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Plate 1

Virus blocker viewed from the vertex perspective of a regular icosahedron [26].
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Abstract

A convenient rectangular cartesian coordinate system is constructed for the
regular icosahedron. This allows us to write down the coordinates of every vertex,
so enabling the direction-ratios of all the symmetry axes to be obtained. Our results
afford a fresh approach to various geometrical features of the icosahedron and of the
icosahedral group.

The circumsphere of a regular icosahedron may be converted into possible
models for the spherical carbon molecule Ceo (the buckyball), by expanding the 12
vertex points into 12 regular spherical pentagons of equal size. We examine quan-
titatively the changing pentagonal-hexagonal pattern as the pentagon size expands
up to the possible maximum, at which stage the circumsphere is entirely covered
with pentagons i.e. is the circumsphere of a regular dodecahedron. Arguments are
given for a unique choice model which conforms to the chemical data.

Prolate spheroid models for CVo and Cgo are also considered.
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Introduction

The regular icosahedron is one of the five Platonic solids known to the early Greeks.
However it attracted little attention until the nineteenth century, when 5-fold
symmetry axes were found to be inadmissible in mathematical crystallography.
Despite this the icosahedral point-group is sometimes listed as a supplement to the
classical crystallographic point-groups since it forms a natural extension of these
point-groups. It may be mentioned that the German mathematician Felix Klein [21]
wrote a monograph on the icosahedron, but its orientation appears to be algebraic
rather than geometrical.

The icosahedron was introduced into crystal physics in 1952, when F.C. Frank
[22] pointed out that this configuration provides an efficient method of close-packing
for atoms which would be favoured on energetic grounds. More than thirty years
later [23], the existence of icosahedral configurations in an aluminium-manganese
alloy was inferred from the appearance of X-ray diffraction patterns exhibiting 5-
fold symmetry features. These could not be produced by a crystalline medium, but
one might envisage icosahedral clusters having a short-range order (~ 104 — 105A)
which does not build up into any long-range order, so forming a quasi-crystalline
medium intermediate between a crystal and an amorphous solid. Quasicrystals
of various composition have been fabricated since then, but no generally accepted
theory of their structure has yet emerged [24]—{25]. It is of course well known that
some virus structures adopt the icosahedral configuration, e.g. as appears in
Plate I (following Table of Contents).

This thesis divides naturally into two main parts. Part I treats icosahedral
symmetry (covering also the dodecahedron) by methods of algebraic geometry. Part
IT uses the methods and results of Part I essentially to examine the buckyball model

of Ceo, be. the spherical carbon molecule now known as fullerene, discovered by
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Kroto and Smalley [27]—28] in 1985. The buckyball is often depicted as a truncated
icosahedron, with the vertices replaced by regular pentagons. An equivalent, but
mathematically more convenient picture, is to regard it as the circumsphere of the
icosahedron, with the 12 vertices expanded into 12 spherical pentagons. These
automatically carve out 20 spherical hexagons from the 20 spherical triangles on
the original circumsphere, so yielding the familiar football pattern. This point of
view enables us to determine the coordinates of any pentagonal vertex (i.e. of any
carbon atom) referred to rectangular cartesian axes embedded in the icosahedron.
Two independent parameters enter into the coordinates: the circumsphere radius R
and the pentagon shallowness /. A computer program then calculates the

ratio ((6:6) / ((6:5) of the two characteristic C-C bond lengths as a function of /,
running from / ~ 0 (vanishingly small pentagons) to / = 0.141 (vanishingly small
hexagons), keeping R fixed. Our results are used to examine various features of
the buckyball model, in particular how its radius varies with bond length yielding
excellent agreement with the experimental data.

If we input the graphite data ((6:5) = ((6:6) = 1.420 A into the model, it
provides a pattern of 20 perfectly regular hexagons on the circumsphere accomodated
by 12 perfectly regular pentagons yielding a surprisingly close approximation to the
observed buckyball radius. It appears that the first stage of buckyball formation
involves a graphite pattern for the hexagons, which are then distorted from regularity
by physical factors [29] dependent upon the curvature of the 7-orbitals in Ceo as
compared with graphite. Models of CVo and C& may be constructed building upon
that for Ceo- These are prolate spheroids for which the axial ratios can be readily
calculated. A useful schematic method for exhibiting the pentagon-hexagon patterns
in these fullerenes is presented.

The main original contribution of this thesis is in Part II. This part provides a fresh
mathematical analysis of the buckyball so that we are able to predict the observed
dimensions of the buckyball in terms of operative C-C bond lengths. Building
upon this, we construct models for CVo and C& using a new method of pattern
representation. Much of Part I may be regarded as preparatory for the work of Part
II. In the first place, it includes a general review of the field. Also we introduce a

convenient rectangular coordinate system into the icosahedron, which allows us to
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assign direction-ratios to various symmetry axes operative in the buckyball. The
regular dodecahedron is discussed from a similar point of view to that of the regular
icosahedron, which provides a model for the hypothetical molecule Cho-

To summarise, this thesis places the buckyball model of C% on a rigorous
mathematical foundation by relating it more closely to the underlying regular

icosahedron.
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ICOSAHEDRAL SYMMETRY
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Chapter 1

The Five Regular Solids

A% AAY

1.1 Introduction

For many decades the five regular solids have been prominent aesthetic figures in
pure and applied mathematical research as well as the subjects of interest to artists,
architects, chemists and crystallographers. Playing a key role in Plato's cosmology,
the five regular solids comprise the regular tetrahedron, the cube and octahedron,
the regular icosahedron and dodecahedron; they are also conventionally known as
the five Platonic solids.

Physical features corresponding to these solids are displayed in Table 1.1. Note
that the cube and octahedron are complementary to each other since the number
of vertices is interchangeable with the number of faces. By the same reasoning,
the regular icosahedron and dodecahedron are also complementary to each other.
Furthermore, the centroid, O, for these four solids is in fact the centre of symmetry
of the solid since any vertex can be inverted into the symmetrically opposite vertex
through O. However, the tetrahedron is self-complementary and its centroid is not a
centre of symmetry. We observe that its centroid joins any vertex into the centroid
of the opposite face, which makes it special as a foundation for further development

in the analysis of fullerene C23-chemical name for the carbon molecule having 28



Regular Solids V F E p ( number of q ( number of {va)

sides in edges meeting

aface ) in a vertex )
Tetrahedron 4 4 6 3 3 {3,3}
Cube 8§ 6 12 4 3 {4,3}
Octahedron 6 8 12 3 4 {3.4}
Icosahedron 12 20 30 3 5 {3,5}
Dodecahedron 20 12 30 5 3 {5,3}

Table 1.1: {p,q} signifies a regular solid with {p}-gon faces and ¢ edges meeting in
a vertex. Note that p, ¢ are interchanged for the cube and octahedron i.e. they are
complementary solids. The same property holds for the icosahedron and dodeca-
hedron. Here V denotes the number of vertices, F' the number of faces and E the

number of edges of a regular solid.



atoms. More important, the regular icosahedron deserves special mention as it
effectively provides a basis for further studies of fullerene C60-known to be the most

stable carbon molecule among the fullerides.

1.2 Spheres Related To The Regular Solids

Within each regular polyhedron the centroid. O, is the common centre of three
spheres:

1. The circumsphere which passes through all the vertices. This has a radius

R = lesc () (1.2.1)

where 2 / = edge length of polyhedron

and 2 = angle subtended at O by an edge.

2. The midsphere which touches all the edges at their midpoints. This has a radius

Rmd —R cos &=/ cot O (1.2.2)

3. The insphere which touches all the faces at their centres. For the {p,q} solid this

has a radius given by
Rih — 12 "csc20 —esc2—) = 2 ~cot20 —cot2— . (1.2.3)

To prove these formulae we imagine the solid as built up from F equal pyramids,
each based upon a face of the solid and sharing a common apex at O. Any {p,q}
face i1s a regular polygon C\ ... Cp, centre C, with j CiC2 |= 2/and C\CC2=y as
depicted in Figure 1.1. Also, associated with the edge CiC2 there exists a triangular-
side face C\OC2 of the pyramid with |OCi \= 10C2 |— R and CxOC2 = 20
as depicted in Figure 1.2 which immediately yields formulae (1.2.1), (1.2.2) above.

A wuseful figure associated with the pyramid is the Schlafli tetrahedron OCxM C



depicted in Figure 1.3, where OC marks the normal from O onto C| ... Cp being
therefore at right angles to both CM and CCi, i.e.

Ri: =10C 2=10C1 ccl

R> - [2 esc2

L (2 () — esc2

(1.2.4)
from Figure 1.1 (a) or equivalently
RI oCc 2- 10M CM
R8Ad - 12 cot2 -
p
b {cot2é — cot2 —
:1.2.5)
as noted above.
We now prove the Coxeter formula [I]
cos (p = cos T oose I (1.2.6)
p q
and its complementary formula
. T ™
cos ip cos — (CXC (1.2.7)
g P

where T — 2 ip is the dihedral angle of {p,q}. Choosing any vertex P as pole vertex
we observe that OP defines a g-fold symmetry axis for {p:q}!. This means that P has
g neighbouring vertices A\ ... Aq { Figure 1.4 ) forming a {c/} polygon intersected
at its centre A by OP.

If so

(1.2.8)



(a) Note that
\CCX\= \\ CtC2Iesc |

ie. ¢c—1 esc IE.

(b) Note
|CM |= |CXM |cot f =/ cot f
=> areaof A C\CC2= [2 cot .E

Figure 1.1: Base plane of pyramid Ci, C2, ... Cuv.



(a) |0C\ |=/escpie R =/esc$
(b) |OM |= |C\M | cot ¥ie. Rmd

Figure 1.2: Side-face of pyramid OC1C2 m.. Cp.

0
Note that
(a) 1O0C = 10C; I |[CCXP
Le. R} = R2 - [2esc2 L
from Figure 1.1 (a), OR () |1OC = |OM P - |CM P

see equation (1.2.5).

Figure 1.3: Schlafli tetrahedron of {p.q}.



(a) g symmetry axis OP generates

a {<?-gon Ax ... Aq,

Note that
(b) |AAi |= | |AxA2 | esc f
as indicated in Figure 1.1 (a)

with p replaced by q.

Figure 1.4: {g}-gon associated with vertex P of



from Figure 1.4 (b) where

T
A\VAi 1=4/ cos — (1.2.9)
\

bearing in mind that PAi, PA2 are two neighbouring edges of a face i.e. of a {p}

polygon ( Figure 1.5 ). Reference to Figure 1.6 shows that

. , L1, 5* 4/ cos * sjin ()
2 L.
sin 2 () OA sin (1.2.10)
since IOA\ |= R
=fm cos () - — & (1.2.11)
sin '1

as stated earlier in (1.2.6). Formula (1.2.7) follows from the complementary nature

of (& i>so that utilising formula (1.2.11) provides

cos2 T
sin2 = 1 &

sin2
g

sin2 ; — cos2 b

sin2 9
. 2 A2 = sin2 — — cos2 —
sin2 f g P
(1.2.12)
ie.
sin (f (1.2.13)
If so,
A / T
. SIN —y pma — cos (1.2.14)
sin £ 1 Z P



Note that

A\PA2= & — —afrom Figure 1.1 (a),
=> |AXA2 |= 2 PA\ |sin (f -

= 2%2/ cos * = 41 cos | showing

that {AA\11= 5 °4loosi)esc-<j:

Figure 1.5: Face of {p,q} defined p edges PAi, PA2

pP s

Figure 1.6: Elevation of PA\A showing AN\OM = <¢>which is half of the angle

subtended by an edge at the centre, O, so that sin 3f>= 1444.

VUA



Also.

=/2(C 1 1
Asin2 sin2 £
. 12 9 1(sr.1r12 .
sin L Vv ( P
12 ,rcos *—0052 ?
sin2 PV p 9,

cot2 — cos2 -

- p g
(1.2.15)
which implies
/ T 1
Ri, — cot — COS (1.2.16)
k p F
Finally, from Figure 1.3
/ -Rin / I I k
cos ip = —— = —cot —cos — * --------
ftrd A p q / cos
cos %
- sin £_
%
(1.2.17)

showing that & 0, /?, Rmd, Rin for {p,?} are all known in terms of p and q.

The value of k for each {/?,</} is given in Table 1.2 since it will be needed in the

following section.

1.3 Surface Area And Volume Of {p,q/}

A {/?}-gon is made up of p isosceles triangles each of area /2cot * ( Figure 1.1 ), so

that a {p}-gon has the surface area pi2cot T

10



{p,q}

{3,3}

{4,3}

{3,4}

{3,5}

{5,3}

sin2 * - cos2 2
q P

sin2 | — cos2 |

sin2 é — cos2 Z

sin2 Z — cos?2 5

sin2 D7 — cos2 )§

sin2 | — cos2 |

sin2 p cos2 z k2 ~ k

ol : 0.707107
R \ 0.500000
s ) 0.500000
o T 0309017
pooen " 0.309017

Table 1.2: Approximate value of k for each {p,q}!. Note that k2{p,q} = &{g,p}.
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Therefore

S —surface area of {p,q}

= F « pi2 cot — (1.3.1)
P

from which

V = volume of {p,q}

. Bin (1.3.2)

Formula (1.3.2) may be rewritten in the useful form

5
1.3.3
\% Ri ( )
which compares with the value
4 tht3
4 i (1.3.4)
5™ 3

for a sphere of radius cr.

There exists a surface-equivalent sphere to {p,q} with radius a defined by

4TM = S ie a = (1.3.5)

Now

| (T3 I"rer3 S a 3
\% 4Mci2 V 3 Rin

Rin
(1.3.6)

where a/Rin is computed in Appendix A. We find a/Rin > 1 for each {p,g},
showing that the surface-equivalent sphere always has a greater volume than that

of the corresponding {p,q/}.

12



Similarly there exists a volume-equivalent sphere to {p,q}, with radius p defined

by

/3V\1/3
V, ie p S (1.3.7)

Now

4T p2 4T p2 1% 3 Rn

(1.3.8)

where this ratio is also computed in Appendix A. We find Rxrjy p < 1 for each {p,q}
showing that volume-equivalent sphere has a smaller surface area than that of the
corresponding {p.q}-

Our two conclusions can be summarized as follows:

+ for a given surface area, the sphere has a greater volume than any {p,q}\
« for a given volume, the sphere has a smaller surface area than any {p,q}.

[2. Polya and Szego]

Tables of 5, V, Rin, a, p, a, Rin are given in Appendix A for further verification

P P11l I I Rinp

of these corresponding results.
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Chapter 2

The Regular Icosahedron

2.1 Rectangular Coordinate System

As already mentioned, the centroid 0 of every regular solid (except the tetrahedron)
serves as a centre of symmetry for the solid i.e. it inverts any vertex P into the
symmetrically opposite vertex P' (Figure 2.1). In the case of a regular icosahedron
this suggests that a convenient rectangular coordinate system may be constructed
with 0 as origin and OP as the z-axis (Figure 2.2). As regard the x, y-axes, we
note that P has five nearest neighbouring vertices forming a regular pentagon Ai,
A2, ..., Abwith centre A as depicted in Figure 2.3. Clearly PP’ is normal to the
pentagon and passes through its centre A. If so the x-axis can be chosen to pass
through O parallel to AAi1 (Figure 2.4), and the y-axis then passes through O at
right angles to OX.

Since LAVAA2 = it follows from the isosceles triangle AjAA2 (Figure 2.5)

that

TAVA2 | = 2 |AAI Isin5—, i.e. 21 = 2a sin 5 (2.1.1)

where
|Ai A2 |= edge length of icosahedron = 2/ — |PA\ | etc,

|AA\ | = circumradius of pentagon = a (2.1.2)

14



Figure 2.1: Photoprint of a regular icosahedron showing the inversion of pole vertex
P into opposite P'.

15



Figure 2.2: Choice of OP as the 2-axis for the rect angular coordinate system of the

regular icosahedron, alongside its ‘wire’ model [3],

16



Aa

Figure 2.3: Icosahedral pentagon with centre A viewed along PP’

IT



Figure 2.4: Choice of z-axis and x-axis in relation to OP, AA\ respectively.

At

Figure 2.5: Isosceles triangle A1AA2 in the A-pentagon with centre A, formed by 5

edges emanating from P.
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which implies

/

M
a= ——= lesc —
sin f 5 (2.1.3)
Within the A-plane, all vertices may be conveniently represented by
the complex vectors
AAi = aez0, AA2 = a e2z/ 5, ... (2.1.4)

which may be readily broken down into x, y components. However, it remains to

compute their z-coordinates. By reference to Figure 2.6

|AP P- |AXP R- |A]4 R
= 4/2- a2

. T
=4 viasin i
v 5/

.
a2 fdsin2
A\ 5

(2.1.5)
We prove (see Appendix B) that
i 172 27
4sinz——1& =2 cos — =1r 1>0 2-1.6)
5 5
where r is the golden mean and r satisfies the quadratic equation
v2—1r —1= 0. (2.1.7)

Now all the vertices lie on a circumsphere, as mentioned earlier, with centre O,

radius R so that (Figure 2.7)

R2= |OP R= (I OA |+ |AP |2

= |OAR+2|OAT1|AP \+ TAP 2
(2.1.8)

19



and also

R2= \10A1\= \OA 2 + TAAi 2=10A B + a2 (2.1.9)

Equating (2.1.8) and (2.1.9) for R2 and utilising |[AP P, |AP \gives

(1—2 sin2) a
0A . (2.1.10)
(4sin2 § - Y2 = 2

1.e. z-coordinate of A\, A2 ..., A5 An alternative expression of |OA |is
TN\'/2 a
Toy »

as also may be readily verified in Appendix B.

Using (2.1.4), (2.1.10) we obtain the x, y, z coordinates of each vertex as listed in
Table 2.1. Since x, y, z inverts into -x, -y, -z we immediately obtain the coordinates
of A), A2 -+, Ag, centre A" These vertices form a regular pentagon rotated by an

angle | to the A-pentagon (Figure 2.7), and separated from it by the distance

AA'I= 2 TOA I= o = \AAi 2.1.12)

as illustrated in Figure 2.8. Now

R =1I0A1+ IAP

(1 - 2 sin2f) / T \ 12
— @ e e rmr + d 4slU ——1
4sin2f - 1"7 A 0
3 2 sin2 -
- a . 12
(4 sin2f - 1)

(2.1.13)

Substituting (2.1.3) into R. we have

2 sin b
B =1 ] ]/2
4sin2f - 1)

20



Figure 2.6: The orthogonal projection of P on its pentagonal plane is associated

with the relation |[AXP P - |AUA R= |AP R, ... suchthat 42 - a2= |AP B,

Figure 2.7: Transformation of the vertex .4i into its corresponding inverse A\.
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Figure 2.8: The vertices A\ ...mark the orthogonal projection of A\ ...onto the

vl-pentagonal plane. Note that the pentagon A\ ..., A'his rotated through j relative
to A\ ..., As, showing that the inverse pentagon A\ ..., AL is rotated by relative
to A\ ..., As.
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Vert,ices XY Z Inverse Vertices

P (0,0,R) P’
“(o0,0,f)

At (a, 0, |OA ) A\
a (1,0,

a2 (« cos asin |OA |

2
a (cos y-, sin
a3 (a cos Y-,asin \OA ) .3
a (- cos f,sin f,§)
Ag (acos ",<2sin |OA AN
a (- cos f,- sin f,])
as (a cos sin A, |OA ) A's
a (cos - sin ?f,

Table 2.1: Coordinates Of The Vertices. Note that ¢ = [ esc | while |OA | R are

effectively provided by formulae (2.1.10), (2.1.13).
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which gives the Coxeter formula

Lan ® (2.1.14)

rz[\ 1/2
k = sfn2——cosz— = IstE_COSZ T\1/2
p 3y
T/2
: T I\ 1/2
sin2 _
5 4)
(2-1.15)

Since

T 5 —v/5

sm —

5

we deduce from (2.1.15) that
g 1/2
k =

from which

1?7 = [

\3 —4d5b
- 10 + 2v5
jO + vI5
hi.16)

2.2 Symmetry Elements

Table 2.2 lists the direction-ratios (drs) of the six 5-fold symmetry axes (PP')5,

(A\A\)s, ..., (/Is.dgds utilising an obvious symbolism. Since each axis joins X, y, z
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to -x, -y, -z, these drs are immediately obtained from the coordinates of P, Aj, ..
As and multiplying (if necessary) by an appropriate factor. In particular, the axis

(PPr)5is derived as follows:

(PP'h =(x(P) -x(P'),y(P) —y (P )z(P)-z(P"))

=2(x(P),y(P),z(P) ) (2.2.1)

Similarly Tables 2.3, 2.4 and 2.5 lists the drs of the fifteen 2-fold axes (PAi)2,
v, (AiA2)2, mmei (A\A()2, mmmwhich pass through the midpoints of the edges PAI,
m. AiA2, smmA\Al, ...

Finally Table 2.6, 2.7 lists the drs of the ten 3-fold axes (PAiA2)3, ... (A1A2A4)3,
.. which pass through the centroids of the faces PA1A2, ..., A1A2A4, ...

Rotations through P, (= 27) about (PP')5 transform the
icosahedron into equivalent orientations keeping O fixed, and similarly for all the
5-fold axes. Accordingly these contribute 6 x 4 = 24 operations to the icosahedral
group {532}. Here {532} is the crystallographic point group symbolism for the group
of symmetry rotations of the icosahedron. Also a rotation through (= T about
each 2-fold axis contributes 15 x 1 = 15 operations to {632}. Finally, rotations
through about each 3-fold axis contributes 10 x 2 = 20 operations to {532}.
Supplementing these by the unit operations ( ~ ) for each axis yields
24 + 15 + 20 + 1 = 60 operations included in the icosahedral group.

It 1s interesting to look at the subgroups of {532} utilising drs of the symmetry
axes so providing fresh interplay between geometrical and algebraic aspects. We
may readily verify from the Tables that {PP’')s is orthogonal to (Ai1A*~, {A24'49)2.
(A2A/5)2, (A3A5)2 and {A"A|)2 which demonstrates the existence of a dihedral
subgroup {52} within {532}. Similarly we may verify that (PAiA2)3 is orthogonal
to (A3A4)2, (A4A5)2 and (A3A5)2 thus demonstrating the existence of a dihedral
subgroup {32} within {5632}. Furthermore, the three 2-fold axes (A2A3)2, (.PA52
and {A\Ab)2 form an orthogonal triad so demonstrating the existence of a dihedral

subgroup {22} ie. the R-group, within {532}. We find that (PA1A2)3 is equally



The 5-fold, X:Y:Z

symmetry axes

(PP'h 0:0:2R
0:0:1

(AlA'ijs 2a: 0:2 |0A)
2:0:1

(720 25 2acos yl: 2asin ~ : 2 |OA |\

2cos N :2sin N 1
(A3 3)5 2acos 5 : 2asin 5 : 2 JOA
—2cos%:2sin%: 1

(AjA4)5 2acos %5 : 2asin %

: 2;10A 1
—2 cos %:—ZSin%: 1
(* 5" B)5 2a cos A5 : 2asin "5 12104 4

2 cos ’b:-2 sin A5 1

Table 2.2: Direction-ratios of the 5-fold symmetry axes. A simplified form of drs is
given in the second row of each corresponding 5-fold axes respectively. Again |OA |

and a are as illustrated in Table 2.1.
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2-fold X:Y:Z
symmetry axes
(PAI) a:-o:R+ OA

1:0 :2 cosf5

(PA22  2cos —:@sin» : R+ |OA |
cos B isin A 2cos g

(PA3): cos A “asin A R+ | OA
Ccos f sin £ s 2c0s t

(PA42  acos ~ :@sin» : R+ |OA |

— cos | : — sin | : 2cos |

(pa5)2 dcos . dsin —5-:R+. ]OA1

5

cos £5€:—sin £5£:Zcos%

Table 2.3: Direction-ratios ofPtype 2-fold sym m etry axes e.g. (PA1)25ignifies the

I
2-fold axis joining the mid-point of PAXto the mid-point of the inverse edges PA[
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2-fold X:Y:Z
symmetry axes
{A\A2)2 a+ acos fy:asin o:2 {0A 4
1+ cos §:sin §y: 1

(A2Aa)2 acos AS + acos AS : asin AS + asin ff- 12 10A
cos ~ —cos ~:sin A + sin £ : 1
5 5 5 5
(A 3i4.4)2 acos -- + acos casin yl+ asin * : 2 |OA |
-2cos f :0:1
(A4A5)2 acos ~ + acos N :asin — + asin * :2 10A |
—cos | + cos * —sin 7 — sin 01
5 5 5 5
(ABA 12 a cos AS + a: asin AS P2 OA 1
cos —m+ 1:—sin ~ : 1

Table 2.4: Direction-ratios of A type 2-fold symmetry axes e.g. (A\|A2)2 signifies

the 2-fold axis joining the mid-point of A1A2 to the mid-point of the inverse edge

aj;a'.



2-fold X:Y:Z

symmetry axes

(AN\f4)2 a —acos  : —asin * : 0
1+ cos f;sinf:0
(~ 2~ 492 acos . —acos } :asin , —asn , 0

cos% cos%;sin5j_sin%10
(~.2" B2 acos 5 —mncos y : a sin 45;7 — asin o 0
0:1:0
(A3A") 2 acos %5 —acos 5 :asin )y —asin 5 : 0
—cos k —cos m:sin f + sin gy 0
(AzA'f)2 acos if —a:asin 5 0
—cos £ —1:sin7:0

Table 2.5: Direction-ratios of A/ type 2-fold symmetry axes e.g. {A|Ah)2 signifies

the 2-fold axis joining the mid-point of A\A%a to the mid-point of the inverse edge

A[A4
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3-fold

symmetry axes

(PAj42)3

{PA2A3)3

(PA3A 3

(PA4A5)3

@ 445" 13

a + acos ff-:asin ff-: R + 2 |OA |\
1+ cos ~ :sin * :4cos3f
acos 5y + acos ff :asin 4+ asin Yy ; R (-2 10.4 1
cos N —cos f msin 41 + sin £ : 4 cos3 £
acos y- + acos y- :asiny- + asiny : R+ 2 |OA |\
—2cos £ : 0:4 cos3 £
acos y + acos —d:asiny + asiny :1? + 2 |0.4 |
—cos 4 + cos r? : —sin £ —sin N : 4 cos3 £
acosy + a:asiny:i? + 2 ]0.4 |

cosy + 1:—siny : 4 cos3 |

Table 2.6: Direction-ratios of P type 3-fold symmetry axes e.g. {PA\A2)3 signifies

the 3-fold axis joining the centroid of the face PA| A2into the centroid of the inverse

face P'A\A'2.
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3-fold X:Y:Z
symmetry axes
{AxA2A'q)3 a A acos *f + acos £ : asin *f + asin £ : 104 1
1+ cosy + cos £:siny + sin £ : |
(.42% 3% 5)3 —acos | :2asiny + asin £ : |OA |

—cos £:2siny + sin £: |

{AzAaA\)z —acos £ —a:0: |OA |
—cos £ -1:0:1
{ANANAH) A —acos £ : —asin £ —2asiny : |OA \
—cos £ : —sin £ — 2sin f : 1

(" 5" 193)3 acosgf+ a+ acos%:—asin" —asin%:gOAg

5

cosy + 1+ cos£: —siny —sin £: 1

Table 2.7: Direction-ratios of A type 3-fold symmetry axes e.g. (A\A2”"4)3 signifies
the 3-fold axis joining the centroid of the face AM"A'" into the centroid of the

inverse face AXA2A4.
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oriented to these 2-fold axes, which implies the existence of three additional 3-fold
axes equally oriented (allowing for negative direction) to them. This configuration
is realised by the four diagonals of a cube plus the three axes passing through the
cube centre parallel to the cube edges ( Figure 2.9 a) ). These three axes serve
as 4-fold symmetry axes for the cube, so generating the octahedral group {432}.
However, alternate corners of the cube delineate a regidar tetrahedron (Figure 2.9
b) ) for which these axes function only as 2-fold symmetry axes so generating the
tetrahedral group {23}. It will be shown below thai {23} is a subgroup of {532} i.e.

a regular tetrahedron may be embedded within the regular icosahedron.

2.3 The Icosahedral Group

The icosahedral group {532} is isomorphic with the alternating group A5, which
comprises 60 (= | 5!) permutation operators. This representation allows us to write
down immediately the cyclic subgroups of {532} corresponding with the various
symmetry axes listed below.

1. Six cyclic groups of order 5:

{ (12345) , (12345)2, (12345)3, (12345)4, I }; (12345)2 = (13524),  (2.3.1)
(12345)3 = (14253),
(12345)4 = (15432),
(12345)5 = I

{ (12354) , (12354)2, (12354)3, (12354)4. I } ; (12354)2= (13425),  (2.3.2)
(12354)3 = (15243),
(12354)4 = (14532),
(12354)5 = /.



| (12534) , (12534)2, (12534)3, (12534)4, I l (12534)2 = (15423),  (2.3.3)
(12534)3 = (13245),

(12534)4 = (14352),
(12534)5 = I

| (15234) , (15234)2, (15234)3, (15234)4, / l (15234)2 = (12453),  (2.3.4)
(15234)3 = (13542),

(15234 )4 = (14325),
(15234)5 = /.

| (12435) , (12435)2, (12435)3, (12435)4, / l (12435)2 = (14523), (2.3.5)
(12435)3 = (13254),

(12435)4 = (15342),
(12435)5 = 1.

| (14235) , (14235)2, (14235)3, (14235)4,/ } (14235)2 = (12543), (2.3.6)
(14235)3 = (13452),

(14235)4 = (15324),
(14235)5 = /.

2. Ten cyclic groups of order 3:
i7, (1)@)345) } /1 /7, (1)(3)(245) 1
|, ()(©2)(354) , (DE)254) J°

i 7, (1)(4)(235) ' i/, (1)B)234) 1
- ’
1L owess ) oees J

7, 23145 | i 7,(2)HA35) 1
1 -@Eas J' 1 @@ass) J

[y

i7,@)5)134) 1 i [/, (3)(4)(125)

—

oo |1 6)n(s



/, 3)(5)(124), 1 i/, (9(5)(123), '
(3)(5)(142) J 1 (4)(5)(132)

3. Fifteen cyclic groups of order 2:

{, A2)@9YG) }, {/,A3)2HEG) },{/, AHE23)06) },

t, A2)@5@) §, {/,13)25)¢) §,{/, (15)(23)4) },

{1, 12)450) 3, {/,09250) },{/, 15249)A) },

{/, 13)45)(2) 3, {/ ,(19@35)(2) },{/, 15)(BH?2) },

i1, 23)5)@) }, {/, 2HEB5Q) §, {1/, (25)B4)(Q1) }, (2.3.8)

From these cyclic groups we may build up dihedral subgroups of three distinct

types as already anticipated on geometrical grounds:

i) {52} type generated by (12345) and (14)(23)(5) subject to relations

(12345)5 = [(14)(23)(5) ]2 = [(12345) « (14)(23)(5) ]2 = 1 (2.3.9)

corresponding with a 5-fold principal axis and five secondary 2-fold axes.

i) {32} type generated by (123)(4)(5) and (23)(45)(1) with the relations

[(123)(4)(5) 13 = [(23)45)(1) ]2 = [(123)(4)(5) . (23)45)(D) 12 = T (2.3.10)

corresponding with a 3-fold principal axis and three secondary 2-fold axes.

34



1) {22} type generated by (12)(34)(5) and (13)(24)(5) subject to relations

[(12)(34)(5) - (13)(24)(5) ]2

[(12)(349)(5) 12 - [(13)(24)(5) ]2
(2.3.11)

[(14)(23)(5)]2 = /

as exhibited below by the first row of (2.3.12)
By contrast with {32} there exists a tetrahedral group {23} (= T) within {532}
having the following multiplication Table:
I 12)349HBG) 13)249)(5)  (14)(23)(5)
7 = < 12)D)G) 1HER)G) (243)(1)G)  (142)(3)(5)

132)(4)(5) 2349 B  A29)3)(B)  (143)(2)(5)

generated by (123)(4)(5) and (12)(34)(5) with relations [3]

[(123)(H)(B)] + (12)(349)(5) |3

[(123)(4)(5) 13 = [(12)(34)(5) ]2

(2.3.13)
= [a3H@)B)]8 = /.

By virtue of the 5-fold symmetry of the icosahedron there exists five such tetrahedral
groups within {532} i.e. replacing (5) by (1), (2), (3), (4) in turns into formula
(2.3.12).

We are now in a position to write out the coset decomposition of {5632} with

respect to T

{632} T + (12345) T + (12345)2T + (12345)3T + (12345)4 7T,

(2.3.14)

{532} T + T (12345) + T (12345)2 + T(12345)3 + T(12345)4

so providing the group multiplication Tables 2.8 and 2.9. Note that
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(P75)2

Figure 2.9: a) Delineation of a cube showing three 2-fold axis of symmetry plus four

3-fold axis of symmetry [4],

Figure 2.9 b) Four atoms lying at the corners of a cube can be transformed into
each other by operations of the tetrahedral group. Note that the solid atom marked

[PA\A-i)i has an inverse marked by the shaded atom along the opposite diagonal.
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(12345) T + T (12345)

showing that 7 is not an invariant subgroup of {532} (consistent with the fact that
{632} is a simple group). In fact A5 is a subgroup of the symmetry group S5 as

discussed in Appendix C.

2.4 Angles Associated With The Icosahedron

In this section we utilise our drs to explore two primary angles characteristic of the

icosahedron

1. angle subtended by an edge: 2 ¢

2. dihedral angle: tt — 2
The edge PA\| subtends an angle 2 ¥at O given by

OP - OAt [PP% . (IM"'i),

cos 24
S5 0P |- |0Ax (pp% \. |(A./is

—>see Table 2.2 <>

. (0,0,1) > (2,0,1) J

- (2.4.1)
y/5 y/5
This verifies the Coxeter formula
cos | » cos f 21
co
° sin q sin { ZF (2.4.2)
since
2(0) 2 29 1 1
cos — 2 cos — 1=
4 sin2 4 75 (2.4.3)

37



on noting

2
s —

The two neighbouring faces PA1A2, A\A2A'a have normals dehned by the 3-fold
axes (PA\ A2)3? (A1A2A4)3 see Table 2.6 and Table 2.7.

These meet at an angle 2 ip given by

. (PA\A2)3 « (M4i4244)3
cos 21Iip =
(PAiA2)3 TT{A\A2Ab)3

(I + cos fY + sin2f + @

5)
' (v + 2 = V5
I (2V5 + 5) 3
(2.4.4)
This verihes the Coxeter formula
cos f cos f
cosiP= — f (2.4.5)
sm 3
since
4 2¢ S(1- sin2]) - 38
cos 2ip = 2cos2ip — 1 9 .« 2.90%2 5, L ( )
3 3
(2.4.6)

From this observation, we infer that (2.4.4) provides cos $¥for the dodecahedron and

simultaneously (2.4.1) provides cos ip for the dodecahedron as will be exploited on

geometrical ground in the next chapter.
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(12345)

(13524)

(14253)

(15432)

(12345)

(13524)

(14253)

(15432)

(12)(34)(5)

(12)(34)(5)

(135)(2)(4)

(14523)

(15324)

(254)(1)(3)

(13)(24)(5)

(13)(24)(5)

(14325)

(152)(3)(4)

(345)(1)(2)

(12354)

(14)(23)(5)

(14)(23)(5)

(15)(24)(3)

(25)(34)(1)

(12)(35)(4)

(13)(45)(2)

(123)(4)(5)

(123)(4)(5)

(13245)

(14)(25)(3)

(15342)

(354)(1)(2)

(134)(2)(5)

(134)(2)(5)

(14235)

(15243)

(253)(1)(4)

(12)(45)(3)

Table 2.8: The left coset decomposition of {532} with respect to T.

39



(243)(1)(5)

(243)(1)(5)

(125)(3)(4)

(13452)

(14)(35)(2)

(15423)

(142)(3)(5)

(142)(3)(5)

(15)(34)(2)

(235)(1)(4)

(12453)

(13254)

(132)(4)(5)

(132)(4)(5)

(145)(2)(3)

(15234)

(24)(35)(1)

(12543)

(234)(1)(5)

(234) (1)(S)

(12435)

(13)(25)(4)

(14532)

(154)(2)(3)

(124)(3)(5)

(124)(3)(5)

(13425)

(14352)

(153)(2)(4)

(23)(45)(1)

Continuation of Table 2.8 along the row direction.

40

(143)(2)(5)

(143)(2)(5)

(15)(23)(4)

(245)(1) (3)

(12534)

(13542)



(12)(34)(5)

(13)(24)(5)

(14)(23)(5)

(123)(4)(5)

(134)(2)(5)

(243) (1)(5)

(142)(3)(5)

(132)(4)(5)

(234)(1)(5)

(124)(3)(5)

(143)(2)(5)

(12)(34)(5)

(13)(24)(5)

(14)(23)(5)

(123)(4)(5)

(134)(2)(5)

(243)(1) (5)

(142)(3)(5)

(132)(4)(5)

(234) (1)(5)

(124)(3)(5)

(143)(2)(5)

(12345)

(12345)

(245)(1) (3)

(14532)

(13)(45)(2)

(13452)

(12453)

(145)(2)(3)

(23)(45)(1)

(345)(1) (2)

(13245)

(14523)

(12)(45)(3)

(13524)

(13524)

(14235)

(354)(1)(2)

(12)(35)(4)

(24)(35)(1)

(14352)

(12354)

(135)(2)(4)

(12435)

(14)(35)(2)

(13542)

(235)(1)(4)

(14253)

(14253)

(13254)

(125)(3)(4)

(25)(34)(1)

(14325)

(254)(1)(3)

(13)(25)(4)

(12534)

(14)(25)(3)

(12543)

(253)(1)(4)

(13425)

(15432)

(15432)

(153)(2)(4)

(15234)

(15)(24)(3)

(154)(2)(3)

(15)(23)(4)

(15342)

(15243)

(15423)

(152)(3)(4)

(15)(34)(2)

(15324)

Table 2.9: The right coset decomposition of {532} with respect to T
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Chapter 3

The Regular Dodecahedron

3.1 Introduction

In this chapter we study the underlying structure of the regular dodecahedron from
the face perspective as this method of representation correlates with the vertex

perspective of the regular icosahedron, which has been discussed with great clarity
in the previous chapter. This study focuses on how the face perspective catered for
the conclusive evidence of its icosahedral symmetry. To prove this, we implement
a similar coordinate system for the regular dodecahedron as we did for the regular

icosahedron.

3.2 Face Perspective

The regular dodecahedron is a complementary figure to the regular icosahedron,
and it therefore has the same symmetry axes with the role of the vertices and faces
interchanged. Accordingly there are six 5-fold axes joining the centres of opposite

faces, ten 3-fold axes joining opposite vertices, and fifteen 2-fold symmetry axes
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joining the mid-points of opposite edges. Also it has an inversion centre, 0, which
is the common point of intersection of all the axes.

We now introduce a rectangular coordinate system for the regular dodecahedron
of edge length 2/, starting with any face. This is a regular pentagon A\, ..., As,

centre A with circumradius a, as already illustrated in Figure 2.5, where we find

that

T
2a sin — = 21 2.1
5 sin f 3 )

as in (2.1.3). Also we note from the isosceles triangle A1A2A43 (Figure 3.1) that
. 3i .
AxA31— 2 TA\Ai sm m = 4/ sin ™ = 2a (3.2.2)

The edge AxAZ2 is shared with the pentagonal face AxA25x525 4 where 5 45 2
lies parallel to AxA2 (Figure 3.2) with |5 45 2 |given by (3.2.2). Accordingly there
exists a second pentagon Bi, 52, 53, 54, 55, centre 5, of circumradius b which
is similar and similarly situated to the A-pentagon as depicted by the orthogonal
projection of the A-pentagon upon the 5-plane in Figure 3.3 (a).

Note from similar triangles that

155i 1 A*A* j 1AA1 1 a

3.2.3
I15i52 aia 2 1A1A2 | ~ 21 ( )
55j J=15x521. —
Since 1545 2 |is a diagonal of the face AiA25i5 25" we conclude that
b 2d 2 - 4] sin _, aA
2/ TO 24
(3.2.4)
— 2 a sin = 2,8}
sm j

Finally, the vertical separation between the pentagons may be calculated by

reference to Figure 3.3 (b):



|AB R= |AyA* R= |AyBy P ByA\ R= 4/2 - (b - a)2

Substituting for / in terms of a from (3.2.1) and for din terms of a from (3.2.4) gives

rise to
( +9 T\2 . Bir \
1AB 2= 4 asm —73 — 2asm — —a
\ 5 0 Y
= 4a9 s'1191 Mda 9sni "'t 4a 9SIIt1 2T 9
5 10 10 (3.2.5)
'5 - \/5 + ' +
- 4 n 422 3 \/bS+ 4aa 1 V5
= a2 (see Appendix D).
The pentagon By, ..., B5, centre B, inverts into the parallel pentagon B/, ...,

B'-. centre B’, where B\ has already been met as a corner of the face AyA2ByB2B'4

(see Figure 3.4). Since O is equidistant from each vertex, we see (Figure 3.3 (b))

that

R2=10Ay B= I0A 2 + 1AAy 2= 10A B + a2, (3.2.6)

and also

R2=\10By\2=\10B R+ |BBy R= |OB R + b2 (3.2.7)

where R denotes the circumradius of the dodecahedron. Equating (3.2.6), (3.2.7)

for R2 and bearing in mind |OA \= |OB \+ |BA \where a, b, |AB \are known
from (3.2.1), (3.2.4) and (3.2.5) provides

OB P= |0A R+a2- b2= (|OB \+ |BA |2+ a2- b2
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| OSR+ |BA R+2 \0B\ \BA |\ +a2- b2

| OB2+ a2A 2a \OB \+ a2 - b2

= | OB2+ 2a |OB |+ 2a2 - 62

so that
0S b2 —2a2 4 a2 sin2 2r 5 . 3r
2 TAS I ~ 2~ T BT
grann -7 A (3.2.8)
8 ) 4
Now
—1 + o5 3+ 475
0.4 I=I0OB 1+ IBA  -----e- L Aa - Pt (3.2.9)
Utilising the expression (3.2.6) for R2now gives
* . '
R2 = a s1.n2 — +| a2=4 a2(\7in2 3T + a2
10) 10)
3 + v/5\2 , /14 + 6y/E\
4a2 VONS L a = 402 LT Y 4 an
8 J AT
(30 + 64 5)a2 (30 + 6\/5) 12
16 16 sin? T
l.e.
/P = A = (3 /1 (3.2.10)

on solving a2 in terms of /2. The resulting R is equal to that classically aviiilable as

displayed in Appendix A.
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A/\

Figure 3.1: The aerial view of the dodecahedral pentagonal face showing A1A3 as

diagonal of the face A142 ... As.

Figure 3.2: ‘Wire’ model of the regular dodecahedron. Note that the edge A\Ai
lies parallel to B\B2 with A\A2 as the join of 2 adjacent faces AVA2 ... A5 and

A\A2B\B2B\.
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b3

(a) Plan view a
/1
(b) Elevation view
B =
0

Figure 3.3: Orthogonal projection of the A-dodecahedral pentagon onto the B-

pentagonal plane.
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B4

Figure 3.4: The points B”, ...mark the inverses B[, ...upon the 5-pentagonal

plane. The corresponding diagram for the A-plane has been given in Figure 2.8.
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3.3 Rectangular Coordinate System

A suitable coordinate system may now be constructed with O as origin and OA as
the positive z-axis. If so z = |OA \for all points in the A-plane and 2= |OB |\
for all points in the 5-plane. Vertices within the .4-plane may be conveniently

represented by the complex vectors

. : 2tt .. 2t
AM aedd = a, AX2 = ae' » a ;cos = + Asm =J (3.3.1)

following (2.1.4), and within the 5-plane by

_ ‘A J 2 / 2fr o 271N . .
BBi = beM = 6 552= be 5 = b (cos — + 1sin —J,../  (3.3.2)

Breaking down the complex numbers (3.3.1), (3.3.2) into their x, y
components, we obtain the x, y, z coordinates of Aj, A2, ..., 5t, 52, ... as listed
in Tables 3.1 and 3.2.

Since x, y, z inverts into —x, —y, —z we immediately have the coordinates of

A\ ..., 5(. Of course

A = (0,0,] OA]), A" = (0,0,- |OA ) (3.3.3)

Tables 3.3 and 3.4 list the direction-ratios (drs) of the ten 3-fold symmetry axes
(AiAM3 ... (5j5()3 ... which join the inverse pairs of vertices.
Similarly Tables 3.5, 3.6 and 3.7 list the drs of the fifteen 2-fold axes (A1A2)2 ...
(Ai5i)2...(5154)2 ... which join the inverse pairs of mid-point of the edges.
Finally Table 3.8 lists the drs of the six 5-fold axes (AA")5, (FiF[)s, ... (FAFA5
which pass through the six face-centres A, 7), 52, ... F4 and the the inverses A', FY,
F2 ... Fx where Fi, F2 and F3 are the centres of three faces which adjoin the face
A1A2A 3A4A 5 as shown (Figure 3.5).

A regular icosahedron may be embedded within the dodecahedron by joining
adjacent face-centres. Thus |AFi |becomes the edge length of the icosahedron. We

may verify that
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as expected where Rlc denotes the circumradius of the regular icosahedron, so

providing a fresh confirmation of the embedding property.

3.4 Angles Associated With The Dodecahedron

The two neighbouring faces A1A2A3A4A5 A1A2B1B2B4 have normals defined by

the 5-fold axes (AA')s, (F[F[)5—see Table 3.8. These meet at an angle given by

OA - OFx  (AAMs - (FFDs

(0,0,1) * (2(5 + 2x/5),2(6 + 375) sin f,5 + 375)

010 + 4x/5)2+ ((10 + 675) sin f)2 + (5 + 3V5)2

5+ 3\V6 _ 1
15 + 5\/5 \/b

This verifies the Coxeter formula

cos cosj- = \

cos p = ——* . :
sin £ sin j sin 7
p 5 5

since that

The edge A 1A2 subtends an angle 2 at O given by

(3-4.1)



0A\ 9 OA> _  (A1AD3 + (2023

cos 2e = A
A\ | -« 10A2 F(MA-Ds |« 1 (42A°2)3 |

c*see Table 3.3 <1

(4\/5,0,5 + 3~5) + (5 - \/E (10 + 2yJE) sin f ,5 + 3 ")
1j(30\N/5 + 150) + yj{30>/5 + 150)

50 + 50x/5
150 + 3075 _ 3

(3.4.2)

Again, this verifies the Coxeter formula

coSs . cos 7 cos 7
COS » = —— = _—_ . = ..
sm - sin 1 \/3/2
since that
4 cos2 6 - 3

cos 2= 2cos29p—1= 2 1

Of course, this equals the value of cos 2ip given by (2.4.6). Therefore the observation
that (2.4.4) provides cos % for the dodecahedron whilst (2.4.1) provides cos ip for
the dodecahedron are hereby verified. In the light of this result, we confer that the
icosahedral symmetry found in these two complementary solids paved a way to the

configuration of C2 of the buckyball, as will be exploited in Part II.
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Figure 3.5: Photoprint of the regular dodecahedron which displays three of the five
adjoining face-centres ,4, Fi, F2, . . F\. The tesselation of this model is based upon

Escher’s drawing in [5].
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Vertices X,y,2 Inverse Vertices

M (a,0,] OA ) Al
a (1,0, ~ )
A2 (a cos a sin 10A A2

a (cos 2',sin Zr, 3+4£4")

A3 (a cos asin 10A ) Aj

a (- cos sinf,

a4 (a cos a sin |OA Ag
a (- cos f,- sin §,

as (a cos asin , |OA ) Als
a (cos sin 3+4v”)

Table 3.1: Coordinates Of The Vertices In The A-plane. Note that a = ¢ esc

| OA |is effectively provided by formula (3.2.9).

53



Table 3.2: Coordinates Of The Vertices In The B-plane. Note that 6, | OB |are

provided by formulae (3.2.4), (3.2.8) in terms of a.
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3-fold X:Y:Z

symmetry axes

(A1A1)3 2a : 0:2 |OA |
2:0:
*.2* 23 2a cos y :2asiny :2 |OA |

2cos § : 2sin &
(A3A38)3 2a cos ~ :2asiny :2 |OA |
2cos g: 2¢in £ :
*.4” 93 2a cos y :2asin y-:2 |OA |
2cos g: 2sin' : 3+/ E
(* 5" 53 2a cos * :2asin* :210A1
2cos 2 : 2sin §

Table 3.3: Direction-ratios of A type 3-fold symmetry axes e.g. (AiAj)3 signifies

the 3-fold symmetry axis joining the vertex Ai into its inverse A'v
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3-fold X:Y:Z

symmetry axes

{BiB[)3 4asin ff : 0: 2 [OB |
4¢in jo : 0 : + 7
(B2B)5)3 4a sin cos N : 4dasin sin y- : 2 |OB |
4sin jfycos B : 4sin qysin £ : 9
(&>%), —4a cos2 | : 4asin sin | : 2 |OB |\
4cos2! :4sn % sin ' ~x+A
(B4B14)3 —4a cos2 | : —4asin sinf : 2 |OB \
—4 cos2 | : —4 sin gin | : ~x+*

(BSB'S)3 4asin fffcos 1) —4asin fsin iy : 2 JOB 1

4sin g cos f : -4sin g sin f

Table 3.4: Direction-ratios of B type 3-fold symmetry axes e.g. (B\|B[)3 signifies

the 3-fold axis joining the vertex Bi into the inverse vertex B/.
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Table 3.5: Direction-ratios of A type 2-fold symmetry axes e.g. (AiA2)2 signifies
the 2-fold symmetry axis joining the mid-point of the edge AXA 2into the mid-point
of inverse edge A[A'2.
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2-fold X:Y:Z

symmetry axes

(Aigi)2 3+ a:0:|OA \+ \OB \
3+75 , n, 2+VW)
2 u 4

(Mah )2 a: (2 + x/5) asin § : \OA\ + \OB\

: (2 + x/5) sin '

{A*Bf)2 ANAVIl a. iiiv]iasin.: ; |[OA |+ |OB |
-2+75) . 3+V5) . N . (@2+7s)

® 2 o1 5 ° 4

(A 4P 42 ~(2-?V/g) a : zilxZIl asin £ il OIA b+ 1| OlB \
“(2+V5) . -3+75) »jn » . (2+75)
2 2 5 % 4

(Ns7s)2 iixr"1a : -(2 + v/5)asin f : |OA |+ |OB \

U-iya : (2 + vA) sin f : 2+ 7

Table 3.6: Direction-ratios of AB type 2-fold symmetry axes e.g. (AiBi)2 signifies
the 2-fold symmetry axis joining the mid-point of the edge AXBXinto the mid-point,
of inverse edge A\ B/.
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2-fold X:Y:Z

symmetry axes

(BIBA)2 5+, a: /A asin Z:0

54, :1V® sin{ : 0

(B2B'5)2 0: (3 + \/Byasin | : 0
0:1:0
-(>+ 1+ 1 3 * .
(B3B[)2 (S 43>/51 i+yiasin *; 0

-(s+Ws) : 1 sin Z:0
4 2 5

(B4B!2)2 -(5 +y/}9a . _A2 J_ an | *0

@+ x/5)sin | :0

(B5B'3)2 5 a: —2 + \/Basin | :0
:-(2 + Vo)sin f : 0

Table 3.7: Direction-ratios of B’ type 2-fold symmetry axes e.g. (T?°L )2 signifies
the 2-fold symmetry axis joining the mid-point of the edge BxB4into the mid-point

of inverse edge B/B4
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5 fold X:¥. 2 :
syriTneliy ares I
I
(AA7s D:0:2|cra |
00 I
(FyFlls DERB s MRS L Gn 22|04 + | OF
G4 T . b T sin & - 5 Ay i
2 ‘ 2 ' o 4 '
(FyF)s Ca By (5 +2vBlasin £:2|0A] | OB |
LB (5 42 v/B)sn £ R0
(FaFys —2a(d + 33 0:2/ 04| = |OF|
’ fol:-l
(Fdyls | 2228 (5425 esin &1 2| 0A| + | OB
5 s (5 424/3) sin 1 5228
|
I
{Fofla Srnfa . (SHRWE Gy 29104 - | 08|
R R - B o 7] ST Y o 1Y,
T T Sl g - T

Table 3.8: Direction-ratios of S-fold aymmetry axes c.o. [AA')s signifies the 5—fold
syranetry axis joining the centroid of the pentagonal face A into the centroid of the

inverse face A’



Part 11

FULLERENES
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Chapter 4

cq.q: Buckminsterfullerene

B3 3
4.1 Introduction

With the advanced role of science in today's world we gain more knowledge of carbon,
its existence and properties than we could ever imagine. Though we cannot detect
it directly, its atoms are in every cell of our bodies, which makes carbon at the heart
of all that sustains life on earth. In 1985 Kroto, Smalley et al. [6], on the basis of
spectroscopic evidence, deduced the existence of a new carbon molecule C&) difFused
through interstellar space. They also proposed that the molecule had an essentially
spherical shape, the “buckybaU”, previously unknown to carbon chemistry. A few
years later Kratschmer, Huffman et al. [7] produced C@) crystals in the laboratory,
which opened the way to an explosion of experimental and theoretical research which
still continues. Some mathematical features of buckyballs will be explored in this
thesis, building upon the work of Part I
The carbon atom has four valence electrons, which are available to form

directed pair-bonds with neighbouring carbon atoms in symmetrical configurations.
In diamond, for instance, each carbon atom lies at the centroid of a regular

tetrahedron defined by its four nearest neighbours (Figure 4.1), and this pattern is



repeated in space to produce the diamond crystal. The C-C bond arises from two
paired electrons, one from each atom, which oscillate between them to produce an
attractive force according to the rules of quantum mechanics. This is the covalent
bond of theoretical chemistry.

For some structures, only three of the valence electrons are utilised to form
directed pair-bonds e.g. graphite. Here each carbon atom lies at the centroid of an

equilateral triangle defined by its three nearest neighbours, so providing

OA = OB = OC = 1.420(4) A (4.1.1)

showing an intermediate bond strength between d(6:5) and d(6:6). This pattern is
repeated to produce the two-dimensional hexagonal layers as depicted in Figure 4.2
(a). The fourth valence electron (7 - electron) breaks free from its atom and moves

parallel to the layers so helping to

(i) maintain the layers as planes and

(ii) stabilise them into an equilibrium stacking characteristic of the graphite

crystal.

Diamond and graphite were the only structures for pure carbon known before 1985.
In that year, as already mentioned, the buckyball configuration was envisaged. This
has 60 carbon atoms arranged symmetrically on the surface of a sphere of radius

R ~ 3.550(10) A [7,8], as depicted by the vertex points of a black-and-white football
model covered by 12 regular spherical pentagons and 20 (slightly distorted) regular
hexagons in Figure 4.3 (a). Equivalently we may imagine a regular icosahedron
truncated at the the vertices, so providing a pentagonal-hexagonal framework as
depicted in Figure 4.3 (b). Now two fundamental questions which arise from this

model remain to be considered.

1. Must there be only 12 regular pentagons and 20 regular hexagons?

2. Is there a unique symmetrical arrangement of 60 equivalent carbon atoms on the

surface of a sphere?
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The first question is intimately connected with Euler's formula. Let the faces of a

polyhedron comprise p pentagons and A hexagons only. Then

F=p+ h (4.1.2)

Since the pentagons contribute 5p edges, whilst the hexagons contribute &1 edges,

therefore

due to each edge being counted twice. Likewise, since each vertex is common to

three edges it follows that

v (P ; 6h ) (4.1.4)

Euler's formula now gives

Sp + 6h\  fip + 6k
F+V-E =@+n+ 7 fop

6(p+ h) + 2(5p + 6h) —3(5p + 6h) p
6 = 6

so that p = 12.
This result imposes no mathematical constraint on h. However, as will be shown

later, we must choose A = 20 or h — 0 to ensure a spherical configuration.

4.2 Geometrical Construction of Cp

Because the structural principle underlying C6o is in line with the geodesic dome
created by the American architect Buckminster Fuller, who based it upon a

hexagonal and pentagonal framework, this spherical configuration has been termed
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Figure 4.1: The carbon-bonding structure of a diamond. Each cluster of carbon

depicted at four vertices of the regular tetrahedron.



(a) Note that the three neighbouring vertices to

2) form an equilateral triangle [9]

(b) Here OA = OB = OC = (6:6), i.e. a hexagonal-hexagonal boundary.
Corresponding chemical data yields ;(6:6) = 1.420 A; with AOB = BOC =
COA = 120°.

Figure 4.2: Planar configuration of graphite layer.
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Figure 4.3: Idealized structures of C&) displayed by (a) a black-and-white football

model (b) lattice model showing a pentagonal-hexagonal pattern on the surface of

a sphere.
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“buckminsterfullerene”" or buckyball for short. By the same token we refer to the
chemical compound composed of Cg0 molecules as fullerene.

A useful starting point for buckyball analysis is the regular icosahedron of edge
length 2/ to be determined. This has a circumsphere of radius R—which passes
through all the vertices. Any vertex P is chosen as the pole vertex i.e. has coor-
dinates (0. 0, R) relative to the rectangular cartesian system introduced in Part L

Now replace P by a shallow spherical cap of depth

h—fR (4.2.1)
where / is a non-dimensional parameter approximately within the interval
0.01 < / < 0.142. A regular pentagon pi, , ..., ps, centre Po, is then inscribed in

the latitude circle of radius p = | Pp\ |where Po marks the projection of P upon

the latitude plane. If so
i0A 2=10p 012+ 1pQp T
Le.
R2={R - h)2+ p2
S0 giving

p — R \fpf (4.2.2)

on neglecting O (/2) in comparison with O (/)¢ See Figure 4.4 for details.

We may choose pi so that it is located in the .AOZ-plane i.e. plane of great,
circle passing through P and the neighbouring icosahedral vertex Al (Figure 4.5).
By analogy with the pentagon A\, A2, .... A$§ (Chap. 2), vertices of the latitude

pentagon (Figure 4.6) may be conveniently represented by the complex vectors
PoP. = pe'®, PoP: = pel~,... (4.2.3)
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Figure 4.4: Spherical pentagon with latitude circle of radius p

\
Al

Figure 4.5: A convenient location of pt on the great circle, which pass through pole

vertex P into the neighbouring icosahedral vertex Aj.
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(a) Plane view

(b) Elevation view Po

A e Po*

Figure 4.6: Orthogonal projection of parallel latitude pentagons.
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which provide the x, y coordinates of pi, p2, ..., ps respectively as listed in Appendix
E. If so. then the x, y coordinates of p2, ..., ps are the same as Ai, A2 ...,
.45 (see Table 2.1) with a replaced by p. Of course all the vertices have the same

z-coordinate given by

\OP0 \= \OP\ - |PPO|= R - h~ R(1- /). (4.2.4)
The pentagon has a side of length

d{6:5) = |pt - p2|= 2 |To - P Isin%

which brings out the dependence of d(6:5) upon R and /. Note that the football
model of course depicts a spherical pentagon, with \Pi —p2 \replaced by |px — p2\
1.e. arc length of great circle joining p\ and p2. A rough calculation of the ratio

\pv —pP2 |/ \Ih — p2 lis given in Appendix F showing it to be ~ 1.02 for the
natural buckyball.

The remaining 11 spherical pentagons may be constructed by symmetry oper-
ations upon the pole pentagon as explained in Chap. 5. An immediate consequence
is the automatic appearance of 20 spherical hexagons carved out from the 20
spherical triangles of the original icosahedral circumsphere. Hence we have deduced
the football model by imposing spherical symmetry upon a hexagon-pentagon frame-
work. This model provides a useful visual supplement to the truncated icosahedron
model often pictured by (see Figure 4.3). Of course the latter model is more realistic

since C-C bonds appear as straight lines rather than as arc of circles.

4.3 Preliminary Perspective of o

Clearly the buckyball is a spherical variant of the graphite layer in which hexagonal

distortion arises consequent upon the necessary presence of pentagons. To examine



this in detail, refer to Figure 4.7 which exhibits a vertex 0 and its three neighbouring

vertices A, B, C. Note that we write

OA = OB = d{6:5), 0(7 = d(6:6) (4.3.1)

since OA, OB form hexagonal-pentagonal boundaries whilst 0 0 forms a hexagonal-

hexagonal boundary. Chemical data [16] yield

d(6 :5) = 1.455(12) A, d(6:6) = 1.391(18) A (4.3.2)

showing that the pure hexagonal bond is stronger than its neighbours. A further
effect is the slight distortion of the hexagon from regularity due to sides of alternating
length.

Note that the pentagon remains perfectly regular since all its sides have d(6:5)
character, with AOB = 108.0(1)°. Finally, as in graphite, each buckyball atom
donates a valence electron to the molecule as a whole (7r-electron), which becomes
available for electrical conduction when the molecules crystallise into a lattice. See
Figure 4.8 for details.

In Chap.5 we compute the coordinates of neighbouring vertices in a buckyball. This
enables us to determine d(6:6) as a function of the shallowness parameter / for a
given R. Utilising (4.2.5), we obtain the ratio 8 = d(6:6) / d(6:5) as a function of
/ without reference to R. Some choice of 8 will be considered in relation to possible

buckyball configurations.
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Figure 4.7: Two distinct carbon bonds d (6:6) and d(6:5)

in bucky ball. Carbon atom at 0 has three directed bonds
linking it with nearest neighbours A,B,C. Here hexagons
cannot be perfectly regular, since d(6:5)* d(6:6) by
virtue of the following chemical data: d(6:5)=1.455(12) *a,
d(6:6) =1.391(18) 'A. We also note Ai)B=108.0(1)“ AOC=BOC=
120.0(1)°.

73



Figure 4.8: The iourth valence electron of the carbon atom is utilised as the double
bond, which enhances the strength of the pure hexagonal bond [17]. The arrow ---->

corresponds to double bond emanating from a pentagon, five from each pentagon.
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Chapter 5

Bonding Structure of Cgg, C20 and

Graphite

5.1 Determination of Pentagon Coordinates

The P-pentagon (pi, p2, ..., ps) has five nearest neighbouring pentagons centred
respectively upon the five icosahedral vertices A\, A2, ..., A5 (see Figure 4.6), in
particular the Ai-pentagon with vertices an, ai2, ..., a\5. The vertex an lies upon

the great circle joining P and A\ (Figure 5.1), being located approximately as close
as to pi as its home neighbours p2, ps i.e. the an-atom is available to provide a

third pair-bond for the pi-atom chemically required. Accordingly we write

d6:6) = |P1 - an | (5.1.1)

where the coordinates of pi have already been determined as a function of the
shallowness parameter /. However, it remains to compute those of an.
Note that a rotation through n about the axis (PAi)2 see Table 2.3 for its

direction-ratios (drs), transforms P into Ai (Figure 5.2). The same rotation trans-
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Figure 5.1: Note that an is the nearest vertex to in Aj-pentagon, joining two

neighbouring icosahedral vertices P and Al.
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Figure 5.2: Transformation of icosahedral vertex P into icosahedral vertex Ai by
rotation through T about (PAi)2 generates a 2-fold symmetry axis passing through
O and the mid-point of PA\.
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transforms p\| into an, and more generally

P\i P2, MERi Ph —* ftu, al2i «--i «15

This transformation may be implemented mathematically by a rotation operator
symbolised M (h k/; 9) where h, k, I are the drs of the axis and 9 is the angle of
rotation [9].

To construct M (hkl; 9) we transform from the original rectangular coordinates

x, y, 2 to new rectangular cartesian coordinates X, Y, Z defined by

OZ | h:k:1,0X |/:0:h,OY | hk:h2+ 12:F] (5.1.2)

which we may describe by the axis transformation matrix

1IN 0 AN*

1/2
XYZ |xyz) = NS hk S2 K \S = (/2+ h2

hS kS IS
N = [h2+ k2 + /912 (5.1.3)

Note that (XYZ | xyz) is an orthogonal matrix, so that (XYZ | xyz)~[ =
{xyz | XYZ) = transpose of (XYZ |\ xyz). If so, M provides a rotation through

9 about OZ, i.e. it takes the simple form

cos 9 sin9 0

Mz (00 1;0) sin 9 cos9 0 (5-1.4)
Now

( | (

X X
M(h k139 , = (xyz |XYZ) Mz(00L0) (XYZ \xyz)

1z o N
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showing that

M (hk 1,9) = (xyz 1XYZ) Mz (001,00 (XYZ \xyz) (5.1.5)
e o folk) ( h2 hk hi \
L0 sin 0 : \ 1 —cos O wh k2 Kl
0 + N 0 N2 2
oo E "k h O y hi ki i2dJ

Substituting h 1, Rk —0, /= 2cos I and 9 = & into (5.1.5) gives the matrix

expression

!/ -x/5 2\/5 \
5 5
M = cos 9 0 -1 0 (5.1.6)
2\/5 y/Z
~ o T °
Note as expected that
(a) M (hk/;0) = 1for any A I
(b) M (001,00 = Mz (00 1;0).
It may readily verified that
Mx,y,z)p = (x,y,z)" (56.1.7)

where

{x,y,z)p = (0,0, R),

ix/Y/z)ax= (a,°,5). 6{'8)
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If so, then

M(x » Y Z)pl = (.’)C, Y, 2)(1]1

(5.1.9)

since

*»V> 0>1“ /) - (5.1.10)
Proceeding in a similar way with p2, pz, Po and p5, we then arriv at all the

coordinates of the corresponding vertices ai2, ais, ai4 and al5, for 0.01 < f < 0.142.

Therefore

d(6:6) = |pi - an |

(5.1.11)
so providing
A_ d6:6) _ 1Pi - an [
d(6 : 5) lpi - p2 |
[(=£5 + 2#(1 - /) - v'V)2+ (% #4711 - D) o

~ 2 VAT sin |

This formula enables $to be readily calculated for any choice of /.
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5.2 Relation of d(6:5) and R for a given /

Table A, accompanied by FORTRAN program, in Appendix G lists 6 as a function of
/, starting with /0 = 0.010, and increasing in units of A / = 0.001 until fmax =
0.141. Note that 60 = 4.814 showing, as may be seen directly from Figure 5.3, that
the pentagons become vanishingly small compared with the hexagons in the limit
of a shallow cap. We start with /o = 0.010 since 6 = oo when / = 0.

At the other extreme, $= 0 at which point the hexagons become vanishingly
small compared with the pentagons, i.e. the dodecahedron circumsphere may be
produced from a buckyball by a continuous expansion of the buckyball pentagons-
see Figure 5.4 for details. This will be further discussed below as a possible model

for C20- Two intermediate values of 6 are of interest:

(i) & = 1.00 at fg = 0.059 i.e. the case of undistorted hexagons since now

d(6:5) = d(6:6), so to speak mimicking the graphite configuration.

To examine this further, we rewrite (4.2.5) as
= 2"2J¢ sin | = 0.404 (b.2.1)

which provides a relation between d(6:5) and r coresponding with ¢ (Figure 5.5).
A suitable choice for d(6:5) would be the graphite bond length d(6:5) = 1.420(4) A,
which gives Rg = 3.520(4) A. This approximates tolerably to the observed radius,
R ~ 3.550(10) Asee reference [7,8], suggesting that a minimization of hexagondl
distortion is the essential factor in produdng the buckyball dimensions.

(ii) 6n. 0.956 corresponding with fn = 0.061 as obtained from (4.3.2), i.e. the natural

buckyball configuration.

As before, we note

d(6 : 5)

Rn

2VQTn sin % = 0.411. (5.2.2)
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Choosing d(6:5) = 1.455(12) A as in (4.3.2) now yields R = 3.540(8) A which
approximates closely to the observed radius. This encouraging result demonstrates
the essential soundness of our mathematical model.

As regards the choice 8 = 0 mentioned earlier (fmax = 0.141 from Figure 5.6), we

have the relation

= 2/2 fmax sin ~ = 0.624. (5.2.3)

Accordingly as with (i), we choose d(6:5) = 1.420(5) A which yields Rnux = 2.276(16)

A for the C20 molecule.
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PLOT of

Figure 5.3: Profile of 6 exhibiting its decrease as / reaches its limiting value. This

is the stage when the sphere is fully covered by regular pentagons.
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Figure 5.4: Three essential phases of the geometrical formulation which give rise
to the dodecahedron circumsphere, arising from (a) buckyball pentagon, then (b)
expansion of the pentagons accompanied by a reduction of hexagons, and finally (c)

the circumsphere consists entirely of regular pentagons (schematic picture).
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PLOT of
f

Here

d(6 :5)

Figure 5.5: Profile of A as given in (4.2.5) showing changing pentagonal pattern as

/ varies up to the possible maximum.
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PLOT of

d(6 : 6)

Figure 5.6: Profile of a (as indicated above) showing changing hexagonal pattern as

/ varies up to the possible maximum.
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Chapter 6

Possibility Of Inserting More

Hexagons

6.1 Construction Of C$% and Cro

We now show how to construct models for the molecules C$ and CVo starting with
the buckyball model for C&- First choose an equatorial plane for the buckyball as
that plane bisects the axis PP’ joining the centre P of any spherical pentagon with
centre P Iof its inverse pentagon. If so the equatorial circle lies mid-way between the
five pentagons surrounding P and those surrounding P', being therefore straddled
by an equatorial belt of ten hexagons as depicted in Figure 6.1 (a). Figure 6.1 (b)

shows a schematic picture of the equatorial belt, from which we find that

(1) each P is surrounded by 5 Ids,

(11) each His surrounded by 3 Ps and 3 Hs.

Imagine this belt cut out from the buckyball, duplicated into a similar belt of
twenty hexagons, and re-introduced as shown in Figure 6.2 (a). Now each P is once

again surrounded by 5 H’s whilst each H is surrounded either by
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(1) 1P and 4 H's or
(11) 2 P’s and 3 Hs or
(i) 5 Hs.

as may be readily verified by a schematic picture in Figure 6.2 (b). Clearly the
original buckyball has now been converted into a prolate spheroid of axial ratio
(2R + d) | 2R where d signifies the distance between two parallel edges of a hexagon.
Note the insertion of 20 additional hexagonal vertices along the equatorial belt i.e.
20 carbon atoms have been added to the buckyball so providing a model for Cso,
though the existence of Cgo as a chemical has not been confirmed yet.

The construction of CVo is slightly more difficult. We imagine the equatorial
belt cut out as before, but now only alternate hexagons are duplicated to form a
serrated belt of 15 hexagons as depicted in Figure 6.3 (b). This is re-introduced as
shown in Figure 6.3 (a), giving rise to 10 additional hexagonal vertices along the
equatorial belt, i.e. 10 carbon atoms have been added to the buckyball yielding a
model for C70. As before each P is surrounded by 5 H s. However, each H is now

surrounded either by

(1) 1P and 4 Hsor

(11) 2 P and 3 H's.

Accordingly, this duplication transformed the original buckyball into a prolate
spheroid of axial ratio (2R + |) / 2R. Traces of CVo exist according to spectroscopic
evidence. This is believed to adopt the structure of a rugby-ball illustrated in Figure
6.4. Note that the equatorial plane appears as a symmetry plane (mirror reflection)
for (P70, replacing the inversion centre apparents in Ceo and C$o-

Our construction for Cgo may be extended to cover carbon molecules of the
form Ceot+20«; n = 1,2, ...

Similarly the mechanism which we implement for C70 may be extended to cover
carbon molecules of the form CVo+20m; in = 0,1,2, ...
These are all prolate spheroids of increasing axial ratio, eventually becoming cigar-

shaped cages of possible chemical importance [19]. Accordingly this suggests that it
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Figure 6.1: (a) Profile of C6o exhibiting part of the tessellation of hexagons (H s)
and pentagons (P s) on the equatorial belt, (b) Schematic picture exhibiting a
projective global view of pentagon-hexagon configuration. HereCh), (Hindicates
the pole pentagons. Note that these are inverses with respect to the centre O (not

shown).
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Figure 6.2: (a) Profile of Cgo exhibiting part of the tessellation of hexagons and
pentagons on the equatorial belt, (b) Schematic picture exhibiting a projective
global view of pentagon-hexagon configuration. Here H+ denotes an additional

hexagon. For the symbolisms excluding H+, see Figure 6.1 (b).
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Figure 6.3: (a) Profile of C7 exhibiting part of the tessellation of hexagons and
pentagons on the equatorial belt, (b) Schematic picture exhibiting a projective

global view of pentagon-hexagon configuration. For the symbolisms, see Figure 6.2.

N



Figure 6.4: Proposed structure of C7 resembling a rugby-ball. The lattice model

depicted below [18] shows the atomic pattern on the molecular cages.
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it is best to regard the growth to concentric tubular cages as an essential mechanism

for giant fullerenes.

6.2 Axial Ratio Of Prolate Spheroids

To determine the axial ratio of Cso, we observe that

d = 2d(6:6) sin = V3d(6 :6) = 2.460 A (6.2.1)

[0

bearing in mind the chemical bond-length in (4.1.1) which applies to a regular

hexagon. If so,

2R + d 2Rn + V3d{6:6
(50 " 66 sa (6.2.2)
2R 2Rn

where Rn has been mentioned earlier in (5.2.2). This enables us to compute the
obvious changes in the j-coordinate of the pole pentagons for Cso since the x, y-

coordinates are restored as in Cqq. Thus the (-coordinate is given by

R—h+ —= R—fR+ d(6:6) sin — (6.2.3)

where R, h and / are touched in Chap. 4 respectively.

For CVo, we proceed in a similar way so that

+3 f(6;6) = 1.174 (6.2.4)
2R ﬁRnr( )

by virtue of (6.2.1). As a result this yields the ;-coordinate as

R—h+ —=PR—/R+ —d6:6) sin — (6.2.5)
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6.3 Point Group Features Of Cqq, Cso and Cro

It has already been noted that the regular icosahedron conforms to the point-group
symmetry 532. However this must be expanded into 5 3”- since its centre 0 is an
inversion centre. Note that 5 signifies a 5-fold inversion axis, 3 signifies a 3-fold
inversion axis, and A signifies a 2-fold axis accompanied by a transverse symmetry
plane.

To understand this further, we start with

{6} + J{5} = {5} (6.3.1)

since this group corresponds with the symmetry 5 on utilising (16) of [page 29, 4].

Then combine this decomposition with

{23} + J {23} = {3 —} (6.3.2)
m

as follows from the fact that the tetrahedral group {23} is a subgroup of {52},
introduced in Chap. 2.

Also {5632} contains a subgroup of {32} which expands into
{32} + J {32} = {3m} + ,/{Bm} = {3~} (6.3.3)
in line with (42) of [page 34, 4]. A combination of (6.3.1) with (6.3.3) yields
{32} + J {532} = 353;} (6.3.4)

which may be realised bv a stereogram depicted in Figure 6.5.
Clearly the buckyball model for C'eo conforms to the same symmetry arising from its
method of construction, touched in Chap. 5. Five symmetry planes pass through
PP'. and one of these is displayed in Figure 6.6.

('so retains PP’ as a 5-fold symmetry axis, but it has no others. Reference to

Figure 6.2 shows that it also retains the five symmetry planes passing through PP’
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so providing the dihedral group

{6} + D {6} = {5m} ; (6.3.5)
i.e. more explicitly
I,c,c\...CH4 / ;
[ J; C5= D2= (DC)2= 1 (6.3.6)
. D, DC, DC2 ... DC4

consistent with the demarcation implemented in (33) of [page 32, 4]. Since 0 still
functions as an inversion centre, its presence expands 5m into 5 (Figure 6.7) so

that
{52} + J{p2} = {bm} + ,/{bm} = {b—} (6.3.7)
m

may be generated and therefore confirming the existence of five 2-fold axes located
in the equatorial plane-a feature not so easy to see directly.

C'0 also retains PP' as a 5-fold symmetry axis, together with the five
symmetry planes passing through PP' (Figure 6.3). However, 0 is no longer an
inversion centre. Instead, the equatorial plane becomes a symmetry plane, so that
5to now expands into ~2m i.e. each symmetry plane through PP’ intersects the
equatorial plane in a 2-fold axis. Reference to Figure 6.8 shows the construction of

the crystallographic point group
(52} + M{52 = {?7n} + M {5m} = {%Zm}

corresponding with the symmetry —2to.



Figure 6.5: The symmetry 5 3*- may be realised by the atomic pattern on the regular

icosahedron and its derivation from the stereogram of symmetry 532.
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Figure 6.6: Note that the dotted line marks a symmetry plane passing through PP’

and intersecting the equatorial plane.
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52

Figure 6.7: The symmetry 5 " is generated either by combining 52 or 5m with
an inversion centre, thereby automatically introducing each horizontal axis lying

perpendicular to a vertical mirror.
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Figure 6.8: The symmetry ~2m 1is obtained either by combining 52 or 5m with a
transverse mirror plane, thereby introducing the presence of both vertical mirrors

and horizontal 2-fold axes.
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Appendix A

The facts that
+ for a given surface area, the sphere has a greater volume than any {p,q}’,
+ for a given volume, the sphere has a smaller surface area than any {p,q},

there being no other possibilities, may be readily confirmed by evaluating the fol-

lowing numerical value for each {p,q}-

Regular P>% 9~ }; ~
Solid symbolism F » p, cot - F3 ;:;SVT
Tetrahedron {3,3} 6.928 0.667
Cube {4,3} 24.00 4.00
Octahedron {3,4} 13.856 1.886
Icosahedron {3,5} 34.641 5.393
Dodecahedron {5,3} 82.583 18.944

Table showing the value of and jj for each {p,q}.
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Regular

Solid

Tetrahedron

Cube

Octahedron

Icosahedron

Dodecahedron

Table showing the value of

{p,q}

symbolism

{3,3}

{4.3}

{3,4}

{3,5}

15,3}

| cot
k
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R,n

;-

p

0.408

1.00

0.816

0.144

0.213

and f for each {p,q/.

Ccos -

0.743

1.382

1.050

1.660

2.564
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Regular
Solid

Tetrahedron

Cube

Octahedron

Icosahedron

Dodecahedron

Table showing the value of f for each {p,q}.

{p,&

symbolism  (-1-- cot2 - cos

{3,3}

{4,3}

{3,4}

{3,5}

{56,3}
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P

I

2.828

2.884

2.77192

3.741

5.687

-)

A
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Regular

Solids

Tetrahedron

Cube

Octahedron

Icosahedron

Dodecahedron

{D,q}

{3,3}

{4,3}

{3,U

{3,5}

{56,3}

g _
Rn
Symbolism & §F44;,tp XA )yl/2

Table showing the value of
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1.819

1.382

1.286

1.098

1.151

and

Eu

3fJ

0.671

0.806

0.846

0.196

0.190

for each {p,q}.
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Appendix B

It appears that formulae (2.1.6), (2.1.10) and (2.1.11) can be achieved directly by

utilising a fundamental but essential lemma as exhibited below:

Lemma 1 The mathematical expression tq —v2 is obeyed by a regular icosahedron

and not for every regular solids, where

1 —2 sin2 08 Q
v'= UHk? « - 1 ; = sm2 6 - s1"2§

Proof: Suppose v = sin2 9, then

(1-2 sin29)2 1 _ 2uw2

4sin20 - 1 4u — 1
Now utilising 2sin2 0 = 1 —cos 29 so that sin2 | = — 1 , we have
. .9 1 1
v2 = sin29 —sin2 - = v — - (1—cos.9):v—-2+ -200s9. (2)
Writing cos 0 = 1 — gives
1 1 s
v2=v- - + (1 - w (3)

on substituting once again v = sin2 0. Equating formula (1) with (3) now yields

1 — 4u + 41’2

4v — 1
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Appendix B

thus enabling us to write

1 —4u + 4w2 = (du — 1)
5+ | (1

so that

1- 4u+ 4u2=4n2- 2v + 2v(l - n)l2 - n + vf12.

Eliminating v2, v from (4) gives

iv + iv2 = 4n2 - 8v + 2u(l - v)a2 - -2(1 - wl/2,

>—

1 - 8u + 8v2= 8v2- 6V + 4v(l - v)I/2- (1 - u)l/2,

1 —2v

(n—1) 1 —v)1R

on multiplying across by 2 to both sides. As a consequence, we arrive at

v (16u2 —20u + 5 = 0 => 16n2 —20n + 5 = 0

From formula (6) b'2 > 4ac ie. (-20)2 > 4 (16) (5), we deduce

20+v/(-20)2 - 4(16)(5) _ 20+ ~400 - 320
2(16) ~ 32

20 + 475 5+ v/5'
32 « 8

Bearing in mind v —sin2 9, two special cases arise:
(i)

5 —y/E
8

sin2 9
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(6)
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(i1)

. 5+ \/5
sin2 6

Substituting v into (1) we obtain

which implies 6 = j,

We ruled out case (i1) since vl * v
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Appendix C

Though the representation of S§, the symmetry group of order 5, has been explored
extensively in many group theory books, it is necessary to include the remaining 60
permutational operators since the other 60 elements have been enumerated while
generating the icosaheral group {532} in Chapter 2. This is essential for the validity
of the statement embodied in the text. So we write down the faithful representation

of S5 by means of cosets decomposition of the alternating group As as follows:

S5 = A5 + (12)(3)(4)(5) A5 = As5 + A5(12)(3)(4)(5). (1)

However, the faithful representations of (a) are not in the same order as the repre-
sentation of (b).

It may be readily verified that As is the invariant subgroup of S5 where 10 of the
elements are best regarded as 2-fold symmetry axes, 20 of the elements as 3-fold
symmetry axes, and 30 of the elements as 4-fold symmetry axes. For brevity, we

list down all the 60 elements in chains of tables as shown in the next pages.
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/ (12)(34)(5)  (13)(24)(5) (14)(23)(5)

(12)3)()(B)  (12)(3)(H(B)  BHM)(2)(B) (1324 (B)  (1423)(5)

(123)(H) ()  (243)(D(B) (142)3)(B)  (132)(4)(5)

(12)(3)(4)(5)  (23)(H(H(B)  (1342)(5)  (14)(2)(3)(B)  (13)(2)(4)(3)

(234)(1)(5)  (A24)(3)(5)  (143)(2)(5)  (12345)

(12)F)HG)  (1A2349)(B)  EHMG)B) (1432)(B)  (2345)(1)

(135)(2)(4)  (14325)  (15)(24)(3) (13245)

(12)(3)(4)(5)  (1352)(4)  (143)(25)  (1524)(3)  (13)(245)

(14235) (125)(3)(4)  (15)(34)(2) (145)(2)(3)

(12)3)#H(B)  (14)(235)  (253)()(1)  (152)(34)  (1452)(3)
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(12435) (13425)  (15)(23)(4) (13524)

(12)(3)(4)(5)  (2435)(1) (134)(25)  (1523)(4)  (135)(24)

(14523) (152)(3)(4)  (25)(34)(1)  (14)(25)(3)

(12)BA)M)G)  (145)(23)  (15)(2)(3)(4)  (125)(34)  (1425)(3)

(15243) (13452) (235)(1)(4) (15234)

(12)(3)(4)(5)  (243)(15) (1345)(2)  (1235)(4)  (15)(234)

(235)(1)(4) (15234)  (13)(25)(4)  (14352)

(12)(3)(4)(5)  (1235)(4)  (15)(234)  (1325)(4)  (1435)(2)

(245)(1)(3)  (14253) (15324)  (345)(1)(2)

(12)(3)(4)(5) (1245)(3)  (14)(253) (153)(24)  (12)(345)
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(12)(35)(4) (156342)  (253)(1)(4) (14)(35)(2)

(12)(3)(4)(5)  (H(2)HB5) (1634)(2)  (12563)(4)  (142)(35)

(12453) (24)(35)(1) (14532)  (153)(2)(4)

(12)(3)(4)(5) (2453)(1) (124)(35)  (1453)(2) (1532)(4)

(12534) (15432) (254)(1)(3) (12354)

(12)(3)(4)(5)  (25341(1) (1543)(2)  (1254)(3)  (2354)(1)

(13)(45)(2) (354H)(1)(2)  (12)(45)(3) (15423)

(12)(3)(9)(5)  (132)(45)  (12)(354)  (1)(2)(3)(45) (154)(23)

(13254) (12543)  (154)(2)(3)  (23)(45)(1)

(12)(3)(4)(5) (13)(254) (2543)(1)  ((542)(3)  (123)(45)
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Appendix D

In Appendix D we illustrate the irrational values of each mathematical expressions
that has significant role in Chapters 2 and 3. These expressions not only simplify the
calculation but effectively display that they are applicable to the physical features
of the regular icosahedron and the regular dodecaheron and no others.

The symbolism which is used in the next table is written as follows:

a. Argand diagram describing the root of the quintic equation

d. sin2 f —sin2 A = v
e. cos2 =1 —sin2 —
f. cos2 Yo+ sin2 =1

g sin2 . = 4 sin2 ¢ cos2 )



Trigonometric Equivalent
Identities Identities
cos f

cos f

sin2 | cos2 g
cos2 | sin2 g
sin2 £ cos2 g
cos2 sin2 #

Irrational

Value

1+ V5

5 —il/5

3+ %5

b v+

Method Of

Derivation

f,g

Table of trigonometric identities for comparable

angular measurement g . Isf and o
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Appendix E

As already been invoked earlier in the text, the derivation of the x,y,z coordinates of
the vertices p4, p2, P3, pa and p5 associated with the pole pentagon of the buckyball
are displayed below for some / between the interval 0.01 < / < 0.142. The
corresponding values are listed in double precision to ensure exact accuracy. For
instance when / = 0.1000000D-01 (meaning 0.01 to 7 decimal places) p1? p2, p3, p4

and ps5 are read in the following sequence:

1st row +— » px
2nd row +— >p2
3rd row 1 >p3
4th row +— > p4

5th row 1 Pps.

The algorithms that we utilised are based on [10]—f15]
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f
0.1000000D-01
0.1000000D-01
0.1000000D-01
0.1000000D-01
0.1000000D-01
0.1010000D-01
0.1010000D-01
0.1010000D-01
0.1010000D-01
0.1010000D-01
0.1020000D-01
0.1020000D-01
0.1020000D-01
0.1020000D—01
0.1020000D-01
0.1030000D-01
0.1030000D-01
0.1030000D-01
0.1030000D-01
0.1030000D-01
0.1040000D—01
0.1040000D-01
0.1040000D-01
0.1040000D—01
0.1040000D—01
0.1050000D-01
0.1050000D-01
0.1050000D-01
0.1050000D-01
0.1050000D-01
0.1060000D-01
0.1060000D-01
0.1060000D-01
0.1060000D-01
0.1060000D-01
0.1070000D-01
0.107 0000D—01
0.1070000D-01
0.1070000D-01
0.107 OOOOD—01
0.1080000D-01
0.1080000D-01
0.1080000D-01
0.1080000D-01
0.1080000D-01
0.1090000D-01
0.1090000D-01
0.1090000D-01
0.1090000D-01
0.1090000D-01
0.1100000D-01
0.1100000D-01
0.1100000D-01
0.1100000D-01
0.1100000D-01
0.1110000D-01
0.1110000D-01
0.1110000D-01
0.1110000D-01
0.1110000D-01
0.1120000D-01
0.1120000D-01
0.1120000D-01
0.1120000D-01
0.1120000D-01

X
0.1414214D+00
0.4370160D-01

-0.1144123D+00
-0.1144123D+00

0.4370160D-01
0.1421267D+00
0.4391957D-01
0.1149829D+00

-0.114 982 9D+00

SCCocoocoCCCooc oo

.4391957D-01
.1428286D+00
.4413645D-01
.1155507D+00
.1155507D+00
.4413645D-01
.1435270D+00
.4435228D-01
.1161158D+00
.1161158D+00
.4435228D-01
.1442221D+00
.4456706D-01
.1166781D+00
.1166781D+00
0.4456706D-01
0.144 9138D+00
0.447 8082D-01
0.1172377D+00
0.1172377D+00
0.4478082D-01
0.1456022D+00
0.4499355D-01
0.1177947D+00
0.1177947D+00
0.44 99355D-01
0.1462874D+00
0.45205290-01

-0.11834 90D+00

0.1183490D+00
0.4520529D-01
0.14 69694D+00
0.4541604D-01
0.1189007D+00
0.1189007D+00
0.4541604D-01
0.147 6482D+00
0.4562581D-01

-0.11944 99D+00
-0.1194499D+00

0.4562581D-01
0.1483240D+00
0.45834 63D-01
0.1199966D+00
0.1199966D+00
0-4583463D-01
0.1489966D+00
0.4604250D-01
0.1205408D+00
0.1205408D+00
0.4 604250D-01
0.14 96663D+00
0.4624943D-01
0.1210826D+00
0.1210826D+00
0.4 624 943D-01

y
0.0000000D+00

0.1344 997D+00
0.8312539D-01
-0.8312539D-01
-0.1344 997D+00

0.0000000D+00

0.1351705D+00
0.8353998D-01
-0.8353998D-01

-0.1351705D+00
0 . 0000000D+00

0.1358380D+00
0.8395253D-01
-0.8395253D-01
-0.1358380D+00

0.0000000D+00

0.13 65023D+00
0.8436305D-01
-0.8436305D-01
-0.1365023D+00

0.0000000D+00

0.1371633D+00
0.8477159D-01
-0.8477159D-01
-0.1371633D+00

G.0000000D+00

0.1378212D+00
0.8517818D-01
-0.8517 818D-01
-0.1378212D+00

(190.0.6.0.0.0.0)).20.0)

0.1384759D+00
0.8558282D-01
-0.8558282D-01
-0.1384759D+00

0.0000000D+00

0.1391276D+00
0.8598557D-01
-0.8598557D-01
-0.1391276D+00

0.0000000D+00

0.1397762D+00
0.8638644D-01
-0.8638644D-01
-0.1397762D+00

0.0000000D+00

0.14 04218D+00
0.8678545D-01
-0.8678545D-01
-0.1404218D+00

0.0000000D+00

0.1410645D+00
0.8718264D-01
-0.8718264D-01
-0.1410645D+00

0.0000000D+00

0.1417 042D+00
0.8757803D-01
-0.8757803D-01
-0.1417 042D+00

0.0000000D+00

0.1423411D+00
0.8797164D-01
-0.8797164D-01

-0.1423411D+0Q

Z
0.9900000D+00
0.9900000D+00
0.9900000D+00
0.9900000D+00
$).9900000D+00
0.9899000D+00
.). 9899000D+00
0.9899000D+00
0.9899000D+00
0.9899000D+00
t.9898000D+00
0.9898000D+00
0.9898000D+00
0.9898000D+00
0.9898000D+00
J. 9897000D+00
0.9897000D+00
0.9897000D+00
0.9897000D+00
0.9897000D+00
0.9896000D+00
3.98960000+00
0.9896000D+00
0.9896000D+00
0.9896000D+00
0.9895000D+00
0.9895000D+00
0.9895000D+00
0.9895000D+00
0.9895000D+00
(1. 9894000D+00
0.9894000D+00
0.9894000D+00
(1.9894000D+00
0.9894000D+00
0.9893000D+00
(1.9893000D+00
0.9893000D+00
0.9893000UD+00
0.9893000D+00
0.9892000D+00
0.9892000D+00
(1.9892000D+00
0.9892000D+00
(i. 9892000D+00
0.9891000D+00
('. 9891000D+00
0.9891000D+00
0.9891000D+00
(I1.9891000D+00
0.9890000D+00
0.9890000D+00
0.9890000D+00
0.9890000D+00
n.9890000D+00
.9889000D+00
.9889000D+00
.9889000D+00
.9889000D+00
.9889000D+00
.9888000D +00
.9888000D+00
.9888000D+00
.9888000D+00
.9886000D+00

=0

oS oo CoCcooc oo
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.1419000D+00
.1419000D+00
.1420000D+00
.1420000D+00
.1420000D+00
.1420000D+00
.1420000D+00

-0.4309867D+00
0.1646223D+00
0.532 9165D+00
0.164 6803D+00

-0.4311385D+00

-0.4311385D+00
0.1646803D+00

-0.

3131301D+00

-0.5066552D+00

0

0.
.3132405D+00

0

-0.
-0.

.0000000D+00

5068337D+00

3132405D+00
5068337D+00
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.8581000D+00
.8581000D+00
.8580000D+00
.8580000D+00
.8580000D+00
.8580000D+0C
.8580000D+00
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Appendix F

For comparison of efficiency in regards to calculating the bond-length, we generate

the following formula embodied earlier in Chap. 4

P — pi |= 9R (1)
where
Ry/2j
9 = tan 1 P tan 1 yoel
fid - /) m - /)
and for sufficiently small &
————
F +f) +0 (/9= 2)

Also

P ~Pil= y/h2+ p2= yiR2P + 2/ B2 = ~ (/2 + 2/)
= V2 L+ )2~ Bfif 0+, @

such that / that generates

Pi 1+ / 3/
o R NG (4)

~

is 0.0519826. From this result, we deduce that spherical symmetry is as significant
as the straight line nature of the bond-length since the difference between them is

relatively small.
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Appendix G

The algorithm of the Fortran program which we utilise in calculating the ratio
6 = of the two characteristics C-C bond lengths as a function of shallownesss

parameter / is illustrated in the next three pages. To start with

1. Fix the circumsphere radius R.

2. For 0.01 < / < 0.142, calculate radius p as in (4.2.2) of the latitude circle
since each of x, y coordinates of the pole pentagon may be expressed in terms

of p where p.

3. Iterate the case for k=0 and k=1 since k enters into the angle of rotation about
the pole pentagon.
If k=0 then

(a) calculate x, y and z coordinates for pi of the pole pentagons, defined in
terms of column vector v(1,1), v(2,1) and v(3,l).

(b) perform a matrix multiplication of 3 X 3 matrix M (constitute of the
direction ratios H:K:L) with the column vector in (a). This provides

coordinates of aH.

(c) substract the x, y and z coordinates of pi, thereby giving rise to the bond

length d(6:6). For brevity, a variable name sigma is assigned to ((6:6).

(d) proceed to the case k=1I.
If k=1 then

(a) same statements as in (a) for k=0.
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(b) compute the distance |pi —p? |as depicted in (4.2.5) which provides the

bond length d(6:5). Again for brevity, a variable name lambda is assigned

to d(6:5). Then ratio of interest &8i.e sigma/lambda (corresponding with

the Fortran variable name) is derived.

4. Repeat the same process until arriving at the limiting value of / i.e. / = 0.142.

Finally, Table A displays the numerical results which have significant role in

analysing some models of the buckyball configuration.
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O NO OO OO OO 0006006000000 o0Oo

PROGRAM carbon.f

Appendix G

input:
f - non-dimensional parameter between the interval
0.010 and 0.142
pi - angle calculated in radian
output:
p - circumradius of the latitude circle forming the
base of the spherical pole pentagon
sigma - carbon bond joining two neighbouring spherical
regular pentagon-—- "d(6:6) without
reference to R(radius of the buckyball)"
lambda - carbon bond joining two neigbouring atoms within
spherical regular pentagon——"d(6:5) without
reference to R(radius of the buckyball)"”
delta - ratio of d(6:6) to d(6:5)
subroutine required: vector,matvec,difvec
function used: distl
This program determines the value of f as a function parameter R
in which delta=0.956, delta for natural buckyball;
delta=1.000, delta for graphite layer;
delta=0.000, delta for dodecahedron,
72

double precision p,pi,x,y,z,bl,b2,b3,b(3,1), m(3,3),v(3,1),1(3,1),

+ theta, dcos,dsin,datan,distl,sigma,lambda,delta
common bl,b2,b3

real f

integer k

pi=4.0dO*datan(1.0d0O)
write (*,' (11x,"f",13x,"d",11x,"d(6:6)", 8x,"d(6:5)")")
write(*,'(37x,"w/o R",9x,"w/o R")'")

do 20 f=0.010,0.142, 0.001
p=sqrt(2.0d0*dble(f))
do 30 k=0,1
theta=((pi*dble(k))*2,0d0)/5.0d0
if(theta.eq.0.0dO)then
x=p¥*dcos(0.0dO)
y=p*dsin(0.0dO)
z=1.0d0-dble(f)
call vector(x,y, z,vV)
call matvec(m, v, 1)
call difvec(1l,v,b)
sigma=distl(bl, b2, b3)
else
x=p*dcos(theta)
y=p*dsin(theta)
z=1.0d0O-dble(f)
lambda=(2.0d0*sqrt(2.0d0*dble(f)))*dsin(pi/5.0dO)
delta=sigma/lambda
end if
30 continue
write(6,33)f,delta,sigma,lambda
33 format(4(F14.3))
20 continue
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Stop

end
c
c
c
subroutine vector(x,y,z,v)
double precision x,y,z,v(3,l)
integer n
c
c This subprogram stores the x,y,z coordinate of pi and etc as
c one dimensional array v(n,l)
c
do 50 n=1,3
if(n.eq.1)then
v(n, 1)=x
else if(n.eq.2)then
v(n, 1)=y
else
v(n, 1)=z
end if
50 continue
return
end
c
c
c
subroutine matvec(m,v,1)
double precision m(3, 3) ,v(3,1), 1(3, 1)
integer i
c
c This subprogram computes the matrix multiplication:l=m*v by
c incorporating the direction-ratios H:K:L as matrix m, so
c providing e.g. the coordinate transformation of pi into all
c
do 50 i=1,2
m(i,i+1)=0.0dO
m(i+1,i)=0.0d0
50 continue
m(2,2)=-1.0d0
m(1,1)=(-(5.0d0)**0.5)/5.0d0
m(1,3) =(2.0d0*((5.0d0)**0.5)) /5. OdO
m(3,1)=(2,0d0*((5.0d0)**0.5))/5 .0dO
m(3, 3) =((5.0d0)**0.5)/5.0d0
1(1, )=m(1, 1) *v(1l, I)+m(1,2) *v(2, I)+m(1, 3) *v(3,1)
1(2,1) =m(2, 1) *v (1, 1) +m (2, 2) *v (2, 1) +m(2,3) *v (3,1)
1(3,1) =m(3,1) *v (1,1) +m(3, 2) *v (2,1) +m(3, 3) *v (3,1)
return
end
c
c
subroutine difvec(1, v,b)
double precision v(3,1),1(3,1),b(3,1),bl,b2,b3
common bl,b2,b3
c
c Here we calculates the difference between the x,y,z
c coordinates of pi and the corresponding x,y,z
c coordinates of all
c

b(1,1)=1(1,1) v (1,1)

b(2,1) =1(2,1) —v (2,1)

b (391) =1 (3’ 1)'V (3’1)
bl=b(1,1)
b2=b(2,1)
b3=b(3,1)

return
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end

double precision function distl(bl,b2,b3)
double precision bl,b2,b3

Here we calculates the bond length d(6:6)
distl=sqrt((bl)**2+(b2)**2+(b3)**2)

return
end
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ittt o I e B I T i i I I I R I I I i I I A R R I R R R R N N - N N E-E-E-E-E- =)

.010
. 0il
012
013
.014
.015
.016
017
.018
.019
.020
021
022
.023
024
.025

026

027
.028
.029
.030
.031
032
.033
.034
.035
.036
037
.038
.039
.040
.041
042
.043
044
.045
.046
.047
.048
.049
.050
.051
052
.053
.054
055
.056
057
.058
.059
.060
.061
.062
.063
.064
.065
.066
067
.068
.069
070
071
072
073

C OO O OO OO O OCOCOCOO HMHMMM MMM H [ o e e b e e e e e e e el el el el b el DOODNODN DD DN DN DN DNDDNDDN G W W W A BB A

.814
517
.257
.028
.823
.639
473
321
.182
.054
.935
.825
.723
.627
.537
.453
.373
.298
227
.159

095

.034
975
.919
.866
.815
.766
719
.674
.630
.589
.548
.509
472
.435
.400
.366
.333
.301
270
.240
211
.182
.154
127
.101
.076
.051
027
.003
.980
.957
.935
914
.893
.872
.852
.832
.813
794
776
.758
.740
.723

d (6: 6)
w/o R
.800
.788
775
.763
752
741
.730
.720
710
700
.690
.681
671
.662
.653
.645
.636
.628
.619
.611
.603
.595
587
.580
572
.565
557
.550
.542
.535
.528
521
514
507
.501

S OO OO OO OO0 OO OO OO OO OO OO OO0 OCOCOCCOCOCOOCOOCOOCOOCOCOCOCOOCOOCOCDCOCOOCOCCOCESS

494

.487
.480
474
467
.461
454
.448
442
.436
.429
.423

417

411
.405
.399
.393
.387
.381
375
.370
.364
.358
.353
.347
.341
.336
.330
.325

C OO OO OO OO OO OO O OO OCOCOCOCOO0OODODOODOOOOOOCOOCOCOCOoOoOOOCOOCODODOCOOCOOCOOCOOOCOCOCOCCOCOOCOCOCOCCCBECS
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C OO0 OO OO OO0 O OO OO OO OO OO OO OCOCOCOCOCOCOCTOCOCOCSOCOCOCOCOOCOCOCOCOCOCSCSCOCOCCOCOTOCCoCo o

074
075

.076
077
078
079

.080
.081

.082

.083
.084
.085
.086
.087
.088
.089
.090
.091
.092
.093
.094
.095
.096
.097
.098
.099
.100
101
.102
.103
.104
.105
.106
107
.108
.109
.110

A11

112

.113

114
.115

.116
117
118
119
.120
121
122
.123
124
.125
.126
127
.128
.129
.130
131
.132
.133
.134
.135
.136
137
.138
.139

C O OO OO OO OO OO0 OO O OO OO OO OO OCOCOOCOCOOCOCOCOOCOOCOOCDOCOCOCOOCOOCCOCOCCOCOCOCOCOCECOCOCECS

.706
.689
.673
.656
.641
.625
.610
.595
.580
.566
.552
.538
.524
.510
497
.484
471
.459
.446
434
422

410

.398
.387
.375
.364
.353
.342
.331
.320
.310
.300
.289
.279
.269
.260
.250
.240
231
222
212
.203
.194
.185
177
.168
.159
151
.143
.134
.126
.118
.110
.102
.094
.087
079
071
.064
.056
.049
.042
.035
027
.020
.013

ittt o A e T R I i i T T I R I R R R R I I I R R R R I R I R R I — I — T — T R R R R R =)

.319
.314
.308
.303
.297
.2 92
.287
.282
.276
271

266

.261
.255
.250
.245
.240
.235
.230
.225
.220
.215
.210
.205
.200
.195
.190
.185
.181
.176
171
.166
.161

157

152

147

.143

138
133

.128
124
.119
115
.110
.105
.101
.096
.092
.087
.083
.078
074
.069
.065
.060
.056

052

.047
.043
.039
.034
.030
.025
.021
017
.013
.008
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452
.455
.458
.461
.464
467
470
473
.476
479
.482
.485
.488
490
.493
.496
.499
.502
.504
.507
.510
.512
.515
.518
.520
.523
.526
.528
.531
.534
.536
.539
.541
544
.546
.549
.551
.554
.556
.559
.561
.564
.566
.569
571
574
.576
578
.581
.583
.585
.588
.590
.592
.595
597
.599
.602
.604
.606
.609
.611
.613
.615
.618
.620

Table A



0.140 0.006 0.004 0.622
0-141 0.000 0.000 0.624
Table A
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