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1 Introduction and summary

Studying the BPS spectrum [1, 2] of particles has been an important topic in quantum field
theory and string theory. Although there is little known for the case of compact Calabi-Yau
(CY) manifolds, the techniques have been greatly developed in the context of non-compact,
or local, CYs, especially when they afford a toric description. As the lattice polygons nicely
encode combinatorial information from the toric CY threefolds, crystal melting [3–7] and
quivers [8, 9] have become extremely useful tools in BPS counting.

Mathematically, BPS counting has a close relation with Donaldson-Thomas (DT) in-
variants,1 and are hence also connected to Gromov-Witten and many other geometric in-
variants. Going one step further, we would also like to understand more about the Hilbert

1In the usual canonical crystal melting setting, we are working in the non-commutative DT (NCDT)
chamber.
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space of the BPS states, which can be recast as the cohomology of chain complexes. This
then leads to the categorification of BPS indices and wall crossings [10–13]. Although we
will not discuss such categorification in this paper, they should be intimately related to the
algebraic structure of BPS states.

BPS algebras have been of great interest since [14]. In particular, cohomological Hall
algebras (COHAs) were introduced in [15] as a mathematical description for the BPS
algebras. The study of quiver quantum mechanics and relevant quantum algebras has now
become an active area. For instance, with the utility of crystal melting, we recently have a
better understanding on the quiver Yangians Y [16]. Given a quiver Yangian, the character
of its vacuum module is precisely the BPS partition function for the corresponding CY. One
can then translate it into the crystal generating function for the associated 3-dimensional
partition.

In this paper, we study both the refined and unrefined expressions for those partition
functions by speculating on their patterns for all the toric CYs without compact 4-cycles
as well as (tripled) quivers from affine type (including non-toric ones). For toric cases,
their toric diagrams are lattice polygons without internal points. It is then clear that
they include generalized conifolds which are trapezia (including triangles) of height one
plus an exceptional triangle C3/(Z2 × Z2) (we will draw these explicitly in section 3).
The crystal/BPS partition functions for triangles and the conifold have been obtained in
the literature such as [17–20]. The other examples can also be obtained from topological
strings following [21, 22]. They were also studied in [23, 24] recently. One may check that
our expressions agree with these results. All of them can be expressed using (generalized)
MacMahon functions:2

M(p, q) :=
∞∏
k=1

1
(1− pqk)k , M(q) := M(1, q), M̃(p, q) := M(p, q)M(p−1, q). (1.1)

In the above, M(q) is the standard MacMahon function [25]. We can then also use these
expressions to study the gluing process beyond two trivalent vertices in the web diagram
and identify the bosonic and fermionic generators.

When studying wall crossings, it is convenient to introduce the shorthand notation

M∧(p, q; k0) :=
∞∏

k=k0

1
(1− pqk)k , M∧(p, q; k0) :=

k0∏
k=1

1
(1− pqk)k (1.2)

as the truncated MacMahon functions from below and above. For different chambers sepa-
rated by the walls of marginal stability, we shall discuss their possible crystal descriptions.
For chambers C̃ described by M∧, the model could be constructed by combining a union
of (sub-)crystals. For chambers C described by M∧, the model could be constructed by
peeling semi-infinite faces off the crystal.

2For refined partition functions, we will use refined (generalized) MacMahon functions as in section 4.2.
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We will also write these generating functions in terms of plethystic exponential3 (PE)
of a multi-variable analytic function f(t1, . . . , tr):

PE[f(t1, . . . , tr)] = exp
( ∞∑
k=1

f(tk1, . . . , tkr )− f(0, . . . , 0)
k

)
. (1.3)

As the PE computes the character of the symmetric algebra, this indicates that the quiver
Yangians are symmetric algebras. They can then be endowed with Hopf algebra structures
as one may expect.

For some cases, namely the C3 and tripled affine quivers, we shall also discuss the PE
expressions in the context of (nilpotent) Kac polynomials [30] and consider the connections
to different quantum algebras. More specifically, for C3, the partition function agrees with
the Poincaré polynomial encoded by Kac polynomials for some nilpotent (sub)stack. For
(tripled) affine quiver cases, the double of such Poincaré polynomial contains the partition
function as a factor, and it seems that there exists some subalgebra structure. All these
will be checked for both unrefined and refined expressions. It could be possible that the
other cases may as well have certain interpretations in their PE expressions.

The above discussions may be summarized schematically as

ZBPS/crystal = χvac(Y) Poincaré = PE [(nilp.) Kac]

Quiver QA Quiver QB

= “gluing of W1+∞”

C̃: gluing/merging crystals;
C: peeling semi-infinite faces off the crystal

Wall crossings:

QA =
Tripled QB

Any QA:
Unkown

.

The paper is organized as follows. In section 2, we give a brief review on crystal melting
and quiver Yangians. In section 3, we discuss various implications of the partition functions
for all toric CY3 without compact 4-cycles and some non-toric cases (DE singularities). We
study the wall crossing phenomena and their crystals in section 4, along with the refinement
of partition functions. Similar results are also mentioned in section 5 for D4-D2-D0 bound
states. In section 6, we mention a few future directions.

2 Quiver yangians and related concepts

We start with a toric diagram D, which for us is a convex polygon with all its vertices
on the lattice Z2. From this we can construct a non-compact, or local, Calabi-Yau 3-fold,
CY3. We can think of CY3 as an affine complex cone over a base, compact, toric surface

3The reader is also referred to [26, 27] for a plethystic programme for counting BPS operators in quiver
gauge theories, though we emphasize that what we study here is in a different context. For further disscus-
sions on PE, see [28, 29].
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whose toric fan is given by a star triangulation of D. This cone is in general singular
and is called a Gorenstein singularity. Our CY3 is toric, so the lattice polygon D encodes
certain combinatorial-geometric information. For instance, the lattice points in the polygon
correspond to the divisors (of complex codimension 1). In particular, internal lattice points
represent compact 4-cycles while boundary points give non-compact ones.

2.1 Crystal melting

For type IIA string theory compactified on a general toric CY3, the BPS states are the
bound states formed by Dp-branes wrapping holomorphic p-cycles therein. Here, we shall
focus on the following setting: (i) a single D6 wrapping the whole CY3; (ii) D0-branes sup-
ported on points which are trivially compact in the CY; (iii) D2-/D4-branes wrapping either
compact or non-compact 2-/4-cycles. The compact D-branes are then light BPS particles
that are dynamical. In contrast, non-compact D-branes are heavy line operators which be-
come non-dynamical in our compactified theory. As we are considering toric diagrams with-
out internal points in this paper, we will count the D2 and D0 states bound to a single D6.

As the dimensional reduction from 4d N = 1 gauge theory, the effective supersymmet-
ric quantum mechanics on the D-branes is a quiver theory. A quiver Q is a graph (Q0,Q1)
with Q0 denoting the set of nodes and Q1 its edges. In particular, the edges Xab are all ori-
ented here, emanating from node a and ending at node b. Each quiver also has an associated
superpotential W . For toric CYs, the superpotential is fully determined. The general algo-
rithm involves the technique of brane tilings (aka dimer models). See [14, 31–34] for details.

The brane tiling is the dual graph of the quiver on the 2-torus. As a result, the quiver
is also periodic. The crystal model can then be thought of as a 3-dimensional uplift of the
periodic quiver, where each atom in the crystal corresponds to a gauge node a in the quiver
while the arrows are the chemical bonds. Remarkably, BPS states can be constructed by
removing atoms from the crystal model. More precisely, each molten crystal configuration
corresponds to a BPS state.

In the crystal, the atoms from different gauge nodes are of different “colours”. They
correspond to D2s stretched between NS5-branes in different regions on the tiling. To
construct the crystal, we shall choose an initial atom o in the periodic quiver. Then all
the other atoms are placed at the nodes in the periodic quiver level by level following the
arrows/chemical bonds. Any path from o to an atom a is of form poaω

n modulo F-term
relations ∂W/∂Xab = 0, where poa is one of the shortest paths from o to a and ω is a loop
along any face in the periodic diagram [35]. Then the atom a is placed at level n in the
crystal. Clear illustrations can be found in [16, figure 5 and 6]. Mathematically, the F-term
relations form an ideal of CQ, and hence define the path algebra CQ/〈∂W 〉.

The BPS states can then be obtained by the crystal melting rule, which states that an
atom j is in the molten crystal C (i.e., removed from the initial complete crystal) if there
exists an arrow X such that X · j ∈ C. This means that the complement of C is an ideal in
the path algebra.

– 4 –
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We can then write the crystal generating function to enumerate the possible configu-
rations:

Zcrystal(qj) =
∑
C

∏
j∈Q0

q
|C(j)|
j , (2.1)

where |C(j)| denotes the number of atoms with colour j in C. For BPS states counting, we
have the BPS partition function

ZBPS(q,Q) =
∑
n0,n2

Ω(n0,n2)qn0

|Q0|−1∏
i=1

Q
n2,i
i , (2.2)

where Ω is the Witten index for the bound states of n0 D0s and n2 D2s inside a single
non-compact D6 with n2,i the number of D2’s wrapping the ith 2-cycle. Note that n0 ∈ Z≥0

is a non-negative integer and n2 = (n2,i) ∈ Z|Q0|−1
≥0 is a vector, where |Q0|−1 is the number

of compact 2-cycles in the CY3. In topological strings, these fugacities q and Q = (Qi)
are related to string coupling gs and Kähler moduli respectively [36]. Moreover, ZBPS is
equivalent to Zcrystal modulo signs. See appendix A for further details.

Quiver yangians. As we have an infinite number of BPS degeneracies with some struc-
tures therein, it is natural to expect a BPS algebra acting on the BPS states [37]. In the C3

case which has been extensively studied in literature, the affine Yangian of gl1, Y
(
ĝl1

)
, acts

on the plane partition and it enumerates the BPS states [38–42]. In particular, the BPS
partition function is the character for the vacuum module of Y

(
ĝl1

)
. This affine Yangian

is also the universal enveloping algebra of the W1+∞-algebra. Recently, such BPS algebras
were also constructed for general toric CY 3-folds in [16, 43]. These infinite-dimensional
algebras, known as the quiver Yangians Y, can be “bootstrapped” from the structure of
molten crystals. For instance, the BPS algebra for generalized conifold xy = zmwn is
expected to be the affine Yangian of glm|n. Moreover, the corresponding BPS partition
function should also be identified with the vacuum character of the algebra.

Each quiver Yangian is generated by three sets of operators: e(a)
n , ψ(a)

n and f
(a)
n for

n ∈ Z≥0, where a still denotes the quiver nodes. As the quiver Yangian acts on the BPS
states, the generators e(a)

n are the creation operators while f (a)
n are annihilation ones. The

charges are given by the Cartan part ψ(a)
n . Therefore, when acting for instance e(a)

n to a state
|C〉, it essentially adds more atoms to the molten crystal C following the melting rule. Since
the ways of arranging these operators acting on the states would give rise to much more
possible combinations than the number of actual BPS states, the generators are constrained
by certain (anti-)commutation relations and Serre relations. See [16] for the complete lists.

In fact, the generators e(a)
n form the positive part Y+ of Y. Likewise, f (a)

n give the
negative copy Y−, and ψ(a)

n generate the subalgebra Y0. It is conjectured that the Drinfeld
double D(Y+) = Y+⊗ Y+∗ = Y+⊗ homC(Y+,C) is isomorphic to the quiver Yangian Y [44].

Moreover, multiplication should induce an isomorphism as vector spaces, m : Y+⊗Y0⊗
Y− → Y. We may also consider the Borel subalgebra Y≥ (Y≤) generated by Y+ (Y−) and
Y0. This should be isomorphic to H(Q,W ), which is the COHA generated by the dimension
vectors of the representations of the quiver. The COHA H(Q,W ) has a subalgebra known
as the spherical COHA SH(Q,W ) generated by the dimension vectors ej = (δij). Then we

– 5 –



J
H
E
P
0
6
(
2
0
2
2
)
0
1
6

should have Y+ ∼= SH(Q,W ). For the C3 case, these were already proven in [44]. More
propositions for Y

(
ĝl1

)
can be found for example in [40]. It would be natural to expect

that these could be extended to any general quiver Yangians.

2.2 Kac polynomials

As our partition functions can also be expressed in terms of PE, we would like to see whether
they could be related to Kac polynomials. Given a locally finite quiver Q = (Q0, Q1), the
Kac polynomial Ad(Fp) is the number of absolutely indecomposable representations of the
quiver over a finite field Fp of dimension d ∈ Z|Q1|

≥0 (and hence the name dimension vector).
This is called a polynomial because there exists a unique polynomial Ad(t) ∈ Z[t] such that
Ad(Fp) = Ad(p) for any Fp [30].

One can then define the doubled quiver Q = (Q0, Q1tQ∗1) where an arrow X∗ in oppo-
site direction is added for each arrow X in the quiver Q. The preprojective algebra ΠQ is de-
fined as the path algebra CQ quotiented by the ideal generated by ∑

X∈Q1

[X,X∗]. The stack

of representations of ΠQ is an abelian category denoted as RepΠQ = ⊔
d
RepdΠQ. A repre-

sentation M is called nilpotent if there exists a filtration {0} = Ml ⊂ · · · ⊂ M1 ⊂ M such
that Π+

Q(Mi) ⊆Mi+1, where Π+
Q ⊂ ΠQ is the augmentation ideal [45, 46]. The substack of

these nilpotent representations is called the Lusztig nilpotent variety ΛQ = ⊔
d

ΛQ,d. One
may also introduce some semi-nilpotent and strongly semi-nilpotent conditions to define the
Lagrangian substacks Λ0

Q and Λ1
Q respectively. We shall not expound the details here, and

readers are referred to [45, 47] for these conditions. As their names suggest, ΛQ ⊆ Λ1
Q ⊆ Λ0

Q.
Consider the T -equivariant Borel-Moore homology HT

∗ (RepΠQ,Q) =⊕
d
HT
∗ (RepdΠQ,Q) [48]. Its Poincaré polynomial,4 as shown in [45, 49], is encoded

by the Kac polynomial:

PQ(t, z) =
∑
d

P (RepdΠQ, t)t〈d,d〉zd = PE
[

1
1− t−1

∑
d

Ad(t−1)zd
]
, (2.3)

where P (RepdΠQ, t) = ∑
i

dimH2i(RepdΠQ)ti and 〈d1,d2〉 is the Ringel form as defined in

appendix A. Likewise, for the Borel-Moore homology of Λ[Q ([ = 0, 1), we have5

P [Q(t, z) = PE
[

1
1− t−1

∑
d

A[d(t−1)zd
]
. (2.4)

One can introduce algebra structures on these homology spaces. These “2d” COHAs
are closely related to the “3d” COHAs/quiver Yangians discussed in the previous subsec-
tion. For instance, consider the Jordan quiver Q, that is, one single node with one loop X.
Its tripled quiver Q̂ is given by Q with a loop ω added to the node. The (super)potential

4Since we have infinitely generated homology, this should really be a series, but we shall always refer to
it as Poincaré polynomial.

5Similarly, A[d(p) gives the number of absolutely indecomposable representations satifying the corre-
sponding nilpotency condition over a finite field Fp [45].

– 6 –
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(a) (b) (c)

Figure 1. (a) The toric diagram for C3. (b) Its dual web diagram. (c) The C3 quiver.

is then W = ω[X,X∗]. Then the 2d COHAs are the dimensional reductions6 of the corre-
sponding versions of the 3d COHAs associated to quiver Yangian Y

(
ĝl1

)
of Q̂ [44, 50, 51].

More generally, given a quiver Q, its tripled quiver Q̂ is the doubled quiver Q with a
loop ωa added to each node. The superpotential is then W = ∑

a,x
ωa[x, x∗]. For example,

the quivers for C × C2/Zn are tripled quivers Q̂ of the affine A-type quivers Q. As the
expressions here associated to both Q and Q̂ are in the form of PE and the Kac polynomials
encode certain graded characters, it would be natural to compare them and expect some re-
lations between them. In general, for other toric CY 3-folds, the quivers are not tripled, but
it might be possible that they could also have some interpretations in terms of something
similar to Kac polynomials and lead to possible connections between various algebras.

3 Examples galore

We now discuss the BPS partition functions for all toric CY3 without compact 4-cycles
and some non-toric examples, along with various relevant aspects. Let us start with the
simplest case C3 which is most well-studied in literature.

3.1 Plane partition: C3

The toric diagram for C3 is the simplex with vertices (0, 0), (1, 0) and (0, 1). Its dual web is
just the trivalent vertex. See figure 1. There is no compactly supported D2-branes in this
case. The generating function is enumerated by plane partitions, given by the MacMahon
function [52]:

Zcrystal = M(q0) =
∞∏
k=1

1
(1− qk0 )k

. (3.1)

The BPS partition function of D0-branes follows the map q = −q0, that is, ZBPS = M(−q).
For future convenience,7 let us also introduce the variable x = −q, and then ZBPS = M(x).
The MacMahon function is precisely the vacuum character of the affine Yangian Y

(
ĝl1

)
.

It is straightforward to write the generating function as

M(x) = PE
[

x

(1− x)2

]
. (3.2)

6This dimensional reduction is in the sense that the 3d COHAs were defined in the framework of 3-
dimensional CY categories in [15] while the 2d ones come from 2-dimensional CY categories in [38].

7It seems to be redundant to write M(q0) (or M(−q)) as M(x), but this notation would be easier for
our discussions on cases with more variables qi.

– 7 –
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It is curious to see that the Hilbert series (HS) for C2, namely 1/(1 − x)2, appears inside
PE (rather than C3). Incidentally, C2 frequently appears in relevant study of instantons
and VOAs. The COHA of the C2 quiver is also isomorphic to the positive part Y+

(
ĝl1

)
of the affine Yangian [44]. Although similar features are not observed in other cases, the
factor 1/(1− x)2 is universal in all the examples we consider.8

We may now use the method reviewed in appendix B to get the asymptotics for the
generating function. For plane partitions, this is a well-known result [53]. At large n, the
asymptotic expansion of MacMahon function has coefficient

Zn ∼
ζ(3)7/36
√

12π

(
n

2

)−25/36
exp

(
3ζ(3)1/3

(
n

2

)2/3
+ ζ ′(−1)

)
. (3.3)

Since PE[1 + f ] = PE[1]PE[f ] = PE[f ], we may also write the expression as

M(x) = PE
[
1 + x

(1− x)2

]
= PE

[
1− x+ x2

(1− x)2

]
. (3.4)

Now the expression inside PE is purely an HS whose Taylor expansion starts from 1. In
fact, this is the HS for the complete intersection defined by X 6

1 + X 3
2 + C2

3 = 0. By virtue
of PE, this gives a one-to-one correspondence between the BPS states labelled by boxes in
the plane partition and single-/multi-trace operators generated by X1,2,3. Nevertheless, it
is not clear whether this does imply anything non-trivial in physics and mathematics.9

Kac polynomials and Poincaré polynomials. On the other hand, we find some con-
nections to certain Kac polynomials. Consider the Jordan quiver Q whose doubled quiver
Q leads to the preprojective algebra ΠQ = CQ/[X,X∗]. The tripled quiver Q̂ is then the
quiver for C3 having one node with 3 loops X,X∗, ω and superpotential W = ω[X,X∗].
For the T -equivariant Borel-Moore homology HT

∗ (Λ[Q,Q), we have [45]

P [Q(t, x) = PE
[

tx

(t− 1)(1− x)

]
=
∞∏
d=1

∞∏
k=0

1
1− t−kxd (3.5)

with Kac polynomials A[d(t) = 1 for both [ = 0 and [ = 1. In this case, Λ1
Q = Λ0

Q.
Under the unrefinement t = x−1, we find that this agrees with the MacMahon function
M(x) = PE[x/(1− x)2]. This reflects [47, 58] the fact that the COHA of the moduli stack
of coherent sheaves on C2 with zero-dimensional support is isomorphic to Y+

(
ĝl1

)
. One

may also check that in this case the Poincaré polynomial [38] of Y+ is PE
[

tx
(t−1)(1−x)

]
. For

reference, we also have

PQ(t, x) = PE
[

x

(t− 1)(1− x)

]
=
∞∏
d=1

∞∏
k=1

1
1− t−kxd (3.6)

with Kac polynomials Ad(t) = t.
8Here, we use x instead of q as it stands for different (but patterned) products of variables for D-branes

in different cases.
9It is worth noting that this defining equation could be labelled by E10 following [54] though it does

not fit in the usual McKay correspondence or belong to the exceptional unimodal singularities. This could
probably be in line with the McKay correspdence as equivanlence of derived categories [55, 56]. Moreover,
(1−x+x2)/(1−x)2 was also studied in [57] in the context of Hasse-Weil zeta functions and Dirichlet series.

– 8 –
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(a) (b) (c)

Figure 2. (a) The toric diagram for C. (b) Its dual web diagram. (c) The corresponding quiver.

3.2 Conifold

Instead of directly move on to C3 orbifolds, we shall first consider another very well-studied
case, that is, the conifold C. The toric diagram is the square enclosed by the four vertices
(p1, p2) with p1,2 = {0, 1} as shown in figure 2, along with its dual web and quiver. As
we can see, the atoms in the crystal (aka pyramid partition) should have two colours q0,1.
The generating function is well-known from [17, 59]:

Zcrystal = M(q0q1)2

M(−q1, q0q1)M(−q−1
1 , q0q1)

= M(q0q1)2M̃(−q1, q0q1)−1. (3.7)

We may write this in terms of PE as

Zcrystal =PE

 ∑
k∈2Z≥0+1

kqk−1
1 (1+q1)2qk0

PE
 ∑
k∈2Z>0

k

2 q
k−2
1 (−1+2q1 +4q2

1 +2q3
1−q4

1)qk0


=PE

[
q0((1+q1)2 +q2

0q
2
1(1+q1)2 +q0(−1+2q1 +4q2

1 +2q3
1−q4

1))
(1−q0q1)2

]
. (3.8)

Setting q0 = q1 = q, we get the pyramid partition without any colouring:

Z = PE
[
q(1 + q + 3q2 + 4q3 + 3q4 + q5 + q6)

(1− q4)2

]
. (3.9)

As discussed in appendix B, this has asymptotic behaviour

Zn ∼
(7ζ(3)) 2

9
√

3π
2−

25
36n−

13
18 exp

(
2
3(7ζ(3))

1
3

(
n

2

) 2
3

+ 2ζ ′(−1)
)
. (3.10)

We can use the map q = −q0q1 for D0s and Q = −q1 for D2s to obtain the BPS
partition function:

ZBPS(q,Q) = M(−q)2M̃(Q,−q)−1. (3.11)
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In terms of PE, we get

ZBPS(q,Q)=PE

 ∞∑
k=1

k 6∈4Z+2

(−1)k+1k
(1−Q)2

Q
qk


×PE

 ∑
k∈4Z≥0+2

−k2
(1−Q)2(1+4Q+Q2)

Q2 qk

 (3.12)

=PE
[
q(1−Q)2(Q−q(1+4Q+Q2)+3q2Q−4q3Q+3q4Q−q5(1+4Q+Q2)+q6Q)

Q2(1−q4)2

]
.

The expressions in PE are rather tedious in this case. Besides, it is not easy to
instantaneously transform between the MacMahon expressions and the PE ones. However,
if we change the signs properly, namely getting rid of the minus signs in the arguments of
(generalized) MacMahon functions, we can easily get

Z̃c = M(q0q1)2M̃(q1, q0q1)−1 = PE
[
−q0(1− q1)2

(1− q0q1)2

]
, (3.13)

where Z̃c is the sign-changed expression from Zcrystal. As we will see, when writing the
generating functions in terms of PE, the patterns are more straightforward for generalized
conifolds with the signs properly changed. The coefficients in the expansions of Z̃c and
Zcrystal also agree up to signs. One can simply multiply (−1)n0+n1 for the terms qn0

0 qn1
1 in

Z̃c to recover10 the correct signs in Zcrystal. Alternatively, one may consider the twisted
PE introduced in [60]. We find that in general given Z̃c = PE[g̃], the twisted PE of g̃ is
precisely Zcrystal.

Likewise, using x = −q = q0q1, we have

ZBPS(x,Q) = M(x)2M̃(Q, x)−1 = PE
[
−x(1−Q)2

Q(1− x)2

]
. (3.14)

In general given ZBPS(x,Q) = PE[g̃], the twisted PE of g̃ is precisely ZBPS(q,Q). Hence-
forth, we shall always abbreviate ZBPS(x,Q) as ZBPS.

Gluing operators. In [61–63], the vacuum character for theN = 2 affine Yangian and its
generalization were studied through certain gluing process. Likewise, we may also identify
the gluing operators for the affine Yangians discussed in this paper. For the u(1)⊕WN=2

∞
algebra, it contains two copies of affine Yangians of gl1 as subalgebra. Therefore, in its
vacuum character

χ(x, y) = M(x)2M̃(−yxρ, x)−1, (3.15)
the factor M(x)2 is identified with the generators contributed from the two W1+∞ with
’t Hooft couplings λa, λb and central charges ca, cb. Then the factor

M̃(−yxρ, x)−1 =
∞∏
k=1

(1 + yxk+ρ)k(1 + y−1xk+ρ)k (3.16)

10Since the coefficients in the expansion of Zcrystal are all positive as they simply count the numbers of
atoms, this is equivalent to just taking absolute values for the coefficients in the expansion of Z̃c.
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can be interpreted as gluing operators whose conformal dimensions are controlled by the
shifting modulus ρ. More precisely, we have ∆ = 1 + ρ. For the N = 2 affine Yangian,
ρ = 1/2.

Compared to the vacuum character of affine Yangian of gl1|1 for the conifold, we find
that M(x)2 with x = q0q1 = −q (and y = q1 = −Q) again comes from the two trivalent
vertices while their gluing yields the gluing operators with contribution M̃(−y, x)−1 with
no shift, viz, ρ = 0. Therefore, we may write the character identity

∞∏
k=1

(1 + yxk)k =
∑
R

y|R|χ
∧,[λa]
R (x)χ∧,[λb]R∗ (x), (3.17)

where the representation R runs over all Young tableaux and R∗ := RT is the conjugate of
RT. Moreover, χ∧,[λ]

R (x) is the wedge part of the character for representation R ofW1+∞[λ],
that is [61, 64],

χ
[λ]
R (x) = χpp(x)χ∧,[λ]

R (x) = M(x)χ∧,[λ]
R (x), . (3.18)

where χpp = χplane partitions is the MacMahon function M(x). Wwith a similar decomposi-
tion for the second part in M̃(−yxρ, x)−1, we arrive at

χvac,C(x,y) =M(x)2M̃(−y,x)−1

=χpp(x)2

∑
R1

y|R1|χ
∧,[λa]
R1

(x)χ∧,[λb]R∗1
(x)

∑
R2

y−|R2|χ
∧,[λa]
R∗2

(x)χ∧,[λb]R2
(x)


=χpp(x)2 +

∑
R1

y|R1|χ
[λa]
R1

(x)χ[λb]
R∗1

(x)+
∑
R2

y−|R2|χ
[λa]
R∗2

(x)χ[λb]
R2

(x)+ . . . . (3.19)

In particular, the fermionic gluing generators transform as (R1, R
∗
1) ⊕ (R∗2, R2) under the

left and rightW1+∞ algebras.11 This is reflected by the negative power on M̃ and the minus
signs of the arguments therein, as well as the minus signs in the sign-changed Z̃c,b. The ways
of triangulations/gluing simplices in the toric diagrams are also in line with this. It will
become more obvious when we discuss those with bosonic generators in the next subsection.

3.3 Coloured plane partitions: C × C2/Zn

The toric data for C × C2/Zn is given in figure 3. From the quiver, it is straightforward
to see that these are all plane partitions but with multiple colours, one for each node.
Therefore, we have n variables q0,1,...,n−1, and the generating function would reduce to the
MacMahon function under q0 = · · · = qn−1.

The other bicoloured crystal: n = 2. Let us start with the simplest case C×C2/Z2.
When writing the generating functions for the conifold, we observe that they are of form
PE[q0(1 + q1)2g1] and PE

[
q(1−Q)2

Q g2
]
, where g1,2 have expansion 1 + . . . . In particular, the

two extra factors satisfy q0(1 + q1)2 = q(1 − Q)2/Q under the matching of variables for
11In [62], this was denoted as (R1⊗R∗2, R∗1⊗R2), where the notation R⊗S∗ indicates the representation has

“box” part described by R and “anti-box” part described by ST. In [63], it was denoted as (R1⊕R∗2, R∗1⊕R2).
Here, we shall use the notation which resembles the branching rule.
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(a) (b) (c)

...
...

Figure 3. (a) The toric diagram for C × C2/Zn composed of n simplices horizontally arranged
in the figure. (b) Its dual web diagram with n vertical lines in the figure. (c) The corresponding
quiver with n nodes.

conifolds. As one of the only two cases with two colours, it is natural to wonder whether
C × C2/Z2 would also follow the same pattern with the same extra factor q0(1 + q1)2 or
q(1 − Q)2/Q. Recall that we have PE[xg1] with g1 = 1/(1 − x)2 for the plane partition
with extra factor x. Replacing this extra factor with q0(1 + q1)2, we obtain

Zcrystal = PE
[
q0(1 + q1)2

(1− q0q1)2

]
= M(q0q1)2M̃(q1, q0q1), (3.20)

where we have also substitute x in the denominator with q0q1 similar to the conifold
expression. Indeed, one may check that when taking q0 = q1 = q, we getM(q) = PE[q/(1−
q)2] and recover the plane partition with single colour. As there are no minus signs to be
removed in (3.20), Z̃c = Zcrystal in this case.

For C × C2/Z2, the D-brane variables follow q = −q0q1 and Q = q1. Therefore, the
extra factor should be −q(1 +Q)2/Q = q0(1 + q0q1)2 instead of q(1−Q)2/Q in this case.
Either applying this extra factor to PE[x/(1− x)2] (with q in the denominator changed to
q) or directly writing (3.20) in q,Q, we can get

ZBPS(q,Q)=PE
[
−q(1−Q)2

Q2(1−q4)2 (Q(1+Q)2−q(1+2Q+6Q2+2Q3+Q4)+3q2Q(1+Q)2

−4q3Q(1+Q)2+3q4Q(1+Q)2−q5(1+2Q+6Q2+2Q3+Q4)+q6Q(1+Q)2))
]

=PE

 ∞∑
k=1

k 6∈4Z+2

(−1)k+1k
(1+Q)2

Q
qk


×PE

 ∑
k∈4Z≥0+2

k

2
(1−Q)2(1+2Q+6Q2+2Q3+Q4)

Q2 qk


=M(−q)2M̃(Q,−q). (3.21)

In fact, the generating functions for C × C2/Zn were obtained in [18, 19]. One can
check that (3.20) and (3.21) do give the correct expressions.
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As before, it is more concise to use x = −q:

ZBPS = M(x)2M̃(Q, x) = PE
[
x(1 +Q)2

Q(1− x)2

]
. (3.22)

More importantly, comparing Z̃c for C × C2/Z2 with the ones for the conifold, or
equivalently their Zcrystal,BPS in (generalized) MacMahon functions, we can see that they
only differ by certain minus signs. This is in fact consistent with the analysis of bosonic
and fermionic gluing operators. In terms of toric diagrams, they correspond to the two
different ways of gluing two simplices. More specifically, here we have

χvac,C×C2/Z2 =
∞∏
k=1

1
(1− xk)2k(1− yxk)k(1− y−1xk)k , (3.23)

where x = q0q1 = −q and y = q1 = Q. This leads to the bosonic gluing operators with
character identity

∞∏
k=1

(1 + yxk)−k =
∑
R

y|R|χ
∧,[λa]
R (x)χ∧,[λb]

R
(x). (3.24)

As a result, the vacuum character decomposes as

χvac,C×C2/Z2(x,y) =χpp(x)2

∑
R1

y|R1|χ
∧,[λa]
R1

(x)χ∧,[λb]
R1

(x)

∑
R2

y−|R2|χ
∧,[λa]
R2

(x)χ∧,[λb]R2
(x)


=χpp(x)2 +

∑
R1

y|R1|χ
[λa]
R1

(x)χ[λb]
R1

(x)+
∑
R2

y−|R2|χ
[λa]
R2

(x)χ[λb]
R2

(x)

+ . . . . (3.25)

In particular, the bosonic gluing generators transform as (R1, R1)⊕ (R2, R2) under the left
and right W1+∞ algebras.

General n. We may generalize the above discussion to any n. The extra factor now
becomes q0(1 + q1 + q1q2 + · · ·+ q1q2 . . . qn−1)(1 + qn−1 + qn−1qn−2 + · · ·+ qn−1qn−2 . . . q1).
Therefore,

Zcrystal = PE


q0

(
1 +

n−1∑
i=1

i∏
j=1

qj

)(
1 +

n−1∑
i=1

i∏
j=1

qn−j

)
(

1−
n−1∏
i=0

qi

)2


= M

(
n−1∏
i=0

qi

)n ∏
0<r≤s<n

M̃

 s∏
i=r

qi,
n−1∏
j=0

qj

 .
(3.26)

As a sanity check, this reduces to the MacMahon function M(q) under q0,...,n−1 = q. More
generally, if m|n, then ZBPS for n can be reduced to the one for m by identifying all qi = qj
when i ≡ j (mod m).
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Now that the crystal-to-BPS map reads q0 → −q0, qi 6=0 → qi, we have q = −
n−1∏
i=0

qi

and Qi = qi. Thus,

ZBPS(q,Q) = M (−q)n
∏

0<r≤s<n
M̃

(
s∏
i=r

Qi,−q
)
. (3.27)

One may check that (3.26) and (3.27) agree with the results in [18, 19]. By using x = −q,
we can also get a simpler PE form for ZBPS:

ZBPS = M (x)n
∏

0<r≤s<n
M̃

(
s∏
i=r

Qi, x

)

= PE


x

(
1 +

n−1∑
i=1

i∏
j=1

Qj

)(
1 +

n−1∑
i=1

i∏
j=1

Qn−j

)

(1− x)2
n−1∏
i=0

Qi

 .
(3.28)

Remarkably, it was observed in [60] that

Zcrystal = PE

 x

(1− x)2

n+
∑
α∈Ψ

qα∗

 , (3.29)

where x =
n−1∏
i=0

qi and qα∗ =
n−1∏
i=1

qαii while Ψ is the root system of the Lie algebra of type

An−1. In particular,
(
n+ ∑

α∈Φ
qα∗

)
is the character of the adjoint representation. This

reflects the enhanced gauge symmetry when the target spaces of type IIA strings have
An−1 singularities [65].

General gluings. Given the vacuum characters for affine Yangians Y
(
ĝln

)
, we are now

able to generalize the gluing process to n trivalent vertices. In (3.26), the factor M(x)n
arises from n disjoint trivalent vertices. This corresponds to the subalgebra of n copies of
W1+∞. Hence, the remaining product of generalized MacMahon functions are contributions
from the gluing operators.

Suppose we only have the first two vertices and glue them following the pattern in
figure 3(b). Then we obtain

M(x)2M̃(q1, x) = χpp(x)2

∑
R1

q
|R1|
1 χ

∧,[λa]
R1

(x)χ∧,[λb]
R1

(x)

∑
R2

q
−|R2|
1 χ

∧,[λa]
R2

(x)χ∧,[λb]R2
(x)


(3.30)

as in the C × C2/Zn=2 case, where the blue part corresponds to the two bosonic gluing
operators.

Now let us glue a third vertex following figure 3(b). We should expect different non-
trivial factors as this is not a gluing of two trivalent vertices any more. According to the

– 14 –



J
H
E
P
0
6
(
2
0
2
2
)
0
1
6

vacuum character in the n = 3 case, we should get

M(x)3M̃(q1, x)M̃(q2, x)M̃(q1q2, x) = χ3
pp

∑
R1

q
|R1|
1 χ∧R1χ

∧
R1

∑
R2

q
−|R2|
1 χ∧

R2
χ∧R2


×

∑
R3

q
|R3|
2 χ∧R3χ

∧
R3

∑
R4

q
−|R4|
2 χ∧

R4
χ∧R4

 (3.31)

×

∑
R5

(q1q2)|R5|χ∧R5χ
∧
R5

∑
R6

(q1q2)−|R6|χ∧
R6
χ∧R6

,
where we have omitted the superscripts coming from the three copies W1+∞[λa,b,c] in χ∧
for brevity. In particular, the red part corresponds to the bosonic operators when the
second and third vertices are glued together (ignoring the first vertex). On the other hand,
the purple part indicates that there are new bosonic generators arising from blue and red
ones. For convenience, we shall refer to the generators like those in blue and red as “basic”
gluing operators while the ones like those in purple as “derived” gluing operators. The
vacuum character can be decomposed as

χpp3 = χ3
pp +

∑
R1

q
|R1|
1 χR1χR1

χpp +
∑
R2

q
−|R2|
1 χR2

χR2χpp

+
∑
R3

q
|R3|
2 χppχR3χR3

+
∑
R4

q
−|R4|
2 χppχR4

χR4

+
∑
R5

(q1q2)|R5|χR5χR5
χpp +

∑
R4

(q1q2)−|R6|χR6
χR6χpp + . . . ,

(3.32)

where ppn denotes the n-coloured plane partitions. Here, some generators transform as
(R1, R1, 1) ⊕ (R2, R2, 1) and (1, R3, R3) ⊕ (1, R4, R4). The remaining ones transform as
(R5, R5, 1) ⊕ (R6, R6, 1) under a subalgebra composed of three different copies of W ′1+∞
(which can be thought of as a mixing of W1+∞[λa,b,c]). We shall illustrate this gluing in
the shorthand notation

q1 q2 q1q2 , (3.33)
where those in the dashed box correspond to the new bosonic gluing operators.

Moving on to n = 4, we further glue another vertex following figure 3(b). According
to (3.26),

χpp4 = M(x)4M̃(q1, x)M̃(q2, x)M̃(q1q2, x)M̃(q3, x)M̃(q2q3, x)M̃(q1q2q3, x). (3.34)

As we can see, gluing the third and fourth vertices (while ignoring the other two) leads to
the bosonic operators of the green part. Then the blue and green operators give rise to the
new cyan bosonic gluing operators while the red and green parts yield the new yellow ones.
The character decomposition can be obtained likewise as before. In the above shorthand
notation,

q1 q2 q1q2 q2q3 q1q2q3q3

. (3.35)
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As we can see, we have q1,2,3 corresponding to basic operators while q1q2 and q2q3 corre-
sponds to derived operators arising from basic ones. Furthermore, we also have derived
ones that are derived from both basic and derived generators.

We can thence get the gluing operators for any n. For instance, at the next level, in
the shorthand notation we have

q1 q2 q1q2 q2q3 q1q2q3q3 q4 q3q4 q2q3q4 q1q2q3q4

. (3.36)

Here, we only have bosonic gluing operators, so we do not need to worry about their Z2-
gradings. When considering any generalized conifolds, we will also have fermionic gluing
operators. Although the process is the same, we will discuss the way to determine their
Z2-gradings for multiple vertices.

Kac polynomials and Poincaré polynomials. As in the C3 case, let us view the
quiver in figure 3(c) as the tripled quiver Q̃ of some quiver Q. Then the quiver Q is simply
the cyclic affine Ân−1 quiver with arrows in the same orientation. From [45], we know that

P 0
Q(t, q) = PE

 ∑
d∈Φ+

0

tqd

(t− 1)(1− qδ)

PE [ ntqδ

(t− 1)(1− qδ)

]
PE

 ∑
d∈Φ−0

tqd+δ

(t− 1)(1− qδ)

 ,
(3.37)

where qd =
n−1∏
i=0

qdii . Here, let Φ+ = Φ+
RetΦ+

Im denote the set of positive roots with real and

imaginary roots Φ+
Re = {Φ+

0 +δZ≥0}t{Φ−0 +δZ>0} and Φ+
Im = δZ>0 respectively, where δ is

the minimal positive imaginary root. For affine A-type, we simply have δ = (1, . . . , 1) = 1n.
Then Φ0 is the root system of the underlying finite type quiver Q0 ⊂ Q. For reference, we
also have

PQ(t,q)=P 1
Q(t,q)=PE

 ∑
d∈Φ+

0

tqd

(t−1)(1−qδ)

PE[(1+(n−1)t)qδ
(t−1)(1−qδ)

]
PE

 ∑
d∈Φ−0

tqd+δ

(t−1)(1−qδ)

.
(3.38)

The Kac polynomials areAd(t) = A[d(t) = 1, d ∈ Φ+
Re

Ad(t) = A1
d(t) = t+ n− 1, A0

d(t) = n, d ∈ Φ+
Im
. (3.39)

To compare this with the character of the affine Yangian, let us further introduce a
“negative” counterpart of the COHA associated to Λ0

Q such that the Poincaré polynomial
takes the sum over Φ− = Φ−Re t Φ−Im with Φ−Re = {Φ−0 − δZ≥0} t {Φ+

0 − δZ>0} and
Φ−Im = −δZ>0. This simply takes qi → q−1

i in (3.37). Notice that A0
d is independent of t,

and the t dependence in P 0
Q only comes from the factor 1/(1− t−1) in (2.4). Therefore, we
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also treat t as a formal variable and take t→ t−1. Then

P̃ 0
Q(t,q)=PE

 ∑
d∈Φ+

0

t−1q−d

(t−1−1)(1−q−δ)

PE[ nt−1q−δ

(t−1−1)(1−q−δ)

]
PE

 ∑
d∈Φ−0

t−1q−d−δ

(t−1−1)(1−q−δ)


=PE

 ∑
d∈Φ−0

qd

(1−t)(1−q−δ)

PE[ nq−δ

(1−t)(1−q−δ)

]
PE

 ∑
d∈Φ+

0

qd−δ

(1−t)(1−q−δ)


=PE

 ∑
d∈Φ−0

qd+δ

(t−1)(1−qδ)

PE[ n

(t−1)(1−qδ)

]
PE

 ∑
d∈Φ+

0

qd

(t−1)(1−qδ)

. (3.40)

Consider the product

P 0
Q(t,q)P̃ 0

Q(t,q)=PE

 ∑
d∈Φ+

0

qd

(t−1)(1−qδ)

PE[ ntqδ

(t−1)(1−qδ)

]
PE

 ∑
d∈Φ−0

tqd+δ

(t−1)(1−qδ)


×PE

 ∑
d∈Φ+

0

tqd

(t−1)(1−qδ)

PE
 ∑
d∈Φ−0

qd+δ

(t−1)(1−qδ)

PE[ n

(t−1)(1−qδ)

]

=PE


 ∑
d∈Φ+

0

qd

(t−1)(1−x)

+ ntx

(t−1)(1−x)+

 ∑
d∈Φ−0

txqd

(t−1)(1−x)


 (3.41)

×PE


 ∑
d∈Φ+

0

tqd

(t−1)(1−x)

+ n

(t−1)(1−x)+

 ∑
d∈Φ−0

xqd

(t−1)(1−x)


,

where we have again used x =
n−1∏
i=0

qi. Henceforth, we shall abbreviate the second PE in

the last equality as an ellipsis. As before, taking t = x−1, we get

P 0
Q(1/x, q)P̃ 0

Q(1/x, q) = PE

 x

(1− x)2

n+
∑
d∈Φ0

qd

× . . . . (3.42)

Recall the character of the affine Yangian Y
(
ĝln

)
in (3.26) and especially in (3.29).

Inside PE, we have the root system Ψ of An−1 while Φ0 here is the root system of An.
Hence, Ψ is the subset of Φ0 with d0 = 0. As a result, we obtain

P 0
Q(1/x, q)P̃ 0

Q(1/x, q) = PE

 x

(1− x)2

n+
∑
d∈Φ0
d0=0

qd


PE

 x

(1− x)2

∑
d∈Φ0
d0 6=0

qd


× . . .

= χppnPE

 x

(1− x)2

∑
d∈Φ0
d0 6=0

qd


× . . . . (3.43)
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n n

Figure 4. The toric diagram for the generalized conifold and its dual web.

Therefore, it is tempting to conjecture that the double copy of the COHA associated to
Λ0
Q contains (the positive part of) the affine Yangian as a subalgebra. In section 4.2, we

will check this with the refined partition functions.
Let us illustrate this with a concrete example. Consider n = 2, then we have

χpp2 = PE
[
q0(1 + q1)2

(1− q0q1)2

]
= PE

[
q0q1(q1 + 2 + q−1

1 )
(1− q0q1)2

]
(3.44)

while

P 0
Q(1/x, q)P̃ 0

Q(1/x, q) = PE
[

q0q1
(1− q0q1)2 (q1 + 2 + q−1

1 + q0 + q−1
0 + q0q1 + q−1

0 q−1
1 )

]
× . . . .

(3.45)

3.4 Generalized conifolds

The generalized conifold is defined by xy = zmwn. Its crystal melting partition function
will give the vacuum character of the affine Yangian Y

(
ĝlm|n

)
. The toric diagram and its

dual web are depicted in figure 4.
Given a toric diagram of the generalized conifold, it can have multiple distinct ways

of triangulations. These triangulations correspond to quiver theories in different phases
and are related by Seiberg duality [31]. Their crystal/BPS partition functions are related
by “wall crossing of the second kind” according to [66]. In the dual web, these phases are
connected by flop transitions. The triangulations can be concisely encoded by a sequence
of signs σ = {σa} (a ∈ Zm+n) consisting of m plus ones and n minus ones [67, 68]. When
two adjacent simplices are glued side by side, they have the same signs. When they are
glued in an alternative way, they have opposite signs. This is illustrated in figure 5.

We can then use this information to construct the quiver as follows. First, the quiver
has (m+n) nodes forming a closed cycle. There is always one arrow from node a to (a+1)
and one arrow from (a+1) to a. Next, the adjoint loops can be added to the nodes based on
σ. If σa = σa+1, then node a has an adjoint loop. If σa = −σa+1, then node a does not have
such loop. The superpotential can also be read off from σ. See for example (8.83) in [16].

From this, we can deduce that the crystal-to-BPS map reads q0 → (−1)
σ0+σ1

2 q0 and
qa → (−1)

σa−σa+1
2 qa for a 6= 0. Now we can write our ansantz for Z̃c which recovers Zcrystal

under the crystal-to-BPS map. The sign-changed expression is Z̃c = PE
[

g
(1−x)2

]
, where
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(c)

Figure 5. In these examples, we have (a) σ = {+1,−1}, (b) σ = {+1,+1}, (c) σ =
{+1,+1,−1,−1,+1,−1,−1,−1}.

x =
m+n−1∏
i=0

qi. The extra factor g is

g = (−1)
σ0+σ1

2 q0

1 +
m+n−1∑
i=1

(−1)
σ1−σi+1

2

i∏
j=1

qj

1 +
m+n−1∑
i=1

(−1)
σm+n−i−σ0

2

i∏
j=1

qm+n−j

 .
(3.46)

In the expansion of Z̃c, the coefficients are equal to the numbers of atoms given by Zcrystal
up to signs. As Zcrystal always has positive coefficients in its expansion, the correct signs
are recovered simply by taking absolute values.

Write Z̃c using (generalized) MacMahon functions and apply the crystal-to-BPS map,
we find

Zcrystal = M

(
m+n−1∏
i=0

qi

)m+n ∏
0<r≤s<m+n

M̃

(−1)
σr−σs+1

2

s∏
j=r

qj ,
m+n−1∏
i=0

qi

(−1)
σr−σs+1

2

.

(3.47)
As we can see, such expression in terms of (generalized) MacMahon functions also follows
a nice pattern. One may check that all the cases discussed before obey this expression.

Now from the crystal-to-BPS map, we obtain q = −
m+n−1∏
i=0

qi, Qj = (−1)
σj−σj+1

2 qj .
Therefore,

ZBPS(q,Q) = M(−q)m+n ∏
0<r≤s<m+n

M̃

(
s∏
i=r

Qi,−q
)(−1)

σr−σs+1
2

. (3.48)

In terms of x = −q, ZBPS = PE
[

g̃
(1−x)2

]
, where the extra factor g̃ reads

g̃ =
x

(
1 +

m+n−1∑
i=1

(−1)
σ1−σi+1

2
i∏

j=1
Qj

)(
1 +

m+n−1∑
i=0

(−1)
σm+n−i−σ0

2
i∏

j=1
Qm+n−j

)
m+n−1∏
i=1

Qi

. (3.49)
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One may expect that these expressions agree with the topological vertex formalism
in [21, 22] as well as the results in [23] from a more mathematical approach. They should
also satisfy the following properties:

• The perturbative expansion would recover the number of configurations at each level
in the crystal in light of the melting rule.

• As a self-consistency check, we can make identifications among the variables
q0,...,m+n−1. This should reduce to Zcrystal with fewer colours of the same crystal
configuration.

• The general gluing operators should be consistent with the factors in the character.

The gluing process. Let us explain the gluings in more detail. When gluing two “free”
vertices, there will be fermionic or bosonic generators depending on the way of gluing
them. For figure 5(a), this gives rise to fermionic generators. For figure 5(b), we get
bosonic generators. More generally, when there are multiple vertices glued together, the
Z2-gradings of the basic generators are determined via σ. In other words, if σa = σa+1, the
basic gluing operators are bosonic for qa. If σa = −σa+1, the basic gluing operators are
fermionic for qa. As a result, we cannot separate the two triangles/trivalent vertices and
treat them as two “free” building blocks to determine the Z2-grading of the basic generators.
Therefore, for the conifold C, we have fermionic gluing operators since σ1 = −σ2≡0. On the
other hand, we only have bosonic ones for C× C2/Zn since σ1 = σ2 = · · · = σn−1 = σn≡0.

Recall the criterion of adding adjoint loops to quiver nodes. We find that a yields
bosonic gluing operators when it has an odd number of adjoint loops while it gives fermionic
ones when it has no adjoint loop.12 This is exactly the same as the grading rule in [16] for
determining whether e(a)

n and f (a)
n are bosonic or fermionic generators.

Moreover, there will also be derived gluing operators as discussed before. These extra
generators can be simply determined by the usual Z2-grading, namely, b × b = f × f = b
and b× f = f. One may check that the generalized MacMahon functions in the characters
do follow the discussions here.

Example: SPP. As an example, let us consider the suspended pinched point (SPP) as
in figure 6; this corresponds to m = 1, n = 2 from the above.

For the crystal from figure 6(a), the crystal partition function reads

Zcrystal =M(q0q1q2)M̃(−q1, q0q1q2)−1M̃(−q2, q0q1q2)−1M̃(q1q2, q0q1q2)

=PE
[

q0(
1−q2

0q
2
1q

2
2
)2 (q0q

2
2 (q0q2 (q2 +1)−1)q4

1 +q0q
2
2

(
q0q

2
2 +3q0q2 +2q2 +q0 +2

)
q3

1

+(q2 +1)
(
q2

0q
2
2 +q2−q0

(
q3

2−3q2
2−3q2 +1

))
q2

1 +
(
(2q0 +1)q2

2 +(2q0 +3)q2 +1
)
q1

−q0q
2
2 +q2 +1

)]
. (3.50)

12Here, the “odd number” is used to include the C3 case. We can likewise extend the fermionic case to
even number of adjoints. Of course, for generalized conifolds, this even number can only be zero. It seems
that a non-zero even number of adjoints does not exist for physical quiver theories [16].
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Figure 6. The toric diagram with two different triangulations is shown in (a), (b). They give the
same quiver as in (c). In the crystals, (a) has the initial atom corresponding to the node with an
adjoint while (b) has the initial atom corresponding to one of the nodes without adjoints.

The sign-changed expression is

Z̃c = M(q0q1q2)M̃(q1, q0q1q2)−1M̃(q2, q0q1q2)−1M̃(q1q2, q0q1q2)

= PE
[
q0
(
q2

2q
2
1 − q2q

2
1 − q2

2q1 + 3q2q1 − q1 − q2 + 1
)

(1− q0q1q2)2

]
.

(3.51)

They have perturbative expansions

Zcrystal = 1 + q0 + (q2
0 + q0q1 + q0q2) + (q3

0 + q2
0q1 + q2

0q2 + 3q0q1q2) + . . . (3.52)

and

Z̃c = 1 + q0 + (q2
0 − q0q1 − q0q2) + (q3

0 − q2
0q1 − q2

0q2 + 3q0q1q3) + . . . . (3.53)

Indeed, the terms only differ by signs. We may take q = q0 = q1 = q2 to get the monochrome
crystal:13

Z = PE
[
q(1 + 2q + 3q2 + 2q3 + 5q4 + 6q5 + 5q6 + 2q7 + 3q8 + 2q9 + q10)

(1− q6)2

]
= 1 + q + 3q2 + 6q3 + . . . .

(3.54)

As a byproduct, its asymptotic behaviour is

Zn ∼
e 7

3 ζ
′(−1)Γ

(
1
6

) 2
3 ζ(3) 17

108

2 23
54 3 47

54π
5
6

n−
71

108 exp
(
6

1
3 ζ(3)

1
3n

2
3
)
. (3.55)

13Of course, Z̃c(q) = 1 + q − q2 + 2q3 + . . . would have different coefficients.
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Under q = −q0q1q2 and Q1,2 = −q1,2, we have

ZBPS(q,Q)=M(−q)3M̃(Q1,−q)−1M̃(Q2,−q)−1M̃(Q1Q2,−q)

=PE
[

q

Q2
1Q

2
2(1−q4)2 (−q6Q3

1Q
3
2+q6Q2

1Q
3
2+q6Q3

1Q
2
2−3q6Q2

1Q
2
2

+q6Q1Q
2
2+q6Q2

1Q2−q6Q1Q2+q5Q4
1Q

4
2−q5Q2

1Q
4
2+2q5Q3

1Q
3
2−2q5Q2

1Q
3
2

−q5Q2
1−q5Q4

1Q
2
2−2q5Q3

1Q
2
2+9q5Q2

1Q
2
2−2q5Q1Q

2
2−q5Q2

2−2q5Q2
1Q2

+2q5Q1Q2+q5−3q4Q3
1Q

3
2+3q4Q2

1Q
3
2+3q4Q3

1Q
2
2−9q4Q2

1Q
2
2+3q4Q1Q

2
2

+3q4Q2
1Q2−3q4Q1Q2+4q3Q3

1Q
3
2−4q3Q2

1Q
3
2−4q3Q3

1Q
2
2+12q3Q2

1Q
2
2−4q3Q1Q

2
2

−4q3Q2
1Q2+4q3Q1Q2−3q2Q3

1Q
3
2+3q2Q2

1Q
3
2+3q2Q3

1Q
2
2−9q2Q2

1Q
2
2+3q2Q1Q

2
2

+3q2Q2
1Q2−3q2Q1Q2+qQ4

1Q
4
2−qQ2

1Q
4
2+2qQ3

1Q
3
2−2qQ2

1Q
3
2−qQ2

1−qQ4
1Q

2
2

−2qQ3
1Q

2
2+9qQ2

1Q
2
2−2qQ1Q

2
2−qQ2

2−2qQ2
1Q2+2qQ1Q2+q−Q3

1Q
3
2+Q2

1Q
3
2

+Q3
1Q

2
2−3Q2

1Q
2
2+Q1Q

2
2+Q2

1Q2−Q1Q2)
]

=1+
(
−3+Q1+Q2+ 1

Q1
+ 1
Q2
−Q1Q2−

1
Q1Q2

)
q+.... (3.56)

More concisely, with x = −q, we have

ZBPS = M(x)3M̃(Q1, x)−1M̃(Q2, x)−1M̃(Q1Q2, x)

= PE
[
x(1−Q1 +Q1Q2)(1−Q2 +Q1Q2)

Q1Q2(1− x)2

]
. (3.57)

From the generalized MacMahon functions, it is straightforward to find out the gluing
operators. In particular, the basic generators for M̃(q1, q0q1q2)−1 and M̃(q2, q0q1q2)−1 are
both fermionic. This is consistent with σ1 = −σ2 and σ2 = −σ3≡0. Their derived gluing
operators M̃(q1q2, q0q1q2) are thus bosonic as expected. The shorthand notation is simply

−q1 −q2 q1q2 , (3.58)

where the minus signs indicate the fermionic generators.
Likewise, for figure 6(b), we have

Zcrystal = M(q0q1q3)3M̃(−q1, q0q1q2)−1M̃(q2, q0q1q2)M̃(−q1q2, q0q1q2)−1

= 1 + q0 + (q0q1 + q0q2) + (3q0q1q2 + q2
0q1 + q2

0q2) + . . .
(3.59)

and

ZBPS(q,Q) = M(−q)3M̃(Q1,−q)−1M̃(Q2,−q)M̃(Q1Q2,−q)−1

= 1 +
(
−3 +Q1 −Q2 + 1

Q1
− 1
Q2

+Q1Q2 + 1
Q1Q2

)
q + . . . .

(3.60)

One may also check that the gluing operators follow our discussions above.

– 22 –



J
H
E
P
0
6
(
2
0
2
2
)
0
1
6

(a) (b) (c)

Figure 7. (a) The toric diagram for C3/(Z2×Z2). (b) Its dual web diagram. (c) The corresponding
quiver (the Mercedes-Benz quiver).

As another check, let us consider for instance two copies of the (triangulated) trapezia
in figure 6(a) glued together. This is SPP/Z2 with action (1, 0, 0, 1). Its defining equation
is xy = z2w4. Its crystal has four colours with generating function

ZBPS = M(x)6M̃(−q1, x)−1M̃(−q2, x)−1M̃(q3, x)M̃(−q4, x)−1M̃(−q5, x)−1M̃(q1q2, x)
× M̃(−q2q3, x)−1M̃(−q3q4, x)−1M̃(q4q5, x)M̃(q1q2q3, x)M̃(q2q3q4, x)M̃(q3q4q5, x)
× M̃(−q1q2q3q4, x)−1M̃(−q2q3q4q5, x)−1M̃(q1q2q3q4q5, x), (3.61)

where x =
5∏
i=0

qi. One may check that under q0 = · · · = q5 = q, this reduces to the SPP par-

tition without colouring as in (3.54). Moreover, taking q0 = q3, q1 = q4 and q2 = q5, we get
the crystal partition function (3.50) for SPP, that is, the SPP partition with three colours.

3.5 The remaining case: C3/(Z2 × Z2)

Besides generalized conifolds, there is another one which does not have compact four cycles,
that is, C3/(Z2 × Z2) as shown in figure 7.

The generating functions were already obtained in [18, 19, 23, 24]. We have

Zcrystal = M(q0q1q2q3)4M̃(−q1, q0q1q2q3)−1M̃(−q2, q0q1q2q3)−1M̃(−q3, q0q1q2q3)−1 (3.62)
× M̃(q1q2, q0q1q2q3)M̃(q1q3, q0q1q2q3)M̃(q2q3, q0q1q2q3)M̃(−q1q2q3, q0q1q2q3)−1

and

ZBPS(q,Q) = M(−q)4M̃(Q1,−q)−1M̃(Q2,−q)−1M̃(Q3,−q)−1M̃(Q1Q2,−q)M̃(Q1Q3,−q)
× M̃(Q2Q3,−q)M̃(Q1Q2Q3,−q)−1. (3.63)

The expressions in terms of PE are rather tedious. Hence, we shall not list them here.
Instead, by removing the minus signs, the sign-changed expression Z̃c is more concise:

Z̃c = PE
[

q0

(1− q0q1q2q3)2 (−q2
2q

2
3q

2
1 + q2q

2
3q

2
1 + q2

2q3q
2
1 − q2q3q

2
1 + q2

2q
2
3q1 − q2q

2
3q1

− q2q1 − q2
2q3q1 + 4q2q3q1 − q3q1 + q1 + q2 − q2q3 + q3 − 1)

]
.

(3.64)

– 23 –



J
H
E
P
0
6
(
2
0
2
2
)
0
1
6

Likewise, again with x = −q,

ZBPS =PE
[

x

Q1Q2Q3 (1−x)2 (Q2
2Q

2
3Q

2
1 +Q2Q

2
3Q

2
1 +Q2

2Q3Q
2
1 +Q2Q3Q

2
1 +Q2

2Q
2
3Q1 (3.65)

+Q2Q
2
3Q1 +Q2Q1 +Q2

2Q3Q1 +4Q2Q3Q1 +Q3Q1 +Q1 +Q2 +Q2Q3 +Q3 +1)
]
.

One may check that Zcrystal reduces to PE
[

q
(1−q)2

]
, namely the (monochrome) crystal for

C3, when taking q0,1,2,3 = q.
Moreover,

ZBPS = PE
[

x

(1− x)2

(
2 +

4∏
i=1

(
Q

1/2
i +Q

−1/2
i

))]
, (3.66)

where Q4 := Q1Q2Q3. In particular, it contains the fundamental representation of SU(2)4.
Physically, the web diagram decribes the T [AN−1] theory where N M5-branes wrap a
sphere with three full punctures when N = 2 [69]. Therefore, it should have SU(2)3 flavour
symmetry [70], which is reflected by the factors with Q1,2,3. On the other hand, the Q4
part should indicate the Z3 action on the brane web which reduces the above SU(2)3 to a
single SU(2) as discussed in [71].14

The gluing process. As shown in figure 7, there is one trivalent vertex glued to each leg
of the centre one. As a result, the gluing operators in this picture would also be different.15

This is again indicated by the vacuum character. From (3.62), we see that the basic gluing
operators are all fermionic. Furthermore, we have gluing operators associated to qiqj for
all pairs (i, j) with i < j and q1q2q3 all derived from the basic operators. In our shorthand
notation, we have

−q1 −q2 q1q2−q3 q1q3 −q1q2q3q2q3

. (3.67)

3.6 Some non-toric examples

Based on the discussions on A-type singularities in section 3.3, we may try to generalize to
D- and E-type singularities. Now, C×C2/Γ are not toric, where Γ ∈ {Dicr,BT,BO,BI} is
the binary dihedral/tetrahedral/octaheral/icosahedral group, i.e., the Dr and E6,7,8 sub-
groups of SU(2). Nevertheless, they should still admit quiver descriptions which are the
tripled quivers Q̂ of the affine D-/E-type quivers Q [72].

14Notice that the full flavour symmetry under gauging this Z3 discrete symmetry would further have an
extra SU(3) factor.

15However, we should emphasize that the gluing process here is essentially in line with the ones for
generalized conifolds. The algebraic gluing rules we have still consist of the corresponding holomorphic
curves on the geometric side for topological string amplitudes.
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Similar to (3.26) and (3.29), we may conjecture that the parititon function in such
case is

χr = PE

 x

(1− x)2

r +
∑
α∈Ψ

qα∗

 , (3.68)

where x :=
r−1∏
i=0

qδii and qα∗ =
r−1∏
i=1

qαii while Ψ is the root system of the Lie algebra of type

Dr or E6,7,8. In particular,
(
r + ∑

α∈Φ
qα∗

)
is the character of the adjoint representation.

Notice that here we let the convention to be x =
r−1∏
i=0

qδii due to the non-trivial minimal

positive imaginary root δ. For the affine ADE types, δ are the Dynkin labels (dual Coxeter
numbers) [73]:

...

1 1 1 1

1

...

1 2 2 1

2

2

2

1 2 2 1

2

3

1

1 2 2 1

2

3 34 1 2 6 4

3

3 54 2 .

(3.69)
Then δ0,...,r−1 should take the values associated to the nodes of the underlying finite quiver.

This is in line with the discussions on Kac polynomials. For affine DE’s, the Kac
polynomials are [45] Ad(t) = A[d(t) = 1, d ∈ Φ+

Re

Ad(t) = A1
d(t) = t+ r, d ∈ Φ+

Im
. (3.70)

Here, the notations are the same as in section 3.3. The Poincaré polynomials are

P [Q(t, q) = PQ(t, q) = PE

 ∑
d∈Φ+

0

tqd

(t− 1)(1− qδ)

PE [ (1 + rt)qδ
(t− 1)(1− qδ)

]

× PE

 ∑
d∈Φ−0

tqd+δ

(t− 1)(1− qδ)

 . (3.71)

Again, the double copy P 0
Q(t, q)P̃ 0

Q(t, q) contains χr as a factor:

P 0
Q(t, q)P̃ 0

Q(t, q) = PE

 x

(1− x)2

r +
∑
d∈Φ0
d0=0

qd


× · · · = χr × . . . (3.72)

under the unrefinement t−1 = x. This seems to indicate some subalgebra struture. In
section 4.2, we will check this with the refined partition functions.

It is worth noting that the partition functions ZDT and ZPT for DT and Pandharipande-
Thomas (PT) invariants were obtained in [74, 75] for ADE singularities C × C2/Γ with
Γ ⊂ SU(2) finite. One may then verify that (3.68) agrees with these results under wall
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crossings discussed in the next section. More generally, one may also consider all the other
affine quivers as classified in [73, table Aff 1-3]. Although the 3-fold geometry may not be
clear, it would be natural to conjecture that (3.68) would still give the partition functions
for the tripled quivers of these affine quivers. Moreover, the Kac polynomials and Poincaré
polynomials would again follow (3.70)–(3.72).

4 Wall crossings

Having presented in detail, in the previous section, explicit expressions for Zcrystal and
ZBPS for a variety of examples, let us now move on to discuss the wall-crossing phenomena
which have been intensively studied for such partition functions. In this section, we first
rapidly summarize some of the standard results in the literature. Then we will make an
attempt to generalize the crystal descriptions for arbitrary chambers.

It is well-known that there are walls of marginal stability of codimension 1 in the
moduli space of the quiver theory. When BPS particles cross a wall from one chamber to
another, they might decay due to the stability conditions. So far, we have only focused
on the BPS states in the non-commutative Donaldson-Thomas (NCDT) chamber [17]. It
is related to the toplogical string amplitudes by ZBPS = Ztop(x,Q)Ztop(x,Q−1). On the
other hand, the BPS parition function in the core chamber is trivially ZBPS = 1. There are
many other chambers between these two where the (anti-)D2s on different 2-cycles form
stable states with various numbers of D0s.

For example, the most well-studied conifold case has the chamber structure which can
be depicted as16 [6, 7]

C0 C1 C2 ......
C̃2 C̃1 C̃0

D2 + D0 D2 + 2D0 D2 + 3D0 D2 + D0D2 + 2D0D2 + 3D0D0

NCDT CoreDT PT .

(4.1)
The BPS partition function ZBPS in the NCDT/Szendröi chamber is the one discussed in
section 3.2 while ZBPS = ZDT = Ztop(x,Q) in the DT chamber. Therefore, one loses a
factor (1−xkQ−1)k when crossing the wall from the chamber Ck−1 to Ck. In the other half,
if we start from the core chamber, one obtains a factor (1− xkQ)k when crossing the wall
from the chamber C̃k−1 to C̃k, and in the PT chamber, we have ZBPS = M(Q, x)−1 such
that the BPS invariants are identified with PT invariants. Let R denote the inverse D0-
brane central charge (up to some complex constant),17 and let B denote the NS-NS B-field
through the 2-cycles wrapped by the D2s in the CY manifold. Then R > 0 from NCDT to
DT chambers while R < 0 from PT to core chambers. The B-fields satisfy k − 1 < B < k

and −k − 1 < B < −k respectively. In fact, there is another half with flopped geometry
going from NCDT to core chambers. Together the two pieces form a closed circle.

16This can be understood as follows. Starting from the region where only the D6 itself is stable (which
is known as the core chamber), every time one crosses a wall labeled by D2 + ND0, an arbitrary number
of D2 +ND0 can bind to the D6. Then one encounters the D0 wall where any number of D0s can bind to
the D6. After that, D2 +ND0 particles start to bind to the D6 every time one crosses a D2 +ND0 wall.

17This notation R comes from the Taub-NUT circle in the M-theory uplift [76].
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More generally, for any toric CYs without compact 4-cycles, one would obtain/lose a
factor

(
1− xkQ±1

)±k
every time we cross a wall of marginal stability similar to the conifold

case. Here, Q =
(∏
i∈J

Qi

)
where J refers to the set of indices for any possible combination

of Qi’s that would appear in ZNCDT.
For generalized conifolds xy = zmwn, the BPS partition function in any chamber can

be written as [67, 76]
ZBPS =

∏
(k,β):Z(k,β)>0

(
1− xkQβ

)kN0
β
, (4.2)

where Z denotes the central charge and N0
β is the genus-0 Gopakumar-Vafa invariant

specified by the 2-cycle β = ∑
i≤l≤j

αl with αl the basis of 2-cycles. Therefore, N0
0 =

|Q0| − 1 = m+ n and N0
−β = N0

β. The central charge is Z = (k +B(β))/R where B(β) is
the B-field flux through the 2-cycle β. Recall that σ = {σl} denotes the signs of simplices
in the triangulation in section 3.4. Then [68]

N0
β = (−1)1+#{l∈[i,j]: αl is an O(−1,−1)-curve} = (−1)1+#{l∈[i,j]: σl 6=σl+1}. (4.3)

The BPS partition function is therefore

ZBPS = M(x)m+n ∏
0<r≤s<m+n

(
M

(
s∏
i=r

Qi, x

)
M∧

(
s∏
i=r

Q−1
i , x;Br,...,s

))(−1)
σr−σs+1

2

(4.4)

or

ZBPS =
∏

0<r≤s<m+n
M∧

(
s∏
i=r

Qi, x;Br,...,s
)(−1)

σr−σs+1
2

(4.5)

based on the chamber, where Br,...,s := [B(αr + · · ·+αs)], which labels the chamber, is the
integer part of the value of the B-field through the 2-cycle β = αr + · · ·+ αs.

The remarkable result in [68] says that [B] are not completely independent and can be
determined by the map θ : 1

2Zodd → 1
2Zodd such that θ(h+m+ n) = θ(h) +m+ n for any

half-integer h and
m+n∑
i=1

θ(i− 1
2) =

m+n∑
i=1

(i− 1
2). If θ(1/2) < θ(3/2) < · · · < θ(m+n−1/2), then

[Bθ(αr + · · ·+ αs)] = #{k ∈ Z|θ(r − 1/2) < k(m+ n) < θ(s+ 1/2)}. (4.6)

If θ is not increasing, then we can choose a permutation τ ∈ Sm+n such that θ(τ(1/2)) <
θ(τ(3/2)) < · · · < θ(τ(m+n+1/2)) and replace θ by θ◦τ . For instance, in the SPP example
in figure 6, if θ(1/2) = 11/2, θ(3/2) = 3/2, θ(5/2) = −5/2, then [Bθ◦τ (α1)] = [Bθ◦τ (α2)] =
1, [Bθ◦τ (α1 + α2)] = 2 where τ = (132). This specifies the truncations of MacMahon
functions in (4.4) and (4.5). Notice that θ(1/2) = −5/2, θ(3/2) = 3/2, θ(5/2) = 11/2 gives
[Bθ] of the same values, but generically they parametrize different chambers [68].

It is also straightforward to write ZBPS in different chambers using PE. This simply
follows from

M∧(p, q; k0) = PE

 ∞∑
k=k0

kpqk

 , M∧(p, q; k0) = PE

 k0∑
k=1

kpqk

 , (4.7)

along with PE[f ]PE[g] = PE[f + g] and PE[f ]−1 = PE[−f ].
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(a) (b) (c)

Figure 8. (a) The crystal for C̃2 for the conifold C. (b) The same copy with different colours. (c)
The crystal which is a disjoint union of (a) and (b).

4.1 Towards a crystal description

It could be possible that there are certain crystal models describing other chambers. It is
well-known that the crystal in the chamber CN for the conifold is the pyramid partition
with a ridge of (N + 1) atoms on the top row. The crystal partition function reads [17, 59]

Zcrystal (q0,N , q1,N ) = M(q0,Nq1,N )2M
(
−qN−1

0,N qN1,N , q0,Nq1,N
)−1

×M∧
(
−q−(N−1)

0,N q−N1,N , q0,Nq1,N ;N
)−1

, (4.8)

where qi,N is the variable for the atom of ith colour in the crystal for CN . Under q0,N =
qN0 q

N−1
1 and q1,N = q−N+1

0 q−N+2
1 , we obtain

Zcrystal(q0, q1) = M(q0q1)2M(−q1, q0q1)−1M∧(−q1, q0q1;N)−1. (4.9)

This is similar in the C̃N chamber, where the crystal is finite and

Zcrystal (q0,N , q1,N ) = M∧
(
−qN+1

0,N qN1,N , q
−1
0,Nq

−1
1,N ;N

)−1
(4.10)

with q0,N = qN0 q
N+1
1 , q1,N = q−N−1

0 q−N−2
1 [77].

For a general CY, it is still not clear whether there is a crystal for every chamber.
We conjecture that such crystal should exist, at least upon “artificial” constructions. For
instance, the crystal for C̃2 for the conifold is shown in figure 8(a). Together with another
copy with different colours in figure 8(b), we have a crystal with two disjoint parts as in
figure 8(c). In other words, they form a crystal whose white-black part and blue-red part
have no chemical bonds between each other. More generally, for two copies for the chamber
C̃N of the conifold, this gives the partition function

Zcrystal = M∧
(
−qN+1

whiteq
N
black, q

−1
whiteq

−1
black;N

)−1
M∧

(
−qN+1

blue q
N
red, q

−1
blueq

−1
red;N

)−1

= M∧ (−q1, x;N)−1M∧ (−q3, x;N)−1 ,
(4.11)

where the second line is obtained under the substitutions qwhite = qN0 q
N+1
1 qN2 q

N
3 , qblack =

q−N−1
0 q−N−2

1 q−N−1
2 q−N−1

3 , qblue = qN0 q
N
1 q

N
2 q

N+1
3 , qred = q−N−1

0 q−N−1
1 q−N−1

2 q−N−2
3 and

x = q0q1q2q3. Notice that however, this partition function does not correspond to any
chamber for C/Z2 due to the constraints on [B] discussed above. To recover the parti-
tion function of certain chamber, one should not only consider such crystal associated to
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... ... ...

...

N

N

Figure 9. The crystal for chamber C̃N for C × C2/Z2. Here we show the cases for N = 1, 2, 3, 4.
We also give a sketch of general N with the orange line as the top row. The crystal is infinitely long.

M∧(•, •;N)−1, but also consider the crystal for C̃N of C × C2/Z2. This is because in
general we would also have M∧(•, •;N) in the partition function.

Here, we propose that the (natural) crystal for the chamber C̃N for C × C2/Z2 has
the shape of a tilted (semi-)infinite “triangular log store” as shown in figure 9. The crystal
partition function is

Zcrystal (q0,N , q1,N ) = M∧
(
qN+1

0,N qN1,N , q
−1
0,Nq

−1
1,N ;N

)
. (4.12)

Under q0,N = qN0 q
N+1
1 , q1,N = q−N−1

0 q−N−2
1 , we recover M∧(q1, q0q1;N) as expected. As

an illustration, we list the perturbative expansion of Zcrystal (q0,N , q1,N ) for some small N :

N = 1 : 1 + q0,1 + q2
0,1 + q3

0,1 + . . . ;
N = 2 : 1 + 2q0,2 + (3 + q1,2)q2

0,2 + (4 + 2q1,2)q3
0,2 + . . . ;

N = 3 : 1 + 3q0,3 + (6 + 2q1,3)q2
0,3 + (10 + 6q1,3 + q2

1,3)q3
0,3 + . . . ;

N = 4 : 1 + 4q0,4 + (10 + 3q1,3)q2
0,4 + (20 + 12q1,4 + 2q2

1,4)q3
0,4 + . . . .

(4.13)

Now, any chamber C̃ for any toric CY without compact 4-cycles could be represented
by a disjoint union of the crystals in figure 8 and figure 9. For instance, three copies of
figure 8 and two copies of figure 9 (all with distinct colours) yield the chamber with

Zcrystal =M∧(−q1,x;1)−1M∧(−q3,x;1)−1M∧(q1q2,x;1)M∧(q2q3,x;1)M∧(−q1q2q3,x;2)−1

(4.14)
for C/Z2. The maps from qi,N to qj should be straightforward from the above discussions.18

In the case of C×C2/Zn or C/Zn, a more natural crystal could be the same as the one
for C×C2/Z2 or C but with more colours. Nevertheless, this artificial method allows us to
construct the crystal for arbitrary chamber C̃ for any toric CY without compact 4-cycles.

One may consider a similar construction for a chamber C such that there is a crystal
model for each (M(∏ qi, x)M∧(∏ qi, x;N))±1 where ±1 determines the crystal being either

18One may check that this indeed corresponds to some chamber. For example, the θ map can be chosen
as θ(1/2) = −7/2, θ(3/2) = 3/2, θ(5/2) = 7/2 and θ(7/2) = 9/2.
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(a) (b)

Figure 10. (a) The crystal for C1 for the conifold C. (b) “Merging” two such copies. Here,
we still stay in the case C, but with a different chamber. Each copy gives M(x)2M̃∧(2)−1 where
M̃∧(2) := M(

∏
qi, x)M∧(

∏
qi, x; 2). After merging the shaded pyramid (where the colours are

ignored), we reach the chamber C3 with partition function M2M̃∧(4)−1 with the blue (red) colour
identified with the white (black) colour.

pyramid partition or bicoloured plane partition. Then the union of the crystals would give
all the factors in the partition function. For such constructions, we need to point out the
followings:

• There could be more colours qi,∪ of this union than the actual number of variables qi.
Therefore, the map from {qi,∪} to {qi} should reduce such number. This is similar
to the case for C̃.

• Every (sub-)crystal in the union would introduce a factor of M(x)2 in the product.
To remove these extra factors, we need to make identifications of some atoms when
gluing the crystals together. For each factor of M(x), a pair of C3 sub-crystal in
the union should “merge” into one. For some special/simpler cases, one may also
consider merging a different sub-crystal. This is illustrated in figure 10 where the CY
geometry is not even changed but we have a different chamber.19

• After merging, the truncationsN in the (remaining) factorsM∧(•, •;N) could change.
Again, figure 10 provides an example. It could be possible that cancelling the surplus
colours in {qi,∪} would simultaneously correct N in the remaining M∧(•, •;N).

It is not clear whether such construction would give a “natural” crystal description of
the BPS states in different chambers. Nevertheless, if there does exist a natural crystal
description, the 2d projection of the crystal shape should coincide with the web diagram of
the toric CY. This is because the thickening of the web would give the 2d projection of the
crystal melting in the thermodynamic limit.20 Then the tops of the crystals would be the
finite ridges in the webs with different numbers of coloured atoms for different chambers.

Let us take a closer look at the bicoloured crystals for C× C2/Z2 and the conifold in
the chambers CN . As shown in figure 11, we can “peel” one semi-infinite face (in grey) off

19Of course, for general CY it would be easier to consider merging its own crystals rather than combining
copies of bicoloured pyramid or plane partition and identifying C3 sub-crystals. However, the premise is to
know the crystals for this general CY in different (or at least a few) chambers.

20The thickening of the web is known as the amoeba [33, 78]. As the (thermodynamic) limit shape of the
crystal and the amoeba are general features for any CY, we expect the discussion here would also work for
CYs with compact 4-cycles.
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Figure 11. Peeling off the semi-infinite faces of the conifold crystal. This changes the length of
the top row.

Figure 12. Peeling off the semi-infinite faces of the C× C2/Z2 crystal.

the crystal for the conifold. This then leads to the crystal for chamber C1. Keep peeling
the semi-infinite face on the same side, and we can reach the crystal for any CN . In the
web diagram which corresponds to the ridges of the crystal, peeling the semi-infinite face is
actually changing the length of the internal line, that is, varying the Kähler moduli. This
indicates that removing a factor of (1 − xkQ−1)k in the partition function corresponds to
peeling a semi-infinite face off the crystal. If we peel another semi-infinite face as in the
second row in figure 11, we can see that this is going the opposite direction in the moduli
space, and we get back to the NCDT chamber C0 from C1.

Now we propose a similar construction for C×C2/Z2. In figure 12, if we peel one semi-
infinite ridge (in grey) off the crystal, we would reach the chamber C1. Then keep peeling
the semi-infinite face on the same side, and we can reach the crystal for any CN . In the web
diagram, this is again changing the length of the internal line, that is, varying the Kähler
moduli. This corresponds to removing a factor of (1− xkQ−1)−k in the partition function.
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Figure 13. Peeling off the semi-infinite faces of the C× C2/Z3 crystal. The dashed brane webs is
composed of the ridges.

Similar to the conifold, the crystal partition function in this case should be given by

Zcrystal (q0,N , q1,N ) =M(q0,Nq1,N )2M
(
qN−1

0,N qN1,N , q0,Nq1,N
)
M∧

(
q
−(N−1)
0,N q−N1,N , q0,Nq1,N ;N

)
,

(4.15)
with q0,N = qN0 q

N−1
1 and q1,N = q−N+1

0 q−N+2
1 .

This peeling process can then be generalized to any toric CY. Every time we cross a
wall, a semi-infinite face (with a ridge being a degenerate face) is peeled off the crystal.
This corresponds to losing/obtaining a factor of (1 − xk∏Q−1

i )±k, where the sign in the
power is determined by the curve (O(−2, 0) or O(−1,−1)) for the internal line in the web,
or equivalently, the signs in σ. As an example, we illustrate several different ways of peeling
for C× C2/Z3 in figure 13.

In general, the initial atoms are at the intersections of (at least) two semi-infinite
ridges. Moreover, these initial atoms do not have to lie at the same “height” in the crystal.

4.2 Refined partition functions

For any chamber C, the refined BPS index/(protected) spin character is Ω(n0,n2; y; C) =
TrHn0,n2 (C)(−y)J3 , where H is the (reduced) Hilbert space of BPS states and y tracks the
spin information J3. In the limit y→ 1, one recovers the unrefined index. In the following,
it would be more convenient to take t1 = qy and t2 = q/y.

It is fairly straightforward to refine the partition functions discussed above:

ZBPS = MR(t1, t2)m+n ∏
0<r≤s<m+n

M̃R

(
s∏
i=r

Qi; t1, t2
)(−1)

σr−σs+1
2

(4.16)

for the generalized conifold xy = zmwn [79, 80] and

ZBPS = MR(t1, t2)4 ∏
I∈P{1,2,3}

M̃R

(∏
i∈I

Qi; t1, t2
)(−1)|I|

(4.17)
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for C3/(Z2 × Z2) where P{1, 2, 3} is the power set of {1, 2, 3}. Here,

MR(p; t1, t2) =
∞∏

k,l=0

1
1− ptk+1

1 tl2
= PE

[
pt1

(1− t1)(1− t2)

]
,

MR(t1, t2) = MR(1; t1, t2), M̃R(p; t1, t2) = MR(p; t1, t2)MR(p−1; t1, t2)
(4.18)

are the refined (generalized) MacMahon functions. In terms of PE, we have ZBPS = PE[g],
where

g =
t1

(
m+ n+ ∑

0<r≤s<m+n
(−1)

σr−σs+1
2

(
s∏
i=r

Qi +
s∏
i=r

Q−1
i

))
(1− t1)(1− t2) (4.19)

for the generalized conifold and

g =
t1

(
4 + ∑

I∈P{1,2,3}
(−1)|I|

(∏
i∈I

Qi + ∏
i∈I

Q−1
i

))
(1− t1)(1− t2) (4.20)

for C3/(Z2 × Z2).
Recall that in the unrefined case, one would obtain/lose a factor of

(
1− xNQ±1

)±N
when crossing a wall of marginal stability, where Q =

(∏
i∈J

Qi

)
for a set J of indices whose

combination would appear in ZNCDT. Likewise, in the refinement, one would obtain/lose

a factor of
( ∏
k+l+1=N

(1− tk+1
1 tl2Q±1)

)±1

every time we cross a wall.21

We can also directly compare the refined partition functions with the previous dis-
cussions on Kac polynomials and Poincaré polynomials. Indeed, the refined C3 partition
function is MR(t1, t2), which is exactly (3.5) under the change of variables x = t1 and
t−1 = t2. One may also check that the results for all the affine quiver cases (in section 3.3
and section 3.6) still hold. The partition function is

χr = PE

 t1
(1− t1)(1− t2)

r +
∑
α∈Ψ

Qα

 . (4.21)

This is precisely a factor of P 0
Q(t, q)P̃ 0

Q(t, q) under x = qδ = t1, t−1 = t2 and qi = Qi.

5 A comment on D4-D2-D0 bound states

Based on [81–85], it would be straightforward to write the generating functions for D4-D2-
D0 brane bound states similar to the above discussions. Mathematically, they are related
to curve counting on surfaces in the CY 3-fold [20, 86]. Given a toric CY 3-fold, we consider
a single non-compact D4-brane wrapping the shaded toric divisor as shown in figure 14,
with BPS D2-D0 branes bound to it.22

21It is conjectured that there does not exist walls invisible to unrefined indices such that only refined
indices would jump [7].

22Here, we will only focus on this specific non-compact divisor that supports the single D4-brane. It
would be nice to generalize this to other 4-cycles and investigate how these partition functions are related
to each other.
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...

Figure 14. The non-compact toric divisor where a single D4 is supported for generalized conifolds
and C3/(Z2 × Z2).

As argued in [85], the D4-D2-D0 bound states can be enumerated by 2-dimensional
crystals as opposed to the 3d crystals for D6-D2-D0 bound states. As a result, they should
be counted via 2d Young tableaux instead of 3d plane partitions. Therefore, it is natural
to conjecture that the (generalized) MacMahon functions should be replaced by the inverse
(generalized) Euler functions φ(x, q)−1 counting integer partitions, where the (generalized)
Euler functions are

φ(p, q) :=
∞∏
k=1

(1− pqk), φ(q) := M(1, q), φ̃(p, q) := φ(p, q)φ(p−1, q). (5.1)

The partition function is then

ZBPS = φ(x)−(m+n) ∏
0<r≤s<m+n

φ̃

(
s∏
i=r

Qi, x

)(−1)
σr−σs+1

2 +1

(5.2)

for generalized conifolds and

ZBPS = φ(x)−1 ∏
I∈P{1,2,3}

φ̃

(∏
i∈I

Qi, x

)(−1)|I|+1

(5.3)

for C3/(Z2 × Z2). One may check that these expressions agree with the results of C3

orbifolds, conifold and SPP studied in [85] up to wall crossings. In terms of PE, we have
ZBPS = PE[g], where

g =
x

(
m+ n+ ∑

0<r≤s<m+n
(−1)

σr−σs+1
2

(
s∏
i=r

Qi +
s∏
i=r

Q−1
i

))
1− x (5.4)

for the generalized conifold and

g =
x

(
4 + ∑

I∈P{1,2,3}
(−1)|I|

(∏
i∈I

Qi + ∏
i∈I

Q−1
i

))
1− x (5.5)

for C3/(Z2×Z2). Likewise, following [81], every time we cross a wall of marginal stability,

we obtain/lose a factor of
(
1− xkQ±1

)±1
. Here, Q =

(∏
i∈J

Qi

)
where J refers to the set of

indices for any possible combination of Qi’s that would appear in the NCDT chamber.
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6 Outlook

In this paper, we discussed crystal and BPS partition functions for toric CY 3-folds without
compact 4-cycles as well as some non-toric examples. There are still undoubtedly rich
explorations for future research. Here, we shall list a very small subset of them.

One longstanding problem is to consider the CYs with compact 4-cycles. The D4-
branes wrapping those compact divisors would then also become dynamical BPS particles.
There have been some calculations counting D6-D4-D2-D0 bound states for some cases
such as in [19, 23, 87]. It would be intriguing to study the methods in these papers and
apply them to any general cases.

The refined partition functions are closely related to the motivic DT invariants and
various quantum algebras [10, 88]. For instance, as proven in [89], the associated grading
of COHA with respect to the perverse filtration is the symmetric algebra of (the product
of) the BPS algebra (and an extra piece). In particular, the refined BPS invariants would
now appear inside PE to give the generating function for gr·COHA. It would also be
interesting to find a more systematic relation between quiver Yangians and other relevant
algebras. For example, it was conjectured in [51] that the positive part of the Maulik-
Okounkov Yangian [39] of a quiver is isomorphic to the COHA associated to its tripled
quiver. Moreover, recent progress on related quantum algebras and crystals has been made
including shifted Yangians, toroidal and (hyper)elliptic BPS algebras [90–93]. In particular,
it would be interesting to compare the crystals for different chambers in this paper with
those studied in [91]. In another direction, we may also compare the crystal descriptions
here with the discussions in [66].

It is natural to investigate the BPS/CFT correspondence, which is also known as the
AGT or 2d-4d correspondence [94–96]. One may consider the M-theory lift of the type IIA
picture with an extra S1. Then we have M5-branes wrapping the cylinder M2 = R × S1

and some 4-dimensional varietyM4. The compactification onM2 would give rise to a 4d
supersymmetric gauge theory onM4 while compactifying onM4 yields some chiral algebra
or 2d CFT onM2. The vertex operator algebra (VOA) is expected to arise from the COHA
acting on the equivariant cohomology of the moduli space of instantons. For the simplest
C3 example, one may consider three stacks of M5-branes on the three C2 divisors with a B-
field. This would lead to a family of VOAs known as the Y -algebras parametrized by three
parameters L,M,N [97]. Such algebras can be viewed as the truncations ofW1+∞ algebra,
so it would be curious to see its connection to the truncations of quiver Yangians in [16].
The generating function for the Y -algebras would now enumerate 3d partitions restricted
between the usual octant for plane partitions and the octant with origin at (L,M,N). It
would be helpful to find such partition functions. For instance, the one for Y0,0,N in terms
of PE is PE

[
1+tN+1

(1−t)2

]
. We might also compare the gluing process discussed here with the

one in [98]. More generally, given a web diagram with n faces for any toric CY, one can
consider the VOAs labelled by n parameters. They should have intimate relations with
COHAs, brane tilings and quivers.
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A The crystal-to-BPS map

Roughly speaking, the partition functions for crystal and BPS states are related by a change
of variables q = ±

n−1∏
j=0

qj , Qi = ±Qi for n = |Q0| and i = 1, . . . , n− 1. To determine these

signs, we first introduce the (Euler-)Ringel form23

〈d1,d2〉 =
∑
a∈Q0

d1,ad2,a −
∑

Xab∈Q1

d1,ad2,b (A.1)

for the dimension vectors d1,2. Then the sign of the term qm =
n−1∏
i=0

qmii is given by

(−1)m0+〈m,m〉 [35].
In general, we need to check the signs term by term. However, for toric diagrams

without internal points, we simply have

(−1)m0+〈m,m〉 = (−1)
∑
a∈S

ma

, (A.2)

where S = {a0} t {a|@ Xaa ∈ Q1}. Notice the disjoint union sign here. This means the
initial node is counted twice, one from {a0} and one from {a|@ Xaa ∈ Q1} (if it does not
have a loop). Therefore, the signs of variables can be determined as follows:

q0 =

p0, @ Xaa ∈ Q1

−p0, ∃ Xaa ∈ Q1
; qi 6=0 =

pi, ∃ Xaa ∈ Q1

−pi, @ Xaa ∈ Q1
. (A.3)

We shall call this the crystal-to-BPS map. Then we can obtain ZBPS(q,Q) via q =
n−1∏
j=0

pj ,

Qi = pj . For generalized conifolds, the crystal-to-BPS map can equivalently be determined
by the triangulations of the toric diagrams as discussed in section 3.4. For convenience,
especially when writing the sign-changed expressions, we have simply denoted the crystal-
to-BPS map as qj → ±qj in the main context, with the understanding of the signs according
to (A.3).

23Recall that Xab denotes an arrow from node a to node b. Moreover, the node a0 corresponding to the
initial atom always uses the variable q0.

– 36 –



J
H
E
P
0
6
(
2
0
2
2
)
0
1
6

B Asymptotic behaviour

Given an analytic function h(t) =
∞∑
k=0

hkt
k, and the generating function

f(t) = PE[h(t)] =
∞∏
k=1

1
(1− tk)hk =

∞∑
n=0

fnt
n, (B.1)

we can obtain the asymptotic behaviour of fn following [27, 99–101]. We have the Dirichlet
series D(s) :=

∞∑
k=1

hk
ks with only one simple pole at s = α > 0 and residue A. Then for large

n,
fn ∼ C1n

C2 exp
(
n

α
α+1

(
1 + 1

α

)
(AΓ(α+ 1)ζ(α+ 1))

1
α+1

)
, (B.2)

where
C1 = eD′(0)√

2π(α+ 1)
(AΓ(α+ 1)ζ(α+ 1))

1−2D(0)
2(α+1) , C2 =

D(0)− 1− α
2

α+ 1 . (B.3)

As an example, let us consider the crystal model for the conifold in section 3.2 but
without colouring. Therefore, we have a univariate function

f(t) = PE
[
t(1 + t+ 3t2 + 4t3 + 3t4 + t5 + t6)

(1− t4)2

]
. (B.4)

Hence,

hk =


k
2 , k ≡ 2 (mod 4)
k , otherwise

. (B.5)

This yields the Dirichlet series

D(s) = 2− 2s + 4s
4s ζ(s− 1), (B.6)

which has a pole at s = α = 2 with residue A = 7/8. As a result, the asymptotic behaviour
is

fn ∼
(7ζ(3)) 2

9
√

3π
2−

25
36n−

13
18 exp

(
2
3(7ζ(3))

1
3

(
n

2

) 2
3

+ 2ζ ′(−1)
)
. (B.7)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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