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In this paper, the dynamic stiffness method for isotropic and orthotropic rectangular plates with point
nodes is developed, making it possible to integrate the dynamic stiffness properties for plates with the
dynamic stiffness properties of other elements such as bars and beams, but importantly, the advanced
theory allows amalgamation of the dynamic stiffness method with the conventional finite element
method for the first time. The derivation of the dynamic stiffness matrices for isotropic and orthotropic
plates with point nodes has been accomplished by implementing the Fourier coefficients of the boundary
values of the amplitudes of forces and displacements of the plate to form the force–displacement rela-
tionship at nodal points, including the corners. This innovative objective has been achieved by developing
a new form of discrete Fourier transform technique for modified trigonometric functions. Using some
carefully chosen illustrative examples, the convergence of results is ascertained by using different num-
ber of node points and their locations on the plate edges. The proposed theory has substantial advantages
over conventional dynamic stiffness theories for plates, particularly when applying non-classical differ-
ent boundary conditions on plate edges. The computed numerical results are discussed with significant
conclusions drawn.
� 2022 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

For free vibration analysis of structures, the dynamic stiffness
method (DSM) is well-known as a powerful alternative to the finite
element method (FEM) with significantly better model accuracy.
This is mainly because DSM is a differential equation model
whereas FEM is based on assumed shape functions. In the early
seventies, Wittrick and Williams developed the DSM for isotropic
and anisotropic rectangular plates when two opposite sides of
the plate are simply supported [1]. Side by side to this work, they
also developed a robust solution technique [2,3] for the DSM to
extract the eigenvalues of the structure, which are generally natu-
ral frequencies in free vibration problem and critical load factors in
buckling problem. Their solution technique [2,3] was really a
breakthrough and it is now known as the Wittrick-Williams algo-
rithm which has featured in literally hundreds of papers. The
DSM is an exact method which uses exact solution of the governing
differential equations of the boundary value problem of a freely
vibrating structure. Prior to the development of the DSM, the trans-
verse vibration problem of an individual rectangular plate with
two opposite edges simply supported was solved in an exact sense
by many investigators using the so-called Levy type solution [4–6].
This is relatively an easy task because the mode shapes in one of
the directions are sine functions for the simply supported plate,
which made the governing bi-harmonic equation of the plate
amenable to exact solution. These investigations are by and large,
mostly confined to single plates rather than an assembly of plates,
but of course approximate solution for plates and plate assemblies
using different boundary conditions can be successfully obtained
by using the FEM [7–8]. Levy type solution for simply supported
plates has been suitably extended to cover anisotropic plates [9]
and there are also some refined plate theories in the published lit-
erature [10–12]. Clearly, for the case of a simply supported plate,
there exists an exact solution for the free transverse vibration in
the form of a trigonometric series whereas for other boundary con-
ditions, there are approximate methods such as Rayleigh-Ritz [13–
15], extended Kantorovich [16], Galerkin [17,18], differential
quadrature [19] and boundary element [20,21] amongst a few
other methods. Using the Levy type solution one can build an accu-
rate, if not exact, analytical relationship between the amplitudes of
forces and displacements at the plate boundaries which are basi-
cally the sides or edges of the plate. The relationship essentially
defines the dynamic stiffness matrix of a simply supported plate
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element as originally reported by Wittrick and Williams [1]. Fol-
lowing the work of Wittrick and Williams, Boscolo and Banerjee
[22,23] applied DSM and improved the quality of the dynamic stiff-
ness element for plates by including the first order shear deforma-
tion theory. Pagani et al. [24] developed DSM for multi-layered
structures by using higher order theories to investigate their free
vibration characteristics. Other notable contributors are, amongst
others, Eisenberger and Deutsch [25], Casimir et al. [26] and Ghor-
bel et al. [27] who used DSM to solve the plate vibration problem.
The application of DSM to shell structure is outside the scope of
this paper, but interested readers are referred to the work of Fazzo-
lari [28] and Chen and Ye [29].

It should be noted at this point that by assembling the dynamic
stiffness matrices of individual elements in a structure, it is possi-
ble to construct the global dynamic stiffness matrix of the final
structure and then the natural frequencies of the final structure
can be computed in a straightforward manner by applying the
Wittrick-Williams algorithm [2]. In this way, complex structures
can be analyzed for their free vibration characteristics by using
the DSM. There are established computer programs [30,31] to
accomplish such tasks. The area of applicability of DSM for plates
was significantly narrowed in the past by the assumption of Levy
type solution, based on the premises that the two opposite sides
of the plate are simply supported. Overcoming this restriction con-
tinued to be a daunting task for many years. The difficulty was pri-
marily associated with seeking an exact general solution for the bi-
harmonic equation which governs the free vibration behaviour of a
plate for the most general case. The much-expected breakthrough
for the DSM development of plates for the general case, came in
recent years when the DSM approach for free vibration analysis
of rectangular plates and their assemblies with any arbitrary
boundary conditions became an area of intense research activity,
see for example Nefovska-Danilovich et al. [32,33] and Kim and
Lee [34]. Some background information is necessary to explain
how the limitation of the classical DSM based on simply supported
boundary conditions of rectangular plates was overcome. Gor-
man’s superposition method [35–37] although different from
DSM, was a significant development which stimulated the research
in the advancement of DSM for general boundary conditions of
plates. By using Gorman’s superposition method [35–37], the infi-
nite series representing the general solution of the plate can be
truncated at some suitable point to achieve reasonable accuracy.
However, for the computation of higher order natural frequencies,
it would be necessary to increase the number of terms needed in
the series which cannot be predicted easily in advance. To alleviate
this problem, Banerjee et al. [38] developed DSM for a rectangular
plate with any arbitrary boundary conditions by taking full advan-
tage of the symmetry of the plate, but importantly by considering
the effect of the remainders of the infinite series solution beyond
the cut-off point. This was ignored by other investigators. (In this
context, it is worth noting that Papkov [39] demonstrated the
importance of considering the remainders of the infinite series
terms in free vibration analysis, which have significant effect on
the accuracy of results.) Essentially, the authors of [38] split the
plate into four equal quarters and then on the enforced planes of
symmetry, they applied all four possible boundary conditions
which are: (i) symmetric-symmetric (SS), (ii) symmetric-anti-
symmetric (SA), (iii) anti-symmetric-symmetric (AS) and (iv)
anti-symmetric-anti-symmetric (AA). In this way, they constructed
the dynamic stiffness matrix of each of the four components in an
exact sense and the overall dynamic stiffness matrix was obtained
by summing up the individual dynamic stiffness matrices for all
four cases. The symmetry reduced the size of the problem, and
there was no approximation involved in the theory in any way.
In their formulation, Banerjee et al. [38] used an exact inversion
of an infinite matrix system based on an asymptotic expansion of
2

linear equations to derive the dynamic stiffness matrix. This is in
sharp contrast to the work described in [32,33]. One of the main
differences between [38] and [32,33] is that the former publication
accounts for the infinite remainders of the series solution of the
plate whereas the latter publications do not make allowances of
the remaining terms of the infinite series by truncating it. In this
respect, a recently published paper by Kim and Lee [34] makes
interesting reading. Although the notations used in [34] are differ-
ent from [38], nevertheless, the authors of [34] applied quite a sim-
ilar approach to that of [38], but there were some significant
differences too. The solution in [34] was described as a sum of
two partial solutions unlike [38] where the solution was not split
in that way. One of the other differences was that [34] used expo-
nential Fourier series representation in the solution which con-
trasts with trigonometric form of solution in [38]. Liu and
Banerjee [40] generalized the approach presented in [38] when
they investigated the free vibration behaviour of orthotropic
plates. Recently, Wei et al [41] made a noteworthy contribution
when they formulated the dynamic stiffness matrix for transverse
and in-plane vibration of rectangular plates with arbitrary bound-
ary conditions. Their work differs from the work described in
[38,42,43] in that the choice of the trigonometric function to
describe the series solution was somehow different, which yielded
slightly different results. It should be noted that strictly speaking,
for all the above approaches, the dynamic stiffness matrix in the
exact formulation is an infinite matrix because the boundary val-
ues of the displacements and forces form an infinite system of
equations. All the above publications dealt with dynamic stiffness
formulation for plates with line nodes and none of the previous
publications dealt with the dynamic stiffness formulation for
plates with point nodes. Regarding this matter, the following com-
ments are made.

The assumed shape functions utilized in FEM are generally
lower order polynomials, and thus the formulation of the free
vibration problem somehow leads to acceptably good results, par-
ticularly in the low and medium frequency ranges, but in the high
frequency range, the results from FEM become progressively less
accurate. Attempts to improve results using FEM have been made
by some investigators by using higher order polynomials which
enhance the shape function representation of the structural defor-
mation, see for example Kulla [44]. On the other hand, Doyle [45],
and Lee [46] developed spectral element method (SEM) using
frequency-dependent trigonometric and hyperbolic functions to
address the free vibration problem of plates. Interestingly, Birg-
ersson et al [47] went a step further and proposed a spectral super
element model in their endeavour to improve the accuracy of
results for the plate vibration problem. In many ways, SEM is sim-
ilar to DSM as it does not construct separate element mass and
stiffness matrices, unlike the FEM. Thus, SEM is effectively a spec-
tral version of the DSM and basically, the two methods differ
mainly in their numerical implementation when obtaining results.

Despite significant progress made over the years, the DSM has
not still been established as a sufficiently versatile tool like the
FEM, even though DSM is properly recognized as a powerful and
accurate alternative to FEM, but admittedly DSM is used to solve
a specific minority group of vibration problems. Without an effec-
tive integration of DSMwith FEMwhich has much greater distribu-
tion and coverage, the application of DSM, particularly for plate
elements remains strictly restricted. For two-noded line elements
such as bars and beams, the task of combining DSM and FEM is rel-
atively simple and straightforward [48], but for plate elements, the
problem is extremely difficult. This is mainly because the DSM
research for plate elements so far has continued to use line nodes
whereas the FEM understandably works very well with point
nodes for structural elements. The dynamic stiffness formulation
for plate elements relating boundary forces with boundary dis-
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placements at some chosen nodal points will no-doubt be a signif-
icant step forward which can be exploited to great advantage with
possible amalgamation of DSM with FEM. If the versatility of FEM
is combined with the uncompromising accuracy of DSM, the scope
of structural analysis with hybrid computational algorithmwill no-
doubt be substantially enhanced. Thus, the essential purpose of
this paper is to develop through the applications of the exact solu-
tion of the governing differential equation, the dynamic stiffness
matrix for isotropic and orthotropic plates characterized by nodal
points. The resulting dynamic stiffness matrix with point nodes
developed in this paper is finally applied through the implementa-
tion of the Wittrick-William algorithm as solution technique to
compute natural frequencies and mode shapes for a wide range
of problems and some of the results are validated against pub-
lished results. The accuracy of results on the choice of the number
of selective nodes on the plate edges is also demonstrated. The
paper concludes with its principal findings with the expectation
that it will pave the way for further research in DSM.

2. Dynamic stiffness formulation for a plate with line nodes

The investigation is aimed to show in an ingenious way, how
the dynamic stiffness matrix of a plate with line nodes can be
transformed into its dynamic stiffness matrix with point nodes.
The line-nodes to point-nodes transformation can be carried out
either partly or fully, depending on the nature of the problem.
Clearly, the important step to generate the dynamic stiffness
matrix of a plate with point nodes cannot be fruitfully accom-
plished unless the preliminary step of generating its dynamic stiff-
ness matrix with line nodes is successfully completed. This useful
extension from line nodes to point nodes, being far from trivial, is
of considerable complexity and some preludes are required to lead
the reader smoothly into the subject matter. Let us consider a uni-
form rectangular plate made of either isotropic or orthotropic
material with sides 2a and 2b, thickness h, and density q, as shown
in a right-handed rectangular Cartesian coordinate system in Fig. 1.
Within the framework of the classical Kirchhoff-Love hypothesis,
the governing differential equation of motion of the plate in free
bending vibration with the usual assumption of harmonic oscilla-
tion is given by

D1
@4W
@x4

þ 2D3
@4W
@x2@y2

þ D2
@4W
@y4

� k4W ¼ 0 ð1Þ
Fig. 1. Coordinate system and not

3

where W is the amplitude of the bending displacement w0 of the
mid-plane of the plate so that the assumption of harmonic oscilla-
tion w0 x; y; tð Þ ¼ Wðx; yÞeixt is satisfied.

In Eq. (1), the terms D1, D2, D3 and the frequency parameter k
are given by.

D1 ¼ E1h
3

12ð1� m12m21Þ ;D2 ¼ E2h
3

12ð1� m12m21Þ ;

D3 ¼ m12E2h
3

12ð1� m12m21Þ þ
G12h

3

6
; k4 ¼ x2qh ð2Þ

where E1, E2, G12 and m12 (or m21) are the usual elastic constants for
the orthotropic plate.

For isotropic plates

D1 ¼ D2 ¼ D3 ¼ D ¼ Eh3

12ð1� m2Þ ð3Þ

with

E1 ¼ E2 ¼ E; m12 ¼ m21 ¼ m;G12 ¼ G ¼ E
2ð1þ mÞ ð4Þ

To make the computed results from the new theory sufficiently
general, particularly when covering plates and plate assembly with
different geometries and different materials, we introduce a non-
dimensional frequency parameter X which is related to the (di-
mensional) frequency parameter k as follows

X4 ¼ L4k
4
q0

qD
ð5Þ

where D is the average flexural stiffness, q0 is the average mass den-
sity when considering all plates in the structure and L is the half of
the length of the structure (for a single plate L = a). The parameters
D and q0 are:

D ¼
X
l

Sl
S
Dl; ð6Þ

q0 ¼
X
l

Sl
S
ql ð7Þ

where Sl,Dl andql are area, flexural rigidity, anddensity ofmaterial of
the l-th plate in the structure; S is the full surface area of the complete
structure. The usefulness of this non-dimensionalisation leading to
ation for a rectangular plate.
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the parameter X will become apparent when analysing assembly of
dissimilar isotropic or orthotropic plates with different properties.

To construct the dynamic stiffness matrix of the plate shown in
Fig. 1, we introduce the following vectors for the amplitudes of
boundary displacements and boundary forces

d ¼

W1

/1

W2

/2

W3

/3

W4

/4

2
66666666666664

3
77777777777775
¼

Wða; yÞ
/yða; yÞ
Wðx; bÞ
/xðx; bÞ
Wð�a; yÞ
/yð�a; yÞ
Wðx;�bÞ
/xðx;�bÞ

2
66666666666664

3
77777777777775

; f ¼

V1

M1

V2

M2

V3

M3

V4

M4

2
66666666666664

3
77777777777775
¼

Vxða; yÞ
Mxða; yÞ
Vyðx; bÞ
Myðx; bÞ
Vxð�a; yÞ
Mxð�a; yÞ
Vyðx;�bÞ
Myðx;�bÞ

2
66666666666664

3
77777777777775

ð8Þ

We further introduce the following expressions based on the
expansions of the trigonometric functions denoted by Tk.

d ¼

Wþ
a

/þ
a

Wþ
b

/þ
b

W�
a

/�
a

W�
b

/�
b

2
66666666666664

3
77777777777775
¼
X1
k¼0

X1
n¼1

Wþk
an TkðbnkyÞ

/þk
an TkðbnkyÞ

Wþk
bn TkðankxÞ

/þk
bn TkðankxÞ

W�k
an TkðbnkyÞ

/�k
an TkðbnkyÞ

W�k
bn TkðankxÞ

/�k
bn TkðankxÞ

2
66666666666666664

3
77777777777777775

;

f ¼

Vþ
a

Mþ
a

Vþ
b

Mþ
b

V�
a

M�
a

V�
b

M�
b

2
66666666666664

3
77777777777775
¼
X1
k¼0

X1
n¼1

Vþk
an TkðbnkyÞ

Mþk
an TkðbnkyÞ

Vþk
bn TkðankxÞ

Mþk
bn TkðankxÞ

V�k
an TkðbnkyÞ

M�k
an TkðbnkyÞ

V�k
bn TkðankxÞ

M�k
bn TkðankxÞ

2
66666666666666664

3
77777777777777775

ð9Þ

where the trigonometric functions Tk depending on the type of sym-
metry are represented by

TkðzÞ ¼ cos
pk
2

� z
� �

¼ cos z; k ¼ 0
sin z; k ¼ 1

� �
ð10Þ

The separation constants ank and bnk in Eq. (9) are chosen to be
of the following form

ank ¼ p
a

n� 1þ k
2

� �
; bnk ¼

p
b

n� 1þ k
2

� �
ð11Þ

It should be noted that the chosen form of the trigonometric
functions in Eqs. (9)-(11) are complete in their entirety to repre-
sent any type of boundary conditions for displacements and forces
on the enforced planes of symmetry on the edges of the quarter
plate, i.e., on the XZ and YZ planes of symmetry in Fig. 1.

By its definition, the dynamic stiffness matrix of a structural
element characterizes the relationship between the boundary val-
ues of the amplitudes of forces and the corresponding displace-
ments of the element when it is subjected to free natural
vibration. The boundaries could be nodal points or nodal lines.
For a rectangular plate with two opposite edges simply supported
[1,22,23], this dependency for line nodes, can be analytically
obtained for each vibration mode separately, say for the n-th mode,
it is given by

f sn ¼ Kn � dsn ð12Þ
4

where

dsn ¼ Wþ0
an ;W

þ1
an ;/

þ0
an ;/

þ1
an ;W

þ0
bn ;W

þ1
bn ;/

þ0
bn ;/

þ1
bn ;W

�0
an ;

�
W�1

an ;/
�0
an ;/

�1
an ;W

�0
bn ;W

�1
bn ;/

�0
bn ;/

�1
bn

�
f sn ¼ Vþ0

an ;V
þ1
an ;M

þ0
an ;M

þ1
an ;V

þ0
bn ;V

þ1
bn ;M

þ0
bn ;M

þ1
bn ;V

�0
an ;V

�1
an ;

�
M�0

an ;M
�1
an ;V

�0
bn ;V

�1
bn ;M

�0
bn ;M

�1
bn

�

9>>>>>>>>=
>>>>>>>>;

ð13Þ
n ¼ 0;1;2; :::

and Kn is the dynamic stiffness matrix of the plate for the nth mode.
with the superscripts +0 for even components of boundary val-

ues when x = a or y = b;
+1 for odd components of boundary values when x = a or y = b;
– 0 for even components of boundary values when x = – a and y

= – b;
– 1 for odd components of boundary values when x = – a and y =

– b;
and the subscript n represents the number of Fourier coefficient

for the n-th mode.
This dynamic stiffness matrix for a rectangular plate can be

derived by using the following three steps:

(i) Seek a general solution of the governing differential equa-
tion of the plate, i.e., Eq. (1) with enough number of unde-
fined constants to satisfy any prescribed arbitrary
boundary conditions on the plate edges. (In a Levy type plate
for which the two opposite sides of the plate are simply sup-
ported, an exact solution is of course, possible.)

(ii) For the general case, the solution is expanded in the form of
trigonometric series to cover all possible boundary displace-
ments and boundary forces.

(iii) By imposing the boundary conditions, the undefined con-
stants appearing in the general solution are eliminated for
each vibrational mode with number n, which eventually
gives the individual block of dynamic stiffness matrix Kn

for the n-th mode.

The above procedure will be followed for any arbitrary bound-
ary conditions of the plate all round its edges, but with the impor-
tant difference here is that the solution will no longer be split into
separate modes. The representation of the boundary expressions in
Eq. (9) defines the form of the general solution of the governing dif-
ferential equation given by Eq. (1). The composition of the solution
is based on the separation of variables technique for each of the
four component cases of symmetry [38,42] which are described
above by symmetric-symmetric (SS), symmetric-anti-symmetric
(SA), anti-symmetric-symmetric (AS) and anti-symmetric-anti-
symmetric (AA), respectively. The complete general solution for
the amplitude of the bending displacement W is given by the
sum of all the four individual comments of the symmetry as
follows

W ¼ W00 þW01 þW10 þW11 ð14Þ

where the subscripts 0 and 1 on W on the right-hand side represent
symmetry (S) and anti-symmetry (A) about the X and Y axes,
respectively with 0 meaning symmetry and 1 meaning anti-
symmetry. For example, W00 represents the solution for the case
when the quarter plate in Fig. 1 is symmetric about both X and Y
axes (SS) whereas W01 represents the solution corresponding to
symmetry about the X axis and anti-symmetry about the Y axis
(SA) and so on [38].

Referring to Fig. 1, the bending rotations /x and /y of the plate
cross-section about the X and Y axes, the bending moments Mx and
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My and shear forces Vx and Vy can be expressed in the usual nota-
tion as

/x ¼
@W
@y

; /y ¼
@W
@x

; ð15Þ

Vx ¼ � D1
@3W
@x3

þ ðD3 þ 2D66Þ @3W
@x@y2

 !
;

Vy ¼ � D2
@3W
@y3

þ ðD3 þ 2D66Þ @3W
@x2@y

 !
; ð16Þ

Mx ¼ � D1
@2W
@x2

þ D12
@2W
@y2

 !
; My ¼ � D2

@2W
@y2

þ D12
@2W
@x2

 !
; ð17Þ

where D12 = m12D2 = m21D1 and D66 = G12h
3/12 and D1, D2 and D3

have already been defined earlier (see Eqs. (2) and (3)).
Following similar procedure as in [38,42] it is now possible to

write the general solution of Eq. (1) in the form of infinite series
for all four cases of symmetry as

Wkj ¼
X1
n¼1

ðAnHjðpnkyÞ þ BnHjðp
�
nkyÞÞTkðankxÞ þ

X1
n¼1

ðCnHkðqnjxÞ

þ DnHkðq
�
njxÞÞTjðbnjyÞ ð18Þ

The choice of hyperbolic function Hl(z) in Eq. (18) depends on
the type of symmetry and in particular,

H0 zð Þ ¼ cosh zð Þ;H1 zð Þ ¼ sinh zð Þ ð19Þ
Each term in the general solution of Eq. (18) satisfies exactly the

governing differential Eq. (1) when the values pnk; p
�
nk and qnj; q

�
nj

are the roots of the following characteristic equations

D2p4 � 2D3a2p2 þ D1a4 � Dq0

qL4
X4 ¼ 0 ð20Þ

D1q4 � 2D3 b
2q2 þ D2b

4 � Dq0

qL4
X4 ¼ 0 ð21Þ

It has been shown earlier by Banerjee et al. [38], that the anal-
ysis of each case of symmetry is a separate problem on its own
which makes it necessary to account for the terms corresponding
to the constant components of the trigonometric expansions for
each case, separately. The proposed form of Eq. (18) leads to create
different, but analogous expressions for the solution of each of the
four cases of symmetry which can be combined later to obtain
the general solution.

Now the bending rotations of the plate cross-section about X
and Y axes can be derived with help of Eqs. (15) and (18) to give

/y ¼
X1
n¼1

ðAkj
n HjðpnkyÞ þ Bkj

n Hjðp
�
nkyÞÞankT

0
kðankxÞ

þ
X1
n¼1

ðCkj
n qnjH

0
kðqnjxÞ þ Dkj

n q
�
njH

0
kðq

�
njxÞÞTjðbnjyÞ ð22Þ

/x ¼
X1
n¼1

ðAkj
n pnkH

0
jðpnkyÞ þ Bkj

n p
�
nkH

0
jðp

�
nkyÞÞTkðankxÞ

þ
X1
n¼1

ðCkj
n HkðqnjxÞ þ Dkj

n Hkðq
�
njxÞÞbnjT

0
jðbnjyÞ ð23Þ

With the help of Eqs. (16) and (18), the expressions for shear
forces can be obtained as.
5

Vx ¼
P1
n¼1

ðAkj
n D1a2

nk � ðD3 þ 2D66Þp2
nk

� 	
HjðpnkyÞ

þBkj
n D1a2

nk � ðD3 þ 2D66Þp
�2
nk

h i
Hjðp

�
nkyÞÞankT

0
kðankxÞþ

þP1
n¼1

ðCkj
n qnj ðD3 þ 2D66Þb2

nj � D1q2
nj

h i
H0

kðqnjxÞ

þDkj
n q
�
nj ðD3 þ 2D66Þb2

nj � D1q
�2
nj

h i
H0

kðq
�
njxÞÞTjðbnjyÞ

ð24Þ

Vy ¼
P1
n¼1

ðAkj
n pnk ðD3 þ 2D66Þa2

nk � D2p2
nk

� 	
H0

jðpnkyÞ

þBkj
n p
�
nk ðD3 þ 2D66Þa2

nk � D2p
�2
nk

h i
H0

jðp
�
nkyÞÞTkðankxÞþ

þP1
n¼1

ðCkj
n D2b

2
nj � ðD3 þ 2D66Þq2

nj

h i
HkðqnjxÞ

þDkj
n D2b

2
nj � ðD3 þ 2D66Þq

�2
nj

h i
Hkðq

�
njxÞÞbnjT

0
jðbnjyÞ

ð25Þ

Next, we can express the undefined coefficients Ckj
n and Dkj

n for
each case of symmetry (k, j) by means of the expansions of the
coefficients of the boundary values of bending rotation /y �a; yð Þ
and shear force Vxð�a; yÞ in the first instance. By making use of
Eqs. (22)–(25) and imposing the boundary conditions in Eq. (9)
give the following system for Fourier coefficients

X1
k¼0

ðCkj
n qnjH

0
kðqnjaÞ þ Dkj

n q
�
njH

0
kðq

�
njaÞÞ ¼ /þj

an ð26Þ

X1
k¼0

ð�1Þkþ1ðCkj
n qnjH

0
kðqnjaÞ þ Dkj

n q
�
njH

0
kðq

�
njaÞÞ ¼ /�j

an ð27Þ

X1
k¼0

ðCkj
n qnj ðD3 þ 2D66Þb2

nj � D1q2
nj

h i
H0

kðqnjaÞ

þ Dkj
n q
�
nj ðD3 þ 2D66Þb2

nj � D1q
�2

nj

h i
H0

kðq
�
njaÞÞ ¼ Vþj

an ð28Þ

X1
k¼0

ð�1Þkþ1ðCkj
n qnj ðD3 þ 2D66Þb2

nj � D1q2
nj

h i
H0

kðqnjaÞ

þ Dkj
n q
�
nj ðD3 þ 2D66Þb2

nj � D1q
�2

nj

h i
H0

kðq
�
njaÞÞ ¼ V�j

an ð29Þ

The subtraction and addition of Eqs. (26) and (27) give

C0j
n qnjH

0
0ðqnjaÞ þ D0j

n q
�
njH

0
0ðq

�
njaÞ ¼ /þj

an�/�j
an

2

C1j
n qnjH

0
1ðqnjaÞ þ D1j

n q
�
njH

0
1ðq

�
njaÞ ¼ /þj

anþ/�j
an

2

9=
; ð30Þ

Similarly, the subtraction and addition of Eqs. (28) and (29) give

C0j
n qnj ðD3 þ 2D66Þb2

nj � D1q2
nj

h i
H0

0ðqnjaÞ

þD0j
n q
�
nj ðD3 þ 2D66Þb2

nj � D1q
�2

nj

h i
H0

0ðq
�
njaÞ ¼ Vþj

an�V�j
an

2

C1j
n qnj ðD3 þ 2D66Þb2

nj � D1q2
nj

h i
H0

1ðqnjaÞ

þD1j
n q

�
nj ðD3 þ 2D66Þb2

nj � D1q
�2

nj

h i
H0

1ðq
�
njaÞ ¼ Vþj

anþV�j
an

2

9>>>>>>>>=
>>>>>>>>;

ð31Þ

The system of four equations for the undefined constants Ckj
n and

Dkj
n given by Eqs. (30) and (31) can now be expressed as

Ckj
n qnjH

0
kðqnjaÞ ¼

D1q
�2
nj
�ðD3þ2D66Þb2nj
D1ðq

�2
nj
�q2

nj
Þ � /þj

an�ð�1Þk/�j
an

2 þ 1
D1ðq

�2
nj
�q2

nj
Þ �

Vþj
an�ð�1ÞkV�j

an
2

Dkj
n q
�
njH

0
kðq

�
njaÞ ¼�D1q2nj�ðD3þ2D66Þb2nj

D1ðq
�2
nj
�q2

nj
Þ � /þj

an�ð�1Þk/�j
an

2 � 1
D1ðq

�2
nj
�q2

nj
Þ �

Vþj
an�ð�1ÞkV�j

an
2

9>>=
>>;

ð32Þ
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Proceeding in a similar manner, it is possible to express the

undefined constants Akj
n ; B

kj
n by means of the expansions of the coef-

ficients of boundary values /y �a; yð Þ and Vxð�a; yÞ to give

Akj
n pnkH

0
jðpnkbÞ¼ D2p

�2
nk
�ðD3þ2D66Þa2nk

D2ðp
�2
nk
�p2

nk
Þ �/

þk
bn

�ð�1Þj/�k
bn

2 þ 1
D2ðp

�2
nk
�p2

nk
Þ �

Vþk
bn

�ð�1ÞjV�k
bn

2

Bkj
n p
�
nkH

0
jðp

�
nkbÞ¼�D2p2nk�ðD3þ2D66Þa2nk

D2ðp
�2
nk
�p2

nk
Þ �/

þk
bn

�ð�1Þj/�k
bn

2 � 1
D2ðp

�2
nk
�p2

nk
Þ �

Vþk
bn

�ð�1ÞjV�k
bn

2

9>>=
>>;

ð33Þ
Using Eqs. (32) and (33), the amplitude of bending displace-

ment Wkj can be written with the help of the Fourier coefficients
of /y �a; yð Þ; Vxð�a; yÞ and /x x;�bð Þ; Vyðx;�bÞ for each case of sym-
metry to give

W ¼ P1
k;j¼0

P1
n¼1

HjðpnkyÞ
pnkH

0
jðpnkbÞ

D2p
�2

nk �ðD3 þ2D66Þa2
nk

� �
/þk
bn

�ð�1Þj/�k
bn

2 þ Vþk
bn

�ð�1ÞjV�k
bn

2


 ��
�

�

� Hjðp
�
nkyÞ

p
�
nkH

0
jðp
�
nkbÞ

D2p2
nk �ðD3 þ2D66Þa2

nk

� 
/þk
bn

�ð�1Þj/�k
bn

2 þ Vþk
bn

�ð�1ÞjV�k
bn

2


 ��
TkðankxÞ

D2ðp
�2
nk�p2

nk
Þ
þ

þ HkðqnjxÞ
qnjH

0
jðqnjaÞ

D1q
�2

nj �ðD3 þ2D66Þb2
nj

� �
/þj
an�ð�1Þk/�j

an
2 þ Vþj

an�ð�1ÞkV�j
an

2

h i�
�

� Hkðq
�
njxÞ

q
�
njH

0
jðq
�
njaÞ

D1q2
nj �ðD3 þ2D66Þb2

nj

� �
/þj
an�ð�1Þk/�j

an
2 þ Vþj

an�ð�1ÞkV�j
an

2

h i�
TjðbnjyÞ

D1ðq
�2
nj�q2

nj
Þ

)

ð34Þ
By making use of Eqs. (17) and (18), the expressions for bending

moments Mx and My can be written as

Mx ¼
P1
n¼1

ðAkj
n D1a2

nk � D12p2
nk

� 	
HjðpnkyÞ

þBkj
n D1a2

nk � D12p
�2
nk

h i
Hjðp

�
nkyÞÞTkðankxÞþ

þP1
n¼1

ðCkj
n D12b

2
nj � D1q2

nj

h i
HkðqnjxÞ

þDkj
n D12b

2
nj � D1q

�2
nj

h i
Hkðq

�
njxÞÞTjðbnjyÞ

ð35Þ

My ¼
P1
n¼1

ðAkj
n D12a2

nk � D2p2
nk

� 	
HjðpnkyÞ

þBkj
n D12a2

nk � D2p
�2
nk

h i
Hjðp

�
nkyÞÞTkðankxÞþ

þP1
n¼1

ðCkj
n D2b

2
nj � D12q2

nj

h i
HkðqnjxÞ

þDkj
n D2b

2
nj � D12q

�2
nj

h i
Hkðq

�
njxÞÞbnjTjðbnjyÞ

ð36Þ

Clearly, the substitution of the expressions for the undefined

coefficients Ckj
n ; D

kj
n and Akj

n ; B
kj
n from Eqs. (32) and (33) into Eqs.

(35), (36) makes it possible to express the bending moments Mx

and My in terms of the boundary values of the Fourier coeffi-
cients of bending rotations and shear forces. Regarding this
development, the following relationships are utilized

/þj
an�ð�1Þk/�j

an
2 ¼ /kj

an

/þk
bn

�ð�1Þj/�k
bn

2 ¼ /kj
bn

Vþj
an�ð�1ÞkV�j

an
2 ¼ Vkj

an

Vþk
bn

�ð�1ÞjV�k
bn

2 ¼ Vkj
bn

9>>>>>>>=
>>>>>>>;

ð37Þ

It should be noted that the expressions given by Eq. (37) are the
Fourier coefficients of the expansions of trigonometric series
related by the following functions
6

/kj
a ðyÞ ¼

/yða;yÞ�ð�1Þk/yð�a;yÞþð�1Þj/yða;�yÞ�ð�1Þkþjuyð�a;�yÞ
4 ¼ P1

n¼1
/kj

anTjðbnjyÞ

/kj
b ðxÞ ¼ /xðx;bÞ�ð�1Þj/xðx;�bÞþð�1Þk/xð�x;bÞ�ð�1Þkþj/xð�x;�bÞ

4 ¼ P1
n¼1

/kj
bnTkðankxÞ

Vkj
a ðyÞ ¼ Vxða;yÞ�ð�1ÞkVxð�a;yÞþð�1ÞjVxða;�yÞ�ð�1ÞkþjVxð�a;�yÞ

4 ¼ P1
n¼1

Vkj
anTjðbnjyÞ

Vkj
b ðxÞ ¼ Vyðx;bÞ�ð�1ÞjVyðx;�bÞþð�1ÞkVyð�x;bÞ�ð�1ÞkþjVyð�x;�bÞ

4 ¼ P1
n¼1

Vkj
bnTkðankxÞ

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

ð38Þ
The next step is focused on establishing the relationship

between the Fourier coefficients of Eqs. (37)-(38) and the coeffi-

cients ofW�k
an ;W

�k
bn ;M

�k
an ;M

�k
bn . To achieve this objective, we consider

the expressions forW andMx,My at the plate boundaries which are
obtainable from the general solution given by Eq. (34). The proce-
dure used is as follows

Substituting x ¼ �a in Eq. (34) and using Eq. (9) give the follow-
ing functional relationships

Wð�a;yÞ ¼ P1
k;j¼0

ð�1Þk P1
n¼1

HjðpnkyÞ
pnkH

0
jðpnkbÞ

D2p
�2

nk �ðD3 þ2D66Þa2
nk

� �
/kj

bn þVkj
bn

h i�
�

�

� Hjðp
�
nkyÞ

p
�
nkH

0
jðp
�
nkbÞ

D2p2
nk �ðD3 þ2D66Þa2

nk

� 

/kj

bn þVkj
bn

h i�
ð�1Þnþk

D2ðp
�2
nk�p2

nk
Þ

þ HkðqnjaÞ
qnjH

0
jðqnjaÞ

D1q
�2

nj �ðD3 þ2D66Þb2
nj

� �
/kj

an þVkj
an

h i�

� Hkðq
�
njaÞ

q
�
njH

0
jðq
�
njaÞ

D1q2
nj �ðD3 þ2D66Þb2

nj

� �
/kj

an þVkj
an

h i�
TjðbnjyÞ

D1ðq
�2
nj�q2

nj
Þ

)

¼P1
j¼0

P1
n¼1

W�j
anTjðbnjyÞ

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

ð39Þ
For further transformation of Eqs. (39) we can use the following

equality

W a; yð Þ þ �1ð ÞkWð�a; yÞ
2

¼
X1
j¼0

X1
n¼1

wþj
an þ �1ð Þkw�j

an

2
TjðbnjyÞ

ðk ¼ 0; 1Þ ð40Þ
In this way, one can derive representation for each component

(k, j) of W separately in the following form

P1
n¼1

HjðpnkyÞ D2p
�2
nk
�ðD3þ2D66Þa2nkð Þ/kj

bn
þVkj

bn½ �
D2ðp

�2
nk
�p2

nk
ÞpnkH0

jðpnkbÞ

�

�Hjðp
�
nkyÞ D2p2nk�ðD3þ2D66Þa2nkð Þ/kj

bn
þVkj

bn½ �
ðp�2

nk
�p2

nk
Þp�nkH

0
jðp
�
nkbÞ

�
ð�1Þnþk

þP1
n¼1

HkðqnjaÞ D1q
�2
nj
�ðD3þ2D66Þb2nj

� �
/kj
anþVkj

an

h i
qnjH

0
jðqnjaÞ

8<
:

�
Hkðq

�
njaÞ D1q2nj�ðD3þ2D66Þb2nj
� �

/kj
anþVkj

an

h i
q
�
njH

0
jðq
�
njaÞ

9=
; TjðbnjyÞ

D1ðq
�2
nj
�q2

nj
Þ ¼

¼ P1
n¼1

Wþj
anþð�1ÞkW�j

an
2 TjðbnjyÞ

ð41Þ

In the algebraic functional given in Eq. (41), we now utilize the
expansion of the hyperbolic functions Hj(py) in terms of the
trigonometric functions {TjðbnjyÞ} according to well-known rela-
tionships which can be found in the mathematical literature [49].
Thus, the expansion of the trigonometric and hyperbolic functions
can be related as follows
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HjðpyÞ
H0

jðpbÞ
¼ p

b

X1
m¼1

ð�1Þmþ1ð2� dj0d1mÞ
b2
mj þ p2

TjðbmjyÞ ð42Þ

where dsl is the usual Kronecker delta which is 1 if integer s and l
coincides and equal to 0 otherwise.

Substituting Eq. (42) into Eqs. (41) and changing the order of
summation for the double series, we obtain after some algebraic
transformations, the first part of equations of the infinite linear
system which connects the Fourier coefficients to the boundary
values of the plate as follows

2�dj0d1m
bD1

P1
n¼1

ð�1Þnþm
D2b

2
mjþD12a2nk

� �
/kj
bn
þVkj

bn

ða2
nk
þq2

mj
Þða2

nk
þq
�2
mj
Þ þ HkðqmjaÞ

H0
kðqmjaÞ �

D1q
�2
mj
�ðD3þ2D66Þb2mj

qmjðq
�2
mj
�q2

mj
Þ �

�Hkðq
�
mjaÞ

H0
kðq

�
mjaÞ

� D1q2mj
�ðD3þ2D66Þb2mj

q
�
mjðq

�2
mj
�q2

mj
Þ

/kj
am
D1

þ qmjH
0
kðqmjaÞ

HkðqmjaÞ � q
�
mjH

0
kðq

�
mjaÞ

Hkðq
�
mjaÞ

� �
Vkj
am

D1ðq
�2
mj
�q2

mj
Þ

¼ Wþj
amþð�1ÞkW�j

am
2

ðm ¼ 1; 2; . . .Þ
ð43Þ

In a similar manner, we consider the boundary value relation-
ships for W(x, ±b), Mx(±a,y) and My(x,±b) to obtain the rest part of
the equations for the linear system. Introducing the following
notations for convenience

Wþj
anþð�1ÞkW�j

an
2 ¼ Wkj

an

Wþk
bn

þð�1ÞjW�k
bn

2 ¼ Wkj
bn

Mþj
anþð�1ÞkM�j

an
2 ¼ Mkj

an

Mþk
bn

þð�1ÞjM�k
bn

2 ¼ Mkj
bn

9>>>>>>>=
>>>>>>>;

ð44Þ

the infinite system of linear algebraic equations can be written as

2� dj0d1m
bD1

X1
n¼1

ð�1Þnþm
D2b

2
mj þ D12a2

nk

� �
/kj

bn þ Vkj
bn

ða2
nk þ q2

mjÞða2
nk þ q

�
2
mjÞ

þ D1
m/

kj
am

þ D2
mV

kj
am ¼ Wkj

am ð45Þ

2�dj0d1m
bD1

P1
n¼1

ð�1Þnþm
D2
3�4D2

66�D1D2ð Þb2mja
2
nk
�D1DX

4

� �
/kj
bn
� D12b

2
mjþD1a2nk

� �
Vkj
bn

ða2
nk
þq2

mj
Þða2

nk
þq

�2
mj
Þ þ

þD3
m/

kj
am þ D4

mV
kj
am ¼ �Mkj

am

ð46Þ

2� dk0d1m
aD2

X1
n¼1

ð�1Þnþm
D1a2

mk þ D12b
2
nj

� �
/kj

an þ Vkj
an

ðb2
nj þ p2

mkÞðb2
nj þ p

�2
mkÞ

þ D5
m/

kj
bm þ D6

mV
kj
bm ¼ Wkj

bm

ð47Þ

2�dk0d1m
aD2

P1
n¼1

ð�1Þnþm
D2
3�4D2

66�D1D2ð Þb2nja2mk
�D1DX

4

� �
/kj
an� D12a2mk

þD2b
2
nj

� �
Vkj
an

ðb2njþp2
mk

Þðb2njþp
�2
mk

Þ þ

þD7
m/

kj
bm þ D8

mV
kj
bm ¼ �Mkj

bm

ð48Þ

m ¼ 1;2;:::

where we now introduce the notation

Cthk zð Þ ¼ HkðzÞ
H0

kðzÞ
ð49Þ

and
7

D1D
1
m ¼ D1q

�2
mj�ðD3þ2D66Þb2mj

qmjðq
�2
mj�q2

mj
Þ

CthkðqmjaÞ � D1q2mj
�ðD3þ2D66Þb2mj

q
�
mjðq

�2
mj�q2

mj
Þ

Cthkðq
�
mjaÞ;

D1D
2
m ¼ 1

ðq�2
mj�q2

mj
Þ

CthkðqmjaÞ
qmj

� Cthkðq
�
mjaÞ

q
�
mj

� �

D1D
3
m ¼ ðD1q

�2
mj�ðD3þ2D66Þb2mjÞðD1q2mj

�D12b
2
mjÞ

qmjðq
�2
mj�q2

mj
Þ

CthkðqmjaÞ�

� ðD1q2mj
�ðD3þ2D66Þb2mjÞðD1q

�2
mj�D12b

2
mjÞ

q
�
mjðq

�2
mj�q2

mj
Þ

Cthkðq
�
mjaÞ;

D1D
4
m ¼ D1q2mj

�D12b
2
mj

qmjðq
�2
mj�q2

mj
Þ
CthkðqmjaÞ �

D1q
�2
mj�D12b

2
mj

q
�
mjðq

�2
mj�q2

mj
Þ
Cthkðq

�
mjaÞ;

D2D
5
m ¼ D2p

�2
mk�ðD3þ2D66Þa2mk

pmkðp
�2
mk�p2

mk
Þ

CthjðpmkbÞ � D2p2mk
�ðD3þ2D66Þa2mk

p
�
mkðp

�2
mk�p2

mk
Þ

Cthjðp
�
mkbÞ;

D2D
6
m ¼ 1

ðp�2
mk�p2

mk
Þ

CthjðpmkbÞ
pmk

� Cthjðp
�
mkbÞ

p
�
mk

� �

D2D
7
m ¼ ðD2p

�2
mk�ðD3þ2D66Þa2mk

ÞðD2p2mk
�D12a2mk

Þ
pmkðp

�2
mk�p2

mk
Þ

CthjðpmkbÞ�

� ðD2p2mk
�ðD3þ2D66Þa2mk

ÞðD2p
�2
mk�D12a2mk

Þ
p
�
mkðp

�2
mk�p2

mk
Þ

Cthjðp
�
mkbÞ;

D2D
8
m ¼ D2p2mk

�D12a2mk

pmkðp
�2
mk�p2

mk
Þ
CthjðpmkbÞ � D2p

�2
mk�D12a2mk

p
�
mkðp

�2
mk�p2

mk
Þ
Cthjð�pmkbÞ;

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;
ð50Þ

Thus Eqs. (45)–(48) establish the dependency between the
boundary values of forces and displacements for the plate element
which is essentially its dynamic stiffness matrix with line nodes
represented by its edges. The exact formulation of the problem
has infinite terms in the series, but for practical purposes, the infi-
nite dynamic stiffness matrix can be approximated to a finite
dynamic stiffness matrix using a finite number of terms in the ser-
ies and the results can be computed sufficiently accurately, even
up to machine accuracy [38,40,42].

It should be also noted that in the above derivations, the intro-

duced coefficients of Wkj
an;W

kj
bn;M

kj
an and Mkj

bn are Fourier coefficients
relating the following functions

Wkj
a ðyÞ ¼ Wða;yÞþð�1ÞkWð�a;yÞþð�1ÞjWða;�yÞþð�1ÞkþjWð�a;�yÞ

4 ¼ P1
n¼1

Wkj
anTjðbnjyÞ

Wkj
b ðxÞ ¼ Wðx;bÞþð�1ÞjWðx;�bÞþð�1ÞkWð�x;bÞþð�1ÞkþjWð�x;�bÞ

4 ¼ P1
n¼1

Wkj
bnTkðankxÞ

Mkj
a ðyÞ ¼ Mxða;yÞþð�1ÞkMxð�a;yÞþð�1ÞjMxða;�yÞþð�1ÞkþjMxð�a;�yÞ

4 ¼ P1
n¼1

Mkj
anTjðbnjyÞ

Mkj
b ðxÞ ¼ Myðx;bÞþð�1ÞjMyðx;�bÞþð�1ÞkMyð�x;bÞþð�1ÞkþjMyð�x;�bÞ

4 ¼ P1
n¼1

Mkj
bnTkðankxÞ

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

ð51Þ
3. Dynamic stiffness formulation for a plate element with point
nodes

Based on the material presented in Section 2 above, we now
derive the dynamic stiffness matrix of the plate with nodal points.

Let the boundary functions Wkj
a yð Þ;Wkj

b xð Þ;/kj
a yð Þ;/kj

b ðxÞ and

Mkj
a yð Þ;Mkj

b xð Þ;Vkj
a yð Þ;Vkj

b ðxÞ which are included in the above
dynamic stiffness formulation be given their values at some speci-
fic node points. Depending on the type of symmetry (Note that
according to the introduced notation, the index k = 0 corresponds
to an even function of the coordinate x, whereas k = 1 to an odd
function of the same coordinate.), we choose (N – 1 + k) nodes
on the segment [0; a] of the x coordinate which satisfy the follow-
ing nonlinear dependence



Fig. 2. Different arrangement of nodal points on plate edge.
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xn ¼ sðnÞ
sðNÞ a ð52Þ

where function s(x) is defined on the segment [0; a] which is a
monotonically increasing function of x with s(0) = 0.

For the case of equally spaced nodes s(x) = x, we can define the
following node points

For k ¼ 0 : x0 ¼ 0; x1 ¼ a
N
; x2 ¼ 2a

N
; :::; xN ¼ a ð53Þ
For k ¼ 1 : x1 ¼ a
N
; x2 ¼ 2a

N
; :::; xN ¼ a

We now consider three different cases of the function s(n) and
Fig. 2 illustrates the mesh of node distribution and its dependency
on the function s(n) for the three cases in non-dimensional form
where n = x/a. In Fig. 2(a), s(n) = n2 where the node spacing arrange-
ment is such that there is more concentration of nodes at the start
of the segment, i.e., near n = 0. By contrast, s(n) =

ffiffiffi
n

p
in Fig. 2(b) cor-

responds to node spacing arrangement more concentrated towards
the end of the segment, i.e. near n = 1. Equally spaced arrangement
of nodes for which s(n) = n is illustrated in Fig. 2(c).

In a similar manner, let the functions of the coordinate in Y-
direction are given in terms of node points on the segment [0; b]
with (N – 1 + j) nodes so that

yl ¼
sðlÞ
sðNÞ b; l ¼ j; jþ 1; . . . ;Nð Þ ð54Þ

The boundary displacements for the kj component of the plate
are defined as

dN ¼ fWkj
a ðylÞg; f/kj

a ðylÞg; fWkj
b ðxsÞg; f/kj

b ðxsÞg
� �

l ¼ j; jþ 1; :::;N; s ¼ k; kþ 1; :::;Nð Þ
ð55Þ

The corresponding boundary forces are

f N ¼ fMkj
a ðylÞg; fVkj

a ðylÞg; fMkj
b ðxsÞg; fVkj

b ðxsÞg
� �

l ¼ j; jþ 1; :::;N; s ¼ k; kþ 1; :::;Nð Þ
ð56Þ

From the given data points given by Eqs.(52) and (41), we con-
struct interpolation trigonometric polynomials of functions of the
coordinate x with respect to the system of functions

TkðankxÞf gNþ1�k
n¼1 and for the functions of the coordinate y, the sys-
8

tem of functions TjðbnjyÞ
� �Nþ1�j

n¼1 is used. Thus, an approximate,
but sufficiently accurate representation of the deflection function

Wkj
a ðyÞ can be written as

Wkj
a ðyÞ � Wkj

aNðyÞ ¼
XNþ1�j

m¼1

Wkj
am;NTjðbmjyÞ ð57Þ

where coefficients Wkj
am;N are now calculated by using the method of

least squares. This is probably the best possible representation of

the function {Wkj
a ðylÞ} when it is defined at a point in the space of

square-integrable functions [50] as in the present case. In fact, such
a procedure correlates the mapping of a sequence of real numbers

{Wkj
a ðylÞ} to a sequence of real numbers {Wkj

am;Ng. Such a mapping
in the mathematical literature is not uncommon and is usually
called the discrete Fourier transform (DFT). The DFT of various types
have been widely applied to solve many practical problems, espe-
cially in signal theory and information processing. It should be
noted that the DFT for the introduced system of trigonometric func-

tions TjðbnjyÞ
� �Nþ1�j

n¼1 has not featured in the existing literature
before, and therefore, necessary formulations for the forward and
inverse DFT for the present case are briefly described below.

To calculate the coefficients Wkj
am;N in Eq. (57) by applying the

method of least squares necessitated the need to solve the follow-
ing minimization problem.

Minimise
XN
n¼j

Wkj
a ðynÞ �Wkj

aNðynÞ
� �2

ð58Þ

Following standard technique (for example, see [51]) to solve
the minimization problem described by Eq. (58) leads to the fol-
lowing system of linear equations (knows as the normal equations)
which determine the Fourier coefficients.

PN
n¼j

PNþ1�j

m¼1
Wkj

am;NTjðbmjynÞ �Wkj
a ðynÞ

� �
TjðbljynÞ ¼ 0

l ¼ 1;2; :::;N þ j� 1ð Þ
ð59Þ

or,

XNþ1�j

m¼1

Mj
lmW

kj
am;N ¼

XN
n¼j

TjðbljynÞWkj
a ðynÞ ð60Þ

where



S.O. Papkov and J.R. Banerjee Computers and Structures 270 (2022) 106827
Mj
lm ¼

XN
n¼j

TjðbljynÞTjðblmynÞ ð61Þ

The derivation of explicit expressions for the displacement at
node points using forward and inverse DFT in the case of equally
spaced nodal arrangement is possible because of the exact summa-

tion of elements of the matrix M ¼ Mj
lm

n oNþ1�j

l;m¼1
, which ultimately

allows us to build analytically an inverse matrix

r ¼ M�1 ð62Þ

The matrix r can now be constructed for any value of the prob-
lem parameter that satisfies the requirement of the existence of

the direct and inverse mapping of DFT between {Wkj
a ðylÞ} and

{Wkj
am;Ng, see Appendix A. Furthermore, the known elements rj

lm

of matrix r in Eq. (62) allow us to write explicit expressions for
the inverse transform as follows

Wkj
am;N ¼

XN
n¼j

XNþ1�j

l¼1

rj
mlTjðbljynÞ

( )
Wkj

a ðynÞ ð63Þ

Since the interpolation trigonometric polynomial Wkj
aNðyÞ at the

nodes takes on the given valuesWkj
aNðynÞ ¼ Wkj

a ðynÞ, the introduction
of the following notation is useful

Fj
mn ¼

XNþ1�j

l¼1

rj
mlTjðbljynÞ ð64Þ

In this way, we obtain the expressions for the forward and
inverse DFT as given below

Wkj
a ðynÞ ¼

XNþ1�j

m¼1

TjðbmjynÞWkj
am;N ð65Þ

Wkj
am;N ¼

XN
n¼j

Fj
mnW

kj
a ðynÞ ð66Þ

It should be also noted that summation in Eq. (64) allows
trigonometric (analytical) summation. This will prove useful when
increasing the computational efficiency within the inverse trans-
form Eq. (66) for large values of the number N.

In a similar way, interpolation trigonometric polynomials can
be constructed for the rest of the boundary displacements and
forces. Let these interpolation trigonometric polynomials are
denoted by

Wkj
aNðyÞ ¼

PNþ1�j

m¼1
Wkj

am;NTjðbmjyÞ; Wkj
bNðxÞ ¼

PNþ1�k

m¼1
Wkj

bm;NTkðamkxÞ

/kj
aNðyÞ ¼

PNþ1�j

m¼1
/kj

am;NTjðbmjyÞ; /kj
bNðxÞ ¼

PNþ1�k

m¼1
/kj

bm;NTkðamkxÞ

9>>>=
>>>;
ð67Þ

and

Mkj
aNðyÞ ¼

PNþ1�j

m¼1
Mkj

am;NTjðbmjyÞ; Mkj
bNðxÞ ¼

PNþ1�k

m¼1
Mkj

bm;NTkðamkxÞ

Vkj
aNðyÞ ¼

PNþ1�j

m¼1
Vkj

am;NTjðbmjyÞ; Vkj
bNðxÞ ¼

PNþ1�k

m¼1
Vkj

bm;NTkðamkxÞ

9>>>=
>>>;
ð68Þ

where coefficients of Eqs. (67) and (68) are calculated by using an
analogy to Eq. (66) for the given values of the functions at the nodal
points (see Eqs. (52) and (55)). Thus, the polynomials for the dis-
placements and forces are given by.
9

Displacements:

Wkj
am;N ¼PN

n¼j
Fj
mnW

kj
a ðynÞ; Wkj

bm;N ¼PN
n¼j

Fk
mnW

kj
b ðxnÞ

/kj
am;N ¼PN

n¼j
Fj
mn/

kj
a ðynÞ; /kj

bm;N ¼PN
n¼j

Fk
mn/

kj
b ðxnÞ

9>>>>=
>>>>;

ð69Þ

Forces:

Mkj
am;N ¼PN

n¼j
Fj
mnM

kj
a ðynÞ; Mkj

bm;N ¼PN
n¼j

Fk
mnM

kj
b ðxnÞ

Vkj
am;N ¼PN

n¼j
Fj
mnV

kj
a ðynÞ; Vkj

bm;N ¼PN
n¼j

Fk
mnV

kj
b ðxnÞ

9>>>>=
>>>>;

ð70Þ

From the theory of Fourier series [50], it can be ascertained that
the coefficients of interpolation trigonometric polynomials of Eqs.
(69) and (70) will tend to reach their exact values through their
Fourier coefficients when N ? 1.

Now the substitution of the expressions in Eqs. (69) and (70)
into Eqs. (45)-(48) leads to the resulting dynamic stiffness
matrix comprising 2�(2 N + 2 –k – j) equations which relate
the boundary forces and displacements at nodal points. The
required equations which lead to the dynamic stiffness matrix
can be written as

PN
n¼k

2�dj0d1m
bD1

PNþ1�k

l¼1
ð�1Þlþm

D2b
2
mjþD12a2lk

� �
Fkln

ða2
lk
þq2

mj
Þða2

lk
þq

�2
mj
Þ /

kj
b ðxnÞ þ

PN
n¼j

D1
mF

j
mn/

kj
a ðynÞþ

PN
n¼k

2�dj0d1m
bD1

PNþ1�k

l¼1

ð�1ÞlþmFkln
ða2

lk
þq2

mj
Þða2

lk
þq

�2
mj
ÞV

kj
b ðxnÞ þ

PN
n¼j

D2
mF

j
mnV

kj
a ðynÞ ¼

PN
n¼j

Fj
mnW

kj
a ðynÞ

ð71Þ

PN
n¼k

2�dj0d1m
bD1

PNþ1�k

l¼
ð�1Þlþm

D2
3�4D2

66�D1D2ð Þb2mja
2
lk
�D1DX

4

� �
Fkln

ða2
lk
þq2

mj
Þða2

lk
þq

�2
mj
Þ /kj

b ðxnÞ

þPN
n¼j

D3
mF

j
mn/

kj
a ðynÞ�

PN
n¼k

2�dj0d1m
bD1

PNþ1�k

l¼
ð�1Þlþm

D12b
2
mjþD1a2lk

� �
Fkln

ða2
lk
þq2

mj
Þða2

lk
þq
�2
mj
Þ V

kj
b ðxnÞ

þPN
n¼j

D4
mF

j
mnV

kj
a ðynÞ¼�PN

n¼j
Fj
mnM

kj
a ðynÞ

ð72Þ
(m = 1, 2, . . .,N + 1 –j).

PN
n¼j

2�dk0d1m
aD2

PNþ1�j

l¼1
ð�1Þlþm

D1a2mk
þD12b

2
lj

� �
Fj
ln

ðb2ljþp2
mk

Þðb2ljþp
�2
mk

Þ /kj
a ðynÞ þ

PN
n¼k

D5
mF

k
mn/

kj
b ðxnÞþ

þPN
n¼j

2�dk0d1m
aD2

PNþ1�j

l¼1

ð�1ÞlþmFj
ln

ðb2ljþp2
mk

Þðb2ljþp
�2
mk

ÞV
kj
a ðynÞ þ

PN
n¼k

D6
mF

k
mnV

kj
b ðxnÞ ¼

PN
n¼k

Fk
mnW

kj
b ðxnÞ

ð73Þ

PN
n¼j

2�dk0d1m
aD2

PNþ1�j

l¼1
ð�1Þlþm

D2
3�4D2

66�D1D2ð Þb2lja2mk
�D1DX

4

� �
Fj
ln

ðb2ljþp2
mk

Þðb2ljþp
�2
mk

Þ /kj
a ðynÞ

þPN
n¼k

D7
mF

k
mn/

kj
b ðxnÞ�

PN
n¼j

2�dk0d1m
aD2

PNþ1�j

l¼1
ð�1Þlþm

D12a2mk
þD2b

2
lj

� �
Fj
ln

ðb2ljþp2
mk

Þðb2ljþp
�2
mk

Þ V
kj
a ðynÞ

þPN
n¼k

D8
mF

k
mnV

kj
b ðxnÞ¼�PN

n¼k
Fk
mnM

kj
b ðxnÞ

ð74Þ
(m = 1, 2, . . .,N + 1 –k).

(k, j = 0, 1).
Finally, by considering the dependency between the set rep-

resented by Eqs. (38) and (41) and the set of boundary condi-
tions for forces and displacements represented by Eq. (8)
evaluated at the nodal points, we arrive at the following
relationship
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4Wkj
a ðynÞ¼Wða;ynÞþð�1ÞkWð�a;ynÞþð�1ÞjWða;�ynÞþð�1ÞkþjWð�a;�ynÞ

4Wkj
b ðxnÞ¼Wðxn;bÞþð�1ÞjWðxn;�bÞþð�1ÞkWð�xn;bÞþð�1ÞkþjWð�xn;�bÞ

4/kj
a ðynÞ¼/yða;ynÞ�ð�1Þk/yð�a;ynÞþð�1Þj/yða;�ynÞ�ð�1Þkþj/yð�a;�ynÞ

4/kj
b ðxnÞ¼/xðxn;bÞ�ð�1Þj/xðxn;�bÞþð�1Þk/xð�xn;bÞ�ð�1Þkþj/xð�xn;�bÞ

4Mkj
a ðynÞ ¼Mxða;ynÞþð�1ÞkMxð�a;ynÞþð�1ÞjMxða;�ynÞþð�1ÞkþjMxð�a;�ynÞ

4Mkj
b ðxnÞ¼Myðxn;bÞþð�1ÞjMyðxn;�bÞþð�1ÞkMyð�xn;bÞþð�1ÞkþjMyð�xn;�bÞ

4Vkj
a ðynÞ¼Vxða;ynÞ�ð�1ÞkVxð�a;ynÞþð�1ÞjVxða;�ynÞ�ð�1ÞkþjVxð�a;�ynÞ

4Vkj
b ðxnÞ ¼Vyðxn;bÞ�ð�1ÞjVyðxn;�bÞþð�1ÞkVyð�xn;bÞ�ð�1ÞkþjVyð�xn;�bÞ

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

ð75Þ

Clearly, by substituting Eq. (75) into the system of Eqs. (71)-
(74) for all of the four cases of symmetry (k,j), one can obtain
dependency between the point-defined components f and d in
Eq. (8). Thus, Eqs. (71)–(74) together with Eq. (75) describe the
dynamic stiffness matrix of the plate element, relating the forces
and displacements at the nodal points defined at the plate
boundaries.
4. Numerical results and discussion

The method developed above has been implemented in a com-
puter program using Mathematica. It is helpful to explain briefly
how the results were obtained. As can be seen in Section 3 above,
the system of Eqs. (71)-(74) connects the values of the boundary
forces and boundary displacements at any nodal points of the plate
edges. Thus, to set the boundary conditions on some edges of the
plate or on some parts of the edges of the plate, it is sufficient to
assign the values of the boundary functions at the nodal points
of the corresponding edge. The connection between two or more
plate elements can be carried out in a similar way. When two or
more plates are joined together, the values of the boundary dis-
placements and boundary forces are coincident at the nodal points
on the common part or parts of the plate. The values of boundary
displacements and boundary forces at the nodal points given by
Eqs. (71)-(74) that are not involved in the boundary conditions,
are the unknown variables. The system of linear equations is
formed relative to these unknown variables. The determinant of
this system will give the characteristic equation to determine the
natural frequencies of the plate comprising nodal plates, but better
still, the application of the Wittrick-Williams algorithm [2] to the
ensuing dynamic stiffness matrix is a robust solution technique
which avoids the cumbersome determinant evaluation that can
be sometimes prone to ill-conditioning and also can miss natural
frequencies while stepping through the frequencies. The algorithm
has been used in this paper in obtaining the results, but some
results were checked using the frequency-determinant plot. The
corresponding eigenvectors i.e., mode shapes, were recovered in
the usual way by assigning an arbitrary displacement to a carefully
chosen node and then determining the rest of the displacements in
terms of the chosen one. A point is to be made here that the Fourier
coefficients corresponding to the mode shapes are determined
with the help of Eqs. (69)-(70) for final substitution into Eq. (34).

The first set of results was obtained to assess the convergence
performance of the current theory by artificially using point nodes
to represent the line nodes which are essentially the edges of the
plate. This approach is suitable because comparison of results with
those readily available in the literature [1,4,5,22,23,38,42] for
plates modelled by line nodes is easy and straightforward. Thus,
using the developed theory, the line nodes are modelled by N num-
ber of point nodes on each edge of the plate. With increasing values
of the number of nodal points N, Tables 1-3 show the first ten non-
dimensional natural frequencies computed using current theory
for three different boundary conditions of the plate which are
Free-Free-Free-Free (FFFF), Clamped-Clamped-Clamped-Clamped
(CCCC) and Clamped-Free-Clamped-Free (CFCF), respectively
10
alongside the published results [42] shown in the last column of
these tables. For each case, three different node-point distributions
on the plate edges, represented by s(n) (see underneath Eq. (53)
and Fig. 2) have been used in the present theory. The results for
the first ten non-dimensional natural frequencies (Xn) from the
present theory when compared with the published results given
in the last column show excellent agreement for all three boundary
conditions of the plate, which confirms the correctness of the the-
ory. (Note that N = 32 gives extremely close results even up to
machine accuracy as given by line nodes.) As can be seen from
the results shown in Tables 1-3 that for classical boundary condi-
tions FFFF, CCCC and CFCF, even with 4 nodal points on each side
of the plate, the first ten natural frequencies can be computed very
accurately. The discrepancy with exact results is astonishingly
small, being within 0.5%. An analysis of the symmetry and
antisymmetry of the modes show that more rapid convergence is
observed for the fundamental mode (i.e. the first mode) in all cases.
It has already been noted from the results given by Tables 1-3 that
4 nodal points are sufficient for good accuracy, however, for the
antisymmetric modes it is possible to find the values of the funda-
mental natural frequencies with an accuracy of three significant
figures even with N = 2. The investigation has shown that for
higher symmetric modes, the convergence of results is somewhat
inferior, wherein the use of non-equally spaced mesh for the nodes
gives better result, see for example X7 for the FFFF case in Table 1,
and X3 and X8 for the CFCF case in Table 3. Nevertheless, even for
these cases, the use of N = 8 for the number of nodal points, makes
it possible to achieve very accurate results for the natural
frequencies.

For further verification and validation of results, the first five
natural frequencies of an isotropic plate with CFFF boundary con-
ditions are computed using the present theory and they are com-
pared with those reported in the literature [34] using SEM and
FEM, respectively. The comparative results are shown in Table 4.
Note that NSEM in Table 4 is the number of series terms in the rep-
resentation of the shape functions in SEM [34]. Given the similar-
ities between DSM and SEM, it can be seen from Table 4 that the
results using the proposed theory converge almost in the same
way as the approach used in SEM [34]. Applying the present the-
ory, 16 nodes to represent half-length of each side of the plate is
enough to achieve sufficient accuracy, as can be seen.

As noted earlier, the DSM approach has been repeatedly
described in the literature as the most accurate and reliable
approach when solving free vibration problems for structures
and structural elements. However, for plates, there existed a severe
limitation in DSM that line nodes must be used to represent the
edges of the plate. Evidently, the work on DSM for plates with
point nodes was non-existent until now when the current
investigation has successfully overcome this limitation. Therefore,
the next set of results was obtained to check the convergence of
results using the proposed theory when the boundary conditions
are discontinuous and/or partially specified. Table 5 shows the fun-
damental natural frequency of an isotropic square plate with sim-
ple supported boundary condition on its three edges, but the plate
is partially clamped at the center of the fourth edge, see Fig. 3. Note
that 2a is the length of each side of the plate and 2l is the portion of
length located in the middle of one of the sides of the plate over
which the nodal points are distributed. Clearly l/a = 0 corresponds
to the case when the edge is simply supported, representing SSSS
boundary conditions whereas l/a = 1 corresponds to the case when
the edge is fully clamped, representing SSSC boundary conditions.
Comparative results for this problem are available in the literature
[4,5] from which the data were taken for the analysis. When com-
puting the fundamental natural frequency of the plate from the
present theory, a non-uniform mesh for the node distribution
given by s = x2 (Fig. 2(a)) with N = 16 was used with the node con-



Table 1
Convergence of results for a square orthotropic plate with FFFF boundary condition using the present method with different mesh distribution of nodes represented by s(x) and
different number of nodes N on each edge of the plate (Data: b/a = 1,E1 ¼ 60:7 GPa,G12 ¼ 12 GPa,m12 ¼ 0:23, m21 ¼ 0:094).

Freq.
No.
n

Non-dimensional natural frequency Xn ¼ a
ffiffiffiffiffiffiffiffiffiffi
x2qh
D1

4
q

N = 4 N = 8 N = 16 [42]

s = x s=
ffiffiffi
x

p
s = x2 s = x s=

ffiffiffi
x

p
s = x2 s = x s=

ffiffiffi
x

p
s = x2

1 1.5832 1.5832 1.5832 1.5832 1.5832 1.5832 1.5832 1.5832 1.5832 1.5832
2 1.8798 1.8793 1.8793 1.8795 1.8793 1.8793 1.8794 1.8793 1.8793 1.8793
3 2.3644 2.3653 2.3653 2.3657 2.3653 2.3653 2.3654 2.3653 2.3653 2.3653
4 2.4844 2.4843 2.4843 2.4863 2.4863 2.4863 2.4869 2.4875 2.4870 2.4872
5 2.7335 2.7335 2.7336 2.7345 2.7344 2.7345 2.7348 2.7349 2.7349 2.7349
6 3.1401 3.1401 3.1401 3.1394 3.1394 3.1393 3.1392 3.1394 3.1390 3.1388
7 3.4716 3.4892 3.4892 3.4851 3.4892 3.4892 3.4892 3.4892 3.4892 3.4892
8 3.5142 3.5142 3.5142 3.5142 3.5142 3.5142 3.5142 3.5142 3.5142 3.5142
9 3.9219 3.9220 3.9220 3.9214 3.9214 3.9214 3.9211 3.9214 3.9210 3.9210
10 4.1395 4.1395 4.1395 4.1395 4.1395 4.1395 4.1395 4.1395 4.1395 4.1395

Table 2
Convergence of results for a square orthotropic plate with CCCC boundary condition using the present method with different mesh distribution of nodes represented by s(x) and
different number of nodes N on each edge of the plate (Data: b/a = 1,E1 ¼ 60:7 GPa ,G12 ¼ 12 GPa,m12 ¼ 0:23, m21 ¼ 0:094).

Freq.
No.
n

Non-dimensional natural frequency Xn ¼ a
ffiffiffiffiffiffiffiffiffiffi
x2qh
D1

4
q

N = 4 N = 8 N = 16 [42]

s = x s=
ffiffiffi
x

p
s = x2 s = x s=

ffiffiffi
x

p
s = x2 s = x s=

ffiffiffi
x

p
s = x2

1 2.6971 2.6975 2.6971 2.6974 2.6975 2.6974 2.6975 2.6975 2.6975 2.6975
2 3.5646 3.5645 3.5645 3.5649 3.5649 3.5649 3.5649 3.5649 3.5649 3.5649
3 4.1012 4.1012 4.1012 4.1014 4.1015 4.1014 4.1015 4.1015 4.1015 4.1015
4 4.6282 4.6283 4.6282 4.6283 4.6283 4.6283 4.6283 4.6283 4.6283 4.6283
5 4.6674 4.6678 4.6674 4.6677 4.6678 4.6678 4.6678 4.6678 4.6678 4.6678
6 5.4438 5.4438 5.4438 5.4446 5.4447 5.4447 5.4446 5.4446 5.4446 5.4446
7 5.6161 5.6157 5.6156 5.6156 5.6157 5.6157 5.6157 5.6157 5.6157 5.6157
8 5.8496 5.8496 5.8496 5.8497 5.8497 5.8497 5.8497 5.8497 5.8497 5.8497
9 5.9759 5.9759 5.9759 5.9759 5.9759 5.9759 5.9759 5.9759 5.9759 5.9759
10 6.4397 6.4397 6.4396 6.4397 6.4397 6.4397 6.4397 6.4397 6.4397 6.4397

Table 3
Convergence of results for a square orthotropic plate with CFCF boundary condition using the present method with different mesh distribution of nodes represented by s(x) and
different number of nodes N on each edge of the plate (Data: b/a = 1,E1 ¼ 60:7 GPa,G12 ¼ 12 GPa,m12 ¼ 0:23, m21 ¼ 0:094).

Freq.
No.
n

Non-dimensional natural frequency Xn ¼ a
ffiffiffiffiffiffiffiffiffiffi
x2qh
D1

4
q

N = 4 N = 8 N = 16 [42]

s = x s=
ffiffiffi
x

p
s = x2 s = x s=

ffiffiffi
x

p
s = x2 s = x s=

ffiffiffi
x

p
s = x2

1 2.3628 2.3624 2.3623 2.3628 2.3627 2.3627 2.3628 2.3628 2.3628 2.3628
2 2.4832 2.4832 2.4832 2.4847 2.4846 2.4846 2.4851 2.4851 2.4850 2.4849
3 2.9274 2.9316 2.9316 2.9302 2.9318 2.9318 2.9315 2.9318 2.9318 2.9318
4 3.7309 3.7309 3.7309 3.7412 3.7392 3.7392 3.7412 3.7411 3.7411 3.7412
5 3.9239 3.9239 3.9239 3.9235 3.9235 3.9235 3.9234 3.9235 3.9234 3.9233
6 4.0255 4.0255 4.0255 4.0255 4.0256 4.0255 4.0256 4.0256 4.0256 4.0256
7 4.3598 4.3598 4.3598 4.3558 4.3558 4.3558 4.3557 4.3558 4.3557 4.3557
8 4.7631 4.7793 4.7793 4.7770 4.7807 4.7807 4.7798 4.7807 4.7807 4.7807
9 4.9225 4.9225 4.9225 4.9244 4.9244 4.9244 4.9245 4.9245 4.9245 4.9245
10 5.4952 5.4941 5.4940 5.4945 5.4941 5.4941 5.4943 5.4941 5.4941 5.4941

Table 4
Comparison convergence of results for the CFFF square plate using the present theory and SEM [34] (m = 0.3; a = 0.5 m, h = 0.001 m; E = 69 GPa, q = 2700 kg/m3).

Freq.
No.
n

Natural frequency f n ¼ xn
2p (Hz)

SEM Present theory FEM [34]
(ANSYS 200 � 200)

NSEM = 8 NSEM = 32 NSEM = 128 N = 8 N = 16 N = 32

1 0.843 0.845 0.845 0.844 0.845 0.845 0.845
2 2.070 2.070 2.071 2.068 2.070 2.071 2.071
3 5.177 5.180 5.182 5.180 5.181 5.182 5.182
4 6.620 6.622 6.622 6.618 6.622 6.622 6.622
5 7.532 7.534 7.536 7.533 7.536 7.536 7.537
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Table 5
The fundamental natural frequencyX1 for a square isotropic plate simply-supported on three edges and clamped along a length l symmetrically located in the middle on the third
edge using the present theory with N = 16 and m = 0.3.

Fundamental natural frequency X1

l/a = 0 l/a = 1/3 l/a = 1/2 l/a = 2/3 l/a = 1

Present theory [4] Present theory [4] Present theory [4] Present theory [4] Present theory [4]

2.221 2.221 2.405 2.398 2.414 2.417 2.422 2.429 2.432 2.432

Fig. 3. A square plate simply-supported on the three edges and partial clamped
support on the fourth edge along a length l symmetrically place in the middle.

Fig. 4. An L shaped plate clamped at all edges [51].

Table 6
The first five non-dimensional natural frequencies k

�
n ¼ a1

p

ffiffiffiffiffiffiffiffiffi
hqx2

D
4
q

(n = 1, 2,..5) of an L-
shaped plate [51] with clamped edges a1:b1:a2:b2 = 5:5:3:3.

Freq. No
n

Non-dimensional natural frequency k
�
n

Present theory with N = 16 Table 2 of Ref. [52]

1 2.409 2.40
2 2.914 2.91
3 3.265 3.26
4 3.867 3.86
5 3.911 3.90

Fig. 5. A square plate clamped over a finite length at its corners.
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centration at the center of the plate side. It should be noted that
the use of an equally spaced mesh gives some distortion in the
results for this example. Table 5 shows that if the l/a ratio is 0 or
1, i.e. if the side of the plate is simply-supported or fully clamped,
the results from the current theory are exactly the same as those
reported in [4,5]. When comparing results, it should be noted that
in [4,5] the square of the non-dimensional frequency that has been
defined in this paper was used. It may be explained that the results
in [4,5] were obtained based on the method of Fourier series and in
the limiting case, the results coincided with the exact solution of
the problem obtainable from the Levy type of analysis. Clearly
the current theory gives sufficiently accurate values of natural fre-
quencies with N = 16. For other values of ratio l /a the results from
the present theory are very close to those of [4,5].

The next example is an L-shaped isotropic plate which is sym-
metrical about the diagonal x = y and the plate is clamped at all
its edges, as shown in Fig. 4. For this problem comparative results
are available in the literature [52]. The geometric and all other rel-
evant data are taken from [52] in the current analysis. Note that
the natural frequencies in non-dimensional form of isotropic
clamped plates within the framework of Kirchoff-Love plate theory
do not depend on any specific material constant or plate dimen-
sions because of the non-dimensionalisation process, and under-
standably [52] gives the non-dimensional frequency parameter

k
�
n for the problem. Details of material properties, the thickness h

and values of sides of the plate are absent in [52]. However, some
of the parameters pertaining to Fig. 4 are given in [52]. These are:
a1 = b1 and a2 = b2 = 0.6a1. Table 6 shows the first five natural fre-
quencies for the L-shaped plate using the proposed theory using
N = 16 together with the results reported in [52] which are based
on the method of double Fourier series. The natural frequencies
computed using two very different theories, i.e., the proposed
12
theory and that of [52], see Table 2 of [52], are indeed extremely
close. This is not surprising because both methods deal with exact
solution of the governing differential equations, and as expected,
both converge towards exact results. There might be some possible
rounding errors in the results that are quoted in Table 2 from [52].



Table 7
The first ten non-dimensional natural frequencies Xn (n = 1, 2, 3,. . ., 10) for a square
plate clamped over a finite length at its corners (Fig. 5) with m = 0.3, E = 200 GPa,
q = 7850 kg/m3 and c = 0.5a and d = 0.75a.

Freq. No n Non-dimensional natural frequency Xn ¼ a
ffiffiffiffiffiffiffiffiffiffi
x2qh

D
4
q

1 1.5708
2 2.1878
3 2.2214
4 3.1415
5 3.5124
6 4.2082
7 4.3136
8 4.4428
9 4.4753
10 4.7123

Fig. 7. Two orthotropic plates joined together and the assembly is clamped all-
round the outer edges.
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The natural frequency parameters calculated with the help of the
method of double Fourier series in [52] appears to have a slow
convergence rate compared to the present method.

To further illustrate the usefulness of the proposed approach,
two carefully chosen additional examples are now considered.
The first one is a square isotropic plate clamped over a finite length
Fig. 6. The first (a), second (b), third (c) and fif

13
at the four corners of the plate as shown in Fig. 5. Corresponding to
Fig. 5, the data used are: a = 1 m, c = 0.5 m and d = 0.75 m, E = 200
GPa, q = 7850 kg/m3 and m = 0.3. The solution for this type of prob-
th (d) natural modes of the plate in Fig. 5.



Table 8
The first ten natural frequencies Xn (n = 1, 2, 3,. . .0.10) of the plate shown in Fig. 7.

Freq. No
n

Non-dimensional natural frequency

Xn ¼ a
ffiffiffiffiffiffiffiffiffiffi
x2qh
D1

4
q

Assembly of two orthotropic plates (Fig. 7) Single quartz glass
plate

1 2.6823 2.6975
2 3.8172 3.5649
3 3.8367 4.1015
4 4.6408 4.6283
5 5.0246 4.6678
6 5.0389 5.4446
7 5.6394 5.6157
8 5.8515 5.8497
9 6.1962 5.9759
10 6.4692 6.4397
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lem has not been reported in the literature and hence given for the
first time. In the analysis 16 nodal points were chosen (N = 16) over
the length (a-c) on the two corners of each of the top and bottom
sides and the same number of nodes were chosen over the length
(b-d) on two corners of each of the left-hand and right-hand sides
of the plate. The node point distribution was chosen according to
Fig. 8. The first (a), second (b), fifth (c) and sixth (d) m

14
the formula s =
ffiffiffi
x

p
(see Fig. 2) which gives node point concentra-

tion towards the end of the side. (It was noted that equally spaced
node mesh with s = x gave a weak convergence.) Table 7 gives the
first ten natural frequencies of the plate in non-dimensional form
whereas some selective mode shapes of the plate are shown in
Fig. 6.

In the final example, two orthotropic composite plates are
joined together, and the assembly of the two plates are clamped
all-round the outer edges, see Fig. 7. The plate on the left has 0�
ply orientation and the elastic constants are-
E1 ¼ 60:7 GPa,G12 ¼ 12 GPa,m12 ¼ 0:23, m21 ¼ 0:094 whereas the
plate on the right has 90� ply orientation so that the elastic con-
stants are E2 = 60.7, GPa,G12 ¼ 12 GPa, m12 = 0.094, m21 = 0.23. Fol-
lowing the analysis, Table 8 shows the first ten natural frequencies
of the composite plate shown in Fig. 7 together with those of a
quartz glass plate with clamped edges (see Table 2). When com-
puting the results of Table 8, the number of nodal points N was
set to 16 and the distribution of nodes was based on the formula
s =

ffiffiffi
x

p
, see Fig. 2. The authors are surprised that most of the results

shown in Table 8 show excellent agreement between the quartz
plate and the composite plate of Fig. 7. The first, fourth and
seventh, eighth and nineth natural frequencies show excellent
ode shapes of the plate assembly shown in Fig. 7.
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agreement with less than 1% discrepancy whereas the differences
in the second, third, fifth and sixth natural frequencies are rela-
tively larger, but they are all within 8%. Fig. 8 shows representative
mode shapes for the two combined composite plate. It can be seen
from Fig. 8 that the first and second mode shapes exhibit proper
symmetry as expected from the single a square quartz glass plate
with CCCC edges, but there is significant asymmetry in the fifth
and sixth mode shapes which is a consequence of composite nat-
ure of the plate shown in Fig. 7.
5. Conclusions

The principal novelty in this paper is the development of a new
theory for the dynamic stiffness method for plates containing point
nodes to carry out free vibration analysis of plates and plate assem-
bles. The amplitudes of the shear forces and bending moments at
nodal points on the boundary of the plate are related to the corre-
sponding amplitudes of the bending displacements and bending
rotations through a system of linear equations to arrive at the
ensuing dynamic stiffness matrix of the plate with point nodes.
The formulation of dynamic stiffness matrix at nodal points of
the plate has been possible by the application of the discrete Four-
ier transform for the modified system of trigonometric functions.
The innovative discrete Fourier transform of this type applied in
the context of this research has not been attempted before and is
expected to pave the way for further research in the area. The ana-
lytical expressions for the direct and inverse Fourier transform for
the case when the nodes are equally spaced are derived in an exact
sense. The only approximation that arises is due to the point set-
ting of the boundary condition because a point node formulation
does not uniquely define a continuous function at the plate bound-
ary, but as the authors have shown that the derived analytical solu-
tion satisfies exactly the governing differential equation for any set
of nodal points. The theory is applied with particular reference to
the Wittrick-Williams algorithm to compute the natural frequen-
cies of a number of illustrative examples, but some results are
checked by traditional approach of tracking the zeroes of the fre-
quency determinant over a wide frequency range. The validity of
the theory is confirmed by carefully selected sample of examples
for which comparative results are available in the literature.
Numerical examples show that a relatively small numbers of nodal
points (N = 8 for continuous boundary conditions, and N = 16 for
discontinuous boundary conditions) are adequate to determine
the natural frequencies of isotropic and orthotropic plates and
their assemblies with sufficient accuracy. The proposed method
has the added advantage of setting the boundary conditions and/
or assembling dissimilar elements directly at the nodal points.
The results from the numerical simulations show that the use of
non-uniform mesh of node distribution gives better accuracy than
equally spaced arrangement of nodes.
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Appendix A

Let a given function fk(x) is even (index k = 0) or odd (index
k = 1) during the interval [–a; a] and it is defined in (N – 1 + k)
equally spaced nodes at xn ¼ a n

N where n = k, k + 1, . . ., N and
f(xn) = fn.

We define a discrete Fourier transform which maps the nodal

values of the functions f and f
�
defined below.

f ¼ f k:; f kþ1:; . . . ; f N
� 	T ðA1Þ

f
�
¼ ½f

�
1; f

�
2; ::::; f

�
Nþ1�k�

T

ðA2Þ

Following Eqs. (A1) and (A2), fn and f
�
m can now be defined with

respect to the following functions represented by a system of
trigonometric functions {TkðamnxÞ} so that.

f n ¼
XNþ1�k

m¼1

Tnmf
�
m ðA3Þ

f
�
m ¼

XN
n¼k

T�1
mnf n ðA4Þ

where Tnm ¼ TkðamnxnÞ are elements of the matrix T for forward
transform of dimension (N – 1 + k).

For forward and inverse transform notation, Eqs. (A1) and (A2)
can be written in matrix form as.

f ¼ T f
�

ðA5Þ

f
�
¼ T�1f ðA6Þ
It should be noted that it is not possible to explicitly construct

the inverse matrix (inverse transform) T�1 using the values of
the elements of the matrix T. This is because in contrast to the clas-
sical discrete Fourier transform, the conditions for the orthogonal-
ity of the basis functions at the nodal points are not satisfied in the
presented case.

The trigonometric interpolation polynomial fN(x) is constructed
in the following form.

f NðxÞ ¼
XNþ1�k

m¼1

f
�
mTkðamkxÞ ðA7Þ

In accordance with the standard technique of the method of

least squares we minimize the function Rðf
�
Þ which is the square

of the differences between f NðxnÞ and f n as expressed below.

MinimizeRðf
�
Þ ¼PN

n¼k f NðxnÞ � f nð Þ2 (A8)
Then by using the condition of existence of stationary point of

the function Rðf
�
Þ, i.e., setting each of the first partial derivatives

with respect to the each of the coefficients to zero to give

@R

@f
�
m

¼ 0 ðA9Þ

In this way, one can derive the following system of linear alge-
braic equations (the so-called normal equations) for coefficients of
the interpolation polynomial of Eq. (A7).

XNþ1�k

m¼1

Mlmf
�
m ¼

XN
n¼k

TkðalkxnÞf n l ¼ 1; 2; . . . ;N þ 1 - kð Þ ðA10Þ

where
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Mlm ¼
XN
n¼k

TkðalkxnÞTkðamkxnÞ ðA11Þ

Now the system of Eq.(A10) can be rewritten in the following
matrix form

M f
�
¼ TT f ðA12Þ

where TT is transposed matrix T and

M ¼ TTT ðA13Þ
The matrix M depending upon the symmetry prescribed by the

value of k of the considered functions system {TkðamnxÞ} is estab-
lished as followsThus, from the matrix relationship of Eq. (A12)

we can determine the values of the Fourier coefficients f
�
as follows
If k = 0 and N is even number If k = 0 and N is odd number

M ¼

N þ 1 0 1 ::: 0 1
0 N

2 þ 1 0 ::: 1 0
1 0 N

2 þ 1 ::: 0 1
::: ::: ::: ::: ::: :::
0 1 0 ::: N

2 þ 1 0
1 0 1 ::: 0 N þ 1

0
BBBBBB@

1
CCCCCCA

M ¼

N þ 1 0 1 ::: 1 0
0 N

2 þ 1 0 ::: 0 1
1 0 N

2 þ 1 ::: 1 0
::: ::: ::: ::: ::: :::
1 0 1 ::: N

2 þ 1 0
0 1 0 ::: 0 N þ 1

0
BBBBBB@

1
CCCCCCA

If k = 1and N is even number If k = 1and N is odd number

M ¼ 1
2

N þ 1 �1 1 ::: 1 �1
�1 N þ 1 �1 ::: �1 1
1 �1 N þ 1 ::: 1 �1
::: ::: ::: ::: ::: :::
1 �1 1 ::: N þ 1 �1
�1 1 �1 ::: �1 N þ 1

0
BBBBBB@

1
CCCCCCA

M ¼ 1
2

N þ 1 �1 1 ::: �1 1
�1 N þ 1 �1 ::: 1 �1
1 �1 N þ 1 ::: �1 1
::: ::: ::: ::: ::: :::
�1 1 �1 ::: N þ 1 �1
1 �1 1 ::: �1 N þ 1

0
BBBBBB@

1
CCCCCCA
f
�
¼ M�1TT f ðA14Þ
Equation (A14) in expanded form can be rewritten as.

f
�
m ¼

XN
n¼k

XNþ1�k

l¼1

rmlTkðalkxnÞ
( )

f n ðA15Þ

where rml are the elements of the matrix r ¼ M�1.
If the coefficients of trigonometric polynomial of Eq. (A7) are

calculated according to the Eq. (A14) and (A15) then its values at
the nodal points coincide with the given values of function f(x),
i.e. fN(xn) = fn. Thus, the polynomial fN(x) obtained by minimizing
the difference in Eq. (A8) with the help of the method of least
if k = 0 and N is even number

r ¼ 1
N2

N � 1
2 0 �1 0 �1 ::: �1 0 � 1

2
0 2N � 2 0 �2 0 ::: 0 �2 0
�1 0 2N � 2 0 �2 ::: �2 0 �1
0 �2 0 2N � 2 0 ::: 0 �2 0
�1 0 �2 0 2N � 2 ::: �2 0 �1
::: ::: ::: ::: ::: ::: ::: ::: :::
�1 0 �2 0 �2 ::: 2N � 2 0 �1
0 �2 0 �2 0 ::: 0 2N � 2 0
� 1

2 0 �1 0 �1 ::: �1 0 N � 1
2

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

if

r

if k = 1 and N is even number

r ¼ 1
N2

2N � 1 1 �1 ::: �1 1
1 2N � 1 1 ::: 1 �1
�1 1 2N � 1 ::: �1 1
::: ::: ::: ::: ::: :::
�1 1 �1 ::: 2N � 1 1
1 �1 1 ::: 1 2N � 1

0
BBBBBB@

1
CCCCCCA

if

r

16
square is necessarily an interpolation polynomial. This type of gen-
eral analysis is well known in the theory of classical discrete Four-
ier transform (see Bessel’s formula [49]).

To prove the validity of the discrete Fourier transform, it is nec-
essary to calculate the values of polynomial fN(x) at the nodal
points, where they must coincide with the nodal values of the
functions f. The following equalities prove this fact.

f NðxkÞ; f Nðxkþ1Þ; ::::; f NðxNÞ½ �T ¼ T f
�
¼ TM�1TT f

¼ T TTT
� ��1

TT f

¼ TT�1 TT
� ��1

TT f ¼ f ðA16Þ
Based on Eq. (A16), it can be ascertained that Eqs. (A14) and

(A15) are nothing but the inverse transform formulas for forward
Fourier transform of the expressions given by Eqs. (A4) and (A6).
In this case, the inverse transformation matrix can be calculated
from.
T�1 ¼ rTT ðA17Þ

Given below are the explicit expressions for the matrix r ¼ M�1

for different values of k which signifies the type of symmetry. For
the equally spaced nodes the inverse matrix r ¼ M�1 always

exists. It follows that the sequences of real numbers f and f
�
are a

pair of discrete Fourier transform.
k = 0 and N is odd number

¼ 1
N2

N � 1
2 0 �1 0 �1 ::: 0 �1 0

0 2N � 2 0 �2 0 ::: �2 0 �1
�1 0 2N � 2 0 �2 ::: 0 �2 0
0 �2 0 2N � 2 0 ::: �2 0 �1
�1 0 �2 0 2N � 2 ::: 0 �2 0
::: ::: ::: ::: ::: ::: ::: ::: :::
0 �2 0 �2 0 ::: 2N � 2 0 �1
�1 0 �2 0 �2 ::: 0 2N � 2 0
0 �1 0 �1 0 ::: �1 0 N � 1

2

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

k = 1 and N is odd number

¼ 1
N2

2N � 1 1 �1 ::: 1 �1
1 2N � 1 1 ::: �1 1
�1 1 2N � 1 ::: 1 �1
::: ::: ::: ::: ::: :::
1 �1 1 ::: 2N � 1 1
�1 1 �1 ::: 1 2N � 1

0
BBBBBB@

1
CCCCCCA
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