second approach demonstrated a model which uses the Pareto optimality principle. Dif-

ferent premium principles were used for each approach and the optimality problems are

solved for each premium principle using Second Order Conic Programming. Numerical

illustrations demonstrate that proportional reinsurance is optimal when the risk measure

follows the expected value principle. When the standard deviation principle and one-sided

moments are used for calculation of the reinsurance premium, optimality is obtained when

the model takes the form functional form
∑

R =
∑

X ∧ c, where c is a constant, X is

loss amount and R is loss of the reinsurer. This is a special case of capped stop loss rein-

surance. Thus, the shape of the optimal ceded loss function can vary for different types

of reinsurance premium principles. Our results demonstrate that the functional form of

optimal reinsurance contact depends on the adopted reinsurance premium principle and

hence emphasize the important role of the premium principle in the determination of the

optimal design. Moreover, we observed that the limit on the aggregate losses of reinsurer

is considerably smaller when the Pareto optimality principle is in place, provided that all

the parameters in the numerical examples are the same for both problems. Similarly, for

the expected value premium principle the share of the reinsurer in quota-share reinsur-

117



ance contract is less for Pareto optimal models. This result is intuitive, due to the fact

that the Pareto optimality principle involves the objective function for the reinsurer who

aims at minimising its own losses. As a next step this research can be extended to cases

when there is a dependence among individual risks, different lines of business or claim

sizes and numbers which can be modelled using copula functions. Moreover, other SOCP

representable premium principles can be used for this optimisation model, such as the

Dutch principle, p-mean value principle, etc. Another potential extension could involve

adopting a Solvency II internal stochastic mortality model and illustrate its potential for

application in life reinsurance optimisation.

In chapter 3 of this thesis solvency requirements for deferred annuities have been anal-

ysed and compared to those of immediate annuities. Particular focus has been placed

on the longevity risk. This has been incorporated into the analysis using different de-

terministic and stochastic models, particularly member of the family of generalized age-

period-cohort stochastic mortality models. Several numerical examples illustrate solvency

requirements produced by these different approaches to longevity risk. The results demon-

strate the dramatic importance of the mortality models on the calculation of solvency

margins for immediate and deferred life annuities and the fact that model risk is a preva-

lent issue when forecasting solvency margins. Another focus of this chapter is the deferred

period and its effect on solvency requirements for portfolios of deferred annuities. The

margins increase with greater deferred periods which is caused by the extra longevity risk

and the greater uncertainty about the numbers of future survivors. We also investigate

the impact of stochastic interest rates on solvency margins and calculate the correspond-

ing confidence intervals. The results demonstrate higher solvency margins and wider

confidence intervals compared to the models with deterministic interest rates. Further

research work should take into the account the effects of various alterations to the design
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insurance contracts on solvency margins. The results in this thesis can be extended to

capture the effect of guarantees in annuity period. Annual premiums are used in many

types of insurance policies so investigation of the effect of annual premiums rather than

single premium can also be of interest of actuaries.

In chapter 4 we focus on quantifying and pricing risks embedded in the pension buy-

out transactions. The price of a buy-out contract depends on the investment risk and

longevity risk shifted to an insurer. Analysis of sensitivity of the price of pension buyouts

to the fitted data, different fitting periods and different mortality models and model risks

associated with these is important in assessing this product for insurers. Further research

can focus on stress test scenarios for mortality rates, such as global pandemics, and analyse

the effects of these in the pricing of pension buyouts.
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