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A MATHEMATICAL MODEL OF KIN SELECTION IN FLORAL DISPLAYS1

SHAN SUN1, MARK BROOM2, MICHAL JOHANIS3, AND JAN RYCHTÁŘ?42

ABSTRACT. Plants can adjust their competitive traits for acquiring resources in response to the relatedness
of their neighbours. Recently, it has been found that plants can alter their investment in traits of attracting
pollinators based on kin-interaction. We build a mathematical model to study the optimal floral display
to attract pollinators in a patch with kin structure. We show that when plants can attract pollinators to a
whole patch through the magnet effect, the floral display should increase with the increasing relatedness
of the plants in the patch. Our model also indicates that increasing investment into attracting pollinators is
a form of altruism, reducing a plant’s own seed production but increasing the contribution of other plants
to its fitness. We also predict that seed production should increase with increasing relatedness in the patch.
Our model provides the explicit conditions when resource allocation to attract pollinators in response to
neighbour relatedness can be favoured by kin selection, and a possible mechanism for the plants to deal
with the consequent loss of pollinator diversity and abundance.

1. INTRODUCTION3

Most plant-plant interactions occur in locally structured patches among close genetical relatives due4

to limited dispersal (Biernaskie, 2010; Ehlers and Bilde, 2019). Plants can alter the local environments5

directly and/or indirectly through the involvement of a third party such as herbivores or pollinators to6

modify the interactions between neighbouring plants (Mesgaran et al., 2017). In the context of resource7

competition, the relatedness of interacting plants could reduce competition based on kin selection theory8

(Hamilton, 1964a,b; West et al., 2007) and the focal plant’s best strategy for acquiring resource can9

often depend on the identity of neighbours (Biernaskie, 2010). Some recent investigations have shown10

that plants could have the ability to identify their kin and could adjust their strategy in response to local11

relatedness of their neighbours, in particular reduce competitiveness towards kin neighbours relative to12

non-kin ones (Dudley and File, 2007; Bhatt et al., 2011; Crepy and Casal, 2015). These differential13

responses towards kin and non-kin neighbours showed kin selection as a process that can influence plant14

competitive interactions (Ehlers and Bilde, 2019). When the focal plant reduces its competitiveness15

toward to relatives, it reduces its direct fitness but gains indirectly by promoting the reproduction of16

relatives (Biernaskie, 2010; Ehlers and Bilde, 2019). As emphasized in numerous studies (West et al.,17

2002; Gardner et al., 2011; Ehlers and Bilde, 2019), to assess the circumstances under which kin selected18

responses can be expected it is necessary to measure the inclusive fitness of an individual plant rather19

than the mean fitness of the group.20

Besides resource competition for nutrients, light and water, interactions among neighbouring plants21

are often mediated by the foraging choices of pollinators (Seifan et al., 2014). A plant with a large22

floral display increases the number of pollinators attracted to its vicinity, thus increasing visitation rates23

to neighbours (Moeller, 2004; Ghazoul, 2006; Seifan et al., 2014). This magnet effect (Laverty, 1992;24

Molina-Montenegro et al., 2008) has been observed in many different scenarios. For example, in mixed25

patches of individuals of Echium vulgare with low and high nectar production rates (NPR), plants with26

high NPR increase the average number of approaches to all plants in the group; therefore, plants with27

low NPR benefit from nectar-rich plants nearby (Klinkhamer et al., 2001). By introducing a highly28

conspicuous species into a species-rich meadow, Seifan et al. (2014) showed that the highly conspicuous29

species strongly contributed to the attractiveness of its local patch and thus benefited its neighbours in a30

certain range of plants’ density.31

Torices et al. (2018) provided clear evidence that a self-incompatible Moricandia moricandioides32

could alter their investment in floral display in response to kin neighbours in the same patch. Under33
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2 SUN, BROOM, JOHANIS, AND RYCHTÁŘ

the facilitative interactions among plants in the same patch, the individuals of M. moricandioides grow-34

ing with kin can produce larger floral displays than those growing with non-kin. Torices et al. (2018)35

interpreted the results as kin recognition, suggesting kin selection as a possible explanation for floral36

strategies. Ehlers and Bilde (2019) proposed that it is necessary for kin recognition to apply the inclu-37

sive fitness framework to assess whether kin selection occurs.38

In this paper, we develop a theoretical model of the magnet effect among neighbouring plants to39

answer how the plant relatedness influences (on the patch scale) 1) the optimal floral display to attract40

pollinators and 2) the plant’s own seed production and seed production of other plants.41

2. MATHEMATICAL MODEL42

We build the model based on the experimental paper Torices et al. (2018). The total number of seeds43

S(f, P ) produced by a plant depends on the following factors: (1) f , a size of the plant’s floral display;44

and (2) P = P (f1, . . . , fN ), the total number of pollinators attracted to the patch which in turn depends45

on the floral displays fi of each of the N plants in the patch. For an illustration we will consider the46

functions47

P (f1, . . . , fN ) = 1000
f1 + · · ·+ fN

50 + f1 + · · ·+ fN
, (1)

S(f, P ) =

(
f

50

)1/4

·
(

1− f

50

)
P, (2)

for the floral display f between 0 and 50 flowers per plant, see Figure 1. However, we stress that these48

functions are only for the illustration and they do not necessarily reflect all the details of plant repro-49

duction. Unless stated otherwise, the results in the following sections hold for any functions P and S50

that satisfy quite general requirements listed below and with more mathematical details and precision in51

Appendix A.52

The function P given in (1) has the following properties. The patch can attract between 0 and up to53

1000 pollinators. If any plant increases its floral display, the whole patch will become more attractive54

and more pollinators will come to the patch, i.e. ∂P
∂fi

> 0. At the same time, the investment into the floral55

display has diminishing returns, i.e. ∂2P
∂fi∂fj

≤ 0 for all i, j = 1, . . . , N . Finally, all plants contribute in56

the same way, i.e. the value of P is the same for all permutations of its arguments.57

The term
(

f
50

)1/4
·
(

1− f
50

)
in (2) is a hump-shaped function, see Figure 1(B). It may be seen as the58

number of seeds produced by a plant with floral display f that gets completely pollinated (when there is59

no pollen limitation). It illustrates a reasonable dependence of the number of seeds on the plant’s floral60

display. For small f , S(f, P ) is increasing in f because there are no serious resource limitations yet61

and the chances of geitonogamy (Harder and Barrett, 1995) are also relatively small. It is plausible that62

the increase is slowing down (∂
2S

∂f2 ≤ 0) and eventually, there is a threshold ft such that for f > ft, the63

function S(f, P ) is decreasing in f . This is because a floral display increases the chances of geitonogamy64

(Harder and Barrett, 1995), further reducing seed production (Finer and Morgan, 2003; Liao et al., 2009).65

Consequently, ∂S
∂f (f, P ) > 0 for each f ∈ (0, ft) and all P , and ∂S

∂f (f, P ) < 0 for each f > ft and all66

P . Moreover, we will assume that the negative effect of allocating more to the floral display (and thus67

less to seed production) is amplified by the increasing number of pollinators on the patch, i.e. ∂2S
∂f∂P ≤ 068

when f > ft as well as of itself, i.e. ∂2S
∂f2 ≤ 0 when f > ft. This is because when more pollinators are69

already attracted to the patch (and thus the plant), or when not enough is allocated to seed production,70

allocating even less to seed production has larger negative consequences.71

The magnet effect (Laverty, 1992; Molina-Montenegro et al., 2008) means that increasing the floral72

display brings in more pollinators to the patch as a whole which benefits every plant in the patch. It73

means that S is an increasing function of P , i.e. ∂S
∂P > 0. At the same time, we will assume that the74

effect of P on S has diminishing returns, i.e. ∂2S
∂P 2 ≤ 0 (Bell, 1985; de Jong and Klinkhamer, 2005).75

The assumption of benefits to every plant in the patch is in agreement with Klinkhamer et al. (2001);76
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FIGURE 1. (A) The function f 7→ P (f, . . . , f), i.e. the number of pollinators attracted
to the patch when each of the N = 10 plants has a floral display f . (B) The function
f 7→ S(f, 1000), i.e. the number of seeds the flower could produce if if has a floral dis-
play f and there are 1000 (max) pollinators on the patch. The vertical line signifies the
optimal floral display f = 10 the plant can have. (C) The function (f, P ) 7→ S(f, P ),
i.e. the seed production of a plant allocating f when the patch attracts P pollinators.
(D) The function (f, fpop) 7→ S

(
f, P (f, fpop, . . . , fpop)

)
, i.e. the seed production of a

plant using f when every other plant uses fpop. The dashed curve is the optimal floral
display for a focal plant (i.e. the value of f for which the plant’s seed production is
maximal), the dotted vertical line is f = ft = 10, the threshold value of the floral dis-
play where the seed production would be maximal if the floral display did not influence
the number of pollinators, corresponding to (B). The difference between the dashed and
dotted lines is larger the smaller the value of fpop, as the effect of the plant’s own display
on attracting pollinators increases with decreasing fpop. The horizontal line at fpop = ft
shows there is still incentive for an individual plant to increase the floral display.

however we can relax this assumption as later shown in the discussion and Figure 6 where we consider77

functions for which the more attractive plants in the patch receive a larger share of pollinators.78

The above functions P and S nicely illustrate the public good dilemma associated with attracting79

the pollinators. It is in the interest of every plant to have a display of at least ft (because for f < ft,80

increasing f increases both the potential seed production as well as the number of pollinators P ). If81

each plant allocates a substantial amount over ft, many pollinators will come regardless of how much82

is allocated by the focal plant. It is therefore beneficial for the focal plant to allocate as little extra as83

possible and put any extra resources towards seed production. At the same time, if all plants have only84

the optimal floral display ft, some pollinators will still come to the patch but each plant would benefit if85

it unilaterally changes its strategy and allocated a bit more to the floral display, see Figure 1(D).86

The presence of related plants in the patch may decrease the proportion of viable seeds via inbreeding87

depression (Liao et al., 2009). To properly account for this phenomenon, we will use a non-decreasing88

function δ(r) ∈ [0, 1) of an average relatedness coefficient r ∈ [0, 1] in the patch and define the amount89

of viable seeds of each plant as90

S̃(f, P ) =
(
1− δ(r)

)
S(f, P ) (3)

The total fitness of the plant iwill depend not only on its own (viable) seed production, but also on the91

(viable) seed production of related plants in the patch. Throughout the paper we refer to this total fitness92

as simply the fitness, which is the sum of the contribution to this fitness of its own seed production, and93



4 SUN, BROOM, JOHANIS, AND RYCHTÁŘ

the contribution of the seed production of related plants through collective attractiveness of the patch.94

We are investigating a very specific question in this paper, and, due to the complexity of our model,95

deliberately avoid the terminology of inclusive fitness, which is the subject of quite a subtle debate96

beyond the scope of this article.97

Wi(r, f1, . . . , fN ) = S̃
(
fi, P (f1, . . . , fN )

)
+ r

N∑
j=1
j 6=i

S̃
(
fj , P (f1, . . . , fN )

)
. (4)

Equation (4) gives the fitness, but models of altruism often consider acts of helping and associated98

costs and benefits. Taking the derivative of (4) with respect to fi we can see that the cost associated with99

a small increase in f , ∆f , is simply minus ∆ times this derivative for the first component (an increase100

in floral display is associated with a reduction in fitness), and the benefit is ∆ times the equivalent101

derivative for the second component (without the multiplier r). Thus the common comparison between102

cost, benefit and relatedness associated with Hamilton’s rule (Hamilton, 1964a,b) is associated with the103

derivative of the fitness from (4) (see Taylor and Frank (1996), where W is the equivalent fitness and its104

derivative ∆W the associated cost-benefit equation).105

In this paper, we will be looking for the symmetric Nash equilibrium strategy, i.e. a floral display fNE106

such that if every plant in the patch adopt this value, no plant will benefit by unilaterally deviating from107

it. We shall refer to the Nash equilibrium as the optimal strategy in the rest of the paper.108

3. RESULTS109

The analysis of our model yields the following results. Mathematical proofs are provided in the Ap-110

pendix B.111

The first result. The optimal floral display is positively correlated with the average relatedness coef-112

ficient, see Figure 2.113

The seed production of each plant is a trade-off between its floral display f and the allocation to114

reproduction. If all plants are unrelated this selfish optimisation would completely constitute its payoff.115

From equation (4) we see that there is a second component to the payoff, which increases with the116

number of attracted pollinators P , which increases with increasing f . Increasing relatedness does not117

affect the first component of the payoff but increases the second which is increasing in f . Thus, the118

overall increased relatedness pushes the optimal trade-off point to higher f .119

We also believe that the optimal floral display is decreasing in the number of plants in the patch for120

all values of r and for all reasonable functions P and S, as demonstrated in Figure 2. This result is121

proved for small average relatedness r, see the Appendix. However, we cannot prove it for all r without122

adding significant restrictions on how P and S depend upon N , and we wish to maintain generality of123

our results.124

The second result. The plants pay a cost in terms of decreasing their own seed production to increase125

their fitness by attracting pollinators to a whole patch and thus helping related plants produce more seeds,126

see Figure 3. This is analogous to the costs in Hamilton’s rule (Hamilton, 1964a,b; Marshall, 2011).127

The third result. In the absence of inbreeding depression, when all plants in the patch can adopt128

equilibrium floral display, increasing relatedness in the patch increases seed production of each plant129

in the patch, see Figure 4. This is a testable prediction of our model. Numerically, we can also see that130

increasing N , the number of plants in the patch, increases seed production of each plant by increasing131

the floral display of the patch as a whole.132

When the inbreeding depression is present but low, then increasing the relatedness still increases seed133

production of each plant. However, when the inbreeding depression is large, increasing the relatedness134

decreases seed production. This is illustrated on Figure 5 for δ(r) = r2/2. There is a r0 such that seed135

production is increasing for r < r0 but decreasing for r > r0. When N = 15, the change happens136

approximately at r0 = 0.25. For smaller N , the change happens for slightly smaller r0.137
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FIGURE 2. Nash equilibrium floral display as a function of the average relatedness
coefficient for different patch sizes. Here, the results do not depend on the inbreeding
depression δ(r). The optimal floral display is decreasing in the number of plants in the
patch for the particular functions P and S given in (1) and (2). However, we cannot
prove this result for all values of r without adding significant restrictions on how P and
S depend upon N .
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FIGURE 3. An individual plant pays a cost in terms of decreased its own seed produc-
tion (by ∆S) as it increases its floral display (by ∆f ) to attract pollinators for the whole
patch. The graphs show the seed production of a focal plant as a function of its floral
display f when all other plants use the optimal (Nash equilibrium) value fNE for vari-
ous r (fNE is such a value that if every plant in the patch adopt it, no plant will benefit
by unilaterally deviating from it). From the bottom to the top, r = 0 (solid), r = 0.1
(dashed), r = 0.25 (dotted), r = 0.5 (dash-dotted). The vertical gray dashed line rep-
resents the floral display at which the plant achieves the maximum S. The short gray
solid curve shows the seed production if the focal plant display is at the equilibrium (as
r varies). This figure illustrates the situation without inbreeding depression (δ(r) = 0)
and with N = 15. However, the situation with inbreeding depression is similar, see
Figure 5.

4. DISCUSSION138

We built a theoretical model of interactions between neighbouring plants mediated through their pol-139

linators and identified conditions that can result in the plants’ increased investment in attracting pollina-140

tors. When plants are closely surrounded by other plants within the patch, and neighbours could benefit141

from the focal plants with a highly floral display by the magnet effect, our analytical analyses showed:142

1) that the optimal floral display can increase with the increased relatedness of plants in the patch; 2)143

that the increased floral display can be a cost to the focal plant in terms of its own seed production; and144

3) each plant can gain in terms of increased seed production by sharing more collective attractiveness of145

the patch if the patch consists of more related plants (or a larger number of plants). Our model provides146
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FIGURE 4. In the absence of inbreeding depression (when δ(r) = 0), individual seed
production at equilibrium floral display is an increasing function of the average related-
ness r within the patch. Also, we observe that individual seed production of each plant
at the equilibrium is an increasing function of N .
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FIGURE 5. Left: In the presence of inbreeding depression (here δ(r) = r2/2), individ-
ual seed production at Nash equilibrium display is an increasing function of the average
relatedness r within the patch for small r and decreasing for large r. Right: individual
seed production S(f, P (f, . . . , f)) is still a decreasing function of f but the dependence
of r and the Nash equilibrium curve is not simple as for δ(r) = 0.

a theoretical framework and the testable predictions for determining the impact of kin selection on the147

traits that depend on the interactions between neighbouring plants.148

Our model showed that increase of floral display due to magnet effect depends on the relatedness and149

the number of plants within the patch. In agreement with Torices et al. (2018), we showed that the plants150

increase floral display when surrounded by relatives. We also showed that when the relatedness is small,151

the optimal floral display decreases with the number of plants in the patch. This seems to contradict152

results of Milla et al. (2009). They reported that Lupinus angustifolius plants growing with non-kin153

neighbours produced significantly more flowers than those growing with siblings. However, the example154

of L. angustifolius is not consistent with the assumptions of our model. The mating system of this species155

is predominantly selfing and its reproduction is scarcely dependent on the local community of pollinators156

(Milla et al., 2009). The observed phenomenon could be explained as a by-product of self/non-self-157

recognition in resource allocation - the plants grown with non-kin tended to be larger (Klemens, 2008;158

Milla et al., 2009). This illustrates that the magnet effect depends on the mating system of species:159

the more outcrossing the mating system that the plant species adopts, the more it becomes reliant on160

pollinator services and thus the more likely it is to be affected (Mesgaran et al., 2017).161

In our model, every plant in the patch benefits equally from the increased investment in floral display162

by any other plant in the patch. We note that the benefits increase only asymptotically due to limits on163

either ovule number or the resources available for seed production (Aizen and Harder, 2007; Morris164

et al., 2010). There is a cost incurred from attracting pollinators associated with a resource depletion.165

For example, the plants need to replenish the nectar after its removal by pollinators (Morris et al., 2010;166
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FIGURE 6. Equilibrium floral display when the seed production function is given by
Ŝ(f, favg, P ) = S(f, P ) exp(z(f − favg)), where S and P are given as in (2) and (1).
Due to the factor exp(z(f − favg)), the plants whose floral display is above average
produce more seeds (presumably because they are visited by pollinators more often).
Increasing the scaling parameter z ≥ 0 makes the effect more profound. Left: z = 0.01,
right: z = 0.05. The switch from increasing to decreasing display happens around
z ≈ 0.013 when the Nash equilibrium display is almost constant.

Aizen et al., 2014). For any behaviour to evolve and be evolutionarily stable, the cost of such a behaviour167

must be compensated by increased benefits to itself or to relatives. In the context of our model, result 2168

shows that the plants pay a cost to increase the fitness of their relatives.169

We note that there are a number of different ways that cooperative behaviour can be fostered within170

populations. In particular Lehmann and Keller (2006) identified four distinct scenarios, two of which171

they termed cooperation (direct benefit or reciprocation) and two altruism (kin selection or greenbeard),172

and in their Table 3 they classified many of the existing models into these categories (often models173

were in more than one). Our model involves a suboptimal investment into the floral display (larger than174

needed to achieve the maximal seed production) to benefit relatives at the expense of individual fitness,175

and so is firmly within the altruism/kin selection category.176

We showed that increased investment in floral display can be seen as an altruistic behaviour of pro-177

viding costly help to recipients (Lehmann and Keller, 2006; West et al., 2007; Dudley, 2015), which178

could be favoured by kin selection. In the experimental results of L. angustifolius, the groups of plants179

consisting of all non-kin individuals could produce more flowers than groups of siblings or moderate180

non-kin ones (Milla et al., 2009). Torices et al. (2018) did not report the negative effects of allocation to181

attractive traits on the fitness of the focal plant; however, there is accumulating evidence for the reduc-182

tion of attractiveness structures to increase seed production (Andersson, 2000, 2005). The occurrence183

of traits that benefit relatives is crucial for kin selection (Lehmann and Keller, 2006), either through184

local dispersal (high population viscosity), kin recognition or greenbeard effects (West et al., 2007). In185

plants, the seed dispersal is stochastic, and greenbeard effects are unlikely or unimportant due to their186

vulnerability to falsebeards mimicking the signals of altruists without providing the altruistic behaviour187

(Gardner and West, 2010). Therefore, for plants, kin recognition is probably crucial for the evolution of188

altruism towards relatives (File et al., 2011).189

In result 3, we demonstrated that in an environment where the relatedness among neighbours varies,190

the collective attractiveness of the patch can reduce the cost of altruism through increasing seed pro-191

duction. Our model suggested that the collective attractiveness of a more related patch can improve the192

fitness (in terms of equation (4)) of plants within the patch, depending on how individual plants modulate193

their floral display in response to the relatedness of neighbours.194

As in Klinkhamer et al. (2001), we assumed in the model that the attractiveness of a plant only195

contributes to attracting a pollinator to the patch, and that the pollinator visits all plants equally once196

entering the patch. However, this may not always be the case (Biernaskie and Elle, 2007). Within a197

patch, pollinators can preferentially or more frequently visit plants offering high rewards (Cartar, 2004;198

Lefebvre et al., 2007). Thus, the plants with an above average floral display have a competitive advantage199

in attracting pollinators (Biernaskie and Elle, 2007). In order to explicitly incorporate variability within200
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a patch, we can expand the assumptions that the seed production of a plant depends not only on (1) the201

floral display, and (2) the total attractiveness of the plant patch, but also on (3) the average floral display202

in the patch. In this way, the model can capture the likelihood that, within a given patch, more attractive203

plants attract more pollinators and in turn produce more seeds. We found that our results would not204

change when the effect of the variability of floral display on seed production within the patch is small,205

see Figure 6. However, when the effect is larger, there are differences. The equilibrium display becomes206

decreasing in r. Moreover, the equilibrium display is increasing in N for small r and decreasing in N207

for large r. We note that the results of Torices et al. (2018) also showed that for small r (k = 0.25), the208

equilibrium display is increasing in N .209

For future research, one needs to incorporate the competition for pollinator services (exploitation210

competition) and the optimal foraging behaviour of pollinators in the patch with kin structure. For exam-211

ple, investment in alternative attractiveness traits could influence competition for access to pollinators212

(Biernaskie and Elle, 2007). Pollinators preferentially visit plants with higher nectar production rates213

(Cartar, 2004) and the patch-leaving mechanism of pollinators (Lefebvre et al., 2007) could thus pre-214

vent some plants being visited within the patch. By combining the magnet effect studied in this paper215

with competition for pollinators within the patch and between the patches, we expect to gain a better216

understanding of conditions that favour altruistic allocation of resources towards floral display.217

Recently, Ollerton (2017) assessed the current diversity of pollinators and suggested that there is218

a reduction of the different types of pollinator richness and density in some regions. Thomann et al.219

(2013) proposed that plant reproductive strategies can adapt to this pollinator decline by reinforcing220

interactions with pollinators. Our model suggests that an increasing investment in floral display by kin221

selection could provide the mechanism to deal with the pollination crisis. Further works need to show222

how evolution of reinforced interactions can avoid an evolutionary trap if pollinators keep declining and223

plants continue increasing investment in floral display.224

APPENDIX A. MATHEMATICAL SETUP OF THE MODEL225

We assume that all the functions considered are continuous and of class C2 in the interior of the226

domain.227

The total number of seeds S(f, P ) produced by a plant depends on (1) the plant’s floral display f ,228

and (2) the number of pollinators P attracted to the plant patch; the number of pollinators depends on229

the floral display of each plant in the patch. We may assume that f ∈ [0, fmax], P ∈ [0, Pmax].230

We assume that S has the following properties:231

• S : [0, fmax]× [0, Pmax] 7→ [0, Smax], i.e. the plants can make up to (a very large) fmax flowers,232

up to Pmax pollinators can potentially come to the patch and if all goes well, the plant can make233

up to Smax seeds.234

• S(f, 0) = 0 for all f ∈ [0, fmax] (in practice f > 0 will likely imply P > 0, but this assumption235

is needed for mathematical completeness to have S defined properly on its whole domain),236

• S(fmax, P ) = 0 for all P ∈ [0, Pmax], i.e. when the plant makes way too many flowers, it will237

not be able to produce any seeds238

• There is ft ∈ (0, fmax) such that (a) ∂S
∂f (f, P ) > 0 for f ∈ (0, ft) and P ∈ (0, Pmax), and (b)239

∂S
∂f (f, P ) < 0 for f ∈ (ft, fmax) and P ∈ (0, Pmax). Haig and Westoby (1988) assumed: 1) the240

resources allocation only between plant attraction and seed provisioning could ensure enough241

pollen capture to fertilize ovules that would mature to seed; 2) ovule fertilizations increasing242

with the amount of resources allocation to pollinator attraction but at a diminishing rate, and243

predicted that the optimal resources allocation to pollinator attraction should gain just the num-244

ber of ovule fertilizations needed to consume the available seed-provisioning resources (Burd,245

2008). Also, Liao et al. (2009) showed that the rate of pollinator visitation varied positively with246

display size, but seed production decreased with floral display increasing due to geitonogamous247

pollination in four Aconitum kusnezoffii populations.248

• ∂S
∂P (f, P ) > 0 for f ∈ (0, fmax) and P ∈ (0, Pmax), and ∂S

∂P (0, P ) ≥ 0, ∂S
∂P (fmax, P ) ≥ 0 for249

P ∈ (0, Pmax), see for example Garibaldi et al. (2013).250
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• ∂2S
∂f2 (f, P ) ≤ 0, ∂2S

∂P 2 (f, P ) ≤ 0 for f ∈ (0, fmax) and P ∈ (0, Pmax) and these second deriva-251

tives are never all zero at the same point of (0, fmax)× (0, Pmax), see for example Devaux et al.252

(2014).253

• ∂2S
∂f∂P (f, P ) ≤ 0 for f ∈ [ft, fmax) and P ∈ (0, Pmax), see for example Liao et al. (2009).254

Note that it follows that S(f, P ) > 0 for all f ∈ (0, fmax), P ∈ (0, Pmax).255

We assume that the patch consists of N plants. The total attractiveness P (f1, . . . , fN ) of the patch256

depends on floral display of each plant in the patch; here fi is the floral display of a plant i.257

We assume that P has the following properties:258

• P : [0, fmax]N 7→ [0, Pmax],259

• P (0, . . . , 0) = 0,260

• the value of P is the same for all permutations of its arguments.261

• ∂P
∂fi

(f1, . . . , fN ) > 0 for each fi ∈ (0, fmax), fj ∈ [0, fmax], j ∈ {1, . . . , N} \ {i}, and this262

holds for all i = 1, . . . , N ,263

• ∂2P
∂fi∂fj

(f1, . . . , fN ) ≤ 0 for each f ∈ (0, fmax)N , i, j = 1, . . . , N ,264

• ∂2P
∂f2

i
(f1, . . . , fN ) ≤ 0 for fi ∈ (0, fmax), fj ∈ [0, fmax], j ∈ {1, . . . , N} \ {i}, i = 1, . . . , N .265

Finally, we consider a non-decreasing function δ : [0, 1] 7→ [0, 1] to model the inbreeding depression.266

APPENDIX B. PROOFS267

First we look at the best response of the plant i when all other plants allocate fixed fj , j 6= i. For268

e = (e1, e2, . . . , eN−1) ∈ [0, fmax]N−1, representing the floral displays of the other plants, denote269

Fr,e(x) =
1

1− δ(r)
W1(r, x, e) (5)

= S
(
x, P (x, e1, . . . , eN−1)

)
+ r

N−1∑
j=1

S
(
ej , P (x, e1, . . . , eN−1)

)
(6)

Note that from the symmetry of P it follows that270

1

1− δ(r)
Wi(r, f1, . . . , fi−1, x, fi+1, . . . , fN ) = Fr,e(x) (7)

when e = (f1, . . . , fi−1, fi+1, . . . , fN ). Thus we may investigate only Fr,e.271

In the following calculations, we will see expressions like ∂S
∂f

(
x, P (x, e)

)
. Note that S is a function272

of two variables, f and P . Consequently, ∂S
∂f

(
x, P (x, e)

)
means that we differentiate S with respect to273

its first variable (f ) and then evaluate the derivative at the point (f, P ) = (x, P (x, e)).274

Let e ∈ [0, fmax]N−1. By differentiating at x ∈ (0, fmax) (note that by our assumptions P (x, e) ∈275

(0, Pmax)) we obtain276

F ′r,e(x) =
∂S

∂f

(
x, P (x, e)

)
+
∂S

∂P

(
x, P (x, e)

) ∂P
∂f1

(x, e) + k
N−1∑
j=1

∂S

∂P

(
ej , P (x, e)

) ∂P
∂f1

(x, e) (8)

and277

F ′′r,e(x) =
∂2S

∂f2
(
x, P (x, e)

)
+

∂2S

∂f∂P

(
x, P (x, e)

) ∂P
∂f1

(x, e)

+

(
∂2S

∂f∂P

(
x, P (x, e)

)
+
∂2S

∂P 2

(
x, P (x, e)

) ∂P
∂f1

(x, e)

)
∂P

∂f1
(x, e)

+
∂S

∂P

(
x, P (x, e)

)∂2P
∂f21

(x, e)

+ k

N−1∑
j=1

(
∂2S

∂P 2

(
ej , P (x, e)

)( ∂P
∂f1

(x, e)

)2

+
∂S

∂P

(
ej , P (x, e)

)∂2P
∂f21

(x, e)

)
.
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FIGURE 7. Best responses for different values of relatedness coefficients r. The vertical
dotted line represents ft.

Our assumptions on partial derivatives of S and P imply that F ′r,e(x) > 0 for x ∈ (0, ft) and that278

the maximum of Fr,e occurs in [ft, fmax]. Moreover, F ′′r,e(x) < 0 for each x ∈ [ft, fmax). Since Fr,e is279

clearly continuous on [0, fmax], it is strictly concave there. Thus it attains a unique maximum on [0, fmax]280

at some point which we denote by ϕ(r, e). This is the best response of (any) plant when the other plants281

have floral display e = (e1, . . . , eN−1). We note that ϕ(r, e) ∈ [ft, fmax] because Fr,e) is increasing on282

(0, ft). Since W1 is continuous and the maximum is attained uniquely, the Berge Maximum Theorem283

(Aliprantis and Border, 2006, Theorem 17.31, Lemma 17.6) implies that the best response function ϕ is284

continuous on [0, fmax)× [0, fmax]N−1.285

Now put ψr(f) = ϕ(r, f, . . . , f), i.e. ψr(f) is the unique best response of a focal plant in a group286

where all other plants allocate f . We will prove that ψr is non-increasing on [ft, fmax]; more exactly,287

it can be constant fmax for f ≤ fc for some fc ∈ [ft, fmax] and then decreasing on (fc, fmax]. This is288

illustrated in Figure 7.289

Let ft < f < e < fmax and denote f = (f, . . . , f) ∈ [ft, fmax]N−1 and e = (e, . . . , e) ∈290

[ft, fmax]N−1. Let x ∈ [ft, fmax) be arbitrary. Since P is increasing separately in each coordinate, it291

easily follows by induction that 0 < P (x,f) < P (x, e) < Pmax. Consequently, since by our assump-292

tions the partial derivatives of S are non-increasing separately in each coordinate,293

∂S

∂f

(
x, P (x,f)

)
≥ ∂S

∂f

(
x, P (x, e)

)
,

∂S

∂P

(
x, P (x,f)

)
≥ ∂S

∂P

(
x, P (x, e)

)
,

∂S

∂P

(
f, P (x,f)

) ∂S
∂P

(
f, P (x, e)

)
≥ ∂S

∂P

(
e, P (x, e)

)
.

Similarly, since ∂P
∂f1

is non-increasing separately in each coordinate, by induction we get ∂P
∂f1

(x,f) ≥294

∂P
∂f1

(x, e). Applying the above inequalities to (8) we obtain F ′r,f (x) > F ′r,e(x) and this holds for any295

x ∈ [ft, fmax).296

Now if ψr(f) ∈ [ft, fmax), then F ′r,f
(
ψr(f)

)
= 0 and so F ′r,e

(
ψr(f)

)
< F ′r,f

(
ψr(f)

)
= 0. Hence297

the concavity of Fr,e implies that ψr(e) < ψr(f). If ψr(f) = fmax, then clearly ψr(e) ≤ fmax = ψr(f).298

So, ψr is non-increasing on [ft, fmax] and it follows from above that ψr(ft) > ft (if ψr(ft) =299

ft, then ψr(f) < ft for f > ft which is not possible). Also, W1(r, fmax, . . . , fmax) = 0, while300

W1(r, x, fmax, . . . , fmax) > 0 for any x ∈ (0, fmax), so ψr(fmax) < fmax. Since ψr is continuous,301

the Darboux property implies that ψr has a fixed point f rNE ∈ (ft, fmax), i.e. ψr(f
r
NE) = f rNE. More-302

over, because ψr is non-increasing, this fixed point is unique. This means, that f rNE is the best response to303

all other plants allocating f rNE, i.e. (f rNE, . . . , f
r
NE) is the unique symmetric Nash equilibrium. Further,304

given that the best response is unique, this Nash equilibrium is strict, and so is the unique symmetric305

Evolutionarily Stable Strategy (ESS), i.e. a strategy which, if adopted by a population, cannot be invaded306

by an initially rare alternative strategy (Maynard Smith and Price, 1973). Also, we note that this strategy307
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is likely attracting in the adaptive dynamics sense and hence continuously stable strategy (CSS), see for308

example Brännström et al. (2013); Metz (2011).309

We remark that there may be other, non-symmetric equilibria present (and consequently, if thinking310

in terms of adaptive dynamics, we cannot rule out branching points), but we focus our analysis solely on311

the symmetric one. This is for two main reasons. Firstly, if strategies are heritable and patches composed312

of related individuals, it is reasonable that such symmetric solutions would occur, and as our solution is313

evolutionarily stable, then evolution will not lead us away from such a solution. Secondly, practically it314

would not be possible to consider all of the possible asymmetric equilibria for arbitrary N .315

Now, we can proceed with the proofs of the main results.316

The first result. The optimal floral display is increasing in r. Moreover, at least for small r, the317

optimal display is decreasing in N .318

To prove the optimal display is increasing in r, fix N and note that319

F ′r̃,f (x) = F ′r,f (x) + (r̃ − r)
N−1∑
j=1

∂S

∂P

(
fj , P (x,f)

) ∂P
∂f1

(x,f).

Let r̃ > r ≥ 0. We show that ψr̃(f) > ψr(f) whenever f ∈ (ft, fmax) is such that ψr(f) ∈ (ft, fmax).320

Indeed, in this case F ′r,f
(
ψr(f)

)
= 0 (we set f = (f, . . . , f)) and hence F ′r̃,f

(
ψr(f)

)
> F ′r,f

(
ψr(f)

)
=321

0. The concavity of Fr̃,f then implies that ψr̃(f) > ψr(f). The continuity of ψr and the monotonicity322

of ψr, ψr̃ together with the fact that ψr(f
r
NE) ∈ (ft, fmax) now imply that ψr̃(f) ≥ ψr(f) for each323

f ∈ [ft, fmax].324

Finally, since f rNE ∈ (ft, fmax) is the unique fixed point of ψr, ψr̃(f) ≥ ψr(f) > f whenever325

ft ≤ f < f rNE, and by the above ψr̃(f
r
NE) > ψr(f

r
NE) = f rNE. Thus the fixed point f r̃NE of ψr̃ is bigger326

than f rNE.327

Second part of the first result For the purpose of this section, we will use index N or N − 1 to study328

the dependence on the number of plants explicitly. For example, f r,NNE is the optimal floral display in the329

patch of N plants and f r,N−1NE is the optimal display in the patch of N − 1.330

To see f r,NNE is decreasing in N (at least for small r), let f r,N−1
NE ∈ [ft, fmax]N−1 be the optimal331

display for patch with N − 1 plants. Denote PN−1 = P (0,f r,N−1
NE ) the number of pollinators attracted332

to the patch withN −1 plants all behaving optimally. Since ∂P
∂fi

> 0, we get that P (x,f r,N−1
NE ) > PN−1333

for any x ∈ (ft, fmax). Since ∂2S
∂f∂P < 0, we get334

∂S

∂f
(f r,N−1NE , PN−1) >

∂S

∂f

(
f r,N−1NE , P (f r,N−1NE ,f r,N−1

NE )
)

Since ∂2S
∂P 2 < 0, we get335

∂S

∂P
(f r,N−1NE , PN−1) >

∂S

∂P

(
f r,N−1NE , P (f r,N−1NE ,f r,N−1

NE )
)

Finally, since ∂2P
∂fi∂fj

< 0, we get336

∂P

∂f1
(0,f r,N−1

NE ) >
∂P

∂f1
(f r,N−1NE ,f r,N−1

NE )

Consequently, since we have337

F ′
r,N,fr,N−1

NE

(x) =
∂S

∂f

(
x, P (f r,N−1NE ,f r,N−1

NE )
)

+
∂S

∂P

(
x, P (x,f r,N

NE )
) ∂P
∂f1

(x,f r,N−1
NE )

+ (N − 1)r
∂S

∂P

(
f r,N−1NE , P (x,f r,N−1

NE )
) ∂P
∂f1

(x,f r,N−1
NE )

we get that, at least for r small enough,338

F ′
r,N,fr,N−1

NE

(f r,NNE ) < F ′
r,N−1,fr,N−1

NE

(f r,N−1NE ) = 0

Thus, f r,NNE < f r,N−1NE .339
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The second result. The plants in the patch pay cost in terms of decreased seed production to increase340

their fitness by attracting pollinators to a whole patch and thus helping related plants produce more341

seeds, see Figure 3.342

To see this, for a fixed r and N denote g(x) = S
(
x, P (x,f r

NE)
)
. Then343

g′(x) =
∂S

∂f

(
x, P (x,f r

NE)
)

+
∂S

∂P

(
x, P (x,f r

NE)
) ∂P
∂f1

(x,f r
NE) (9)

= F ′r,fr
NE

(x)− (N − 1)r
∂S

∂P

(
f rNE, P (x,f r

NE)
) ∂P
∂f1

(x,f r
NE) (10)

< F ′r,fr
NE

(x) (11)

for x ∈ (ft, fmax). In particular, g′(f rNE) < F ′r,fr
NE

(f rNE) = 0, i.e. allocating little less than f rNE would344

increase the seed production.345

The third result. When δ(r) = 0 for all r, increasing relatedness in the patch increases the seed346

production of each plant in the patch, see Figure 4.347

First we need to show that the mapping ω : r 7→ f rNE is continuous, which implies that I = ω([0, 1)) is348

an interval. So, fix any r ∈ [0, 1) and let ε > 0. The continuity of ϕ in particular implies the continuity349

of the mapping r̃ 7→ ψr̃(f
r
NE). Hence there is σ > 0 such that |ψr̃(f

r
NE) − ψr(f

r
NE)| < ε whenever350

|r̃ − k| < σ. So suppose that r̃ ∈ [0, 1) is such that |r̃ − r| < σ. We use the fact that ψr̃ is non-351

increasing: if f rNE < f r̃NE, then f r̃NE = ψr̃(f
r̃
NE) ≤ ψr̃(f

r
NE) < ψr(f

r
NE) + ε = f rNE + ε, and if352

f rNE > f r̃NE, then f r̃NE = ψr̃(f
r̃
NE) ≥ ψr̃(f

r
NE) > ψr(f

r
NE)− ε = f rNE − ε. Hence |f r̃NE − f rNE| < ε.353

Now, the seed production when all the plants allocate the same is given by s(f) = S
(
f, P (f)

)
, where354

f = (f, . . . , f) ∈ [ft, fmax]N , and this does not depend on r. Thus355

s′(f) =
∂S

∂f

(
f, P (f)

)
+
∂S

∂P

(
f, P (f)

) N∑
i=1

∂P

∂fi
(f) =

∂S

∂f

(
f, P (f)

)
+N

∂S

∂P

(
f, P (f)

) ∂P
∂f1

(f)

= F ′r,f (f) + (N − 1)(1− r) ∂S
∂P

(
f, P (f)

) ∂P
∂f1

(f) > F ′r,f (f)

for f ∈ (ft, fmax). In particular, since F ′r,fr
NE

(f rNE) = 0, we get s′(f rNE) > 0. Thus s′(f) > 0 for356

each f ∈ I , so s is increasing on I . In combination with the first result we obtain that r 7→ s(f rNE) is357

increasing.358
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