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(4.36) for σ(t) = cosh t, g(t) = 1/4 cosh3 t, m(t) = (tanh2 t − 2)/4 at

different values of time. . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1 The instantaneous energy expectation values (5.91) for r = −2, αR

given by equation (5.92) and A1 = 2, A3 = 1.2, ω = 1.6, Ω0 = 2,

k1 = 0.1, k2 = 0.3 and s = 4. . . . . . . . . . . . . . . . . . . . . . . 74

5.2 The instantaneous energy expectation values (5.91) for αR = c2σ
r+2s

with r = −2s and s = 1 with A1 = 2, A3 = 1.2, ω = 1.6, Ω0 = 2 and

c2 = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3 The instantaneous energy expectation values (5.110) for with r =

−s − 1 and s = 1 with A1 = 3, A3 = 2.5, ω = 1.6, Ω0 = 2, m = 1.5

and b = 0.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4 Schematic representation of how the point transformation ΓCL
3 can

be used to construct time-dependent Dyson maps and time-dependent

Hermitian Hamiltonians from their time-independent counterparts for

the time-dependent Harmonic oscillator with complex coupling. . . . 78

6.1 The instantaneous energy spectra (6.110) associated with the six

Dyson maps for λ(t) = sin(2t) for case 1 with κ+ = κ− = 1, k1 = 2.

In panels (a), (c) we have a(t) = cos(t) and in panels (a), (c) we that

a(t) = t/2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2 The instantaneous energy spectra (6.110) associated with five Dyson

maps for λ(t) = sin(2t), a(t) = cos(t) for case 2 with κ+ = κ− = 1,

k1 = 2.5, k2 = 1. We have p = −0.1, p = −0.3, p = −0.5, p = −0.9

in panels (a), (b), (c), (d), respectively. . . . . . . . . . . . . . . . . . 108

7.1 The time-dependent double wells potentials in 7.107 for c = 0, c1 =

0.1, c2 = 0.5 and ω. = 1.2 at different times and different values of n. 145

viii



7.2 The time-dependent double wells potentials in 7.108 for c = 0, c1 =

0.1, c2 = 0.5 and ω. = 1.2 at different times and different values of n. 145

B.1 Graphs of the Airy functions Ai(z) and Bi(z) respectively. . . . . . . 160

B.2 Schematic representation of a potential well V (x) with classical turn-

ing points x1 and x2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

ix



x



List of Tables

2.1 Summary of comparison of solution procedures for η(t) and ρ(t). . . 15

6.1 Coupled first order differential equation constraints on the time-dependent

coefficient functions γ1 and γ2 in the Dyson map η, for different choices

of q1 and q2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2 Parameterisation of γ1 and γ2 in terms of the auxiliary function χ

with additional constraint on c(t) for different choices of q1 and q2.

The constraints in the last column result from the parameterization.

A ∗ indicates no constraint. . . . . . . . . . . . . . . . . . . . . . . . 104

6.3 Auxiliary equations to be satisfied by quantities in the parameterisa-

tion of the functions γ1 and γ2 together with the additional constraint

on c(t) for different choices of q1 and q2. . . . . . . . . . . . . . . . . 104

6.4 Time-dependent coefficient in the Hermitian Hamiltonian h(t) = f+(t)K1+

f−(t)K2 together with the additional constraint on c(t) for different

choices of q1 and q2. In the last column we report a short notation

for the Dyson maps of the particular cases that we shall use below for

convenience. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.1 Inequivalent Dyson maps ηi with specific operators q1, q2 in the fac-

torisation (7.22), and parametrisations for γ1, γ2 in terms of the aux-

iliary functions χ or xi together with the time-dependent functions

f±(t) in h(t). For η2 we demand that χ > 1 so that the Dyson map

is well-defined. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.1 Summary of comparison of existing and new solution procedures for

η(t) and ρ(t). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

xi



xii



Acknowledgements

Firstly I would like to thank my supervisor and friend Professor Andreas Fring who

has guided me through a pandemic to produce this thesis. His advice, knowledge

and teachings have been crucial and for that I am eternally grateful.

I also wish to thank my partner Rupert, who has graciously listened to my ideas

and ramblings through the PhD experience. He has been my number one supporter

who kept me motivated when times were tough.

xiii



xiv



Declaration

I declare that this thesis has been composed solely by myself and that it has not

been submitted, in whole or in part, in any previous application for a degree. Except

where stated otherwise by reference or acknowledgement, the work presented is

entirely my own.

xv



xvi



Abstract

The focus of this thesis is new methods, approximate and exact, in the areas of

time-dependent Hermitian and non-Hermitian quantum mechanics.

By utilising the Lewis-Riesenfeld method of invariants we first present an ap-

proach which makes use of time-independent approximations such as standard time-

independent perturbation theory and WKB theory to provide solutions to the time-

dependent Schrödinger equation [3]. The validity of the method is illustrated in

its application to the study of two exactly solvable Hermitian systems, the time-

dependent harmonic oscillator with Stark term and the Goldman-Krivchenko po-

tential with a time-dependent perturbation.

Our focus then shifts to non-Hermitian systems where we present the first ex-

act solution to the time-dependent Dyson equation for the time-dependent anhar-

monic quartic oscillator [4] demonstrating that it is spectrally equivalent to a time-

dependent double well potential.

To aid in the construction of time-dependent Dyson maps and metrics we em-

ploy point transformations connecting time-dependent non-Hermitian systems with

stationary Hermitian ones [5] to compute exact invariants. Here we study the time-

dependent Swanson model and the time-dependent harmonic oscillator with complex

linear potential. The approach is further applied to the time-dependent anharmonic

quartic oscillator for which we present a second solution to the time-dependent

Dyson equation.

A perturbative scheme for finding the time-dependent Dyson map and metric is

then proposed and applied to determine exact solutions for a pair of weakly coupled

two dimensional time-dependent harmonic oscillators with non-Hermitian coupling

in space and momenta and the strongly coupled time-dependent anharmonic os-

cillator [6]. We also consider two-dimensional time-dependent harmonic oscillators

where the non-Hermitian coupling is just in momenta.

xvii



Finally we explore a procedure which allows for systematic production of an

infinite series of time-dependent Dyson maps governed by the symmetries of the

Lewis-Riesenfeld invariants for time-dependent non-Hermitian Hamiltonians and

their equivalent Hermitian Hamiltonians [7]. We find an infinite number of solu-

tions for the aforementioned harmonic oscillators with non-Hermitian space and

momenta coupling as well as the time-dependent anharmonic oscillator.

xviii



Chapter 1

Introduction

The area of non-Hermitian physics, distinct from the study of dissipative systems in

which complex Hamiltonians have been used since 1928 [8–10], has become widely

popular in the last 20 or so years since the publication of the seminal paper in

1998 by Bender and Boettcher [1]. Being a relatively new field its expansion into

vast areas of research, both theoretical and experimental, is impressive. Notably its

application in classical optics [11–19], in particular on the experimental side [20–23],

has lead to its naming in 2015 as of the top 10 physics discoveries of the last 10 years

[24]. The connection between classical optics and non-Hermitian quantum mechanics

is realised through the paraxial approximation which allows for the comparison of

the time-dependent Schrödinger equation and the Helmholtz equation where the

refractive index n(x), now being complex, takes the role of the potential. The

imaginary component of n(x) represents the gain or loss, which when balanced in

a certain way (n∗(−x) = n(x)) results in real propagation constants. Other areas

which non-Hermiticity has expanded into include acoustics [25, 26], quantum field

theory [27–30], supersymmetry [31–34], topological systems [35, 36] and electronic

circuits [37, 38] to name but a few. See articles [39, 40] for a more comprehensive

list of fields and applications of non-Hermitian physics.

The expansion of non-Hermiticity into an array of fields can be traced back to the

publication of the paper by Bender and Boettcher [1] which presented the now well

established fact that a Hamiltonian need not be Hermitian to have real eigenvalues.

This however was not the first time a non-Hermitian system was thought to have

a real spectrum, with Bender and Boettcher being motivated by the work of Bessis

and Zinn-Justin on the Hamiltonian H = p2+ ix3 [41]. Prior to this there had been

1



additional mathematical realisations [42–50], however it was in [1] that everything

was drawn together and presented.

By numerically studying Hamiltonians of the type

H = p2 − (ix)N , N ∈ R > 0, (1.1)

Bender and Boettcher [1] demonstrated that the energies were real for N ≥ 2 as can

be seen in figure 1.1. This remarkable feature was attributed to the fact that the

Figure 1.1: Energy spectrum for the Hamiltonian (1.1) for different values of N taken from
[1].

Hamiltonians (1.1) possessed an anti-linear symmetry under which it was invariant.

The typical example found throughout the literature of an anti-linear symmetry

which leads to real eigenvalues is parity-time (PT ) reversal symmetry. The actions

of the parity and time reversal operators on the position, momentum and imaginary

unit i are1

P : x→ −x, p→ −p, i→ i, (1.2)

T : x→ x, p→ −p, i→ −i, (1.3)

such that the combined action is

PT : x→ −x, p→ p, i→ −i. (1.4)

1Note that this is just one example of the action of PT -symmetry, it can manifest itself differently
especially when considering higher dimensional systems, see for example [51].

2



A Hamiltonian being PT -symmetric however is not enough of a requirement

to ensure real eigenvalues. In figure 1.1 we see that for N < 2 the energy levels

coalesce at what is known as the exceptional point and become complex conjugate

pairs. This happens because the PT -symmetry is spontaneously broken, meaning

that the eigenstates are no longer simultaneous eigenstates of the PT operator and

Hamiltonian because the PT operator is anti-linear [52]. For N ≥ 2, the spectrum

is entirely real and the region is referred to as the unbroken phase. We can use

an argument presented by Wigner [53] to explain this. In the unbroken regime,

we have that the Hamiltonian is invariant under PT and that the wavefunctions

are simultaneous eigenstates of the Hamiltonian H with eigenvalue ε, and the PT

operator

[H,PT ] = 0 and PT ϕ = ϕ. (1.5)

Given that the PT operator is anti-linear

PT (λΦ+ µΨ) = λ∗PT Φ+ µ∗PT Ψ, λ, µ ∈ C, (1.6)

we simply show

εϕ = Hϕ = HPT ϕ = PT Hϕ = PT εϕ = ε∗PT ϕ = ε∗ϕ, (1.7)

and hence the eigenvalues ε = ε∗ are real. In the spontaneously broken regime the

second requirement for real eigenvalues in (1.5) is broken, we instead have PT ϕ ̸= ϕ

or PT ϕ1 = ϕ2. The Hamiltonian is still PT -symmetric and for the two eigenstates

ϕ1 and ϕ2 it satisfies the equations

Hϕ1 = ε1ϕ1 and Hϕ2 = ε2ϕ2. (1.8)

We may now write

PT Hϕ1 = PT ε1ϕ1

⇒ HPT ϕ1 = ε∗1PT ϕ1

⇒ Hϕ2 = ε∗1ϕ2 (1.9)

∴ ε2 = ε∗1, (1.10)

3



demonstrating that the eigenvalues occur in complex conjugate pairs. A rigor-

ous proof of the reality of the spectrum for the Hamiltonians with unbroken PT -

symmetry can be found in [54] which utilised an equivalence between ordinary differ-

ential equations and integrable models called the ODE/IM correspondence [55–58].

A large body of work followed the initial publication of Bender and Boettcher [1]

with much of it focusing on how to underpin the mathematics of a non-Hermitian

quantum theory. One of the postulates of quantum mechanics states that a physical

system must have associated with it a Hilbert space of state vectors and that within

this space there is an inner product that has a positive norm. For Hermitian systems

this inner product is defined as

⟨ϕ|ψ⟩ :=
∫
ϕ∗(x)ψ(x)dx. (1.11)

For non-Hermitian PT -symmetric systems an intuitive choice for the inner product

could be

⟨ϕ|ψ⟩PT :=

∫
[ϕ(x)]PT ψ(x)dx =

∫
ϕ(−x)∗ψ(x)dx, (1.12)

this would however be incorrect as the norm of the state would not always be positive.

The CPT -inner product was introduced by Bender, Brody and Jones [59] to remedy

this. Defined as

⟨ϕ|ψ⟩CPT :=

∫
[ϕ(x)]CPT ψ(x)dx where [ϕ(x)]CPT =

∫
C(x, y)ϕ∗(−y)dy, (1.13)

The C-operator multiplies states with negative norm by −1 resulting in a positive

definite inner product ⟨ϕn|ϕm⟩ = δnm.

Computation of the C-operator is in general a difficult process. For finite dimen-

sional systems this can be done exactly, however approximate techniques [60–62] are

usually required as knowledge of the complete set of eigenfunctions are required for

its calculation as can been seen from its representation in position space

C(x, y) =
∑
n

ϕn(x)ϕn(y). (1.14)

Alternatively the algebraic properties of C can be utilised [27], namely that C com-

mutes with both the Hamiltonian and the PT -operator and is also a reflection

operator whose square is the identity
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[C, H] = 0, [C,PT ] = 0, C2 = I. (1.15)

A well defined inner-product in the context of non-Hermitian systems can be guar-

anteed in a different way if we instead use the notion of quasi/pseudo Hermiticity.

There had been early considerations predating PT -symmetry on quasi-Hermiticity

[43, 63], Mostafazadeh [64–67] developed this idea further while investigating pseudo-

Hermitian Hamiltonians satisfying

h = ηHη−1 = h† = (η−1)†H†η† ⇔ H† = ρHρ−1, ρ = η†η, (1.16)

where h and H are Hermitian and non-Hermitian Hamiltonians respectively, η is

an operator commonly referred to as the Dyson map [68] and ρ, the metric. The

distinction between quasi and pseudo Hermiticity is with regards to ρ. For quasi-

Hermiticity ρ is positive but may not be invertible and for pseudo-Hermiticity ρ

is invertible but not necessarily positive. When solving the equations (1.16) for a

concrete system quasi/pseudo Hermiticity is usually assumed.

With the pseudo-Hermitian formulation the spectrum is evidently real as the

Hermitian and non-Hermitian Hamiltonian are related through a similarity transfor-

mation. The solutions to the two time-independent Schrödinger equations, hϕ = εϕ

and Hψ = εψ, are related through

ϕ = ηψ, (1.17)

such that the inner product definition becomes

〈
ψ|ψ′〉

ρ
:=
〈
ψ|ρψ′〉 = 〈ϕ|ϕ′〉 . (1.18)

With respect to this new metric ρ, H is Hermitian

〈
ψ|Hψ′〉

ρ
=
〈
ψ|ρHψ′〉 = 〈ϕ|h†ϕ′〉 =

〈
Hψ|ρψ′〉 = 〈Hψ|ψ′〉

ρ
. (1.19)

Obtaining solutions for η and ρ in equation (1.16) can be a cumbersome procedure,

more details will be given on this in chapter 2 where we additionally generalise these

equations to the time-dependent scenario.

An exciting area within PT -symmetric quantum mechanics is the study of sys-
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tems in the spontaneously broken PT regime. For time-independent Hamiltonians

the metric ρ and Dyson map η (1.16) become ill-defined, the eigenvalues are com-

plex the wavefunctions are no longer eigenstates of the PT operator. As discussed

above, without the metric the inner product cannot be constructed and we do not

have unitary time evolution and hence we have an inconsistent quantum mechanical

framework. Fring and Frith [2, 51, 69, 70] have recently demonstrated that by intro-

ducing an explicit time-dependence into the parameters of the Hamiltonian and/or

the Dyson map and metric, the spontaneously broken PT regime becomes physically

meaningful with real energy expectation values. Further to this, physical quantities

such as the entropy exhibit new effects which vary with the PT -symmetry [71–73]

(spontaneously broken, unbroken or at the exceptional point).

To study time-dependent non-Hermitian quantum systems one needs to obtain

a time-dependent Dyson map and metric operator. This is a more involved process

when compared with the time-independent scenario as the governing equations (1.16)

are altered by them gaining additional time-derivative terms. There are existing

approaches aimed at solving these time-dependent equations, in this thesis we will

explore these methods further and propose new ones.

1.1 Outline

The organisation of this thesis is as follows:

In chapter 2 we will cover in more detail time-dependent non-Hermitian quan-

tum systems with specific focus on existing solution procedures for the Dyson map

η(t) and metric ρ(t) in both the time-independent and time-dependent scenario. In

subsequent chapters we will be proposing new methods, exact and approximate, for

determining these quantities and so highlighting the advantages and disadvantages

of previous methods will allow for the motivation of the main body of this thesis.

Chapter 3 will present the first new method we propose which has its applica-

bility in both Hermitian and non-Hermitian time-dependent quantum systems. By

utilising the Lewis-Riesenfeld method of invariants we determine a way to apply

standard time-independent approximations such as time-independent perturbation

theory and WKB theory to time-dependent quantum systems [3]. The effective-

ness of the approach will be demonstrated by its application to the time-dependent

harmonic oscillator with Stark term and the time-dependent Goldman-Krivchenko
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Hamiltonian.

The time-dependent unstable anharmonic quartic oscillator will be studied in

Chapter 4. We shall briefly cover its time-independent counterpart and how per-

turbation theory for the time-independent Dyson map was employed by Jones and

Mateo [74] in 2006 to determine an exact metric for the model. We will then present

the first exact solution for the time-dependent Dyson map [4].

In chapter 5 we shall present the first application of point transformations to

time-dependent non-Hermitian quantum systems [5]. Here the point transforma-

tions have been employed to aid in the construction of Lewis-Riesenfeld invariants

which ultimately result in a simpler equation to solve for the time-dependent Dyson

map. We shall apply this method to several time-dependent non-Hermitian quan-

tum systems including the time-dependent Swanson model, the time-dependent Har-

monic oscillator with complex linear term and generalised time-dependent Bender-

Boettcher potentials. For the latter case we employ the method with the main aim

of producing time-dependent non-Hermitian invariants, we then restrict ourselves

to the anharmonic oscillator for which we determine a second exact time-dependent

Dyson map.

A time-dependent version of the time-independent perturbation theory for the

Dyson map shall be presented in chapter 6 [6]. By studying weakly coupled two

dimensional harmonic oscillators with non-Hermitian coupling and the strongly cou-

pled anharmonic oscillator we are able to compute exact Dyson maps for both sys-

tems with the perturbative approach. For the former system we additionally explore

the broken PT regime for the oscillators with a non-Hermitian coupling in space and

momenta. Six inequivalent Dyson maps are obtained for this which lead to different

physical behaviour as demonstrated by the energy expectation values.

Chapter 7 will explore a scheme which allows for the construction of an infinite

series of time-dependent Dyson maps from two seed maps [7] governed by symme-

tries of the non-Hermitian and equivalent Hermitian Hamiltonians. We return first

to the two dimensional harmonic oscillators with non-Hermitian coupling in space

and momenta and utilise the existing six Dyson maps to illustrate the procedure.

Here we demonstrate both possibilities, i.e.e when the approach breaks down and

when it succeeds. The time-dependent unstable anharmonic oscillator is addition-

ally returned to where we are able to determine the infinite series resulting in an

infinite number of spectrally equivalent time-dependent double wells potentials.
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In chapter 8 the conclusions and outlook will be presented. A comparison of

the existing approaches and new methods for obtaining the Dyson map/metric will

also be given.
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Chapter 2

Time-dependent non-Hermitian

quantum systems

In this chapter we shall be focusing on time-dependent non-Hermitian quantum sys-

tems. An overview of the key equations, namely the time-dependent Dyson equation,

the time-dependent quasi-Hermiticity relation and Lewis-Riesenfeld invariants, will

be given. With the primary concern of this thesis being new approaches to finding

solutions to these equations, we shall also discuss the relevant existing literature to

highlight the challenges faced when finding solutions. The ’mending’ of the sponta-

neously broken PT regime by the introduction of time will also be discussed.

2.1 Key equations and features

In the last 15 years there has be a shift in focus in the area of non-Hermitian quantum

mechanics from the time-independent to the time-dependent [2, 51, 69, 75–88]. This

came with unique difficulties associated with the fact that for time-dependent non-

Hermitian systems the Hamiltonian loses its dual nature of being the generator of

unitary time evolution and being the observable energy operator [2, 51, 76, 77]. This

is because for time-dependent non-Hermitian quantum systems with time-dependent

metrics, the Hamiltonian is no longer quasi-Hermitian, one instead has to define a

new energy operator, which does not satisfy a time-dependent Schrödinger equation

but reduces to the Hamiltonian only in the absence of time. Specific equations

defining this quantity shall be given below.

The starting point for the study of time-dependent non-Hermitian quantum sys-
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tems are the two time-dependent Schroödinger equations (TDSEs)

h(t) |Φ(t)⟩ = i∂t |Φ(t)⟩ and H(t) |Ψ(t)⟩ = i∂t |Ψ(t)⟩ , (2.1)

where h(t) = h†(t) is Hermitian and H(t) ̸= H†(t) is non-Hermitian. We may relate

the solutions to the two TDSEs via a time-dependent Dyson map η(t) [68]

|Φ(t)⟩ = η(t) |Ψ(t)⟩ , (2.2)

where η(t) is invertible. Upon substitution into the TDSE one retrieves what it is

commonly referred to as the time-dependent Dyson equation (TDDE)

h(t) = η(t)H(t)η(t)−1 + i∂tη(t)η(t)
−1. (2.3)

As h(t) is Hermitian, we may eliminate it from the TDDE by taking the complex

conjugate to obtain the time-dependent quasi-Hermiticity (TDQH) relation

H†(t)ρ(t)− ρ(t)H(t) = i∂tρ(t), (2.4)

where ρ(t) = η†(t)η(t) is interpreted as the time-dependent metric. This equation

gets its name from a paper by Dieudonné [63] in which quasi-Hermitian operators

obey the relation H†ρ = ρH, equation (2.4) is the time-dependent generalisation.

The time-dependent metric operator preserves the time-dependent probability den-

sities 〈
Φ(t)|Φ̃(t)

〉
=
〈
Ψ(t)|ρ(t)Ψ̃(t)

〉
=:
〈
Ψ(t)|Ψ̃(t)

〉
ρ
. (2.5)

By taking the time-derivative of this equation we see that the left hand side vanishes

due to the Hermiticity of h(t), the right side vanishes if equation (2.4) holds, this

therefore justifies the interpretation of ρ(t) as the metric as it ensure unitary time

evolution.

As mentioned above, the time-dependent non-Hermitian Hamiltonian is not the

observable energy operator. This can be seen when looking at how observables in

the Hermitian, o(t), and non-Hermitian, O(t), regime are related to one another

o(t) = η(t)O(t)η−1(t). (2.6)
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That is through a similarity transformation and therefore the observables are quasi-

Hermitian

O†(t) = ρ(t)O(t)ρ−1(t). (2.7)

Given that the Hermitian Hamiltonian h(t) is observable, the presence of the time-

derivative terms in both the TDDE (2.3) and the TDQH relation (2.4) results in

H(t) not being observable. Instead a new energy operator is defined as

H̃(t) = η−1(t)h(t)η(t) = H(t) + iη−1(t)∂tη(t), (2.8)

which for a time-independent Dyson map reduces to H(t). It is important to stress

here that while H̃(t) is the observable energy operator, it is not a Hamiltonian in

the sense that it does not satisfy the original TDSE and therefore does not govern

the time evolution of the system. We can demand H̃
∣∣∣Ψ̃〉 = i∂t

∣∣∣Ψ̃〉, however this

would be a new system.

What these key equations demonstrate is that when studying time-dependent

non-Hermitian quantum systems the essential quantities that need to be determined

are the metric ρ(t) and the Dyson map η(t). To do so one has the option to either

solve the TDDE (2.3) for the Dyson map and then construct the metric through

ρ = η†η, or solve the TDQH relation (2.4) for the metric and subsequently obtain

the Dyson map. While there are many difficulties associated with solving these

relations for specific systems, as will be detailed in section 2.2, there is one more key

equation which allows for the determination of the metric and Dyson map. This key

equation comes from considering the Lewis-Riesenfeld method of invariants [89].

The Lewis-Riesenfeld method of invariants [89] is an approach which allows one

to construct the exact solution to the TDSE for a time-dependent system. The

key features of the approach involve obtaining an invariant, I(t), which satisfies the

equation
dI(t)

dt
= ∂tI(t)− i [I(t), H(t)] = 0, (2.9)

from which the time-dependent eigenstates can be constructed through

I(t) |ϕ(t)⟩ = λ |ϕ(t)⟩ , λ̇ = 0, (2.10)

where the eigenvalues are time-independent. From here the full solution to the

TDSE is computed through
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|Ψ(t)⟩ = eiα(t) |ϕ(t)⟩ , where α̇(t) = ⟨ϕ(t)|i∂t −H(t)|ϕ(t)⟩ . (2.11)

The utility of the invariants for time-dependent non-Hermitian quantum systems

comes from how we can relate the invariant for a Hermitian and non-Hermitian

system. If invariants can be constructed for the Hermitian system h(t) and the

non-Hermitian system H(t),

∂tIH(t) = i [IH(t),H(t)] , for H = h,H, (2.12)

it can be shown that they are related via [87, 88]

Ih(t) = η(t)IH(t)η−1(t). (2.13)

A proof of this relation, the time-independence of the eigenvalues λ and that the

eigenvectors |ϕ(t)⟩ satisfy the TDSE can be found in Appendix A.

We now have three key equations (2.3), (2.4) and (2.13) which can be used to

determine the time-dependent Dyson map and metric. We shall now move on to

how these equations have been solved in the existing literature and the limitations

of each approach.

2.2 Comparison of solution procedures

It is instructive to briefly discuss how to obtain the Dyson map and metric when these

quantities as well as the Hamiltonian are time-independent. By taking the Hamil-

tonians, Dyson map and metric to be time-independent {h(t), H(t), ρ(t), η(t)} →

{h,H, η, ρ} equations (2.3) and (2.4) reduce to

h = ηHη−1 and H† = ρHρ−1, (2.14)

which we will refer to as the time-independent Dyson equation (TIDE) and the time-

independent quasi-Hermiticity (TIQH) relation. To solve for either η or ρ one must

solve a similarity transformation which at first may seem straightforward yet there

are very few known exact solutions and the process can be rather difficult [74, 90–

98]. The Dyson map or metric is usually an exponential of a sum of operators for

which an Ansatz needs to be made. The adjoint action of it on the non-Hermitian
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Hamiltonian is computed through the Baker-Campbell-Hausdorff relation

eABe−A = B + [A,B] +
1

2!
[A, [A,B] +

1

3!
[A, [A, [A,B]..., (2.15)

which results in a set of simultaneous equations of non-Hermitian terms which need

to be eliminated. Determining a correct Ansatz for a particular system can be

very difficult especially when not all systems possess an exact solution. Take for

example the complex cubic potential V = ix3, here the metric operator is only

known perturbatively [59, 99]. In fact, due to the difficulty in obtaining exact Dyson

maps perturbative methods have been used to find exact solutions such as for the

anharmonic quartic oscillator V = −x4 [74]. A more detailed discussion on how to

employ perturbation theory to determine the Dyson map/metric will be given in

Chapter 4 when we study the time-dependent anharmonic quartic oscillator.

It is worth emphasising here that the Dyson map and metric are not unique

as noted in [43, 91, 100]. This has been explored in more detail for the Swanson

Hamiltonian [90, 93]. More interesting however is that this non-uniqueness of the

metric/Dyson map can be attributed to the symmetry operators for the Hamiltonian

[96]. Consider a non-Hermitian Hamiltonian H with two non-equivalent metric

operators ρ and ρ̃ satisfying the TIQH relation (2.14)

H† = ρHρ−1 and H† = ρ̃Hρ̃−1. (2.16)

Defining s := ρ−1ρ̃ we see that s is a symmetry operator for the system, [H, s] =

0. Similarly, if we consider the TIDE (2.14) and two non-equivalent Hermitian

Hamiltonians

h = ηHη−1 and h̃ = η̃Hη̃−1, (2.17)

and by defining A := η̃η−1 such that

S := A†A and S̃ := AA†, (2.18)

we see that S is a symmetry operator for h and S̃ is symmetry operator of h̃

[h, S] = 0 and [h̃, S̃] = 0. (2.19)

While the symmetries here result from two inequivalent Dyson maps we will show
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in Chapter 7 that for time-dependent systems that the symmetries are transferred

to Lewis-Riesenfeld invariants [89] and exploit them to compute an infinite series

of time-dependent Dyson maps. Even for an infinite series of Dyson maps, or just

the two considered here for the time-independent scenario, one can always make the

Dyson map/metric unique by specifying one more observable in the system [43].

Another interesting situation to consider before we discuss fully time-dependent

Hamiltonians and metric operators/Dyson maps is that which is referred to as the

metric picture [76]. The time-dependence here is included in the metric rather than

in the observable as in the Heisenberg picture or the states as in the Schrödinger

picture. While the non-Hermitian Hamiltonian is time-independent in this scenario

the full TDDE (2.3) or (2.4) still needs to be solved.

We now move on to discussing the fully time-dependent case. In the previous

section we highlighted the three key equations that can be used to find the Dyson

map and metric, that being the TDDE (2.3), the TDQH relation (2.4) and the

similarity transformation associated with the Lewis-Riesenfeld invariants [89] for

the Hermitian and non-Hermitian system (2.13). In recent years there have been

many papers aimed at finding exact solutions to these equations for different models

[2, 51, 69–72, 75–77, 87, 88, 101], however, these are far and few between when

compared with the time-independent case.

We will start by looking at the TDDE (2.3) and TDQH relation (2.4) together.

These equations differ from their time-independent counterparts (2.14) by the ad-

ditional time-derivative terms. These time-derivative terms complicate the choice

of Ansatz for the Dyson map/metric in two ways. Firstly instead of solving si-

multaneous equations we end up with the more complicated coupled differential

equations which need to be solved. Additionally we have to factorise out our Ansatz

so that it is not contained in a singular exponential but instead a product of ex-

ponentials. This is because in general it is difficult to calculate for an exponential

∂t exp[A(t) + B(t) + C(t)] with non-vanishing commutators [A(t), B(t)] ̸= 0 and

[B(t), C(t)] ̸= 0.

Solving the TDDE (2.3) for the Dyson map and then constructing the metric

or solving the TDQH relation (2.4) for the metric and subsequently obtaining the

Dyson map are equivalent approaches. However, as argued in [70, 76] the latter is

usually more difficult, even when the Dyson map is Hermitian as we still need to take

the square root of ρ(t) = η(t)2. Contrary to this, when solving the TDDE, given
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that the Dyson map is not unique and need not be Hermitian there is a problem

around choosing a useful Ansatz. Once constructed though it is much easier to then

obtain the metric.

The third method for solving for the Dyson map/metric is to utilise Lewis-

Riesenfeld invariants together with the equation (2.13). We immediately see that

the invariants are related through a similarity transformation much like the TISE

(2.14). This means we bypass the need for solving coupled differential equations

which makes the approach simpler [51, 87]. This is dependent on being able to

obtain the invariants in the first place which requires an additional Ansatz for its

form. This in turn increases the number of steps required to obtain the Dyson map.

Another benefit of the invariant approach, however, is that once the invariant was

obtained it, it is then much simpler to solve for the eigenfunctions as the eigenvalues

as time-independent (2.10).

Overall each of the approaches has a number of advantages and disadvantages

which are summarised in table 2.1. Which method is used to solve for the Dyson

map/metric is usually model dependent. For example the two-dimensional har-

monic oscillator with complex coupling [51] the use of Lewis-Riesenfeld invariants

were shown to be beneficial as the problem of solving a time-dependent differential

equation was reduced to a similarity transformation. Contrary to this, for the 2

level matrix models studied in Chapter 2 of [70] there was no clear advantage.

Approach Advantages Disadvantages

TDQH (2.4) 1. Does not involve h 1. ρ→ η more difficult
2. Clearer structure for ρ 2. Coupled differential
(Hermitian) equations

TDDE (2.3) 1. η → ρ easier 1. η can be Hermitian or
2. Less restriction on Ansatz non-Hermitian: no clear

structure
2. Coupled differential
equations.

Lewis-Riesenfeld 1. Similarity transformation 1. Increased number of steps
invariants (2.13) is easier to solve. 2. Ansatz for the invariant

2. Easier to solve for
eigenfunctions

Table 2.1: Summary of comparison of solution procedures for η(t) and ρ(t).
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2.3 The spontaneously broken PT regime

In chapter 1 we briefly touched upon an interesting feature of time-dependent non-

Hermitian quantum system in that they give physical meaning to the spontaneously

broken PT regime [2, 51, 70, 71]. For the time-independent scenario this corresponds

to the wave functions being PT -symmetrically broken resulting in the eigenvalues

being complex conjugate pairs. By introducing an explicit time-dependence into

the non-Hermitian Hamiltonian the expectation values of the energy operator H̃(t)

become real.

In [2] the authors demonstrated this remarkable feature for the first time for a

two-level spin model with the Hamiltonian

H = −1

2
[wI+ λσz + iκσx] , ω, λ, κ ∈ R, (2.20)

where σx, σy, σz are the Pauli matrices and the eignevalues are given by

E± = −1

2
ω ± 1

2

√
λ2 − κ2. (2.21)

For |λ| < |κ| the eigenvalues E± will be complex conjugate pairs, a characteristic

of the broken PT regime. By making the parameters time-dependent λ → ακ(t),

κ→ κ(t), determining a time-dependent Dyson map η(t) and wavefunctions ψ±(t),

the expectation values of the energy operator were shown to be real provided α ̸= 1

as depicted in figure 2.1 taken from [2]. The reality of the spectrum depicted in

figure 2.1 in the spontaneously broken PT regime (|α| < 1) is attributed to the fact

that the energy operator is different from the original time-dependent non-Hermitian

Hamiltonian which is unobservable. The authors identified a new PT operator for

the energy operator H̃ which explained this behaviour. Note also the difference in

behaviour of the expectation values in figure 2.1 on either side of the exceptional

point α = 1. This behaviour and ”mending” of the spontaneously broken PT -

regime has been identified in several systems now [2, 51, 70, 71]. We shall also

further explore the phenomenon for some of the systems we consider in this thesis.

The energy operator is not the only physical quantity which exhibits peculiar

behaviour in the broken PT regime, recent research has demonstrated that the

entropy does as well [71–73]. The Von Neumann entropy as a particular example

has been shown to exhibit three different types of behaviour associated to the PT -
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Figure 2.1: The expectation values of the energy operator Ẽ±(t) =
〈
ψ±(t)|H̃(t)η2ψ±(t)

〉
for

different values of α taken from [2].

symmetry of the system [71]. For the spontaneously broken regime the entropy

decayed to a non-zero value in finite time. At the exceptional point point the entropy

decayed to zero and in the unbroken PT regime there was rapid decay of the entropy

to zero which subsequently revived, the entropy then continued to oscillate in this

manner for all times.
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Chapter 3

Time-independent

approximations for

Lewis-Riesenfeld invariants

In this chapter we will explore the possibility of modifying the Lewis-Riesenfeld

method of invariants developed originally to find exact solutions for time-dependent

quantum mechanical systems for the situation in which an exact invariant can be

constructed, but the subsequently resulting time-independent eigenvalue system is

not solvable exactly. Following [3] we propose to carry out this step in an approx-

imate fashion, such as employing standard time-independent perturbation theory

or the WKB approximation, and subsequently feeding the resulting approximated

expressions back into the time-dependent scheme. We illustrate the quality of this

approach by contrasting an exactly solvable solution to one obtained with a pertur-

batively carried out second step for two types of explicitly time-dependent optical

potentials.

3.1 Motivation

In 1970 Askhin discovered that small particles can be trapped by using radiation

pressure from continuous lasers [102]. Since then various types of optical traps have

been designed [103] with wide ranging applications. Such applications include the

trapping of particles [104], atoms [105] and molecules [106] as well as viruses and

bacteria [107, 108]. To obtain a general understanding of how to trap particles within
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optical traps we can study the TDSE for an explicitly time-dependent Hamiltonian.

The particles are trapped within optical potentials whose generic form may be writ-

ten in a factorised way as V (x, t) = κ(t)V (x). Here V (x) would describe the shape

of the trap and κ(t) the time-dependent modulation [109]. Note that while many

optical potentials can be factorised in this way, there do exist optical potentials for

which this is not true such as optical lattices [110]. However in this chapter we shall

only be concerning ourselves with factorisable optical potentials.

To obtain solutions to the TDSE for the types of potentials we are investigating is

not an easy process. In general, one usually has to resort to approximation methods

as there are very few known exact solutions to the TDSE. These approximation

methods include the adiabatic and sudden approximation [111] which are carried out

on the level of the time evolution operator. Additionally, there exists less general

methods which have been developed to find approximate solutions to the TDSE,

an example of which is the strong field approximation [112–115]. Here the systems

studied have potentials of the form V (x)+xE(t), where the Stark term, involving a

laser field E(t), is dominating or in comparable strength to the potential V (x). In

these scenarios the approximation scheme is a mixture of perturbative expansions

based on the Du-Hamel formula also carried out on the level of the time-evolution

operator [116–118]. The two perturbative expansions, one in V (x) and one in E(t),

are mixed and then terminated after the first iteration.

Aside from the various approximation methods that exist to solve the TDSE

there are exact approaches such as the Lewis-Riesenfeld method of invariants [89].

This approach has had many successes and has been used to find the exact solu-

tion for the harmonic oscillator with time-dependent mass and frequency in one

[119] and two dimensions [120, 121], the damped harmonic oscillator [122], a time-

dependent Coulomb potential [123], a Davydov-Chaban Hamiltonian in presence

of time-dependent potential [124], a Bohr Hamiltonian with a time-dependent po-

tential [125], time-dependent Hamiltonians given in terms of linear combinations

of SU(1,1) and SU(2) generators [126–128], in the inverse construction of time-

dependent Hamiltonian [129, 130], for systems on noncommutative spaces in time-

dependent backgrounds [131], time-dependent non-Hermitian Hamiltonian systems

[51, 75, 101, 132] and other specific systems.

For the factorisable optical potentials we shall be investigating it is possible to

construct an exact Lewis-Riesenfeld invariant, as we shall demonstrate. In most cases
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however we will not be able to complete the Lewis-Riesenfeld method in its entirety.

Following [3] we propose that one should not abandon the approach as we have

massively simplified the problem by being able to construct an invariant. We have

transformed the system from a time-dependent first order differential equation to a

time-independent eigenvalue equation. Even if we cannot solve the time-independent

eigenvalue problem exactly we recognise the fact that time-independent approxima-

tions are usually much easier to implement then time-dependent ones. We therefore

propose using time-independent perturbation theory or WKB theory to solve the

time-independent eigenvalue problem. In the following sections we shall demonstrate

how to implement this idea within the Lewis-Riesenfeld method of invariants and

then apply this directly to two different types of optical potentials.

3.2 An approximate Lewis-Riesenfeld method of invari-

ants

We start by recalling the key steps of the method of invariants, first introduced in

chapter 2, and then describe how they can be modified in an appropriate fashion.

The scheme was introduced originally by Lewis and Riesenfeld [89], for the purpose

of solving the TDSE

iℏ∂t |ψn⟩ = H(t) |ψn⟩ , (3.1)

for the time-dependent or dressed states |ψn⟩ associated to the explicitly time-

dependent Hamiltonian H(t).

The Lewis-Riesenfeld method of invariants is made up of three main stages: The

initial step in this approach consists of constructing a time-dependent invariant I(t)

from the evolution equation

dI(t)

dt
= ∂tI(t) +

1

iℏ
[I(t), H(t)] = 0. (3.2)

Often this step can be completed and an exact form for the invariant I(t) can be

found. In the next step one needs to solve the corresponding eigenvalue system of

the invariant I(t)

I(t) |ϕn⟩ = λn |ϕn⟩ , (3.3)

for time-independent eigenvalues λn and for the time-dependent states |ϕn⟩. Pro-
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vided the Hamiltonian H(t) is Hermitian, also the invariant I(t) is Hermitian and

therefore the eigenvalues λn are guaranteed to be real, see appendix A for a proof

of this. The virtue of this equation, compared to the TDSE in (3.1), is that one has

reduced the original evolutionary problem in form of a first order differential equa-

tion to an eigenvalue equation in which t simply plays the role of a parameter as

λn has become time-independent. Hence one just needs to solve a time-independent

eigenvalue problem. To complete this step the system in (3.3) needs to be solvable.

It is this requirement one can weaken and employ time-independent approximation

methods to complete step two.

The final third step relates the eigenstates in (3.3) with the complete solution of the

TDSE. It was shown in [89] that the states

|ψn⟩ = eiαn(t) |ϕn⟩ , (3.4)

satisfy the TDSE (3.1) provided that the real function α(t) in (3.4) obeys

dα(t)

dt
=

1

ℏ
⟨ϕn| iℏ∂t −H(t) |ϕn⟩ , (3.5)

see appendix A for further details on this. Since all the quantities on the right

hand side of (3.5) have been obtained in the previous steps, one is left with a simple

integration in time to determine the phase α(t). These key equations serve mainly

for reference purposes and we refer the reader to Appendix A for more details.

For many systems we might succeed in carrying out the first step in the procedure

and construct an explicit expression for the invariant I(t). However, the process

stalls often in the second step and for most Hamiltonians the eigenvalue equation

for the invariants I(t) in (3.3) can not be solved exactly. The two methods we

are proposing ro use are standard time-independent perturbation theory and WKB

theory.

3.2.1 Time-independent perturbation theory

The first approximation which we propose utilising to modify the Lewis-Riesenfeld

method of invariants is standard time-independent perturbation theory. We are

splitting the invariant as

I(t) = I0(t) + ϵIp(t), (3.6)
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and consider the eigenvalue equation for the full invariant and the unperturbed one

separately

I(t) |ϕn⟩ = λn |ϕn⟩ , and I0(t)
∣∣∣ϕ(0)n

〉
= λ(0)n

∣∣∣ϕ(0)n

〉
. (3.7)

Assuming that within the perturbation term a small parameter ϵ≪ 1 can be identi-

fied, we expand the eigenvalues and the eigenfunctions of the unperturbed invariant

as

λn = λ(0)n +ϵλ(1)n +ϵ2λ(2)n +O(ϵ3), and |ϕn⟩ =
∣∣∣ϕ(0)n

〉
+ϵ
∣∣∣ϕ(1)n

〉
+ϵ2

∣∣∣ϕ(2)n

〉
+O(ϵ3),

(3.8)

with λ
(k)
n = 1/k! dλn/dϵ

k
∣∣
ϵ=0

, ϕ
(k)
n ⟩ = 1/k! dϕn/dϵ

k
∣∣
ϵ=0

. The first order correc-

tions to the eigenvalues and eigenstates of the invariants are then computed in the

standard fashion for nondegenerate systems to

λ(1)n =
〈
ϕ(0)n

∣∣∣ Ip ∣∣∣ϕ(0)n

〉
, and

∣∣∣ϕ(1)n

〉
=
∑

k ̸=n

〈
ϕ
(0)
k

∣∣∣ Ip ∣∣∣ϕ(0)n

〉
λ
(0)
n − λ(0)k

∣∣∣ϕ(0)k

〉
, (3.9)

respectively. For orthonormal functions ϕn, we obtain further constraints on the

normalization of contributions in the series

1 = ⟨ϕn |ϕn⟩ =
〈
ϕ(0)n

∣∣∣ϕ(0)n

〉
+ ϵ
(〈
ϕ(0)n

∣∣∣ϕ(1)n

〉
+
〈
ϕ(1)n

∣∣∣ϕ(0)n

〉)
(3.10)

+ ϵ2
(〈
ϕ(2)n

∣∣∣ϕ(1)n

〉
+
〈
ϕ(1)n

∣∣∣ϕ(1)n

〉
+
〈
ϕ(0)n

∣∣∣ϕ(2)n

〉)
+ . . .

Thus if the zero order wavefunction is normalized to 1 =
〈
ϕ
(0)
n

∣∣∣ϕ(0)n

〉
, we require

the higher order wave functions to satisfy the additional constraints

ℓ∑
k=0

〈
ϕ(ℓ−k)
n

∣∣∣ϕ(k)n

〉
= 0. (3.11)

Next we can use these expressions to obtain an approximate solution to the TDSE.

Denoting |ϕn⟩(1) :=
∣∣∣ϕ(0)n

〉
+ ϵ
∣∣∣ϕ(1)n

〉
we obtain

|ψn⟩(1) = eiα
(1)
n (t) |ϕn⟩(1) , and α(1)(t) =

1

ℏ

∫
dt (1)⟨ϕn| iℏ∂t−H(t) |ϕn⟩(1) . (3.12)

23



3.2.2 WKB theory

An additional time-independent approximation which we will use to modify the

Lewis-Riesenfeld method of invariants is the semi-classical WKB1 approximation

named after Wentzel [134], Kramers [135] and Brillouin [136]. This method is com-

monly used to find approximate solutions to the one dimensional time-independent

Schrödinger equation given by

−d
2ψ

dξ2
+
p(ξ)2

ℏ2
ψ(ξ) = 0 where p(ξ) =

√
2m(E − V (ξ), (3.13)

where ξ is the position, p(ξ) is the momentum, m is the mass, E is the energy and

the potential V (ξ) is slowly varying. More details on how derive the WKB wave

functions can be found in Appendix B.

We may solve the eigenvalue equation (3.3) by using the WKB approximation∣∣ϕWKB
n

〉
and compute the Lewis-Riesenfeld phase using that expression

∣∣ψWKB
n

〉
= eiα

WKB
n (t)

∣∣ϕWKB
n

〉
, and αWKB(t) =

1

ℏ

∫
dt
〈
ϕWKB
n

∣∣ iℏ∂t−H(t)
∣∣ϕWKB

n

〉
.

(3.14)

Assuming that the invariant I(t) can be cast into the same form as a time-independent

Hamiltonian, with a standard kinetic energy term and a potential V (ξ), the WKB

approximation to first order in ℏ denoted by ϕ̂, see e.g. [137], for the eigenvalue

equation (3.3) reads

ϕ̂WKB(ξ) =
A√
p(ξ)

e
i
ℏ
∫ ξ p(z)dz +

B√
p(ξ)

e−
i
ℏ
∫ ξ p(z)dz (3.15)

in the classically allowed region, λ > V (ξ) and

ϕ̂WKB(ξ) =
C√
q(ξ)

e
1
ℏ
∫ ξ q(z)dz +

D√
q(ξ)

e−
1
ℏ
∫ ξ q(z)dz (3.16)

in the classically forbidden region λ < V (ξ), where

p(ξ) :=
√

2[λ− V (ξ)] and q(ξ) :=
√

2[V (ξ)− λ]. (3.17)

The constants A, B, C, D need to be determined by the appropriate asymptotic

1The method is also referred to as the JWKB or WKBJ method to reflect Jeffreys [133] work on
the approximate solutions to second order differential equations which came prior to the Schrödinger
equation.
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WKB matching and normalisation conditions as explained in detail in appendix B.

3.3 Time-dependent potentials with a Stark term

We first demonstrate how to solve the TDSE (3.1) for the one-dimensional Stark

Hamiltonian involving a time-dependent potential V (x, t)

H(t) =
p2

2m
+
mω2

2
x2 + V (x, t) + xE(t). (3.18)

In order to cover optical potentials of the form V (x, t) in our treatment, we are

slightly more general than in the standard Stark Hamiltonian where the potential

is just depending on x and allow for an explicit time-dependence in the potential

V (x, t) as well as in an electric or laser field E(t). At first we assume that the

potential factorizes as V (x, t) = κ(t)V (x). When the laser field term involving E(t)

dominates the potential term and κ(t) =const several well known and successful

approaches have been developed. For instance, the strong field approximation is a

mixture of perturbative expansions based on the Du-Hamel formula carried out on

the level of the time-evolution operator [112–115].

In our proposed approach we assume that the first step in the Lewis and Riesen-

feld approach can be carried out and resort to an approximation in form of pertur-

bation theory in the second step.

3.3.1 Construction of time-independent invariants

In order to carry out the first step in the Lewis-Riesenfeld approach to solve time-

dependent systems we need to construct the invariant I(t) by solving equation (3.2)

for a given Hamiltonian, (3.18) in our case. For this purpose one usually makes an

Ansatz by assuming the invariant to be of a similar form as the Hamiltonian

I(t) =
1

2

[
α(t)p2 + β(t)V (x) + γ(t)x+ δ(t){x, p}+ ε(t)x2

]
. (3.19)

In our case it involves five unknown time-dependent coefficient functions α(t), β(t),

γ(t), δ(t) and ε(t). As ususal we denote the anti-commutator by {A,B} := AB+BA.

The substitution of (3.19) into (3.2) then yields the following first order coupled
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differential equations as constraints

α̇ = −2 δ
m
, γ = 2mαE, γ̇ = 2δE, δ̇ = mαω2 − ε

m
, ε̇ = 2mδω2, (3.20)

β = mακ, β̇ = δκx∂x(lnV ). (3.21)

Remarkably, despite being overdetermined, this system can be solved consistently.

We note that the equations in (3.20) and (3.21) almost decouple entirely from each

other, being only related by δ. We solve (3.20) first by parameterizing α(t) = σ2(t)

and integrating twice

α = σ2, γ = 2mσ2E(t), δ = −mσσ̇, ε = m2σ̇2 +m2 τ

σ2
. (3.22)

The auxiliary quantity σ has to satisfy the nonlinear Ermakov-Pinney (EP) [138, 139]

equation

σ̈ + ω2σ =
τ

σ3
, (3.23)

and in addition the electric field has to be parameterised by the solution of the

EP-equation σ as

E(t) =
c

σ3
. (3.24)

The constants c, τ ∈ R result from the integrations. We take here τ > 0. Using the

expression for δ from (3.22), we may now also solve the set of equations in (3.21),

obtaining

βp = mσ2κp, Vp = cpx
p, κp =

c̃p
σ2+p

, (3.25)

with real integration constants cp, c̃p and p ∈ R. This means that we can not choose

the electric field E(t) in our Hamiltonian and the potential V (x, t) entirely a priori

and independently from each other. Notice that we may extend the analysis by al-

lowing the constants cp, c̃p to be complex, hence opening up the treatment to include

non-Hermitian PT -symmetric Hamiltonians [1, 140, 141].

First we notice that the only time-independent potential is obtained for p = −2,

so that the potential part in H(t) becomes the solvable Goldman-Krivchenko poten-

tial [142]. Crucially, the constraining equations involving the potential (3.21) de-

couple from the remaining ones and since these equations are linear we may solve for

potentials that factorize termwise when expanded, that is V (x, t) =
∑

p κp(t)Vp(x).
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For instance, for a time-dependent Gaussian potential of the form

VGauss(x, t) = A(t)
(
e−λ(t)x2 − 1

)
=

∞∑
n=1

κn(t)Vn(x),

we obtain

V2n = x2n, κn =
(−1)n

n!

1

σ2+2n
, (3.26)

where we have to restrict A(t) = λ(t) = σ−2. For another widely used potential, the

soft Coulomb potential [143] of the form

VsCoulomb(x, t) = A(t)
1√

x2 + k2a2(t)
=

∞∑
n=1

κn(t)Vn(x),

with k taken to be a real constant, we obtain

V2n = x2n, κn =
(−1)n(2n)!
(2n)!!(2n)!!

1

σ2+2nk1+2n
, (3.27)

where we have to restrict A(t) = 1/a(t) = σ−1.

As mentioned, besides the potential, also the electric field is not entirely uncon-

strained as they are mutually related via the EP-function σ. However, as we shall

demonstrate the solutions of the EP-equation are such that it will still allow for a

large class of interesting fields, notably periodic, to be investigated in an exactly

solvable manner. It was found by Pinney [139] that the solutions to (3.23) are

σ =

√
u21 + τ

u22
W 2

, (3.28)

where u1, u2 are the two linearly independent solutions of the equation

ü+ ω2u = 0, (3.29)

andW = u1u̇2−u̇1u2 is the corresponding Wronskian. Thus taking the two solutions

of (3.29) to be u1 = A sin(ωt) and u2 = B cos(ωt) with A, B ∈ R, the solution to

the EP-equation (3.28) acquires the form

σ(t) =
1√
2Aω

√
τ +A4ω2 + (τ −A4ω2) cos(2ωt). (3.30)

The function σ(t) is regular since τ > 0. Therefore the electric field follows to be
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E(t) =
2
√
2ω3E0

[ω2 + τ + (ω2 − τ) cos2(ωt)]3/2
, (3.31)

where we have chosen the constants c = E0 and A =
√
τ/ω such that E(0) = E0.

We note that ω =
√
τ is a special point at which σ(t)→ 1 and also the field becomes

time-independent E(t)→ E0.

Assembling everything we have completed the first step in the Lewis-Riesenfeld

construction procedure. The invariant acquires the form

I(t) =
σ2

2
p2 +

m2

2

(
σ̇2 +

τ

σ2

)
x2 +m

∑
p
cpc̃p

(x
σ

)p
− 1

2
mσσ̇{x, p}+mσ2E(t)x,

(3.32)

with σ(t) given by (3.30) and free constants τ , m, ω, cp, c̃p and E0.

The second step, that is to solve the eigenvalue equation (3.3), can not be carried

out exactly for all invariants I(t) of the form in (3.32). We therefore resort to a

perturbative approach as outlined in the previous section.

3.3.2 Testing the semi-exact solutions

Exact computation

A good indication about the quality of the perturbation theory and the WKB ap-

proximation layed out above can be obtained by comparing both approximations

to an exact expression. For most cases this is of course not possible, but taking in

(3.18) the potential for instance to be V (x, t) = κ(t)x2 , κ(t) = 2cκ/σ
4, we obtain an

exactly solvable system that can serve as a benchmark. In this case the expression

(3.32) for the invariant simply becomes

I(t) =
1

2

[
αp2 + (2β + ε)x2 + δ{x, p}+ γx

]
, (3.33)

with α, β, γ, δ, ε as specified in (3.22). The eigenvalue equation is simplified further

when eliminating the anticommutator term {x, p} by means of a unitarity tran-

formation U = exp(iδx2/2α) and the subsequent introduction of the new variable

ξ := x/σ. We compute

Î = UIU−1 = −1

2
∂2ξ +

(τ
2
m2 +mcκ

)
ξ2 +mE0ξ. (3.34)

The eigenvalue equation for the transformed, and in this case time-independent,
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invariant Îχ(ξ) = λχ(ξ) is then solved by

χ(ξ) = c1Dµ+

[√
2m1/4 (E0 + 2cκξ +mτξ)

(2cκ +mτ)3/4

]
+c2Dµ−

[
i
√
2m1/4 (E0 + 2cκξ +mτξ)

(2cκ +mτ)3/4

]
,

(3.35)

where µ± = ±(E2
0m+4cκλ)/

√
m(2cκ+mτ)

3/2−1/2 andDν(z) denotes the parabolic

cylinder function, see (C.3), (C.20) for a relation to the more familiar Hermite poly-

nomials. Demanding that the eigenfunctions vanish asymptotically, i.e. limξ→±∞

χ(ξ) = 0, imposes the constraint µ± = n ∈ N0 and thus quantizes the eigenvalues

λ→ λn. We discard the solution related to Dµ− , as its corresponding eigenvalues are

not bounded from below. Hence, we are left with the eigenfuctions and eigenvalues

χn(ξ) = c1Dn

[√
2m1/4 (E0 + 2cκξ +mτξ)

(2cκ +mτ)3/4

]
, (3.36)

λn =

(
n+

1

2

)√
2mcκ +m2τ − mE2

0

4cκ + 2mτ
. (3.37)

The eigenvalues are indeed time-independent as we expect in the context of the

Lewis-Riesenfeld approach (3.3). Assembling the above and using the orthonormal-

ity property of the parabolic cylinder function
∫∞
−∞Dn(x)Dm(x)dx = n!

√
2πδnm, we

obtain the normalized eigenfunction ϕn = U−1χn

ϕn(x) = NnDn [a+ bx] eimσ̇x2/2σ, (3.38)

for the operator I in (3.33) with

a =

√
2m1/4E0

(2cκ +mτ)3/4
, b =

√
2m1/4(2cκ +mτ)1/4

σ
. (3.39)

Nn =
m1/8(2cκ +mτ)1/8√

σn!
√
π

, (3.40)

Finally we compute the phase αn(t) in (3.4) by means of (3.5). The right hand side

yields

⟨ϕn| i∂t −H(t) |ϕn⟩ = −
λn
mσ2

(3.41)

so that phase becomes

αn(t) = −
1

m
√
τ
λn arctan

[√
τ tan (ωt)

ω

]
, (3.42)
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where we have made us of the integrals 2. We notice that for ω →
√
τ this simply

reduces to αn(t)→ −λn/m and the Hamiltonian becomes time-independent, so that

this choice simply describes the time-independent Schrödinger equation.

Perturbative computation

Next we treat the term Vp(x, t) = κ(t)x2 in the Hamiltonian as a perturbation, so

that we may view the system as being in the strong field approximation. Accordingly

we split up the invariant (3.33) as I(t) = I0(t) + ϵIp(t) with

I0(t) =
1

2

[
αp2 + εx2 + δ{x, p}+ γx

]
, Ip(t) =

m

σ2
x2, (3.45)

and the small expansion parameter is identified as ϵ ≡ cκ. First we compute the

correction to the eigenvalue of the invariant. Solving the eigenvalue equation (3.7)

and computing the expectation values in (3.9) we obtain

λ(0)n =

(
n+

1

2

)
m
√
τ − E2

0

2τ
, and λ(1)n =

1√
τ

(
n+

1

2

)
+

E2
0

mτ2
. (3.46)

As we expect, λ
(0)
n + cκλ

(1)
n is precisely λn in (3.37) expanded up to first order in cκ.

Next we use (3.9) to compute the corrections to the wavefunctions. There are only

four terms contributing in the infinite sum. We compute

∣∣∣ϕ(1)n

〉
=

1

4mτ

[√
n(n− 1)

∣∣∣ϕ(0)n−2

〉
−
√
(n+ 1)(n+ 2)

∣∣∣ϕ(0)n+2

〉]
(3.47)

+
E0

√
2

m3/2τ7/4

[√
n+ 1

∣∣∣ϕ(0)n+1

〉
−
√
n
∣∣∣ϕ(0)n−1

〉]
.

Finally we evaluate the perturbed expression for the phase α
(1)
n (t) using equation

2We used here the integrals

∞∫
−∞

x2nD2s+δ(x)D2r+δ̄(x)dx = (−1)s2s+r−n+ 1+δ−δ̄
2

)√πΓ
(
1

2
+ s+ δ

)
Γ (2n+ 1 + δ) (3.43)

×3F̃2

(
−s, n+ 1, n+

1

2
+ δ;

1

2
+ δ, n− r + 1 +

δ − δ̄

2
; 1

)
for n, s, r ∈ N0 and (δ, δ̄) = (0, 1), (0, 0), (1, 1). The function 3F̃2 (a, b, c; d, f ; z) is the regularized
hypergeometric function defined as

3F̃2 (a, b, c; d, f ; z) =
1

Γ (d) Γ (f)

∞∑
k=0

(a)k(b)k(c)k
(d)k(f)k

zk

k!
, (3.44)

with (a)k = Γ (a+ k) /Γ (a) denoting the Pochhammer symbol. A derivation of this integral can be
found in Appendix C.
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(3.5). Up to first order we find

α(1)
n (t) = −λ

(0)
n + cκλ

(1)
n

m
√
τ

arctan

[√
τ tan (ωt)

ω

]
. (3.48)

Notice that for ω →
√
τ this simply reduces to α

(1)
n (t) = −t(λ(0)n + cκλ

(1)
n )/m. We

have now obtained the full perturbative solution to the TDSE as |ψn⟩(1) as defined

in (3.12).

WKB computation

We start by determining the classical turning points ξ± from the condition λ = V (ξ).

We find

ξ± = −E0m±
√
m
√
mE2

0 + 2λ(mτ + 2cκ)

m(mτ + 2cκ)
, (3.49)

so that the WKB quantisation condition

∫ ξ+

ξ−

√
2(λn − V (ξ))dξ = πℏ

(
n+

1

2

)
, (3.50)

yields the exact time-independent eigenvalues

λn =

(
n+

1

2

)
ℏ
√
m(2cκ +mτ)1/2 − mE2

0

2(2cκ +mτ)
, (3.51)

as found above in (3.37). Next we specify WKB wavefunction further. Keeping in the

classically forbidden regions ξ ∈ (−∞, ξ−) and ξ ∈ (ξ+,∞) only the asymptotically

decaying parts in (3.15) and (3.16), the corresponding WKB wavefunction are

ϕ̂−(ξ) =
C3(−1)n√

q(ξ)
exp

[
−1

ℏ

∫ ξ−

ξ
q(z)dz

]
, (3.52)

and

ϕ̂+(ξ) =
C3√
q(ξ)

exp

[
−1

ℏ

∫ ξ

ξ+

q(z)dz

]
, (3.53)

respectively. At this point C3 is the only undetermined constant left. Carrying

out the appropriate WKB matching we obtain for the classically allowed region

ξ ∈ (ξ−, ξ+) the wavefunction

ϕ̂b(ξ) =
2C3(−1)n√

p(ξ)
cos

[
1

ℏ

∫ ξ

ξ−

p(z)dz − π

4

]
. (3.54)

31



We may compute these expressions by using the explicit expressions for the functions

q(ξ) and p(ξ). To do so we use the same abbreviated constants a and b as defined in

(3.39), that convert the potential, eigenvalues and turning points into more compact

forms

V (ξ) =
b4

8
ξ2 + a

b3

4
ξ, λn =

1

2
b2
(
n+

1

2

)
ℏ− a2b2

8
, (3.55)

ξ± =
±
√
2
√
2b2nℏ+ b2ℏ− ab

b2
.

After a lengthy computation we obtain the WKB wavefunction in the different re-

gions as

ϕ̂±(ξ) =
FnC3(±1)n

[
a+ bξ +

√
q(ξ)

]±(n+ 1
2)
e∓

1
4

√
q(ξ)(a+bξ)

4
√
b2q(ξ)

, (3.56)

ϕ̂b(ξ) =

C3(−1)n cos
[(
n+ 1

2

)
arctan

(
a+bξ√
p(ξ)

)
+ 1

4

√
p(ξ)(a+ bξ) + πn

2

]
4
√
b2p(ξ)

,

where

Fn = 2∓
n
2
+ 1

2
∓ 1

4

[
±
√
b2(2n+ 1)

b

]∓(n+ 1
2)

. (3.57)

The last remaining constant C3 may be fixed by the normalization condition. Con-

verting from the Î eigenvalue equation back to the I eigenvalue equation with

ϕ = U−1ϕ̂ and the variable ξ to x/σ, the normalisation condition amounts to

∫ x−

−∞
ϕ∗−(x)ϕ−(x)dx+

∫ x+

x−

ϕ∗b(x)ϕb(x)dx+

∫ ∞

x+

ϕ∗+(x)ϕ+(x)dx = 1. (3.58)

Evaluating the integrals in (3.58) using numerical integration in Mathematica, we

find the n independent constant

C3 ≈
b

2
√
πσ(t)

. (3.59)

Having found the WKB eigenfunction ϕWKB, we can now compute the integrant in

(3.14) that yields the WKB approximated Lewis-Riesenfeld phase

αWKB
n (t) ≈ − 1

m
√
τ
λn arctan

[√
τ tan(ωt)

ω

]
. (3.60)
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Thus we have now obtained a WKB approximated solution ψWKB
n to the time-

dependent Schrödinger equation as specified in (3.14). Let us now compare these

three solutions.

WKB versus pertubation theory versus exact solution

In order to obtain an idea about the quality of these approximations let us compute

some physical quantities in an exact and perturbative manner and subequently com-

pare them. For the exact case we find the expectation values for the momentum,

position and their squares as

⟨ψn|x |ψn⟩ = −
E0σ

2cκ +mτ
, ⟨ψn| p |ψn⟩ = −

mE0σ̇

2cκ +mτ
, (3.61)

⟨ψn|x2 |ψn⟩ =
E2

0σ
2

(2cκ +mτ)2
+

(2n+ 1)σ2

2
√
m
√
2cκ +mτ

, (3.62)

⟨ψn| p2 |ψn⟩ =
m2E2

0 σ̇
2

(2cκ +mτ)2
+

(2n+ 1)m1/2

2σ2
√
2cκ +mτ

(
2cκ +mτ +mσ2σ̇2

)
(3.63)

such that the uncertainty relation becomes

∆x∆p = (n+
1

2
)

√
1 +

m(τ − ω2)2 sin2(2ωt)

4ω2(2cκ +mτ)
, (3.64)

where as usual the squared uncertainty is defined as the squared standard deviation

∆A2 := ⟨ψn|A2 |ψn⟩ − ⟨ψn|A |ψn⟩2 for A = x, p. Since the square root is always

greater or equal to 1 as cκ,m, τ > 0, the bound in the uncertainty relation ∆x∆p ≥

1/2 is always respected.

From the perturbed solution |ψn⟩(1) we find

⟨ψn|x |ψn⟩(1) = −
E0σ

mτ
+ ck

2E0σ

m2τ2
, (3.65)

⟨ψn| p |ψn⟩(1) = −
E0σ̇

τ
+ ck

2E0σ̇

mτ2
, (3.66)

⟨ψn|x2 |ψn⟩(1) =
2E2

0 + (2n+ 1)mτ3/2

2m2τ2
σ2 − ck

8E2
0 + (2n+ 1)mτ3/2

2m3τ3
σ2, (3.67)

⟨ψn| p2 |ψn⟩(1) =
E2

0 σ̇
2

τ2
+
m
√
τ(2n+ 1)

2σ2
+
m(2n+ 1)σ̇2

2
√
τ

(3.68)

× ck
(
n+ 1/2√
τσ2

− 4E2
0 σ̇

2

mτ3
− (2n+ 1)σ̇2

2τ3/2

)
,

and therefore
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∆x∆p(1) =

(
n+

1

2

)[√
1 +

σ2σ̇2

τ
− ck

(
σ2σ̇2

mτ3/2
√
τ + σ2σ̇2

)]
. (3.69)

These expressions coincide with the exact expressions expanded up to order one in

ck. In figure 3.1 we compare the time-dependent expectation values for x, x2, p,

p2 computed in an exact way with those computed in a perturbative fashion. In

general the agreement is very good for small values of ck. Overall the agreement is

increasing for large values of n as well as m and for ω approaching
√
τ .

Figure 3.1: Exact versus perturbative expectation values for x, x2, p, p2 for E0 = 2, ω = 1/2,
τ = 1, m = 3 and n = 1 for different values of the expansion parameter ck.

A further useful quantity to compute that illustrates the quality of the pertur-

bative approach is the autocorrelation function

An(t) := |⟨ψn(t) |ψn(0)⟩| . (3.70)

Unlike the expectation values for position, momenta and their squares the autocor-

relation function also captures the influence of the time-dependent phase α(t). We

depict this function in figure 3.2. In this case the overall agreement decreases for

larger values of n.

Next we compare directly the wave functions obtained three alternative ways.

Figure 3.3 shows an extremely good agreement between the WKB approximation

and the exact solution, except near the turning points ξ± where the WKB approx-

imation is singular. The pertubative solution is in very good agreement with the

34



Figure 3.2: Exact versus perturbative autocorrelation function for E0 = 2, ω = 1/2, τ = 1,
m = 3, different values for n with ck = 0.1 in the left panel and ck = 0.3 in the right panel.

exact solution for small values of cκ, as expected. With increasing values of cκ the

perturbative solution starts to deviate stronger in the negative regime for ξ and large

values of n.

Figure 3.3: Exact versus WKB and perturbative solutions to the time-independent eigenvalue
equation (3.3) for the invariant Î with ℏ = 1, E0 = 1, m = 1, n = 1, τ = 1 and cκ = 0.18 in
panels (a), (c), cκ = 0.2 in panels (b), (d). ξ± are the classical turning points (3.49).

Let us next see how these properties are inherited in the time-dependent system.

Figure 3.4 displays the real part of the full time-dependent wave function. We

observe the oscillation of the turning points with time that enter through the function

σ(t). As in the time-independent case, extremely good agreement between the WKB

approximation and the exact solution, except near the turning points x±. The

perturbative solution slightly overshoots at the maxima and minima, especially in

the negative time regime. The discrepancy becomes worse for larger values of n,

which we do not show here.
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Figure 3.4: Exact versus WKB and perturbative solutions to the time-dependent Schrödinger
equation (3.1) at different times with ℏ = 1, E0 = 1,m = 1, n = 5, τ = 1, ω = 0.5 and cκ = 0.1.
The time-dependent classical turning points ξ± are indicated.

3.4 Goldman-Krivchenko potential with time-dependent

perturbation

In trying to identify solvable systems we have seen in equation (3.25) that the

value p = −2 is special as in that case the potential becomes the time-independent

Goldman-Krivchenko potential [142], being a particular spiked harmonic oscillator

[144, 145]. This potential may serve also as a benchmark for which we can solve the

eigenvalue equation exactly and campare it to the perturbative solution. Hence we

take this potential as our unperturbed system and perturb it by dropping the Stark

term and replacing it by x2E(t). Thus we consider the time-dependent Hamiltonian

H(t) =
p2

2m
+
mω2

2
x2 +

mΩ2

2

1

x2
+ x2E(t). (3.71)

It follows from above that the invariant for this system is

I(t) =
1

2

[
σ2p2 −mσσ̇{x, p}+

(
m2σ̇2 +

τm2 + 2mE0

σ2

)
x2 +m2σ2Ω2 1

x2

]
, (3.72)

with constraint E(t) = E0/σ
4 and σ satisfying the EP-equation (3.23). Also in this

case we may complete the remaining steps in the Lewis-Riesenfeld approach and

hence compare the exact and the perturbative solution. We identify E0 ≪ 1 as the

expansion parameter in the perturbative series.
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3.4.1 Testing the approximate solution

Exact computation

Using the same similarity and variable transformation as in (3.34) we obtain the

time-independent invariant

Î = UIU−1 = −1

2
∂2ξ +

1

2

(
τm2 + 2mE0

)
ξ2 +

m2Ω2

2

1

ξ2
, (3.73)

where U = exp(iδx2/2α) and we have changed variables through ξ := x/σ. We solve

the eigenvalue equation ÎΞ(ξ) = λΞ(ξ) exactly obtaining the solution

Ξ(ξ) = ξ(1+b/2)e−
a
2
ξ2
[
c1L

b/2
ν−

(
aξ2
)
+ c2U

(
ν+, 1 + b/2,

m
√
τξ2

ℏ

)]
, (3.74)

where Lµ
ν (z) denotes the generalized Laguerre polynomials, U (ν, µ, z) the confluent

hypergeometric function [146] and ν± := ± (2 + b− 2λ/a) /4, a =
√
τm2 + 2mE0,

b :=
√
1 + 4m2Ω2. Demanding again that the eigenfunctions vanish asymptotically,

i.e. limζ→±∞ Ξ(ξ) = 0, imposes ν± = n ∈ N0 and thus quantizes λ. We discard the

solution related to U , as its corresponding eigenvalues are not bounded from below,

leading to the eigenfuctions and eigenvalues

Ξn(ξ) = c1ξ
(1+b/2)e−

a
2
ξ2Lb/2

n

(
aξ2
)
, λn = a(2n+ 1 + b/2). (3.75)

Assembling everything we obtain for the operator I(t) the normalized eigenfunction

from U−1Ξn(x/σ) as

ϕn(x) = Fn

( a
σ2

)(2+b)/4
x(1+b)/2e−

a
2σ2 x

2

Lb/2
n

(
ax2

σ2

)
eimσ̇x2/2σℏ. (3.76)

where

Fn =

√
2n!

[1− (−1)b]Γ (1 + n+ b/2)
, (3.77)

when Re(b) > −2 and Re(a/σ2) > 0. This completes the second step in the Lewis-

Riesenfeld approach. In the third and last step we determine the phase α by means

of (3.5). The right hand side is computed once more to

⟨ϕn| i∂t −H(t) |ϕn⟩ = −
λn
mσ2

, (3.78)
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so that the phase acquires the same form as in the previous example

αn(t) = −
1

m
√
τ
λn arctan

[√
τ tan (ωt)

ω

]
. (3.79)

Let us now compare these expressions with those obtained in the perturbative com-

putation.

Perturbative computation

We treat the term Vp(x, t) = x2E(t) with E(t) = E0/σ
4 and E0 ≪ 1 in the

Hamiltonian as a perturbation. Accordingly we split up the invariant (3.33) as

I(t) = I0(t) + E0Ip(t) with

I0(t) =
1

2

[
σ2p2 −mσσ̇{x, p}+

(
m2σ̇2 +

τm2

σ2

)
x2 +m2σ2Ω2 1

x2

]
, (3.80)

Ip(t) =
m

σ2
x2. (3.81)

The zeroth order wavefunction
∣∣∣ϕ(0)n

〉
is simply ϕn(x) in (3.76) with E0 = 0. From

(3.7) and (3.9) we compute first two terms in the perturbative series for the eigen-

values

λ(0)n =
(
2n+ 1 +

√
1 + 4m2Ω2/2

)
m
√
τ , (3.82)

λ(1)n =
〈
ϕ(0)n

∣∣∣ Ip(t) ∣∣∣ϕ(0)n

〉
= (2n+ 1)

√
1 + 4m2Ω2

τ
. (3.83)

As expected the eigenvalues are time-independent and λ
(0)
n +E0λ

(1)
n corresponds to

(3.75) expanded to first order in E0. Next we need to compute the infinite sum in

(3.9) to determine the corrections to the wavefunctions. In this case there are only

two terms contributing in the infinite sum. We compute

∣∣∣ϕ(1)n

〉
=

1

2mτ

[√
(n+ 1)(n+ 1 + b/2)

∣∣∣ϕ(0)n+1

〉
−
√
n(n+ b/2)

∣∣∣ϕ(0)n−1

〉]
. (3.84)

In the last step we compute the perturbed expression for the phase α
(1)
n (t) using

equation (3.5). Once more we find up to first order

α(1)
n (t) = −λ

(0)
n + cκλ

(1)
n

m
√
τ

arctan

[√
τ tan (ωt)

ω

]
, (3.85)

so that we have obtained the full perturbative solution to the TDSE as |ψn⟩(1) as
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defined in (3.12).

Exact versus perturbative solutions

As previously, we compute several physical quantities to compare the exact and the

perturbative solution. The momentum, position, squared momentum and squared

position expectation values are computed to

⟨ψn|x |ψn⟩ = 0, ⟨ψn|x2 |ψn⟩ =
(2n+ ℓ+ 3/2)σ2√
τm2 + 2mE0

, ⟨ψn| p |ψn⟩ = 0, (3.86)

⟨ψn| p2 |ψn⟩ =
(4n+ 2)ℓ+ 2n+ 3/2

2ℓ+ 1

√
τm2 + 2mE0

σ2
+

(2n+ ℓ+ 3/2)mσ̇2√
τm2 + 2mE0

.

In order to achieve convergence we had to impose the additional constraint b = 2ℓ+1

with ℓ ∈ N0, this ensures that the integrals involved in the determination of the above

expectation values are real and finite. The uncertainty relation becomes

∆x∆p =

√
(2n+ ℓ+ 3/2)[(4n+ 2)ℓ+ 2n+ 3/2]

2ℓ+ 1
+
m(2n+ ℓ+ 3/2)2σ2σ̇2

(τm+ 2E0)2
, (3.87)

with the lower bound ∆x∆p ≥ 1/2 always well respected.

Using the perturbed solutions (3.84) and (3.85) we compute

⟨ψn|x |ψn⟩(1) = 0, ⟨ψn|x2 |ψn⟩(1) = (2n+ ℓ+ 3/2)(mτ − E0)
σ2

τm2 ,

⟨ψn| p |ψn⟩(1) = 0, ⟨ψn| p2 |ψn⟩(1) = (4n+2)ℓ+2n+3/2
2ℓ+1

(mτ+E0)√
τσ2 + (2n+ℓ+3/2)(τm−E0)σ̇2

τ3/2
.

(3.88)

The approximated uncertainty relation results to

∆x∆p(1) =

√
(2n+ ℓ+ 3/2)[(4n+ 2)ℓ+ 2n+ 3/2]

2ℓ+ 1
(1− E2

0

m2τ2
). (3.89)

We are now in the position to compare the exact and the pertubative solution. In

figure 3.5 we compare the time-dependent expectation values for x2 and p2 computed

in an exact way with those computed in a perturbative fashion. As in the previous

example, the agreement is very good for small values of the expansion parameter,

E0 in this case. Overall the agreement is increasing for large values of n as well as

m and for ω approaching
√
τ .

As in the previous example we also compute the autocorrelation function (3.70)

as it captures well the effect from the time-dependent phase α(t). We depict this
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Figure 3.5: Exact versus perturbative expectation values for x2, p2, for ω = 1/2, τ = 1,
ℓ = 2, m = 3 and n = 1 for different values of the expansion parameter E0.

function in figure 3.6. Once more, the overall agreement decreases for larger values

of n.

Figure 3.6: Exact versus perturbative autocorrelation function for ω = 1/2, τ = 1, m = 3,
ℓ = 2 and different values for n with E0 = 0.1 in the left panel and E0 = 0.5 in the right panel.

3.5 Conclusions

We have explored the possibilty of a modified approximated Lewis and Riesenfeld

method by solving the time-independent eigenvalue equation in the second step by

means of standard time-independent perturbation theory. We have tested the quality

of this approach for two classes of optical potentials by comparing the exact solutions

obtained from the completely exact solution of the Lewis-Riesenfeld approach to

the approximated ones, the perturbative approach and the WKB approximation.

We computed some standard expectation values and the autocorrelation functions

in two alternative ways. For the pertubative approach we found in general good

agreement which is naturally improved in quality for smaller values of the expansion

parameters. The WKB approximation is not limited to these small parameters and

only deviates significantly at the turning points.

Our semi-exactly solvable approach significantly widens the scope of the Lewis-

Riesenfeld method and allows to tackle more complicated physical situations that

are not possible to treat when insisting on full exact solvabilty. The validity of either
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approach is governed by the validity of the time-independent pertubation theory and

the WKB approximation for which explicit expressions can be found in the standard

literature, which then need to be adjusted to the particular potentials.
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Chapter 4

Time-dependent unstable

anharmonic quartic oscillator

In this chapter we construct a time-dependent double well potential as an exact

spectral equivalent to the explicitly time-dependent negative quartic oscillator with

a time-dependent mass term as first shown in [4]. For completeness and to es-

tablish a benchmark for comparison we shall first discuss the time-independent

unstable anharmonic quartic oscillator and the techniques within non-Hermitian

quantum mechanics that were used to determine the time-independent Dyson map.

We shall then proceed with its time-dependent counterpart. Defining the unstable

anharmonic oscillator Hamiltonian on a contour in the lower-half complex plane,

the resulting time-dependent non-Hermitian Hamiltonian is first mapped by an ex-

act solution of the time-dependent Dyson equation to a time-dependent Hermitian

Hamiltonian defined on the real axis. When unitary transformed, scaled and Fourier

transformed we obtain a time-dependent double well potential bounded from below.

All transformations are carried out non-perturbatively so that all Hamiltonians in

this process are spectrally exactly equivalent in the sense that they have identical

instantaneous energy eigenvalue spectra.

4.1 Anharmonic Oscillators

Anharmonic oscillators have a wide range of applications in quantum mechanics

as they describe for instance delocalization and decoherence of quantum states,

e.g. [147]. They also occur naturally in relativistic models, e.g. [148]. From a
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mathematical point of view their nonlinear nature make them ideal testing grounds

for various approximation methods, such as perturbative approaches [149]. Based

on a perturbative expansion of the energy eigenvalues it was shown in [42] that the

quartic anharmonic oscillator with mass term is spectrally equivalent to a double

well potential with linear symmetry breaking. The first hint about the fact that

even the unstable quartic anharmonic oscillator posses a well defined bounded real

spectrum, despite being unbounded from below on the real axis, was proved in

[150, 151], where it was proven that its energy eigenvalues series is Borel summable.

The spectral equivalence between an unstable anharmonic oscillator and a complex

double well potential was then proven directly by Buslaev and Grecchi in [152].

4.2 Time-independent unstable anharmonic oscillator

The time-independent unstable anharmonic quartic oscillator given by

H = p2x − gx4, g ∈ R, (4.1)

where px = −i∂x, was first shown numerically to have a real and positive spectra by

Bender and Boettcher [1] as part of a treatment of a general series of PT -symmetric

potentials given by x2(ix)ε, which were all shown to have a real spectra provided

ε ≥ 0. Jones and Mateo [74] later showed that the Hamiltonian (4.1) was spectrally

equivalent to

h =
p4x
64g
− 1

2
px + 16gx2. (4.2)

In order to do this, techniques which have been developed within the area of non-

Hermitian PT -symmetric quantum mechanics [140, 141] had to be used. We shall

present a brief overview of two of the techniques in the following subsections.

4.2.1 Stokes wedges and choice of contour

The first of these techniques is associated with the fact that the Schrödinger eigen-

value problem has to be defined by sectors within complex plane known as Stokes

wedges [137]. Within these wedges the wave function, ψ(x), will vanish exponen-

tially as |x| → ∞. Along the centre of these wedges, known as the anti-Stokes line

ψ(x) will decay most rapidly, whereas on the Stokes lines which bound the wedges

ψ(x) is oscillatory. The locations of the Stokes wedges for different PT -symmetric
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potentials and in particular the −x4 potential is the main concern of this subsection.

PT -symmetric Hamiltonians such as

Ĥ = p̂2 + ẑ2(iẑ)ε for ε ≥ 0, (4.3)

can be considered as a complex deformation of the harmonic oscillator, where we

treat z as complex. The associated Sturm Liouville eigenvalue problem with this

Hamiltonian is written as

−ψ′′(z) + z2(iz)εψ(x) = Eψ(z), (4.4)

where we have taken ẑ → z, p̂ → −i d
dz . To determine the location of the Stokes

wedges for this eigenvalue problem we must employ the WKB approximation such

that we can determine the asymptotic behaviour of ψ(z) for large |z| [137]. A more

detailed discussion of this can be found in [141], here we just present the location of

the Stokes wedges as depicted in figure 4.1 for different values of ε. The locations of

the Stokes lines which bound the wedges are

θupper,right =
π(2− ε)
8 + 2ε

and θlower,right = −
π(2 + ε)

8 + 2ϵ
, (4.5)

for the right wedge and

θupper,left = −π −
π(2− ε)
8 + 2ε

and θlower,left = −π +−π(2 + ε)

8 + 2ϵ
, (4.6)

for the left wedge. The width of the Stokes wedges, ∆, can also be determined

∆ = θupper,right − θlover,right = θupper,left − θlower,left =
2π

4 + ε
. (4.7)

In figure 4.1 we see that as ε→∞ the width of the wedges, ∆→ 0. The wedges

themselves also approach the negative imaginary axis. For the normal harmonic

oscillator, which corresponds to ε = 0, the center of the wedges are the real line.

We also see that for ε > 2 the wedges no longer contain the real line and that for

ε = 2, which corresponds to the negative quartic potential, the real axis is the upper

stokes line for the wedges. In order to deal with the negative quartic potential we

therefore have to map the wedge back onto the real axis with the choice of a suitable
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Figure 4.1: Stokes sector for the Sturm Liouville eigenvalue problem (4.4) for ε = 0, 1, 2, 4.
The angular opening of each sector is marked and the bold black arrow is a logarithmic branch
cut on the positive imaginary axis from x = 0 to x = i∞.

parametrisation [153]. Jones and Mateo [74] found a suitable contour given by

z = −2i
√
1 + ix, (4.8)

which mapped (4.1) to the new Hamiltonian

H = p2 − 1

2
p+ a(x2 − 1)− 2iax+

1

2
i
{
x, p2

}
, (4.9)

where a = 16g. We see here that by defining the negative quartic potential on the

correct contour within the complex plane we have taken a Hermitian Hamiltonian

and revealed that it is manifestly non-Hermitian.

4.2.2 Perturbation theory

Another important technique employed by Jones and Mateo [74] to calculate the
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Dyson map for the negative quartic potential after it had been mapped the non-

Hermitian Hamiltonian given by (4.9) is perturbation theory for determining the

time-independent metric and Dyson map [27, 78, 154]. We shall recall here the

perturbative method.

We start by separating the non-Hermitian Hamiltonian into its real and imagi-

nary part as

H = h0 + iϵh1, with h†0 = h0, h†1 = h1, (4.10)

where a real parameter ϵ has been extracted from the imaginary part. Assuming

here for simplicity that the Dyson map is Hermitian and of the form η = eq/2,

the metric operator just becomes ρ = η†η = η2 = eq. Making use of the Baker-

Campbell-Hausdorff formula (2.15) one can then write the similarity transformation

in equation (2.14) as

H† = η2Hη−2 = H + [q,H] +
1

2!
[q, [q,H]] +

1

3!
[q, [q, [q,H]]] + ... (4.11)

Using the decomposition (4.10) for the non-Hermitian Hamiltonian H this becomes

i[q, h0] +
i

2
[q, [q, h0]] +

i

3!
[q, [q, [q, h0]]] + ... = ϵ

(
2h1 + [q, h1] +

1

2
[q, [q, h1]] + ...

)
.

(4.12)

Expanding q further as a power series in ϵ as

q =
∞∑
n=1

ϵnqn, (4.13)

one can read off the coefficients of ϵn order by order upon substituting (4.13) into

(4.12). One finds that [h0, q2] = 0, so that with the choice q2 = 0 all even powers in

(4.13) vanish. The first three nonvanishing equations are

[h0, q1] = 2ih1, (4.14)

[h0, q3] =
i

6
[q1, [q1, h1]], (4.15)

[h0, q5] =
i

6

(
[q1, [q3, h1]] + [q3, [q1, h1]]−

1

60
[q1, [q1, [q1, [q1, h1]]]]

)
. (4.16)

Crucially, these equations provide a constructive scheme and can be solved recur-

sively order by order for q1, q2, . . .
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Utilising this scheme Jones and Mateo [74] were able to construct a Dyson map

for the Hamiltonian (4.9) which mapped it to the Hermitian Hamiltonian (4.2). This

Dyson map is given by

η = exp

[
− p

3

3a
+ 2p

]
. (4.17)

We wish to now extend this analysis to the time-dependent regime. Whilst in

this chapter we will not be using a perturbative approach to determine the time-

dependent Dyson map, in chapter 5 a time-dependent counterpart to the perturba-

tion theory in this section is laid out and subsequently applied to the time-dependent

unstable anharmonic oscillator.

4.3 Time-dependent unstable anharmonic oscillator

The Hamiltonian we investigate here is similar to the one in equation (4.1), but with

time-dependent coefficient functions and an additional mass term

H(z, t) = p2 +
m(t)

4
z2 − g(t)

16
z4, m ∈ R, g ∈ R+. (4.18)

Defining H(z, t) now on the same contour in the lower-half complex plane z =

−2i
√
1 + ix as suggested by Jones and Mateo [74], it is mapped into the non-

Hermitian Hamiltonian

H(x, t) = p2 − 1

2
p+

i

2
{x, p2} −m(t)(1 + ix) + g(t)(x− i)2, (4.19)

with {·, ·} denoting the anti-commutator. Next we attempt to solve the time-

dependent Dyson equation (2.3) to find a Hermitian counterpart h.

4.3.1 Dyson map

We start by making following general Ansatz for the Dyson map

η(t) = eα(t)xeβ(t)p
3+iγ(t)p2+iδ(t)p, α, β, γ, δ ∈ R, (4.20)

we use the Baker-Campbell-Hausdorff formula (2.15) to compute the adjoint action

of η(t) on all terms appearing in H(x, t)

ηxη−1 = x+ δ + 6αβp+ 2γp+ 3iα2β + 2iαγ − 3iβp2 (4.21)
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ηpη−1 = p+ iα, (4.22)

ηx2η−1 = x2 − 9β2p4 − 12iβ (3αβ + γ) p3 (4.23)

+
(
54α2β2 + 36αβγ + 4γ2 − 6iβδ

)
p2

+4(3αβ + γ) [δ + iα(3αβ + 2γ)] p+ 2
(
δ + 3iα2β + 2iαγ

)
x

+(6αβ + 2γ) {x, p} − 3iβ
{
x,p2

}
− (3α2β + 2αγ − iδ)2,

ηp2η−1 = p2 − α2 + 2iαp, (4.24)

η{x, p2}η−1 = {x, p2} − 6iβp4 + (24αβ + 4γ)p3 +
(
36iα2β + 12iαγ + 2δ

)
p2 (4.25)

+4
(
iαδ − 6α3β − 3α2γ

)
p− 2iα2

(
3α2β + 2αγ − iδ

)
−2α2x+ 4iα{x, p}.

The gauge like terms in (2.3) and (2.8) are calculated to

iη̇η−1 = ixα̇+ iβ̇p3 −
(
3β̇α+ γ̇

)
p2 −

(
3iβ̇α2 + 2iγ̇α+ δ̇

)
p (4.26)

+β̇α3 + γ̇α2 − iδ̇α

iη−1η̇ = ixα̇+ iβ̇p3 − (3α̇β + γ̇)p2 − (2iγα̇+ δ̇)p− iδα̇, (4.27)

where as commonly used we abbreviate partial derivatives with respect to t by

an overdot. Using the expressions in (4.21)-(4.26) for the evaluation of (2.3) and

demanding the right hand side to be Hermitian yields the following constraints for

the coefficient functions in the Dyson map

α =
ġ

6g
, β =

1

6g
, γ =

12g3 + 6mg2 + ġ2 − gg̈
4ġg2

, δ = c1
g

ġ
− g ln g

2ġ
, (4.28)

with c1 ∈ R being an integration constant. Moreover, the time-dependent coefficient

functions in the Hamiltonian (4.18) must be related by the third order differential

equation

9g2 (
...
g − 6gṁ) + 36gġ (gm− g̈) + 28ġ3 = 0. (4.29)

Integrating once and introducing a new parameterisation function σ(t), we solve this

equation by

g =
1

4σ3
, and m =

4c2 + σ̇2 − 2σσ̈

4σ2
, (4.30)
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with c2 ∈ R denoting the integration constant corresponding to the only integra-

tion we have carried out. The time-dependent Hermitian Hamiltonian in equation

(2.3) then results to

h(x, t) = σ3p4 + fpp(t)p
2 + fx(t)x+ fp(t)p+ fxp(t){x, p}+ fxx(t)x

2 + C(t). (4.31)

with

fpp =
σ
{
σ
[
2
(
σ
(
σ̇2 − 4c2

)
− 2
)
σ̈ + 16c22 + σ̇4

]
+ 16c2

}
+ 4

4σσ̇2
,

fp =
2c1
[
σ
(
4c2 + σ̇2 − 2σσ̈

)
+ 2
]
+ ln

(
4σ3
)

12σσ̇2
, fx = −

2c1 + ln
(
4σ3
)

12σ2σ̇
,

fxp =

(
σ
(
σ̇2 − 4c2

)
− 2
)

4σ2σ̇
, fxx =

1

4σ3
,

C =

(
2c1 + ln

(
4σ3
))

2 + 36σ̇2
(
4c22 + σ̈

)
144σσ̇2

+
1

8

(
σ̇2 − 4c2

)
σ̈ − σ̇2

4σ2
.

We may choose to set c1 = c2 = 0 and reintroduce the original time-dependent

coefficient functions g(t), m(t) so that the Hamiltonian simplifies to

h(x, t) =
p4

4g
+

(
18g2(2g +m)

ġ2
+

ġ2

72g3
− 2g +m

4g

)
p2 −

3
(
g2m+ g3

)
ln g

ġ2
p

+
g2 ln(g)

ġ
x +

(
ġ

12g
− 6g2

ġ

)
{x, p}+ gx2

+
1296g8 ln2 g + ġ6 − 36ġ4g2(2g +m)

5184g5ġ2
− m

2
. (4.32)

Notice that σ(t) can be any function, but the coefficient functions g(t) and m(t)

must be related by (4.29) that is (4.30).

The massless case for m(t) = 0 is more restrictive and leads to σ(t) being a

second order polynomial σ(t) = κ0 + κ1t+ κ2t
2 with real constants κi. This case is

consistently recovered from (4.30) with the choice c2 = κ1κ3 − κ22/4. The solution

found for the time-independent case in [74], would be obtained from (4.20) in the

limits α → 0, β → 1/6g, γ → 0, δ → i and m → 0. While this limit obviously

exists for α and β, the constraints for γ and δ are different from those reported in

(4.28). In fact, setting δ(t) → iδ(t) enforces g to be time-independent and there is

no time-dependent solution corresponding to that choice. The energy operator H̃

defined in (2.8) is obtained directly by adding H(x, t) in (4.19) and the gauge-like

term in (4.27).
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4.3.2 Time-dependent double wells potential

Let us now eliminate the terms in h(x, t) proportionate to x and {x, p} by means of

a unitary transformation

U = e
−i

fxp
2fxx

p2−i fx
2fxx

p
, (4.33)

which leads to the unitary transformed Hamiltonian

ĥ(x, t) = σ3p4 +

(
fpp −

f2xp
fxx

)
p2 +

(
fp −

fxfxp
fxx

)
p+ fxxx

2 + C − f2x
4fxx

. (4.34)

Similarly as in the time-independent case [74], we may scale this Hamiltonian, albeit

now with a time-dependent function, x → (fxx)
−1/2x. Subsequently we Fourier

transform ĥ(x, t) so that it is viewed in momentum space. In this way we obtain a

spectrally equivalent Hamiltonian with a time-dependent potential

h̃(y, t) = p2y + σ3f2xxy
4 +

(
fxxfpp − f2xp

)
y2 +

(√
fxxfp −

fxfxp√
fxx

)
y (4.35)

+C − f2x
4fxx

,

=
g

4
y2
(
y2 +

ġ2

36g3
+

72g2m

ġ2
− m

g
+ 2

)
+

(
36g2m+ ġ2

)√
g ln g

12ġ2
y (4.36)

+
ġ4

5184g5
− ġ2m

144g3
− ġ2

72g2
− m

2
,

where for simplicity we have set c1 = c2 = 0 in (4.36). The potential in h̃(y, t) is a

double well that is bounded from below. We illustrate this for a specific choice of

σ(t), that is g(t) and m(t), in figure 4.1.

Figure 4.2: Spectrally equivalent time-dependent anharmonic oscillator potential V (z, t) in
(4.18) and time-dependent double well potential Ṽ (y, t) in (4.36) for σ(t) = cosh t, g(t) =
1/4 cosh3 t, m(t) = (tanh2 t− 2)/4 at different values of time.
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4.4 Conclusions

We have proven the remarkable fact that the time-dependent unstable anharmonic

oscillator is spectrally equivalent to a time-dependent double well potential that is

bounded from below. The transformations we carried out are summarized as follows:

H(z, t)
z→x→ H(x, t)

Dyson→ h(x, t)
unitary transform→ ĥ(x, t)

Fourier→ h̃(y, t).

We have first transformed the time-dependent anharmonic oscillator H(z, t) from

a complex contour in a Stokes wedge to the real axis H(x, t). The resulting non-

Hermitian Hamiltonian H(x, t) was then mapped by means of a time-dependent

Dyson map η(t) to a time-dependent Hermitian Hamiltonian h(x, t). It turned out

that the Dyson map can not be obtained by simply introducing time-dependence into

the known solution for the time-independent case [74], but it required to complexify

one of the constants and the inclusion of two additional factors. In order to ob-

tain a potential Hamiltonian we have unitarily transformed h(x, t) into a spectrally

equivalent Hamiltonian ĥ(x, t), which when Fourier transformed leads to h̃(y, t) that

involved a time-dependent double well potential.

In the following three chapters we shall be revisiting this model in detail. We will

first compute the Lewis-Riesenfeld invariants by constructing a point transformation

between the time-independent quartic oscillator and the time-dependent quartic os-

cillator, in doing so we obtain a second solution for the Dyson map. We will then

apply time-dependent perturbation theory to determine its metric. We show that as

in the time-independent case, a perturbative approach leads to an exact solution for

the Dyson map. Finally we use the two Dyson maps to determine a symmetry opera-

tor for the Lewis-Riesenfeld invariants which allows for the subsequent computation

of an infinite series of Dyson maps.
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Chapter 5

Point transformations and

exactly solvable time-dependent

non-Hermitian quantum

systems

In this chapter we demonstrate that complex point transformations can be used

to construct non-Hermitian first integrals, time-dependent Dyson maps and metric

operators for non-Hermitian quantum systems. Initially we identify a point transfor-

mation as a map from an exactly solvable time-independent system to an explicitly

time-dependent non-Hermitian Hamiltonian system. Subsequently we employ the

point transformation to construct the non-Hermitian time-dependent invariant for

the latter system. Exploiting the fact that this invariant is pseudo-Hermitian, we

construct a corresponding Dyson map as the adjoint action from a non-Hermitian

to a Hermitian invariant, thus obtaining solutions to the time-dependent Dyson

and time-dependent quasi-Hermiticity equation together with solutions to the cor-

responding time-dependent Schrödinger equation.

5.1 Introduction

One of the most convenient approaches to constructing the time-dependent Dyson

map for a non-Hermitian system involves the construction of time-dependent invari-

ants [89]. As detailed in chapter 2, and argued in [51, 87, 88, 132], this is because
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one has transformed the equation that needs to be solved from a time-dependent

differential equation, the TDDE (2.3), to a simpler similarity transformation be-

tween a non-Hermitian and Hermitian invariant (see Appendix A for more details).

While the difficulty of the problem has been reduced, the number of steps required to

obtain a Dyson map has been increased. In addition to this it is not always straight-

forward to construct an invariant for a particular system. One usually makes an

ansatz for the form of the invariant which is not guaranteed to be correct. Having a

more concrete approach to constructing invariants would therefore be beneficial for

constructing Dyson maps within time-dependent non-Hermitian quantum mechan-

ics as well as in the standard Hermitian regime.

To aid in the construction of time-dependent invariants we propose using time-

dependent canonical transformations known as point transformations [155]. The

initial use of point transformations was in classical mechanics, this was extended

to the quantum regime by DeWitt [156, 157] who utilised point transformations

to settle the ambiguity problem of operator ordering. Point transformations have

also been employed to construct maps between a simple exactly solvable model and

a more complicated system, known as the quantum Arnold transformation [158],

which was then subsequently applied to the Caldirola-Kanai oscillator [159, 160].

The main selling point of the approach, however, is that point transformations pre-

serve conserved quantities [155]. This was exploited by Zelaya and Rosas-Ortiz

[161] who recently demonstrated that point transformations may be used to com-

pute time-dependent invariants or first integrals for Hermitian Hamiltonian systems.

Extending this to the non-Hermitian regime would therefore reduce the difficulty as-

sociated with determining a Dyson map as an ansatz for the non-Hermitian invariant

would no longer be required. In the subsequent sections we shall demonstrate that

this can be achieved for several non-Hermitian systems including the time-dependent

Swanson Hamiltonian [162], the time-dependent harmonic oscillator with complex

linear term and the non-Hermitian unstable anharmonic quartic oscillator.

5.2 Invariants and Dyson maps from point transforma-

tions

The main purpose of this section is to present an alternative approach to finding

ρ(t) and η(t) by exploiting point transformations and first integrals. Consider a
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non-Hermitian explicitly time-dependent Hamiltonian H(x, t) ̸= H†(x, t) satisfying

the TDSE

H(x, t)ϕ(x, t) = iℏ∂tϕ(x, t). (5.1)

As a starting point one assumes that there exists an exactly solvable time-independent

reference Hamiltonian H0(χ) satisfying the TDSE

H0(χ)ψ(χ, τ) = iℏ∂τψ(χ, τ), (5.2)

with χ denoting the coordinate and τ the time in this system. One may then relate

(5.2) to the first TDSE (5.1) by means of a complex point transformation Γ defined

as

Γ : H0-TDSE→ H-TDSE; [χ, τ, ψ(χ, τ)] 7→ [x, t, ϕ(x, t)] . (5.3)

Here ψ and ϕ are understood to be implicit functions of χ,τ and x,t, respectively,

defined by the equations (5.1) and (5.2). The variables χ, τ , ψ are treated in general

as

χ = P (x, t, ϕ), τ = Q(x, t, ϕ), ψ = R(x, t, ϕ), (5.4)

where P , Q, R are functions of the independent variables x, t, ϕ. In practice, one

may relax some of the (x, t, ϕ)-dependences of the functions P , Q, R or is even forced

to do so for concrete systems.

Having identified the point transformation Γ on the level of the TDSEs one may

subsequently apply it exclusively to the time-independent Hamiltonian H0(χ) as

Γ : H0(χ)→ IH(x, t). (5.5)

Since real point transformations preserve conserved quantities [155], and IH(x, t)

acquired a time-dependence via the point transformation Γ, it is suggestive to assume

that also complex point transformations have this property and that IH(x, t) is

actually the time-dependent conserved Lewis-Riesenfeld [89] invariant for the non-

Hermitian time-dependent Hamiltonian H(x, t) in (5.1) satisfying

iℏ
dIH
dt

= iℏ∂tIH + [IH , H] = 0. (5.6)
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Since H is non-Hermitian, also its first integral, the invariant IH , must be non-

Hermitian, which is evident from (5.6).

As argued in [51, 87, 88, 132] one may map this non-Hermitian invariant IH to a

Hermitian invariant Ih by means of a time-dependent similarity transformation η(t)

as

η(t)IH(t)η−1(t) = Ih(t). (5.7)

Remarkably the map η(t) is indeed the Dyson map solving the first equation in (2.3)

and the Hermitian operator Ih is the Lewis-Riesenfeld invariant for the Hermitian

time-dependent Hamiltonian h(t), identified in (2.3), satisfying

iℏ
dIh
dt

= iℏ∂tIh + [Ih, h] = 0. (5.8)

In summary, we have a four step method that leads not only to the solutions ϕ(x, t)

of the TDSE (5.1), but also an explicit expression for the metric operator. The

first step consists of selecting a suitable time-independent reference Hamiltonian

H0(χ) and point transform its corresponding TDSE (5.2). In the second step we fix

the free parameters by matching the transformed TDSE with a TDSE for a non-

Hermitian target Hamiltonian H(t) (5.1), hence identifying the point transformation

Γ by means of (5.3). In the third step we obtain the invariant IH(t) by acting with

Γ on the time-independent reference Hamiltonian H0(χ) and in the fourth step we

construct the Dyson map η as a similarity transformation by means of (5.7). In case

the TDSE for H0(χ) is solvable we obtain by construction also the solutions to the

original TDSE for H(x, t). Here our main focus is on the construction of η and ρ.

Let us now demonstrate how this four step strategy is carried out for a concrete

time-dependent non-Hermitian Hamiltonian.

5.3 Point transforming exactly solvable reference

Hamiltonians

One of the simplest choices for an exactly solvable reference Hamiltonian H0(χ) one

can make is to take the time-independent Hermitian harmonic oscillator

H0(χ) =
P 2

2m
+

1

2
mω2χ2, m, ω ∈ R. (5.9)
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First we identify the point transformation of H0(χ) in general terms. Expressing

the momentum operator P in the position representation P = −iℏ∂χ, we act with

the point transformation Γ on the TDSE (5.2). Simplifying the general functional

dependence as stated in (5.4) to

χ = χ(x, t), τ = τ(t), ψ = A(x, t)ϕ(x, t), (5.10)

we convert all partial derivatives in the TDSE from the (χ, τ) to the (x, t)-variables

obtaining the point transformed differential equation

iℏϕt +
ℏ2

2m

τt
χ2
x

ϕxx +B0(x, t)ϕx − V0(x, t)ϕ = 0, (5.11)

with

B0(x, t) = −iℏ χt

χx
+

ℏ2

2m

τt
χ2
x

(
2
Ax

A
− χxx

χx

)
, (5.12)

V0(x, t) =
1

2
mτtχ

2ω2 − iℏ
(
At

A
− Axχt

Aχx

)
− ℏ2

2m

τt
χ2
x

(
Axx

A
− Axχxx

Aχx

)
.(5.13)

This form of equation (5.11) was previously derived in [161], more details of this

computation can be found in Appendix D. However, we allow for a major difference

by admitting the potential V0 of the target Hamiltonian to be complex. The first

two assumptions in (5.10) on the functional dependence when compared to the

most general dependence χ(x, t, ϕ), τ(x, t, ϕ) are made for convenience to simplify

the calculation. The last factorization property of ψ in (5.10) is already using

an assumption made on the structure of the target differential equation. Since the

TDSE is a linear equation in the fields it does not contain a ϕ2x term so that ψϕϕ = 0.

Hence the linear dependence in ϕ.

Since the reference Hamiltonian is a choice, we shall explore here some further

simple options

H
(1)
0 (χ) =

P 2

2m
(5.14)

H
(2)
0 (χ) = H0(χ) + aχ, a ∈ R, (5.15)

H
(3)
0 (χ) = H0(χ) + ibχ, b ∈ R, (5.16)

H
(4)
0 (χ) = H0(χ) + a{χ, P}. (5.17)
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We note that the reference Hamiltonian does not have to be Hermitian. Then the

general point transformed differential equation (5.11) associated with each these

reference Hamiltonians remains the same, yet the explicit forms of B0(x, t) (5.12)

and V0(x, t) (5.13) differ. For the choices (5.14)-(5.17) we obtain

B1(x, t) = B0(x, t), V1(x, t) = V0(x, t)−
1

2
mω2χ2τt, (5.18)

B2(x, t) = B0(x, t), V2(x, t) = V0(x, t) + aχτt, (5.19)

B3(x, t) = B0(x, t), V3(x, t) = V0(x, t) + ibχτt, (5.20)

B4(x, t) = B0(x, t) +
2iaℏχτt
χx

, V4(x, t) = V0(x, t)−
2iaχℏAxτt

Aχx
− iaℏτt. (5.21)

In order to proceed to the second step in the procedure we need to select a target

Hamiltonian.

5.4 The time-dependent Swanson model as the target

Hamiltonian

As a concrete example for a target Hamiltonian we consider here a prototype non-

Hermitian Hamiltonian system, the time-dependent version of the Swanson Hamil-

tonian [162]. In its standard formulation in terms of bosonic creation a and annihi-

lation operators a†, the time-dependent version may be written in the form

H̃S(t) = ω(t)
(
a†a+ 1/2

)
+ α̃(t)a2 + β̃(t)

(
a†
)2
, ω(t), α̃(t), β̃(t) ∈ R (5.22)

which is clearly non-Hermitian when α̃ ̸= β̃∗. Dyson maps for the time-independent

and time-dependent version were found in [90] and [86], respectively. In order to

apply the point transformations it is more convenient to convert the Hamiltonian

into coordinate and momentum variables x, p, which is easily achieved. Using the

standard representations a = (x+ ip)/2 and a† = (x− ip)/2 we obtain

H̃S(t) =
1

2

[
ω(t)− α̃(t)− β̃(t)

]
p2 +

1

2

[
ω(t) + α̃(t) + β̃(t)

]
x2

+
i

2

[
α̃(t)− β̃(t)

]
{x, p}+ ω(t)

2
. (5.23)

Expressing the time-dependent functions α̃(t), β̃(t), ω(t) in terms of new time-

dependent functions α(t), Ω(t) and M(t) as
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α̃(t) =
M(t)Ω(t)2

4
− 1

4M(t)
+ α(t), β̃(t) =

M(t)Ω(t)2

4
− 1

4M(t)
− α(t),

ω(t) =
M(t)Ω(t)2

2
+

1

2M(t)
, (5.24)

the Hamiltonian is converted into the simpler form

HS(x, t) := H̃S(t)−
ω(t)

2
=

p2

2M(t)
+
M(t)

2
Ω(t)2x2 + iα(t){x, p}, (5.25)

with M,Ω ∈ R, α ∈ C, which is clearly still non-Hermitian for α ̸= 0. The Swanson

Hamiltonian is PT -symmetric for PT : x → −x, p → p, i → −i and all time-

dependent coefficient functions transforming as PT : M,Ω, α → M,Ω, α. Taking

α = αR − iαI
1 which is complex, this requires PT : αR → αR, αI → −αI . We

notice here that the option α ∈ C, rather than α ∈ R, does not exist in the time-

independent case when one wishes to maintain the PT -symmetry of the Hamilto-

nian.

We will explore here two versions of this target Hamiltonian, in one we keep

the mass time-independent by setting the time-dependent coefficient in the kinetic

energy term to a constant, M(t) → m, and in the other option we take the mass

term to be generically time-dependent [119, 163]. Let us now identify the point

transformation Γ according to (5.3) for the specified pairs of Hamiltonians.

5.4.1 Point transformation ΓS
0 : H0(χ) → HS(x, t), time-independent

mass

Having specified the target Hamiltonian as HS(x, t) with m, we express the time-

dependent Schrödinger equation (5.2) in the position representation as

iℏϕt +
ℏ2

2m
ϕxx − 2ℏα(t)xϕx − ℏα(t)ϕ− 1

2
mΩ(t)x2ϕ = 0. (5.26)

With H0(χ) as reference Hamiltonian, the direct comparison with (5.11) leads to

the three constraints

τt
χ2
x

= 1, B0(x, t) = −2ℏα(t)x, V0(x, t) =
1

2
mΩ(t)x2 + ℏα(t). (5.27)

1We have corrected here a minor typo in the manuscript [5] from α = αR+ iαI → α = αR− iαI .

59



Apart from being a complex equation, the first constraint in (5.27) is the same as

the one found in [161], where it was solved by

τ(t) =

∫ t ds

σ2(s)
, and χ(x, t) =

x+ γ(t)

σ(t)
, (5.28)

with now complex functions γ(t) and σ(t). Using these expressions in the second

constraint in (5.27) yields the equation

i
ℏ
m

Ax

A
+ γt + 2iαx− (x+ γ)

σt
σ

= 0, (5.29)

which may be solved by

A(x, t) = exp

{
im

ℏ

[(
γt − γ

σt
σ

)
tx+

(
itα− σt

2σ

)
x2 + δ(t)

]}
, (5.30)

where δ(t) is a complex valued function corresponding to the integration constant

in the x integration. Proceeding with these expressions to the third constraint in

(5.27) yields

−iℏ σt
2σ
− m

2

(
2γγt

σt
σ

+ γ2t + γ2
σ2t
σ2
− ω2γ2

σ4
− 2mδt

)
(5.31)

+
mγ

σ

[
σtt −

γtt
γ
σ − ω2

σ3

]
x+

m

2σ

[
σtt −

(
2iαt − 4α2 − Ω

)
σ − ω2

σ3

]
x2 = 0.

The x-independent term in (5.31) vanishes for

δ(t) =
γ

2σ
(σγt − γσt)−

iℏ
2m

log σ (5.32)

Furthermore, we recognize that the square brackets of the coefficient functions for

the x and x2 dependent terms amount both to the ubiquitous Ermakov-Pinney

equation [138, 139] with the constraint

γtt
γ

= 2iαt − 4α2 − Ω := κ(t), (5.33)

respectively. The general solution to this version of the Ermakov-Pinney (EP) equa-

tion, as given by the coefficient functions, can be constructed in terms of the two

fundamental solutions u(t) and v(t) to the equations ü +κ(t)u = 0, v̈+κ(t)v = 0 as

σ(t) =
(
Au2 +Bv2 + 2Cuv

)1/2
, (5.34)
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where the constants A, B, C are constrained as C2 = AB − ω2/W with Wronskian

W = uv̇ − vu̇. Given that κ(t) is now complex, the time τ and the coordinate χ

inevitably become complex, unless we take αt = 0. As we see from (5.24) the latter

option still keeps all the coefficients time-dependent although in a somewhat more

restricted form.

5.4.2 Point transformation Γ̂S
0 : H0(χ) → HS(x, t), time-dependent

mass

Let us now switch on the time-dependence in the mass so that we have to compare

the transformed equation (5.11) with

iℏϕt +
ℏ2

2M(t)
ϕxx − 2ℏα(t)xϕx − ℏα(t)ϕ− 1

2
M(t)Ω(t)2x2ϕ = 0, (5.35)

instead of (5.26). The direct comparison then changes the three constraints (5.27)

into

τt
mχ2

x

=
1

M(t)
, B(x, t) = −2ℏα(t)x, V (x, t) =

1

2
M(t)Ω(t)x2 + ℏα(t). (5.36)

Thus, the first constraint in (5.36) differs now from the one found in [161] as a

result of the introduction of an explicit time-dependent mass. As we show next, this

change from a time-independent to a time-dependent mass permits us to keep the

time τ and the coordinate χ to be real for more generic time-dependent coefficient

functions. Taking a general form for the mass as

M(t) = mσ(t)n, (5.37)

allows us to easily distinguish between the time-independent and time-dependent

cases, with the former obtained for n = 0. The first constraint in (5.36) is now

solved by

τ(t) =

∫ t

σ(y)rdy and χ(x, t) =
x+ γ(t)

σ(t)s
, (5.38)

where we identify n = −r − 2s. Using these expressions in the second constraint in

(5.36) yields the equation

σr+2s h

m

Ax

A
− iγt + is(x+ γ)

σt
σ

+ 2αx = 0, (5.39)
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which may be solved by

A(x, t) = exp

{
imσ−1−r−2s

ℏ

[
(σγt − sγσt)x+

(
iασ − 1

2
sσt

)
x2 + δ(t)

]}
(5.40)

where δ(t) is a complex valued function corresponding to the integration constant

in the x integration. Proceeding with these expressions to the third constraint in

(5.36) yields

− iℏqσ
1+r+2sσt

2
−m

{
γω2σ2r+2 − σ[r + 2s]γtσt + γs

[
(r + s+ 1)σ2t − σσtt

]}
x

+ σ2γtt +
1

2
m
{
σ
[
σ
(
4α2 − ω2σ2r +Ω2

)
+ sσtt

]
− s[r + s+ 1]σ2t

}
x2

+
1

2
m
{[
2iασ(r + 2s)σt − 2iσ2αt

]
x2 + 2(1 + r + 2s)δσt − 2σδt + σ2γ2t

}
+
m

2

[
−2sγσγtσt + γ2

(
s2σ2t − ω2σ2+2s

)]
= 0. (5.41)

The x-independent term in (5.41) vanishes for

δ(t) =
γ

2
(σγt − sγσt) + σ1+r+2s

(
c1 −

isℏ
2m

log σ

)
, (5.42)

where c1 is a constant. The term proportional to x2 in (5.41) is a non-linear second

order differential equation in σ. To ensure that σ is real, hence our space-time is

real, we set the imaginary term to be equal too zero

αR[(r + 2s)σt − 4σαI ]− σ(αR)t = 0. (5.43)

This equation is satisfied for

αI =
1

4
∂t ln

(
σr+2s

αR

)
. (5.44)

We notice from here that since αI ∝ ∂t it does indeed transform as αI → −αI under

PT as is required for HS to be PT -symmetric. The terms proportional to x2 and x

vanish for

σtt = σ

(
2αR

(
2Ω2αR + 8α3

R + (αR)tt
)
− 3 (αR)

2
t

2rα2
R

)
+

(
r
2 + 1

)
σ2t

σ
− 2ω2σ2r+1

r
,

(5.45)
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and

γtt =
γ

2r

s
(
16α4

R − 3 (αR)
2
t + 2αR(αR)tt

)
α2
R

+ 4sΩ2

+
(r + 2s)γtσt

σ

− γ

2r

(r + 2s)
(
2ω2σ2r+2 + rsσ2t

)
σ2

, (5.46)

respectively. These equations can be reduced to solvable ones for specific choices of

r, s, αR, αI and γ. We discuss now some special choices.

αI = 0

Setting now αI = 0, we may solve directly for αR in (5.44). We obtain

αR = c2σ
r+2s. (5.47)

Taking the mass to be time-independent and hence α to be time-independent by

setting r = −2s and s = 1, equations (5.45) and (5.46) reduce to

σtt = −4c22σ +
ω2

σ3
− σΩ2 and γtt = −γ

(
4c22 +Ω2

)
, (5.48)

respectively. Both of these equations are solvable, with the first being the nonlin-

ear Ermakov-Pinney equation [138, 139], solved as stated above and the second is

harmonic oscillator solved by

γ = κ1γ1 + κ2γ2, (5.49)

where γ1, γ2 are the two linearly independent solutions (depending here on the choice

of Ω) and κ1, κ2 are constants.

Another interesting choice is to take r = −s−1 with s = −1, in doing so we end

up with

σtt =
4c22
σ3
− σω2 + σΩ2 and γtt = −γ

(
4c22
σ4

+Ω2

)
− 2γtσt

σ
(5.50)

where again the first equation is a version of the non-linear EP equation. How-

ever, now the Ermakov-Pinney equation is real without any restrictions on α(t),

so that also the time τ and the coordinate χ are real. The second equation is a
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damped harmonic oscillator equation, which we may solve explicitly or simply take

the integration constant γ to be zero.

γ = 0

Opting now for the second choice we set γ = 0 and parametrize

αR = σ−2−r, (5.51)

equation (5.45) reduces to

σtt =
−ω2σ2r+1 + 4σ−2r−3 + σΩ2

r + 1
, (5.52)

with α now being genuinely complex

α = αR − i
r + s+ 1

2
∂t ln(σ). (5.53)

Choosing r = 0 or r = −2 results in equation (5.52) being the respective EP equa-

tions given by

σtt =
4

σ3
+ σ

(
Ω2 − ω2

)
or σtt =

ω2

σ3
− σ

(
Ω2 + 4

)
. (5.54)

As we have taken γ = 0 we do not need to pick a concrete value for s.

When setting r = −2 we do not need to choose a concrete form for αR as in this

case equation (5.45) reduces to the Ermakov-Pinney equation

σtt =
ω2

σ3
− fσ, with f = 4α2

R −
3 (αR)

2
t

4α2
R

+
(αR)tt
2αR

+Ω2. (5.55)

γ ̸= 0

When γ ̸= 0, we still have the same parametrization of αR and choices for r as in

the previous section but we now have to restrict s so that equation (5.45) is solvable.

For instance, when r = −2, if we choose s = 1, we have

γtt = −γ(4 + Ω2), (5.56)

which is solvable by (5.49).
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5.4.3 Point transformations Γ̂S
1,2,4 : H

(1,2,4)
0 (χ)→ HS(x, t), time-dependent

mass

Let us now explore the point transformations that result when changing the reference

Hamiltonian, but keeping the target Hamiltonian to beHS(x, t) with time-dependent

mass. Considering now the second constraint in (5.27) together with (5.18)-(5.21)

we can identify the fields Ai(x, t) for the the reference Hamiltonians (6.34)-(5.17).

Solving the constraints we find

A1(x, t) = A2(x, t) = A(x, t), A4(x, t) = A(x, t) exp

[
− iamx(x+ 2γ)

ℏσ2s

]
, (5.57)

such that the Ai(x, t) are identical for the same Bi(x, t). Solving next the third

constraint in (5.27) for (6.34)-(5.17) we notice that we always require (5.44) to

hold in order to ensure that space-time remains real. In contrast, the other time-

dependent functional coefficient δ and the constraining equations for σ and γ vary

for each reference Hamiltonians. We obtain

H
(1)
0 : δ

(1)
0 = δ, σ

(1)
tt = σtt +

2ω2σ1+2r

r
, γ

(1)
tt = γtt +

(r + 2s)ω2γσ2r

r
,

H
(2)
0 : δ

(2)
0 = δ − σ1+r+2s a

2m

∫ t

γσr−s, σ(2) = σ, γ
(2)
tt = γtt −

aσ2r+s

m
,

H
(4)
0 : δ

(4)
0 = δ + 2aσ1+r+2s

∫ t

γσ−1−2s(sγσt − σγt), σ
(4)
tt = σtt +

8a2σ1+2r

r
,

γ
(4)
tt = γtt +

4a2(r + 2s)γσ2r

r
.

Here we understand that σtt and γtt are to be replaced by the right hand sides of

equations (5.45) and (5.46), respectively.

5.4.4 Non-Hermitian invariants from ΓS
i

Having constructed the various point transformations Γj
i that relate the TDSEs

(5.1) and (5.2) for Hj(x, t) and H i
0(χ), respectively, we proceed to the third step in

our scheme and employ the point transformations now to act on H i
0(χ) exclusively,

as specified in (5.5). In this way we obtain directly the invariant IH for the non-

Hermitian Hamiltonian H.

Non-Hermitian invariant from ΓS
0 , time-independent mass

Acting with ΓS
0 , as constructed in section 5.4.1, on H0(χ) we obtain the invariant
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IH(x, t) =
σ2

2m
p2 +m

(
γω2

σ2
+ 2iα(σ2γt − γσσt)− σσtγt + γσ2t

)
x (5.58)

+
1

2
σ [2iασ − σt] {x, p}+

m

2

[
(σt − 2iασ) 2 +

ω2

σ2

]
x2

+σ (σγt − γσt) p+
m

2

(
γ2ω2

σ2
+ γ2σ2t + σ2γ2t − 2γγtσσt

)
.

We verified that the expression for IH in (5.58) does indeed satisfy the Lewis-

Riesenfeld equation (3.2). Thus IH(x, t) is the non-Hermitian invariant or first

integral for the non-Hermitian Hamiltonian H(x, t). We stress that the invariant

has been obtained by a direct calculation and did not involve any assumption or

guess work on the general form of the invariant, which one usually has to make

when solving (3.2) directly.

Non-Hermitian invariant from Γ̂S
0 , time-dependent mass

Similarly acting with Γ̂S
0 , as constructed in section 5.4.2, on H0(χ) we obtain the

invariant

ÎH(x, t) =
σ2s

2m
p2 + (σ−rγt − sγσ−r−1σt)p+

4iσα2
R + rαRσt − σ(αR)t

4αRσr+1
{x, p}

+
4mω2α2

Rσ
2r+2 −m(4σα2

R − irαRσt + iσ(αR)t)
2

8α2
Rσ

2(r+s+1)
x2

+
2γmω2αRσ

2r+2 +m(σγt − sγσt)(4iσα2
R + rαRσtσ(αR)t)

2αRσ2(r+s+1)
x

+
1

2
mσ−2(r+s+1)[γ2ω2σ2r+2 + (σγt − sγσt)2]. (5.59)

Once more we convince ourselves that ÎH(x, t) does indeed satisfy (3.2).

Non-Hermitian invariant from Γ̂S
1,2,4, time-dependent mass

The action of Γ̂S
1,2,4 from section 5.4.3 on H

(1,2,4)
0 (χ) yields the invariants

Î
(1)
H (x, t) =

σ2s

2m
p2 + (σ−rγt − sγσ−r−1σt)p+

4iσα2
R + rαRσt − σ(αR)t

4αRσr+1
{x, p}

−
m(4σα2

R − irαRσt + iσ(αR)t)
2

8α2
Rσ

2(r+s+1)
x2
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+
m(σγt − sγσt)(4iσα2

R + rαRσt − σ(αR)t)

2αRσ2(r+s+1)
x

+
1

2
mσ−2(r+s+1)(σγt − sγσt)2, (5.60)

Î
(2)
H (x, t) =

σ2s

2m
p2 + (σ−rγt − sγσ−r−1σt)p+

4iσα2
R + rαRσt − σ(αR)t

4αRσr+1
{x, p}

+
4mω2α2

Rσ
2r+2 −m(4σα2

R − irαRσt + iσ(αR)t)
2

8α2
Rσ

2(r+s+1)
x2

+
2(aσs + γmω2)αRσ

2r+2 +m(σγt − sγσt)(4iσα2
R + rαRσt − σ(αR)t)

2αRσ2(r+s+1)
x

+
1

2
σ−2(r+s+1)

[
γσ2r+2

(
2aσs + γmω2

)
+m (σγt − γsσt) 2

]
, (5.61)

and

Î
(4)
H (x, t) =

σ2s

2m
p2 + (σ−rγt − sγσ−r−1σt)p+

4iσα2
R + rαRσt − σ(αR)t

4αRσr+1
{x, p}

+
−4m(4a2 − ω2)α2

Rσ
2r+2 −m(4σα2

R − irαRσt + iσ(αR)t)
2

8α2
Rσ

2(r+s+1)
x2

+
−2γm(4a2 − ω2)αRσ

2r+2 +m(σγt − sγσt)(4iσα2
R + rαRσt − σ(αR)t)

2αRσ2(r+s+1)
x

+
1

2
σ−2(r+s+1)

[
m (σγt − γsσt) 2 −mγ2(4a2 − ω2)σ2r+2

]
. (5.62)

Let us now compare the invariants obtained. First of all we notice that all our

invariants can be brought into the form

IH = arp
2 + brp+ (cr + ici) {x, p}+ (dr + idi)x

2 + (er + iei)x+ fr, (5.63)

where we abbreviated the complex time-dependent coefficient functions in IH and

separate them into real and imaginary parts by denoting x = xr+ixi with xr, xi ∈ R,

x ∈ {a, b, c, d, e, f}. When written in this form we notice a very peculiar property

that for all of our invariants the time-dependent coefficient functions are related to

each other as
ei
2br

=
di
4cr

=
ci
2ar

= mαRσ
−r−2s. (5.64)

As we will see in the next subsection this property is responsible for the fact that all

invariants lead to same Dyson map. Notice that when using the conventions as in

(5.63) for the Hamiltonian HS(x, t) and using the same parameterization for M(t)

and α(t), the last relation also holds for the coefficients in the Hamiltonian. We also
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note that if we were to take a → ia in H
(4)
0 (χ), the associated invariant would still

posses the same properties as a only appears squared in it. When comparing the

expressions for the invariants I
(i)
H one needs to keep in mind that the constraining

equations also change with the index i.

5.4.5 Dyson maps and metric operators

We may now carry out the last step in our scheme and construct a Dyson map by

acting adjointly on the invariants IH . We can verify that the Dyson map constructed

in [86] does indeed map IH to a Hermitian invariant. Alternatively, when utilizing

the property (5.64) we may identify the time-dependent Dyson map as

η = exp
(
−mαRσ

−r−2sx2
)
, (5.65)

with the associated Hermitian invariant being given by

Ih = arp
2 + brp+ cr{x, p}+

(
dr + 4m2arα

2
Rσ

−2r−4s
)
x2 + erx+ fr. (5.66)

The corresponding Hermitian Hamiltonian is computed to be

h =
σr+2s

2m
p2 +

(
2mα2

Rσ
−r−2s +

1

2
mσ−r−2sΩ2

)
x2 +

1

4
∂t ln

(
σr+2s

αR

)
{x, p}, (5.67)

which is an extended version of the time-dependent harmonic oscillator with time-

dependent mass. For the special choice αR = σr+2s the coefficient function α(t)

becomes real, the Dyson map becomes time-independent and h reduces to the time-

dependent harmonic oscillator. The metric operator is constructed to be

ρ = η†η = exp(−2mαRσ
−r−2sx2). (5.68)

5.5 The time-dependent harmonic oscillator with com-

plex linear term as the target Hamiltonian

To further illustrate the method and demonstrate the importance of the choice of

H0(χ) we shall be next considering the time-dependent harmonic oscillator with a
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time-dependent complex linear term

HCL(x, t) =
p2

2M(t)
+

1

2
M(t)Ω(t)2x2 + iβ(t)x, M,Ω, β ∈ R (5.69)

which has been previously studied in [87, 164]. As a reference Hamiltonian we take

now H
(3)
0 (χ) as defined in (5.16). We have also considered H0(χ) as a reference

Hamiltonian which leads to a point transformation that renders space-time to be

complex.

5.5.1 Point transformation ΓCL
3 from H

(3)
0 (χ) to HCL(x, t)

We have already identified the equations for B3(x, t) and V3(x, t) for the refer-

ence Hamiltonian H
(3)
0 (χ) in (5.20). Comparing now with the time-dependent

Schrödinger equation for the target Hamiltonian (5.2) in the position representa-

tion, we find the three constraints

τt
mχ2

x

=
1

M(t)
, B(x, t) = 0, V (x, t) =

1

2
M(t)Ω(t)2x2 + iβ(t)x. (5.70)

The first constraint in (5.70) is solved in the same way as in section 5.4.2, i.e.

by equations (5.38), together with (5.37). Substituting these expressions into the

second constraint in (5.70) and then solving for the field A(x, t) yields

A(x, t) = exp

{
imσ−1−r−2s

ℏ

[
(σγt − sγσt)x−

1

2
sσtx

2 + δ(t)

]}
, (5.71)

where δ(t) is a complex time-dependent function associated with the integration

carried out. Next we use all of our expressions obtained in the third constraint in

(5.70), obtaining

−m
[
ω2σ2r+2 + s(r + s+ 1)σ2t − σ

(
sσtt + σΩ2

)]
x2

+ 2iσr+2
(
−bσr+s + iγmω2σr + βσ2s

)
x− γσ2r+2

(
γmω2 + 2ibσs

)
+ 2m

[
σ(r + 2s)γtσt + γs

(
σσtt − (r + s+ 1)σ2t

)
− σ2γtt

]
x− ihsσtσr+2s+1

+m
{
2σt [δ(r + 2s+ 1)− γsσγt] + γ2s2σ2t + σ

[
σγ2t − 2δt

]}
= 0. (5.72)

Firstly we notice that the x-dependent term in (5.72) contains an imaginary term

which would result in space-time becoming complex. However, when setting
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β = bσr−s, (5.73)

the imaginary term vanishes and space-time remains real. Secondly we find that the

x-independent terms in (5.72) vanishes for

δ(t) =
γ

2
(σγt − sγσt) + σ1+r+2s

(
c1 −

isℏ
2m

log σ − i
∫ t bγσr−s

m

)
. (5.74)

Finally, the remaining terms proportional to x2 and x result in the two second order

auxiliary differential equations

σtt =
ω2σ2r+2 − σ2Ω2

sσ
+
(r + s+ 1)σ2t

σ
and γtt =

(r + 2s)γtσt
σ

−γΩ2, (5.75)

respectively. As discussed in the previous section there are different choices of r and

s for which these equations reduce into ones with known solutions. As before, we

shall not pick concrete values for r and s so we keep the derivation of the invariant

and subsequent Dyson map as general as possible.

5.5.2 Non-Hermitian invariant from ΓCL
3

Acting with ΓCL
3 , as constructed in the previous section on H

(3)
0 (χ) we obtain the

invariant

IH(x, t) =
σ2s

2m
p2 + (σ−rγt − γsσ−r−1σt)p−

1

2
sσ−r−1σt{x, p}

+
1

2
mσ−2(r+s+1)

(
ω2σ2r+2 + s2σ2t

)
x2

σ−2(r+s+1)
[
msσt (γsσt − σγt) + σ2r+2

(
γmω2 + ibσs

)]
x

+
1

2
σ−2(r+s+1)

[
m (σγt − γsσt) 2 + γσ2r+2

(
γmω2 + 2ibσs

)]
. (5.76)

We have verified that this expression does indeed satisfy the Lewis-Riesenfeld equa-

tion (3.2).

5.5.3 Time-dependent Dyson map and metric operator

To determine the time-dependent Dyson map associated with the non-Hermitian

invariant (5.76) we use the following abbreviated version of the invariant
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IH = arp
2 + brp+ cr{x, p}+ drx

2 + (er + iei)x+ fr + ifi, (5.77)

using the same conventions as in (5.63).

Making now the general Ansatz for the Dyson map

η(t) = eϵ(t)peλ(t)x, ϵ, λ ∈ R, (5.78)

we compute the adjoint action of the Dyson map on all the operators that appear

in the non-Hermitian invariant. We find that (5.78) maps IH(x, t) indeed to a

Hermitian counterpart when the following constraints are satisfied

ϵ =
arfi

arer − brcr
, λ =

crϵ

ar
, ei =

2(c2r − ardr)fi
brcr − arer

. (5.79)

The time-dependent functions from above do indeed satisfy these equations and

when using the explicit expressions for time-dependent coefficient functions from

(5.76) the time-dependent Dyson map results to

η(t) = exp

(
bσs

mω2
p

)
exp

(
−bsσ

−1−r−sσt
ω2

x

)
, (5.80)

with σ to be determined by the auxiliary equation (5.75). The corresponding Her-

mitian invariant is computed to

Ih(x, t) =
σ2s

2m
p2 + (σ−rγt − γsσ−r−1σt)p−

1

2
sσ−r−1σt{x, p}

+
1

2
mσ−2(r+s+1)

(
ω2σ2r+2 + s2σ2t

)
x2 (5.81)

+mσ−2(r+s+1)
[
γω2σ2r+2 + sσt (γsσt − σγt)

]
x

+
b2+γ2m2ω4σ−2s

ω2 +m2σ−2(r+s+1)
(
γ2s2σ2t + σ2γ2t

)
2m

. (5.82)

Finally we use the Dyson map (5.78) in the time-dependent Dyson equation (2.3)

to compute the corresponding Hermitian Hamiltonian as

h(t) =
σr+2s

2m
p2 +

1

2
mσ−r−2sΩ2x2 +

b2σ−r−2
(
σ2Ω2 − s2σ2t

)
2mω4

, (5.83)

which is a time-dependent harmonic oscillator with a time-dependent free term.
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5.6 Construction of wavefunctions and energy spectra

Now that we have constructed the point transformations between the reference and

target Hamiltonians, and computed a metric for the models we considered, it is

instructive to find the wavefunctions.

5.6.1 The time-dependent Swanson model

Wavefunctions of the reference Hamiltonian

For the purpose of determining the wavefunctions for the time-dependent Swanson

Hamiltonian we choose to use the time-independent harmonic oscillator (5.9) as our

reference Hamiltonian. The full solution to the time-dependent Schrödinger equation

is found through separation of variables

H0(χ)ψ(χ, τ) = iℏ∂tψ(χ, τ) where ψ(χ, τ) = e−iEnτ
ℏ θ(χ) (5.84)

with ξ(χ) satisfying the time-independent Schrödinger equation

H0(χ)θ(χ) = Enθ(χ). (5.85)

The normalised wavefunctions are given by

θ(χ) =

√
1

2nn!

√
mω

πℏ
e−

mω
2ℏ χ2

Hn

(√
mω

ℏ
χ

)
, (5.86)

where Hn(x) denote the Hermite polynomials.

Wavefunctions of the target Hamiltonian

We many now find the solution to the TDSE for the time-dependent Swanson Hamil-

tonian (5.25) by utilising the point transformation. By nature of its construction

the wavefunctions for the target and reference Hamiltonian, ϕ and ψ, respectively

are related via

ψ(χ, τ) = A(x, t)ϕ(x, t), (5.87)

such that

ϕ(x, t) = A−1(x, t)ψ(χ(x, t), τ(t)) (5.88)
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where A(x, t) is given by equation (5.40), and χ(x, t) and τ(t) by (5.38). We have

verified that (5.88) does indeed satisfy the TDSE for the Hamiltonian (5.25).

We may additionally construct the wavefunctions for the Hermitian Hamiltonian

(5.67) satisfying the TDSE

h(t)Θ(x, t) = iℏ∂tΘ(x, t). (5.89)

through

Θ(x, t) = η(t)ϕ(x, t) = η(t)A−1(x, t)ψ(χ(x, t), τ(t)), (5.90)

where η(t) is given by equation (5.65).

Energy spectra

We proceed now to determining the time-dependent expectation values of the energy

operator H̃(t) (2.8). Setting γ(t) = 0 and ℏ = 1 we obtain

En(t) = ⟨Θ|h(t)|Θ⟩ =
(2n+ 1)σ−r−2

16ωα2
R

{
2σ(r + 2s)αRσt(αR)t + 16σ2α4

R − σ2(α2
R)t

+ α2
R

[
4ω2σ2r+2 − r(r + 4s)σ2t + 4σ2Ω2

]}
. (5.91)

These expectation values are guaranteed to be real as σ, αR, r, s,Ω ∈ R.

We shall now present some plots of the instantaneous energy spectra (5.91) for

different choices of αR. Firstly, for the choice r = −2 such that the auxiliary equation

σ satisfies is reduced to (5.55). Choosing f(t) = Ω2(t) we solved the differential

equation for αR(t) and obtain

αR(t) =
4k1

64 + k21(t+ k22)
. (5.92)

Taking the frequency to be time-independent Ω(t) = Ω0 we obtain the solution to

the Ermakov-Pinney equation as (5.55)

σ(t) =
√
A1q21(t) +A2q1(t)q2(t) +A3q2(t)2, (5.93)

where q1(t) and q2(t) are the two linearly independent solutions to the homogeneous

equation

q′′(t) + Ω2
0q(t) = 0, (5.94)
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given by q1(t) = cos(Ω0t) and q2(t) = sin(Ω0t). The constants A1, A2 and A3 are

constrained via

A2
2 − 4A1A3 = −

ω2

W0
(5.95)

where W0 = q1q̇2 − q̇1q2 = constant is the Wronkskian. A plot of the real and finite

energy spectra for different values of n can be found in figure 5.1.

Figure 5.1: The instantaneous energy expectation values (5.91) for r = −2, αR given by
equation (5.92) and A1 = 2, A3 = 1.2, ω = 1.6, Ω0 = 2, k1 = 0.1, k2 = 0.3 and s = 4.

Another interesting choice to consider is that of the time-independent mass which

corresponds to αR = c2 with r = −2s and s = 1. In this case the auxiliary

equation for σ is given by equation (5.48). Taking this time the frequency to be

time-dependent and given by Ω(t) = sin(Ω0t), the solution to equation (5.48) is

given by equation (5.93) where q1 and q2 are the two linearly independent solutions

to the equation

q′′(t) + [4c22 + sin2(Ω0t)]q(t) = 0, (5.96)

given by

q1 = C

(
8c22 + 1

2Ω2
0

,
1

4Ω2
0

,Ω0t

)
and q2 = S

(
8c22 + 1

2Ω2
0

,
1

4Ω2
0

,Ω0t

)
, (5.97)

where C and S denote the even and odd Mathieu functions respectively. The con-

stants A1, A2 and A3 are again constrained by (5.95). Figure 5.2 contains a plot of

the energy expectation values (5.91) for these time-dependences.
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Figure 5.2: The instantaneous energy expectation values (5.91) for αR = c2σ
r+2s with

r = −2s and s = 1 with A1 = 2, A3 = 1.2, ω = 1.6, Ω0 = 2 and c2 = 1.

5.6.2 Harmonic oscillator with complex linear term

Wavefunctions of the reference Hamiltonian

For the harmonic oscillator with complex linear term the reference Hamiltonian

H
(3)
0 (χ) (5.16) is non-Hermitian, we therefore have to employ the time-independent

Dyson equation (2.14) to determine the wavefunctions. This is readily done and we

obtain

η0(χ) = e
b

mω2 P , (5.98)

as a time-independent Dyson map with

h
(3)
0 (χ) = η0(χ)H

(3)
0 (χ)η−1

0 (χ) =
P 2

2m
+

1

2
mω2χ2 +

b2

2mω2
, (5.99)

being the corresponding Hermitian Hamiltonian satisfying the time-independent

Schrödinger equation

h
(3)
0 (χ)ϑ(χ) = Enϑ(χ). (5.100)

We determine the wavefunctions and eigenvalues to be given by

ϑ(χ) =

√
1

2nn!

√
mω

πℏ
e−

mω
2ℏ χ2

Hn

(√
mω

ℏ
χ

)
, (5.101)

and

En = ℏω
(
n+

1

2

)
+

b2

2mω2
, (5.102)
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respectively. The wavefunctions for the reference Hamiltonian H
(3)
0 (χ) satisfying the

time-dependent Schrödinger equation

H
(3)
0 (χ)ψ(χ, τ) = iℏ∂τψ(χ, τ) (5.103)

are then constructed as

ψ(χ, τ) = e−iEnτ
ℏ η−1

0 (χ)ϑ(χ). (5.104)

Wavefunctions of the target Hamiltonian

As before, the wavefunctions ϕ(x, t) of the target Hamiltonian (5.69) are related to

those of the reference Hamiltonian through

ϕ(x, t) = A−1(x, t)ψ(χ(x, t), τ(t)) (5.105)

with A(x, t) being given by (5.71) and χ(x, t) and τ(t) by (5.38). Interestingly here is

that the wavefunctions for the reference Hamiltonian involved the time-independent

Dyson map η0(χ). Under the point transformation ΓCL
3 this transforms as

η0(χ) =
ΓCL
3←→ η0(x, t) = e

bσs

mω2 pe−
bsσ−1−r−sσt

ω2 xe−i
b2sσ−1−rσt

2mω4 . (5.106)

We can now determine the wavefunctions for the Hermitian Hamiltonian satisfying

h(x, t)Θ(x, t) = iℏ∂tΘ(x, t), (5.107)

where Θ(x, t) = η(x, t)ϕ(x, t) with η(x, t) = η(t) in (5.80). Note here that

η−1
0 (x, t)η(x, t) = ei

b2sσ−1−rσt
2mω4 , (5.108)

such that we may write the full wavefunction for h(t) as

Θ(x, t) = ei
b2sσ−1−rσt

2mω4 e−i
Enτ(t)

ℏ A−1(x, t)ϑ(χ(x, t), τ(t)), (5.109)

which we have verified does satisfy (5.107).

Energy spectra
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We now move on to calculating the time-dependent expectation values of the

energy operator H̃(t) (2.8). For simplicity we take γ(t) = 0 and ℏ = 1 and obtain

En(t) = ⟨Θ|h(t)|Θ⟩ =
σ−2−r

4mω4

{
m(2n+ 1)ω3

[
σ2
(
ω2σ2r +Ω2

)
+ s2σ2t

]
(5.110)

+ 2b2
(
σ2Ω2 − s2σ2t

)}
,

where h(t) is given by (5.83). En(t) is guaranteed to be real as σ,Ω, ω, b,m, s, r ∈ R.

For completeness we include here a plot of energies En(t) for a particular time-

dependence. First taking r = −s− 1 with s = 1 the auxiliary equation for σ (5.75)

reduces to

σtt +Ω2σ =
ω2

σ3
. (5.111)

For Ω = cos(Ω0t) the solution to this equation is given by (5.93) with q1 and q2

being the two linearly independent solutions to the equation

q′′(t) + cos2(Ω0t)q(t) = 0, (5.112)

given by

q1 = C

(
1

2Ω2
0

,− 1

4Ω2
0

,Ω0t

)
and q2 = S

(
1

2Ω2
0

,− 1

4Ω2
0

,Ω0t

)
, (5.113)

where C and S denote again the even and odd Mathieu functions. Figure 5.3 contains

Figure 5.3: The instantaneous energy expectation values (5.110) for with r = −s − 1 and
s = 1 with A1 = 3, A3 = 2.5, ω = 1.6, Ω0 = 2, m = 1.5 and b = 0.7.
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a plot of the energies (5.110) for this time-dependence.

5.6.3 From the time-independent to the time-dependent Dyson

map

For the harmonic oscillator with complex linear term we needed to construct the

time-independent Dyson map η0(χ). We notice that when point transformed, and so

it becomes time-dependent, this is an additional Dyson map for the time-dependent

target Hamiltonian corresponding to the Hermitian Hamiltonian

h(x, t) =
σr+2s

2m
p2 +

1

2
mσ−r−2sΩ2x2 +

b2σr

2mω2
, (5.114)

satisfying

h(x, t)Ξ(x, t) = iℏ∂tΞ(x, t). (5.115)

Further to this, we also find that by using the constructed point transformation on

the time-dependent Schrödinger equation for h0(χ)

h0(χ)ξ(χ, τ) = iℏ∂τξ(χ, τ), (5.116)

we obtain the corresponding equation for h(x, t). These relationships for the har-

monic oscillator with complex coupling are summarised in figure 5.4. For this par-

h0(χ) = η0(χ)H0(χ)η
−1
0 (χ),

H0(χ)ψ(χ, τ) = iℏ∂τψ(χ, τ), η0(χ), h0(χ)ξ(χ, τ) = iℏ∂tξ(χ, τ),xyΓCL
3

xyΓCL
3

xyΓCL
3

H(x, t)ϕ(x, t) = iℏ∂tϕ(x, t), η(x, t), h(x, t)Ξ(x, t) = iℏ∂tΞ(x, t),
h(x, t) = η(x, t)H(x, t)η−1(x, t) + i∂tη(x, t)η

−1(x, t)

Figure 5.4: Schematic representation of how the point transformation ΓCL
3 can be used

to construct time-dependent Dyson maps and time-dependent Hermitian Hamiltonians from
their time-independent counterparts for the time-dependent Harmonic oscillator with complex
coupling.

ticular system after having constructed the point transformation ΓCL
3 between the

reference and target Hamiltonian, as well as the time-independent Dyson map for

the reference Hamiltonian, we were able to use the point transformation to con-

struct the time-dependent Dyson map and equivalent Hermitian Hamiltonian for
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the target Hamiltonian. This has completely bypassed the time-dependent Dyson

equation as well as the need for the construction of the invariants. It remains an

open question as to whether one can formulate general criteria for which systems

this can be applied to.

5.7 Point transformations between Bender-Boettcher

Hamiltonians

For the purpose of computing a non-Hermitian invariant associated with a time-

dependent non-Hermitian Hamiltonian, the reference Hamiltonian need not be Her-

mitian, as demonstrated in the previous section, or exactly solvable. We shall now

construct point transformations utilising the Bender-Boettcher potentials to demon-

strate this.

5.7.1 The reference and target Hamiltonians

We shall be considering the time-independent harmonic oscillator with a general

Bender-Boettcher potential

H
(n)
0,BB(χ) =

P 2

2m
+

1

2
mω2χ2 + λχ2(iχ)n, (5.117)

as the reference Hamiltonian. The time-dependent counterpart

H
(n)
BB(x, t) =

p2

2M(t)
+

1

2
M(t)Ω(t)2x2 + Λ(t)x2(ix)n, (5.118)

will be the target Hamiltonian. Generally neither of these Hamiltonians are exactly

solvable.

The general form of the point transformed differential equation (5.11) associated

with this new reference Hamiltonian (5.117) and the explicit form of B0(x, t) (5.12)

remains the same yet the explicit form of V0(x, t) (5.13) differs

VBB(x, t) = V0(x, t) + λχ2(iχ)nτt. (5.119)

5.7.2 Point transformations ΓBB
n from H

(n)
0,BB(χ) to H

(n)
BB(x, t)

We compare the point transformed differential equation (5.11) for the reference
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Hamiltonian (5.117) with the TDSE associated with the target Hamiltonian

(5.118)

iℏϕt +
ℏ2

2M(t)
ϕxx −

1

2
M(t)Ω(t)2x2ϕ− Λ(t)x2(ix)nϕ = 0. (5.120)

This comparison leads to the following constraints

τt
mχ2

x

=
1

M(t)
, BBB(t) = 0, VBB(t) =

1

2
M(t)Ω(t)2x2 + Λ(t)x2(ix)n. (5.121)

The first two constraints are solved in the same way as in (5.5.1), that is by equations

(5.38), (5.37) and (5.40) yet we chose to take γ(t) = 0 for simplicity such that A(x, t)

is now given by

A(x, t) = exp

[
imσ−1−r−2s

ℏ

(
δ − 1

2
sσtx

2

)]
, (5.122)

where δ(t) is again an integration constant that needs to be determined. Using all

of the expressions in third constraint in (5.121) yields

σ2−r−2s

2

{
σ
[
msσtt − σ(2λσ2r(ixσ−s)n +mσ2rω2 −mΩ2 − 2(ix)nσr+2sΛ)

]}
x2

+
σ−2−r−2s

2

{
σt[2m(1 + r + 2s)δ − iℏσ1+r+2s]− 2mσδt

}
− ms(1 + r + s)σ2−r−2sσ2t

2
x2 = 0. (5.123)

We first notice that the non-Hermitian terms can be eliminated by setting

Λ = λσr−2s−ns. (5.124)

The x-independent terms vanish for

δ(t) = σ1+r+2s

(
c1 −

isℏ
2m

log σ

)
. (5.125)

The remaining terms which are proportional to x2 vanish with σ satisfying the

auxiliary equation

σtt =
ω2σ2r+2 − Ω2σ2

sσ
+

(r + s+ 1)σ2t
σ

. (5.126)

As detailed in previous sections there are several choices of r and s for which the
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auxiliary equation reduces to one with known solutions.

5.7.3 Non-Hermitian invariants from ΓBB
n

If we now act with the point transformations ΓBB
n on the reference Hamiltonians

(5.117) we obtain the invariants

I
(n)
H,BB =

σ2s

2m
p2 − 1

2
sσ−r−1σt{x, p}

+
1

2
σ−2(1+r+s)

{
σ2+2r

[
mω2 + 2λ

(
ixσ−s

)n]
+ms2σ2t

}
x2 (5.127)

We have verified that this expressions does satisfy the Lewis-Riesenfeld equation

(3.2) for the Hamiltonians (5.118).

5.7.4 The time-dependent anharmonic quartic oscillator

An interesting case to consider here now is the anharmonic oscillator. Taking r = −2,

s = 1 (time-independent mass), Ω(t) = 0 and n = 2 the target Hamiltonian (5.118)

and corresponding non-Hermitian invariant (5.127) take the form

H
(2)
BB =

p2

2m
− λ

σ6
x4, (5.128)

and

I
(2)
H,BB =

σ2

2m
p2 − σσt

2
{x, p}+ 1

2

(
mω2

σ2
+mσ2t

)
x2 − λ

σ4
x4, (5.129)

respectively. The auxiliary equation (5.126) reduces to

σtt =
ω2

σ3
, (5.130)

which has solutions

σ = ±
√

(ω2 + c22c
2
3) + c22t

2 + 2c22c3t√
c2

, (5.131)

where c2, c3 are constants of integration. This solution for the time-dependence of

the system directly aligns with the one recovered when determining the Dyson map

for the time-dependent anharmonic oscillator without mass term in Chapter 4 (4.30)

if we identify
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κ0 = ω2 + c2c
2
3, κ1 = 2c2c3, κ2 = c2, λ =

1

64
, m =

1

2
. (5.132)

We can define the invariant (5.129) in the lower half complex plane by using

the contour x→ −2i
√
1 + ix which was used by Jones and Mateo [74] to define the

anharmonic oscillator in the lower half complex plane

I
(2)
LH = σ2p2 +

(
2iσσt −

1

2
σ2
)
p+

1

4σ4
x2 − i

2σ4
(
1 + 2ω2σ2 + 2σ4σ2t

)
x

− σσt{x, p}+
1

2
iσ2{x, p2} − 1

4σ4
− ω2

σ2
− 1

2
iσσt − σ2t . (5.133)

This expression is indeed an invariant for the Hamiltonian (5.128) when it has also

been defined on the lower half complex plane using the contour x → −2i
√
1 + ix

and has set λ and m according to (5.132).

We have verified that the Dyson map detailed by equations (4.20) and (4.28) does

indeed map the invariant (5.133) to the Hermitian invariant for the Hamiltonian

(4.32) with m = 0. More interestingly, we are now able to find an additional Dyson

map for the time-dependent anharmonic oscillator given that it is much easier to

solve for time-dependent Dyson maps on the level of the invariant. We find that

η(t) = eα(t)p
3
eβ(t)xeγ(t)p+iδ(t)p, (5.134)

where

α =
2σ6

3
, β = −σt

σ
, γ = −1− 2ω2σ2, δ =

[c4 − 1
2 ln(σ)]σ

σt
(5.135)

is a new Dyson map which when adjointly acting on (5.133) produces the Hermitian

invariant

I
(2)
h = ηI

(2)
LHη

−1 = σ8p4 − 2ω2σ4p2 − 1

2
σ2p+

1

4σ4
x2 +

δ

2σ4
x+

δ

4σ4
+ ω4. (5.136)

We now use the Dyson map (5.134) in the TDDE (2.3) to compute the Hermitian

Hamiltonian
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h = σ6p4 − 2ω2σ2p2 +
(2c4 − ln(σ))

(
σ2σ2t + ω2

)
2σ2σ2t

p+
1

4σ6
x2

− ln(σ)− 2c1
4σ5σt

x+
σt
σ
{x, p} − ω4

σ2
+

(ln(σ)− 2c1)
2

16σ4σ2t
− 2ω2σ2t , (5.137)

which differs from the previously found solution in [4]. The point transformation,

whilst increasing the number of steps taken to determine the time-dependent Dyson

map have drastically reduced the difficulty in obtaining one.

5.8 Conclusions

We have demonstrated that point transformations can be utilized to construct non-

Hermitian invariants for non-Hermitian Hamiltonians. In turn these invariants may

then be used to construct Dyson maps simply in form of similarity transformations,

which automatically satisfy the time-dependent Dyson equation (2.3). Thus we

have bypassed solving this more complicated equation directly. When starting from

an exactly solvable reference Hamiltonian the scheme yields also the solution for

the TDSE of the target Hamiltonian. By construction the solutions only form an

orthonormal system when equipped with a metric operator that is obtained trivially

from the constructed Dyson map. We have shown that several different reference

Hamiltonians may lead to the same Dyson map. In addition to this we have shown

that for the purpose of producing an invariant for a time-dependent non-Hermitian

system that the reference Hamiltonian need not be exactly solvable.

Additionally, for the harmonic oscillator with complex coupling we have demon-

strated a remarkable feature of the point transformation in that it allowed for the

construction of a time-dependent Dyson map from a time-independent one. Further

to this, we were also able to employ the point transformation to construct the time-

dependent Hermitian counterpart to the non-Hermitian Hamiltonian. This bypassed

the need for the time-dependent Dyson equation and the invariants.

Finally we applied the approach to the more complicated model of the time-

dependent anharmonic quartic oscillator. Once we had obtained the invariant for

the non-Hermitian system we defined it on a contour in the lower complex plane.

We were then able to more easily determine a new Dyson map for this system. We

now have two different Dyson maps for the anharmonic quartic oscillator which both
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have the same auxiliary equation. In Chapter 7 we will again revisit this model to

determine an infinite series of Dyson maps from the two solutions we have already

found.
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Chapter 6

Time-dependent perturbation

theory for the metric

In this chapter we propose a perturbative approach to determine the time-dependent

Dyson map and the metric operator associated with time-dependent non-Hermitian

Hamiltonians. We will apply this method to a pair of explicitly time-dependent two

dimensional harmonic oscillators that are weakly coupled to each other in a PT -

symmetric fashion. The non-Hermitian couplings we consider will be of the type

i(xy + pxpy) and ipxpy. The former of these models can be described by an algebra

comprised of four generators with the latter requiring a more complicated ten dimen-

sional algebra. We will then consider the strongly coupled explicitly time-dependent

negative quartic anharmonic oscillator potential for which we have already come

across twice in this thesis in chapters 4 and 5. We demonstrate that once the per-

turbative Ansatz is set up the coupled differential equations resulting order by order

may be solved recursively in a constructive manner, thus bypassing the need for

making any guess for the Dyson map or the metric operator. Exploring the ambi-

guities in the solutions of the order by order differential equations naturally leads

to a whole set of inequivalent solutions for the Dyson maps and metric operators

implying different physical behaviour as demonstrated for the expectation values of

the time-dependent energy operator.

6.1 Motivation

Both in the time-independent and time-dependent scenario the metric ρ is the key
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quantity that needs to be determined when studying non-Hermitian systems. If this

quantity is not defined then one cannot construct a positive definite inner product,

calculate observables, or root the non-Hermitian theory in a well defined Hilbert

space [1, 140, 141, 165]. The metric is therefore required for a physical interpretation

of a non-Hermitian system and so having a systematic way to determine it is vital.

If a non-Hermitian Hamiltonian has no explicit time-dependence, then one would

usually solve either the time-independent quasi-Hermiticity relation directly for ρ

or the time-independent Dyson equation for η and construct the metric through

ρ = η†η (2.14). For many models this approach has led to the Dyson map being

exactly known, see for e.g. [90, 93, 94, 96]. The solvability of these models however

is rare trait and perturbative approaches need to be applied instead. Consider for

example the non-Hermitian time-independent complex cubic potential V = ix3: no

exact solution for the metric is known and up to now it is in fact only calculated

perturbatively [59, 99]. This perturbative approach has additional benefits for when

there does exist an exact solution. The systematic method allowed Jones and Mateo

[74] to calculate the exact metric for unstable anharmonic oscillator as we discussed

in chapter 4.

For a time-dependent non-Hermitian system one would similarly solve either the

time-dependent quasi-Hermiticity relation (2.4) or time-dependent Dyson equation

(2.3) directly for the metric ρ(t) and Dyson map η(t), respectively. Alternatively,

one may utilize the Lewis-Riesenfeld method of invariants [89] to reduce the problem

of solving for the Dyson map to one of a similarity transformation [6, 51, 87, 88],

which has been demonstrated in chapter 5. As in the time-independent case there are

many exact solutions for the metric and Dyson map [2, 4, 6, 69, 75–77, 86, 166] which

usually rely on making inspired guesses for the Ansatz. In contrast, the powerful

feature of the time-independent perturbative approach mentioned above is that it

is entirely constructive and may be solved order by order. No such perturbative

approach has been developed in the time-dependent regime. We therefore propose

in this chapter a method to determine the time-dependent metric for time-dependent

non-Hermitian systems using perturbation theory.

6.2 Time-dependent perturbation theory

In chapter 4 section 4.2.2 we introduced time-independent perturbation theory for
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determining the time-independent Dyson map. In this section we shall pro-

pose a similar procedure as in the time-independent case, however, we solve the

time-dependent quasi-Hermiticity relation in (2.4) for ρ(t) rather than the time-

independent Dyson equation for η(t). We separate the Hamiltonian as

H(t) = h0(t) + iϵh1(t), with h0(t) = h†0(t), h1(t) = h†1(t), (6.1)

with ϵ ≪ 1 being a time-independent expansion parameter. By comparing with

the time-independent case let us now motivate our Ansatz for the perturbative

version of the time-dependent Dyson map. First we note that the operators q̌n in

(4.13) might consist of a sum of operators with different amounts of terms at each

order. Thus they may be expanded further at each order in terms of operators q̃
(n)
i

as q̌n → 2
∑Nn

i=1 γ̃
(n)
i (t)q̃

(n)
i with real coefficient functions that become now time-

dependent γ
(n)
i (t). The factor 2 is introduced for convenience and will be useful

below. The upper limit of the sum Nn takes into account that we may need different

amounts of operators at each order in ϵ. Then with the introduction of time, the

operator q in (4.13) is replaced by

q(t) = 2
∞∑
n=1

Nn∑
i=1

ϵnγ̃
(n)
i (t)q̃

(n)
i . (6.2)

This version is highly unsuitable for the time-dependent case as we have to compute

∂tη(t) or ∂tρ(t) in equations (2.3) and (2.4). In general this calculation is compli-

cated for expressions of the form eÃ(t)+B̃(t)+C̃(t)+... with non-vanishing commutators

[Ã(t), B̃(t)], [Ã(t), C̃(t)] , ... We therefore factorize the exponential with a sum in

its argument into a product of exponentials eA(t)eB(t)eC(t) . . .. The explicit relations

between the operators Ã, B̃, C̃,. . . and the A, B, C,. . . are usually very compli-

cated, see for instance equations (6) and (7) in reference [77]. Assuming now in

addition that at each order the operators q̃
(n)
i belong to the same closed algebra

with generators qi, for i = 1, . . . , j, we can simply convert (6.2) into

q(t) = 2

j∑
i=1

k∑
n=1

ϵnγ
(n)
i (t)qi, (6.3)

where we also swapped the two sums and terminated the second sum at some finite

87



limit k. We can now factorize the Dyson map as

η(t) = eq(t)/2 =

j∏
i=1

exp

(
k∑

n=1

ϵnγ
(n)
i (t)qi

)
=

j∏
i=1

k∏
n=1

exp
(
ϵnγ

(n)
i (t)qi

)
. (6.4)

The product in (6.4) is understood to be ordered
∏j

i=1 ai = a1a2 . . . aj . The precise

relations between the γ
(n)
i (t) and the γ̃

(n)
i (t) are left unspecified, but these would

only be relevant if one takes the expression in (6.2) as a starting point. Instead

one may simply view the factorized Ansatz (6.4) as more fundamental. The limits

j, k and the generators qi may be pre-selected leaving the time-dependent coefficient

functions γ
(n)
i (t) as the unknown quantities that need to be determined. Taking the

generators to be Hermitian qi = q†i , the metric acquires the form

ρ(t) = η(t)†η(t) =

1∏
i=j

[
1∏

n=k

exp
(
ϵnγ

(n)
i qi

)] j∏
i=1

[
k∏

n=1

exp
(
ϵnγ

(n)
i qi

)]
, (6.5)

where
∏1

i=j denotes the reverse ordered product, that is
∏1

i=j ai = ajaj−1 . . . a1. For

k = 1 the relevant terms in the metric are therefore identified to be

ρ(1)(t) =

 1∏
i=j

exp
(
ϵγ

(1)
i qi

)[ j∏
i=1

exp
(
ϵγ

(1)
i qi

)]
. (6.6)

Upon substituting this expression into the time-dependent quasi-Hermiticity relation

in (2.4), and expanding up to first order in ϵ we obtain the first order differential

equation

ih1 +

j∑
i=1

(
γ
(1)
i [qi, h0] + iγ̇

(1)
i qi

)
= 0. (6.7)

We observe from this equation that we can multiply the Dyson map by a factor

involving a time-independent phase that commutes with the Hermitian part of the

Hamiltonian. This is analogous to time-independent first order equation (4.14),

which can be retrieved from (6.7) by setting the time-derivative terms to zero with

j = 1 and γ
(1)
1 = 1/2.

To second order the relevant metric results to

ρ(2)(t) =

1∏
i=j

[
1∏

l=2

exp(ϵlγ
(l)
i qi)

]
j∏

i=1

[
2∏

l=1

exp(ϵlγ
(l)
i qi)

]
, (6.8)

where this time we have only kept terms up to order ϵ2 in the argument of the
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exponential function. We substitute this into the time-dependent quasi-Hermiticity

relation in (2.4), and only keep terms that are proportional to ϵ2, obtaining

j∑
i=1

2

j∑
r=1, ̸=i

(
γ
(1)
i γ(1)r [qr, [qi, h0]] + iγ̇

(1)
i γ(1)r [qr, qi]

)
+ (γ

(1)
i )2[qi, [qi, h0]]


+ 2

j∑
i=1

(
γ
(2)
i [qi, h0] + iγ

(1)
i [q1i , h1] +

1

2!
(γ

(1)
i )2[qi, [qi, h0]] + iγ̇

(2)
i qi

)
= 0 (6.9)

The equations resulting from higher order in ϵ can be derived in a closely related

fashion. Similar to the time-independent case, these equations can be solved recur-

sively. In contrast, we find here that the even ordered equations are also important,

as will be demonstrated below.

Some remarks are needed with regards to the Ansatz made for the perturbative

series. First of all we assumed here that η(t) is Hermitian in (6.5), which is not

necessary and in fact implies that we are missing some of the solutions as we shall

see below. The second point to notice is that we have not made any assumptions

about the operators in the exponentials, which are in turn determined by (6.7),

(6.8) and the corresponding higher order equations. Nonetheless, we made some

assumptions about the form of the products in (6.4) as explained and motivated

above. We also need to make an assumption about the limits in the product. Let us

now demonstrate for a concrete example that the recursive solutions of the order by

order equations (6.7), (6.8), . . . do indeed lead to meaningful solutions of the time-

dependent quasi-Hermiticity relation in (2.4). As it clear from the above equations,

the solutions procedure for the time-dependent case is much more involved than in

the time-independent case. However, the above and especially the examples below

demonstrate that one may indeed solve the equations recursively order by order.

6.3 Time-dependent coupled non-Hermitian harmonic

oscillators

Throughout this thesis we will be performing an extensive analysis on two dimen-

sional time-dependent harmonic oscillators with complex coupling. In particular

we will be focusing on harmonic oscillators where the non-Hermitian couplings are

i(xy + pxpy) and ipxpy. The Hamiltonians are given by

89



H1(t) =
a(t)

2

(
p2x + x2

)
+
b(t)

2

(
p2y + y2

)
+ i

λ(t)

2
(xy + pxpy) +

µ(t)

2
(xpy − ypx) ,

(6.10)

and

H2(t) =
a(t)

2

(
p2x + x2

)
+
b(t)

2

(
p2y + y2

)
+ iΛ(t)pxpy, (6.11)

respectively, and involve the time-dependent coefficient functions a(t), b(t), λ(t), µ(t),

Λ(t) ∈ R. These non-Hermitian Hamiltonians are symmetric with respect to two

different PT -transformations, [PT ±, H1,2] = 0, where the antilinear maps are given

by PT ± : x → ±x, y → ∓y, px → ∓px, py → ±py, i → −i. The Hamiltonian (6.10)

generalizes the system previously studied in [51] for µ = 0 and a = b.

The Hamiltonians (6.10) and (6.11) can be re-expressed in terms of ten Hermitian

generators given by

Kz
± =

1

2
(p2z ± z2), Kz

0 =
1

2
{z, Pz}, J± =

1

2
(xpy ± ypx), I± =

1

2
(xy ± pxpy),

(6.12)

where z = x, y. As laid out in [51, 69], we then obtain a closed algebra with non-

vanishing commutation relations

[Kx
0 ,K

x
±] = 2iKx

∓, [Ky
0 ,K

y
±] = 2iKy

∓, [Kx
+,K

x
−] = 2i, (6.13)

[Ky
+,K

y
−] = 2iKy

0 , [Kx
0 , J±] = −iJ∓, [Ky

0 , J±] = iJ∓, (6.14)

[Kx
0 , I±] = −iI∓, [Ky

0 , I±] = −iI∓ [Kx
±, J+] = ±iI∓, (6.15)

[Ky
±, J+] = ±iI∓, [Kx

±, J−] = ∓iI±, [Ky
±, J−] = ±iI±, (6.16)

[Kx
±, I+] = ±iJ∓, [Ky

±, I+] = −iJ∓, [Kx
±, I−] = ∓iJ±, (6.17)

[Ky
±, I−] = −iJ±, (6.18)

[J+, J−] =
i

2
(Kx

0 −K
y
0 ), [I+, I−] = −

i

2
(Kx

0 +Ky
0 ), (6.19)

[J+, I±] = ±
i

2
(Kx

∓ +Ky
∓), [J−, I±] = ±

i

2
(Kx

∓ −K
y
∓). (6.20)

The PT -symmetry that leaves this algebra invariant manifests itself as

PT ± : Kx,y
0 → −Kx,y

0 , Kx,y
± → Kx,y

± , I± → −I±, J± → J±, i→ −i,

(6.21)
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and the Hamiltonians (6.10) and (6.11) are now re-expressed as

H1(t) = a(t)Kx
+ + b(t)Ky

+ + iλ(t)I+ + µ(t)J−, (6.22)

and

H2(t) = a(t)Kx
+ + b(t)Ky

+ + iΛ(t) (I+ − I−) , (6.23)

respectively.

In the following two sections we shall be using the time-dependent perturba-

tion theory laid out above to determine metrics and hence the Dyson map for the

oscillators with an i(xy + pxpy) and ipxpy coupling.

6.4 i(xy + pxpy) coupled oscillators

As we only require a subalgebra of (6.13)-(6.20) for this model we simplify our

notation here by rewriting the Hamiltonian (6.22) as

H1(t) = a(t)K1 + b(t)K2 + iλ(t)K3 + µ(t)K4, (6.24)

where we have identified K1 = Kx
+,K2 = Ky

+,K3 = I+,K4 = J−. These four gener-

ators form a closed subalgebra on their own satisfying the commutation relations

[K1,K2] = 0, [K1,K3] = iK4, [K1,K4] = −iK3,

[K2,K3] = −iK4, [K2,K4] = iK3, [K3,K4] = i(K1 −K2)/2. (6.25)

Denoting c(t) := a(t)− b(t), we shall be considering the three different cases for

H1(t), characterized as:

case 1 : c(t) = 0 and µ(t) = 0, (6.26)

case 2 : c(t) ̸= 0 and µ(t) = 0, (6.27)

case 3 : c(t) = 0 and µ(t) ̸= 0. (6.28)

The first order perturbation equation (6.7) that needs to be satisfied has many

different types of solutions for each of these cases. Therefore we shall present the

different solutions in separate sections below. We will also discuss the possibility

of η† ̸= η captured by letting some of the coefficient functions γ
(l)
i to be purely
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imaginary.

As noticed in [2, 51] and discussed in chapter 2, an interesting feature of the

explicitly time-dependent systems is that the spontaneously broken regime of the

time-independent system becomes physical. To see whether this is also the case

here we briefly discuss the time-independent version of the Hamiltonian (6.24) with

ȧ = ḃ = λ̇ = µ̇ = 0 in order to create a benchmark for the PT -broken and PT -

symmetric regions in the parameter space. Taking the Dyson map to be of the form

η = exp(θK4), with θ = arctanh

(
−λ
c

)
, (6.29)

and acting adjointly on H leads to the Hermitian Hamiltonian

h = ηH1η
−1 =

1

2
(a+ b) (K1 +K2) +

1

2

√
c2 − λ2(K1 −K2) + µK4, (6.30)

with eigenvalues

En,m =
1

2
(1 + n+m)(a+ b) +

1

2
(n−m)

√
c2 − λ2

√
1 +

µ2

c2 − λ2
. (6.31)

We notice for the cases 1 and 3, that is when c = 0, the Dyson map is ill-defined

and also the eigenvalues are complex so that these two cases are always in the spon-

taneously broken PT -regime. For case 2 we identify a PT -symmetric regime when

|λ| < |c| and a spontaneously broken regime otherwise. Let us now demonstrate that

the spontaneously broken PT -regimes can become physical when an explicit time-

dependence is introduced. We need to treat the cases 1 and 2 separately from the

case 3, as we find that the perturbative expansions for the metric have no common

overlap.

6.4.1 Metric and Dyson maps with µ(t) = 0, cases 1 and 2

We will now show how the above perturbative equations can be solved systematically

order by order in ϵ. We treat here the non-Hermitian term as a small perturbation

and set λ(t) → ϵλ(t) with ϵ ≪ 1. When succeeding in constructing a complete

infinite series we may set ϵ back to 1 depending on the convergence properties.

Focusing at first on the cases 1 and 2 with µ(t) = 0, the first order equation (6.7)

for the Hamiltonian H1(t) in (6.24) becomes
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iλ(t)K3 +

j∑
i=1

(
γ
(1)
i [qi, a(t)K1 + b(t)K2] + iγ̇

(1)
i qi

)
= 0. (6.32)

When compared to the corresponding time-independent equation (4.14), we notice

that besides having to satisfy the commutative structure, the coefficient functions

are not just a set of functions of the parameters in the model, but correspond now

to a system of coupled differential equations. As our algebra is four dimensional we

have now the options to take the limit in (6.32) as j ∈ {1, 2, 3, 4} with corresponding

generators qi ∈ {K1,K2,K3,K4}. Taking now at first j = 4 with q1 = K4, q2 = K3,

q3 = K1 and q4 = K2, the first order equation becomes

i
(
λ+ cγ

(1)
1 + γ̇

(1)
2

)
K3 + i

(
γ̇
(1)
1 − cγ

(1)
2

)
K4 + iγ̇

(1)
3 K1 + iγ̇

(1)
4 K2 = 0. (6.33)

Thus setting the coefficients of all Ki in (6.33) to zero, we obtain two coupled first

order equations for γ
(1)
1 and γ

(1)
2 . Moreover, we conclude that γ

(1)
3 and γ

(1)
4 are time-

independent. As our goal is to find a time-dependent metric and Dyson map we set

them both to zero γ
(1)
3 = γ

(1)
4 = 0. Having now fixed j = 2 and the corresponding

q1 = K4, q2 = K3, we can simply evaluate the higher order equations obtaining the

constraints by setting the coefficient functions to zero. The first equation contains

the key foundational structure for the entire series. Note that here however, the

ordering of q1 = K4 and q2 = K3 is unimportant, the ordering only has an impact

on the higher order equations, which we shall also demonstrate.

6.4.2 Hermitian η with q1 = K4 and q2 = K3

Keeping now the choice of the qi as indicated above, we derive the differential equa-

tions to be satisfied at each order in ϵ. The first five orders of the equations to be

satisfied for the γ
(l)
1 (t) are

ϵ1 : γ̇
(1)
1 = cγ

(1)
2 , (6.34)

ϵ2 : γ̇
(2)
1 = cγ

(2)
2 , (6.35)

ϵ3 : γ̇
(3)
1 = c

[
1

6

(
γ
(1)
2

)3
+ γ

(3)
2

]
, (6.36)

ϵ4 : γ̇
(4)
1 = c

[
1

2

(
γ
(1)
2

)2
γ
(2)
2 + γ

(4)
2

]
, (6.37)

ϵ5 : γ̇
(5)
1 = c

[
1

120

(
γ
(1)
2

)5
+

1

2
γ
(1)
2

(
γ
(2)
2

)2
+

1

2

(
γ
(1)
2

)2
γ
(3)
2 + γ

(5)
2

]
. (6.38)
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For γ2(t) we obtain the first order differential equations

ϵ1 : γ̇
(1)
2 = −cγ(1)1 − λ, (6.39)

ϵ2 : γ̇
(2)
2 = −cγ(2)1 , (6.40)

ϵ3 : γ̇
(3)
2 = c

[
1

3

(
γ
(1)
1

)3
− γ(3)1 −

1

2
γ
(1)
1

(
γ
(1)
2

)2]
, (6.41)

ϵ4 : γ̇
(4)
2 = c

[(
γ
(1)
1

)2
γ
(2)
1 − γ

(4)
1 −

1

2
γ
(2)
1

(
γ
(1)
2

)2
− γ(1)1 γ

(1)
2 γ

(2)
2

]
, (6.42)

ϵ5 : γ̇
(5)
2 = c

[
γ
(1)
1

(
γ
(2)
1

)2
− 2

15

(
γ
(1)
1

)5
+
(
γ
(1)
1

)2
γ
(3)
1 − γ

(5)
1 (6.43)

+
1

6

(
γ
(1)
1

)3 (
γ
(1)
2

)2
− 1

24
γ
(1)
1

(
γ
(1)
2

)4
− 1

2
γ
(3)
1

(
γ
(1)
2

)2
−γ(2)1 γ

(1)
2 γ

(2)
2 −

1

2
γ
(1)
1

(
γ
(2)
2

)2
− γ(1)1 γ

(1)
2 γ

(3)
2

]

These equations reveal the underlying structure that distinguishes the different cases.

Whilst the equations look rather complex, they contain all the information that can

be used to obtain the solutions up to fifth order that can even be extrapolated to

the exact solutions.

Perturbation theory to the exact Dyson map and Hermitian Hamiltonians

We shall now demonstrate how to use these equations to obtain the Dyson map

and hence the metric. Proceeding similarly as for the first order equation (6.33),

we may solve the set of equations (6.34)-(6.38), (6.39)-(6.43) recursively order by

order to obtain the explicit expressions for the coefficient functions γ
(i)
1 (t) and γ

(i)
2 (t),

i = 1, 2, . . .We will not report these expressions here. In the next step we extrapolate

from the first terms by trying to identify a combination of standard functions whose

Taylor expansion matches the first terms in the perturbative series.

For case 1, when c(t) = 0, we notice from (6.33) that also γ̇
(1)
1 = 0 when requiring

Hermiticity of h. As the Hermitian part of the Hamiltonian H(t) is given by h0(t) =

a(t)(K1 + K2), we now have [h0(t),Ki] = 0 so that all of the generators in this

algebra commute with h0(t). As a consequence of this we observe that all orders

of the perturbation equations disappear except for one. This is also seen by setting

c = 0 in (6.34)-(6.43) so that the only relevant equation left is

γ̇
(1)
2 (t) = −λ(t). (6.44)
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Hence, we easily obtain the exact solution

γ
(1)
1 (t) = γ1(t) = k1, γ

(1)
2 (t) = γ2(t) = −

∫ t

λ(s)ds+ k2,

with two integration constants k1, k2.

For case 2, when c(t) ̸= 0, all of the right hand sides of the differential equations

are proportional to c(t), except for the one for γ̇
(1)
2 (t) in (6.39). Assuming λ(t) to

be a real multiple of c(t) the equations become fully integrable and we are able to

solve the equations order by order, even leading to an exact solution. Keeping for

instance terms up to fifth order we obtain

[γ̇1(t)]
[5] =

5∑
i=1

ϵiγ̇
(i)
1 (t) = c(t)

[
ϵ sinh

(
5∑

i=1

ϵiγ
(i)
2 (t)

)][5]
= c(t) {ϵ sinh [γ2(t)]}[5] ,

(6.45)

and

[γ̇2(t)]
[5] =

5∑
i=1

ϵiγ̇
(i)
2 (t)

= −λ(t)− c(t)

{
ϵ

[
cosh

(
5∑

i=1

ϵiγ
(i)
2 (t)

)][
tanh

(
5∑

i=1

ϵiγ
(i)
1 (t)

)]}[5]

= −λ(t)− c(t) (ϵ cosh[γ2(t)] tanh[γ1(t)])[5] . (6.46)

Here the superscript [5] means we only retain terms up to order 5 in ϵ. In fact,

we have verified the validity of the closed form to eleventh order, by extending and

solving the sets of equations (6.34)-(6.38) and (6.39)-(6.43).

Assuming now the expressions in (6.45) and (6.46) to be exact, we may set ϵ = 1

and subsequently solve them for γ1(t) and γ2(t). Letting λ(t) be any real multiple

of c(t), that is

c(t) = pλ(t) where p ∈ R, (6.47)

we are able to solve the relevant equations exactly and express γ2 as a function of

γ1 as

γ2(γ1) = ± arccosh

{
−1

2
sech(γ1)

[
k1 +

2

p
sinh(γ1)

]}
, (6.48)

with k1 being an integration constant. Relation (6.48) is obtained by integrating

γ̇2/γ̇1 = ∂γ2/∂γ1 with respect to γ1. Parameterizing γ1(t) by a new function χ(t) as
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γ1 = arcsinh (χ) , (6.49)

the two differential equations for γ̇1(t) and γ̇2(t) can be converted into the linear

second order equation entirely in χ

χ̈− λ̇

λ
χ̇+ (p2 − 1)λ2χ = k1

p

2
λ2. (6.50)

We solve equation (6.50) by

χ(t) =
e−2
√

1−p2(k2− 1
2

∫ t λ(s)ds)

4 (1− p2)

[(
e2
√

1−p2(k2− 1
2

∫ t λ(s)ds) − pk1
)2

+ (k21 − 4)
(
1− p2

)]
.

(6.51)

Notice that in fact we are solving the two first order equations for γ̇1(t) and γ̇2(t), so

that there are only two integration constants and no additional linear independent

solution for the second order equation (6.50). We have to impose here |p| < 1 to

ensure the reality of χ and hence γ2, γ1.

Having obtained an exact Dyson map, we can invoke the time-dependent Dyson

equation (2.3) and compute the Hermitian counterparts to H1(t), which consists of

two decoupled harmonic oscillators in both cases 1 and 2

h(t) = f+(t)K1 + f−(t)K2. (6.52)

For case 1 we find f±(t) = a and for case 2 we obtain

f±(t) = b+
pλ

2
∓ λ(2χ+ pk1)

4(1 + χ2)
. (6.53)

We may also compute real time-dependent energy expectation values from these

expressions as will be shown below.

In the following three subsections we shall be repeating this process to deter-

mine five further Dyson maps, one Hermitian and four non-Hermitian. While the

procedure for the computation of each map is similar, there are technicalities associ-

ated with obtaining the parametrizations of the time-dependent coefficient functions

γi(t)’s and the auxiliary equations. For the non-Hermitian Dyson maps we also have

to modify the Ansatz in (6.4). In section 6.4.6 the reader can find a summary of all

relevant information for the six Dyson maps we consider here.
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6.4.3 Hermitian η with q1 = K3 and q2 = K4

As mentioned above, the order in which we take our q′is is important and only

manifests in the higher order equations. Therefore we now take q1 = K3 and q2 = K4

and derive the perturbative equations. For γ1(t) we find that the first four orders of

the equations that need to be satisfied are

ϵ1 : γ̇
(1)
1 = −cγ(1)2 − λ, (6.54)

ϵ2 : γ̇
(2)
1 = −cγ(2)2 , (6.55)

ϵ3 : γ̇
(3)
1 = −c

[
1

6

(
γ
(1)
2

)3
+ γ

(3)
2

]
− 1

2

(
γ
(1)
2

)2
λ, (6.56)

ϵ4 : γ̇
(4)
1 = −c

[
1

2

(
γ
(1)
2

)2
γ
(2)
2 + γ

(4)
2

]
− γ(1)2 γ

(2)
2 λ. (6.57)

The first order differential equations for γ2(t) are

ϵ1 : γ̇
(1)
1 = cγ

(2)
1 , (6.58)

ϵ2 : γ̇
(2)
1 = cγ

(2)
1 , (6.59)

ϵ3 : γ̇
(3)
1 = −c

[
1

3

(
γ
(1)
1

)3
− γ(3)1 −

1

2
γ
(1)
1

(
γ
(1)
2

)2]
+ γ

(1)
1 γ

(1)
2 λ, (6.60)

ϵ4 : γ̇
(4)
1 = −c

[(
γ
(1)
1

)2
γ
(2)
1 − γ

(2)
1 −

1

2
γ
(2)
1

(
γ
(1)
2

)2
− γ(1)1 γ

(1)
2 γ

(2)
2

]
(6.61)

+ λ
[
γ
(2)
1 γ

(1)
2 + γ

(1)
1 γ

(2)
2

]
.

We can now extrapolate this information to find another exact solution for the

time-dependent Dyson map.

Perturbation theory to the exact Dyson map and Hermitian Hamiltonians

We may solve the equations (6.54)-(6.57) and (6.58)-(6.61) recursively order by order

and match them to a Taylor expansion of a combination of standard functions as

we did in the previous section. In doing this we obtain

γ̇1 = −λ cosh(γ2)− c sinh(γ2), and γ̇2 = [c cosh(γ2) + λ sinh(γ2)] tanh(γ1),

(6.62)

which are exact. We shall now solve these equations for each case.

For case 1 we have that c(t) = 0. We may solve for γ1 in terms of γ2 and obtain
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γ2(γ1) = arcsinh[k1 sech(γ1)], (6.63)

where k1 is an integration constant. By letting

γ1 = arccosh(χ), (6.64)

we may convert the equations for γ̇1 and γ̇2 into the dissipative Ermakov-Pinney

equation [138, 139]

χ̈− λ̇

λ
χ̇− λ2χ =

k21λ
2

χ3
. (6.65)

The solution to this equation is given by

χ(t) =

[
1 + (1 + k21) sinh

2

(
k2 −

∫ t

λ(s)ds

)]1/2
. (6.66)

For case 2 we must restrict c(t) = λ(t) for the equations to become solvable. We

again express γ1 in terms γ2

γ2(γ1) = ln

[
k2

cosh(γ1)

]
, (6.67)

here k2 is an integration constant. We again let γ1 to be given by equation (6.64)

which then converts the equations for γ̇1 and γ̇2 into

χ̈− λ̇

λ
χ̇ =

k22λ
2

χ3
, (6.68)

which has solution

χ(t) =

[
1 +

(
k2 − k3

∫ t

λ(s)ds

)1/2
]2
. (6.69)

The resulting Hermitian Hamiltonians obtained by substituting the Dyson maps

described by these equations into the TDDE are of the general form (6.52) where

the time-dependent functions are given by

f±(t) = b± λk1
2χ2

, (6.70)

for case 1 and

f±(t) = b+
λ

2
± λk2

2χ2
, (6.71)
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for case 2.

6.4.4 Non-Hermitian η with q1 = K4 and q2 = K1, K2

Making now the choice q1 = K4, q2 = K1,K2 the perturbative expansion yields

γ̇
(l)
1 = γ̇

(l)
2 = 0, so that the entire metric becomes time-independent. However,

η does not have to be Hermitian as assumed in the Ansatz (6.4). Thus allowing

γ
(l)
i ∈ C in general, we now modify the Ansatz to γ

(ℓ)
1 ∈ R, ℓ = 1, 2, . . ., γ

(ℓ)
2 ∈ iR,

ℓ = 0, 1, 2, . . ., γ
(ℓ)
3 = γ

(ℓ)
4 = 0. The perturbative constraints up to order ϵ3 then read

ϵ1 : γ̇
(1)
1 = ±λ sin

(
γ
(0)
2

)
, (6.72)

ϵ2 : γ̇
(2)
1 = ±λγ(1)2 cos

(
γ
(0)
2

)
, (6.73)

ϵ3 : γ̇
(3)
1 = ±λγ(2)2 cos

(
γ
(0)
2

)
∓ 1

2
λ
(
γ
(1)
2

)2
sin
(
γ
(0)
2

)
, (6.74)

and for γ2(t) we obtain

ϵ1 : γ̇
(0)
2 = ±c± λ

cos
(
γ
(0)
2

)
γ
(1)
1

, (6.75)

ϵ2 : γ̇
(1)
2 = ∓ λ

γ
(1)
1

[
γ
(2)
1

γ
(1)
1

cos
(
γ
(0)
2

)
+ γ

(1)
2 sin

(
γ
(0)
2

)]
, (6.76)

ϵ3 : γ̇
(2)
2 = ± λ

γ
(1)
1



(
γ
(1)
1

)2
3

+

(
γ
(2)
1

γ
(1)
1

)2

− γ
(3)
1

γ
(1)
1

− γ
(1)
2

2

 cos
(
γ
(0)
2

)

+

[
γ
(2)
1 γ

(1)
2

γ
(1)
1

− γ(2)2

]
sin
(
γ
(0)
2

)}
, (6.77)

where the upper sign solution is taken for q2 = K1 and the lower sign for q2 = K2.

Perturbation theory to the exact Dyson map and Hermitian Hamiltonians

Once again we may solve these equations order by order for the coefficient functions

γ
(ℓ)
i and subsequently try to extrapolate the series to all orders. We find the exact

constraining equations for γ1(t) and γ2(t) by demanding the non-Hermitian terms

in h(t) to vanish

γ̇1 = ±λ sin (γ2) , and γ̇2 = ±c± λ cos (γ2) coth(γ1).

We may now solve these equations separately in each case.
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For case 1 we can solve for γ1 in terms of γ2 obtaining

γ1(γ2) = arcsinh [k1 sec(γ2)] , (6.78)

with integration constant k1. By letting

γ2 = ∓ arctan(χ), (6.79)

the equations for γ̇1 and γ̇2 are converted into the linear second order differential

equation

χ̈− λ̇

λ
χ̇− λ2χ = 0. (6.80)

We observe that the auxiliary equation (6.50) reduces to equation (6.80) in the limit

p→ 0 which also holds for the solution (6.51). We have two constants of integration

left after having carried out the limit.

For case 2 we set c(t) = pλ(t) as then the equations become solvable. In this case it

is more convenient to express γ2 in terms of γ1

γ2(γ1) = arccos

[
−p coth(γ1)− i

1

2
k1 cosech(γ1)

]
, (6.81)

where k1 is an integration constant that we set to 0 to ensure the reality of γ2.

Letting

γ1 = arccosh (χ) , (6.82)

the equations for γ̇1 and γ̇2 are converted into the linear second order differential

equation

χ̈− λ̇

λ
χ̇+ (p2 − 1)λ2χ = 0. (6.83)

We note that equations (6.83) is obtained from (6.50) in the limit k1 → 0, which

also holds for the solution (6.51). As we have already chosen one of the integration

constants, there is only one left in this case, i.e. k2.

After imposing the constraints, the remaining Hermitian part of the Hamiltonian

is of the same general form as the one reported in (6.52), albeit with different forms

for the coefficient functions

f±(t) = b− λ(±1 +
√

1 + (1 + χ2)k21)

2(1 + χ2)k1
, (6.84)
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in case 1 and

f±(t) = b+
pλχ

2(χ∓ 1)
, (6.85)

in case 2, respectively for q2 = K1. For q2 = K2 we have

f±(t) = b+
λ(∓1 +

√
1 + (1 + χ2)k21)

2(1 + χ2)k1
, (6.86)

in case 1 and

f±(t) = b+ pλ− pλχ

2(χ± 1)
, (6.87)

in case 2.

6.4.5 Non-Hermitian η with q1 = K3 and q2 = K1 or q2 = K2

We now make the choice q1 = K3, q2 = K1,K2 and again modify our Ansatz to

γ
(ℓ)
1 ∈ R, ℓ = 1, 2, . . ., γ

(ℓ)
2 ∈ iR, ℓ = 0, 1, 2, . . ., γ

(ℓ)
3 = γ

(ℓ)
4 = 0. The perturbative

constraints up to order ϵ3 then read

ϵ1 : γ̇
(1)
1 = −λ cos

(
γ
(0)
2

)
, (6.88)

ϵ2 : γ̇
(2)
1 = λγ

(1)
2 sin

(
γ
(0)
2

)
, (6.89)

ϵ3 : γ̇
(3)
1 = λγ

(2)
2 sin

(
γ
(0)
2

)
+

1

2
λ
(
γ
(1)
2

)2
cos
(
γ
(0)
2

)
, (6.90)

and for γ2(t) we obtain

ϵ1 : γ̇
(0)
2 = ±c+ λ

sin
(
γ
(0)
2

)
γ
(1)
1

, (6.91)

ϵ2 : γ̇
(1)
2 = − λ

γ
(1)
1

[
γ
(2)
1

γ
(1)
1

sin
(
γ
(0)
2

)
− γ(1)2 cos

(
γ
(0)
2

)]
, (6.92)

ϵ3 : γ̇
(2)
2 =

λ

γ
(1)
1



(
γ
(1)
1

)2
3

+

(
γ
(2)
1

γ
(1)
1

)2

− γ
(3)
1

γ
(1)
1

− γ
(1)
2

2

 sin
(
γ
(0)
2

)

−

[
γ
(2)
1 γ

(1)
2

γ
(1)
1

− γ(2)2

]
cos
(
γ
(0)
2

)}
, (6.93)

where the upper sign solution is taken for q2 = K1 and the lower sign for q2 = K2.

Perturbation theory to the exact Dyson map and Hermitian Hamiltonians

By solving the equations order by order and extrapolating to all orders we find that
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the exact constraining equations for γ1(t) and γ2(t) to be given by

γ̈1 = −λ cos(γ2), and γ̇2 = ±c+ λ sin(γ2) coth(γ1). (6.94)

We now proceed to solve these equations separately for the two cases.

For case 1 we solve first for γ2 in terms of γ1 and obtain

γ1(γ2) = arcsinh[k1 csc(γ2)], (6.95)

where k2 is an integration constant. By letting

γ2 = arccot(χ), (6.96)

we find that the equations for γ̇1 and γ̇2 may be converted into the linear second

order differential equation given by (6.80). The solution to this differential equation

is given by equation (6.51) in the limit p→ 0.

For case 2 we must set c(t) = pλ(t) to ensure that the equations are solvable. This

time we solve for γ1 in terms of γ2 and obtain

γ2(γ1) = arcsin

{
1

2
[k2 ∓ 2p cosh(γ1)] cosech(γ1)

}
, (6.97)

where k2 is a constant of integration. By letting

γ1 = arccosh(χ), (6.98)

we find that the equations for γ̇1 and γ̇2 may be converted into equation (6.50) which

has solution (6.51).

We may now determine the resulting Hermitian Hamiltonians by substituting

the Dyson maps into the TDDE (2.3). For all the maps the form of the Hermitian

Hamiltonian is given by (6.52). For q2 = K1 we have that the time-dependent

coefficient functions are given by

f±(t) = b+
λ[∓1−

√
1 + k21(1 + χ2)]

2k1(1 + χ2)
, (6.99)

for case 1 and

f±(t) = b+
λ(2pχ− k1)
4(χ∓ 1)

, (6.100)
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for case 2. For q2 = K2 we have

f±(t) = b+
λ[±1−

√
1 + k22(1 + χ2)]

2k2(1 + χ2)
, (6.101)

for case 1 and

f±(t) = b− λ(2pχ+ k2)

4(χ± 1)
, (6.102)

for case 2.

6.4.6 Summary of exact Dyson maps, auxiliary equations and Her-

mitian Hamiltonians

Having made a distinction in the setup of the perturbative treatment between Her-

mitian and non-Hermitian Dyson maps, it has been possible to find six unique exact

Dyson maps and hence metrics for both cases 1 and 2. While we have already pre-

sented the procedure to find all these maps we here present them in a more compact

form for ease of reference. We will also be referring back to this section in subsequent

chapters when we present a method of determining an infinite series of Dyson maps.

In table 6.1 you will find all Dyson maps we have derived using the perturbative

method, all the Dyson maps have the general form

η(t) = exp [γ1(t)q1] exp [γ2(t)q2] , (6.103)

which q1, q1, γ1(t) and γ2(t) given in table 6.1.

q1, q2 γ̇1(t) γ̇2(t)

K4,K3 c sinh(γ2) −c cosh (γ2) tanh (γ1)− λ
K3,K4 − λ cosh (γ2)− c sinh (γ2) [c cosh (γ2) + λ sinh (γ2)] tanh (γ1)

K4, iK1,2 ±λ sin(γ2) ±c± λ cos(γ2) coth(γ1)
K3, iK1,2 −λ cos(γ2) ±c+ λ sin(γ2) coth(γ1)

Table 6.1: Coupled first order differential equation constraints on the time-dependent coeffi-
cient functions γ1 and γ2 in the Dyson map η, for different choices of q1 and q2.

All presented solutions and cases are new, except for the Hermitian case with

q1 = K3, q2 = K4, c = 0 which reproduces a solution found in [51], with the

difference that the Dyson map we are considering here are missing the two factors

involving the time-independent K1 and K2 terms. The parameterization of γ1,2 in

terms of a new function, that we always denote as χ(t), are not obvious and differ
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q1, q2 constraint γ1(χ) γ2(χ) constraint

K4,K3 c = 0 * * *

K4,K3 c = pλ arcsinh (χ) arccosh

(
− k1+2pχ

2
√

1+χ2

)
- k1+2pχ

2
√

1+χ2
≤ 1

K3,K4 c = 0 arccosh (χ) arcsinh
(
k1
χ

)
χ > 1

K3,K4 c = λ arccosh (χ) ln
(
k1
χ

)
χ > 1

K4, iK1,2 c = 0 arcsinh
(
k1
√
1 + χ2

)
∓ arctan(χ) *

K4, iK1,2 c = pλ arccosh (χ) arccos

(
− pχ√

χ2−1

)
χ > 1

K3, iK1,2 c = 0 arcsinh
(
k1
√
1 + χ2

)
arccot(χ) *

K3, iK1,2 c = pλ arccosh (χ) arcsin

(
k1∓2pχ

2
√

χ2−1

)
χ > 1

Table 6.2: Parameterisation of γ1 and γ2 in terms of the auxiliary function χ with additional
constraint on c(t) for different choices of q1 and q2. The constraints in the last column result
from the parameterization. A ∗ indicates no constraint.

for the multitude of maps we consider and are therefore presented in table 6.2.

We may only solve these equations upon imposing an additional restriction on the

time-dependent functions in the Hamiltonian, which are also reported in table 6.2.

We derived a total of five different auxiliary equations for the maps we found. As

discussed in the previous subsections, combining the equations for the constraints

on γ1 and γ2 leads to a set of second order auxiliary equations that we present in

table 6.3.

q1, q2 constraint auxiliary equation

K4, K3 c = 0 none

K4,K3

K3, iK1,2
c = pλ Aux1 : χ̈− λ̇

λ χ̇− (1− p2)λ2χ = k1
p
2λ

2

K3,4, iK1,2 c = 0 Aux2 : χ̈− λ̇
λ χ̇− λ

2χ = 0

K4, iK1,2 c = pλ Aux3 : χ̈− λ̇
λ χ̇− (1− p2)λ2χ = 0

K3, K4 c = 0 Aux4 : χ̈− λ̇
λ χ̇− λ

2χ = k21λ
2 1
χ3

K3, K4 c = λ Aux5 : χ̈− λ̇
λ χ̇ = k21λ

2 1
χ3

Table 6.3: Auxiliary equations to be satisfied by quantities in the parameterisation of the
functions γ1 and γ2 together with the additional constraint on c(t) for different choices of q1
and q2.

Solutions to the auxiliary equations As the last step we disentangle the pa-

rameterisations for γ1 and γ2 by solving the auxiliary equations for χ. We have

encountered one case with no restrictions at all, three types of linear second or-
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der equations and two versions of the nonlinear Ermakov-Pinney (EP) equation

[138, 139].

We already reported the solutions to the linear equations referred to as Aux1 in

table 6.3 in (6.51), from which we obtain the solution to Aux2 in the limit p → 0

and Aux3 in limit k1 → 0. The solutions to Aux4 and Aux5 are given by equations

(6.66) and (6.69) respectively. With time-dependent harmonic oscillators we usually

find that the time-dependence is governed by an Ermakov-Pinney equation, we will

demonstrate that this is still the case when we compute the wavefunctions associated

with all the Hermitian Hamiltonians.

Finally we turn to the resulting Hermitian Hamiltonian h(t) that is always of

the general form of two uncoupled harmonic oscillators (6.52) with different time-

dependent coefficient functions f±(t) as reported in table 6.4.

q1, q2 constraint f±(t) η

K4, K3 c = 0 a η1

K4, K3 c = pλ b+ pλ
2 ∓

λ(2χ+pk1)
4(1+χ2)

η1

K3, K4 c = 0 b± λk1
2χ2 η2

K3, K4 c = λ b+ λ
2 ±

λk1
2χ2 η2

K4, iK1 c = 0 b− λ(±1+
√

1+(1+χ2)k21)

2(1+χ2)k1
η3

K4, iK1 c = pλ b+ pλχ
2(χ∓1) η3

K4, iK2 c = 0 b+
λ(∓1+

√
1+(1+χ2)k21)

2k1(1+χ2)
η4

K4, iK2 c = pλ b+ pλ− pλχ
2(χ±1) η4

K3, iK1 c = 0 b+
λ
[
∓1−
√

1+k21(1+χ2)
]

2k1(χ2+1)
η5

K3, iK1 c = pλ b+ λ(2pχ−k1)
4(χ∓1) η5

K3, iK2 c = 0 b+
λ
[
±1−
√

1+k21(1+χ2)
]

2k1(1+χ2)
η6

K3, iK2 c = pλ b− λ(2pχ+k1)
4(χ±1) η6

Table 6.4: Time-dependent coefficient in the Hermitian Hamiltonian h(t) = f+(t)K1 +
f−(t)K2 together with the additional constraint on c(t) for different choices of q1 and q2.
In the last column we report a short notation for the Dyson maps of the particular cases that
we shall use below for convenience.

6.4.7 Time-dependent eigenfunctions, energies and PT -symmetry

breaking

Next we present the expectation values for the time-dependent energy operator

H̃(t) as defined in equation (2.8). Since each of the Hermitian Hamiltonians con-

structed from any of the similarity transformations simply consists of two uncoupled

105



harmonic oscillators (6.52) with different time-dependent coefficient functions, we

can easily construct the total wavefunction as a product of the wavefunctions for

a harmonic oscillator with real time-dependent mass and frequency of the form

h̃(t) = f(t)/2(p2x + x2). The latter problem was solved originally in [119]. Adapting

to our notation and including a normalization constant, found in [51], the time-

dependent wavefunction is given by

ϕ̃n(x, t) =
eiαn(t)√

2nn!
√
πχ(t)

exp

[(
i

f(t)

χ̇(t)

χ(t)
− 1

χ2(t)

)
x2

2

]
Hn

[
x

χ(t)

]
, (6.104)

where Hn [x] denotes the n-th Hermite polynomial in x and the phase is given by

αn(t) = −
(
n+

1

2

)∫ t

0

f(s)

χ2(s)
ds. (6.105)

The auxiliary function χ(t) is constrained by the dissipative Ermakov-Pinney equa-

tion of the form

χ̈− ḟ

f
χ̇+ f2χ =

f2

χ3
. (6.106)

Interestingly this is equation Aux4 in table 6.3 with λ → if , k21 = i. However, the

solution (6.66) to Aux4 reduces to 1 for these parameter choices. Instead, equation

(6.106) is solved by

χ(t) =

√√
1 + κ2 + c cos

[
2

∫ t

f(s)ds

]
, (6.107)

with integration constant κ. The expectation value of K1 is then computed to

〈
ϕ̃n(x, t)

∣∣∣K1

∣∣∣ϕ̃m(x, t)
〉
=

(
n+

1

2

)√
1 + κ2δn,m. (6.108)

Hence, the solution to the full time-dependent Schrödinger equation for the Hermi-

tian Hamiltonian h(t) in (6.52) is simply the product of the two wavefunctions in

(6.104)

Ψn,m
h (x, y, t) = ϕ̃f+n (x, t)ϕ̃f−m (y, t), (6.109)

from which we calculate the instantaneous energy expectation values

En,m(t) =
〈
Ψn,m

h (t)
∣∣h(t) ∣∣Ψn,m

h (t)
〉
=
∑

i=−,+

fi(t)

(
n+

1

2

)√
1 + κ2i . (6.110)

106



-4 -2 2 4
t

-2

-1

1

2
E0,0(t)

η1

η2

η3

η4

η5

η6

-4 -2 2 4
t

-4

-2

2

4

E0,0(t)

-4 -2 2 4
t

-6

-4

-2

2

4

6

E2,0(t)

η1

η2

η3

η4

η5

η6

-4 -2 2 4
t

-10

-5

5

10

E2,0(t)

Figure 6.1: The instantaneous energy spectra (6.110) associated with the six Dyson maps
for λ(t) = sin(2t) for case 1 with κ+ = κ− = 1, k1 = 2. In panels (a), (c) we have a(t) = cos(t)
and in panels (a), (c) we that a(t) = t/2.

These expectation values are real provided f±(t), κ± ∈ R. For case 1 this is simply

guaranteed by taking the parameter and time-dependent functions to be real. For

case 2 we can not freely choose and have to respect the constraints resulting as

a consequence of the parameterization as reported in table 6.2. As the auxiliary

function χ(t) must be real, the additional constraint |p| < 1 results from the form

of the solution (6.51), together with k1, k2 ∈ R. For concrete choices of the time-

dependent coefficient functions we can now directly evaluate the expressions for

En,m
i (t) corresponding to the Dyson maps ηi(t) explicitly by computing the auxiliary

functions χ(t) and the functions fi(t). The Dyson map η2 leads to somewhat different

behaviour. This is understood by the fact that it can only be constructed at c = 0

and at what would be the exceptional point in the time-independent scenario c = λ.

Hence also the energies exhibit slightly different characteristics. Taking the above

mentioned constraints into account there are large regions in the parameter space

for which all of the energies En,m
i (t) are real and hence physical. We illustrate the

behaviour of these energies for each of the Dyson maps in figues 6.1 and 6.2 for

some concrete choices. First of all we observe from figure 6.1 the crucial feature that

the instantaneous energy is real and finite. Secondly we note that despite sharing
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Figure 6.2: The instantaneous energy spectra (6.110) associated with five Dyson maps for
λ(t) = sin(2t), a(t) = cos(t) for case 2 with κ+ = κ− = 1, k1 = 2.5, k2 = 1. We have p = −0.1,
p = −0.3, p = −0.5, p = −0.9 in panels (a), (b), (c), (d), respectively.

the same non-Hermitian Hamiltonian, the theories related to different Dyson maps

can lead to quite different physical behaviour in the energy. Similar to the time-

independent scenario, this is the known fact that the Hamiltonian alone does not

define a unique definite physical system, but to define the physics one also needs

to specify the metric, i.e. the Dyson map. We note that some of the energies can

become degenerate, En,n
1 = En,n

2 , which can however split when n ̸= m. As is also

expected from the explicit expressions, the differences are more amplified the larger

|n−m|. In case 2, when we have non vanishing values of the parameter p, these

effects are even more amplified as can be seen in figure 6.2. We notice a strong

sensitivity with regard to p.

The constraints resulting from the parameterization, |p| < 1, imply that we are

in the regime with spontaneously broken PT -symmetry when compared to the time-

independent case. Therefore, we observe the same phenomenon that was first noted

in [2, 51], namely that the introduction of a time-dependence into the metric will

mend the spontaneously broken PT -regime so that it becomes physically meaningful.

In this case this manifests itself by the fact that the instantaneous energy is real.
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6.4.8 Metric and Dyson maps with µ(t) ̸= 0, case 3

Finally we also discuss the case 3 by including a Hermitian coupling term into

the Hamiltonian in addition to the non-Hermitian one. This case turns out to be

more complicated to solve, but may also be tackled successfully by our perturbative

method. Keeping the expression (6.6) as our Ansatz for the perturbative expansion

for the metric we obtain the same first order equation (6.7), but now involving

h0(t) = a(t) (K1 +K2) + µ(t)K4 and h1(t) = λ(t)K3. (6.111)

Since all generators of the algebra commute with K1 +K2 the only nontrivial con-

tribution in the commutator of that relation results from the term involving K4 in

h0. Taking now

q1 = K1, q2 = K2, q3 = K3, (6.112)

leads to the following first order equations for the time-dependent coefficient func-

tions

γ̇
(1)
1 (t) = −1

2
µ(t)γ

(1)
3 (t), (6.113)

γ̇
(1)
2 (t) =

1

2
µ(t)γ

(1)
3 (t), (6.114)

γ̇
(1)
3 (t) = µ(t)

[
γ
(1)
1 (t)− γ(1)2 (t)

]
− λ(t). (6.115)

We see immediately that γ
(1)
2 (t) = −γ(1)1 (t) + C, where C is a constant. We take

C = 0 which then also simplifies equations (6.115).

Proceeding now in the same manner as in the previous cases by extrapolation to

the full series, we find that the following two equations need to be satisfied

γ̇1(t) = −
1

2
sinh[γ3(t)]µ(t) and γ̇3(t) = cosh[γ3(t)] tanh[2γ1(t)]µ(t)− λ(t).

(6.116)

Letting λ = pµ, we can express γ3 as a function of γ1

γ3(γ1) = ± arccosh

[
p tanh(2γ1)−

k1
2

sech(2γ1)

]
. (6.117)

Setting

γ1 =
1

2
arcsinh(χ), (6.118)

109



the two first order equations (6.116) are converted into the linear second order

auxiliary equation (6.50) with λ→ µ. The resulting Hermitian Hamiltonian consists

now not only of two decoupled harmonic oscillators, but also contains an additional

Hermitian term in form of K4

h(t) = a(t) (K1 +K2)−
k1 + 2pχ(t)

2 [1 + χ(t)2]
µ(t)K4. (6.119)

As in the previous two cases, we may also construct a non-Hermitian solution

for the Dyson map by means of the perturbative approach. From the first order

equation we observe that also q3 = iK4 with q1 and q2 as in (6.112) leads to a

solution. Extrapolating to all orders yields now the two equations

γ̇1(t) = −
1

2
sin[γ3(t)]λ(t) and γ̇3(t) = µ(t)− cos[γ3(t)] coth[2γ1(t)]λ(t).

(6.120)

As before we must restrict λ(t) = pµ(t) so that we may solve for γ3 in terms of γ1

γ3(γ1) = ± arccos

{
[2− ik2 + 2 cosh (2γ1)] cosech(2γ1)

2p

}
. (6.121)

We set here k2 = 0 in order to obtain a real solution. Letting now

γ1 =
1

2
arccosh(χ), (6.122)

the two first order equations (6.120) are now converted into the linear second order

auxiliary equation (6.50) with λ→ µ and k1 → 0. Similarly as the resulting Hamil-

tonian for the Hermitian Dyson map the resulting Hermitian Hamiltonian contain

a K4 besides the two uncoupled harmonic oscillators

h(t) = a(t) (K1 +K2) +
µ(t)

χ(t)− 1
K4. (6.123)

The generator K4 can be identified with the standard angular momentum operator

Lz and can be eliminated from h(t) in (6.119) and (6.123) by means of a unitary

transformation, see for instance [167]. Subsequently the eigenfunctions and expec-

tation values of the resulting system of two uncoupled harmonic oscillators can be

obtained similarly as for the cases 1 and 2 presented in detail in the previous section.
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6.5 ipxpy coupled oscillators

We shall now seek solutions for the metric using perturbation theory for the Hamil-

tonian H2(t) given by equation (6.23). As we did for the oscillators with the

i(xy + pxpy) coupling we shall briefly consider the time-independent scenario, that

being when ȧ = ḃ = Λ̇ = 0, which cannot be found in the literature. In this case the

TDDE (2.14) becomes time-independent and reduces to a similarity transformation

which is solved by

η = exp(θ1J−) exp(θ2J+), (6.124)

where

θ1 = − arctanh

 Λ

(a− b)
√
1 + Λ2

(a+b)2

 , and θ2 = − arctan

[
Λ

a+ b

]
(6.125)

The corresponding Hermitian Hamiltonian is now decoupled and given by

h =
1

2
(a+ b)

√
1 +

Λ2

(a+ b)2
(
Kx

+ +Ky
+

)
+

1

2

√
(a− b)2 − 4abΛ2√
(a+ b)2 + Λ2

(
Kx

+ −K
y
+

)
+

1

2

Λ2

(a+ b)
√

1 + Λ2

(a+b)2

(
Kx

− +Ky
−
)
. (6.126)

We see from this that the mapping is only valid, that is we have a PT -symmetric

regime, when (a− b)2 > 4abΛ2. For a = ±b the Dyson map becomes ill-defined and

and we are always in the spontaneously broken PT -regime as we were in the previous

section. We shall now demonstrate once again that by introducing an explicit time-

dependence into the parameters a, b,Λ we can make the broken PT -regime physical.

6.5.1 Metrics and Dyson maps

We shall now show how to solve the perturbative equations systematically to deter-

mine a Dyson map. We once again treat the non-Hermitian term as a perturbation

and set Λ(t)→ ϵΛ(t) where ϵ≪ 1. The first order equation (6.7) for the Hamiltonian

(6.23) becomes

iΛ(t)(I+ − I−) +
j∑

i=1

(
γ
(1)
i [qi, a(t)K

x
+ + b(t)Ky

+] + iγ̇
(1)
i qi

)
= 0 (6.127)
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The underlying algebra for this problem is ten dimensional, we therefore have the

options to take the limit in (6.127) as j ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} with correspond-

ing generators qi ∈ {Kx
+,K

y
+, I+, J−, I−, J+,K

x
−,K

y
−,K

y
0 ,K

x
0 } obeying the relations

(6.13)-(6.20). To illustrate all the possible solutions for the metric and Dyson map

we take j = 10 with q1 = Kx
+, q2 = Ky

+, q3 = I+, q4 = J−, q5 = I−, q6 = J+, q7 =

Kx
−, q8 = Ky

−, q9 = Ky
0 and q10 = Kx

0 , the first order equation becomes

iγ̇
(1)
1 Kx

+ + iγ̇
(1)
2 Ky

+ + i
(
Λ + γ̇

(1)
3 + cγ

(1)
4

)
I+ + i

(
γ̇
(1)
4 − cγ

(1)
3

)
J− (6.128)

+ i
(
γ̇
(1)
5 − Λ− dγ(1)6

)
I− + i

(
γ̇
(1)
6 + dγ

(1)
5

)
J+ + i

(
γ̇
(1)
7 + 2aγ

(1)
10

)
Kx

−

+ i
(
γ̇
(1)
8 + 2bγ

(1)
9

)
Ky

− + i
(
γ̇
(1)
9 − 2bγ

(1)
8

)
Ky

0 + i
(
γ̇
(1)
10 − 2aγ

(1)
7

)
Kx

0 = 0,

where c = a − b and d = a + b. By setting all the coefficients of the generators to

zero obtain a set of 8 coupled differential equations. We in fact have two subsets

of coupled differential equations, one involving γ
(1)
3 , γ

(1)
4 , γ

(1)
5 and γ

(1)
6 and the other

set involving γ
(1)
7 , γ

(1)
8 , γ

(1)
9 and γ

(1)
10 . The latter set of coupled differential equations

do not involve Λ and so we set all the time-dependences to zero along with γ
(1)
1

and γ
(1)
2 . Interestingly we can identify different maps made up of just two or three

generators depending upon whether c = 0. For example, by setting c = 0 we see

that the equation (6.128) can be satisfied by only keeping the q3 = I+ and q6 = J+

terms in the Ansatz. Alternatively, with c ̸= 0 we see that if we only keep terms

q4 = J−, q5 = I− and q6 = J+ then equation (6.128) is also satisfied. We shall be

exploring the former of these options in the subsequent sections.

6.5.2 Hermitian η, q1 = I+, q2 = J+, and c = 0

Taking now q1 = I+ and q2 = J+ we may derive the perturbative equations up to

sixth order in ϵ. Interestingly we have to actually modify how we construct our

perturbative series. In the previous section when using two generators in the Ansatz

it led to two sets of perturbative differential equations. For this scenario we end up

with three sets, the first two being a set of coupled differential equations with the

third relating a and Λ via a series. We therefore write our Λ→ ϵΛ instead as

Λ→
j∑

i=1

ϵjΛ(j). (6.129)

This allows us to look for a series solutions relation between a and Λ.

112



For γ1(t) we now obtain as the first five perturbative equations

ϵ1 : γ̇
(1)
1 = −Λ(1), (6.130)

ϵ2 : γ̇
(2)
1 = −Λ(2), (6.131)

ϵ3 : γ̇
(3)
1 =

(
Λ(1)

)3
8a2

− Λ(3), (6.132)

ϵ4 : γ̇
(4)
1 =

3
(
Λ(1)

)2
Λ(2)

8a2
− Λ(4), (6.133)

ϵ5 : γ̇
(5)
1 = −

3
(
Λ(1)

)5
128a4

+
3Λ(1)

(
Λ(2)

)2
8a2

+
3
(
Λ(1)

)2
Λ(3)

8a2
− Λ(5). (6.134)

For γ2(t) we have

ϵ1 : γ̇
(1)
2 = 0, (6.135)

ϵ2 : γ̇
(2)
2 = 0, (6.136)

ϵ3 : γ̇
(3)
2 = −

γ
(1)
1

(
Λ(1)

)2
2a

, (6.137)

ϵ4 : γ̇
(4)
2 = −

γ
(2)
1

(
Λ(1)

)2
2a

− γ
(1)
1 Λ(1)Λ(2)

a
, (6.138)

ϵ5 : γ̇
(5)
2 = −

γ
(3)
1

(
Λ(1)

)2
2a

+

(
γ
(1)
1

)3 (
Λ(1)

)2
6a

+
γ
(1)
1

(
Λ(1)

)4
16a3

− γ
(2)
1 Λ(1)Λ(2)

a
(6.139)

−
γ
(1)
1

(
Λ(2)

)2
2a

− γ
(1)
1 Λ(1)Λ(3)

a
.

The third set of equations we derive relate a to the Λ(i)’s via the γ
(i)
2 ’s, we obtain

ϵ1 : γ
(1)
2 = −Λ(1)

2a
, (6.140)

ϵ2 : γ
(2)
2 = −Λ(2)

2a
, (6.141)

ϵ3 : γ
(3)
2 =

(
Λ(1)

)3
24a3

− Λ(3)

2a
, (6.142)

ϵ4 : γ
(4)
2 =

(
Λ(1)

)2
Λ(2)

8a3
− Λ(4)

2a
, (6.143)

ϵ5 : γ
(5)
2 = −

(
Λ(1)

)5
160a5

+
Λ(1)

(
Λ(2)

)2
8a3

+

(
Λ(1)

)2
Λ(3)

8a3
− Λ(5)

2a
. (6.144)

Now that we have obtained our three sets of perturbative equations we can match

them to some Taylor expansions of standard functions to obtain an exact solution

for the Dyson map.
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Perturbation theory to the exact Dyson map and Hermitian Hamiltonian

We find that by extrapolating the equations (6.130) - (6.134), (6.135) - (6.139) and

(6.140) - (6.144) to all orders and matching with standard functions, we find the

following closed and exact forms for the time-dependences in the Dyson map

γ̇1 = −Λcos(γ2), γ̇2 = sin(γ2) tanh(γ1)Λ, γ2 = − arctan

(
Λ

2a

)
. (6.145)

Given that we already have a concrete form for γ2 it is instructive to use the equations

for γ̇1 and γ̇2 to solve for γ1 in terms of γ2. In doing so we obtain

γ1(γ2) = arccosh

[
−1

2
ic1 csc(γ2)

]
. (6.146)

Choosing now c1 = −2i and substituting the equation for γ2 we get

γ1 = arccosh

[√
1 +

4a2

Λ2

]
, (6.147)

which given that a,Λ are real, γ1 is also always real. We now have a concrete form of

γ1 and γ2 yet we still need to find the relation between a and Λ. Upon substitution

of γ1 and γ2 into either the equation for γ̇1 or γ̇2 we pull out the following differential

equation that needs to be satisfied

Λȧ+ a(Λ2 − Λ̇) = 0. (6.148)

By letting a = Λ
2f this equation is converted to the more familiar

ḟ = Λf, (6.149)

which has solution

f = c exp

[∫ t

Λ(s)ds

]
, (6.150)

where c is a constant.

Now that we have our Dyson map we may substitute it into the TDDE (2.3) to

obtain the Hermitian Hamiltonian

h =

√
1 + f2Λ

2f

(
Kx

+ +Ky
+

)
+

f2Λ

2(1 + f2)

(
Kx

− +Ky
−
)
, (6.151)
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which is a decoupled two-dimensional time-dependent harmonic oscillator.

6.5.3 Hermitian η, q1 = J+, q2 = I+, and c = 0

We shall now take q1 = J+ and q2 = I+ and once again expand Λ as in (6.129). The

perturbative equations for γ̇1 and γ̇2 read

ϵn : γ̇
(n)
1 = 0 and γ̇

(n)
2 = −Λ(n). (6.152)

The first four equations which relate a and Λ are given by

ϵ1 : γ
(1)
1 = −Λ(1)

2a
, (6.153)

ϵ2 : γ
(2)
1 = −Λ(2)

2a
, (6.154)

ϵ3 : γ
(3)
1 = −

(
γ
(1)
2

)2
Λ(1)

4a
+

(
Λ(1)

)3
24a3

− Λ(2)

2a
, (6.155)

ϵ4 : γ
(4)
1 = −γ

(2)
2 γ

(1)
2 Λ(1)

2a
−

(
γ
(1)
2

)2
Λ(2)

4a
+

(
Λ(1)

)2
Λ(2)

8a3
− Λ(4)

2a
. (6.156)

We see here that the perturbative equations are much simpler to solve and we may

read off directly the form of γ1 and γ2. The equations (6.153)-(6.156) are slightly

more involved.

From perturbation theory to the exact Dyson map and Hermitian Hamil-

tonian

We immediately see from equation (6.152) that we have

γ1 = −c and γ2 = −
∫ t

Λ(s)ds, (6.157)

where c is a constant (we have taken a minus sign here for presentation purposes

later). By extrapolating and matching equations (6.153) - (6.156) to the Taylor

expansion of standard functions we obtain the following relationship between a and

Λ

a = −1

2
cot(γ1) cosh(γ2)Λ =

1

2
cot(c) cosh

[∫ t

Λ(s)ds

]
Λ. (6.158)

We have now obtained what is another exact Dyson map, however it is for a different

non-Hermitian Hamiltonian as a is given by a different time-dependent function.
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We may now substitute this Dyson map into the TDDE (2.3) to obtain the

following Hermitian Hamiltonian

h =
1

2
csc(c) cosh

[∫ t

Λ(s)ds

]
Λ
(
Kx

+ +Ky
+

)
+

1

2
sinh

[∫ t

Λ(s)ds

]
Λ (Kx

0 +Ky
0 ) ,

(6.159)

which is a Hermitian version of Swanson type [162] and decoupled.

6.5.4 Summary

We have demonstrated that we may use time-dependent perturbation theory to ob-

tain solutions for the Dyson map for the non-Hermitian Hamiltonian described by

(6.23). For both solutions we have that a = b such that in the time-independent

scenario the Dyson map given by equations (6.124) and (6.125) is ill-defined and

the system is always in the spontaneously broken PT -regime. By allowing the

parameters a and Λ to be explicitly time-dependent we were able construct two

time-dependent Dyson maps in this regime. Technically these maps are for different

non-Hermitian Hamiltonians, the relationships between a and Λ are different for

each map. However they both exist for a = b and lead to either two-dimensional

time-dependent uncoupled harmonic oscillators (6.151) or two-dimensional Hermi-

tian version of the time-dependent Swanson type oscillators (6.159).

6.6 Anharmonic oscillator - revisited

In this section we discuss an example for which the previous versions of the per-

turbative expressions for the metric or the Dyson map do not however lead to any

solution. In fact, as we will demonstrate one does not only have to change the

Ansatz, but one also needs to rescale the Hamiltonian in order to introduce the

perturbative parameter in the right terms and treat the non-Hermitian part as a

strong rather than a weak perturbation.

Unstable anharmonic oscillators have been the testing ground for perturbative

methods for nonlinear systems for more than fifty years [42, 150–152, 168]. As

discussed in Chpater 4 it is only fairly recently that an exact solution for the time-

independent unstable anharmonic quartic oscillator was found by Jones and Mateo

[74]. They used ideas from non-Hermitian PT -symmetric quantum mechanics [140,

141] and applied a perturbative approach that turned out to be exact. Recently
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we [4] also solved the explicitly time-dependent version of this model in an exact

manner (see Chapters 4 and 5). These exact solutions found in [4] will serve here as a

benchmark for our perturbative approach, so that we consider the same Hamiltonian,

but with the time-dependent mass term set to zero

H(z, t) = p2 − g(t)

16
z4, g ∈ R+. (6.160)

Defining H(z, t) on the contour z = −2i
√
1 + ix as proposed in [74], it is mapped

into the non-Hermitian Hamiltonian

H(x, t) = p2 − 1

2
p+

i

2
{x, p2}+ g(t)(x− i)2, (6.161)

where {·, ·} denotes as usual the anti-commutator. As mentioned using our previous

versions for the perturbative Ansatz does not lead to a solvable first order equation

or a recursive system. Instead we change our Ansatz to

ρ(t) = η(t)†η(t) =

1∏
i=j

[
1∏

l=k

exp
(
ϵ−l(γ

(l)
i )†qi

)] j∏
i=1

[
k∏

l=1

exp
(
ϵ−l(γ

(l)
i )qi

)]
. (6.162)

As we are expanding in ϵ−1 we assume here that perturbation parameter, ϵ≫ 1, is

large. The reason for this is that in addition we also need to scale the Hamiltonian

(6.161) as x→ ϵx. Separating now into a Hermitian and non-Hermitian term, h0(t)

and hp(t), respectively, we have

h0(t) = p2 − 1

2
p+ ϵ2g(t)x2 − g(t), and hp(t) = −2iϵg(t)x+

1

2
iϵ{x, p2}.

(6.163)

Thus instead of adding a small non-Hermitian perturbation to the Hermitian part,

we have perturbed by a large term and also scaled up the harmonic oscillator term.

Our Hamiltonian acquires therefore the following generic form

H(t) = h1(t) + ϵ2h2(t) + iϵh3(t), (6.164)

which together with the Ansatz (6.162) leads to the new first order equation

2ih3(t) +

j∑
i=1

[(
(γ

(1)
i + (γ

(1)
i )†

)
[qi, h2(t)]

]
= 0. (6.165)
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From this equation we can see that if any of the time-dependent coefficient functions

γ
(1)
i ’s are purely imaginary, then their contributions vanishes at this order and if

they are real we simply acquire a factor of 2. For any time-dependent coefficient

functions we will therefore modify the Ansatz such that the summation changes from∑j
i=1 to

∑j
i=0. This version of the Ansatz leads to a recursive system that can be

solved systematically order by order. In our example for the Hamiltonian (6.161)

we identify

h3(t) = hp(t) and h2(t) = g(t)x2, (6.166)

and may satisfy the lowest order equation with the choice

q1 = x, q2 = p2, q3 = p2, q4 = p, (6.167)

where for q3 and q4 we are taking their time-dependent coefficient functions to be

purely imaginary. In doing so we end up with following equations that need to be

satisfied

γ
(1)
2 =

1

6g
, and γ

(0)
3 =

1

2γ
(1)
1

. (6.168)

At order ϵ0 we read off the constraining equations

γ
(2)
2 = 0 and γ

(2)
1 = −2

(
γ
(1)
1

)2
γ
(1)
3 . (6.169)

Continuing to order ϵ−1 we find the constraints

γ
(1)
1 =

ġ

6g
, γ

(3)
1 = −γ

(2)
3 ġ2

18g2
+

ġ3

72g4
+

(
γ
(1)
3

)2
ġ3

54g3
− ġg̈

72g3
, γ̇

(0)
4 +γ

(0)
4

(
g̈

ġ
− ġ

g

)
= −1

3
.

(6.170)

The last equation is solved to

γ
(0)
4 =

c1g

ġ
− g ln g

2ġ
. (6.171)

At order ϵ−2 we obtain γ
(1)
3 = 0, and therefore with (6.169) we have γ

(2)
1 = 0.

At order ϵ−3 we obtain

γ
(2)
3 =

ġ2 − gg̈
4g2ġ

, (6.172)

which implies with (6.170) that γ
(3)
1 = 0. Some features hold for all remaining orders

in ε. We have γ
(i)
2 = 0 for all i ≥ 2. We also find that at every order ϵ−n, where

118



n ≥ 2 the differential equation

γ
(n−1)
4 ġ2

3g2
+
ġγ̇

(n−1)
4

3g
+
γ
(n−1)
4 g̈

3g
= 0, (6.173)

occurs, which is solved by

γ
(n−1)
4 =

cn−1g

ġ
. (6.174)

Another equation that appears at all orders ϵ−n for n ≥ 2 is given by

γ
(n+2)
1 = −γ

(n+1)
3 ġ2

18g2
. (6.175)

This is solved at all orders if we have

γ
(n+2)
1 = 0 and γ

(n+1)
3 = 0, (6.176)

for n ≥ 2. When eliminating the γs from these equations we are left with a differ-

ential equation entirely in g given by

14ġ3

9g2
+

2ġg̈

g
−

...
g

2
= 0. (6.177)

Parameterizing g = 1
2σ

−3 this equation reduces to

σ2
...
σ = 0 (6.178)

which is easily solved by σ(t) = c1 + c2t+ c3t
2.

Assembling all our results we extrapolate to all orders, i.e. an exact solution.

Setting therefore ε = 1 gives the time-dependent Dyson map of the form

η(t) = exp[γ1(t)x] exp[γ2(t)p
3 + iγ3(t)p

2 + iγ4(t)p], (6.179)

with

γ1 =
ġ

6g
, γ2 =

1

6g
, γ3 =

12g3 + ġ2 − gg̈
4ġg2

, γ4 =
g

ġ

(
c1 −

log g

2

)
, (6.180)

which is in precise agreement with the Dyson map we previously found in [4] and

presented in Chapter 4.
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6.7 Conclusions

In this chapter we have demonstrated how to set up a perturbative approach that

allows to construct the metric operator and the Dyson map in a recursive manner

order by order in a perturbative parameter that may be very small or very large. Un-

like the time-independent perturbation theory, whose formulation is fairly canonical,

the time-dependent version allows for many more variants. We found four different

types of perturbative expansions. The Ansatz (6.4) is the most natural one when

the Dyson map is assumed to be Hermitian and needs to be slightly modified when

one allows η to be non-Hermitian. In both of these versions the non-Hermitian term

was treated as a small perturbation. For the ipxpy oscillators we found that we also

needed to consider a series expansion for the time-dependence of the non-Hermitian

term. For the anharmonic oscillator we demonstrated that this approach can not

be applied universally and has to be altered for some models for which one needs

to treat the non-Hermitian term and parts of the Hermitian term as large pertur-

bations. Consequently the perturbative expansion needs to be in the inverse of the

large perturbative parameter.

When compared to the time-independent scenario, all our approaches have in

common that the order-by-order equations do not just determine the commutative

structure of the qis, but computations are more involved as in addition one needs to

solve coupled sets of differential equations for the time-dependent coefficient func-

tions, which is also possible order by order. Moreover, we observed that the key

structure is already determined by the lowest order equation.

Although the main emphasis in this chapter is on the perturbation theory, with

regard to the specific example studied we found many new Dyson maps for the

i(xy + pxpy) coupled non-Hermitian harmonic oscillator. We saw that these differ-

ent maps lead to different types of physical behaviour, as shown explicitly for the

time-dependent energy expectation values. When compared to the time-independent

case, all our solutions are only valid in what would be the spontaneously broken PT -

regime, except for one example that is defined on what would be the exceptional

point. So similar to the effect observed in [2, 51], this regime becomes physically

meaningful in the time-dependent setting. However, unlike as in some of the pre-

viously studied systems, one can not crossover to the PT -regime and is confined

to the broken phase. It remains an open issue to formulate general criteria that

120



characterize precisely when this possibility occurs for time-dependent systems and

when not.

We shall be revisiting the i(xy+ pxpy) coupled oscillators in chapter 7 where we

demonstrate that we can use the solutions we found for the Dyson maps to construct

an infinite series of Dyson map all with differing physical behaviours.
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Chapter 7

Infinite series of Dyson maps

In this chapter we propose and explore a scheme that leads to an infinite series of

time-dependent Dyson maps which associate different Hermitian Hamiltonians to

a uniquely specified time-dependent non-Hermitian Hamiltonian [7]. We identify

the underlying symmetries responsible for this feature respected by various Lewis-

Riesenfeld invariants. The latter are used to facilitate the explicit construction of

the Dyson maps and metric operators. We shall consider two concrete examples,

a two-dimensional system of oscillators that are coupled to each other in a non-

Hermitian PT -symmetrical fashion and the time-dependent anharmonic oscillator.

The former of these systems allows us to demonstrate the full working of the scheme

and how it can break down.

7.1 Introduction

Throughout this thesis we have encountered different time-dependent non-Hermitian

systems for which we have been able to determine two or more nonequivalent metrics

leading to different physical behaviour. This non-uniqueness of the metric has been

established for nearly 30 years [43] and is attributed to the fact that the usual

starting point when studying these non-Hermitian systems is to consider only fixing

one observable, e.g. the Hamiltonian H. To render the metric unique one must

specify at least one further observable such as the position x.

For time-independent non-Hermitian Hamiltonians H, who can be related to

a Hermitian Hamiltonian, h, through the time-independent Dyson equation (2.14)

it has been shown that the ambiguity in the metric operator is associated with

the symmetries of the equivalent Hermitian Hamiltonians [96]. For many known
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models explicit solutions, including some of their ambiguities, have been constructed

[74, 90, 93, 94, 96].

When the non-Hermitian Hamiltonian is explicitly time-dependent it is no longer

related to a Hermitian counterpart via a similarity transformation and instead re-

lated through the TDDE (2.3). In this scenario we therefore expect that the sym-

metries responsible for the ambiguity of the metric are no longer associated with the

Hermitian Hamiltonians. We shall in fact demonstrate that this is indeed thhe case

and that the governing symmetries are those of the Lewis-Riesenfeld invariants [89]

of the Hermitian Hamiltonians. We shall exploit these symmetries to propose and

explore a scheme that leads to an infinite series of Dyson maps constructed from

two seed maps, hence an infinite series of equivalent Hermitian Hamiltonians, albeit

with different physics as we shall demonstrate.

7.2 Infinite symmetries and series of Dyson maps from

two seeds

Our starting point is an explicitly non-Hermitian time-dependent Hamiltonian H ̸=

H† satisfying the TDSE H(x, t)ψ(x, t) = iℏ∂tψ(x, t). We further assume that we

have two different time-dependent Dyson maps, η(t) and η̃(t), satisfying the time-

dependent Dyson equations (TDDE)

h = ηHη−1 + iℏ∂tηη−1, and h̃ = η̃Hη̃−1 + iℏ∂tη̃η̃−1, (7.1)

involving two different time-dependent Hermitian Hamiltonians h = h†, h̃ = h̃† that

also obey their respective TDSEs h(x, t)ϕ(x, t) = iℏ∂tϕ(x, t) and h̃(x, t)ϕ̃(x, t) =

iℏ∂tϕ̃(x, t). The wavefunctions are related as ϕ = ηψ, ϕ̃ = η̃ψ and therefore ϕ̃ = Aϕ,

where we employed the first of the operators

A := η̃η−1 and Ã := η−1η̃. (7.2)

The operator Ã is defined for later purposes. Next we eliminate the Hamiltonian H

from the two equations in (7.1), such that the two Hermitian Hamiltonians are seen

to be related as

h̃ = AhA−1 + iℏ∂tAA−1. (7.3)
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As argued and shown for concrete examples in [5, 51, 87, 88, 132] and throughout

this thesis, once the Dyson maps are known one may relate the respective Lewis-

Riesenfeld invariants IH, with H =H,h, h̃, satisfying [89]

iℏ
dIH
dt

= iℏ∂tIH + [IH,H] = 0, (7.4)

simply by means of similarity transformations as

Ih = ηIHη
−1, Ih̃ = η̃IH η̃

−1, ⇒ Ih̃ = AIhA
−1. (7.5)

Each of the invariants satisfies an eigenvalue equation with time-independent eigen-

values and eigenfunctions that are simply related by a phase factor to the wavefunc-

tions satisfying the respective TDSE. Exploiting the Hermiticity of the invariants Ih

and Ih̃, the latter relation in (7.5) implies that the operators

S := A†A and S̃ := AA† (7.6)

are symmetries for the invariants Ih and Ih̃, respectively, with

[Ih, S] = 0 and
[
Ih̃, S̃

]
= 0. (7.7)

Thus S and S̃ also satisfy the Lewis-Riesenfeld equations for the Hermitian h-

Hamiltonian system and the h̃-Hamiltonian system

iℏ
dS

dt
= iℏ∂tS + [S, h] = 0, iℏ

dS̃

dt
= iℏ∂tS̃ +

[
S̃, h̃

]
= 0. (7.8)

In turn this means that

I ′h = Ih + S, and I ′
h̃
= Ih̃ + S̃ (7.9)

are new invariants for the Hamiltonians h and h̃, respectively.

Another symmetry with an interesting consequence is an Ã-symmetry, see (7.2),

of the non-Hermitian invariant IH , as it implies that the two invariants related to

the Hermitian systems are identical

[
IH , Ã

]
= 0 ⇔ Ih = Ih̃, (7.10)
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and in turn, the equality of two invariants associated to different Hermitian Hamil-

tonians implies an Ã-symmetry of the non-Hermitian invariant IH . This is easily

established by making use of the pseudo-Hermiticity relations for the invariants

(7.5).

7.2.1 Iteration of two Dyson maps

While certain symmetries of the invariants imply the presence of two inequivalent

Dyson maps and vice versa, we will now construct further time-dependent Dyson

maps, say η̌ or η̂, from two given ones, say η and η̃. We start by constructing a third

Dyson map making use of either of the following statements:

(S1) If and only if the adjoint action of A on the invariant Ih̃, AIh̃A
−1, is Hermitian

then ȟ = Ah̃A−1 + iℏ∂tAA−1 is a new Hamiltonian that is related to the

non-Hermitian Hamiltonian H by the time-dependent Dyson equation ȟ =

η̌Hη̌−1 + iℏ∂tη̌η̌−1 with η̌ := η̃η−1η̃.

(S2) If and only if the inverse adjoint action of A on the invariant Ih, A
−1IhA is

Hermitian then ĥ = A−1hA− iℏA−1∂tA is a new Hamiltonian that is related

to the non-Hermitian Hamiltonian H by the time-dependent Dyson equation

ĥ = η̂Hη̂−1 + iℏ∂tη̂η̂−1 with η̂ := ηη̃−1η.

At first we prove (S1) in reverse: Assuming that η̌ := η̃η−1η̃ is a new time-

dependent Dyson map that maps the non-Hermitian Hamiltonian H to a Hermitian

one, the TDDE ȟ = η̌Hη̌−1+ iℏ∂tη̌η̌−1 holds by definition. Replacing now H in this

equation by means of the first equation in (2.3) and using the definition (7.2) for

A, equation ȟ = Ah̃A−1 + iℏ∂tAA−1 follows directly. In turn this implies that the

adjoint action of A on Ih̃ yields the Lewis-Riesenfeld invariant Iȟ. Since Iȟ is Her-

mitian, so is AIh̃A
−1. The direct statement is shown by checking whether AIh̃A

−1

is Hermitian and then reversing the steps in the previous argument. Similarly we

may prove (S2).

Thus for practical purposes when given the two time-dependent Dyson maps η,

η̃ and the invariants Ih̃, Ih we can simply check whether AIh̃A
−1 and/or A−1IhA are

Hermitian and subsequently deduce the form of the new Dyson map. Alternatively

one may of course also assume the given forms for η̌ and η̂ with a subsequent check

of whether the right hand sides of the corresponding Dyson equations are Hermitian,

thus defining new Hermitian Hamiltonians.
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Having now obtained two new time-dependent Dyson maps, we may include them

into the set of the two starting Dyson maps to construct yet more and more maps

by iteration. We summarize the first step as outlines above, i.e. the constuction of

η̌ =: η3 and η̂ =: η4 from the seed maps η and η̃, as

η, η̃
↗

↘

η3 = η̃η−1η̃ = Aη̃

η4 = ηη̃−1η = A−1η

. (7.11)

Replacing now in the next step the seed maps by new maps obtained in the previous

step we obtain, up to the Hermiticity check,

η, η3
↗

↘

η5 = η̃η−1η̃η−1η̃η−1η̃ = A3η̃

η6 = ηη̃−1ηη̃−1η = A−2η

, (7.12)

η, η4
↗

↘

η6 = ηη̃−1ηη−1ηη̃−1η = ηη̃−1ηη̃−1η

η̃ = ηη−1η̃η−1η

, (7.13)

η̃, η3
↗

↘

η = η̃η̃−1ηη̃−1η̃

η7 = η̃η−1η̃η̃−1η̃η−1η̃ = η̃η−1η̃η−1η̃ = A2η̃

, (7.14)

η̃, η4
↗

↘

η7 = η̃η−1η̃η−1η̃

η8 = ηη̃−1ηη̃−1ηη̃−1η = A−3η

, (7.15)

η3, η4
↗

↘

η9 = ηη̃−1ηη̃−1ηη̃−1ηη̃−1η = A−4η

η10 = η̃η−1η̃η−1η̃η−1η̃η−1η̃ = A4η̃

. (7.16)

Continuing in this manner we obtain a series of Dyson maps of the general form

η(n) := Anη, η̃(n) := A−nη̃, with n ∈ Z. (7.17)

When combined in the way described above we only obtain new maps of the same
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form

η̃(n), η̃(m)
↗

↘

η̃(2m−n)

η̃(2n−m)

, η̃(n), η(m)
↗

↘

η(2m−n−1)

η̃(2n−m+1)

, (7.18)

η(n), η̃(m)
↗

↘

η̃(2m−n+1)

η(2n−m−1)

, η(n), η(m)
↗

↘

η(2m−n)

η(2n−m)

. (7.19)

As discussed above, for the iteration to proceed we need to verify at each step

the Hermiticity of the right hand side of the time-dependent Dyson equation or the

adjointly mapped invariants. Thus we require the relevant A-operators involving

the new maps

η̃(m)
(
η̃(n)

)−1
= Am−n, η(m)

(
η̃(n)

)−1
= Am−n−1, (7.20)

η̃(m)
(
η(n)

)−1
= Am−n+1, η(m)

(
η(n)

)−1
= Am−n. (7.21)

Naturally we may repeat the symmetry arguments from the previous section using

the newly constructed Dyson maps, thus obtaining an infinite set of symmetry op-

erators, provided that the Hermiticity property holds at each of the iterative steps.

7.3 Two dimensional PT -symmetrically coupled oscilla-

tors

The first system we shall consider to demonstrate the working of the above scheme

will be the two-dimensional time-dependent oscillators which are coupled in a PT -

symmetric fashion (6.24). We performed an extensive analysis on these oscillators

in Chapter 6 resulting in the construction of six Dyson maps for both cases 1 and

2. The amount of Dyson maps found makes this system an ideal testing ground to

potentially determine the aforementioned infinite series of Dyson maps.

7.3.1 Six seed Dyson maps

We shall consider here case 1, that is when c(t) = 0 and µ(t) = 0 for the Hamiltonian
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(6.24). In this case the six Dyson maps determined were all of the form

η(t) = exp[γ1(t)q1] exp[γ2(t)q2], (7.22)

where q1, q2 were operators part of the subalgebra {K1,K2,K3,K4} which satisfy

the commutations relations (6.25) and γ1(t), γ2(t) are time-dependent functions con-

strained by two coupled first order differential equations. In section 6.4.6 a summary

of the Dyson maps found, the auxiliary equations which the time-dependent func-

tions satisfy and the resulting Hermitian Hamiltonians can be found. Specifically in

table 6.1 we report the first order differential equations which γ1(t) and γ2(t) satisfy.

In table 6.2 we report the parametrizations of γ1 and γ2 in terms of the auxiliary

function χ which satisfies an auxiliary equation that can be found in table 6.3. The

resulting Hermitian Hamiltonians for each of the Dyson maps were of the form

h(t) = f+(t)K1 + f−(t)K2, (7.23)

and details of the time-dependent functions f±(t) for each of the maps are specified

table 6.4.

We present here a summary of this relevant information for each of the Dyson

maps in table 7.1. The auxiliary functions x and χ governing the time-dependence

ηi q1, q2 γ1 γ2 f±(t)

η1 K4,K3 * * a

η2 K3,K4 arccosh (χ) arcsinh
(

k
χ

)
a± kλ

2χ2

η3 K4, iK1 arcsinh
(
k3
√
1 + x2

)
− arctan(x) a− λ(±1+

√
1+(1+x2)k23)

2(1+x2)k3

η4 K4, iK2 arcsinh
(
k4
√
1 + x2

)
arctan(x) a+

λ(∓1+
√

1+(1+x2)k24)

2(1+x2)k4

η5 K3, iK1 arcsinh
(
k5
√
1 + x2

)
arccot(x) a+

λ(±1+
√

1+(1+x2)k25)

2(1+x2)k5

η6 K3, iK2 arcsinh
(
k6
√
1 + x2

)
arccot(x) a− λ(∓1+

√
1+(1+x2)k26)

2(1+x2)k6

Table 7.1: Inequivalent Dyson maps ηi with specific operators q1, q2 in the factorisation
(7.22), and parametrisations for γ1, γ2 in terms of the auxiliary functions χ or xi together with
the time-dependent functions f±(t) in h(t). For η2 we demand that χ > 1 so that the Dyson
map is well-defined.

were found to be

Aux1 : ẍi −
λ̇

λ
ẋi − λ2xi = 0 and Aux2 : χ̈− λ̇

λ
χ̇− λ2χ = k2

λ2

χ3
, (7.24)
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where i = 3, 4, 5, 6. The second equation in (7.24) is the ubiquitous Ermakov-Pinney

equation [138, 139].

Note that the parametrization of γ2 in table 7.1 for Dyson maps η3 − η6 could

be positive or negative and we would still obtain Aux1 as the auxiliary equation.

What would differ however is the first order equations resulting from combining the

differential equations for γ1(t) and γ2(t) as detailed in table 6.1. To ensure that the

first order equation is the same for all the maps we have chosen here these specific

parametrisations for γ2 so that it will be easier to combine the Dyson maps to create

new ones.

7.3.2 Relation between auxiliary equations

To carry out the discussion as set out in section 7.2 we have the somewhat unappeal-

ing feature that various seed Dyson maps are governed by different types of auxiliary

equations. Here we comment briefly on a feature previously not commented on in

previous chapters, and show that with a different parametrisation also η2 is in fact

constrained by the linear second order equation in (7.24). To demonstrate that this

can be achieved we briefly recall how to solve the TDDE for η2, but with a different

parametrisation.

Assuming for this purpose the Dyson map η2 to be of the form (7.22) with

γ1(t), γ2(t) unknown and q1 = K3, q2 = K4, we substitute η2 into the TDDE and

find that h2(t) is indeed made to be Hermitian if the following coupled first order

differential equations are satisfied

γ̇1 = −λ cosh γ2 and γ̇2 = λ tanh γ1 sinh γ2. (7.25)

These equations match the ones obtained through perturbation theory in section

6.4.3. To solve these equations for γ1 and γ2 we notice first that we can eliminate λ

and dt from the above equations to give

dγ2
dγ1

= − tanh γ1 tanh γ2(γ1), (7.26)

which we solve to

γ2 = arcsinh(c sech γ1), (7.27)

with c being an integration constant. As reported in chapter 6 in [6], we parametrised
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γ1 = arccoshχ which lead to the Ermakov-Pinney equation Aux2 as auxiliary equa-

tion. When instead we define γ1 = arccosh
√

1 + x22 and let c = −1/k2, we find that

the central equation to be satisfied is now also Aux1, similarly as for the other cases.

We have now a new way of writing the Dyson map η2 so that all of the maps found

are governed by the same central equation, with

η2 : γ1 = arccosh
√

1 + x22, γ2 = arcsinh

(
− 1

k2
√

1 + x22

)
, f± = ∓ λ

2k2(1 + x22)
.

(7.28)

Thus we have found a way to convert the nonlinear dissipative Ermakov-Pinney

equation given by Aux2 to the linear second order differential equation Aux1 by the

relation

χ =
√

1 + x2i with k = − 1

ki
. (7.29)

This appears to be somewhat miraculous, but one needs to stress here that this is

only possible when employing also the first order equations resulting from (7.25) for

the respective variables, i.e.

ẋ2 = −
λ
√

1 + k22(1 + x22)

k2
, (7.30)

for the new parametrisation. Notice also that the constraint imposed on χ > 1 is

automatically satisfied with the new parametrisation.

7.3.3 Construction of invariants

As outlined in section 7.2, in order to construct new Dyson maps we must first

calculate invariants for each of the Hermitian Hamiltonians associated to each of the

seed Dyson maps ηi, i = 2, . . . , 6, or solve the TDDE (2.3). Using the corresponding

expressions for hi we solve equation (3.2) and find the invariant

Ihi
(t) = c1K1+ c2K2+ c3 cos

[
c4 −

∫ t

f i+−(s)ds

]
K3− c3 sin

[
c4 −

∫ t

f i+−(s)ds

]
K4

(7.31)

where f i+− := f i+ − f i− is the difference between the time-dependent functions in

(7.68) occurring in the Hermitian Hamiltonian, and the c1, c2, c3, c4 are real con-

stants. Notice that in all cases the difference takes on the same form up to an
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overall sign

f2,3,4+− (t) = − λ

ki(1 + x2i )
= −f5,6+−(t), (7.32)

such that the corresponding Hermitian invariants are identical.

While the cases i = 2, . . . , 6 have been unified, the case i = 1 still stands out as

in this case f+ = f−, so that the invariant in (7.31) is rendered time-independent.

We therefore need to construct an additional invariant for h1(t). To achieve that we

need to enlarge the algebra by six additional elements such that the ten-dimensional

algebra is now given by the generators in (6.12). These ten generators satisfy the

commutation relations detailed in equations (6.13) - (6.20).

Assuming now that the invariant is also spanned by these generators, we found

as another solution to (3.2) a universal solution for all six cases

Ihi
(t) = α+(K

x
++K

x
−)+β+(K

x
+−Kx

−)+α−(K
y
++K

y
−)+β−(K

y
+−K

y
−)+δ+K

x
0+δ−K

y
0 ,

(7.33)

for i = 1, . . . , 6. The time-dependent functions are constrained by

α±(t) = ρ±(t)
2, β±(t) =

1

ρ±(t)2
+
ρ̇±(t)

2

f±(t)2
, δ±(t) = −

2ρ±(t)ρ̇±(t)

f±(t)
, (7.34)

where the auxiliary functions ρ± satisfy the dissipative Ermakov-Pinney equation

ρ̈± −
ḟ±
f±
ρ̇± + f2±ρ± =

f2±
ρ3±
. (7.35)

We will exploit these ambiguities and use which ever invariant is most useful in a

certain context. Noting that the invariant in (7.31) is much simpler than the one

in (7.33), we shall be using it below for the Hermitian Hamiltonians hi associated

with the Dyson maps ηi, i = 2, . . . , 6. In turn we shall use the invariant (7.33) only

for the Hermitian Hamiltonian h1 associated with η1, for which it simplifies further

due to the relation f+ = f− that implies ρ+ = ρ−.

We also construct the non-Hermitian invariant for the non-Hermitian Hamilto-

nian H1 in (6.24) for case 1 by directly solving equation (3.2). We find

IH1 = C1(t)K1 + C2(t)K2 + C3(t)K3 + iC4(t)K4, (7.36)

with
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C1 =
c1
2

+ c3 cosh

(
c4 −

∫ t

λ(s)ds

)
, (7.37)

C2 =
c1
2
− c3 cosh

(
c4 −

∫ t

λ(s)ds

)
, C3 = c2, (7.38)

C4 = 2c3 sinh

(
c4 −

∫ t

λ(s)ds

)
. (7.39)

Using the equations in (7.5) we may relate the various invariants up to the stated

ambiguities. We have verified that the inverse adjoint actions of η and η̃ on IH1

in (7.36) are indeed invariants for Ih and Ih̃, respectively, albeit different from the

invariants in (7.31) and (7.33) up the aforementioned ambiguities.

For our non-Hermitian Hamiltonian H1(t) in (6.24) for case 1, we have now a

number of seed Dyson maps ηi at hand together with their associated Hermitian

Hamiltonians hi and their respective Lewis-Riesenfeld invariants Ihi
. Thus we can

now carry out the scheme laid out in section 7.2 and construct an infinite series

of Dyson maps from two of these seed maps. We will not present here all thirty

possibilities that may result from these six maps as there is considerable overlap in

the solution procedure as well as the resulting Hermitian Hamiltonians. Instead we

select various examples that exhibit different types of features including an example

for which the mechanism breaks down.

7.3.4 Seed maps η = η3 and η̃ = η4 - unitary operator A

The central operator to compute first is A as defined in (7.2). We start with a simple

example for which some of its factors commute. Taking η = η3, η̃ = η4 as specified

in table 1 and setting k3 = k4 = k, x3 = x4 = x we obtain

A = η4η
−1
3 = earcsinh(k

√
1+x2)K4ei arctan(x)(K1+K2)e− arcsinh(k

√
1+x2)K4 (7.40)

= ei arctan(x)(K1+K2). (7.41)

The last equality results from the fact that [K1 +K2,K4] = 0. According to the

statement (S1) in section 7.2, we need to guarantee next that AIh4A
−1 is Hermitian.

For the case at hand this is easily seen to be the case as A is a unitary operator and

Ih4 is Hermitian. Thus, according to (S1) a new Dyson map is given by
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η(1) = Aη4 = ei arctan(x)(K1+K2)earcsinh(k
√
1+x2)K4ei arctan(x)K2

= earcsinh(k
√
1+x2)K4ei arctan(x)(K1+2K2), (7.42)

which in turn is not unitary. Next we compute the associated Hermitian Hamiltonian

from the TDDE (2.3) simply by substituting into the right hand side all the known

quantities

h(1) =

a+ λ
(
3
√

1 + k2(1 + x2)− 1
)

2k(1 + x2)

K1+

a+ λ
(
3
√
1 + k2(1 + x2) + 1

)
2k(1 + x2)

K2.

(7.43)

Using next the relation (7.17) it is now straightforward to calculate the infinite series

of Dyson maps. At each step the Hermiticity of the adjoint action of the higher order

A operators, as defined in (7.20), (7.21), on the Hermitian invariants is guaranteed

by the fact that also any power of A is a unitary operator. We find

η(n) = Anη4 = earcsinh(k
√
1+x2)K4ei arctan(x)[K1+(n+1)K2], (7.44)

with corresponding infinite series of Hermitian Hamiltonians

h(n) = h(1) +
(n− 1)λ

√
1 + k2(1 + x2)

k(1 + x2)
(K1 +K2). (7.45)

In a similar fashion we use the second relation in (7.17) to obtain the new Dyson

maps

η̃(n) = Anη3 = earcsinh(k
√
1+x2)K4e−i arctan(x)[(n+1)K1+K2], (7.46)

with corresponding Hermitian Hamiltonians

h̃(n) =

(
λ

2k(1 + x2)

)
(K2 −K1) +

[
a−

(2n+ 1)λ
√
1 + k2(1 + x2)

2k(1 + x2)

]
(K1 +K2).

(7.47)

Since A is a unitary operator the symmetry operator, as defined in (7.6) is simply

the unit operator, i.e. S = S† = I. Moreover the unitarity of A also implies that

the relation between the two Hermitian Hamiltonians (7.3) simply becomes a non-

Abelian gauge symmetry between two Hermitian Hamiltonians. In this case the
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metric operators do not to change in the iteration process

ρ(n) = η(n)
†
η(n) = η†4η4 = ρ4, and ρ̃(n) = η̃(n)

†
η̃(n) = η†3η3 = ρ3. (7.48)

7.3.5 Seed maps η = η2 and η̃ = η3 - nonunitary operator A

Once again we start with the construction of the operator A

A : = η3η
−1
2 =

= earcsinh(k
√
1+x2)K4e−i arctan(x)K1e

arcsinh

(
1

k
√

1+x2

)
K4

e− arccosh(
√
1+x2)K3 , (7.49)

where we have used η = η2, η̃ = η3 as defined in table 1 and set k2 = k3 = k,

such that x2 = x3 = x. According to (S1) we need to determine again whether the

quantity AIh3A
−1 is Hermitian in order to proceed. A lengthy computation can be

avoided here by noting that the Hermitian invariants Ih for h2 and h3 are identical.

Thus we have

AIh3A
−1 = η3η

−1
2 Ih2η2η

−1
3 = η3IHη

−1
3 = Ih3 = I†h3

=
(
AIh3A

−1
)†
, (7.50)

Consequently (S1) is implying that

η(1) = Aη3, (7.51)

constitutes a new Dyson map. With the help of the TDDE (2.3) we determine the

corresponding Hermitian Hamitonian to

h(1) =

a− λ
(
1 + 2

√
1 + k2(1 + x2)

)
2k(1 + x2)

K1+

a− λ
(
2
√
1 + k2(1 + x2)− 1

)
2k(1 + x2)

K2.

(7.52)

As previously, we use the relation (7.17) to calculate the infinite series of Dyson

maps. With

η(n) = Anη3, and η̃(n) = A−nη2, (7.53)

we can use relation (7.50) repeatedly to ensure that at each level the adjoint action

of the higher order As on the Hermitian invariants is Hermitian. Using the TDDE

(2.3) for the new maps we obtain the Hermitian Hamiltonians
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h(n) =

(
λ

2k(1 + x2)

)
(K2 −K1) +

[
a−

(n+ 1)λ
√

1 + k2(1 + x2)

2k(1 + x2)

]
(K1 +K2),

(7.54)

from the first map in (7.53) and

h(n) = h(n) =

(
λ

2k(1 + x2)

)
(K2 −K1) +

[
a−

nλ
√
1 + k2(1 + x2)

2k(1 + x2)

]
(K1 +K2),

(7.55)

from the second.

We may now also compute the symmetry operators for Ih2 and Ih3 . The sym-

metry operator is readily written down as

S := A†A = e− arccosh(
√
1+x2)K3e

arcsinh

(
1

k
√

1+x2

)
K4

e−i arctan(x)K1earcsinh(k
√
1+x2)K4

× earcsinh(k
√
1+x2)K4e−i arctan(x)K1e

arcsinh

(
1

k
√

1+x2

)
K4

e− arccosh(
√
1+x2)K3 .

Thus we may now explicitly verify the symmetry relation (7.17), best calculated in

the form SIh2S
−1 = Ih2 . Similarly, the symmetry operator for Ih3 should be given

by S̃, which is indeed the case as we verified explicitly.

7.3.6 Seed maps η = η1 and η̃ = η2, η3, η4 - breakdown of the iteration

From the previous two examples one might get the impression that the iteration

procedure can always be carried out with any two seed Dyson maps. However, this

is not the case when the Hermiticity condition does not hold. To verify this we

relied in the previous section on the fact that the invariants for the two Hermitian

Hamiltonians resulting from the seed maps were identical. This is not the case when

involving η1 as a seed map and any of the other five maps, as can be seen from (7.33)

when comparing the functions f±. Thus in this case the Hermiticity condition needs

to be verified more explicitly.

Let us now carry out the calculation for the seed Dyson maps chosen to be η = η1

and η̃ = η2. We start from the expression for A

A := η2η
−1
1 = e

arccosh
(√

1+x2
2

)
K3e

− arcsinh

(
1

k2

√
1+x22

)
K4

e
∫ s λ(s)dsK3 (7.56)
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where η2 is defined as in (7.28) and η1 as in table 1. Next we compute to quantity

AIh2A
−1 where Ih2 is given by (7.33). After a lengthy calculation we find that this

quantity is non-Hermitian and given by

AIh2A
−1 =

[
1

2
Γ++
+ +

κ

2k2

]
K1

[
1

2
Γ++
+ − κ

2k2

]
K2 + i

cosh(g)

k2∆
√

1 + x22
Γ+−
− K3 (7.57)

+i
κ(1 + x22) + cosh(g)∆

k2x2
√

1 + x22
Γ+−
− K4

+i

{
(1 + k22)(δ− + δ+)

k22x2
cosh(g)K5 −

1

k22x2

[
k2x2Γ

−+
− − κ (δ− + δ+)∆

]}
K5

+i

{
(1 + k22)Γ

−−
+

k22x2
cosh(g) +

1

k22x2

[
k2x2(δ− − δ+) + κΓ−−

+ ∆
]}

K6

−
(δ− + δ+)∆− Γ−−

+

((
k22 + 1

)
x2 − k22x2

)
2k22x2

√
x22 + 1

cosh(g)(K7 +K8)

+

[
κ
δ− + δ+ − x2Γ−−

+ ∆

2k22x2
√
x22 + 1

+
(δ+ − δ−)x2 − Γ+−

− ∆

2k2
√
x22 + 1

]
K7

+

[
κ
−δ− − δ+ − x2Γ−−

+ ∆

2k22x2
√
x22 + 1

+
Γ+−
− ∆+ (δ+ − δ−)x2

2k2
√
x22 + 1

]
K8

+
Γ−−
+ ∆− (δ− + δ+)

((
k22 + 1

)
x2 − k22x2

)
2k22x2

√
x22 + 1

cosh(g)((K9 +K10)

+

[
κ
Γ−−
+ − (δ− + δ+)x2∆

2k22x2
√
x22 + 1

+
(δ− − δ+)∆ + x2Γ

+−
−

2k2
√
x22 + 1

]
K9

+

[
−κ

Γ−−
+ + (δ− + δ+)x2∆

2k22x2
√
x22 + 1

+
(δ+ − δ−)∆ + x2Γ

+−
−

2k2
√
x22 + 1

]
K10,

where we introduced the abbreviations

Γδ2δ3
δ1

:= α−+δ1α++δ2β−+δ3β+ ∆ :=
√
1 + k22(1 + x22) g :=

∫ t

λ(s)ds, (7.58)

with δi = ±1, i = 1, 2, 3. We simplified here our expressions using the identity

sinh(g) =
κ+ cosh(g)

√
1 + k22(1 + x22)

k2x2
, (7.59)

which is verified using the first order constraint (7.30). As the invariant is non-

Hermitian, the iteration process breaks down and by (S1) we deduce that Aη2 is not

a Dyson map. We have also carried out the equivalent calculation for the seed map

choices η = η1 and η̃ = η3 and η4, reaching the same conclusion.
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7.4 The time-dependent anharmonic quartic oscillator

Another system for which we have found multiple Dyson maps is the time-dependent

anharmonic quartic oscillator [4]

H(z, t) = p2z −
1

64σ6(t)
z4, (7.60)

which, when defined on a contour in the lower-half complex plane z = −2i
√
1 + ix as

suggested by Jones and Mateo [74], is mapped the to the non-Hermitian Hamiltonian

H(x, t) = p2 − 1

2
p+

i

2
{x, p2}+ 1

4σ6(t)
(x− i)2. (7.61)

7.4.1 Two seed Dyson maps

We present here in a compact and unified form the two solutions for the Dyson maps

we have already found along with the corresponding Hermitian Hamiltonians. The

Dyson maps are given by

η = exp(αx) exp(βp3 + iγp2 + iδp), (7.62)

and

η̃ = exp(βp3) exp(αx) exp(γ̃p+ iδp), (7.63)

where

α = − σ̇
σ
, β =

2σ6

3
, δ =

[c− 1
2 ln(σ)]σ

σ̇
, (7.64)

γ =
2σ5σ̇2 − 2ω2σ3 − σ

2σ̇
, γ̃ = −1− 2ω2σ2 (7.65)

and σ satisfies the auxiliary equation

σ̇ =
ω2

σ3
, (7.66)

which has solution

σ =

√
c12t2 + 2c12c2t+ ω2 + c12c22√

c1
. (7.67)
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where c1, c2 are real valued constants. The first of these maps, η, was found by

making a suitable anstatz on the level of the TDDE (see Chapter 4 for more details)

and when substituted into the TDDE results in the Hermitian Hamiltonian1

h = σ6p4 +
1

4

(
8σ4σ̇2 +

1 + 2ω2σ2

σ4σ̇2
− 2

)
p2 +

ln(σ)− 2c

4σ4σ̇2
p+

1

4σ6
x2 (7.68)

− ln(σ)− 2c

4σ5σ̇
x+

2σ4σ̇2 − 2ω2σ2 − 1

4σ5σ̇
{x, p}+ (ln(σ)− 2c)2

16σ4σ̇2

+
2σ6σ̇4 − σ2σ̇2 + ω2

2σ4
. (7.69)

The second Dyson map, η̃, was found by utilising point transformations to construct

an invariant, IH , for the Hamiltonian (7.61) which was then subsequently employed

to determine a Dyson map through the similarity transformation Ih̃ = η̃IH ˜η−1.

Substituting the Dyson map into the TDDE led to the new and different Hermitian

Hamiltonian

h̃ = σ6p4 − 2ω2σ2p2 +
(2c− ln(σ))

(
σ2σ̇2 + ω2

)
2σ2σ2

p+
1

4σ6
x2

− ln(σ)− 2c

4σ5σ̇
x+

σ̇

σ
{x, p} − ω4

σ2
+

(ln(σ)− 2c)2

16σ4σ̇2
− 2ω2σ̇2. (7.70)

7.4.2 Construction of invariants

To carry out the procedure laid out in section 7.2 we must now construct invariants

for the Hamiltonians (7.68) and (7.70). We start by constructing an invariant for

the non-Hermitian Hamiltonian (7.61). Fortunately we have already obtained this

invariants in Chapter 5 by utilising point transformations. We reproduce equation

(5.133) here for convenience,

IH = σ2p2 +

(
2iσσ̇ − 1

2
σ2
)
p+

1

4σ4
x2 − i

2σ4
(
1 + 2ω2σ2 + 2σ4σ̇2

)
x

− σσ̇{x, p}+ 1

2
iσ2{x, p2} − 1

4σ4
− ω2

σ2
− 1

2
iσσ̇ − σ̇2. (7.71)

1The appearance of the Dyson map and Hermitian Hamiltonian differs from that presented in
Chapter 4. It is in fact the same Dyson map yet with the change g = 1

4σ6 instead of g = 1
4σ3 so

that it coincides with the map η̃ found using point transformations in Chapter 5. The auxiliary
equations also differ yet their solutions can be made equivalent, more details on this are in Chapter
5 section 5.6.4.
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The Hermitian invariant associated with the Dyson map η is then obtained via

Ih = ηIHη
−1 = σ8p4 +

(
σ2 +

σ2ω4 + 1
4σ2 + ω2

σ̇2
+ σ6σ̇2

)
p2 +

1

4σ4
x2 (7.72)

−
(
σ2

2
+

2δσ2ω2 + δ

2σ3σ̇
+ δσσ̇

)
p+

δ

2σ4
x−

(
2σ2ω2 + 2σ4σ̇2 + 1

4σ3σ̇

)
{x, p}

+ ω4 +
δ2

4σ4
,

and the Hermitian invariant for η̃ is given by

Ih̃ = η̃IH η̃
−1 = σ8p4 − 2ω2σ4p2 − 1

2
σ2p+

1

4σ4
x2 +

δ

2σ4
x+

δ

4σ4
+ ω4. (7.73)

The invariant Ih is considerably more involved than Ih̃.

We may now employ the Dyson maps and invariants to construct an infinite

series of Dyson maps for the time-dependent anharmonic quartic oscillator.

7.4.3 Infinite series of Dyson maps from η and η̃

We start by constructing the operator A as in (7.2)

A := η̃η−1 = exp(βp3) exp(αx) exp(γ̃p− iγp2 − βp3) exp(−αx). (7.74)

We may simplify this expression by utilising the braiding relation

eÂf(B̂)e−Â = f
(
eÂB̂e−Â

)
, if f(B̂) =

∑
n

CnB̂
n, (7.75)

meaning that f(B̂) can be expressed as a power series2. Letting Â = αx and

B̂ = γ̃p− iγp2 − βp3 we may write

eÂB̂e−Â = −βp3 − i(3αβ + γ)p2 + (3α2β + 2αγ + γ̃)p+ iα[α(αβ + γ) + γ̃], (7.76)

such that (7.74) simplifies too

2A simple proof of this identity is as follows

eÂf(B̂)e−Â =
∑
n

Cne
ÂB̂ne−Â =

∑
n

Cn

(
eÂB̂e−Â

)n

= f
(
eÂB̂e−Â

)
,

as
eÂB̂ne−Â = eÂB̂e−ÂeÂB̂e−ÂeÂB̂e−Â... eÂB̂e−Â =

(
eÂB̂e−Â

)n

.

140



A = exp
{
(3α2β + 2αγ + γ̃)p− i(3αβ + γ)p2 + iα[α(αβ + γ) + γ̃]

}
. (7.77)

Following (S1) we now need to determine whether the quantity AIh̃A
−1 is Hermitian.

Several lengthy calculations may be avoided in the construction of the infinite series

of Dyson maps here by noting the adjoint action of A on each of the variables in Ih̃.

Firstly, given that A is a function of p and p2 we know that the adjoint action on p,

p2 and p4 produces no new terms. For the final three terms we obtain

AxA−1 = x+
σ
(
2σ2ω2 + 1

)
σ̇

p+ 2σ5σ̇p, (7.78)

Ax2A−1 = x2 +

(
2σ3ω2 + σ + 2σ5σ̇2

)
2

σ̇2
p2 +

(
2σ3ω2 + σ

σ̇
+ 2σ5σ̇

)
{x, p},

(7.79)

A{x, p}A−1 = {x, p}+

(
2
(
2σ3ω2 + σ

)
σ̇

+ 4σ5σ̇

)
p2, (7.80)

which are all Hermitian. Therefore we have that AIh̃A
−1 = Ĩ(1) is Hermitian and

(S1) implies that

η̃(1) = Aη̃ (7.81)

is indeed a new Dyson map. Substituting η̃(1) into the TDDE (2.3) produces the

corresponding Hermitian Hamiltonian

h̃(1) = σ6p4 + f̃
(1)
p2
p2 + f̃ (1)p p+

1

4σ6
x2 +

2c− ln(σ)

4σ5σ̇
x+ f̃ (1)xp {x, p}+ f̃

(1)
f , (7.82)

where

f̃
(1)
p2

=
5

2
+

8σ4ω4 + 6σ2ω2 + 1

4σ4σ̇2
, f̃ (1)xp =

2σ2ω2 + 6σ4σ̇2 + 1

4σ5σ̇
, (7.83)

f̃ (1)p =
(2c− ln(σ))

(
4σ2ω2 + 4σ4σ̇2 + 1

)
4σ4σ̇2

, (7.84)

f̃
(1)
f =

(ln(σ)− 2c)2 − 8σ̇2
(
4σ2ω4 + σ2

(
8σ2ω2 − 1

)
σ̇2 + 2σ6σ̇4 + ω2

)
16σ4σ̇2

. (7.85)

We now extend this analysis to determine an infinite series of Dyson maps.

Firstly we note that the quantity AnIh̃A
−n = Ĩ(n) is always Hermitian as the adjoint

action of A on all of the terms in Ih̃ is Hermitian and produces no new terms as

demonstrated by equations (7.78) - (7.80) and the fact that A is only a function of
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p and p2. From (S1) we therefore know that

η̃(n) = Anη̃ (7.86)

constitutes an infinite series of Dyson maps. We have managed to determine the

corresponding infinite series of Hermitian Hamiltonians by finding patterns in the

time-dependent coefficient functions of p2, p, {x, p} and the free term. We have that

h̃(n) = σ6p4 + f̃
(n)
p2
p2 + f̃ (n)p p+ f̃xxx

2 + f̃xx+ f̃ (n)xp {x, p}+ f̃
(n)
f , (7.87)

where

f̃
(n)
p2

=
3n

2
+ n2 + 2

(
n2 − 1

)
σ2ω2 + (n− 1)nσ4σ̇2 (7.88)

+
n
[
4(n+ 1)σ4ω4 + 2(2n+ 1)σ2ω2 + n

]
4σ4σ̇2

,

f̃ (n)p =
[2c− ln(σ)]

[
2(n+ 1)σ2ω2 + 2(n+ 1)σ4σ̇2 + n

]
4σ4σ̇2

, (7.89)

f̃ (n)xp =
2nσ2ω2 + 2(n+ 2)σ4σ̇2 + n

4σ5σ̇
, (7.90)

f̃
(n)
f =

[ln(σ)− 2c]2

16σ4σ̇2
− 2(n+ 1)σ2ω4 + 2nσ6σ̇4 + nω2

2σ4
(7.91)

−
σ̇2
[
4(n+ 1)σ4ω2 − nσ2

]
2σ4

,

f̃x =
2c− ln(σ)

4σ5σ̇
, f̃xx =

1

4σ6
, (7.92)

In a similar fashion we may also derive the other infinite series of Dyson maps given

by

η(n) = A−nη, (7.93)

which is associated with the Hermitian Hamiltonians

h(n) = σ6p4 + f
(n)
p2
p2 + f (n)p p+ fxxx

2 + fxx+ f (n)xp {x, p}+ f
(n)
f , (7.94)

where

f (n)p =
[ln(σ)− 2c]

(
2nσ2ω2 + 2nσ4σ̇2 + n+ 1

)
4σ4σ̇2

, (7.95)
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f
(n)
p2

= n2 + 2(n+ 2)nσ2ω2 +
n

2
− 1

2
+ (n+ 1)(n+ 2)σ4σ̇2 (7.96)

+
(n+ 1)

(
2σ2ω2 + 1

) (
2nσ2ω2 + n+ 1

)
4σ4σ̇2

f (n)xp = −
(n+ 1)

(
2σ2ω2 + 1

)
4σ5σ̇

− (n− 1)σ̇

2σ
, (7.97)

f
(n)
f =

(ln(σ)− 2c)2

16σ4σ̇2
+
ω2
(
2nσ2ω2 + n+ 1

)
+ σ2σ̇2

[
n
(
4σ2ω2 − 1

)
− 1
]

2σ4
(7.98)

+ (n+ 1)σ2σ̇4,

fx =
2c− ln(σ)

4σ5σ̇
, fxx =

1

4σ6
, (7.99)

It is straightforward to compute the symmetry operators for Ih̃ and Ih. We obtain

S := A†A = exp[2(6α2β + 2αγ + γ̃)p]. (7.100)

We have verified that SIh̃S
−1 = Ih̃ and SIhS

−1 = Ih.

7.4.4 Comparison of infinite spectrally equivalent double wells

We shall now directly compare the time-dependent unstable anharmonic oscillator

potential in (7.60) with the infinite number of spectrally equivalent potentials in

(7.86)-(7.91) and (7.93)-(7.98).

The Hamiltonians (7.86) and (7.93) can be written as

H(n) = σ6p4 + F
(n)
p2
p2 + F (n)

p p+ Fxxx
2 + Fxx+ F (n)

xp {x, p}+ F
(n)
f . (7.101)

where

F
(n)
p2

= f
(n)
p2
, f̃

(n)
p2
, F (n)

p = f (n)p , f̃ (n)p , Fxx = fxx, f̃xx, Fx = fx, f̃x, (7.102)

F (n)
xp = f (n)xp , f̃

(n)
xp , F

(n)
f = f

(n)
f , f̃

(n)
f . (7.103)

We now need to eliminate the terms proportional to x and {x, p}. We achieve this

with the following unitary transformation

U = e−i
F
(n)
xp

2Fxx
p2−i Fx

Fxx
p, (7.104)
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where the unitary transformed Hamiltonians are given by

Ĥ(n) = σ6p4 +

F (n)
p2
−

(
F

(n)
xp

)2
Fxx

 p2 + [F (n)
p − FxF

(n)
xp

Fxx

]
p+ Fxxx

2 + F
(n)
f − F 2

x

4Fxx
.

(7.105)

Next we scale these Hamiltonians with a time-dependent function x → (F̃xx)
−1/2x

and subsequently Fourier transform them so that they are viewed in momentum

space. We obtain the spectrally equivalent Hamiltonians with time-dependent po-

tentials as

H̄(n)(y, t) = p2y + σ6 (Fxx)
2 y4 +

[
FxxF

(n)
p2
−
(
F (n)
xp

)2]
y2 + F

(n)
f (7.106)

+

[√
FxxF

(n)
p − Fxf̃

(n)
xp√
Fxx

]
y − F 2

x

4Fxx
.

The time-dependent double wells potentials associated with the Dyson maps η̃(n)

are

¯̃V (n)(y, t) =
y4

4
+

[
4cσω2 − 2σω2 ln(σ)

]
8σ6σ̇2

y +
nω2

(
2σ2ω2 + 1

)
8σ8σ̇2

y2 (7.107)

+
σ2σ̇2

[
n− 4(n+ 1)σ2ω2

]
− 2(3n+ 1)σ6σ̇4

8σ8σ̇2
y2 +

ω2
(
2nσ2ω2 + n+ 1

)
2σ4

+
σ2σ̇2

[
n
(
4σ2ω2 − 1

)
− 1
]
+ 2(n+ 1)σ6σ̇4

2σ4
.

Plots of these double wells potentials for different values of n and t can be found in

figure 7.1. The time-dependent double wells potentials for the Dyson map η(n) are

given by

V̄ (n)(y, t) =
y4

4
−

[2c− ln(σ)]
[
2σ4σ̇2 − 1− 2σ2ω2

]
8σ7σ̇2

y +
2(5n+ 1)σ6σ̇4

8σ8σ̇2
y2 (7.108)

+
σ2σ̇2

[
4(2n+ 1)σ2ω2 + n+ 1

]
−
[
(n+ 1)ω2

(
2σ2ω2 + 1

)]
8σ8σ̇2

y2

+
ω2
(
2nσ2ω2 + n+ 1

)
+ σ2σ̇2

(
n
(
4σ2ω2 − 1

)
− 1
)
+ 2(n+ 1)σ6σ̇4

2σ4
.

These potentials are plotted in figure 7.2 for different values of n and t. We have

determined an infinite number of time-dependent double wells which are spectrally

equivalent to the time-dependent unstable anharmonic oscillator. The two infinite

series of Dyson maps do in fact lead to potentials with different characteristics for

the same parameter values.
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Figure 7.1: The time-dependent double wells potentials in 7.107 for c = 0, c1 = 0.1, c2 = 0.5
and ω. = 1.2 at different times and different values of n.
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Figure 7.2: The time-dependent double wells potentials in 7.108 for c = 0, c1 = 0.1, c2 = 0.5
and ω. = 1.2 at different times and different values of n.

7.5 Conclusions

We have proposed a scheme that allows to compute new time-dependent Dyson maps

from two seed maps in a iterative fashion for a given non-Hermitian time-dependent

Hamiltonian. As argued in general in section 7.2, in principle the iteration process

might continue indefinitely, thus leading to an infinite series of time-dependent Dyson
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maps including their associated Hermitian Hamiltonians. The symmetry operators

S of the Lewis-Riesenfeld invariants govern this behaviour. Thus when the symmetry

is broken also the iteration procedure breaks down. We carried out the procedure in

detail for a two-dimensional system of harmonic oscillators that are coupled to each

other in a non-Hermitian, but PT -symmetrical, fashion and the time-dependent

anharmonic oscillator. For the former we have presented in detail three examples

that exhibit different types of behaviours, but we have verified that similar results

are obtained when starting from different sets of seed functions. For the latter we

started with only two seed maps yet were able to construct the infinite series of

Dyson maps. We have focused in our analysis mainly on the relations between the

various Hamiltonians and their corresponding invariants, but having obtained the

Dyson maps, and therefore the metric operators, it is straightforward to extend the

considerations to the associated wave functions and inner product structures on the

physical Hilbert space.
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Chapter 8

Conclusions and outlook

8.1 Conclusions

The focus of this thesis has been to provide new methods, both exact and approxi-

mate, which aid in the study of time-dependent non-Hermitian quantum systems. Of

the four new methods presented one is associated with approximate solutions to the

TDSE based upon on the Lewis-Riesenfeld method of invariants with the remaining

being concerned with solution procedures for the time-dependent Dyson map η(t)

and metric ρ(t). To demonstrate the validity of these approaches we have studied a

wide array of both Hermitian and non-Hermitian time-dependent systems. For the

non-Hermitian case we additionally explored the spontaneously broken PT -regime

which would have been discarded as unphysical for time-independent systems.

The first method we presented allows for the construction of approximate so-

lutions to the TDSE by utilising time-independent approximation methods such

as time-independent perturbation theory of WKB theory. These time-independent

techniques can be utilised in conjunction with the Lewis-Riesenfeld method of invari-

ants as the eigenvalue equation which the invariant satisfies has time-independent

eigenvalues. By studying two different systems with factorisable optical potentials,

for which an exact solution can be constructed, we demonstrated by calculating ex-

pecation values and the autocorrelation function that both time-independent meth-

ods produced a fairly accurate solution to the TDSE. For the time-independent

perturbation theory the agreement between exact and approximate solutions nat-

urally improved for decreasing expansion parameter and for the WKB approxima-

tion we found the main discrepancies around the turning points, where the WKB
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wavefunction blows up. Overall, by not insisting on full exact solvability of the

Lewis-Riesenfeld method of invariants will allow for the study of more complicated

time-dependent systems.

In chapters 5, 6, and 7 we were concerned with finding new ways to determine

the Dyson map η(t) and metric ρ(t). In chapter 2 we covered the existing ap-

proaches highlighting the limitations for which some we wanted to overcome. For

example, a clear disadvantage in utilising the Lewis-Riesenfeld method of invariants

in the calculation of η(t) and ρ(t) was the reliance on an Ansatz for the time-

dependent non-Hermitian Hamiltonian H(t). We overcame this by proposing the

use of point transformations in chapter 5 and demonstrating for the first time that

they can be used for the construction of non-Hermitian invariants for non-Hermitian

Hamiltonians. We also showed the flexibility of the approach by connecting time-

dependent non-Hermitian systems with exactly solvable time-independent Hermitian

and non-Hermitian systems as well as non-exactly solvable time-independent non-

Hermitian systems. While the approach suffers the same disadvantage as utilising

Lewis-Riesenfeld invariants of increased number steps to obtain η(t) and ρ(t), it

is imbued with the same advantages with the addition of bypassing a need for an

Anstaz for the invariant.

In chapter 6 we considered a perturbative method for the computation of η(t)

and ρ(t). By applying this to a system of two-dimensional time-dependent harmonic

oscillators with a non-Hermitian i(pxpy+xy) coupling as well as the time-dependent

unstable anharmonic oscillator we were able to obtain exact solutions. For the former

system, by treating the non-Hermitian term as a small perturbation, we were able to

identify six unique Dyson map solutions. For the latter we treated the perturbation

as strong and recovered the exact solution determined in [4]. For both cases we saw

that we needed to modify the Ansatz for the metric in the perturbation theory if

the Dyson map was non-Hermitian. Further to this, we additionally explored two-

dimensional time-dependent harmonic oscillators where the non-Hermitian coupling

was ipxpy. This system has first been studied in this thesis and we were able to

identify two exact solutions for the Dyson map where we again had to modify the

perturbative procedure to search for a series solution relating the time-dependent

parameters in the Hamiltonian. The study of these three systems has highlighted

that while the perturbative procedure allows for the construction of exact and mul-

tiple solutions for the Dyson map, it cannot be applied universally. The Ansatz for
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the form of the metric appears to be model dependent.

In addition to obtaining several solutions for the i(pxpy + xy) and ipxpy oscil-

lators, we also explored the broken PT -regime for both systems. All Dyson maps

constructed were valid in the broken PT -regime bar one for the i(pxpy + xy) oscil-

lators, which was valid only at the exceptional point. This is similar to the effects

which were observed in [2, 51, 70, 71], yet here our solutions are restricted to a

particular parameter space. We cannot cross from the unbroken to the broken PT -

regime.

Motivated by the number of Dyson maps we had found for the i(pxpy+xy) oscil-

lators, in chapter 7 we explored an approach which allowed for the construction of an

infinite series of Dyson maps by exploiting the symmetries of the Lewis-Riesenfeld

invariants for the non-Hermitian and associated Hermitian Hamiltonians. If the

symmetry was broken, then as demonstrated the iteration procedure could not be

completed. Therefore, even with two Dyson maps for a particular system there is

no guarantee that you can construct an infinite series of Dyson maps and equivalent

Hermitian Hamiltonians.

Throughout this thesis we also presented a new extensive analysis on the time-

dependent anharmonic oscillator. Previously we had obtained one exact solution

for the Dyson map [4] by solving the TDDE (2.3) with an Ansatz. By constructing

a point transformation between general Bender-Boetcher Hamiltonians and subse-

quently selecting the concrete potential as −x4 we were able to construct a time-

dependent non-Hermitian invariant for the system. From there, after defining the

invariant on the correct contour as first done in [74], we were then able to more

easily identify a second time-dependent Dyson map, which when combined with the

first, as outlined in chapter 7, was a symmetry operator for the invariant. This

then allowed for the construction of the infinite series of Dyson maps and Hermitian

Hamiltonians which, after being unitary and Fourier transformed, contained an in-

finite number of spectrally equivalent time-dependent double wells terms.

Table 8.1 contains a summary of methods which can be used to obtain η(t) and

ρ(t) including advantages and disadvantages. The first three approaches were out-

lined in chapter 2 and the final three correspond to the new works presented in this

thesis.
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Approach Advantages Disadvantages

TDQH (2.4) 1. Doesn’t involve h 1. ρ→ η more difficult
2. Clearer structure for ρ 2. Coupled differential
(Hermitian) equations

TDDE (2.3) 1. η → ρ easier 1. η can be Hermitian or
2. Less restriction on Ansatz non-Hermitian: no clear

structure
2. Coupled differential
equations.

Lewis-Riesenfeld 1. Similarity transformation is 1. Increased number of steps
invariants (2.13) easier to solve. 2. Ansatz for the invariant

2. Easier to solve for
eigenfunctions

Point 1. Advantages of invariant 1. Increased number of steps
transformations approach
(Chapter 5) 2. No Ansatz for invariant

Perturbation theory 1. Obtain exact solutions 1. Can not be applied
(Chapter 6) 2. Identify several solutions universally

Infinite Series 1. Infinite solutions 1. Two starting η’s
(Chapter 7) 2. No guarantee series can

constructed

Table 8.1: Summary of comparison of existing and new solution procedures for η(t) and ρ(t).

8.2 Outlook

With the work presented here being concerned with new methods in the time-

dependent quantum mechanics there are naturally many follow on questions.

Firstly, with regard to using time-independent approximations to find solutions

to the TDSE. A logical next step would be to apply the procedure to more com-

plicated systems, for example those with a Gaussian potential, we demonstrated

how to construct an invariant for such a model in chapter 3. The time-dependent

anharmonic oscillator now has an infinite number of spectrally equivalent Hermitian

Hamiltonians and corresponding invariants, this approach could be utilised to study

the spectra and eigenfunctions. There could also be systems for which an exact in-

variant cannot be constructed, weakening the first step of the approach to deal with

approximate invariants would open up the procedure to deal with more complex

physical phenomena.

We only considered here point transformations between one dimensional Hamil-

tonians. Extending the approach to higher dimensional systems would be of interest

in both the Hermitian and non-Hermitian regime. More complicated choices of both
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reference and target Hamiltonian is also worth study, and if the resulting invariant

is not exactly solvable we can utilise the approximate method outlined in chapter 3

to obtain eigenfunctions.

A model for which the metric is only known perturbatively in the time-independent

scenario is the complex cubic V = ix3 potential. Using the perturbative approach

outlined in chapter 6 to study the time-dependent version of this model is of great in-

terest. There are issues here however associated with how to set up the perturbative

scheme correctly, as we demonstrated it cannot be applied universally. Determining

criteria for when to use the different types of Ansatz for the metric would therefore

also be beneficial.

As for all the other methods considered, it would be a natural next step to carry

out the infinite series scheme for more concrete models. Other questions however

arise from having an infinite number of solutions for the Dyson map/metric. We

know from chapter 6 that different solutions for the metric lead to different physical

behaviour as exhibited in the instantaneous energy spectra for the i(pxpy + xy)

oscillators. Do we observe similar effects for other physical quantities such as the

entropy?

Another open question which is related more to the broader field of non-Hermitian

quantum mechanics rather than just the methods is how we move from the time-

independent to the time-dependent regime. As can be seen for the time-dependent

anharmonic oscillator in chapter 4, we cannot recover the solution for the time-

independent Dyson map from the time-dependent one. Exploring the connection

between the time-independent and the time-dependent could also give a generic

argument as to why the broken PT -regime is ’mended’ with time.

To conclude, this thesis has provided an array of new methods in the areas of

time-dependent Hermitian and non-Hermitian quantum systems. There now exists

a multitude of approaches, both approximate and exact, which can be utilised to

determine the metric and Dyson map, the application of which will hopefully increase

our understanding of phenomena related to time-dependent non-Hermitian quantum

mechanics.
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Appendix A

Lewis-Riesenfeld Invariants

In this appendix we shall be providing further details on the Lewis-Riesenfeld method

of invariants [89]. We shall demonstrate that the eigenavalues of a Lewis-Riesenfeld

invariants are indeed time-independent, that the eigenvectors of the invariants do

satisfy the TDSE, and also how to relate a Hermitian and non-Hermitian invariant

via a similarity transformation involving the time-dependent Dyson map .

A.1 Time-independent eigenvalues

To demonstrate that the eigenvalues, λn, are indeed time-independent we start with

eigenvalue equation which the invariant I(t) satisfies (2.10). Taking the scalar prod-

uct of this equation with the bra ⟨ϕn|, and assuming orthonormal eigenvectors

⟨ϕn|ϕm⟩ = δnm, we may write the time-derivative of the eigenvalues as

∂tλn =
∂

∂t
⟨ϕn|I|ϕn⟩,

= (∂t⟨ϕn|) I|ϕn⟩+ ⟨ϕn|∂tI|ϕn⟩+ ⟨ϕn|I (∂t|ϕn⟩) ,

= λn (∂t⟨ϕn|) |ϕn⟩+
i

ℏ
⟨ϕn| [I,H] |ϕn⟩+ λn⟨ϕn| (∂t|ϕn⟩) ,

= λn∂t (⟨ϕn|ϕn⟩)−
i

ℏ
⟨ϕn|Hλn − λnH|ϕn⟩,

= 0, (A.1)

where we have used the fact that the eigenvalues are real guaranteed by the fact

that I† = I.
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A.2 Eigenvectors satisfy the TDSE

To show that the eigenvectors in the eigenvalue equation (2.10) do satisfy the TDSE

we again start with the eigenvalue equation. Taking the time-derivative we obtain

λn|ϕ̇n⟩ = İ|ϕn⟩+ I|ϕ̇n⟩,

= − i
ℏ
[H, I] |ϕn⟩+ I|ϕ̇n⟩,

= −λn
i

ℏ
H|ϕn⟩+

i

ℏ
IH|ϕn⟩+ I|ϕ̇n⟩. (A.2)

If we now take the scalar product with the bra ⟨ϕm| we obtain

λn⟨ϕm|ϕ̇n⟩ = −λn
i

ℏ
⟨ϕm|H|ϕn⟩+ λm

i

ℏ
⟨ϕm|H|ϕn⟩+ λm⟨ϕm|ϕ̇n⟩. (A.3)

We may re-arrange this to obtain

iℏ(λn − λm)⟨ϕm|ϕ̇n⟩ = (λn − λm)⟨ϕm|H|ϕn⟩. (A.4)

For this equation to hold for both λn = λm and λn ̸= λm we must have that

iℏ⟨ϕm|ϕ̇n⟩ = ⟨ϕm|H|ϕn⟩, (A.5)

and therefore |ϕn⟩ must satisfy the TDSE.

We may also derive the time-dependent phase function given by (3.5). To do

this we consider the time-dependent states |ψn⟩ = eiαn(t)|ϕn⟩ and take the time

derivative

|ψ̇n⟩ = iα̇ne
iαn |ϕn⟩+ eiαn |ϕ̇n⟩. (A.6)

As |ψ̇n⟩ = − i
ℏe

iαnH|ϕn⟩ we have that

α̇n =
1

ℏ
⟨ϕn|iℏ∂t −H|ϕn⟩. (A.7)

Therefore the phase αn(t) is given by equation (2.11).
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A.3 Similarity transform between Hermitian and non-

Hermitian invariants

We now wish to prove that the relation

Ih = ηIHη
−1, (A.8)

holds. To do so we start with the evolution equation (2.12)

dIh
dt

= ∂tIh − i [Ih, h] = 0, (A.9)

and substiute the expression (A.8) into the right hand side obtaining

∂t
(
ηIHη

−1
)
− i
[
ηIHη

−1, h
]
= 0. (A.10)

The first term in this expression is expanded as

∂t
(
ηIHη

−1
)
= (∂tη) IHη

−1 + η (∂tIH) η−1 + ηIH
(
∂tη

−1
)
,

= (∂tη) IHη
−1 + iη[IH , H]η−1 + ηIH

(
∂tη

−1
)

(A.11)

the second term requires a little more attention. We first substitute the TDDE (2.3),

the similarity transformation (A.8) and expand the addition term in the commutator

giving

[Ih, h] =
[
ηIHη

−1, ηHη−1 + i(∂tη)η
−1
]

=
[
ηIHη

−1, ηHη−1
]
+ i
[
ηIHη

−1, (∂tη)η
−1
]
. (A.12)

To simplify this expression we make repeated use of the following commutator iden-

tity

[ABC,D] = AB[C,D] +A[B,D]C + [A,D]BC. (A.13)

and the following equation for the derivative of the inverse of the Dyson map

(∂tη
−1) = −η−1(∂tη)η

−1. (A.14)

The first term in (A.12) simplifies to
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[ηIHη
−1, ηHη−1] = ηIH [η−1, ηHη−1] + η[IH , ηHη

−1]η−1 + [η, ηHη−1]IHη
−1

= ηIH
(
η−1ηHη−1 − ηHη−1η−1

)
+ η

(
IHηHη

−1 − ηHη−1IH
)
η−1

+
(
ηηHη−1 − ηHη−1η

)
IHη

−1

= ηIHHη
−1 − ηHIHη−1

= η[IH , H]η−1, (A.15)

and the second term in (A.12) reduces to

[ηIHη
−1, (∂tη)η

−1] = ηIH [η−1, (∂tη)η
−1] + η[IH , (∂tη)η

−1]η−1 + [η, (∂tη)η
−1]IHη

−1

= ηIH
(
η−1(∂tη)η

−1 − (∂tη)η
−1η−1

)
+ η

(
IH(∂tη)η

−1 − (∂tη)η
−1IH

)
η−1

+
(
η(∂tη)η

−1 − (∂tη)η
−1η
)
IHη

−1,

= ηIHη
−1(∂tη)η

−1 − (∂tη)IHη
−1,

= −ηIH(∂tη
−1)− (∂tη)IHη

−1. (A.16)

Combining (A.15) with (A.16) we have shown that

[Ih, h] = η[IH , H]η−1 − iηIH(∂tη
−1)− i(∂tη)IHη−1, (A.17)

which when substituted into (A.10) with (A.11) verifies that the expression (A.8)

holds.
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Appendix B

WKB theory

In this appendix we shall demonstrate how to derive the WKB wave functions fol-

lowing [169], the connection formulae and the quantization condition for the one-

dimensional TISE.

Our starting point is the one dimensional TISE

−d
2ψ

dx2
+
p(x)2

ℏ2
ψ(x) = 0 where p(x) =

√
2m(E − V (x). (B.1)

If V (x) were constant then the solution to this equation provided E > V would

be plane waves ψ(x) = Ae±ipx/ℏ. Motivated by this solution we assume that when

V (x) is not constant but instead slowly varying the wave functions takes the form

ψ(x) = ei
S(x)
ℏ . (B.2)

We substitute this into the Schrödinger equation (B.1) to obtain

iℏS′′(x)− S′(x)2 + p(x)2 = 0. (B.3)

Expanding S(x) now as a power series in ℏ

S(x) =

∞∑
n=0

ℏnSn(x), (B.4)

substituting into (5.41) and equating powers of ℏ, we may pull out the zeroth and

first order equations which need to be satisfied

S′
0(x)

2 = p(x)2 and S′′
0 (x) = −2iS′

0(x)S
′
1(x). (B.5)
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The respective solutions to these equations are

S0(x) = ±
∫ x

p(y)dy and lnS′
0(x) = −2iS1(x) + c, (B.6)

where c is a constant. If we now approximate S(x) by only keeping terms up to first

order in ℏ meaning

S(x) ≈ S0(x) + ℏS1(x), (B.7)

we obtain the WKB wave function

ψWKB(x) =
A√
p(x)

ei
∫ x p(y)dy +

B√
p(x)

e−i
∫ x p(y)dy, (B.8)

where A and B are constants to be determined. We have taken a superposition of

the two possible linearly independent states.

The wave function given by (B.8) is actually only valid in the ”classically allowed”

region where E > V (x). We can obtain the wave function in what is known as the

”classically forbidden” region where E < V (x). In this case the momentum p(x)

becomes imaginary and the wave function is given by

ψWKB(x) =
C√
q(x)

e
∫ x q(y)dy +

D√
q(x)

e−
∫ x q(y)dy, (B.9)

where

q(x) =
√

2m(V (x)− E). (B.10)

.

There is a difference in behaviour of the WKB wave functions in the two regions.

In the classically allowed region the solution is sinusoidal and in the forbidden region

the wave function decays exponentially. The transition between these two regions of

differing behaviour happens at the turning point. These turning points are defined

through V (xi) = E, with xi being the location of these turning points. The WKB

solutions break down here as the amplitude of the wave functions diverge. We

therefore need a way to connect the two wave functions on either side of the turning

points with a ”patching” wave function.

Following Griffiths [169] we shall now demonstrate how to ”patch” the two wave

functions either side of a turning point we shall consider a potential V (x) where the

classical turning point is located at x = 0. To the left of the turning point is the
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classically allowed regions and therefore the solutions are sinusoidal and the WKB

wave function is given by equation (B.8). To the right of the turning point will

be the classically forbidden region where the solution is exponentially decaying the

WKB wave function is given by (B.9). In the patching region which is in the vicinity

of the turning point x = 0 we shall approximate the potential by a straight line

V (x) ≈ E + V ′(0)x. (B.11)

We now need to solve the Schrödinger equation (B.1) for the linearized potential for

the patching wave function ψp

− ℏ2

2m

d2ψp

dx2
+ (E + V ′(0)x)ψp = ψp. (B.12)

By setting

α =

[
2m

ℏ2
V ′(0)

]1/3
(B.13)

and changing variables through z = αx we may recast equation (B.12) as the Airy

equation
d2ψp

dz2
= zψp. (B.14)

The general solution to the Airy equation is

ψp = aAi(z) + bBi(z), (B.15)

where Ai(z) and Bi(z) are the Airy functions, a plot of these functions is given

in figure 3.1 displaying the aforementioned sinusoidal and dacying or increasing

behaviour on either side of the turning point. The integral representation of these

functions are

Ai(z) =
1

π

∫ ∞

0
cos

(
s3

3
+ sz

)
ds, (B.16)

Bi(z) =
1

π

∫ ∞

0

[
sin

(
s3

3
+ sz

)
+ e−

s3

3
+sz

]
ds. (B.17)

We however will only be concerned with the asymptotic forms of the Airy functions

given by

Ai(z) ∼ 1

2
√
πz1/4

e−
2
3
z3/2 and Bi(z) ∼ 1

√
πz1/4

e
2
3
z2/3 , (B.18)
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Figure B.1: Graphs of the Airy functions Ai(z) and Bi(z) respectively.

when z ≫ 0. When z ≪ 0 we have

Ai(z) ∼ 1
√
π(−z)1/4

sin

[
2

3
(−z)3/2 + π

4

]
(B.19)

=
1

√
π(−z)1/4

[
ei

2
3
(−z)

3
2 ei

π
4 − e−i 2

3
(−z)

3
2 e−iπ

4

]
,

and

Bi(z) ∼ 1
√
π(−z)1/4

cos

[
2

3
(−z)3/2 + π

4

]
(B.20)

=
1

√
π(−z)1/4

[
ei

2
3
(−z)

3
2 ei

π
4 + e−i 2

3
(−z)

3
2 e−iπ

4

]
.

We now need to determine the WKB wave function in the vicinity of the turning

point. We shall start to the left of the turning point and assume that the slope is

positive (V ′(x) > 0). In this region where x < 0 the momentum will be given by

p(x) =
√
2m(E − V (x)) ∼ ℏα3/2

√
−x, (B.21)

therefore the WKB wave function is

ψl =
A√

ℏ(−α3x)4
e−i 2

3
(−αx)

3
2 +

B√
ℏ(−α3x)4

ei
2
3
(−αx)

3
2 . (B.22)

Similarly to the right of the turning point where x > 0 and we are in the classically

forbidden region the WKB wave function can now be written as

ψr(x) =
C√

ℏ(α3x)4
e

2
3
(αx)

3
2 +

D√
ℏ(α3x)4

e−
2
3
(αx)

3
2 . (B.23)

We will now patch these WKB wave functions to correct forms of the asymptotic

Airy functions. In the left region, the WKB wave function (B.22) re-written in terms
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of z as

ψl(z) =
A

√
ℏα(−z)

1
4

e−i 2
3
(−z)

3
2 +

B
√
ℏα(−z)

1
4

ei
2
3
(−z)

3
2 , (B.24)

will match with the z ≪ 0 form of the Airy functions. Setting ψl(z) = aAi(z) +

bBi(z) and solving for a and b we get

a =

√
π

ℏα

(
Ae−iπ

4 +Bei
π
4

)
and b =

√
π

ℏα

(
Aei

π
4 +Be−iπ

4

)
. (B.25)

Similarly in the right region we may set ψr(z) = aAi(z) + bBi(z) yet we now use

the asymptotic forms of the Airy functions for z ≫ 0. In doing so we obtain a and

b in terms of C and D

a =

√
4π

ℏα
D and b =

√
π

ℏα
C. (B.26)

Setting equations (B.25) and (B.26) equal to one another allows us to now write

down the connection formulae for a right hand barrier (V ′(x) > 0)

D =
1

2
(Ae−iπ

4 +Bei
π
4 ), C =

1

2
(Aei

π
4 +Be−iπ

4 ), (B.27)

A =
1

2
(Dei

π
4 + Ce−iπ

4 ), B =
1

2
(De−iπ

4 + Cei
π
4 ). (B.28)

The equivalent formulae for a left hand barrier (V ′(x) < 0) can be derived in a

similar fashion.

We can summarise the connection formulae as

2√
p(x)

cos

[∫ a

x
p(y)dy/ℏ− π

4

]
← 1√

q(x)
exp

[
−
∫ x

a
q(y)dy/ℏ

]
, (B.29)

and

− 1√
p(x)

sin

[∫ a

x
p(y)dy/ℏ− π

4

]
→ 1√

q(x)
exp

[∫ x

a
q(y)dy/ℏ

]
, (B.30)

for a right hand barrier. For a left hand barrier we have

1√
q(x)

exp

[
−
∫ a

x
q(y)dy/ℏ

]
→ 2√

p(x)
cos

[∫ x

a
p(y)dy/ℏ− π

4

]
, (B.31)

and
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1√
q(x)

exp

[∫ a

x
q(y)dy/ℏ

]
← − 1√

p(x)
sin

[∫ x

a
p(y)dy/ℏ− π

4

]
. (B.32)

We can now use the derived matching conditions of the WKB wave functions to

derive the quantization condition. To do this we shall consider bound states in a

quantum well as depicted for a generic potential V (x) in figure B.2. The classical

Figure B.2: Schematic representation of a potential well V (x) with classical turning points
x1 and x2.

turning points determined from the condition V (x) = E are labelled x1 and x2. The

well will be defined by three regions. Region 1 will be a classically forbidden region.

Region 2 will be the classically allowed region in between the turning point x1 and

x2. The third region will again be a classically forbidden region. At x1 there is is

a left hand barrier (V ′(x) < 0) and at x2 there is a right hand barrier (V ′(x) > 0).

For region 1 we start by neglecting the part of the wave function that would blow

up at −∞, we find the WKB wave function in the region to be

ψ1(x) =
C1√
q(x)

exp

[
−
∫ x1

x
q(y)dy/ℏ

]
, (B.33)

with C1 being a constant. Similarly in region 3 we have

ψ3(x) =
C3√
q(x)

exp

[
−
∫ x

x2

q(y)dy/ℏ
]
. (B.34)

By using the connection formulae given by equations (B.31) and (B.29) we obtain
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two results for the wave function in region 2 given by

ψ2(x) =
2C1√
p(x)

cos

[∫ x

x1

p(y)dy/ℏ− π

4

]
, (B.35)

and

ψ2(x) =
2C3√
p(x)

cos

[∫ x2

x
p(y)dy/ℏ− π

4

]
. (B.36)

These wave functions have to be equal. Therefore if we use the fact that

∫ x2

x
dy =

∫ x2

x1

dy −
∫ x

x1

dy, (B.37)

we can rewrite equation (B.36) as

ψ2(x) =
2C3√
p(x)

cos

[∫ x2

x1

p(x′)dx′/ℏ−
∫ x

x1

p(x′)dx′/ℏ− π

4

]
. (B.38)

If we now let

A =

∫ x2

x1

p(x′)dx′/ℏ and B =

∫ x

x1

p(x′)dx′/ℏ. (B.39)

We can write

cos
[
A−

(
B +

π

4

)]
= sin

[
A−

(
B − π

4

)]
= sin [A] cos

[
B − π

4

]
− cos [A] sin

[
B − π

4

]
. (B.40)

We need this expression to be proportional to cos[B − π/4] so that it can match

correctly with (B.35). This leads to the condition that cos[A] = 0, this is achieved

if A = (n+ 1/2)π and leads to the quantization condition:

∫ x2

x1

p(x)dx =

(
n+

1

2

)
πℏ. (B.41)

Furthermore, we have the requirement that sin[A] = (−1)n, and hence C1 = (−1)nC3.
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Appendix C

Integral derivation

In this appendix we shall derive the integral given by equation (3.43) in the main

body of this thesis. To do so we shall be considering the following integral

∫ ∞

−∞
x2nDS(x)DR(x)dx, (C.1)

and consider three separate cases.

C.1 S and R are even

For S and R both even we shall consider

∫ ∞

0
x2nD2s(x)D2s(x)dx. (C.2)

The parabolic cylinder functions are related to the physicist’s Hermite polynomials

[170] through

D2s(x) = 2−se−x2/4H2s

(
x√
2

)
, (C.3)

which allows us to rewrite our integral as

2−(s+r)

∫ ∞

0
x2ne−x2/2H2s

(
x√
2

)
H2r

(
x√
2

)
dx. (C.4)

The Hermite polynomials are related to the Laguerre polynomials [170] through

H2s(x) = (−1)s22ss!L(−1/2)
s (x2), (C.5)
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and so our integral becomes

(−1)2+r2s+rs!r!

∫ ∞

0
x2ne−x2/2L(−1/2)

s

(
x2

2

)
L(−1/2)
r

(
x2

2

)
dx. (C.6)

If we change variables to y = x2/2 our integral reduces to

(−1)s+r2s+r+n−1/2s!r!

∫ ∞

0
yn−1/2e−yL(−1/2)

s (y)L(−1/2)
r (y) dy, (C.7)

We notice that this integral is of a similar form to one derived by Mavromatis [171],

which is given by

∫ ∞

0
xµe−xL(α)

m (x)L(β)
n (x)dx =(

m+ α

m

)(
n+ β − µ− 1

n

)
Γ[µ+ 1]3F2 (−m,µ+ 1, µ− β + 1;α+ 1, µ− β − n+ 1; 1)

(C.8)

where Re(µ) > −1 and n,m ∈ N, and the function 3F2(a, b, c; d, f ; z) is the hyper-

geometric function defined as

3F2(a, b, c; d, f ; z) =

∞∑
k=0

(a)k(b)k(c)k
(d)k(f)k

zk

k!
, (C.9)

with (a)k = Γ(a + k)/Γ(a) denoting the Pochhammer symbol. Using this we can

therefore write down a form for the integral given by (C.1) when s and r are both

even:

∫ ∞

−∞
x2nD2s(x)D2r(x)dx = (−1)s+r21/2+s+r+ns!r!

(
s− 1/2

s

)(
r − n− 1

r

)
Γ

[
n+

1

2

]
× 3F2

(
−s, n+

1

2
, n+ 1;

1

2
, n− r + 1; 1

)
. (C.10)

Unfortunately this result is only valid for when n ≥ r. To overcome this we first

write the hypergeometric function in equation (C.10) as power series using equation

(C.9) noting that the series will terminate as s:

3F2

(
−s, n+

1

2
, n+ 1;

1

2
, n− r + 1; 1

)
=

s∑
k=0

(−s)k(n+ 1/2)k(n+ 1)k
(1/2)k(n− r + 1)k

1

k!
. (C.11)
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We can also write the binomial involving r in equation (C.10) in terms of a Pochham-

mer symbol (
r − n− 1

r

)
=

(−1)r

r!
(n− r + 1)r, (C.12)

By multiplying this by equation (C.11) and noting that

(n− r + 1)r(n+ 1)k
(n− r + 1)k

= (k − r + 1 + n)r, (C.13)

we obtain

(
r − n− 1

r

)
3F2

(
−s, n+

1

2
, n+ 1;

1

2
, n− r + 1; 1

)
=

=
(−1)r

r!

s∑
k=0

(k − r + 1 + n)r(−s)k(n+ 1/2)k
k!(1/2)k

,

=
(−1)r

r!

√
πΓ[1 + n]3F̃2

(
−s, n+ 1, n+

1

2
;
1

2
, n+ 1− r; 1

)
, (C.14)

where the function 3F̃2 (a, b, c; d, f ; z) is the regularized hypergeometric function de-

fined by

3F̃2 (a, b, c; d, f ; z) =
1

Γ[d]Γ[f ]

∞∑
k=0

(a)k(b)k(c)k
(d)k(f)k

zk

k!
. (C.15)

Furthermore, by writing

(
s− 1/2

s

)
=

Γ[s+ 1/2]√
πs!

, (C.16)

as well as

Γ

[
n+

1

2

]
Γ[1 + n] = 2−2n

√
2πΓ[1 + 2n], (C.17)

we obtain our final form for equation (C.10)

∫ ∞

−∞
x2nD2s(x)D2r(x)dx =

(−1)s21/2+s+r−n√πΓ[1 + 2n]Γ

[
s+

1

2

]
3F̃2

(
−s, n+ 1, n+

1

2
;
1

2
, n+ 1− r; 1

)
,

(C.18)

which is valid for all n > −1 and s, r ∈ N.
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C.2 S and R are odd

For the case where S and R are both odd we shall consider the following integral

∫ ∞

0
x2nD2s+1(x)D2r+1(x)dx. (C.19)

We shall follow the same procedure as before. First we write the parabolic cylinder

functions in terms of the physicist’s Hermite polynomials

D2s+1(x) = 2−(s+1/2)e−x2/4H2s+1

(
x√
2

)
, (C.20)

which results in our integral being

2−(1+s+r)

∫ ∞

0
x2ne−x2/2H2s+1

(
x√
2

)
H2r+1

(
x√
2

)
dx. (C.21)

We now write the Hermite polynomials in terms of Laguerre polynomials, which for

odd S and R are given by

H2s+1(x) = (−1)s22s+1s!xL(1/2)
s (x2). (C.22)

Our integral now reads

(−1)s+r2(s+r)s!r!

∫ ∞

0
x2n+2e−x2/2L)1/2)

s (x2)L(1/2)
r (x2)dx. (C.23)

By substituting y = x2/2, the integral reduces to a familiar form given by

(−1)s+r2s+r+n+1/2s!r!

∫ ∞

0
yn+1/2e−yL(1/2)

s (y)L(1/2)
r (y)dy, (C.24)

Using the formula derived by Mavromatis [171] given in equation (C.8) we obtain

∫ ∞

−∞
x2nD2s+1(x)D2r+1(x)dx = (−1)s+r2s+r+n+3/2s!r!

(
s+ 1/2

s

)(
r − n− 1

r

)
× Γ

[
n+

3

2

]
3F2

(
−s, n+

3

2
, n+ 1;

3

2
, n− r + 1; 1

)
. (C.25)

We now need to modify this formula to ensure that it is valid for all combinations of

n and r. We first write the hypergeometric function as a power series using equation
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(C.9)

3F2

(
−s, n+

3

2
, n+ 1;

3

2
, n− r + 1; 1

)
=

s∑
k=0

(−s)k(n+ 3/2)k(n+ 1)k
(3/2)k(n− r + 1)k

1

k!
. (C.26)

We then write the binomial involving r in equation (C.25) in terms of Pochhammer

symbols using equation (C.12), and then utilise the relation given in equation (C.13)

to obtain

(
r − n− 1

r

)
3F2

(
−s, n+

3

2
, n+ 1;

3

2
, n− r + 1; 1

)
=

=
(−1)r

r!

s∑
k=0

(k − r + 1 + n)r(−s)k(n+ 3/2)k
k!(3/2)k

,

=
1

2

(−1)r

r!

√
πΓ[1 + n]3F̃2

(
−s, n+

3

2
, n+ 1;

3

2
, n− r + 1; 1

)
, (C.27)

where 3F̃2 (a, b, c; d, f ; z) is the regularized hypergeometric function defined by equa-

tion (C.15). If we combine this with the fact that we can write

(
s+ 1/2

s

)
=

2Γ
[
s+ 3

2

]
s!
√
π

, (C.28)

and

Γ[1 + n]Γ

[
n+

3

2

]
= 2−1−2n√πΓ[2 + 2n], (C.29)

we obtain our final form for equation (C.25):

∫ ∞

−∞
x2nD2s+1(x)D2r+1(x)dx =

(−1)s2s+r−n+3/2√πΓ[2 + 2n]Γ

[
s+

3

2

]
3F̃2

(
−s, n+

3

2
, n+ 1;

3

2
, n− r + 1; 1

)
,

(C.30)

which is valid for all n > −1 and s, r ∈ N.

C.3 S is even and R is odd

For the final case we have that S is even and R is odd, and therefore we shall consider

the following integral ∫ ∞

0
x2nD2s(x)D2r+1(x)dx. (C.31)
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Using equations (C.3) and (C.20) we can write this integral in terms of Hermite

polynomials

2−(s+r+1/2)

∫ ∞

0
x2ne−x2/2H2s

(
x√
2

)
H2r+1

(
x√
2

)
dx. (C.32)

If we now use equations (C.5) and (C.22) we can write this integral in terms of

Laguerre polynomials

(−1)s+r2s+rs!r!

∫ ∞

0
x2n+1e−x2/2L(−1/2)

s

(
x2

2

)
L(1/2)
r

(
x2

2

)
dx, (C.33)

If we change variables to y = x2/2 we obtain

(−1)s+r2s+r+ns!r!

∫ ∞

0
yne−yL(−1/2)

s (y)L(1/2)
r (y)dy. (C.34)

If we now use equation (C.8) we obtain

∫ ∞

−∞
x2nD2s(x)D2r+1(x)dx = (−1)s+r2r+s+n+1s!r!

(
s− 1/2

s

)(
r − n− 1/2

r

)
× Γ[n+ 1]3F2

(
−s, n+ 1, n+

1

2
;
1

2
, n− r + 1 +

1

2
; 1

)
. (C.35)

For this equation we now wish to obtain a form that is similar to equations (C.18)

and (C.30). In order to do this we proceed in the same way as before by first writing

the hypergeometric function in terms of a power series using equation (C.9) yielding

3F2

(
−s, n+ 1, n+

1

2
;
1

2
, n− r + 1 +

1

2
; 1

)
=

s∑
k=0

(−s)k(n+ 1)k(n+ 1/2)k
(1/2)k(n− r + 1/2)k

1

k!
.

(C.36)

We now need to write the binomial involving r in equation (C.35) in terms of

Pochhammer symbols to obtain

(
r − n− 1/2

r

)
=

(−1)r

r!
(n− r + 1/2)r. (C.37)

If we now multiply this by equation (C.36) and use the the following relationship

involving Pochammer symbols

(n− r + 1/2)r(n+ 1/2)k
n− r + 1/2)k

= ((k − r + 1/2 + n)r, (C.38)
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we obtain

(
r − n− 1/2

r

)
3F2

(
−s, n+ 1, n+

1

2
;
1

2
, n− r + 1 +

1

2
; 1

)
=

=
(−1)r

r!

s∑
k=0

(k − r + 1/2 + n)r(−s)k(n+ 1)k
k!(1/2)k

=
(−1)r

r!

√
πΓ

[
n+

1

2

]
3F̃2

(
−s, n+ 1, n+

1

2
;
1

2
, n− r + 1 +

1

2
; 1

)
(C.39)

Combining this with (
s− 1/2

s

)
=

Γ
[
s+ 1

2

]
s!
√
π

, (C.40)

and

Γ[n+ 1]Γ

[
n+

1

2

]
= 2−2n√πΓ[1 + 2n], (C.41)

we obtain

∫ ∞

−∞
x2nD2s(x)D2r+1(x)dx =

(−1)s2r+s+1−n√πΓ[1 + 2n]Γ

[
s+

1

2

]
3F̃2

(
−s, n+ 1, n+

1

2
;
1

2
, n− r + 1 +

1

2
; 1

)
,

(C.42)

which is valid for n > −1 and s, r ∈ N.

Finally we can now combine the final formulae for all 3 cases given by equations

(C.18), (C.30) and (C.42) into a universal form given by

∫ ∞

−∞
x2nD2s+δ(x)D2r+δ̄(x)dx = (−1)s2s+r−n+ 1+δ−δ̄

2
√
πΓ

[
s+

1

2
+ δ

]
× Γ[2n+ 1 + δ]3F̃2

(
−s, n+ 1, n+

1

2
+ δ;

1

2
+ δ, n− r + 1 +

δ − δ̄
2

; 1

)
(C.43)

for n, r, s ∈ N0 and (δ, δ̄) = (0, 1), (0, 0), (1, 1). Our formula generalises the result of

Mavromatis [171].
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Appendix D

Point transformations

In this appendix we shall demonstrate how to derive equations (5.11), (5.12) and

(5.13) by utilising point transformations [155, 161].

We wish to determine the point transformation which maps the Schrödinger

equation (5.2) to (5.1) for H0(χ) being the time-independent harmonic oscillator

(5.9). The wave functions ψ and ϕ are implicit functions of (χ, τ) and (x, t) respec-

tively and the functional dependence of χ, τ and ψ is

χ = χ(x, t), τ = τ(x, t), ψ = R(x, t, ϕ(x, t)). (D.1)

We compute the total derivatives of χ and τ with respect to x and t

dψ

dx
= ψχχx + ψττx = Rϕϕx +Rx, (D.2)

dψ

dt
= ψχχt + ψττt = Rϕϕt +Rt. (D.3)

We may solve this system of equations for the unknown functions ψχ and ψτ

ψχ =
1

J
(τtRϕϕx − τxRϕϕt + τtRx − τxRt) , (D.4)

ψτ =
1

J
(χxRϕϕt − χtRϕϕx + χxRt − χtRx) , (D.5)

here J = χxτt−χtτx is the Jacobian. As there is a momentum squared term we also

compute the derivative
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d2ψ

dx2
= ψχ,χχ

2
x + ψχχx,x + 2ψχ,τχxτx + ψττx,x + ψτ,ττ

2
x (D.6)

= Rϕ,ϕϕ
2
x +Rϕϕx,x + 2Rϕ,xϕx +Rx,x.

Present in (D.6) is the nonlinear term Rϕ,ϕϕ
2
x, there are no nonlinear terms present

in the TDSEs we are considering and therefore to eliminate this we factorise the

wavefunction as

ψ = A(x, t)ϕ, (D.7)

such that Rϕ,ϕ = 0. Similarly, in (D.6) we notice a term proportional to a double

derivative in the time co-ordinate for the reference system ψτ,ττ
2
x , there are again

no such terms present in the TDSE so we opt to take

τ = τ(t), (D.8)

such that τx = 0. We may now solve (D.6) for ψχ,χ and simplify expressions (D.4)

and (D.5) to obtain

ψχ,χ =
1

χ2
x

[(
Ax,x −

χx,x

χx

)
ϕ+

(
2Ax −

Aχx,x

χx

)
ϕx +Aϕx,x

]
, (D.9)

ψχ =
1

χx
(Axϕ+Aϕx) , (D.10)

ψτ =
1

τt

[(
At −

Axχt

χx

)
ϕ− Aχt

χx
ϕx +Aϕt

]
. (D.11)

Substituting these into the TDSE for time-independent harmonic oscillator (5.9) we

obtain the point transformed TDSE

iℏϕt +
ℏ2

2m

τt
χ2
x

ϕx,x +B0(x, t)ϕx − V0(x, t)ϕ = 0, (D.12)

where

B0(x, t) = −iℏ χt

χx
+

ℏ2

2m

τt
χ2
x

(
2
Ax

A
− χxx

χx

)
, (D.13)

V0(x, t) =
1

2
mτtχ

2ω2 − iℏ
(
At

A
− Axχt

Aχx

)
− ℏ2

2m

τt
χ2
x

(
Axx

A
− Axχxx

Aχx

)
.(D.14)
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