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Abstract 
 

    

   Extensive research has suggested that simply viewing an object can automatically prime 

compatible actions for object manipulation, known as affordances. Here we explored the 

generation of covert motor plans afforded by real objects with precision (‘pinchable’) or whole-

hand/power (‘graspable’) grip significance under different types of vision. In Experiment 1, 

participants viewed real object primes either monocularly or binocularly and responded to 

orthogonal auditory stimuli by making precision or power grips. Pinchable primes facilitated 

congruent precision grip responses relative to incongruent power grips, and vice versa for 

graspable primes, but only in the binocular vision condition. To examine the temporal evolution of 

the binocular affordance effect, participants in Experiment 2 always viewed the objects binocularly 

but made no responses, instead receiving a transcranial magnetic stimulation pulse over their 

primary motor cortex at three different times (150, 300, 450 ms) after prime onset. Motor evoked 

potentials (MEPs) recorded from a pinching muscle were selectively increased when subjects were 

primed with a pinchable object, whereas MEPs from a muscle associated with power grips were 

increased when viewing graspable stimuli. This interaction was obtained both 300 and 450 ms (but 

not 150 ms) after the visual onset of the prime, characterising for the first time the rapid 

development of binocular grip-specific affordances predicted by functional accounts of the 

affordance effect. 

 

 

 

 

 

 

 

Keywords: Affordances, binocular vision, action priming, TMS, MEPs 



3 
 

1. Introduction 

   Determining the neural mechanisms that facilitate human interactions with manipulable objects 

is an important topic in psychology and neuroscience. Gibson’s (1979) ecological theory of object 

perception and affordances is one of the most well-known approaches. According to this idea, all 

common manipulable objects, including tools, have properties that are automatically associated 

with specific actions. On this basis, simply viewing an object triggers congruent motor plans for 

interacting with it, even when there is no explicit intention to act. Automatic priming effects of this 

kind have since been described in a variety of selection-for-action paradigms, typically involving 

reaching and/or grasping movements (Castiello, 1999; Craighero et al., 1996, 1998, 2002; Creem 

& Proffitt, 2001; de’Sperati & Stucchi, 1997; Gentilucci, 2002; Tucker & Ellis, 1998). For 

example, Ellis and Tucker (2000) used as primes different real objects with action significance for 

either precision (pincer) or whole-hand (power) grasping. After viewing the primes for 700 ms, 

participants were asked to respond to imperative auditory stimuli signalling a precision or power 

grip action that was either congruent or incongruent with the prime. The results showed a 

significant interaction between object and response types; ‘pinchable’ and whole-hand ‘graspable’ 

objects selectively primed compatible precision and power-grip responses, respectively, even 

though the prime features carried no task-relevant information.  

   Employing a similar paradigm, we recently investigated the dynamics by which affordances 

evolve in the motor system when human subjects view pictures of objects with ‘pinching’, 

‘grasping’ or ‘no-action’ (e.g., a bed) significance as primes (Makris et al., 2011). In the first 

experiment participants responded to orthogonal (i.e. non action-related) visual stimuli (changes of 

background colour of the picture) that cued a precision or power grip action, and with different 

stimulus onset asynchronies (SOAs) of 400, 800 or 1200 ms between the prime and imperative 

stimuli. The results showed that prime objects with action significance facilitated congruent 

responses, similar to Ellis and Tucker (2000), but only for the shortest SOA of 400ms. In a second 

experiment these findings were validated by applying a standard methodology measuring 

corticospinal excitability. This time, the same prime objects were presented while stimulating the 

participants’ primary motor (M1) cortex via single-pulse transcranial magnetic stimulation (TMS) 

at an SOA of 300, 600 or 900 ms, while motor evoked potentials (MEPs) were recorded from 

specific muscles of their opposite hand. This methodology exploits the fact that peak-to-peak MEP 

(i.e., muscle twitch) amplitudes increase during increasing M1 preparation for the related 

movement, and so provide an index of covert motor planning (e.g., Hadar, Makris & Yarrow, 

2012; Izumi et al., 1995). Participants viewed the objects passively and MEPs generated by the 
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TMS pulse were recorded from two muscles selectively associated with pinching and power grips. 

Muscle twitches were larger when participants viewed the objects affording actions involving that 

particular muscle, but only for the shortest (300 ms) SOA between the prime and TMS pulse.  

   These data together suggest that affordances for action develop quickly in M1 cortex, within a 

300-400 ms period following prime onset, and are also actively suppressed or passively dissipate 

quite rapidly, since we were unable to demonstrate them at SOAs of 600-800 ms. Such a rapid 

evolution and decay makes functional sense, because a more persistent intention to act that is 

never implemented might well interfere with the motor system’s ability to form new motor plans 

when subjects direct their visual attention to a different object. However, while this is consistent 

with related neurophysiological studies showing that affordances can emerge only 200-250 ms 

after priming (Buccino et al., 2009; Proverbio et al., 2011), it is unclear why our pictorial object 

presentations appeared to generate concordant affordance effects which were absent at SOAs 

corresponding to the time at which Ellis and Tucker’s (2000) experiments, employing real-world 

objects as primes, were able to demonstrate them.  

   One possibility is that real objects presenting three-dimensional (3D) structural information 

about their properties generate different – and perhaps, more robust and veridical – affordance 

effects than do two-dimensional (2D) pictorial representations of the same objects. In fact, there is 

rather limited research on how different types of vision affect object affordances, with most of the 

existing literature using 2D pictures as primes. However, evidence obtained by Castiello et al. 

(1998), in which subjects were required to reach out and grasp a 3D or 2D representation of the 

same object (an apple) supports this possibility. Their key findings were that participants 

spontaneously planned and executed a whole-hand (power) grip when grasping the object 

perceived as having 3D (depth) structure – just as they did when grasping a real apple – but 

adopted a precision grip when grasping the simpler 2D image of the same apple, as if it were just a 

disc, without specific connotations for what the depicted object afforded (Castiello et al., 1998). 

Cardellicchio et al. (2011) have also recently presented evidence that the 3D structure of the scene 

in which objects are presented influences the intention to act. They recorded MEPs induced by M1 

cortex TMS stimulation in participants viewing graspable or non-graspable objects located at 

distances that were within or outside the subject’s reachable 3D space, and obtained concordant 

affordance effects (i.e., bigger MEPs) only for graspable objects in near-reaching space. 

   In contrast to the ‘priming’ literature, the different types of vision employed for planning and 

guiding overtly executed reaching and grasping actions has received considerable attention over 
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the past two decades. In their seminal study, Servos et al. (1992) tested the differences between 

binocular and monocular vision for performing these object-directed actions. They found that 

movement preparation (reaction) and execution times under monocular viewing (with the other 

eye occluded) were both more protracted and less accurate compared to those performed under 

binocular conditions. Similar studies by others have replicated these principal findings (e.g., Watt 

& Bradshaw, 2000; Loftus et al., 2004; Melmoth & Grant, 2006), and have established that the 

additional depth information provided by retinal disparity when viewing binocularly, and known to 

improve perceptual estimates of 3D scene and object geometry, is also key to the efficiency of 

planning and guiding natural (i.e., ecologically-relevant) goal-directed grasping actions (Castiello 

& Begliomini, 2008; Melmoth et al., 2007, 2009; Sakata et al., 1997). Indeed, Knill (2005) has 

shown that subjects generally attach more weight to binocular than to pictorial (monocular) depth 

information for these purposes than they do for perception, even when the two sets of cues are 

placed in conflict (but see Keefe et al., 2011). 

   Because affordances are generated quickly and automatically, without complex mental effort, it 

is likely that they are mediated by direct ‘dorsal stream’ pathways projecting from primary 

occipital visual to posterior parietal areas and on to frontal motor cortices, while bypassing ‘ventral 

stream’ areas more associated with conscious object identification processes (Milner & Goodale, 

1995). Castiello et al. (1998) made this very case, arguing that their participants would have used 

their whole hand to grasp the 2D apple had they accessed a semantic representation of it when 

planning their grip, and the case is further supported by neuroimaging studies showing positive 

correlations between affordance effects and neural activity in parieto-frontal brain areas (Grezes et 

al., 2003; Valyear et al., 2007). Consistent with Knill (2005), there is also evidence of a functional 

dorsal stream primacy for processing binocular depth cues for grasping actions. More specifically, 

functional imaging studies indicate that posterior parietal areas normally mediate this behaviour 

(Binkofski et al., 1999; Chao & Martin, 2000; Grafton et al., 1997; Cavina-Pratesi et al., 2007) 

without recruiting perceptual representations, except when using monocular vision (Verhagen et 

al., 2008); under these conditions, and with increasing demand to employ 2D pictorial cues for the 

purpose, ventral stream activations are increased and appear to be functionally integrated into the 

grasping plan. This binocular specialization may also explain why the famous visual agnosic 

subject, DF, who suffered extensive ventral stream damage some years ago, has no difficulty 

grasping objects under natural binocular conditions via her intact dorsal stream system, but is 

severely impaired when her vision is restricted to one eye (Marotta et al., 1997).  
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1.1. Rationale for the current experiments 

   With these considerations in mind here, we adapted our previous methods (Makris et al., 2011) 

to conform more to those of Tucker and Ellis (2000), by using real ‘pinchable’ or ‘graspable’ 

objects as primes and auditory stimuli as congruent or incongruent imperative cues. In Experiment 

1, participants viewed the presented objects monocularly or binocularly at a fixed SOA of 500 ms; 

that is, at an intermediate time for the affordance effects observed in these two previous studies. In 

Experiment 2, subjects passively observed the objects binocularly while receiving single-pulse 

TMS over M1 cortex at different times (between 150-450 ms) relative to prime onset. As before, 

we simultaneously recorded MEP amplitudes from two muscles of their opposite hand – one (first 

dorsal interosseus; FDI) involved in pinch grips and the other (abductor digitorum minimi; ADM) 

associated with power grasps – in order to expand upon previous findings regarding the temporal 

dynamics of covert motor planning under more ecologically-appropriate conditions. 

 

2. Experiment 1 

2.1. Methods 

2.1.1. Participants. Eighteen healthy subjects (14 females; Mean age = 20.9, SD = 4.2) 

participated in the experiment in exchange for either course credit or cash payment. Seventeen 

were right-handed as assessed by the Edinburgh Handedness Inventory (Oldfield, 1971) (Mean 

Lateralisation index (LI) = 0.92, SD = 0.09) and one participant was left-handed (LI = -0.59). The 

dominant eye in each subject was determined by a conventional sighting-eye test procedure. We 

asked the subjects to hold their arms in front of them and to form a triangle by overlapping the 

space between index finger and thumb with the same space on their opposite hand; then we asked 

them to look at a door knob through the triangle hole formed by their hands and focus just on the 

object; finally, we instructed them to close one of their eyes and report whether they could still the 

object; if they could still see it with their left-eye open they were classified as left-eyed and vice 

versa for the right eye. All subjects were naïve as to the purpose of the experiment. The 

experimental procedures were approved by the City University London Psychology Department 

Ethical Committee, and all participants gave their informed consent before beginning the study.  

 

2.1.2. Material/apparatus. The prime set consisted of twelve real objects; six objects associated 

with a precision grip and six objects associated with a power grip (see Appendix A for a list of 
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objects). Prime stimuli were placed on the top of a large yellow sponge one at a time by the 

experimenter, who followed a presentation sequence that was randomised for each participant. The 

response device was adapted from the Ellis and Tucker (2000) and Makris et al. (2011) studies. It 

consisted of a plastic cylinder, at the top of which a small pressure-button was attached, so that 

each time the cylinder was squeezed with a power grip the button would be pressed. The second 

component was a small plastic pressure-switch that was taped to the inside tip of the participant’s 

thumb. Participants were instructed to hold the device with their dominant hand, holding the 

switch with their index finger and thumb, and grasping the cylinder with the remaining three 

fingers against their palm. This way, responses with the cylinder or the small switch would mimic 

power or precision grips respectively. Finally, participants wore a pair of Plato liquid crystal 

shutter goggles (Translucent Technologies; Toronto, Ontario, Canada) so that vision could be 

controlled by opening one or both lenses at specific times. 

 

 <INSERT FIGURE 1 AROUND HERE> 

 

2.1.3. Design and procedure. The experiment was implemented and controlled by a PC running E-

Prime Software version 1.1 (Psychology Software Tools, Inc., Pittsburgh, PA, 2002), which also 

controlled the opening and closing of the shutter goggles and recorded response times. After 

having their handedness assessed, participants were seated comfortably in front of a desk, at a 

distance of approximately 50 cm in front of the object presentation point (maintained with a chin 

rest). Following a brief demonstration of how to hold and use the response device, they had a short 

practice session (of approximately 20 trials). Once they displayed a good understanding of the 

experimental task and how to use the device, the actual experiment started. As schematised in 

Figure1, each trial started with the goggles shut while the experimenter (who sat off to one side) 

placed a prime object on the presentation point. With the object in place, either one (always the 

dominant eye) or two lenses would open. The stimulus-onset asynchrony (SOA) between the 

glasses opening (to reveal the prime) and the onset of the imperative stimulus (the target) was set 

at 500 ms. The target was a high or low-pitched pure tone (duration 1 sec; high-pitch frequency 

1000 Hz; low-pitch frequency 200 Hz). Participants were instructed to press the cylinder for a 

high-pitched sound and the small switch for a low-pitch one (with the opposite mapping used for 

half of the sample). The goggles remained open and the prime object visible until the participant 
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gave a response, at which point the glasses closed again, giving the experimenter enough time 

(approximately ten seconds) to place a new object.  

   In order to maintain participants’ attention on the presentation point and prime objects, we 

introduced a vigilance task. On some trials, the goggles would open, but no object had been placed 

on the sponge. In that case participants were instructed to withhold their responses to the 

subsequent tone. Overall there were 162 trials; 144 experimental trials (3 repeats of each object x 6 

primes per object category x 2 prime object categories [precision/power] x 2 viewing conditions 

[monocular/binocular] x 2 targets [low/high pitch]) and 18 vigilance trials (half monocular and 

half binocular, with the target tone selected at random), divided into 3 blocks. Each participant 

received a different random ordering of the 162 trials. After the end of the experiment all subjects 

were debriefed and compensated for taking part in the study.  

 

2.2. Results 

 

<INSERT FIGURE 2 AROUND HERE> 

 

   For the purposes of our analysis, low/high pitch targets were re-coded based on the type of 

response they directed (i.e. a precision or power grip). Median reaction times (RTs) were then 

calculated using the correct responses for each participant in each condition, and are shown in 

Figure 2. These data were examined with a 2 (viewing condition) x 2 (prime object) x 2 (response 

type) repeated-measures ANOVA. There were no main effects or significant 2-way interactions, 

but there was a significant interaction between the three factors [F (1, 17) = 9.56; p = 0.007; η² = 

0.36]. To explore this further, we ran separate 2 (prime object) x 2 (response type) ANOVAs for 

each of the two viewing conditions. For binocular viewing, the results showed a significant 

interaction between prime object and response type [F (1, 17) = 8.45; p = 0.01; η² = 0.33]. Here, 

post-hoc t-tests revealed that precision-grip RTs were significantly faster (by ~20 ms) for 

congruent pinchable object primes (M = 554, SD = 68) compared to incongruent graspable ones 

(M = 576; SD = 66) [t (17) = 2.29; p = 0.035], and that power-grip responses were significantly 

faster (by ~35 ms) for graspable primes (M = 547, SD = 74) than for objects associated with a 

precision grip (M = 583, SD = 65) [t (17) = 2.23; p = 0.04]. In other words, binocular viewing 

elicited clear affordance effects for both prime categories, as reflected in the RTs for different 
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types of grasp. However, affordance effects were not found in the monocular vision condition, for 

which the ANOVA revealed no comparable prime x response interactions. Indeed, if anything, 

there was a trend in the opposite direction for precision-grip responses (see Figure 2), for which 

congruent RTs were the longest of the four prime-response combinations. 

 

<INSERT TABLE 1 AROUND HERE>  

 

      A complementary analysis applied to mean error rates derived from the proportion of incorrect 

responses (see Table 1) did not suggest that the RT results were driven by a speed-accuracy trade-

off. There were no significant main effects or interactions in the three-way ANOVA, but the trend 

was broadly consistent with the RT data. For the binocular vision condition, error rates were 

higher for incongruent trials (i.e. power-grip responses to pinchable objects and precision-grip 

responses to graspable objects) than for congruent power-grip or precision-grip responses, whereas 

for monocular viewing, these same trends were absent (Table 1) but hinted at increased errors for 

congruent compared to incongruent precision-grip responses. More specifically, then, participants 

did not delay their monocular reaction to the congruent precision-grip combination (Figure 2) 

because they spent longer evaluating the prime before making the ‘correct’ choice. Further 

analyses also showed that incorrect responses did not occur significantly more or less often for a 

few of the primes that might be considered to have less familiar grasping associations (e.g., the 

tea-box; safety razor cover) than the other more common objects (e.g., the glass; battery). 

 

2.3. Discussion 

   We sought behavioural evidence for the automatic generation of covert motor action plans when 

subjects viewed real 3D prime objects binocularly or monocularly during 500 ms SOA. Statistical 

analysis showed that binocular prime viewing automatically afforded appropriate grasping actions; 

participants were significantly quicker to produce precision-grip responses when primed by 

observing congruent ‘pinchable’ compared to incongruent ‘graspable’ objects and vice versa when 

making power-grip responses. These results largely concur with Ellis and Tucker (2000) who also 

had subjects view real 3D ‘pinchable’ or ‘graspable’ object primes binocularly, but with a longer 

SOA of 700 ms. Their results also revealed a two-way interaction, but one in which the difference 

in median choice RTs for congruent versus incongruent precision-grip responses was smaller (~4 
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ms) than for compatible versus incompatible power grips (~15 ms). Our results for these two 

object prime categories were in the same direction (Figure 2), but the absolute differences between 

the relevant median choice RTs were substantially greater (~20 ms and 35 ms, respectively). The 

increased size of our effects is of direct relevance to our rationale concerning the neural dynamics 

of affordances, as they are consistent with a decay in covert motor plans for action when objects – 

even when presented as 2D pictures (Makris et al., 2011) – are continuously viewed binocularly 

for longer than 400-500 ms. 

   There was, however, another important procedural difference between the two studies that may 

have influenced the affordance effects. This is that while we aimed at ensuring our subjects’ 

attention to the prime objects by interleaving vigilance (i.e., no-prime catch) trials among the 

experimental presentations, Ellis and Tucker (2000) did this by requiring their participants to 

perform a post hoc test involving recalling objects from a set that had been either used as primes or 

not previously seen. This, by its nature, presumably introduced their subjects to a cognitive load in 

consciously identifying the objects presented during the experiment, with potential interference in 

the priming process, whereas our experiment did not.  

   Our major new finding is that monocular viewing of the same 3D primes elicited no 

demonstrable concordant affordances. We do not, of course, wish to imply by this that monocular 

vision results in an inability to generate covert motor plans, only that the key standard metric 

employed – a difference in median choice RTs for congruent versus incongruent responses – failed 

to show compatible priming effects. One possible reason for this is that congruent monocular 

affordances, equivalent to those generated by binocular vision, did initially emerge, but decayed so 

rapidly within the 500 ms SOA after prime onset that they no longer influenced our subjects’ 

choice RTs to the imperative stimuli. However, there is evidence that the processing of monocular, 

pictorial, information for other automatic activities associated with grasping – namely, ‘on-line’ 

movement corrections necessary to respond quickly to sudden object perturbations – takes 

significantly longer than under binocular viewing (Greenwald et al., 2005), so a delayed onset in 

the development of monocular affordances would be more likely. Nonetheless, rapid monocular 

decay within the 500 ms SOA cannot be entirely discounted, given our previous evidence (Makris 

et al., 2011) that affordances elicited by binocular viewing of 2D pictures are present at 400 ms, 

but absent at 600 ms, after prime onset.  

    We believe that a more likely explanation relates to the ‘uncertainty’ engendered about the 3D 

structure – and, hence affordances of – the prime objects when they were viewed under the 
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reduced/degraded cue conditions of monocular vision. The perceptual literature on binocular and 

monocular cue-integration for reliably estimating the 3D properties of objects has consistently 

shown that they are normally combined in a statistically optimal fashion (reviewed in Landy et al., 

1995), so that removing the availability of either type of visual information impairs these 

judgements (e.g., Johnston, 1991; Hollis et al., 2004). Recent evidence shows that similar 

mechanisms of depth-cue combination normally operate in visuomotor systems, since the 

efficiency of both the planning and overt execution of grasping movements are compromised by 

reducing/degrading either the binocular or monocular information available for these purposes 

(Greenwald & Knill, 2009; Keefe et al., 2011; Knill, 2005; Melmoth et al., 2007; Servos & 

Goodale, 1992). In our experiment, both types of information were available for determining the 

3D prime properties in the binocular condition, but only (or mainly) pictorial information when 

viewing with one eye, so that any affordance effects generated may have been too weak or subtle 

to demonstrate via our choice RT paradigm. 

   These considerations may also help explain why we were previously able to demonstrate an 

effect with binocular viewing of 2D images (Makris et al., 2011). Under these conditions, some 

binocular information would have been available to the subjects – for example, vergence cues to 

the fixation distance and disparities in the two eyes generated by more peripheral elements of the 

pictures (e.g., Greenwald & Knill, 2009) – along with more obvious monocular pictorial cues to 

the object’s identity, perhaps placing them intermediate between the binocular versus purely 

monocular conditions of the present study. Consistent with this, the overall binocular affordance 

effects elicited by the 2D primes in Makris et al. (2011) were numerically smaller (mean choice 

RT differences ~11 ms at 400 ms SOA) than in the current study (~29 ms at 500 ms SOA). 

Numerous other minor differences in methodology between the two studies, however, mean that 

this conclusion must remain a cautious one.      

   Indeed, the pattern of results we obtained across the two studies (i.e. reduced effects elicited by 

binocular viewing of photographic images relative to real objects) might arise because of the 

immediacy with which the object under observation is revealed to be only 2-dimensional and, thus, 

of equivocal grasping affordance (e.g., Castiello et al., 1998).
1
 According to this perspective, it 

may not be the enhanced quality of the binocular depth cues that accounts for the reduced 

affordance of picture primes, but the automaticity of the evidence provided that the subject is 

looking at a 2D image. Under this account, the distinction between 2D and 3D object interpretation 

                                                           
1
 We thank an anonymous reviewer for suggesting this possibility. 
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may be less marked with monocular vision alone, so that a reverse enhancement of congruent 

affordance effects might be obtained with monocular compared to binocular viewing when 

pictures are used as primes. Further research employing a direct comparison of monocular and 

binocular vision of both images and real objects is needed in order to fully address the plausibility 

of this alternative account. 

  Either way, our current findings clearly show that affordances arise more robustly with binocular 

viewing of real 3D objects than with monocular vision. Since in this experiment participants were 

actively responding to visual stimuli, one might ask whether these findings would also hold in 

conditions where there is no requirement for a motor response. More critically, it is not yet clear 

how affordances initially develop over time in ecologically-valid (i.e., binocular) conditions for 

object viewing, particularly in the temporal window immediately after prime onset. For both of 

these reasons, we ran a second experiment, which involved subjects passively viewing the same 

3D objects used in Experiment 1 with both eyes, while receiving TMS at one of three different 

intervals after prime onset. 

 

3. Experiment 2 

3.1. Methods 

3.1.1. Participants. A different group of 18 subjects (13 females; Mean age = 24.9, SD = 5.6) 

participated in the second study. The TMS protocol was approved by the City University London 

Psychology Department Ethical Committee. Prior to taking part in the experiment, all participants 

completed a medical questionnaire, screening for neurological and other medical problems, as well 

as other contraindications to TMS. Informed consent was obtained from all participants found 

eligible for the study. They were also assessed using the Edinburgh Handedness Inventory 

(Oldfield, 1971) and were all found to be right-handed (Mean Lateralization index (LI) = 0.97, SD 

= 0.07).  

 

3.1.2. Material/apparatus. The prime stimulus set and goggles configuration were the same as in 

Experiment 1, except that both lenses were programmed to open on every trial. 
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3.1.3. Transcranial Magnetic Stimulation (TMS) and electromyography (EMG). Participants 

viewed real objects (Appendix A) while receiving magnetic stimulation over their left hemisphere 

hand motor area. Evoked muscular responses (MEPs) were recorded from two intrinsic hand 

muscles [first dorsal interosseous (FDI) and abductor digiti minimi (ADM)] using 

electromyography (EMG). TMS was delivered via a 70 mm figure-of-eight coil (external casing 

diameter ~90 mm for each loop) connected to a Magstim Rapid
2
 biphasic stimulator (The Magstim 

Co. Ltd., Whitland, Carmarthenshire, U.K.). The coil was held tangentially to the skull, with the 

handle pointing backwards/laterally approximately midway between the saggital and coronal 

planes. EMG was recorded using a DataLINK 13-bit data acquisition unit sampling at 1000 Hz 

with a band-pass filter applied (20-450 Hz), connected via two SX230FW amplifiers to 22x28 mm 

silver/silver chloride disposable electrodes. EMG was recorded and analysed on a dedicated PC 

using DataLINK analysis software version 7.5 (Biometrics Ltd., Ladysmith, VA, U.S.A., 2008). 

The protocol was implemented and controlled by E-Prime version 1.1 software (Psychology 

Software Tools, Inc., Pittsburgh, PA, U.S.A., 2002) running on a second PC, which delivered 

digital TMS signals and controlled the opening of the goggles. 

   The location of the primary motor cortex “hot spot” for activating muscles of the hand was 

determined prior to the main experiment. This was achieved by trial and error exploration relative 

to its typical location, with single-pulse TMS applied at a low rate (<0.2 Hz). We first found a 

location that consistently gave rise to an MEP in FDI, and then determined the lowest stimulation 

intensity that gave rise to this activation during rest on at least 50% of occasions (the “resting 

motor threshold”). We then adjusted the position of the coil slightly in order to achieve consistent 

MEPs in both muscles, which typically required stimulation at around 110% of passive motor 

threshold (across subjects, stimulator output ranged from 50% to 85%; 110% - 120% of passive 

motor threshold).  

 

<INSERT FIGURE 3 AROUND HERE> 

 

3.1.4. Design & Procedure.  As in Experiment 1, participants sat comfortably at a distance of 50 

cm (maintained with a chin rest) in front of the object presentation point (a sponge), but with their 

dominant hand now in a relaxed position. As schematized in Figure 3, each trial started with the 

goggles shut while an experimenter placed an object on the presentation point. After this time, 

both lenses of the LCD goggles opened. TMS was delivered (with the coil held by a second 
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experimenter) at three different SOAs of (150, 300 and 450 ms) relative to the visual onset of the 

prime. Immediately after that, the glasses closed again while the experimenter placed a new object 

at the presentation point. Note that we previously demonstrated compatible affordance effects 

between (2D) prime onset and TMS stimulation at an SOA of 300 ms, but not 600 ms or longer 

(Makris et al., 2011). The three intervals selected here were thus aimed to better examine the 

anticipated early temporal evolution of affordance priming, with the 450 ms SOA also very similar 

to the one (500 ms) interval employed in Experiment 1.  

  Also as in Experiment 1, in order to maintain the participant’s attention on the presentation point 

we introduced a vigilance task, during which the goggles opened, but no object was placed on the 

sponge. In this experiment no responses were required, so participants were instead instructed to 

keep track of the number of such occurrences throughout the experiment. TMS was delivered on 

these trials, but was not analysed. Overall there were 108 experimental trials (3 repeats of each 

object x 6 stimuli per object category x 2 prime object categories x 3 SOAs) and 18 vigilance trials 

(6 repeats of 3 SOAs). Participants were given a break every 30 trials. All experimental conditions, 

including the vigilance trials, were presented in a randomised order. After the end of the 

experiment all subjects were debriefed, and completed a short questionnaire stating any problems 

and/or discomfort caused due to TMS. Four participants reported mild discomfort as a result of 

induced muscular twitching on the scalp, but no major adverse events were reported or evident 

(these data are included in the larger summary of adverse events reported in Hadar, Makris & 

Yarrow, 2011). 

 

3.1.5. Data analyses. All EMG recordings were first inspected for any significant muscular 

activity in the window from 300 ms prior to delivering the TMS pulse. Trials with any signs of 

EMG pre-activation that may have compromised the recordings were removed from the analysis. 

The data from five participants were discarded as the removed trials exceeded 10% of all trials. 

For the rest (N=13), peak-to-peak amplitudes of the MEPs obtained from each muscle were 

calculated on each trial and the median determined within each condition for each participant. 
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3.2. Results 

 

<INSERT FIGURE 4 AROUND HERE> 

 

   In natural prehension, the FDI muscle is most closely associated with a precision grip, whereas 

the ADM muscle is more closely associated with a power grip. To examine their differential 

activations in our experiment, the median MEP amplitudes obtained were analysed with a 2 

(FDI/ADM muscle) x 2 (prime object) x 3 (TMS SOA) repeated-measures ANOVA, with the 

Greenhouse-Geisser correction applied for violations of sphericity. This revealed a significant 

main effect of SOA [F (1, 12) = 4.72; p = 0.019; η² = 0.28] and a two-way interaction between 

muscle and prime type [F (1, 12) = 11.29; p = 0.006; η² = 0.49].  Importantly, the three-way 

interaction was also significant [F (1, 12) = 3.81; p = 0.036; η² = 0.24], indicating that there were 

differences between the extent of muscle activation by the different prime objects which also 

depended on the interval between prime onset and TMS pulse. 

   For this reason, we ran separate 2 (muscle) x 2 (prime) ANOVAs for each of the three SOAs. As 

shown in Figure 4, this analysis showed no muscle x prime-object interaction for the shortest SOA 

of 150 ms, and hence no differential priming effect of  ‘pinchable’ and ‘graspable’ primes on 

evoked responses for the two muscles. By contrast, the ANOVAS for the stimulation times of 300 

ms [F (1, 12) = 12.09; p = 0.005; η² = 0.5] and 450 ms [F (1, 12) = 13.46; p = 0.003; η² = 0.53] 

showed significant interactions between type of muscle and prime object, both of which were in 

the direction of concordant effects of priming upon the precision (FDI) and power (ADM) grip 

responses (Fig.4). For the 300 ms timing condition, post-hoc t-tests revealed that FDI MEPs were 

significantly bigger for objects associated with a precision grip (M = 0.35, SD = 0.13) than for 

“graspable” objects (M = 0.25, SD = 0.09) [t (12) = 3.17; p = 0.008], with the corresponding 

reverse trend, which did not quite achieve statistical significance, suggesting larger ADM MEPs 

for  “graspable’” objects (M = 0.28, SD = 0.17) compared to “pinchable’” ones (M = 0.22, SD = 

0.11) [t (12) = 1.52; p = 0.16]. However, for the later 450 ms timing condition, the post-hoc t-tests 

revealed both that  FDI MEPs were significantly bigger for objects associated with a precision grip 

(M = 0.33, SD = 0.14) than for “graspable” objects (M = 0.25, SD = 0.14) [t (12) = 2.33; p = 

0.038], and that ADM MEPs were significantly larger for object affording a power grip (M = 0.23, 

SD = 0.11) compared to ‘pinchable’ objects (M = 0.18, SD = 0.1) [t (12) = 2.99; p = 0.011]. 

Finally, a complementary ANOVA applied to trial removal rates (i.e. proportion of trials excluded 
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due to signs of EMG pre-activation) across the different timing conditions showed no significant 

main effects or interactions. 

 

3.3. Discussion 

   Our second experiment investigated the onset of affordances for real objects under natural 

binocular viewing conditions by using a TMS/MEP paradigm to track how motor plans developed 

in primary motor cortex when there was no requirement to make an action of any kind. The data 

showed a significant interaction between type of object and muscle: motor evoked potentials from 

the FDI muscle most associated with a precision grip were bigger when viewing ‘pinchable’ 

objects compared to ‘graspable’ ones, and vice versa for the ADM muscle most associated with a 

power grip. These affordance effects were not present at the shortest 150 ms SOA, but evident for 

stimulation times of 300 ms and 450 ms after prime onset, thus showing that the priming effect 

develops rapidly over time. These results broadly validate our reaction-time findings from the first 

experiment (i.e., a binocular affordance effect at 500 ms SOA). They are also consistent with 

previous measures of corticospinal excitability using TMS protocols with regards to affordances 

generated by binocular viewing of 2D primes. Such studies have presented tools with either 

complete or broken (i.e., ‘non-graspable’) handles (Buccino et al., 2009) and also objects similar to 

those used here, with either precision or power grip significance (Makris et al., 2011). In these 

studies, viewing pictures of the objects affording the appropriate action – for example, tools with 

intact handles oriented so as to facilitate the grasp – resulted in bigger MEPs from muscles 

associated with the compatible action at brief SOAs of 200 ms (the only interval examined by 

Buccino et al., 2009) and at 300 ms, but not 600 or 900 ms post-prime (Makris et al., 2011).  

 

4. General discussion 

   Our data have clearly demonstrated that the sight of a real object can elicit motor plans for 

actions associated with it, even in cases where there is no intention to implement these actions. In 

order to assess this, we used as primes 3D objects that are associated with pinching or power 

grasping movements and applied two different paradigms, one based on choice reaction times and 

another measuring corticospinal excitability. Furthermore, we investigated, for the first time, 

affordance effects mediated by binocular (i.e., natural) compared to monocular vision, and at 

different times relative to binocular prime onset. Results from both experiments are in general 
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accordance with Gibson’s (1979) theory of affordances and previous research supporting the 

existence of this phenomenon.  

   One consistent finding between our study and previous experiments is the rapidity with which 

the affordance effect develops. Neural mechanisms seem to generate a plan for action almost 

immediately after visual representation of manipulable objects. While it is possible to investigate 

the onset of affordances using purely behavioural studies, the unknown processing time associated 

with the imperative target stimulus blurs the resulting estimate of the true (neural) SOA. This is 

because, in the RT data of a behavioural task, we are in fact assessing the interaction between 

motor plans evoked by the prime and the target, which may themselves have different temporal 

profiles. If the motor pathway for the target is longer (quite possible, given the often arbitrary 

nature of the instructed task) it is feasible that an effect could even be obtained at a negative SOA. 

Hence direct neural measures as provided by TMS and event-related potential (ERP) approaches 

are to be preferred. Across the few studies that have addressed this issue, it is now possible to 

place an estimate on the latency of the affordance effect (including under binocular viewing 

conditions); it arises later than 150 ms, but is definitely present at 200-300 ms following the 

presentation of any (2D or 3D) object affording a grasping action (Buccino et al., 2011; Makris et 

al., 2011; Proverbio et al., 2011; present results). This latency for the onset of object affordances is 

consistent with the minimal time needed in order to generate activity in M1 for both intentional 

and automatic action plans. For example, electrophysiological studies investigating the 

development of the lateralised readiness potential, elicited whenever a subject prepares a 

movement with their hands (or feet), as well as TMS studies looking at how MEPs develop within 

the reaction time period, have indicated the onset of motor activity at approximately 200 ms 

following the initial presentation of a simple imperative stimulus with high stimulus-response 

compatibility, such as an arrow (Eimer & Schlaghecken, 1998; Verleger et al., 2009). 

   The subsequent decay time, during which the motor plan is actively suppressed or passively 

dissipates despite continuous viewing of the prime, is, however, less certain. Our evidence, along 

with the interpretations of Ellis and Tucker (2000), suggest that covert action plans are initially 

sustained for the period between 200-500 ms after prime onset, and then undergo an abrupt 

decline, so that they are undetectable or weak shortly afterwards (e.g., at 600-800 ms SOAs; Ellis 

and Tucker, 2000; Makris et al., 2011; present results). However, there is contrary evidence 

(Phillips & Ward, 2002; Symes, Ellis & Tucker 2007; Vingerhoets et al., 2009) suggesting that 

affordances are much more long-lasting. This evidence clearly bears further discussion. 
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   Phillips and Ward (2002) obtained differences between choice reaction times when the hand of 

response was congruent versus incongruent relative to the left/right orientation of a prime object’s 

handle. This congruency effect increased from an SOA of 0 to 400 ms and was at least maintained 

across SOAs of 400, 800 and 1200 ms between the onset of the prime and a lateralised imperative 

stimulus. Vingerhoets et al. (2009) tested the same SOAs (with the exception of 0 ms) and found 

persistent RT differences between graspable and non-graspable object primes against a 

background of gradually decreasing average RTs. However, in both of these studies we might 

question whether the effects are sufficiently specific to be able to properly define the time course 

of affordances. Phillips and Ward used clearly lateralised primes with left/right hand button 

presses and non-orthogonal targets, inviting explanations in terms of Simon-like spatial 

correspondences or spatial attentional cuing (cf. Anderson, Yamagishi & Karavia, 2002; Cho & 

Proctor, 2010; Riggio et al. 2008). Indeed they themselves favoured such an explanation, finding 

equivalent priming effects even when responses were made with the feet rather than the hands. 

Meanwhile Vingerhoets et al. (2009) failed to find any of the predicted congruency effects at all 

(perhaps because they had taken trouble to orient their response buttons vertically rather than 

horizontally), so their affordance effect may actually represent a general priming of RTs, rather 

than a specific interaction between objects and different classes of action.  

  However, Symes, Ellis and Tucker (2007) did obtain a hand x prime-orientation interaction that 

persisted at 800 and 1200 ms SOAs despite using rotated baton stimuli and additional control 

experiments designed to rule out Simon effects and the spatial cuing of attention. On the one hand, 

it would seem functionally maladaptive to generate long-lived covert action plans, most of which 

will not be executed, every time we observe an object with grasping affordance. On the other hand, 

it is intuitively appealing to consider that prolonged viewing of an object for a second at a time (or 

longer) would gradually facilitate an appreciation of its affordances that might then, from a 

functional perspective, enhance the conversion of the covert intention to act into a final decision to 

actually go-ahead and grasp it. Contrary to this appeal, data from Vingerhoets et al. (2009) 

suggests that affordance effects are not improved by the increasing the observer’s functional or 

semantic knowledge about the prime, but depend upon more direct and automatic visual 

processing of the object’s physical attributes. This is consistent both with our findings in 

Experiment 1 that the opportunity to combine binocular and monocular sources of depth 

information to more reliably establish the prime object’s 3D properties during natural viewing with 

both eyes results in the generation of more robust affordances than the reduced depth-cue 

conditions of monocular vision, and with neuroimaging and other evidence that affordances do not 
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evolve in ‘conceptual knowledge’ brain systems (e.g., Castiello et al., 1998; Valyear et al, 2007; 

Vingerhoets 2008).  Hence we suggest that differences may exist between the persistence of the 

affordances revealed by lateralised key-press responses made to stimuli affording left or right-

handed grips (as used by Symes, Ellis & Tucker 2007) and the highly specific “micro” affordances 

revealed in pinch/grasp paradigms based on Ellis & Tucker’s (2000) approach (and used here). 

This latter category of affordances appears to undergo quite rapid dissipation or suppression, 

which seems most consistent with a functional role tied to optimising real-world motor activity.  

   In conclusion, the present study investigated the temporal integration of visual and motor 

processes underlying object affordances, a phenomenon of continuing interest within the fields of 

psychology and neuroscience. We have provided further evidence regarding the time course of the 

affordance effect, particularly its initial rapid development under natural conditions involving the 

binocular viewing of real 3D objects, as well as demonstrating that these conditions evoke stronger 

affordances than with the more impoverished visual information available with just one eye.  It has 

been estimated that 10% or more of the adult population have reduced or absent binocular vision 

(Richards, 1970) due to a wide variety of causes, including developmental abnormalities (e.g., 

amblyopia) and ocular trauma or disease (e.g., glaucoma, macular degeneration). Whether our 

current findings have significant functional implications for people with such binocular disorders 

is unclear. However, given evidence that adult patients with the three disorders specifically 

mentioned above exhibit prolonged reaction times, compared to age-matched visually-normal 

subjects, when preparing to overtly grasp real 3D objects (Grant et al., 2007; Kotecha et al., 2009; 

Pardhan et al., 2012), it is conceivable that impaired motor planning evoked by the object’s 

affordances contributes to their delayed movement onsets. Further research is planned to validate 

and expand upon these insights. 
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Appendix A 

List of the objects used to form the prime stimulus set in Experiments 1 and 2 

Graspable objects                                               Pinchable objects 

 

Glass 

Screwdriver 

Mug 

Knife 

Deodorant can 

Tea-box 

 

 

Key 

Lighter 

Rubber 

Small highlighter 

Battery 

Safety razor cover 

 

Table 1. Mean percentage error rates in Experiment 1 (SDs shown in brackets) 

Monocular vision   

 

Object type 

 

Power-grip response 

 

Precision-grip response 

   

Graspable object 5.3 (6.2) 3.4 (4.3) 

Pinchable object 6.5 (5.5) 5.6 (5.4) 

 

Binocular vision 

  

 

Object type 

 

Power-grip response 

 

Precision-grip response 

   

Graspable object 4.3 (4.9) 4.7 (4.8) 

Pinchable object 5.9 (5.2) 3.7 (5.0) 
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Figure legends 

 

Figure 1 

Sequence of presentation in a typical RT trial for Experiment 1. A binocular vision / power-grip 

object prime trial is depicted. 

Figure 2 

Means of median response times for all experimental conditions in Experiment 1. Error bars 

denote standard errors. 

Figure 3 

Sequence of presentation in a typical TMS trial from Experiment 2. A precision-grip object prime 

trial is depicted. 

Figure 4 

Means of median peak-to-peak MEP sizes for all conditions from Experiment 2. Error bars denote 

standard errors. 

 

 


