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 4 

ABSTRACT 5 

Identification Noise signal is one of the challenging problems in the health monitoring of bridge 6 

structure using acoustic emission monitoring and identification technology. Hardware filtering 7 

technology and spatial identification technologies are the most common method in identifying of the 8 

signals from the defect of the bridge, which have great limitations due to the presence of 9 

environmental noise. Therefore, this paper focus on the AE noise signal from a bridge in operation 10 

state and other specific loading state, which is diagnosed in the hardware filtering technology, spatial 11 

identification and SOM neural network, to obtain the new noise recognition methods. It is found that 12 

the first two methods can indeed filter the noise signal, but the filtering rate can only reach about 13 

50 %, and can barely filter strong noise signal. The SOM neural network had strong self-recognition 14 

ability. The classification accuracy of simulated AE signals is 90 % and 100 % respectively. The 15 

trained network is used to test183 sample signals, the defect signal detection accuracy reaches 76 % 16 

and 78.8 %, therefore, the noise signal filtering effect is significantly improved. 17 

Keywords: Noise, SOM neural network, Wavelet packet energy analysis, Wavelet packet entropy 18 

analysis 19 
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1.  Introduction 33 

Acoustic emission signal processing is a passive, non-destructive and real-time dynamic 34 



detection technique (Dunegan 1969), and there is no strict requirement for the size and detection 35 

range of the detected object. Moreover, non-contact detection can be achieved, such as detection 36 

in high temperature and corrosion that cannot be approached by human beings. 37 

This technology has been widely used in the damage detection of homogeneous materials, 38 

such as damages in mechanical bearing (Nguyen et al. 2018), metal tool (Rmili et al. 2016; 39 

Bhuiyan et al. 2014), metal container corrosion detection (Li et al. 2015), aeronautical metal 40 

materials (Holford et al. 2017), metal track detection (Zhang et al. 2017), glass (Njuhovic et al. 41 

2014), carbon fiber (McCrory et al. 2015) and rock (Liu et al. 2020). However, there is little 42 

application in reinforced concrete materials (Colombo et al. 2003; Lamonaca et al. 2012; 43 

Noorsuhada 2016). The main reason is the complexity and diversity of environmental noise signals 44 

causing ambiguities when identify the noise signals and structural damage signals, which makes 45 

it difficult to effectively identify and characterize damage signals. 46 

In the current practical engineering, most noises signal are filtered by hardware filtering 47 

technology and spatial identification (Noorsuhada et al. 2011; Kalyanasundaram et al. 2007; Li 48 

and Ou 2007), which has a positive effect on the identification of damage signals, but it has great 49 

limitations and obvious defects for more complex environmental noise. 50 

Therefore, scholars began to extract and identify the key characteristic parameters of damage 51 

signal and noise signal (Dijck et al. 2009; Kacimi and Laurens 2009; Surgeon and Wevers 1999; 52 

Fu et al. 2011; Bianchi et al. 2015; Velayudham et al. 2005; Deng et al. 2009). It has been found 53 

that the extraction of signal characteristic parameters can better identify and eliminate noise signals. 54 

Artificial intelligence technology is one of the means of signal recognition. Its algorithms are 55 

mainly divided into traditional machine learning algorithms (Fu,2020,2018) and neural network 56 



algorithms (Cai et al , 2020,2019), such as support vector machine Noble (2006), Gaussian process 57 

regression (HU et al. 2010, Wang et al.(2022), long short-term memory network  Moon et 58 

al.(2022), and so on. In recent years, with the rapid development of neural network algorithms, 59 

researchers have studied the identification of damage signals and noise signals through artificial 60 

neural networks (Zafar et al 2017, Ekici et al ,2008) based on spectrum, energy and entropy of 61 

wavelet packets. With the development of artificial neural network in signal processing, the way 62 

of distinguishing based on the neural network of wavelet packet energy and entropy has been 63 

addressed by various researchers in the other areas of signal processing such as, track defects 64 

detection, power systems, mechanical engineering. In the field of mechanical engineering, (Luo et 65 

al.) extract the energy eigenvector of the signal failure die using the wavelet packet analysis 66 

technique, and the energy percentage is taken as the characteristic parameters. Then a BP neural 67 

network recognition model was established. The BP neural network recognition model can quickly 68 

identify new sample data with an accuracy rate of 95 %. This new technology enabled an more 69 

accurate identification method of acoustic emission signals and assessing the degree of structural 70 

or material damage 71 

From previous studies, it can also be found that it is feasible for some researchers to try to 72 

identify signals and remove noise signals through parameter analysis and neural networks. 73 

However, most of the existing research focuses on homogeneous materials, and concrete materials 74 

are multiphase heterogeneous materials, which makes the damage signal become complex and 75 

diverse in the process of propagation, which will lead to differences in signal recognition between 76 

concrete materials and homogeneous materials. Therefore, this has not been investigated in the 77 

past for background noise reduction of concrete structures such as building structures and bridges. 78 



Therefore, in this paper, the AE signals of the bridges in operation under certain specific 79 

loading state were tested in this experiment. Based on the signal of hardware filtering technology 80 

and spatial identification technology, as well as the wavelet packet energy analysis (Guo et al. 81 

2020, 2021) and wavelet packet entropy analysis (Safty and El-Zonkoly 2008; Yin et al. 2004) the 82 

characteristic frequency bands were extracted from simulated acoustic emission signal and noise 83 

signal. Finally, the signal was clustered by using Konhonen’s self-organizing feature map and 84 

neural network (SOM neural network) (Kohonen 1998) to establish an acoustic emission detection 85 

and recognition algorithm, which provided new ideas and methods for solving the noise reduction 86 

problem of bridge acoustic emission damage signal. It is expected to solve the difficulty to 87 

effectively identify and characterize structural damage due to the confusion between noise signals 88 

and structural damage signals. 89 

2. Test set up 90 

2.1 Introduction of the prototype bridge 91 

The prototype bridge is a single flyover, and the superstructure is a four-span simply 92 

supported hollow beam bridge with a span of 10 m + 20 m + 20 m + 10 m. The main beam with a 93 

span of 20 m is a prestressed reinforced concrete hollow beam, and the main beam with a span of 94 

10 m is a common reinforced concrete hollow beam. The net width of the bridge deck is 11m + 95 

2×0.5m ( anti-collision wall ), and the bridge design grade is grade I. 96 

2.2 Detection scheme 97 

The signal acquisition instrument is full digital Sensor Highway III ( SH-III ) acoustic 98 

emission device manufactured by American Physical Acoustics ( PAC ) as shown in Fig. 1. 99 

Acoustic emission parameter settings are shown in Table 1. Two 360kN truck are used for loading 100 



test machinery. 101 

2.3 sensor installation 102 

 103 

In order to facilitate the monitoring of structural stress changes and considering the 104 

convenience of sensor installation and arrangement. The monitoring position chosen are the most 105 

unfavorable position of shear force when the bridge is under load (the 2-2 section of the middle 106 

span of the 4th span). Fig. 2 shows the overall elevation of the bridge. When the sensor is installed, 107 

the concrete surface is smoothed by grinding the bottom of the bridge, and the Vaseline glue is 108 

uniformly coated on the sensor to stabilized sensors at the bottom of the bridge. Before monitoring, 109 

the Pencil Lead Break Testing (PLBT)(Lopes et al. 2018) was used to identify whether the sensor 110 

coupling was good. 111 

 112 

2.4 Simulated Acoustic Emission Signal and Noise Source 113 

 114 

Simulated AE signal is produced using Pencil Lead Break Testing. To perform the tests, a 115 

mechanical pencil with 3 mm of length and 0.5 mm of diameter were mounted on the bridge which 116 

maintained 30°angle between the pencil and the bridge surface. The noise source mainly monitors 117 

the sound source of static load condition, driving condition, jumping condition and braking 118 

condition. The environment of various noise sources is as follows : 119 

 120 

1 ) Signal under static load condition : AE signals generated by the tiny vertical vibration of 121 

the bridge under environmental vibration are collected under conditions such as no driving. 122 

 123 



2 ) Signal in driving condition : the test vehicle passes the bridge at the speeds of 10 km / h, 124 

20 km / h and 30 km / h to collect the AE signals generated by the vertical vibration and friction 125 

of the fourth span bridge. 126 

3 ) Signal of vehicles bumping condition : a single vehicle with 360 kN self- weight  was 127 

used to simulate the bad state of vehicle bumping by let it pass a wedge  with a height of 10 cm 128 

in the middle of the fourth span bridge, and the AE signals generated by vertical vibration and 129 

friction under the bad state of vehicle load were collected. 130 

4 ) Signal of vehicles braking condition : an emergency braking test was conducted with a 131 

single 360 kN vehicle at the middle of the fourth span bridge to collect AE signals generated by 132 

vibration and friction of the bridge. 133 

 134 

3 Filtering and Spatial Identification of Noise Signal  135 

3.1 Data filtering 136 

Select the appropriate filter in acoustic emission system, that is, select the appropriate 137 

'window' to suppress noise. At present, the most commonly used engineering is to set the 138 

appropriate amplitude threshold, the noise below the threshold will be isolated by the detection 139 

system. 140 

In the static load condition detection, a large number of high frequency continuous noise 141 

signals are collected when the amplitude threshold is set to 20 dB, As shown in Fig. 3. It can be 142 

clearly seen that the amplitude distribution of the interference noise signal is mainly concentrated 143 

below 43 dB, and only a few amplitude reaches more than 43 dB. In the subsequent data processing, 144 

the amplitude threshold is increased to 43dB, almost filtering out the interference noise signal 145 



generated by the environment. 146 

3.2 Spatial Identification 147 

Spatial identification technology is to place two types of sensors (monitoring sensors and 148 

guard sensors) at different locations to eliminate noise signals. In the test, the main sensor ( No. 1-149 

7 sensor ) is placed at the bottom of the test beam, and the guard sensor ( No. 8-9 sensor ) is placed 150 

at the side of the tested area to shield the interference noise signal produced when driving in both 151 

direction. The three-dimensional schematic layout of the sensor is shown in Fig. 4. The noise signal 152 

positioning maps before and after setting the guard sensor are shown in Fig. 5 (a) and Fig. 5 (b). 153 

It can be seen from Fig. 5 (a) that the number of events is 32, indicating the randomness of 154 

the noise signal. The number of events in Fig. 5 (b) is 16. The latter eliminates 50% noise and 155 

improves the signal-to-noise ratio. It shows that the system can shield the noise signal after setting 156 

the guard sensor. 157 

In summary, the use of data filtering and spatial identification technology can effectively 158 

eliminate the interference of noise. However, the characteristics parameter of some strong 159 

interference noise signals is intertwined with the characteristics parameter of simulated AE signals, 160 

which cannot accurately filter out the noise signals. Therefore, it is necessary to further use SOM 161 

neural network to cluster the signals and establish an effective pattern recognition method. 162 

4 Wavelet packet based feature extraction 163 

4.1 Basic principles 164 

wavelet packet transform (WPT) has become one of the most widely used signal analysis 165 

methods because of its multi-resolution and ability to characterize the local characteristics of 166 

signals in both time domain and frequency domain. Wavelet entropy analysis is a new method to 167 



measure the complex sequence of the signal, which is the combination of wavelet transform and 168 

information entropy. In signal processing, it not only has the advantages of changeable resolution 169 

and no signal -stationary requirements, but also can statistically analyze the complexity of entropy 170 

on signal, which can be used to detect the local characteristics of non-stationary signals. 171 

 172 

Wavelet packet decomposition methods first decomposes the input signal into high frequency 173 

and low frequency dataset through orthogonal wavelet bases, and then decomposes the two 174 

datasets of the signal to obtain the next high and low frequency datasets. In the process interaction, 175 

the scale function φ (t) and the wavelet function ψ (t) satisfy the below equation: 176 
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Where: k is the translation amplitude. h (k) is the low-pass filter corresponding to the scale 179 

function φ (t). g (k) is a high-pass filter corresponding to the wavelet function ψ (t). 180 

After the original signal is decomposed by i-layer wavelet packet, the characteristic signal 181 

composed of 2i frequency bands from low frequency to high frequency in the i-layer is obtained.  182 

The decomposed wavelet packet coefficients are reconstructed to extract the signals in each 183 

frequency band. 184 

The energy E corresponding to the j-band signal in layer i is : 185 
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Where , xi, j (k) denotes the amplitude of the discrete points of the reconstructed signal Si, j, 187 

and n is the number of discrete points of the reconstructed signal.    188 

 189 



Therefore, the total energy of the whole signal is : 190 
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Wavelet packet energy coefficient: 192 
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 194 

According to the basic theory of information entropy, the wavelet packet characteristic 195 

entropy is defined as : 196 
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j

H P P
=

  (6) 197 

4.2 Wavelet packet decomposition 198 

The wavelet energy and wavelet entropy are used to study the characteristics of AE signals. 199 

The sampling frequency of the AE signal is 1MHz. According to the sampling theorem, the 200 

Nyquist frequency is 512kHz, the wavelet basis function and the number of wavelet packet 201 

decomposition layers can determine the optimal solution according to the norm entropy ( Lp ). 202 

Thus, the db6 wavelet basis function is selected to decompose the AE signal into five levels of 203 

wavelet packet. The signal is decomposed into 25 sub-bands, and each band width is 16kHz. 204 

Therefore, this decomposition basically meets the requirements of acoustic emission time domain 205 

waveform signal frequency band division. 206 

According to the relevant literature(Wen 2015), the frequency of AE signal and noise signal 207 

in concrete is mostly less than 150 KHz, so this paper extracts the first 16 frequency components 208 

of the fifth layer from low frequency to high frequency, which can basically reflect the 209 

characteristics of each signal. The frequency ranges are shown in Table 2. 210 



4.3 Energy Analysis of Wavelet packet Coefficient  211 

The results of calculating the characteristic energy of each decomposed signal in each 212 

frequency band are shown in Fig. 6, and the energy proportion of each signal is shown in Table 3. 213 

It can be seen that the frequency components of simulated AE signals with different propagation 214 

distances are quite different. The frequency band range of the sound source is wide, and both high 215 

and low frequency information exist. The energy is mainly concentrated in the 6 ~ 8 high frequency 216 

band, accounting for 72.2 % of the total energy. The high frequency energy components such as 217 

14 ~ 16 account for 10.4 % of the total energy, and the 2 ~ 4 band accounts for 14.2 % of the total 218 

energy. With the propagation of signals, the high-frequency components of 6th, 7th and 8th 219 

continuously decay. When propagating to 1.2 m, the energy is mainly concentrated in the first, 220 

second and fourth bands, accounting for 87.4 % of the total energy. The energy of noise in other 221 

working conditions is mainly concentrated in the 1st, 2nd and 4th low which is similar to the 222 

energy of simulated AE signal at 1.2 m and can be greater than 87.4 %.  So the noise signals can 223 

be distinguished by the main frequency band distribution. 224 

4.4 Entropy Analysis of Wavelet packet Coefficient  225 

The wavelet entropy is calculated by using the energy of decomposed signals in each 226 

frequency band, and the results are shown in Fig. 7. The proportion of entropy of each signal is 227 

shown in Table 4. It can be seen that, the above series of signal wavelet entropy coefficient wavelet 228 

energy coefficient follows the same pattern. The entropy of the sound source is mainly 229 

concentrated in the 6th-8th high frequency band, accounting for 79.1 %. As the propagation 230 

distance of the simulated AE signal increases, when it reaches 1.2 m, the entropy gradually 231 

concentrates in the first, second and fourth low frequency bands. The entropy of the noise signal 232 



in the other conditions is similar to that of the simulated AE signal at 1.2 m, which is also 233 

concentrated in the first, second and fourth low frequency bands, accounting for more than 84.4 %. 234 

5  SOM Neural Network Machine learning 235 

5.1 SOM Clustering Principle  236 

SOM is a competitive artificial neural network with self-organization, self-learning and 237 

lateral association ability proposed by Professor Kohonen of Helsinki University of Technology 238 

in 1981. Firstly, it is a single-layer neural network composed of input layer and output layer and 239 

realizes the orderly mapping of high-dimensional data distribution to regular shape low-240 

dimensional grids (generally two-dimensional). Secondly, the output layer is a one-dimensional or 241 

two-dimensional regular lattice grid composed of logical units, and there is a short-range lateral 242 

feedback between each unit in a certain neighborhood, and the feedback intensity varies with the 243 

distance. Therefore, the adjacent neurons stimulate to each other, while the slightly distant neurons 244 

inhibit from each other, and the farther neurons have a weaker incentive effect. Finally, through 245 

competitive learning, the input vector continuously adjusts the connection weight to make it closer 246 

to a certain type of input vector. The final similar input vectors can be clustered at a node and 247 

separated from the dissimilar input vectors. The signal recognition process using SOM network 248 

structure is shown in Fig. 8. 249 

5.2 SOM neural network training  250 

5.2.1Standard Sample Design 251 

The acoustic emission signals collected in test of flyover are clustered. 20 groups of simulated 252 

AE signals and 100 groups of noise signals are selected as standard sample set input, in total of 253 

120 groups of sample feature vectors. Training input mode is: 254 



1 2 16( , , , ) k 1,2, ,120k k k

kP P P P=  =  255 

5.2.2 Network structure design 256 

1) Number of neurons in input layer  257 

The simulated AE signal and noise signal are concentrated below 300 kHz. The wavelet 258 

characteristic parameters of 0 ~ 16 band ( 0 ~ 256 kHz ) can fully reflect the characteristics of each 259 

band of the signal, and the data is rich and reliable. So the number of input layer neurons in SOM 260 

neural network (N)is 16. 261 

2 ) Number of neurons in competition layer   262 

The selection of the number of neurons in the competition layer will affect the performance 263 

of the network. If the number is too large, it will increase the amount of calculation and reduce the 264 

learning speed of the network. If the number is too small, it is possible to misclassify signals of 265 

different modes. The sample size here is small, and according to the parameter recommendation 266 

of literature (Silva et al 2019, Khanzadeh,2018,) supplemented by the clustering performance 267 

observation of network structure adjustment. Finally, the structure with a competitive layer of 6×6 268 

is selected, which can achieve better clustering results. So, the number of competition layer 269 

neurons in SOM neural network (M) is 36. 270 

3 ) Determine function, select learning efficiency, set training steps 271 

Create a SOM neural network using the NEWSOM function The code is : net = NEWSOM 272 

( minmax (P),[6 6]). Among them, minmax ( P ) specifies the maximum and minimum values of 273 

input vector elements, and 6×6 denotes the structure of 6×6 competition layer of the network. The 274 

network is trained and simulated by function train and simulation function sim. The size of learning 275 

rate [35] and the number of training steps will affect the clustering performance of the network 276 



(training time and convergence rate ). When the learning rate (η(t))is 1.0 and the number of steps(T) 277 

is 500, it is clear to observe the clustering results. 278 

In the is paper, hyperparameters are empirically determined, however, according to  In 279 

Liang et al 2009, Zhang et al 2012, The Bayesian optimization can be used to determine the critical 280 

hyperparameters. 281 

5.2.3 SOM neural network training algorithm steps 282 

(1) Determine SOM network topology, the number of neurons in input layer and competition 283 

layer. 284 

(2) Set t = 0, random initialization weight vector wj (0) (j = 1, 2, ..., M), M is the number of 285 

neurons in the competition layer. 286 

(3) The network is randomly provided with an input vector Pk(t)=(P
k 

1 ,P
k 

2 ,…,P
k 

N)T, (k=1, 2, …, 287 

L), where L is the total number of data set vectors to be input. 288 

(4) Calculate the distance between the current input vector and the neurons in the competition 289 

layer, and select the neurons with the smallest distance as the winning neurons q (t) 290 

 
j

( ) arg min ( ) - ( )k jq t P t w t=  (7) 291 

(5) Adjust the weighted vector of the winning neuron and its neighborhood to 292 
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  (8) 293 

η(t) is the learning rate parameter, and 0 < η ( t ) < 1, Nq (t) is the adjacent region of the 294 

winning neuron q, both of which are decreasing functions with the increase of time t. 295 

(6) Determine whether all the input vectors are provided to the network, if it is transferred to 296 

the next step, otherwise return step (3). 297 

(7) Update learning rate and neighborhood radius.     298 



(8) If the total number of iterations reaches T, the algorithm ends, otherwise step (3) is 299 

returned. 300 

5.3 SOM neural network testing 301 

The trained network clusters the input test sample data, which is called the network recall 302 

process. If the training input mode Pk wins at node j, then when the test input model Xk is similar 303 

to the training input mode Pk, node j will be more likely to win, that is, the category attribute of 304 

the test input mode Xk is identified. 305 

5.3.1 Test sample design   306 

33 groups of simulated AE signals and 150 groups of noise signals in AE test are selected as 307 

test samples set , in total  are 183 groups of test sample feature vectors. Each sample includes 16 308 

evaluation indexes, and the network is tested by test samples. Test input mode is : 309 

1 2 16( , , , ) k 1,2, ,183k k k

kX X X X=  =  310 

5.3.2 Mapping of SOM neural network clustering results  311 

For each input signal, the output plane array of SOM neural network has a specific neuron 312 

sensitive to it. This input-output mapping relationship is very clear in the output characteristic 313 

plane array. Fig. 9 is the signal clustering result map. Character I maps simulate AE signals neurons, 314 

character C maps neurons that interfere with noise signals, and character subscripts are cluster 315 

serial numbers. 316 

6 Clustering results analysis of AE signal pattern recognition based on SOM neural 317 

network 318 

6.1 Wavelet Energy  319 

The wavelet energy coefficient of the standard sample is extracted as the input feature vector, 320 



and the SOM neural network will conduct automatic classification training. Finally, the test dataset 321 

is used for the training. The clustering formula is shown in Equation 9. The clustering results are 322 

shown in Fig. 9 and the clustering summary table is shown in Table 5. 323 

 324 
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Where , %CN is the percentage of the noise signals, 
1

k

Ci

i

N
=

 is the sum of the number of noise signals in 326 

each character C (noise signal neuron), N is the total number of input noise signals. 327 

 328 

It can be seen from Table 5 and Fig. 10 that SOM neural network has strong self-recognition 329 

ability, the classification accuracy of simulated AE signals in the standard sample set reaches 90 %. 330 

When predicting the signal dataset in the test, it also shows a similar classification trend, and the 331 

accuracy reaches 76 %. However, the simulated AE signals and noise signals are mixed to some 332 

extent, reflecting the diversity and complexity of the signal mode. The main reasons for the errors 333 

are as follows : Firstly, the simulated AE signal is a point source, the signals received by different 334 

distance sensors are transmitted and attenuated, and have different modes. Secondly, the noise 335 

signals generated by different sound sources such as vibration and friction also have different 336 

modes. For the noise signals whose feature energy is obviously concentrated in the second and 337 

fourth bands and is not easy to cross with other classes, the classification accuracy of the standard 338 

sample set reaches 95 %, while the classification accuracy of the test sample set reaches 94 %. In 339 

summary, SOM neural network shows good classification ability and can clearly identify AE 340 

signals from a large number of interference noise signals. 341 



6.2 entropy  342 

The wavelet energy entropy of each frequency band of the signal in the standard sample 343 

dataset and the test sample dataset is used as the feature vector for similar clustering. The clustering 344 

formula is shown in Equation 10. The clustering results are summarized in Table 6. Fig. 11 is the 345 

output of the signal clustering result. 346 

 347 
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,Where %IN is the percentage of analog AE signals, 
1

k

Ii

i

N
=

 is the sum of the number of simulated AE 349 

signals in each character I (simulated AE signal neurons), N is the total number of input simulated AE signals.  350 

 351 

Table 6 and Fig. 11 show that: first of all, noise signal recognition can reach more than 99 %, 352 

simulated AE signal classification accuracy in standard sample dataset of is 100 %. The trained 353 

network is used for the test the sample signals, and the correct rate reaches 78. 8 %. The reason is 354 

similar to wavelet energy coefficient analysis. Secondly, some simulated AE signals are mistakenly 355 

identified as noise signals by SOM neural network, indicating that the characteristics between 356 

different types are sometimes very similar and there is a certain degree of confusion. However, the 357 

network has good classification ability and strong generalization ability, which can clearly identify 358 

AE signals from a large number of noise signals. Finally, compared with the wavelet energy 359 

coefficient analysis method, the wavelet entropy coefficient analysis method has stronger 360 

clustering ability for signals. The reason is that wavelet entropy is the representation of the 361 

complexity of wavelet energy, which can better represent the characteristics of the signal. 362 



7 Conclusion  363 

The effectiveness of data filtering and spatial discrimination technology on noise signal 364 

recognition is analyzed in this paper based using Pencil Lead Break Testing on AE signal and noise 365 

AE signal of the bridge in operation state and other specific loading state, and the study further 366 

used wavelet packet energy and wavelet packet entropy analysis to extract the characteristic 367 

frequency bands of AE signal and interference noise signal, to train and identify defect signals 368 

using SOM neural networks. A more effective method to denoising noise signal was developed, 369 

the main conclusions are as follows: 370 

1. When threshold is greater than 43dB, it can eliminate most of the environment and other 371 

interference noise signal. However, the noise signal and damage signal are often intertwined in the 372 

field detection. When the threshold is low, it often contains many unnecessary noise signals. When 373 

the threshold is high, all the noise is filtered, but the system will filter out the AE signal with low 374 

amplitude. Therefore, in practical engineering detection, Data filtering needs to rely on the 375 

experienced engineers, and is not that reliable  376 

2. Under the same conditions, by using the guard sensor, 50 % of the noise signal is eliminated 377 

and the signal to noise ratio is improved. It shows that the noise signal can be well shielded by 378 

setting the guard sensor.  Although spatial filtering can eliminate the noise signal from the 379 

distance, it cannot process the noise signal in the detection area. Therefore, it is necessary to 380 

conduct in-depth research on the noise characteristics in the field detection to find a more suitable 381 

noise processing method. 382 

3. Energy and entropy analysis have similar laws. The simulated AE signal source is mainly 383 

concentrated in the 6-8 frequency band. With the propagation of the signal, the high frequency 384 



components of signals decay continuously, When the signal was spread to 1.2m, the frequency 385 

gradually concentrated in the1, 2, 4 bands. The energy and entropy of the noise signal are mainly 386 

concentrated in the1, 2, 4 frequency bands, which are similar to those of the simulated damage AE 387 

signal at 1.2 m, but the frequency characteristics between AE simulation signal and noise signal 388 

are obviously different, so the feature vector can be formed by extracting the characteristic 389 

frequency band of signal to establish the identification mode of AE signal. 390 

4. The classification accuracy of simulated AE signals obtained by wavelet packet energy and 391 

entropy analysis method reaches 90 % and 100 %, respectively. The trained NN is used for the test 392 

set signal, and the accuracy reaches 76 % and 78.8 %. The error is caused by the characteristic 393 

cross between the effective AE signal and the interference noise signal, and the input data are 394 

similar. However, the network has good classification ability and can clearly identify AE signals 395 

from a large number of interference noise signals. It shows that compared with the defects of 396 

commonly used methods (hardware filtering and spatial identification technology) in practical 397 

engineering, this method can more accurately identify and separate noise signals, reduce the 398 

distortion of damage acoustic emission signal caused by noise environment, and make more 399 

accurate and effective acoustic emission identification and characterization of structural damage. 400 

The relevant machine learning on denoise is rare. Most research is to use ML to predict the 401 

acoustic emission signals, such as use Long Short-Term Memory (LSTM) (Zhang et al ,2018) 402 

network and support vector machine learning models (Yang et al, 2012). The reason we choose 403 

SOM neural network is because that it can use Wavelet packet energy analysis, Wavelet packet 404 

entropy to analyze the defect signal. Further research on other learning model will be continued in 405 

our future project.  406 
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 552 

Table  553 

 554 

Table 1. Acoustic emission detection parameter settings 555 

parameter settings 

Sensor model R6 

Pre-amplifier 40dB 

Acquisition threshold 43dB 



Sample rate 1M 

Pre-trigger 100μs 

Length 1k 

PDT 300μs 

HDT 600μs 

HLT 1000μs 

Positioning wave speed 2700ms-1 

Number of sensors 9 

Layout flat 

 556 

Table 2. frequency ranges 557 

frequency band 1 2 3 4 5 6 7 8 

Frequency interval(kHz) 0～16 16～32 32～48 48～64 64～80 80～96 96～112 112～128 

frequency band 9 10 11 12 13 14 15 16 

Frequency interval(kHz) 128～144 144～160 160～176 176～192 192～208 208～224 224～240 240～256 

 558 

 559 

Table 3. statistics tables of Energy in each frequency band 560 

Frequency 

band 

0m 0.6m 1.2m 

Static 

load 

10km/h 20km/h 30km/h 

Bounce 

state 

Braking 

state 

Operational 

status 

1、2、4 —— —— 87.44% 91.41% 91.93% 93.37% 88.11% 87.64% 92.10% 92.90% 



1 0.52% 2.53% —— —— —— —— —— —— —— —— 

3 —— —— 5.18% 5.99% 3.89% 3.76% 6.76% 6.62% 4.50% 2.20% 

2-4 14.20% 83.99% —— —— —— —— —— —— —— —— 

5 1.12% 0.60% 0.23% 0.12% 0.14% 0.38% 0.41% 0.09% 0.03% 2.64% 

6-8 72.19% 12.17% 6.45% 2.48% 3.95% 2.49% 4.67% 5.57% 3.29% 2.26% 

9-13 1.61% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.04% 0.00% 0.00% 

14-16 10.36% 0.70% 0.69% 0.00% 0.08% 0.00% 0.06% 0.04% 0.08% 0.00% 

Total 1 1 1 1 1 1 1 1 1 1 

Note:“——” means no statistics 

 561 

Table 4. Entropy statistics table of each frequency band 562 

Frequenc

y band 

0m 0.6m 1.2m 

Static 

load 

10km/h 20km/h 30km/h 

Bounce 

state 

Brakin

g state 

Operationa

l status 

1、2、4 —— —— 86.71% 91.00% 92.56% 92.06% 84.59% 84.38% 87.87% 91.25% 

1 1.31% 3.25% —— —— —— —— —— —— —— —— 

3 —— —— 4.90% 3.84% 3.24% 4.04% 8.69% 8.02% 7.02% 4.50% 

2-4 10.09% 68.02% —— —— —— —— —— —— —— —— 

5 1.08% 1.09% 0.27% 0.09% 0.00% 0.25% 0.52% 0.08% 0.14% 0.12% 

6-8 79.09% 25.05% 7.42% 4.97% 4.04% 3.65% 6.20% 7.27% 4.57% 3.99% 

9-13 1.77% 0.43% 0.00% 0.00% 0.00% 0.00% 0.00% 0.05% 0.12% 0.06% 

14-16 6.66% 2.16% 0.70% 0.09% 0.16% 0.00% 0.00% 0.19% 0.28% 0.09% 

Total 1 1 1 1 1 1 1 1 1 1 



Note:“——” means no statistics 
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 564 

Table 5. Cluster results 565 

Class 

Sample set Test set 

Simulated 

AE signal 

Noise signal 

Cluster accuracy 

（%） 

Simulate

d AE 

signal 

Noise signal 

Cluster accuracy 

（%） 

Simulate

d AE 

signal 

18 2 90 25 8 76 

Noise 

signal 

5 95 95 9 141 94 
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 567 

Table 6. Cluster results 568 

Class 

Sample set Test set 

Simulated 

AE signal 

Noise 

signal 

Cluster accuracy 

（%） 

Simulated 

AE signal 

Noise signal 

Cluster accuracy 

（%） 

Simulate

d AE 

signal 

20 0 100 26 7 78.8 



 569 

  570 

 571 

 572 

Noise 

signal 

1 99 99 1 149 99.4 


