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Abstract4

When modelling the age distribution of death counts for multiple populations, we ought5

to consider three features: (1) how to incorporate any possible correlation among multiple6

populations to improve point and interval forecast accuracy through multi-population joint7

modelling, (2) how to forecast age distribution of death counts so that the forecasts are8

non-negative and have a constrained integral. (3) how to construct a prediction interval that9

is well-calibrated in terms of coverage. Within the framework of compositional data analysis,10

we apply a log-ratio transform to transform a constrained space into an unconstrained space.11

We apply multivariate and multilevel functional time series methods to forecast period life-12

table death counts in the unconstrained space. Through the inverse log-ratio transformation,13

the forecast period life-table death counts are obtained. Using the age-specific period14

life-table death counts in England & Wales and Sweden obtained from Human Mortality15

Database (2022), we investigate one-step-ahead to 30-step-ahead point and interval forecast16

accuracies of the proposed models and make our recommendations.17
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1 Introduction23

Actuaries and demographers have been interested in developing methods for mortality fore-24

casting for many years. In particular, actuaries have produced mortality forecasts since the25

beginning of the 20th century in response to the adverse financial effects of mortality improve-26

ments overtime on life annuities and pensions (Pollard 1987). In the literature on human27

mortality, three functions are generally studied: hazard function, survival function and proba-28

bility density function. These three functions are complementary; knowing any one of them29

allows us to uniquely derive the other two (for detail on the life table and its indicators, see30

Preston et al. (2001), Chapter 3, or Dickson et al. (2009), Chapters 2–3).31

Several authors have proposed new approaches for forecasting the age-specific hazard32

function (i.e., central mortality rates) using statistical models (see, e.g., Booth 2006, Booth and33

Tickle 2008, Cairns et al. 2008, Shang et al. 2011, for reviews). Instead of modelling central34

mortality rates, we consider modelling the life-table death distribution (see, e.g., Basellini et al.35

2020). Observed over time, we could model and forecast a redistribution of the density of36

life-table deaths, where deaths at younger ages are shifted towards older ages. In addition37

to providing a very informative description of the mortality experience of a population, the38

life-table death counts yield readily available information on ‘central longevity indicators’ (i.e.,39

mean, median and mode age at death, see Cheung et al. 2005, Canudas-Romo 2010), as well as40

lifespan variability (for example, standard deviation or inter-quartile range, see Robine 2001,41

Vaupel et al. 2011, Horiuchi et al. 2013, van Raalte and Caswell 2013, van Raalte et al. 2014,42

Aburto and van Raalte 2018).43

Within the analysis of life-table death counts, we may consider both cohort and period life44

tables. The period life table represents the mortality conditions in a period (see also Oeppen45

2008, Bergeron-Boucher et al. 2017, 2018). The cohort life table depicts the life history of a specific46

group of individuals. Still, it is dependent on projected mortality rates for those cohorts born47

more recently than around 100 years ago. Cohort mortality developments are observed, and48

they may differ from those of the synthetic cohorts assumed in period life tables (Goldstein and49

Wachter 2006). Unlike the period data, the cohort data are partially complete, which presents a50

challenge.51

Many methods proposed for completing cohort-based life tables depend on parametric52

models, which are fitted to the incomplete cohort data and then extrapolated beyond the53

truncation age. As noted by Booth and Tickle (2008), P-spline regression methods seem to54

provide a promising approach, and, in this context, one could apply the method of Rizzi et al.55

(2021) who have proposed a penalised composite link model to complete the mortality profile.56
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With the completed mortality profile, statistical methods used for modelling and forecasting57

period life-table death counts are applicable. Whether we are considering a period or cohort life58

table, the age-specific death counts can be naturally viewed as a probability density function,59

an example of compositional data. Without deviating from our methodological contributions,60

we focus on period life table results and present cohort life table results in a supplement.61

In a novel approach that differs from early work of Bergeron-Boucher et al. (2018), Kokoszka62

et al. (2019), Shang and Haberman (2020) and Zhang et al. (2022), we jointly model and forecast63

the age distribution of life-table death counts for multiple populations to capture correlations64

among multiple series and improve forecast accuracy. Multiple-population modelling and65

forecasting have attracted increasing attention in actuarial science (see, e.g., Jarner and Kryger66

2011, Cairns et al. 2011, Dowd et al. 2011, Russolillo et al. 2011, Hatzopoulos and Haberman67

2013, Villegas et al. 2017) and demography (see, e.g., Li and Lee 2005, Hyndman et al. 2013). Our68

extension links multiple-population forecasting methods with the compositional data analysis69

(CoDa) framework (see also, Shang and Kearney 2022, Bergeron-Boucher et al. 2018). In this70

paper, multiple populations refer to the female and male life-table death counts.71

We also consider a nonparametric bootstrap method for constructing prediction intervals of72

life-table death counts. The procedure exploits a univariate autoregressive representation of73

the time series of principal component scores appearing in the functional principal component74

analysis of the functional process. Via the CoDa transformation, the bootstrap method generates75

functional replicates that mimic the temporal dependence of the (original) unconstrained76

functional time series.77

To demonstrate our proposed CoDa methods, we conduct a comprehensive analysis of the78

age- and sex-specific period life-table death counts from 1841 to 2018 in England & Wales. We79

evaluate and compare the one- to 30-step-ahead forecast accuracy between the CoDa methods80

for independently and jointly modelling multiple populations. To evaluate point forecast81

accuracy, we use the mean absolute percentage error (MAPE), Kullback-Leibler divergence, and82

two variants of the Jensen-Shannon divergence. The latter three measures are commonly used83

to evaluate density estimation accuracy. To assess the interval forecast accuracy, we consider the84

coverage probability difference between the empirical and nominal coverage probabilities and85

mean interval score of Gneiting and Raftery (2007) and Gneiting and Katzfuss (2014); refer to86

Section 6.1 for details. To provide reliable recommendations, we additionally evaluate the point87

and interval forecast accuracy on period life-table death counts in Sweden in Section 7. We also88

model cohort life-table death counts in both England & Wales and Sweden in the supplementary89

material.90

The remainder of this paper is organised as follows: Section 2 describes the age- and sex-91
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specific period life-table death counts from 1841 to 2018 in England & Wales. Sections 3 and 492

couple the CoDa with multivariate and multilevel functional time series forecasting methods of93

Shang and Kearney (2022) for producing the point and interval forecasts of the age distribution94

of life-table death counts. Section 5 studies the goodness-of-fit of a CoDa extension. Using the95

point and interval forecast error criteria in Section 6, we evaluate and compare the one- to 30-96

step-ahead point and interval forecast accuracy among the methods considered. Section 7 also97

presents the forecasting results on the period life-table death counts in Sweden. Conclusions98

are summarised in Section 8, along with some reflections on how the methods presented here99

can be further extended.100

2 Age-distribution of death counts101

We consider age- and sex-specific life-table death counts from 1841 to 2018 in England & Wales,102

obtained from the Human Mortality Database (2022). We study life-table death counts, where103

the life table radix (i.e., a population experiencing 100,000 births annually) is fixed at 100,000104

at age 0 for each year. For the life-table death counts, there are 111 ages, and these are age105

0, 1, . . . , 109, 110+. Due to rounding, there are zero counts for age 110+ at some years. To rectify106

this problem, we prefer to use the probability of dying and the life table radix to recalculate107

our estimated death counts (up to 6 decimal places). In doing so, we obtain more precise death108

counts than the ones reported in the Human Mortality Database (2022). To some extent, the109

probability of dying relies on smooth rates (see the Human Mortality Database 2022, protocol110

for detail).111
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Figure 1: Rainbow plots of age-specific period life-table death count from 1841 to 2018 in a single-year group in
England & Wales. The oldest years are shown in red, with the most recent years in violet. Curves are
ordered chronologically according to the colours of the rainbow.
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To understand the principal features of the data, Figure 1 presents rainbow plots of the112

female and male age-specific period life-table death counts in England & Wales from 1841 to113

2018 in a single-year group.114

In the male population, there are a few bumps in the death counts between age 20 and 40115

for cohorts between 1900 and 1920 due to the First and Second World Wars. Apart from that,116

both sub-figures demonstrate a decreasing trend in infant death counts and a typical negatively117

skewed distribution for the life-table death counts, where the peaks shift to higher ages for both118

females and males. This shift is a primary driver of the longevity risk, which is a major issue for119

insurers and pension funds, especially in the selling and risk management of annuity products120

(see Denuit et al. 2007, for a discussion).121

The spread of the distribution indicates lifespan variability. A decrease in variability over122

time can be observed directly. It can be measured, for example, with the interquartile range123

of life-table ages at death or the Gini coefficient (for comprehensive reviews, see Wilmoth124

and Horiuchi 1999, Shkolnikov et al. 2003, van Raalte and Caswell 2013, Debón et al. 2017).125

Figure 2 presents an example where the age-at-death distribution provides important insights126

on longevity and lifespan variability that cannot be grasped directly from an examination of127

either the central mortality rate or the survival function.128
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England & Wales: male data (1841−2018)
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Figure 2: Gini coefficients for period female and male life-table death count from 1841 to 2018.

From Figure 2, the effects of the first and second World Wars are apparent for the male data129

based on Gini’s coefficient. For the female data, there is a sudden drop around 1918 which130

possibly relates to the Spanish flu.131
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3 Constrained functional time-series forecasting methods132

Density functions are non-negative functions that integrate into one. They naturally share133

some features with compositional data (see, e.g., Aitchison 1986, Pawlowsky-Glahn et al. 2015).134

Compositional data arise in many scientific fields, such as geology (geochemical elements),135

economics (income/expenditure distribution), medicine (body composition), the food industry136

(food composition), chemistry (chemical composition), agriculture (nutrient balance bionomics),137

environmental science (soil contamination), ecology (abundance of different species) and de-138

mography (life-table death counts). In statistics, Scealy et al. (2017) use CoDa to study the139

concentration of chemical elements in sediment or rock samples. Scealy and Welsh (2017) apply140

CoDa to analyse total weekly expenditure on food and housing costs for households in a chosen141

set of domains. Delicado (2011), Kokoszka et al. (2019) and Shang and Haberman (2020) use142

CoDa to analyse density functions and implement dimension-reduction techniques on the143

constrained compositional data space. In demography, Oeppen (2008) and Bergeron-Boucher144

et al. (2017) put forward a principal component approach to forecast life-table death counts145

within a CoDa framework by considering age-specific life-table death counts as compositional146

data.147

For a given period t, compositional data are defined as a random vector of I non-negative

components, [Xt(u1), . . . ,Xt(uI)], whose sum is a specified constant, set typically equal to 1

(portion), 100 (percentage) or 106 for parts per million (ppm) in geochemical trace element

compositions (Aitchison 1986, p.1). Between the positivity and summability constraints, the

sample space of compositional data is thereby a simplex

S I =

{
[Xt(u1), . . . ,Xt(uI)]

⊤ , Xt(ui) > 0,
I

∑
i=1

Xt(ui) = c

}
, t = 1, . . . , n,

where u denotes a continuum, such as age, S denotes a simplex, c is a fixed constant, ⊤ denotes148

vector transpose, and the simplex sample space is a I − 1 dimensional subset of real-valued149

space RI .150

In the CoDa framework, the standard approach involves breaking the summability constraint151

using a transformation of the raw data to remove the constraint before applying conventional152

statistical techniques to the transformed data in an unconstrained space. Among many possible153

transformations, the centred log-ratio transformation is commonly used (Aitchison and Shen154

1980, Aitchison 1982, 1986). The algorithm for implementing the CoDa method consists of the155

following steps:156
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1) Compute the geometric mean function157

α
j
n(u) = exp

{
1
n

n

∑
t=1

ln[X j
t (u)]

}
, j = 1, . . . , J, (1)

where ln(·) denotes natural logarithm, and j denotes a population index in our multiple

population setting; here, we consider J = 2 representing the female and male data. We

treat age as a continuum u ∈ [0, 110] although age is observed at discrete points, and set

sj
t(u) =

X j
t (u)/α

j
n(u)∫ 110

ν=0 X
j
t (ν)/α

j
n(ν)dν

.

The geometric mean standardises the ranges so that no range dominates the weighting.158

2) Apply the centred log-ratio transformation given by159

β
j
t(u) = ln

(
sj

t(u)

gj
t

)
, (2)

where gj
t is the geometric mean given by

gj
t = exp

{∫ 110

u=0
ln[sj

t(u)]du
}

.

The log-ratio transformation in (2) removes the constraints on X j
t (u). For a given popu-160

lation j, β
j
t(u) can be viewed as an unconstrained functional time series, and we present161

three methods below for modelling and forecasting multi-population functional time162

series.163

3a) Univariate functional principal component (FPC) decomposition (see, e.g., Kokoszka et al.164

2019, Shang and Haberman 2020): Apply functional principal component analysis (FPCA)165

to the transformed data β j(u) = {β
j
1(u), . . . , β

j
n(u)}, i.e., compute the Karhunen-Loève166

expansion of a functional realisation167

β
j
t(u) =

n

∑
ℓ=1

γ̂
j
t,ℓϕ̂

j
ℓ(u) =

Lj

∑
ℓ=1

γ̂
j
t,ℓϕ̂

j
ℓ(u) + ϖ̂

j
t(u), (3)

where ϖ̂
j
t(u) denotes model residual function for the jth population at age u and year t,168

[ϕ̂
j
1(u), . . . , ϕ̂

j
Lj
(u)] are the first Lj estimated FPCs, and (γ̂

j
t,1, . . . , γ̂

j
t,Lj

) are their scores at169

year t.170

We determine Lj by three eigenvalue ratio criteria (see Ahn and Horenstein 2013, Li et al.
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2020). The first one is known as the eigenvalue ratio (ER) estimator, which is simply

obtained by maximising the ratio of two adjacent eigenvalues of β j(β j)⊤/(nI) arranged

in descending order, where β j = [β j(u1), . . . ,β j(uI)] and I denotes the total number of

discrete grid points:

ER(ℓ) =
µ̃nI,ℓ

µ̃nI,ℓ+1
, ℓ = 1, 2, . . . , Lmax.

The second criterion function, known as the growth ratio (GR), is given by

GR(ℓ) =
ln(1 + µ̃∗

nI,ℓ)

ln(1 + µ̃∗
nI,ℓ+1)

,

where

µ̃∗
nI,ℓ =

µ̃nI,ℓ

∑
min(n,I)
s=ℓ+1 µ̃nI,s

.

The optimal number Lj is selected as171

Lj = max
{

argmax
1≤ℓ≤Lmax

ER(ℓ), argmax
1≤ℓ≤Lmax

GR(ℓ)
}

. (4)

In general, the Lmax is a pre-specified positive integer, which can be set as Lmax =172

#{ℓ|µ̃nI,ℓ ≥ ∑n
ℓ=1 µ̃nI,ℓ/n, ℓ ≥ 1}. In other words, Lmax counts the number of eigenvalues,173

which is greater than the sum of all eigenvalues divides by sample size.174

The third criterion estimates the number of components as the integer minimising ratios175

of two adjacent eigenvalues given by176

Lj = argmin
1≤ℓ≤Lmax

{
µ̃ℓ+1

µ̃ℓ
× 1

(
µ̃ℓ

µ̃1
≥ θ

)
+ 1

(
µ̃ℓ

µ̃1
< θ

)}
, (5)

where θ is a pre-specified small positive number, which can be set as θ = 1/ ln[max(µ̃1, n)]177

and 1(·) is the binary indicator function.178

By taking a conservative view, the actual number of retained FPCs is more likely to be179

within the maximum of the estimated numbers of retained components in (4) and (5).180

3b) Multivariate FPC decomposition: We stack the unconstrained data [β1
t (u), β2

t (u)] into a

long vector of functional time series βt(u) = [β1
t (u), β2

t (u)]. Computationally, β j(u) is a

matrix of n× I, then β(u) is a matrix of n× (2I). Then, we apply FPCA to the transformed

data matrix β(u) = [β1(u), . . . ,βn(u)], i.e., compute the Karhunen-Loève expansion of a

8



functional realisation

β
j
t(u) =

n

∑
ℓ=1

γ̂
j
t,ℓϕ̂

j
ℓ(u) ≈

L

∑
ℓ=1

γ̂
j
t,ℓϕ̂

j
ℓ(u),

where [ϕ̂
j
1(u), . . . , ϕ̂

j
L(u)] are the first L estimated FPCs extracted from the variance-181

covariance of the stacked functional time series, and (γ̂
j
ℓ,1, . . . , γ̂

j
ℓ,L) are their corresponding182

scores for the jth population. For the first population, we truncate the first I elements; for183

the second population, we truncate the second I elements. The optimal number of L is184

determined by the eigenvalue ratio criteria in (4).185

3c) Multilevel FPC decomposition: We can model β
j
t(u) via a multilevel FPCA. We seek to

find a common pattern shared among populations and a series-specific pattern for each j

series. Mathematically, the multilevel FPC regression can be expressed as

β
j
t(u) = Ut(u) + Rj

t(u) + ej
t(u),

where Ut(u) denotes a common trend, such as the average of all series; Rj
t(u) denotes

a series-specific trend, and ej
t(u) denotes an error term. The common trend Ut(u) can

be a simple average of β
(1)
t (u) and β

(2)
t (u) (see, e.g., Li and Lee 2005, Shang 2016). The

common trend and series-specific trend can be modelled via a two-stage FPC analyses,

Ut(u) =
K

∑
k=1

γ̂t,kϕ̂k(u)

Rj
t(u) =

L

∑
l=1

ι̂
j
t,lψ̂

j
l(u),

where K and L denote the number of retained components, [ϕ̂1(u), . . . , ϕ̂K(u)] denotes186

the estimated FPCs for the common trend, while [ψ̂
j
1(u), . . . , ψ̂

j
L(u)] denotes the estimated187

FPCs for the population-specific trend, (γ̂t,1, . . . , γ̂t,K) denotes the estimated principal188

component score for period t, while (ι̂
j
t,1, . . . , ι̂

j
t,L) denotes the estimated principal compo-189

nent score for period t. The optimal numbers of K and L are determined by the eigenvalue190

ratio criteria in (4).191

An important parameter is the proportion of variability explained by the aggregate data,192

which is the variance explained by the within-cluster variability (Di et al. 2009). A possible193

measure of within-cluster variability is given by194

∑∞
k=1 λk

∑∞
k=1 λk + ∑∞

l=1 λ
j
l

=

∫ 110
u=0 Var[R(u)]du∫ 110

u=0 Var[R(u)]du +
∫ 110

u=0 Var[U j(u)]du
, (6)

9



where λk represents the kth eigenvalue of the common trend, and λ
j
l represents the lth

195

eigenvalue of the population-specific trend. When the common factor can explain the196

primary mode of total variability, the value of within-cluster variability is close to 1.197

4) Forecast the FPC scores. Using a univariate time series forecasting method, we obtain the198

h-step-ahead forecast γ̂
j
n+h|n,ℓ of the ℓth principal component score (see, e.g., Hyndman199

and Shang 2009, Aue et al. 2015). Conditioning on the estimated principal components200

and observed data, the forecast of β
j
n+h(u) is given by201

β̂
j
n+h|n(u) =

Lj

∑
ℓ=1

γ̂n+h|n,ℓϕ̂
j
ℓ(u). (7)

Similarly, the principal component scores in the multivariate and multilevel FPC decompo-202

sitions can be obtained by a univariate or multivariate time series forecasting method. We203

consider four commonly used univariate time series forecasting methods (see Section 6).204

These methods can model the possible presence of nonstationarity in each set of principal205

component scores.206

5) Transform back to the compositional data, i.e., take the inverse centred log-ratio transfor-

mation given by

ŝj
n+h|n(u) =

exp[β̂j
n+h|n(u)]∫ 110

u=0 exp[β̂j
n+h|n(u)]du

,

where β̂
j
n+h|n(u) denotes the forecasts in (7).207

6) Finally, we add back the geometric means to obtain the forecasts of the density function

X̂n+h|n(u) =
ŝj

n+h|n(u)α
j
n(u)∫ 110

u=0 ŝj
n+h|n(u)α

j
n(u)du

,

where α
j
n(u) is the geometric mean function given in (1).208

4 Nonparametric bootstrap209

Prediction intervals are a valuable tool for assessing the probabilistic uncertainty associated210

with point forecasts. The forecast uncertainty stems from systematic deviations (e.g., parameter211

and model uncertainty) and random fluctuations (e.g., due to the model error term). As pointed212

out by Chatfield (2000, Chapter 7), it is essential in both demographic and actuarial applications213

to provide interval forecasts as well as point forecasts to (1) assess future uncertainty levels;214

10



(2) enable different strategies to be planned for a range of possible outcomes indicated by215

the interval forecasts; (3) compare forecasts from different methods more thoroughly; and216

(4) explore different scenarios based on various assumptions.217

Our aim is to construct a prediction band for the unconstrained functional time series

βn+h associated with the predictor β̂n+h. The prediction band, denoted by [β̂n+h(u)− Ln,h(u),

β̂n+h(u) + Un,h(u)], is given as

lim
n→∞

Pr
(

β̂n+h(u)− Ln,h(u) ≤ βn+h(u) ≤ β̂n+h(u) + Un,h(u), ∀u ∈ I|βn,k

)
= 1 − α,

where βn,k = (βn, βn−1, . . . , βn−k+1) are the last k observations. The crux of the problem is on

the estimation of the conditional distribution of the prediction error En+h = βn+h − β̂n+h given

βn,k. The prediction error can be decomposed as

En+h := βn+h − β̂n+h

= ϵn+h + [ f (βn+h−1, βn+h−2, . . . )− g(βn+h−1, βn+h−2, . . . , βn+h−k)] +

+
[

g(βn+h−1, βn+h−2, . . . , βn+h−k)− ĝ(β̂n+h−1, β̂n+h−2, . . . , β̂n+h−k)
]

= EI,n+h + EM,n+h + EE,n+h.

EI,n+h is the error attributable to the independent and identically distributed innovation, EM,n+h218

is the model mis-specification error, and EE,n+h is the error attributable to estimation of the219

unknown function g and of random element (βn+h−1, . . . , βn+h−k) used for the h-step-ahead220

prediction.221

The construction of the prediction interval for CoDa has previously been considered by222

Bergeron-Boucher et al. (2017) and Shang and Haberman (2020). However, the existing methods223

do not take into account a model mis-specification error. Our bootstrap method does not224

only take into account the three sources of uncertainty, but it also considers multi-population225

modelling of unconstrained data β j(u) = {β
j
1(u), . . . , β

j
n(u)}.226

Univariate functional time series method (see Kokoszka et al. 2019, Shang and Haberman 2020):

Using a univariate time series forecasting model, we can obtain multi-step-ahead forecasts for

the principal component scores, {γ̂
j
1,ℓ, . . . , γ̂

j
n,ℓ} for ℓ = 1, . . . , L. Let the h-step-ahead forecast

errors be ζ
j
t,h,ℓ = γ̂

j
t,ℓ− γ̂

j
t|t−h,ℓ, for t = h+ 1, . . . , n. These can then be sampled with replacement

to give a bootstrap sample of γn+h,ℓ:

γ̂
j,b
n+h|n,ℓ = β̂n+h|n,ℓ + ζ̂

j,b
∗,h,ℓ, b = 1, . . . , B,
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where B = 1, 000 symbolises the total number of bootstrap replications and ζ̂
j,b
∗,h,ℓ are sampled227

with replacement from ζ̂
j
t,h,ℓ.228

While the first Lj principal components approximate the data β j(u) relatively well, the229

model residuals should contribute nothing but random noise. We apply a white noise test of230

Bagchi et al. (2018) to examine whether or not the residuals are white noise. Consequently, we231

can bootstrap the model fit errors in (3) by sampling with replacement from the model residual232

term {ϖ̂
j
1(u), . . . , ϖ̂

j
n(u)} for a given age u.233

Adding both components of variability, we obtain B variants for β
j
n+h(u):

β̂
j,b
n+h|n(u) =

Lj

∑
ℓ=1

γ̂
j,b
n+h|n,ℓϕ̂

j
ℓ(u) + ϖ̂

j,b
n+h(u).

With the bootstrapped {β̂
j,1
n+h|n(u), . . . , β̂

j,B
n+h|n(u)}, we fit a functional time series model, where234

the retained number of principal components is estimated from the ER and GR tests and is235

allowed to be different values among the bootstrap samples. By conditioning on the estimated236

mean function and FPCs in each bootstrap sample, we then obtain the forecasts.237

Multivariate functional time series method (see Shang and Kearney 2022): By stacking βt(u) =238

[β1
t (u), β2

t (u)] into a long vector of functional time series, we then apply a FPCA to decompose239

[β1(u), . . . ,βn(u)] into L sets of principal components and their associated scores. We apply240

our bootstrap procedure to construct the bootstrap samples, namely β̂
j,b
n+h|n(u).241

Multilevel functional time series method (see Shang et al. 2016, Shang and Kearney 2022): By242

taking a simple average Ut(u) = βt(u) =
β1

t (u)+β2
t (u)

2 , we obtain a common series between the243

two populations. First, we apply a FPCA to decompose β(u) = [β1(u), . . . , βn(u)] into K sets of244

FPCs and their associated scores. From the principal component decomposition of the averaged245

series, we can compute the population-specific residual trend. We again apply a FPCA to246

decompose the population-specific residual trend into L sets of FPCs and their associated scores.247

Then, we apply the above bootstrap procedure to construct the bootstrap samples, namely248

Ûb
n+h|n(u) and R̂j,b

n+h|n(u). Then, β̂
j,b
n+h|n(u) = Ûb

n+h|n(u) + R̂j,b
n+h|n(u).249

With the bootstrapped β̂
j,b
n+h|n(u), we follow steps 5) and 6) in Section 3, in order to obtain the250

bootstrap forecast of X j,b
n+h(u). At the 100(1 − υ)% nominal coverage probability, the prediction251

bands are obtained by taking υ/2 and 1 − υ/2 quantiles based on
{
X̂ j,1

n+h|n(u), . . . , X̂ j,B
n+h|n(u)

}
.252
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5 CoDa model fitting253

We examine the goodness-of-fit of the CoDa model for multiple populations. In Section 6, the254

CoDa with the multivariate and multilevel functional time series methods are our recommenda-255

tion for producing the point and interval forecasts for multiple populations. For example, we256

consider the CoDa model fitting by the multilevel functional time series method for the female257

and male life-table death counts. The number of retained components, K and L are determined258

by the ER and GR criteria in the common and residual trends, respectively. For the common259

trend between the female and male data in England & Wales, the chosen number of components260

is 1. For the population-specific trend between the female and male data in England & Wales,261

the chosen numbers of components for the residual trend is 1 and 4, respectively. From (6),262

we compute the within-cluster variability. The common trend accounts for 96.16% of the total263

variation for the female series, and it accounts for 93.63% of the total variation for the male264

series.265
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Figure 3: Elements of the CoDa with the multilevel functional time series method for analysing female and male
age-specific life-table death counts in England & Wales from 1841 to 2018.

From the observed death counts from 1841 to 2018 (i.e., 178 observations), in Figure 3, we266

present the geometric mean of female and male period life-table death counts, given by α
j
x,267

the transformed data matrix β j(u) = {β
j
1(u), . . . , β

j
n(u)}, the reconstructed female and male268

life-table death counts using a multilevel FPCA, and one- to 30-step-ahead forecasts of female269

and male life-table death counts. From the unconstrained data β1(u) and β2(u), we notice that270

the series are nonstationary. Therefore, our bootstrap procedure for constructing prediction271

intervals must be tailored to handle nonstationary functional time series. These forecast life-272

table death counts are obtained by multiplying the estimated principal components with the273

forecast principal component scores using the random walk with drift (RWD) for the years274

between 2019 and 2048. RWD is one of the four univariate forecasting methods employed in275

the example, and which will be discussed in Section 6.4.276
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6 Comparisons of point and interval forecast accuracy277

6.1 Expanding window278

An expanding window analysis of a time series model is commonly used to assess model279

and parameter stability over time and prediction accuracy. The expanding window analysis280

determines the constancy of a model’s parameter by computing parameter estimates and their281

resultant forecasts over an expanding window of a fixed size through the sample (for details282

Zivot and Wang 2006, pp. 313–314). Using the first 148 observations from 1841 to 1988 in283

the female and male age-specific life-table death counts, we produce one- to 30-step-ahead284

forecasts. Through an expanding window approach, we re-estimate the parameters in the time285

series forecasting models using the first 149 observations from 1841 to 1989. Forecasts from286

the estimated models are then produced for one- to 29-step-ahead forecasts. We iterate this287

process by increasing the sample size by one year until we reached the data period in 2018.288

This process produces 30 one-step-ahead forecasts, 29 two-step-ahead forecasts, . . . , and one289

30-step-ahead forecast. We compare these forecasts with the holdout samples between 1989 and290

2018 to determine the out-of-sample forecast accuracy.291

6.2 Point forecast error criteria292

To evaluate the point forecast accuracy, we consider the MAPE that measures how close the

forecasts are to the holdout observations being forecast, regardless of the direction of forecast

errors. This error measure can be written as

MAPE(h) =
1

111 × (31 − h)

30

∑
ξ=h

111

∑
i=1

∣∣∣∣∣Xn+ξ(ui)− X̂n+ξ|n(ui)

Xn+ξ(ui)

∣∣∣∣∣× 100, i = 1, . . . , 111,

where Xn+ξ(ui) denotes the holdout sample for the ui
th age and ξth forecasting year, while293

X̂n+ξ|n(ui) denotes the point forecasts for the holdout sample.294

Since age-specific life-table death counts can be considered a probability density function, we

also consider some density evaluation measures. These measures include the discrete version of

the Kullback-Leibler divergence (Kullback and Leibler 1951) and the square root of the Jensen-

Shannon divergence (Shannon 1948). The Kullback-Leibler divergence is intended to measure

the loss of information when we choose an approximation. For two probability density functions

denoted by Xn+ξ(u) and X̂n+ξ|n(u), the discrete version of the Kullback-Leibler divergence is

15



defined as

KLD(h) = DKL[Xn+ξ(ui)||X̂n+ξ|n(ui)] + DKL[X̂n+ξ|n(ui)||Xn+ξ(ui)]

=
1

111 × (31 − h)

30

∑
ξ=h

111

∑
i=1

Xn+ξ(ui) ·
[

lnXn+ξ(ui)− ln X̂n+ξ|n(ui)
]
+

1
111 × (31 − h)

30

∑
ξ=h

111

∑
i=1

X̂n+ξ|n(ui) ·
[

ln X̂n+ξ|n(ui)− lnXn+ξ(ui)
]
,

which is symmetric and non-negative.295

An alternative is given by the Jensen-Shannon divergence, defined by

JSD(h) =
1
2

DKL[Xn+ξ(ui)||δn+ξ(ui)] +
1
2

DKL[X̂n+ξ|n(ui)||δn+ξ(ui)],

where δn+ξ(ui) measures a common quantity between Xn+ξ(ui) and X̂n+ξ|n(ui). We consider296

simple mean and geometric mean, given by δn+ξ(ui) =
1
2 [Xn+ξ(ui) + X̂n+ξ|n(ui)] or δn+ξ(ui) =297 √

Xn+ξ(ui)X̂n+ξ|n(ui). We denote JSDs(h) for the Jensen-Shannon divergence with the simple298

mean, and JSDg(h) for the Jensen-Shannon divergence with the geometric mean. To make the299

Jensen-Shannon divergence a metric between two probability densities, we take the square root300

of the Jensen-Shannon divergence (see, e.g., Fuglede and Topsoe 2004).301

6.3 Interval forecast error criteria302

To evaluate the interval forecast accuracy, we consider the coverage probability difference (CPD)

between the empirical and nominal coverage probabilities and mean interval score of Gneiting

and Raftery (2007). For each year in the forecasting period, the h-step-ahead prediction intervals

are calculated at the 100(1 − υ)% nominal coverage probability. We consider the common

case of the symmetric 100(1 − υ)% prediction intervals, with lower and upper bounds that

are predictive quantiles at υ/2 and 1 − υ/2, denoted by X̂ lb
n+ξ(ui) and X̂ ub

n+ξ(ui). The CPD is

defined as

CPDh =
1

111 × (31 − h)

30

∑
ξ=h

111

∑
i=1

[
1{Xn+ξ(ui) > X̂ ub

n+ξ(ui)}+ 1{Xn+ξ(ui) < X̂ lb
n+ξ(ui)}

]
.

For different ages and years in the forecasting period, the mean CPD is defined by

CPD =
1

30

30

∑
h=1

CPDh.

As defined by Gneiting and Raftery (2007), a scoring rule for the prediction intervals at time
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point Xn+ξ(ui) is

Sυ,ξ

[
X̂ lb

n+ξ(ui), X̂ ub
n+ξ(ui),Xn+ξ(ui)

]
=
[
X̂ ub

n+ξ(ui)− X̂ lb
n+ξ(ui)

]
+

2
υ

[
X̂ lb

n+ξ(ui)−Xn+ξ(ui)
]
1
{
Xn+ξ(ui) < X̂ lb

n+ξ(ui)
}

+
2
υ

[
Xn+ξ(ui)− X̂ ub

n+ξ(ui)
]
1
{
Xn+ξ(ui) > X̂ ub

n+ξ(ui)
}

,

where 1{·} represents the binary indicator function and υ denotes the level of significance,303

customarily υ = 0.2 or 0.05. The interval score rewards a narrow prediction interval, if and only304

if the true observation lies within the prediction interval. The optimal interval score is achieved305

when Xn+ξ(ui) lies between X̂ lb
n+ξ(ui) and X̂ ub

n+ξ(ui), and the distance between X̂ lb
n+ξ(ui) and306

X̂ ub
n+ξ(ui) is minimal.307

For different ages and years in the forecasting period, the mean interval score is defined by

Sυ(h) =
1

111 × (31 − h)

30

∑
ξ=h

111

∑
i=1

Sυ,ξ

[
X̂ lb

n+ξ(ui), X̂ ub
n+ξ(ui),Xn+ξ(ui)

]
,

where Sυ,ξ

[
X̂ lb

n+ξ(ui), X̂ ub
n+ξ(ui),Xn+ξ(ui)

]
denotes the interval score at the ith age and ξth curve

in the forecasting period. Averaged over all forecast horizons, we obtain the overall mean

interval score

Sυ =
1

30

30

∑
h=1

Sυ(h).

6.4 Forecast results308

Using the expanding window scheme, we compare the one-step-ahead to 30-step-ahead forecast309

errors between the CoDa with the functional time series methods in Table 1. We consider310

forecasting each set of the estimated principal component scores by four distinct univariate311

time series forecasting methods. These forecasting methods are the autoregressive integrated312

moving average (ARIMA), exponential smoothing (ETS), naı̈ve random walk (RW) and RWD.313

While these methods are widely applied to analyse linear time series, ETS can be tailored to fit314

a nonlinear time series. We aim to identify which one of the four methods produces the most315

accurate forecasts through an empirical comparison.316
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Table 1: A comparison of the point forecast accuracy, as measured by the overall MAPE, KLD and JSD with
simple and geometric means, among the CoDa with independent and joint modelling approaches and
several benchmark methods using a holdout sample of the period life-table death counts for the female and
male data in England & Wales. Further, we consider four univariate time series forecasting methods for
our functional time-series forecasting methods within the CoDa. ETS denotes the automatic exponential
smoothing method. ARIMA denotes the automatic autoregressive integrated moving average method
of Hyndman and Khandakar (2008). FTS denotes the univariate functional time series method. MFTS
denotes the multivariate functional time series method. MLFTS denotes the multilevel functional time
series method. The smallest errors are highlighted in bold.

Modelling Forecasting Female Male

method method MAPE KLD JSDs JSDg MAPE KLD JSDs JSDg

CoDa

FTS ARIMA 29.900 0.041 0.010 0.010 42.737 0.130 0.031 0.033

ETS 33.405 0.032 0.008 0.008 47.223 0.153 0.037 0.038

RW 31.422 0.070 0.017 0.017 47.077 0.152 0.036 0.038

RWD 29.914 0.042 0.010 0.010 43.175 0.127 0.031 0.032

MFTS ARIMA 18.966 0.021 0.005 0.005 38.318 0.099 0.024 0.025

ETS 32.214 0.044 0.011 0.011 52.609 0.123 0.030 0.031

RW 33.953 0.041 0.010 0.010 54.951 0.118 0.029 0.029

RWD 18.031 0.018 0.004 0.004 38.096 0.092 0.022 0.023

MLFTS ARIMA 22.988 0.034 0.008 0.008 27.499 0.055 0.013 0.014

ETS 32.837 0.054 0.013 0.013 39.211 0.079 0.019 0.020

RW 34.762 0.054 0.013 0.013 39.797 0.078 0.019 0.019

RWD 20.833 0.028 0.007 0.007 27.049 0.053 0.013 0.013

RW 34.209 0.042 0.010 0.010 43.151 0.086 0.021 0.021

LC VECM 29.020 0.046 0.011 0.011 43.110 0.140 0.034 0.035

LL RWD-AR 33.451 0.076 0.019 0.019 36.668 0.075 0.018 0.019

PR ARIMA 35.114 0.062 0.015 0.016 40.699 0.108 0.026 0.027

CBD-M6 VAR 43.422 0.161 0.039 0.040 60.407 0.178 0.042 0.045

CBD-M6 VECM 31.029 0.088 0.022 0.022 41.486 0.107 0.026 0.027

317

From the aggregated error measures over the forecast horizon, we present the forecast errors318

obtained from the CoDa and a number of single- and multi-population benchmark models in319

Table 1, namely,320
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1) the naı̈ve random walk model.321

2) two-population Li-Carter model (LC) with a vector error correction model (VECM) for the322

evolution of period effects, discussed by Zhou et al. (2014).323

3) Li-Lee model (LL) with RWD for common PC scores and autoregressive (AR) of order 1 for324

population-specific PC scores, considered by Li and Lee (2005).325

4) product-ratio model (PR) with the FPC scores forecasted by ARIMA, which was introduced326

by Hyndman et al. (2013).327

5) two-population Cairns-Blake-Dowd model with cohort effect (CBD-M6) with population-328

specific coefficients jointly predicted by vector autoregressive model (VAR) of order 1 or329

VECM (see, e.g., Li et al. 2015).330

The benchmark models do not consider the constraints. Therefore, to obtain a fair comparison331

with our proposed methods, we slightly modify the benchmark approaches by applying them332

to the unconstrained β
j
t(u) after the centred log-ratio transformation to adapt the positivity and333

summability constraints in the age-specific life table.334

We consider the RW method for each sub-population for the single-population benchmark335

separately, where the one-step-ahead forecast density is the same as the most recently observed336

density. While this method does not consider temporal changes, it does not require the CoDa337

transformation and thus is computationally fast. Regarding the coherent forecasting of mortality338

rates for multiple sub-populations, most such models extend the well-known single-population339

models, such as the Lee-Carter model and Cairns-Blake-Dowd (CBD) model, by specifying the340

correlation and interaction between the involved populations (Villegas et al. 2017). The LC, LL341

and PR methods are extensions of the Lee-Carter model, while CBD-M6 is the extension of the342

CBD model. Li et al. (2015) proposed several two-population extensions of the CBD model,343

among which the CBD-M6 model is the final recommended one.344

We find that the CoDa with the multivariate functional time series method using the RWD345

method produces the smallest point forecast errors for females. The CoDa with the multilevel346

functional time series method using the RWD method produces the smallest point forecast347

errors for males. While Table 1 presents an aggregated measure, we present horizon-specific348

forecast errors in Figure 4. In general, as the forecast horizon increases, the differences in349

forecast errors among the CoDa variants become more apparent.350

The overall interval forecast error results of the CoDa method with various functional time351

series methods are presented in Table 2, where we average over the 30 forecast horizons. We352

find that the CoDa with the multivariate functional time series method using the automatically353
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Figure 4: A comparison of point forecast accuracy between the CoDa with functional time series methods using the
holdout samples of the England & Wales period data. In the CoDa variants, we use the RWD forecasting
method. The six benchmark methods are the random walk method, two-population Lee-Carter method
of Zhou et al. (2014), Li-Lee method of Li and Lee (2005), the product-ratio method of Hyndman et al.
(2013), two-population CBD-M6 model with VAR (or VECM) forecast of Li et al. (2015).
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selected ARIMA of Hyndman and Khandakar (2008) produces the smallest interval forecast354

errors for females. In contrast, the CoDa with the multilevel functional time series method355

with the RWD produces the smallest interval forecast errors for male period data. Among the356

four univariate time series forecasting methods and three functional time series methods, the357

multilevel functional time series method with RWD produces the smallest interval forecast358

errors averaged over females and males, and thus is recommended to obtain both the point and359

interval forecasts.360

Table 2: A comparison of the interval forecast accuracy, as measured by the overall CPD and mean interval score
among the CoDa methods using the holdout sample of the female and male data in England & Wales.
Further, we consider four univariate time series forecasting methods for the CoDa.

Modelling Forecasting CPD (Female) Sα (Female) CPD (Male) Sα (Male)

method method α = 0.2 0.05 0.2 0.05 0.2 0.05 0.2 0.05

FTS ARIMA 0.288 0.164 829.766 1267.737 0.339 0.241 1830.273 3954.051

ETS 0.247 0.107 718.468 931.781 0.292 0.234 1958.649 4437.786

RW 0.118 0.070 926.145 1437.361 0.284 0.229 1942.471 4306.580

RWD 0.163 0.034 797.098 994.477 0.308 0.201 1781.903 3393.862

MFTS ARIMA 0.079 0.037 421.524 657.474 0.331 0.293 2022.347 4731.384

ETS 0.080 0.041 480.040 676.078 0.309 0.282 2120.377 5435.254

RW 0.112 0.045 459.755 673.594 0.273 0.261 2037.320 5095.628

RWD 0.158 0.049 443.686 796.824 0.215 0.148 1503.861 2344.673

MLFTS ARIMA 0.094 0.045 650.225 866.905 0.139 0.045 941.893 1221.611

ETS 0.139 0.046 701.098 949.348 0.119 0.047 1009.098 1330.439

RW 0.141 0.045 711.635 918.514 0.122 0.046 1000.434 1327.669

RWD 0.195 0.050 655.530 1056.286 0.115 0.044 738.543 1077.238

361 In contrast to the point forecasts, the RW method does not provide a prediction interval.362

For the multi-population benchmark models, there is no established prediction interval under363

the CoDa framework in the literature. Thus, we report the interval forecast accuracy based on364

the functional time series methods using the nonparametric bootstrap approach described in365

Section 4 in Table 2.366

While Table 2 presents the average over 30 forecast horizon, we show the one-step-ahead to367

30-step-ahead interval forecast errors in Figure 5. The differences in forecast accuracy among368

the CoDa methods become wider as the forecast horizon becomes longer. In the relatively369
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longer forecast horizon, the errors associated with all the methods become larger, but they are370

relatively smaller for our recommended multilevel functional time series method with RWD.371

0 5 10 15 20 25 30

20
0

40
0

60
0

80
0

10
00

Female

S
0.

2(h
)

Univariate functional time series method
Multivariate functional time series method
Multilevel functional time series method

0 5 10 15 20 25 30

50
0

10
00

15
00

20
00

25
00

Male

0 5 10 15 20 25 30

40
0

60
0

80
0

10
00

12
00

14
00

16
00

Female

Forecast horizon

S
0.

05
(h

)

0 5 10 15 20 25 30

10
00

20
00

30
00

40
00

50
00

Male

Forecast horizon

Figure 5: A comparison of interval forecast accuracy between the CoDa with functional time series methods using
the holdout samples of the England & Wales period data. We use the ARIMA forecasting method for
females and the RWD forecasting method for males.

Among the four univariate time series forecasting methods, the RWD is generally recom-372

mended for producing point forecasts. For producing interval forecasts, the RWD is recom-373

mended for males but not so for females. The difference is how well the forecasts generated374

from a statistical model capture the holdout data. For females, we found the ARIMA method375

produces the smallest interval scores using the holdout samples of the England & Wales data376

set. The ARIMA method can include higher-order lags than the RWD counterpart, the latter377

method being a special case of AR(1). Since we don’t know the underlying data generating378

process, the most accurate method is data-driven, subject to the fitting period. Although a379

model is better when it is a good proxy of the data generating process, it can not be gener-380

alised. To facilitate reproducibility, the code for implementing all the methods is available at381

https://github.com/hanshang/LTDC.382
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7 Results on Swedish period life-table death counts383

To check the robustness of our proposed methods, we perform the point and interval estimation384

on age- and sex-specific period life-table death counts from 1861 to 2018 in Sweden, obtained385

from the Human Mortality Database (2022). The comparison of the point and interval forecast386

accuracy are presented in Table 3 and 4, respectively. In addition, we present horizon-specific387

point and interval forecast errors in Figures 6 and 7, respectively. As the forecast horizon388

increases, the differences in forecast errors among the CoDa variants become more apparent.389

Table 3: A comparison of the point forecast accuracy, as measured by the overall MAPE, KLD and JSD with
simple and geometric means, among the CoDa with independent and joint modelling approaches and
several benchmark methods using a holdout sample of the period life-table death counts for the female
and male data in Sweden. Further, we consider four univariate time series forecasting methods for our
functional time-series forecasting methods within the CoDa. ETS denotes the automatic exponential
smoothing method. ARIMA denotes the automatic autoregressive integrated moving average method
of Hyndman and Khandakar (2008). FTS denotes the univariate functional time series method. MFTS
denotes the multivariate functional time series method. MLFTS denotes the multilevel functional time
series method. The smallest errors are highlighted in bold.

Modelling Forecasting Female Male

method method MAPE KLD JSDs JSDg MAPE KLD JSDs JSDg

CoDa

FTS ARIMA 26.721 0.028 0.007 0.010 28.625 0.041 0.010 0.010

ETS 28.385 0.020 0.005 0.011 29.431 0.042 0.011 0.011

RW 37.155 0.061 0.015 0.018 48.421 0.073 0.018 0.018

RWD 27.587 0.032 0.008 0.011 30.020 0.043 0.011 0.011

MFTS ARIMA 26.085 0.032 0.008 0.014 34.673 0.058 0.014 0.014

ETS 24.070 0.029 0.007 0.009 29.891 0.038 0.009 0.009

RW 42.589 0.049 0.012 0.018 54.852 0.072 0.018 0.018

RWD 22.285 0.019 0.005 0.009 29.806 0.036 0.009 0.009

MLFTS ARIMA 26.737 0.020 0.005 0.008 26.521 0.033 0.008 0.008

ETS 24.597 0.017 0.004 0.004 22.568 0.017 0.004 0.004

RW 48.286 0.054 0.013 0.015 48.987 0.062 0.015 0.015

RWD 25.907 0.025 0.006 0.007 26.678 0.028 0.007 0.007

RW 43.945 0.028 0.007 0.007 51.057 0.061 0.015 0.015

LC VECM 27.022 0.029 0.007 0.007 27.216 0.035 0.009 0.009

Continued on next page
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Table 3: A comparison of the point forecast accuracy, as measured by the overall MAPE, KLD and JSD with
simple and geometric means, among the CoDa with independent and joint modelling approaches and
several benchmark methods using a holdout sample of the period life-table death counts for the female
and male data in Sweden. Further, we consider four univariate time series forecasting methods for our
functional time-series forecasting methods within the CoDa. ETS denotes the automatic exponential
smoothing method. ARIMA denotes the automatic autoregressive integrated moving average method
of Hyndman and Khandakar (2008). FTS denotes the univariate functional time series method. MFTS
denotes the multivariate functional time series method. MLFTS denotes the multilevel functional time
series method. The smallest errors are highlighted in bold.

Modelling Forecasting Female Male

method method MAPE KLD JSDs JSDg MAPE KLD JSDs JSDg

LL RWD-AR 30.137 0.048 0.012 0.012 26.932 0.027 0.007 0.007

PR ARIMA 26.373 0.027 0.012 0.012 31.226 0.048 0.012 0.012

CBD-M6 VAR 39.356 0.118 0.029 0.030 39.349 0.079 0.019 0.020

CBD-M6 VECM 23.890 0.026 0.006 0.007 26.002 0.017 0.004 0.004

390

Table 4: A comparison of the interval forecast accuracy, as measured by the overall CPD and mean interval score
among the CoDa methods using the holdout sample of the female and male data in Sweden. Further, we
consider four univariate time series forecasting methods for the CoDa.

Modelling Forecasting CPD (Female) Sα (Female) CPD (Male) Sα (Male)

method method α = 0.2 0.05 0.2 0.05 0.2 0.05 0.2 0.05

FTS ARIMA 0.142 0.098 555.147 729.946 0.164 0.057 727.857 828.368

ETS 0.103 0.074 536.641 739.982 0.166 0.072 807.424 967.387

RW 0.097 0.044 748.397 947.080 0.195 0.111 957.126 1408.082

RWD 0.056 0.028 575.866 900.978 0.038 0.036 666.834 934.014

MFTS ARIMA 0.031 0.022 466.119 629.841 0.176 0.103 919.075 1198.767

ETS 0.054 0.027 455.101 640.374 0.096 0.036 676.307 770.708

RW 0.034 0.023 478.209 625.414 0.178 0.082 865.841 1003.854

RWD 0.101 0.036 553.178 1007.872 0.023 0.032 668.155 860.760

MLFTS ARIMA 0.095 0.027 545.464 840.192 0.084 0.039 619.514 810.734

ETS 0.099 0.030 547.777 837.673 0.110 0.039 544.588 822.576

RW 0.112 0.040 595.128 865.717 0.103 0.037 664.062 835.116

RWD 0.152 0.044 717.787 1244.656 0.155 0.047 724.160 1169.407

391
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Figure 6: A comparison of point forecast accuracy between the CoDa with functional time series methods using the
holdout samples of the Swedish period data. In the CoDa variants, we use the ETS forecasting method.
The six benchmark methods are the random walk method, two-population Lee-Carter method of Zhou
et al. (2014), Li-Lee method of Li and Lee (2005), the product-ratio method of Hyndman et al. (2013),
two-population CBD-M6 model with VAR (or VECM) forecast of Li et al. (2015).
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Figure 7: A comparison of interval forecast accuracy between the CoDa with functional time series methods using
the holdout samples of the Swedish period data. In the CoDa variants, we use the ETS forecasting
method.

For the point estimates, our proposed CoDa methods outperform the all the benchmark392

models except CBD-M6 model with VECM forecasts, which performs on par with our proposed393

methods for the male group. Among our proposed CoDa method, the CoDa with the multilevel394

functional time series and ETS generally produces the smallest forecasting error for Swedish395

period data. The multivariate functional times series model generally performs best regarding396

the interval forecast accuracy. At the same time, there is no universally best univariate time-397

series forecasting method to forecast the FPC scores.398

8 Conclusion399

We extend the CoDa from univariate to multivariate and multilevel functional time series400

methods for modelling multiple populations. Within the CoDa framework, we take the log-ratio401

transformation to obtain unconstrained data. Then, we apply the multivariate and multilevel402

functional time series methods to model the unconstrained data for multiple populations. After403
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applying the back-transformation, we obtain the age-specific life-table death counts for multiple404

populations.405

We compare our proposed CoDa methods with six benchmarks in the single-population406

forecast (simple random walk) and multi-population forecasts (two-population Lee-Carter407

model, Li-Lee method, product-ratio method and two-population CBD model with cohort408

effects using VAR/VECM for prediction) on both period and cohort life-table death counts409

in England & Wales and Sweden. Our proposed CoDa methods outperform the existing410

benchmarks in most cases. In contrast, the product-ratio method and CBD-M6 (with VECM411

forecasts) perform on par or with a slight edge under certain error measurements for the412

Swedish male life-table death counts. Among our proposed methods, it is difficult to single out413

a universal univariate time-series forecasting method that outperforms the rest in all cases.414

There are a few ways in which this paper could be extended, and we briefly discuss four.415

1) To obtain more stable forecasts, simple averaging forecasts from three functional time series416

models may result in improved forecast accuracy. In addition, we recommend selecting the417

univariate time series forecasting method via an information criterion before fitting the model.418

2) A robust CoDa method proposed by Filzmoser et al. (2009) may be utilised in the presence419

of outlying years. These outlying years are from a different data generating process than the420

non-outlying observations. 3) We could consider some of the other methods in the literature for421

extending data sets for non-extinct cohorts (e.g., Basellini et al. 2020) and suggest examining422

the sensitivity of the results to the choice of method. 4) We could also extend from considering423

two populations in the current paper to considering life-table data for multiple populations and424

for multiple subsets of a population (for example, subdivided by socio-economic status). In425

these scenarios, the number of populations could exceed the number of functional curves in a426

population, and this then leads to the high-dimensional functional time series analysis (see, e.g.,427

Gao et al. 2019, Tang and Shi 2021).428
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