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Current tracking technologies enable collection of data describing movements of various 
kinds of objects, including people, animals, icebergs, vehicles, containers with goods, 
etc. Analysis of movement data is now a hot research topic. However, most of the 
suggested analysis methods deal with movement data alone. Little has been done to 
support the analysis of movement in its spatio-temporal context, which includes various 
spatial and temporal objects as well as diverse properties associated with spatial locations 
and time moments. Comprehensive analysis of movement requires detection and analysis 
of relations that occur between moving objects and elements of the context in the process 
of the movement. We suggest a conceptual model in which movement is considered as a 
combination of spatial events of diverse types and extents in space and time. Spatial and 
temporal relations occur between movement events and elements of the spatial and 
temporal contexts. The model gives a ground to a generic approach based on extraction 
of interesting events from trajectories and treating the events as independent objects. By 
means of a prototype implementation, we tested the approach on complex real data about 
movement of wild animals. The testing showed the validity of the approach. 
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1 Introduction 

Recent technological progress has enabled tracking of various moving objects and 
collection of data about the movement. In some domains, such as traffic management 
or tourism, movement data may be used to study general characteristics of mobility: 
space use, spatial and temporal variation of objects’ presence, major flows, etc. In 
other domains, movement behaviours of individuals and/or groups are in focus. 
Examples are animal research, iceberg studies, and sports analysis.  

It should be emphasized that movement behaviours can only be understood by 
considering various relations occurring between moving objects and the environment 
in which they move. The environment, also called spatio-temporal context, includes  
 complex and heterogeneous physical space, in which characteristics vary from 

place to place and change over time,  
 complex and heterogeneous physical time, in which day differs from night, 

summer from winter, and so on,  
 static and dynamic objects existing in space, as well as  
 events occurring over time.   

Tomaszewski and MacEachren (2010) suggest a conceptual model that 
encompasses three aspects of context, spatial (geographical), temporal (historical), 
and conceptual. From these three, the spatial and temporal aspects are in the focus of 
our current research. Since many kinds of objects and phenomena are simultaneously 
spatial and temporal, we do not separate the spatial and temporal aspects but join 
them into a single concept of spatio-temporal context. This paper deals particularly 
with the spatio-temporal context of movement. For the sake of brevity, we shall 
sometimes use the single word “context” to refer to the spatio-temporal context. 

Although extensive research on analyzing movement has been made in recent 
years, most of the existing methods and tools focus on movement data per se with 
little or no consideration of the spatio-temporal context. Our current research aims at 
finding ways to involve context information in analysis of movement data. We have 
developed a general approach based on treating occurrences of various relations 
between moving objects and elements of the context as spatial events, i.e., objects 
localized in space and time. These events are extracted from movement data and 
context data by means of computations and interactive filtering. Extracted events are 
then visualized and analyzed using suitable methods. As a proof of concept, we have 
done a prototype implementation of the approach and tested it on real-world datasets. 

In the next section of the paper, we give an overview of the research on 
movement analysis and demonstrate that quite little has been done so far on joint 
analysis of movement data and context data. Next, we introduce the conceptual model 
underlying our approach and the approach itself. After a brief description of our 
prototype implementation, we show how the approach works by example of real data 
about movement of wild animals. This is followed by a discussion of the results and a 
conclusion. 

2 State of the art 

A cartographic map can convey to some extent the heterogeneity of the geographical 
space and various relations occurring within it (Andrienko et al. 2008). Hence, a 
visual representation of movement on a map enables a human analyst to see some of 
the relations between the movement and the spatial context. However, maps are weak 
in representing temporal information. The existing techniques and tools for the 



visualization and exploration of spatio-temporal data are reviewed by Andrienko et al. 
(2003). The most common approach to dealing with space and time together is map 
animation; however, its effectiveness is quite limited (Tversky et al. 2002). Another 
approach is the space-time cube, where the horizontal plane represents space and the 
vertical dimension represents time. The idea was introduced by T. Hägerstrand in the 
1960s (Hägerstrand 1970) but software implementations appeared relatively recently 
(Kraak 2003, Andrienko et al. 2003, Kapler and Wright 2005). Both a map and a 
space-time cube are limited with respect to the number of trajectories that can be 
effectively explored, the length of the time period, and the capacity to represent 
various aspects of the movement context: when much information is included in a 
display, it becomes illegible due to the visual clutter. 

As larger and larger collections of movement data become available, 
researchers work on devising computational analysis methods that could cope with 
these amounts. One of the possible approaches is data aggregation. A survey of the 
aggregation methods used for movement data is done by Andrienko and Andrienko 
(2010). To study the distribution of movement characteristics over space, movement 
data are aggregated into continuous density surfaces (e.g. Dykes and Mountain 2003, 
Willems et al. 2009) or discrete grids (e.g. Forer and Huisman 2000, Andrienko and 
Andrienko 2010). Mountain (2005) further processes density surfaces generated from 
movement data to extract their topological features: peaks, pits, ridges, saddles, and so 
on. Brillinger et al. (2004) aggregate movement data into a vector field using a regular 
grid: in each grid cell, a vector is built with the angle corresponding to the prevailing 
movement direction and the length and width proportional to the average speed and 
amount of movement, respectively. Wood and Dykes (2008) build spatially-ordered 
treemaps combining spatial, temporal, and attributive aggregation. To study links 
between places, movement data are aggregated into origin-destination matrices (Guo 
2007) and flow maps (Tobler 1987, 2005, Andrienko and Andrienko 2011). Wood et 
al. (2010) suggest two-level spatial treemaps to represent flows among locations. The 
existing aggregation methods operate on movement data only, i.e., do not involve any 
data about the spatio-temporal context. Investigation of relations between the 
movement and the context is only supported by showing aggregated data on a 
cartographic background for visual inspection. 

Various computational analysis techniques for movement data are developed 
in the area of data mining. Most of them deal with movement data alone and do not 
take the context into account. Extensive research is done around the concept of 
similarity of movement trajectories. A number of similarity measures and respective 
algorithms for computing the similarity have been proposed (Andrienko et al. 2007, 
Pelekis et al. 2007, Trajcevski et al. 2007). These measures and algorithms are used 
for querying trajectory databases (Vlachos et al. 2002, Pelekis et al. 2007) and for 
clustering trajectories (Gaffney and Smyth 1999, Li et al. 2004, Nanni and Pedreschi 
2006, Rinzivillo et al. 2008). Another research direction is extracting particular types 
of movement patterns, such as frequent sequences of visited places and transition 
times between them (Giannotti et al. 2009). 

There are relatively few methods for analyzing relations between moving 
objects and elements of the movement context. Crnovrsanin et al. (2009) visualize the 
dynamics of the distances of moving objects to selected locations. Lundblad et al. 
(2009) attach data about weather conditions to positions of ships and visualize the 
data on interactive linked displays. Yu (2006) computationally detects occurrences of 
three types of spatio-temporal relations among moving objects: co-location in space, 
co-location in time, and co-location in both space and time. Orellana et al. (2009) 



detect and visualize occurrences of proximity between moving objects. Laube et al. 
(2005) propose methods for finding certain types of relative movements of several 
objects such as concurrence, opposition, dispersion, following, flocking, etc. 

ArcGIS Tracking Analyst (ESRI 2010) is a commercially available tool for 
movement analysis allowing the user to visualize tracks of moving objects, modify 
the display by means of highlighting, filtering, and other operations, and create map 
animations. Nothing specific is suggested for analyzing movement in context; 
however, the user can employ the analytical functionality of the ArcGIS Desktop 
system, in particular, perform queries and computations on two or more map layers. 

Hence, despite the existence of extensive literature and a large number of 
methods and tools for analyzing movement data, quite little research and development 
has been done so far concerning the analysis of movement in context. Furthermore, 
while there are a few methods for detection of certain types of relations (mostly 
relations of moving objects to other moving objects), no attempts have been made to 
support context-aware movement analysis in a more systematic and comprehensive 
way. Our research aims at filling this gap. The next two sections introduce the main 
concepts we deal with and explain our approach to supporting movement analysis. 

The concept of spatial event plays a key role in our approach. Beard et al. 
(2008) review the definitions of events occurring in the literature and note that a 
common theme among them is that events are associated with change and localized in 
space and time. Our definition of spatial events includes only the spatial and temporal 
localizations as essential features; change is not a necessary part of the meaning. 

3 Conceptual model 

There are three fundamental sets pertinent to movement: space S (set of locations), 
time T (set of instants or intervals, jointly called time units), and objects O (Peuquet 
1994, 2002). Elements of each set may have their properties, which can be 
represented by values of attributes. Among others, there may be attributes whose 
values are elements of T, S, or O, or more complex constructs involving elements of 
T, S, or O. Attributes that do not involve time or space will be called ‘thematic’. 

The set of objects includes various physical and abstract entities. Objects can 
be classified according to their spatial and temporal properties. Table 1 contains the 
definitions and examples of the types of objects relevant to our work: spatial object, 
temporal object, also called event, spatial event, static spatial object, moving object, 
also called mover, and moving event. 

Table 1: Types of objects according to their spatial and temporal properties 

Concept Superior 
concepts 

Properties Examples 

Spatial object Object Has a certain position in 
space (a location or a set of 
locations, not necessarily 
continuous) 

Building, village, 
river, rainfall, deer, 
lynx, a deer at a 
river, a lynx 
chasing a deer 

Event  
(temporal object) 

Object Appears and/or disappears 
during the time period 
under analysis, i.e., has a 
certain position in time (a 
time unit or a sequence of 
time units) 

Rainfall, a deer at a 
river, a lynx 
chasing a deer, 
sunset, winter 



Spatial event 
(spatio-temporal 
object) 

Spatial object, 
event 

Has certain positions in 
space and in time 

Rainfall, a deer at a 
river, a lynx 
chasing a deer 

Static spatial 
object 

Spatial object The spatial position is 
constant; exists during the 
whole time period under 
analysis 

Building, village, 
river 

Mover  
(moving object) 

Spatial object The spatial position 
changes over time 

Deer, lynx, a lynx 
chasing a deer 

Moving event Mover, event Exists during a sequence of 
time units (i.e., not 
instant); the spatial 
position changes over time 

A lynx chasing a 
deer 

 
Changes of the spatial position of a mover over time can be represented by a 

mapping TS (in mathematical terms, a mapping, or function from set P to set Q, 
denoted as PQ, is a correspondence between elements of P and Q such that for any 
pP there is at most one qQ). A mapping TS is called trajectory. A trajectory is 
an object having a certain position in space, which is the set of locations visited by the 
mover. Hence, a trajectory is a spatial object, by the definition given in Table 1. When 
the mover is considered as a point (i.e., the shape and size are ignored), the spatial 
position of the trajectory is a line in S. A trajectory may also have a certain position in 
time, which is the time interval when the positions of the mover were observed. This 
interval does not necessarily coincide with the whole time of the mover’s existence. 
Hence, a trajectory, generally, is a spatial event, by the definition given in Table 1.  

Furthermore, a trajectory TS consists of pairs (t,s), tT, sS. Each pair has a 
particular position s in space and a particular position t in time; in our classification, it 
is a spatial event. Hence, a trajectory TS is a complex spatial event consisting of a 
sequence of elementary spatial events (t,s).  

Movers may also have thematic attributes, which may be static (i.e., values do 
not change over time) or dynamic. The values of a dynamic attribute, such as 
movement speed or direction, are mappings TA, where A is the set of possible 
values of the attribute, for example, [0,100] km/h for the speed and [0,360] degrees 
for the direction. The pairs (t,a) in TA can also be considered as objects having 
temporal positions, i.e., as events, for example, speed events, direction events, etc. 

Instead of dealing with the mappings TS and TA separately, one can 
consider their join TSA consisting of triples (t,s,a). Hence, an occurrence of an 
attribute value a at time t has a corresponding spatial position s. More generally, when 
a mover has several dynamic thematic attributes A1, …, An, the temporal variation of 
the mover’s position and thematic characteristics can be represented by a joint 
mapping TSA1…An consisting of tuples (t,s,a1,…,an). We shall use the notation 
(t,s,a) as a compact form of (t,s,a1,…,an), meaning that a may stand for a combination 
of values of several thematic attributes. Each tuple (t,s,a) is a spatial event. 

A sequence of temporally consecutive events may be regarded as one larger 
event, which, in turn, may be included in a higher level event. One of the possible 
reasons for uniting consecutive events (t1,s1,a1), (t2,s2,a2), …, (tk,sk,ak) into one event 
may be constancy of s (s1=s2=…= sk) and/or a (a1=a2=…= ak). We shall use the term 
movement events to refer to elementary and composite spatial events involved in the 
movement. We shall use of the notations (t,s) and (t,s,a) both for elementary and for 



composite movement events. This means that t may stand either for an element of T 
(tT) or for a continuous subset of T (tT), i.e., a sequence of consecutive time units. 
In both cases, s is the set of spatial locations (sS) and a is the set of attribute values 
(aA, A=A1…An) corresponding to t by the mapping TSA. The dependence of s 
and a on t may be emphasized by transforming (t,s,a) to (t,s(t),a(t)).  To denote that 
movement event (t,s,a) belongs to moving object o, the notation (o,t,s,a) may be used. 

Figure 1 schematically represents our view of movement as a collection of 
spatial events. This extends the conceptual model of movement as a combination of 
stops and moves suggested by Spaccapietra et al. (2008). In the latter model, stops are 
important parts of trajectories associated with domain-specific semantics while moves 
are merely transitions between consecutive stops. In our model, stops and moves are 
particular types of spatial events among other types. Any of the possible types of 
movement events may be important from the application point of view. 

 

Figure 1: Movement as a composition of spatial events. 

For a selected moving object o, the spatio-temporal context C consists of the 
space, time, and other objects positioned in the space and/or time: C=STO\{o}.  

As we argued before, movement of an object consists of spatial events, called 
movement events. Each event is linked to elements and subsets of the context by 
relations. Spatial relations link movement events through their spatial positions to 
elements and subsets of S. Other spatial objects also have positions in S; hence, spatial 
relations link movement events to other spatial objects. Temporal relations link a 
movement event through its temporal position to elements and subsets of T. Other 
events also have positions in T; hence, temporal relations link movement events to 
other events. Figure 2 schematically represents the spatio-temporal context of object’s 
movement and how the movement is related to the context. 



 

Figure 2: Spatio-temporal context of object’s movement and relations between the 
mover and elements of the context. 

The possible types of spatial and temporal relations are considered in the 
literature on temporal and spatial reasoning (e.g. Allen 1983, Egenhofer 1991, Frank 
1992) and on geographic information systems (e.g. Jones 1997, Longley et al. 1999). 
The basic types of temporal relations include binary topological, ordering, and 
distance relations. The basic types of spatial relations include binary topological, 
directional, and distance relations. Topological and ordering relations are formally 
represented by predicates, i.e., boolean-valued functions PQ{true,false}. Distance 
relations can be represented by numeric-valued functions PQ[0,] expressing 
spatial or temporal distances in suitable units, e.g. metres or seconds. Directional 
spatial relations can be represented by a numeric function representing the spatial 
direction, e.g. in degrees. Directional and distance relations can also be represented 
qualitatively, i.e., by predicates such as “near”, “far”, “north”, etc. (Frank 1992). In 
fact, any such predicate stands, explicitly or implicitly, for a certain range of values of 
a numeric function. Reciprocally, for any range (or, more generally, subset) of values 
of a numeric function, one may introduce a predicate. Hence, we assume that distance 
and direction relations can always be represented by a set of predicates defined 
according to the specifics of the application domain and the goals of the analysis. 

From the basic types of relations, more complex types of relations are built 
such as density (clustering, dispersion), arrangement (e.g. sequence in time or 
alignment in space), and spatio-temporal relations. The latter are composed of spatial 
and temporal relations and represent changes of spatial relations over time: 
approaching or going away, entering or exiting, following, keeping distance, 
concentrating or dissipating, etc. Some researchers call such relations “movement 
patterns” (Dodge et al. 2008) or “interactions” (Orellana and Renso 2010). 

Let a movement event m be linked to some element or subset c of the context 
by relation R, which means that R(m,c)=true. For example, the spatial position of a 
deer in some time unit is at a river. Here, the deer is the mover, the combination of the 
time unit and the respective spatial position is the movement event, the river is an 
element of the context, and “at” is a type of spatial relation. A combination (m,c,R) 
where R(m,c)=true is called an instance, or occurrence of the relation type R. 



Movement data are records associating movers with respective trajectories 
and, possibly, values of thematic attributes. Most often, movement data have the form 
(object identifier, time reference, spatial coordinates, attribute values). Movement 
data available in other forms can be transformed to this form. Context data describing 
the spatio-temporal context of the movement may have diverse forms depending on 
the nature of the respective context elements. For example, geographical datasets may 
describe the spatial context. Movement data containing trajectories of multiple objects 
describe simultaneously the movement of each object and a part of its context 
consisting of the movements of the other objects. Context data may also be implicit, 
i.e., exist in the mind of an analyst. For example, there may be no dataset describing 
which time of the day is light and which is dark, but analysts may use their 
professional knowledge or common sense. 

4 General approach 

Context-aware analysis of movement implies consideration of relations between 
object’s movement and the context. The number of instances of various spatial, 
temporal, and spatio-temporal relations between movement events and the context is 
infinite; it is impossible to consider them all. Usually, not all instances are interesting 
to analysts, i.e., relevant to analysis goals. Analysts need tools that support finding 
interesting instances among all possible (m,c,R). A set of potentially interesting 
instances may be defined by imposing constraints on m, c, and/or R. Based on which 
elements of the triad (m,c,R) are given (constrained) and which of them needs to be 
found, we distinguish three types of tasks. They can be symbolically represented by 
formulas (?,c,R), (m,?,R), and (m,c,?), where the question mark stands for the 
unknown element. In Table 2 we give text interpretations to these formulas, suggest 
the kinds of tools and techniques that can support the tasks, and provide examples. 

Table 2: Types of queries about relations between movement and context 

Task Interpretation Support Examples 
(?,c,R) Find movement 

events (parts of 
trajectories) that 
have relation R 
to context 
element(s) c. 

Extraction of movement 
events from trajectories: 
for each m=(t,s) compute 
predicate R(m,c); extract 
such m that R(m,c)=true. 
Note: the extracted 
events make a part of the 
spatio-temporal context 

Extract the parts of deer’s 
trajectories in open areas. 
Extract the parts of deer’s 
trajectories in 6 hours after 
the events of deer’s 
proximity to lynxes. 

(m,?,R) Find context 
elements that 
have relation R 
to movement 
event(s) m. 

Visualization of the 
events and the context; 
aggregation of events by 
context elements they are 
related to. 

Find in what spatial context 
the events of deer’s 
proximity to lynxes 
occurred. 
Find in what temporal 
context the deer appeared in 
open areas. 

(m,c,?) Find relations 
that exist 
between 
movement 
event(s) m and 
context 

Visualization of the 
events and the context; 
queries (filtering) to 
select the context 
elements of interest. 

How are the events of deer’s 
proximity to lynxes located 
in space in relation to the 
open areas? 
When did the events of 
deer’s appearance in open 



element(s) c areas occur in relation to the 
sunrise and sunset times?  

The tasks (m,?,R) and (m,c,?) imply that movement events m have been 
previously extracted from movers’ trajectories. In particular, extracted movement 
events may be a result of the task (?,c,R). As suggested in Table 2, the task is 
supported by a tool that extracts parts of trajectories having relation R to context 
elements c. However, not only such events may be interesting to analysts. Analysts 
should also be able to extract movement events according to values of dynamic 
thematic attributes, for example, events of low speed, northward movement, etc. 

Hence, we suggest a general approach to context-aware movement analysis 
based on extraction of interesting events from trajectories: 
 Interactive query tools allow the analyst to define what movement events are of 

interest in terms of relations to elements of the context and/or in terms of values of 
dynamic thematic attributes.  

 The events are extracted from the trajectories and added to the database as new 
objects. In the following analysis, they may be treated as elements of the spatio-
temporal context for other movement events. 

 The extracted events are visualized together with their context on spatial, 
temporal, and spatio-temporal displays. 

 The extracted events are analyzed using spatial and temporal queries, aggregation, 
clustering, and other analytical techniques suitable for spatial events as data type. 

Orellana and Renso (2010) have recently suggested an approach based on 
representing movement data as a collection of interactions with the context (the term 
“interaction” corresponds to “relation” in our paper). The main idea is to define 
possible types of interactions in a knowledge base (ontology) and use automatic 
inference to extract interaction instances from specially prepared data. As the authors 
admit, populating the ontology with data is a difficult task requiring further research. 

5 Prototype implementation 

As a proof of the concept, we have implemented this general approach within a 
geospatial visual analytics system for interactive exploration and analysis of diverse 
types of spatial and spatio-temporal data. Describing the entire system is out of scope 
of the paper. We focus on the tools used for the extraction of interesting movement 
events from trajectories. 

5.1 Basic visualization and interaction tools 

The basic visualization tools available in the system include cartographic map display 
and space-time cube. In both displays, trajectories of movers are represented by lines. 
Spatial events can be represented by points, lines, or areas, depending on their spatial 
extent. Events extracted from movement data are represented by singular points or 
multi-points (i.e., several points represent one event). In addition to map and space-
time cube, diverse non-cartographic displays can be created, including scatterplots, 
parallel coordinate plots, frequency histograms, time graphs, and others.  

A set of interactive tools for data filtering allows the user to select portions of 
movement data and/or context data to be visualized and analyzed. A temporal filter 
limits the temporal scope of the data. A spatial filter selects spatial objects fitting in a 
user-defined area, e.g. bounding rectangle. An attribute filter selects objects according 
to values of thematic attributes. A class-based filter selects classes or clusters of 
objects. An object filter allows the user to directly select specific objects. Several 



filters are combined by the logical operation AND. All visual displays dynamically 
react to changes of the filter conditions made by the user. The filters also affect the 
extraction of events from trajectories: only the data satisfying the filters are used. 

 

Figure 3: Interactive data filters. A) Spatial window. B) Class-based filter. C) Object 
filter. D) Temporal filter. E) Attribute filter. 

Each kind of filter has its specific user interface, as illustrated in Figure 3. To 
set a spatial filter, the user draws a rectangle in the map display (A). A class-based 
filter is controlled through a list of classes with checkboxes (B), which are activated 
or inactivated by the user. For an object filter, a list of object names is provided. The 
user selects one or more list items and activates the checkbox “Use as filter” (C). The 
user interface of the temporal filter (D) includes a time slider (blue bar) manipulated 
by mouse dragging, which moves the whole bar or its left or right end. There are also 
text fields for entering the exact start and/or end times of the chosen interval or the 
desired interval duration. The latter can be specified in user-preferred time units, from 
seconds to years. To choose the time unit, the user clicks on the label denoting current 
unit and receives a list of possible units for selection. Time intervals for the temporal 
filter can also be selected by clicking on graphical elements representing temporal 
objects in spatial and temporal displays, for example, on points of trajectories in a 
map. The times corresponding to these elements are used as reference times for 
setting the filter. In the time filter window (D), the user specifies the relative positions 
of the start and end of the selected interval with respect to the reference time. For the 
relative positions, the same time units are used as for the length of the time interval. In 
the user interface of an attribute filter (E), conditions for numeric attributes are 
specified by entering the desired minimum and/or maximum values in text fields or 
by dragging sliders (blue triangles). For non-numeric attributes, the user may either 
select one or more of the existing values from a list, or enter the values of interest in 
the text field, or specify a substring that must be contained in attribute values. 



The specific interactive query tools used for event extraction from trajectories 
are described in the following sections. 

5.2 Temporal view of trajectories 

Temporal view of trajectories is a visual display used in one of two modes: time 
graph and time bars. In both modes, the horizontal dimension of the display 
represents time. In the time graph mode, the vertical dimension represents the value 
range of some time-dependent numeric variable, which may be one of the following:  
 Spatial distances: to specific trajectory points (start, end, midpoint, or any other 

computationally extracted point), to selected locations, to selected spatial objects 
(static objects, movers, or events); 

 Temporal distances: to the trajectory start or end, to values of a temporal attribute 
(i.e., an attribute whose values are time moments), to selected events; 

 Dynamic thematic attributes: any attribute available in the movement data; 
attributes derivable from positions: speed, direction, distance travelled from the 
beginning of the movement, remaining trip length, distance travelled in time 
intervals of specified length, etc. 

Each trajectory is represented by a polygonal line (Figure 4) reflecting the 
temporal variation of the values of the variable. This is similar to the visualization 
suggested by Crnovrsanin et al. (2009); however, our display is not limited to 
showing distances to selected locations. The display includes controls for choosing 
the variable to be currently visualized. If the values are not available in the original 
data, they are immediately computed, and the display is updated. A detailed 
description of the contents of Figures 4 and 5 is given in section 6.2.1. 

A disadvantage of the time graph view is overplotting of the lines. The time 
bar view (Figure 5) removes the overplotting at the cost of precision in representing 
the numbers. In this mode, which is a variation of the Gantt chart technique, 
trajectories are represented by horizontal bars positioned one below another, i.e., the 
vertical dimension does not convey any meaning but is used for arranging display 
elements. The horizontal positions and the lengths of the bars correspond to the 
temporal positions and durations of the respective trajectories. Values of the currently 
selected variable are represented by colours of bar segments. For this purpose, the 
value range of the variable is interactively divided into intervals. Each interval gets its 
colour according to one of the Color Brewer colour scales (Harrower and Brewer 
2003). Colourless segments correspond to intervals of data absence. A similarity to 
the approach taken by Laube et al. (2005) and Kincaid and Lam (2006) can be noted; 
however, our visualization is suited to different life times of the trajectories and to 
temporally irregular data. We do not assume that values for different objects refer to 
the same regularly spaced time moments or intervals. 

When the user moves the mouse cursor over the temporal view, the respective 
temporal position is marked by a vertical line. The same temporal position is 
simultaneously marked in all instances of the temporal view that are currently present 
on the screen. When the mouse cursor points on a display element representing a 
trajectory, the spatial position corresponding to this temporal position is marked in the 
map display by a cross-shaped cursor and in the space-time cube by a vertical line 
(this can be seen in Figure 8). The time and the corresponding value are shown by text 
on the top of the temporal view. Additionally, a popup window displays general 
information about the trajectory. 



 

Figure 4: The time graph mode of the temporal view of trajectories. 

 

Figure 5: The time bar mode of the temporal view of trajectories. 

5.3 Event extraction 

Our interactive query tool for event extraction works in two stages. The first stage is 
filtering: only the parts of the trajectories that satisfy the query conditions are shown 
in the visual displays. This specific filter for trajectories is called segment filter. The 
user can preview the events that will be extracted according to the current query and 
decide whether to proceed with the extraction or to change the query conditions. The 
second stage, which occurs upon pressing a special button, creates a new dataset 
consisting of the extracted events. 



The user interface of the segment filter is embedded in the temporal view of 
trajectories: this is the colour legend on the left of the plot area (Figure 5). Clicking on 
the coloured rectangles unselects and selects the respective value intervals, which sets 
query conditions on the values of the currently visualized variable. Hence, the user 
may define which movement events are of interest either in terms of distances to 
elements of the context or in terms of dynamic thematic attributes. The user can open 
several temporal views showing different variables and set two or more segment 
filters simultaneously. This operation is called cross-filtering (Weaver 2010). The 
filters are combined by the logical operation AND. For example, cross-filtering may 
find the appearances of deer in open areas within 6 hours after encountering lynxes. 

It can be noted that the segment filter is limited concerning the types of spatial 
and temporal relations that can be used in query conditions. The tool allows the user 
to define arbitrary predicates on the basis of spatial and temporal distances; however, 
predicates in terms of topological and directional relations are not directly supported. 
These limitations are not pertinent to the approach in general but refer only to the 
current version of our prototype tool, which, in principle, can be extended to other 
types of relations. However, as will be shown by example, queries by spatial and 
temporal distance relations are sufficient for rather sophisticated analyses. 

Our prototype implementation is oriented to a discrete model of the movement 
context, i.e., the context is represented as a combination of discrete spatial, temporal, 
and spatio-temporal objects with their attributes. Another possibility is to consider the 
context as a spatio-temporal continuum, in which properties vary from location to 
location. This view is appropriate for spatially and temporally continuous phenomena, 
such as weather. In the continuous data model, the continuum is divided into 
compartments by means of a grid, and the properties are represented by attribute 
values associated with the grid cells. Our approach can be applied to a continuous 
representation of the context in the following way. Each position of a trajectory is 
located in a certain cell of the space-time continuum. The attribute values from the 
cell are attached to this position; hence, the movement data are enriched with 
additional attributes representing the context. These context attributes are visualized 
in the temporal view of trajectories. By applying the segment filter, movement events 
co-occurring with selected attribute values of interest are extracted, for example, 
movements during harsh weather conditions.  

5.4 Extraction of event-related statistics 

Using the temporal view of trajectories, the analyst may obtain statistics of the values 
of the currently visualized variable for specified time intervals around selected events. 
The statistics include the minimum, maximum, median, mean, and standard deviation 
of the values. These are attached to the events as new thematic attributes, which 
allows the analyst to investigate the impact of the events on the movement.  

For getting event-related statistics, the user selects the dataset with the events 
and specifies the starts and ends of the time intervals of interest in relation to the start 
or end times of the events, for example, from 6 hours before the event start till 12 
hours after the event end. When the events have references to trajectories among their 
thematic attributes, the user may request that the statistics for each event are extracted 
only from the relevant trajectory. In particular, movement events previously extracted 
from trajectories always have references to these trajectories. The other available 
options are to extract event-related statistics from all trajectories or from the parts of 
trajectories being within a chosen range of spatial distances from the events. 



6 Example scenario of movement analysis  

6.1 Example dataset 

The dataset we use for our example scenario was collected by GPS-tracking of 72 roe 
deer and 3 lynxes in the Bavarian Forest National Park (Bayerischer Wald) in 
Germany. The animals wear special collars with devices that measure the positions at 
chosen time intervals and transmit the measurements via radio networks (Bavarian 
Forest 2010). Unfortunately, the amounts of data that can be collected are strongly 
limited by the battery lives of the tracking devices. Thus, a collar suitable for roe deer 
can collect about 3500 positions and a collar suitable for lynxes about 1200 positions. 
In order to track animals over longer time, the researchers increase the time intervals 
between the position measurements. Therefore, the collected records are quite sparse 
in time. Furthermore, transmitted measurements are often lost; hence, the time 
intervals between the records may be irregular, and large temporal gaps may occur.  

These problems are typical for data obtained by tracking wild animals. Many 
of the existing methods for movement data analysis assume regular sampling of 
position records and, moreover, high sampling frequency, which allows interpolation 
between known positions. Such methods would not be applicable to animal tracking 
data. Our methods based on event extraction do not assume temporal regularity and/or 
high temporal frequency of the position records. However, in applying these methods, 
it should be borne in mind that an extracted set of events of a certain type does not 
necessarily include all events of this type that might have occurred in reality. The 
analyst should treat any extracted set of events as a sample of real events.  

The Bavarian Forest dataset contains 90571 position records for the roe deer 
and 2604 for the lynxes within the period from 11/12/2004 to 21/01/2009. The time 
spans of the data about individual animals vary from 5 to 1077 days. The time 
intervals between the position records vary from a few minutes to several months; the 
median interval length is about 5 hours for the roe deer. For the three lynxes, the time 
intervals are about 12 hours, 45 minutes, and 24 hours. 

The analysis has been done in cooperation with the domain experts from the 
Bavarian Forest national park, who provided their interpretations of the findings. 

6.2 Analyzing relations to spatial locations 

6.2.1 Preferred places 

Visualization of the trajectories of the animals on a map display and in a space-time 
cube gives us an initial insight about their movement behaviours in relation to the 
space. We see that the roe deer mostly make small movements within spatially limited 
areas and very seldom travel to more distant places. The lynxes move much more 
actively over wide territories. 

The next questions are how far the roe deer can travel from their habitual 
places and when and how often this happens. We compute the medoid of each 
trajectory, i.e., the point with the smallest sum of distances to all other points. It can 
be expected that the medoid is located in the place of concentration of the trajectory 
points or in one of such places, if there are more than one. We use the temporal view 
of trajectories to visualize the spatial distances of the trajectory points to the 
respective medoids (Figures 4 and 5). The time graph in Figure 4 shows that the 
typical pattern of value variation is small fluctuations reflecting small moves within 
limited areas. Long vertical lines indicate travels on large distances. The lines look 
vertical because the horizontal dimension of the display represents a very long time 



period (1504 days). An interval of several days, during which a long travel is made, is 
represented by just one or two pixels. When temporal zooming is applied, the lines 
representing the long trips do not look straight vertical any more. The horizontal lines 
correspond to temporal gaps in the data. In the time bar mode (Figure 5), the gaps 
appear as colourless segments. As can be seen, such cases are quite numerous. 

Figure 4 shows us that the largest distance of a roe deer from the trajectory 
medoid, which represents the most habitual place, was 34.14km, but only a few 
animals made long travels. In Figure 5, we see that a great part of the roe deer never 
moved for more than 2.5km from their habitual places. The bars representing the 
trajectories that include long travels (more than 7.5km) are distinguished by orange- 
and red-coloured segments. The times of the distant travels can be ascertained by 
mouse-pointing. Unfortunately, we cannot get reliable temporal information about the 
travels in the cases of long time gaps between the position records. For the remaining 
cases, we found out that five travels were in May, four in November, two in 
December, and one in July. We can conclude that the roe deer tend to change their 
places before summer and before or in the beginning of winter.  

Domain expert’s comment: This corresponds to two types of migration of roe 
deer: (1) migration after leaving the mother’s territory, as in the case highlighted in 
Figure 4; (2) winter migration when animals come to valleys with less snow cover. 

6.2.2 Locations with specific properties 

The next analysis task is to investigate the relations of the roe deer to open areas, i.e., 
not covered by forest. This is the case when movement data need to be combined with 
context data. We use a dataset (map layer) with vegetation types. Applying the 
attribute filter to it, we select non-forest areas. We use the interface of the temporal 
view to compute and visualize the spatial distances to the selected areas (for each 
trajectory point, the nearest area is found). We observe that many roe deer appeared 
quite often in the open areas whereas some roe deer almost never did this (of course, 
this refers only to the areas that are defined in the available vegetation data).  

We set the segment filter to the value 0 (interval from 0 to 0) and commit the 
event extraction query. As a result, we obtain a dataset with 16537 open area events 
represented as a new layer in the map display. We can now apply various analytical 
tools available in the system, such as spatial clustering. Figure 6 shows a map 
fragment where the spatial clusters are represented by colouring of the circle symbols 
representing the events. The symbols are drawn with 20% opacity. One of the visible 
clusters is located in a valley of a river (bright purple cluster in the centre of the map 
fragment) while the others are near villages or farms or other places of human 
activities. It is striking that the animals seem to have no fear of entering such places. 

Domain expert’s comment: Roe deer would probably not go into a village 
because they are afraid of people. But they might go for feeding to open areas like 
fields or meadows that surround villages. 

Our hypothesis is that roe deer may tend to appear in open areas in dark times. 
To see how the open area events are distributed over times of the day, we use spatio-
temporal aggregation: for each spatial cluster, the system counts the events by hourly 
intervals of the day. The yellow-coloured diagrams in Figure 6 show the variation of 
the event counts over a day in each cluster. The horizontal dimension of the diagrams 
represents hours of the day from 0 to 23 and the vertical dimension shows the event 
counts. It can be seen that much more events occurred in the early morning and night 
hours than in the middle of the day. Note that the cluster located at a river does not 
have so big differences in the number of events between the night and day hours. 



 

Figure 6: A fragment of the map showing the spatial clusters of the open area events 
and diagrams representing the variation of the event number by the hours of the day. 

Since the same time of the day may be dark in the winter but light in the 
summer, it is reasonable to look whether the times of the open area events vary over a 
year. We are particularly interested when the roe deer appear in the areas near the 
places of human activities. Using one more dataset with context data, namely, a 
dataset describing built areas (the areas are shown in Figure 6 as polygons filled in 
light pink), we select those open area events that occurred in 50m or less from the 
nearest built area. There are 3707 such events. We visualize the frequencies of the 
events by the hours of the day and the months of the year in a two-dimensional 
histogram as shown in Figure 7. The horizontal axis corresponds to the hours of the 
day from 0 to 23 and the vertical axis to the months of the year from 1 (January) to 12 
(December). The frequencies of the events are represented by the circles with the 
areas proportional to the values. The maximal circle size corresponds to 75 events.  

 

Figure 7: The open area events that occurred in 50m or less from built areas are 
grouped by the hours of the day (X-axis) and the months of the year (Y-axis). The 
event frequencies are represented by the sizes of the circles. 

The histogram shows us that the event frequencies are higher in all months in 
early and late hours of the day. However, the intervals of decreased event frequencies 
start later and end earlier in the winter and late autumn months (1-2 and 11-12) than in 
the spring and summer months. Generally, we can conclude that the roe deer tend to 



appear in open areas near villages in dark hours, depending on the season. However, 
we notice that the event frequencies in the day time are somewhat higher in June and 
July and, to a lesser degree, in August (months 6-8) than in the other months. 

Domain expert’s comment: This is explainable by the roe deer biology. First, 
female animals have a high energy demand after giving birth (between mid-May and 
mid-June), so they tend to go for browse in the meadows around villages also in the 
day. Second, roe deer have their rutting period in July-August and also tend to be 
more active in the day. 

Another interesting observation is that event frequencies get lower in the hours 
1-2 and 22-23 compared to the hours before and after that. 

Domain expert’s comment: Roe deer feed throughout the 24 hours, but long 
periods may be spent “lying up” between feeding bouts. 

We also extracted the events of appearing in the open areas around the villages 
from the trajectories of the lynxes. There were only two such events; both occurred 
when it was dark. Hence, the data tell us that the lynxes tend to avoid open areas close 
to people but may occasionally enter such areas in dark time. 

6.3 Analyzing relations among movers 

We have data about two types of movers, roe deer and lynxes. The former are a prey 
for the latter. Our next task is to detect and investigate their probable encounters, 
keeping in mind that the data refer only to small samples of the populations of roe 
deer and lynxes inhabiting the forest.  

Among the variables that can be computed and represented in the temporal 
view is the spatial distance to selected trajectories. We are interested in the distances 
from the trajectories of the roe deer to the trajectories of the lynxes. For computing 
the distances, we need to specify the temporal tolerance, i.e., the maximum distance in 
time between points from two trajectories when it is still meaningful to compute the 
spatial distance. The temporal tolerance is needed for dealing with data where 
positions of different movers are measured at diverse time moments and the time 
intervals between the measurements are unequal.  

We choose the temporal tolerance of one hour, taking into account that the 
data are sparse in time. The computations are done in two temporal views, one for the 
roe deer (distances to the lynxes) and the other for the lynxes (distances to the roe 
deer). We set the segment filters in both views to the value interval from 0 to 1km and 
commit event extraction. Thereby, we extract 39 events of spatial proximity to lynxes 
from the trajectories of the roe deer and 26 events of spatial proximity to roe deer 
from the trajectories of the lynxes.  Apparently, in some cases a lynx approached a 
group of two or more roe deer. The events of proximity to lynxes occurred in the 
trajectories of 16 roe deer, and the events of proximity to roe deer occurred in the 
trajectory of one lynx, named Nora. 

Figure 8 illustrates the events that we have extracted. At the bottom, there are 
two temporal views representing the trajectories of the lynxes (upper display) and the 
roe deer (lower display). The upper display shows the distances of the lynxes to the 
nearest roe deer and the lower display shows the distances of the roe deer to the 
nearest lynxes. In both displays, the segment filters select the trajectory segments with 
the distances up to 1km. The map (upper left) and the space-time cube (upper right) 
show the extracted proximity events. The yellow circles represent the events of the 
roe deer and the pink circles – the events of the lynxes. The mouse cursor is 
positioned on one of the segments in the temporal view of the trajectories of the roe 
deer. The corresponding temporal position is marked in the two temporal views by 



yellow vertical lines. The corresponding spatial position is marked in the map by the 
intersection of the black horizontal and vertical lines and in the space-time cube by 
the red vertical line. 

 

Figure 8: The events of spatial proximity between roe deer and lynxes are visualized 
in four linked displays: map (upper left), space-time cube (upper right), and temporal 
views of the trajectories of the lynxes (middle) and roe deer (bottom). 

The next question is whether any of the detected approaches of the lynxes to 
the roe deer resulted in killing the roe deer. We look for the events of spatial 
proximity to lynxes that occurred shortly before the end times of the trajectories of the 
roe deer. To extract these events, we open another temporal view of the trajectories of 
the roe deer and visualize the variable “temporal distance to a selected time moment”; 
the chosen time moment is the end time of each trajectory. Using the segment filter, 
we select only the segments with the temporal distances from -24 to 0 hours to the 
trajectory ends. Simultaneously, the filter in the first temporal view selects the 
segments with the distances to lynxes not exceeding 1km. By combining the two 
filters, we find two events of spatial proximity to lynxes that occurred in the last 24 
hours of the trajectories of two roe deer, Harald and Heiner.  

Among the data received from Bavarian Forest, there is a lookup table with 
general information about the tracked animals, in particular, their fates. The record 
about Harald says that it was killed. Now we can say with a high degree of certainty 



that Harald was killed by Nora. For Heiner, the lookup table says that he died in a 
traffic accident. We guess that Heiner might occasionally run on a road when trying to 
escape from Nora and was killed there by a moving vehicle. We project the spatial 
position of the proximity event between Heiner and Nora on a satellite image from 
Google Maps and see that the event occurred very close to a forest road. This gives 
support to our hypothesis but does not exclude other possible reasons for the accident. 

6.4 Analyzing relations to events 

Events may influence the behaviours of movers. When events are few, the analyst can 
investigate the possible impacts solely by means of visual and interactive techniques. 
The temporal filter is used for focusing on time intervals before and after the events 
and the spatial filter and object filter are used for selecting the movers that were 
present in the vicinity of the events when they occurred. In this way, we could trace, 
for example, the movements of the lynx Nora after killing the roe deer Harald. During 
the following four days, Nora moved several times forth and back between the place 
of the event and another place located in about 2km north of the first place. 

Domain expert’s comment: This behaviour is typical for lynxes. A lynx moves 
to its kill normally in the evening. After feeding, the lynx leaves the kill to a place 
called daytime resting area. We suppose that if the kill is in a risky environment (for 
example, close to human infrastructure or outside of the National Park), the lynx 
moves a farther distance from the kill to find a secure area. If the kill is in a secure 
place, the lynx might rest close to it. 

Purely visual and interactive exploration may be effective in case of few 
events and few movers involved but not when events and/or movers are more 
numerous. In the latter case, we suggest extraction of event-related statistics from the 
trajectories. We shall apply this approach to explore how roe deer behave when being 
approached by a lynx.  

Domain expert’s comment: One hypothesis is that roe deer will go to more 
open areas, were the lynxes cannot ambush them. Another hypothesis is that roe deer 
will shift their activity more to the daylight, when lynxes are inactive. The open issue 
is how roe deer recognize lynxes and whether they communicate this to other roe 
deer. One possibility is that one roe deer senses a lynx and changes its movement 
behaviour while others that do not sense the lynx perform their normal movement. 
Another possibility is that the roe deer sensing a lynx warns the others that a lynx is 
nearby, and the others react by changing their behaviours. Roe deer have a bark which 
they cry out when they are scared. By following a collared lynx, we have observed 
that roe deer start to bark when they discover the lynx. It might be possible that they 
warn others with this bark. 

It is quite probable that the available data, being temporally sparse and 
irregular, may not allow the ecologists to find definite answers to their questions. Still, 
we want to see what changes of the roe deer’s behaviours after probable encounters of 
lynxes can be detected with our tools. Particularly, we shall try to find out whether the 
roe deer begin to move more or less actively, whether they tend to move away from 
the places of the events, whether they tend to come nearer to other roe deer or to move 
away from them, and whether they tend to go in open areas. 

We shall look at the behaviours of the roe deer before and after the 39 events 
of spatial proximity to the lynxes (further referred to as “encounter events”) extracted 
with the temporal tolerance threshold of 1 hour. The use of a higher threshold would 
make us less confident that the lynxes were really close to the roe deer and less certain 
about the times of the possible encounters. In the temporal view of the trajectories of 



the roe deer, we visualize successively the following variables: distance to the place 
of the nearest encounter event in the trajectory, movement speed, distance to other roe 
deer, and distance to the nearest open area. For each attribute, we obtain the statistics 
(minimum, maximum, median, mean, and standard deviation) of the values separately 
for 1 day intervals before the starts of the encounter events and for 1 day intervals 
after the starts of the events. For each event, the statistics are derived only from the 
trajectory from which the event was earlier extracted. 

After obtaining the statistics, we compute the differences between the values 
after and before the events. The differences are expressed in percentages to the earlier 
values. Figure 9 presents a display of the table describing the events. The background 
colouring of the rows corresponds to the cross-classification of the events according 
to the values of the attributes “% change of the maximum spatial distance to the 
encounter event” and “% change of the mean speed”. The selected value intervals for 
both attributes are below -10% (large decrease), from -10 to 10% (small change), and 
over 10% (large increase). The legend explaining the colours is on the right of the 
table. Light yellow corresponds to large decreases of both the maximum spatial 
distance to the event location and the mean speed; 12 out of 39 events belong to this 
class. Greenish brown corresponds to large increases of both attributes; 10 out of 39 
events belong to this class. The remaining classes contain from 1 to 4 events. The 
lengths of the coloured bars in the table cells represent the relative positions of the 
respective values between the minimum and the maximum values in the columns. 

 

Figure 9: The event-related statistics represent the changes of the roe deer’s 
behaviours after encountering lynxes. 

The largest class (light yellow) corresponds to reduced activity of roe deer 
after the encounter events. The roe deer decreased their speeds and did not try to 
move away from the places where the events occurred. The changes of the maximum 
distances to other roe deer greatly vary, which means that there was no clear tendency 
in the relations with the other roe deer. The second largest class (greenish brown) 



consists of the events after which the roe deer became more active, i.e., their speeds 
and the maximum distances to the event locations increased. Like for the reduced 
activity class, no consistent changes of the distances to other roe deer can be seen. 
When the events are classified only according to the changes of the speed, both the 
reduced speed class (below -10% change) and the increased speed class (over 10% 
change) consist of 15 events. 

Hence, the frequencies of the reduced and increased activities of roe deer after 
being approached by lynxes are very close. It is possible that the change of the 
movement behaviour reflects the character of the interaction between the roe deer and 
the lynx. An increase of the movement activity may mean that the lynx chased the roe 
deer and a decrease may mean that the roe deer just sensed the presence of the 
predator and tried to hide and stay still, to avoid attracting lynx’s attention. Another 
possible explanation is that the roe deer that decreased their activeness did not sense 
the lynxes by themselves but were warned by barks of other roe deer while the roe 
deer that moved more actively did this after sensing the lynxes by themselves. The 
data do not allow us to find out which explanation is more plausible. 

Concerning the behaviours in relation to open areas, there are eight encounter 
events after which the roe deer entered open areas, i.e., the minimal distances to open 
areas were positive before the events and zero after them. In 12 cases, the minimal 
distances to open areas were zeros both before and after the events. Only in three 
cases the roe deer moved from open areas to forest after the events. Hence, there is a 
higher tendency towards moving to or staying in open areas after encountering lynxes 
than towards moving from open areas to forest. There is no correlation between 
moving from/to open areas and increasing or decreasing the movement activity. 

We have seen that our tools can support the investigation of the impact of 
events on movement behaviours. However, finding clearer answers to the questions of 
the Bavarian Forest scientists requires data with much finer temporal resolution. It 
would also be good to increase the sample of tracked animals. Hopefully, the 
technical problems involved in tracking wild animals will be solved in the near future.  

7 Results 

We suggest a general approach to accounting for the spatio-temporal context in 
analyzing movement data. The approach involves extracting interesting movement 
events from trajectories and analyzing these events as independent spatio-temporal 
objects. Particularly, the analyst extracts the movement events (parts of the 
trajectories) having specific spatial and/or temporal relations to selected elements of 
the context in order to investigate the occurrences of these kinds of relations. 

To test the approach, we implemented an interactive event extraction tool and 
applied it to real data about wild animals. We could detect and extract occurrences of 
several kinds of relations between the movers and different elements of the context: 
 being far from habitual places; 
 being in open areas and being in open areas close to built areas; 
 being close to other movers of the same or other class; 
 being in a certain temporal distance and temporal order (before or after) to 

selected time moments (ends of the trajectories); 
 being in a certain temporal distance and temporal order to selected events. 

We were able to analyze the spatial and temporal distributions of the extracted 
relation occurrences and investigate how these events affect the movement.  



We have implemented the tools within an existing system, in which a number 
of visual and computational tools for exploration and analysis of spatial and temporal 
data were available before. These tools could be immediately applied to the events 
and event-related statistics extracted from the movement data by means of the new 
tools. The whole combination of tools supports sophisticated analyses in which results 
of earlier phases can be used for obtaining new knowledge in further steps.  

The testing has confirmed the soundness of our approach. Despite the flaws in 
the data caused by the technical difficulties involved in tracking wild animals, we 
have uncovered a number of behavioural patterns that agree with the existing domain 
knowledge and could be interpreted by specialists. The domain experts admitted that 
such a deep investigation of movement behaviours of wild animals would not be 
possible with the tools they knew before. The experts appreciated our system as a 
very good instrument for visualization and interactive exploration of movement data, 
which is capable to support hypothesis building in ecology. 

In this experiment, the domain experts did not use the tools by themselves. 
They posed questions to the tool developers, who did the analysis. The experts then 
reviewed the reports about the findings and the analysis process and provided their 
opinions. The collaboration was remote. Now the experts want to start using the tools 
by themselves. This requires a training session, which is planned for the near future.  

8 Conclusion 

Our main innovation is that we offer a general approach to extracting and analyzing 
relations between movement and its spatio-temporal context. The approach is based 
on treating movement as a composition of spatial events, i.e., objects localized in 
space and time. The main idea is to supply the analyst with an interactive query tool 
for extracting movement events based on their relations to selected context elements. 
The extracted events are treated as independent spatio-temporal objects and may be 
analyzed using various existing methods suitable for spatial, temporal, and spatio-
temporal data. In particular, the events can be computationally combined with other 
data for deriving new information. 

We have tested the approach on a real dataset obtained by tracking movements 
of wild animals. Despite the real-life complexities pertaining to the data (temporal 
sparseness, irregularity, and lacunae in the observations), we have been able to 
uncover a number of interesting facts and behavioural patterns. The process of 
analysis and its outcomes have been reviewed by domain experts and obtained their 
positive feedback. In the future, we plan to work on supporting joint analysis of 
movement data and activity data, which are produced by sensors measuring the 
acceleration of the collar. Unlike GPS positions, activity data are not transmitted by 
radio and become available only when the collar is taken back from the animal that 
wore it. The activity data have much finer temporal resolution and might fill the gaps 
between the GPS position records. The task of combining GPS tracks with activity 
data poses new challenges and requires further research and development. 
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