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A B S T R A C T

This paper aims to propose an Artificial Neural Network (ANN) model that predicts accurately web-post
buckling resistance and failure mode of steel beams with elliptically-based openings. A total of 4,344 and
5,400 geometrical models, were developed by finite element method (FEM) and used to train, validate and
test the ANN model for the web-post resistance and failure mode classification, respectively. It was concluded
that five neurons model were sufficient to predict the web-post buckling resistance and the failure mode with
high level of accuracy. The height and the web thickness of the beams had positive impact of the capacity while
the web openings height, width and radius of the elliptically-based web opening were the geometric parameters
that had negative impact of the capacity. At last, an ANN-based formula was proposed and compared with
previous analytical model for web-post buckling resistance of elliptically-based openings, which considered
the web-post as a truss model. The ANN-based formula showed high accuracy, since the Regression (R2), Root
Mean Square Error (RMSE), Mean Absolute Error (MAE), Average (FEM/Predicted), Standard Deviation and
Variation were 0.9989, 26.03 kN, 15.0 kN, 1.00, 4% and 0.12%, respectively. Consequently, the ANN-based
formula for web-post buckling resistance of steel beams with elliptically-based openings can be safely adopted
for design purposes.
1. Introduction

The use of steel beams with periodical web openings has the ad-
vantage of reducing the self-weight and deflections while increasing
spans reducing the structural depth per floor by integrating electric
and hydraulic services. Also, the web openings favor the flow of air in
closed environments, such as parking. The web openings can have dif-
ferent geometries. Steel beams with hexagonal, circular and sinusoidal
web openings are known as castellated, cellular and Angelinas™ [1],
respectively. The present study focuses on steel beams with novel
elliptical web openings, whose patent, GB 2492176 was developed by
Tsavdaridis and D’Mello [2].

Although steel beams with periodical web openings possess a num-
ber advantages, they are more susceptible to instability phenomena,
such as web and flange local, web distortion, lateral–torsional and
web-post buckling modes, or even the interaction between them
[3–9]. Web-post buckling occurs for steel beams with web openings
which have a reduced web-post width [10]. This buckling mode is
characterized by a lateral displacement with torsion due to horizontal
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shear which creates a strut-tie model. The geometric parameters that
influence the web-post buckling resistance are the opening height, the
web-post width and the web thickness [11–14]. The web-post buckling
resistance design models for the cellular and castellated beams are
found in publications, such as SCI P355 [15] and Steel Design Guide
31 [16]. On the other hand, in relation to Angelinas™ beams, the cal-
culation models are found in the software Angelina/ArcelorMittal [1].
These prediction models are consolidated in the literature.

Regarding the perforated steel beams with elliptically-based web
openings, although there are some studies that have highlighted the
efficiency of the openings in relation to their structural behavior,
i.e., Tsavdaridis and D’Mello [17], Tsavdaridis [18] and Tsavdaridis
et al. [19], little investigation has been carried out with respect to web-
post buckling resistance prediction models. Tsavdaridis and D’Mello
[12] proposed an equation to predict the web-post buckling. The pre-
diction model was developed considering a parametric study by fi-
nite element (FE) method. However, the resistance model is only
https://doi.org/10.1016/j.tws.2022.109959
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Notation

The following symbols are used in this paper:
𝑏𝑓 the flange width;
d the parent section height;
𝑑𝑔 the total height after castellation process;
𝑑𝑜 the opening height;
𝑑𝑡 the tee height;
𝑓𝑐𝑟,𝑤 the critical shear stress in the web-post;
h the distance between flanges geometric

centers of the parent section;
H the distance between flanges geometric

centers after castellation process;
k Coefficient in Eq. (1);
K Coefficient in Eq. (8);
𝑙𝑒𝑓𝑓 the web-post effective length;
R the opening radius;
s the web-post width;
𝑡𝑓 the flange thickness;
𝑡𝑤 the web thickness;
V the global shear;
w the opening width;
𝜆0 the reduced slenderness factor;
𝜆𝑤 the web-post slenderness factor;
𝜒 the reduction factor;

applied to a limited range of geometric configurations. Recently, Fer-
reira et al. [20] proposed a model for predicting the web-post buck-
ling resistance of steel beams with elliptically-based openings. For
this task, 4344 geometric configurations were considered in the para-
metric study. The procedure is an adaptation of the strut-tie model
analogy, which takes into account the web-post effective length, and
the buckling stress is calculated based on EC3 [21], according to
Eqs. (1)–(10).

𝑙𝑒𝑓𝑓 = 𝑘

√

(

𝑑𝑜 − 2𝑅
2

)2
+
( 𝑠
2
− 𝑅

)2
(1)

= 0.516 − 0.288
(

𝐻
𝑑𝑜

)

+ 0.062
( 𝑠
𝑠 −𝑤

)

+ 2.384
(

𝑠
𝑑𝑜

)

− 2.906
(

𝑤
𝑑𝑜

)

(2)

𝑤 =
𝑙𝑒𝑓𝑓

√

12
𝑡𝑤

(3)

𝑓𝑐𝑟,𝑤 = 𝜋2𝐸
𝜆2𝑤

(4)

𝜆0 =

√

𝑓𝑦
𝑓𝑐𝑟,𝑤

(5)

𝜙 = 0.5
[

1 + 0.49
(

𝜆0 − 0.2
)

+ 𝜆0
2] (6)

= 1

𝜙 +
√

𝜙2 − 𝜆02
≤ 1.0 (7)

𝑅𝑘 = 𝐾𝜒𝑓𝑦 (8)
= −1.318 + 1.790

(

𝐻
𝑑𝑜

)

+ 0.413
( 𝑠
𝑠 −𝑤

)

− 1.926
(

𝑠
𝑑𝑜

)

+0.937
(

𝑤
𝑑𝑜

)

− 0.02
(

𝑑𝑜
𝑡𝑤

)

+ 1.412𝜆0
(9)

𝑅𝑘 = 𝜎𝑅𝑘𝑡𝑤 (𝑠 −𝑤) (10)

In the recent years, researchers have utilized Machine Learning
ML) methods to study the performance of structures. They are capable
2

f teaching the computer systems on how to make predictions from
atabases and algorithms, and have the ability to learn and improve
hemselves [22]. Artificial Neural Networks (ANN) have become the
ost popular ML method in structural engineering. The architecture of

n ANNs consists of interlinked nodes displayed in 3 or more layers
input layer, hidden layers, and output layer). This nodal connectivity
llows the ANN to attain complex relations by interpreting patterns
etween the inputs and outputs.

ANN has been recently employed in many structural engineering
pplications such as damage detection of structures and capacity pre-
iction and reliability analysis of steel and concrete structural elements.
holizadeh et al. [23] used a 4-noded, single hidden layer ANN to ac-
urately predict the web-post load carrying capacity of castellated steel
eams from a dataset obtained from the numerical analysis of 140 FE
odels. Sharifi and Tohidi [24] used 21 numerical models to train an
NN model that estimates the elastic buckling capacity of steel girders
ith rectangular web openings. Two other ANN models were developed

o predict the lateral–torsional buckling capacity and the bearing capac-
ty of corroded steel beams with rectangular web openings [25,26].

ith a dataset of 99 numerical models of simply supported cellu-
ar beams under four-point bending, Sharifi et al. [27] predicted the
trength capacity of cellular beams under lateral–torsional buckling.
ifferent training algorithms and ANN architectures were tested to
redict this phenomenon in the most efficient manner [28]. Lateral–
istortional buckling mode of steel castellated beams was researched
y Hosseinpour et al. [29], where an ANN showed superior predictions
f the ultimate moment capacity than the ones shown in current
esign codes. Nguyen et al. [30] explored an optimal ANN architecture
o predict the bearing capacity of castellated steel beams with 150
xperimental results. A single-layer, single-neuron neural network was
ufficient to predict the load-carrying capacity of these beams, show-
ng that a small ANN architecture can be used to better understand
tructural behavior. Abambres et al. [31] developed an ANN model
or simply supported beams under uniform loads using a numerical
atabase of 3645 numerical models. The proposed method could ac-
urately predict the elastic buckling load of such structural elements.
imbachiya and Shamass [13] developed an ANN model that predicted
he web-post buckling resistance of cellular beams from experimental
nd numerical results. The input parameters and the number of neurons
n the hidden layer were varied to establish an efficient architecture.
inally, Ferreira et al. [3] used a numerical dataset of 768 beams to
evelop an ANN to generate a practical design equation that can ac-
urately describe the lateral–torsional buckling of slender steel cellular
eams. The method proved efficient at assessing the lateral–torsional
uckling resistance of cellular beams even when this failure mode is
ombined with web-post buckling or web-distortional buckling modes.
inally, in Vitaliy and Tsavdaridis [32], ML for predicting the elastic
uckling and ultimate loads of steel cellular beams were examined
nd the accuracy of the ultimate load predictions by the ML models
xceeded the accuracy provided by the existing design provisions for
teel cellular beams published in SCI P355 [15] and Steel Design Guide
1 [16].

Overall, these studies demonstrated that ANN can accurately predict
xperimental and numerical results of web-post buckling. It is noted
hat the ANN formula accurately predicts the capacity of perforated
teel beams subjected to various loading conditions that fail in different
ailure modes such as web-post buckling and lateral torsional buckling
r the combination of these modes. However, there is currently no
esearch that establishes a comprehensive and practical design model
ool, processing large amount of data and using machine learning to
redict the web-post buckling capacity of steel beams employing this
ioneered patented elliptically-based web openings, which is the main
bjective of this study. Although Tsavdaridis and D’Mello [33] and
erreira et al. [20] proposed theoretical models to predict the web-
ost buckling of steel beams with elliptically-based openings based
n the EC3, the current research paper proposes a different method,
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Fig. 1. Boundary conditions.

which is more accurate, reliable and expandable to predict the strength
and failure mode of elliptically-based openings beam using machine
learning. The study makes use of the dataset provided in Ferreira
et al. [20] to train and test the ANN. By using a dataset of 4344
data points, the ANN presented in this paper can predict the web-
post buckling capacity under a vast range of geometrical variables,
increasing its practical application for structural design.

2. Finite element method: validation and parametric studies

Ferreira et al. [20] previously developed an FE model using the
ABAQUS [34] software for both full and single web-post models. The
FE models were validated against the tests results conducted by Tsav-
daridis and D’Mello [12] and were shown to be capable of providing
a good prediction of the behavior of steel beams with perforated
web openings in terms of vertical shear resistance and failure modes.
In brief, the validation study was carried out in software ABAQUS,
considering only web-post models of steel beams with elliptically-
based web openings. The modeling of the web-post models allows
the identification of failure mechanisms in an isolated way, such as
web-post buckling [11,13,14,35–37].

For the validation study, the FE model is processed using ABAQUS
software in two steps: buckling and post-buckling analyses [3,4,6,8,
14,38–45]. The geometrically and materially nonlinear analysis with
imperfections (GMNIA) has been used in the post-buckling analysis. A1,
A2, B1, B2 and B3 tests carried out by Tsavdaridis and D’Mello [12] are
considered. A multilinear material behavior is used to modeling stress–
strain relationship of steel, according to the methodology employed
in Shamass and Guarracino [40]. The Young’s modulus and Poisson’s
coefficient are taken equal to 200 GPa and 0.3, respectively. The initial
geometric imperfection considered is 𝑑𝑔∕500. This factor was also used
by Panedpojaman et al. [14], since the estimation of physical and
geometric imperfections on steel beams with periodical perforated web
openings is complex due to the manufacturing castellation process.
Mesh convergence study was conducted, and it was found that an
element size of 10 mm for all studied cellular beams was sufficient to
provide accurate FE results [8,45]. S4R shell element was used which
has six degrees of freedom — three rotations and three translations and
provides accurate results with less computational effort. The boundary
conditions of the web-post models are shown in Fig. 1.

The results of the validation study are presented in Table 1, con-
sidering the web-post models. It can be observed that the percental
differences between FE and the test shear loads vary between 9.4%
to −8.8% with an average of −0.14% and coefficient of variation of
0.14%. Hence, the proposed web-post model is reasonably accurate and
used for further parametric studies to predict the shear load capacity

of the web-post.

3

Table 1
Web-post models validation results.

Test 𝑉𝑇 𝑒𝑠𝑡 (kN) 𝑉𝐹𝐸 (kN) Failure (𝑉𝐹𝐸/𝑉𝑇 𝑒𝑠𝑡−1) %

A1 144.4 157.0 WPB 8.8%
A2 149.0 159.0 WPB 6.7%
B1 127.5 121.0 WPB −5.1%
B2 201.2 200.5 WPB −0.3%
B3 207.5 188.0 WPB −9.4%

S.D. 6.93%
Var. 0.48%

Regarding the parametric study, twelve UB sections are considered
(178 × 102 × 19, 305 × 102 × 25, 305 × 102 × 33, 305 × 127 ×
8, 457 × 152 × 52, 457 × 191 × 133, 533 × 210 × 122, 533 × 312
272, 686 × 254 × 170, 838 × 292 × 176, 914 × 305 × 201 and

016 × 305 × 487). For each section, the geometric parameters of the
teel beams with elliptically-based web openings are varied (Fig. 2),
onsidering the ratios H/d, 𝑑𝑜/H, R/𝑑𝑜 and w/𝑑𝑜. These parameter
ariations are in accordance with the castellation process, as shown in
B 2492176 [2]. Python scripting is used to carry out the parametric

tudy and post-process the results. Further details about the parametric
tudy and Python script were published in Ferreira et al. [19].

. Development of the Artificial Neural Network (ANN)

5400 numerical models were generated for this parametric study.
he failure mode governed either by web-post buckling (WPB) or
ierendeel mechanism (VM) was defined in each model. The web-post
uckling resistance, as the vertical shear resistance of the web-post, is
btained from the FE models. Artificial Neural Networks (ANN) and
344 models are used herein to predict the web-post buckling load and
400 models are used to classify the failure mode (WPB or VM). The
evelopment of a robust ANN model is described below.

.1. Neural network architecture

An ANN consists of three basic layers: an input layer, hidden layer,
nd an output layer. The hidden layer is determined by a set number of
eurons and provides a connection between each input parameter and
he single output parameter. There is a weighted connection between
ach input parameter and neuron in the hidden layer, as well as a con-
tant bias value between input parameter and neurons. The hidden
ayer is then connected to the output layer. In the output layer, ev-
ry connection from the hidden layer is weighted with a value, a
ransfer function, and a constant bias value. To review predicted values,
s the input values are normalized, the output value will have to be
enormalized. Thereafter, the error between the predicted and target
alues can be calculated to assess the accuracy of the model.

Several parameters are needed to derive the ANN model, including
he input parameters, number of neurons in the hidden layer, activation
unction, as well as the output parameter. The input parameters used in
his study were the opening height (𝑑o), the distance between flanges
eometric centers after castellation process (H), the opening radius
R), the web thickness (𝑡𝑤) and the opening width (w). The number
f neurons in the hidden layer has an impact on the accuracy of the
NN model. By modeling several networks with a different number
f neurons and thereafter comparing their results, the optimal number
f neurons in the hidden layer can be determined. In this paper, the
NN network was modeled with 3, 4, 5, 6, 7, 8 and 9 neurons in

he hidden layer. Fig. 3a illustrates an example of an ANN structure
onsisting of 5 input parameters, 3 neurons in the hidden layer, and
output parameter. Regarding the failure model classifications, a two-

ayer (one-hidden layer and output layer) feed-forward network is used.
he input features H, 𝑡𝑤, 𝑑𝑜, w and R are parameters governing the
ailure of perforated beams with elliptically-based web openings beams,
hile the output variables are two failure modes: WPB (class 1), and
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Fig. 2. Geometric parameters of steel beams with elliptical web openings.
M (class 2). A sensitivity analysis was conducted, for which different
NN models with different number of neurons were considered and

he hidden layer with 5 neurons is sufficient to accurately classify the
ode of failure. The performance of ANN model was assessed in terms

f the cross-entropy error with respect to the number of epochs. Fig. 3b
llustrates the ANN framework for the failure mode.

The network architecture described in this paper consists of a
ulti-Layer Perceptron Network (MLPN). Two-layer feedforward neu-

al network available in MATLAB’s neural network toolbox [46] was
mployed. Back-Propagation of Multilayer Feedforward ANN adjusts
he weights and bias values to minimize the errors. Furthermore, the
inal weights and bias values between different layers can be used to
alculate the influence of input parameters on the outcome parameters.

.2. Input and output normalization

To improve the learning speed, performance, accuracy, and stability
f the training process, normalization for input variables across all data
atterns should be adopted [47]. Input parameters were normalized
sing Eq. (11) [48], where Xact is the actual value of the input/output,
norm is the normalized value, 𝑋min and 𝑋max are the minimum and

maximum values of the input/output parameters, respectively (Ta-
ble 2). 𝑌min is the minimum value for each row of X (default is –1)
and 𝑌max is the maximum value for each row of X (default is + 1). To
enormalize the output parameters, Xact is made to be the subject of the
quation, with Xnorm being the predicted value from the ANN model.

𝑛𝑜𝑟𝑚 =

(

𝑌max − 𝑌min
) (

𝑋𝑎𝑐𝑡 −𝑋min
)

(

𝑋max −𝑋min
) + 𝑌min (11)

3.3. Learning (training) algorithm and transfer function

The Levenberg–Marquardt back propagation training algorithm is
used in this study because it is fast, has consistent convergence, and
4

Table 2
Parameters used to normalize input and target values.

Input/Target Parameter Xmin Xmax Ymin Ymax

H (mm) 213.36 1658.1 −1 1
𝑡𝑤 (mm) 4.8 30 −1 1
𝑑𝑜 (mm) 138.68 1492.3 −1 1
w (mm) 34.67 916.09 −1 1
R (mm) 13.87 422.81 −1 1
V (kN) 39.44 4301.4 −1 1

can be used to train small and medium-sized problems. A total of 4344
data sets were used in the ANN model. To avoid overfitting the ANN
model and providing the most accurate predictions, for both the model
prediction and classification, the data points are randomly separated
into three sets: training, validation, and testing, with 3040 (70% of
data), 652 (15%), and 652 (15%) sets of data in each set respectively. A
combination of which 70% of data was used for training, 15% was used
for validation and testing led to the best prediction and classification
accuracy with ANN models. Therefore, the ANN model is based on
this combination. The training set is used to compute the gradient and
update the weights and biases, the validation data set is used to perform
cross validation so that the network’s performance can be generalized
and the test data set is used to check the ANN accuracy after the
optimum network parameters have been defined. Eqs. (12)–(13) show
the hyperbolic tangent transfer function that is required to determine
the normalized output value based on the inputs provided [47].

𝑂𝑠 = 𝐵𝑠
1 +

𝑟
∑

𝑘=1

(

𝑤ℎ𝑜
𝑘,𝑙

2
1 + 𝑒−2𝐻𝑘

− 1
)

(12)

𝐻𝑘 = 𝐵𝑘
2 +

𝑞
∑

𝑗=1
𝑤𝑖ℎ

𝑗,𝑘 ⋅ 𝐼𝑗 (13)

where, 𝑂𝑠 represents the normalized output value, q is the number of
input parameters; r is the number of hidden neurons; s is the number
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Fig. 3. ANN proposed model.
of output parameters; 𝐵𝑠
1 and 𝐵𝑘

2 are the biases of sth output neuron
and 𝑘th hidden neuron (𝐻𝑘), respectively; 𝑤𝑖ℎ

𝑗,𝑘 is the weights of the
connection between 𝐼𝑗 and 𝐻𝑘; 𝑤𝑜ℎ

𝑘,𝑙 are the weights of the connection
between 𝐻𝑘 and 𝑂𝑠.

.4. Assessing the accuracy of neural network

To review the accuracy of the ANN model, it is important to
ompare the target values to the predicted values. Therefore, the Cor-
elation coefficient (R), Root Mean Square Error (RMSE) and Mean

Absolute Error (MAE) were calculated using Eqs. (14)–(16), where 𝑡𝑖
nd 𝑂𝑖 are the actual and predicted WPB capacities, N is the total
umber of data points in each set of data. 𝑂 and 𝑡 are the average of

the predicted and actual vertical shear resistance.

𝑅 =

∑𝑁
𝑖=1

(

𝑂𝑖 − 𝑂𝑖

)

(

𝑡𝑖 − 𝑡𝑖
)

√

∑𝑁
𝑖=1

(

𝑂𝑖 − 𝑂𝑖

)2
∑𝑁

𝑖=1
(

𝑡𝑖 − 𝑡𝑖
)2

(14)

𝑀𝑆𝐸 =

√

∑𝑁
𝑖=1

(

𝑂𝑖 − 𝑡𝑖
)2

𝑁
(15)

𝑀𝐴𝐸 = 1
𝑁
∑

|

|

𝑂𝑖 − 𝑡𝑖|| (16)

𝑁 𝑖=1

5

3.5. Quantifying input variable contributions in ANN

In this section, the methodology for evaluating the contribution
of each variable to web-post buckling resistance of steel beams with
elliptically-based web openings is presented.

3.5.1. Connection weight approach
In addition to assessing the accuracy of the model through a com-

parison between the predicted ANN values and the actual values, it is
important to understand the effect of the input parameter on the pre-
dicted output. The connection weight approach proposed by Olden and
Jackson [49], used in previous studies [3,13], calculates the impact of
an input parameter. A positive impact will determine that an increase
in the input parameter will increase the value of the output parameter
and vice versa for a negative impact value. The impact of each input
parameter on the output can be determined using Eq. (17) [38] where,
X represents the input parameter, Y is the weighted connection between
the input parameter and hidden layer and ‘‘Hidden’’ is the weighted
connection between the hidden layer and output parameter.

𝐼𝑛𝑝𝑢𝑡𝑋 =
𝐸
∑

𝑌=𝐴
𝐻𝑖𝑑𝑑𝑒𝑛𝑋𝑌 (17)

3.5.2. Garson’s algorithm
Garson [50] proposed a method to define the relative importance

of each input parameter in the neural network. It has been used by
many researchers [51–53]. It is worth mentioning that the Garson’s
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lgorithm calculates the input variable contribution using the absolute
alues of the connection weights, therefore, this method does not
rovide the direction of the relationship between the input and output
ariables [54].

The relative importance of the 𝑗th input parameter on the output
s presented in Eq. (18). 𝑁𝑖 and 𝑁ℎ are the numbers of neurons in
he input and hidden layers, respectively; w is connection weights;
he subscripts k, m, and n refer to input, hidden, and output neurons,
espectively, and the superscripts i, h, and o refer to input, hidden, and
utput layers, respectively.

𝑗 =

∑𝑚=𝑁ℎ
𝑚=1

(

𝑤𝑖ℎ
𝑗𝑚

∑𝑁𝑖
𝑘=1 𝑤

𝑖ℎ
𝑘𝑚
𝑤ℎ𝑜

𝑚𝑛

)

∑𝑘=𝑁𝑖
𝑘=1

[

∑𝑚=𝑁ℎ
𝑚=1

(

𝑤𝑖ℎ
𝑘𝑚

∑𝑁𝑖
𝑘=1 𝑤

𝑖ℎ
𝑘𝑚
𝑤ℎ𝑜

𝑚𝑛

)] (18)

. Results and discussion

Table 3 provides the R2 and MSE values for the data sets during
he training, validation, and testing stage of the ANN and the R2,
AE and RMSE for all the data. The results show a clear correlation

etween the accuracy of the model and the set number of neurons
n the hidden layer. As the number of neurons increase, so does the
ccuracy of the model. However, the increases in neurons also leads to
more complicated formula and potentially produces models that are

vertraining. This in terms of real-life application is a disadvantage due
o the complexity of the equations that are produced. However, when
omparing the 5-neuron model to the 9-neuron model with all the data,
he R2, MAE and RMSE was 0.9989, 15, 26.03, and 0.9997, 8.71, 12.52,
espectively. This shows that although the accuracy has increased, a 5-
euron model is still incredibly accurate and has the potential to be

sed in predicting the output. i

6

Fig. 4a and b provide the predicted against actual results for the 5
nd 9 neurons model, respectively. Although the accuracy is slightly
reater in the 9-neuron model, the accuracy of the 5-neuron model is
till extremely high. Therefore, based on the data in Table 3, it can be
ssumed that a 5-neuron model will provide a more practical solution
or industrial applications yet it will provide a high level of predictive
ccuracy.

To further assess the validity of the models, the weighted values
etween the input-hidden and hidden-output layers were used to as-
ess the impact of the input parameters using the connection weight
pproach and Garsons algorithm. Fig. 5 provides the results of the
onnection weight approach and depicts the impact of each input
arameter on the output parameter for all models that were developed.
esults show consistency in the parameters that have the largest impact
s well as those parameters that have a positive or negative impact.
esults show that as the height of the beam (H) and the web thickness
𝑡𝑤) increase, the value of the output parameter increases (i.e., the shear
esistance/capacity), where H has a greater impact on the capacity than
𝑤. The analysis also shows that as the opening height (𝑑𝑜), opening
adius (R), or opening width (w) increase, the value of the output
arameter decreases. The parameter that has the greatest negative im-
act on capacity is the opening height, followed by the opening radius
nd thereafter the opening width. This creates further validity of the
NN prediction as the greater the web thickness, the smaller the web-
ost slenderness and greater the resistance. Furthermore, increasing the
pening height, and opening radius would have a reduction on the
eight of the tee section, resulting in resistance reduction. Additionally,
s the height H increases, the slenderness of the web-post increases as
ell as the height of the tee sections increases, resulting in an increase

n the vertical shear resistance of the web-post. This is valid as the



R. Shamass, F.P.V. Ferreira, V. Limbachiya et al. Thin-Walled Structures 180 (2022) 109959
Table 3
Comparison of statistical values to evaluate the accuracy of the ANN models with different neurons.

Number of neurons R2 MSE All data

Training Validation Testing Training Validation Testing RMSE MAE R2

3 0.99932 0.99936 0.999 1.89 × 10−4 1.64 × 10−4 2.65 × 10−4 28.89 20.3 0.9986
4 0.99937 0.99933 0.99935 1.74 × 10−4 1.57 × 10−4 1.86 × 10−4 28.11 18.68 0.9987
5 0.99951 0.99931 0.99933 1.33 × 10−4 2.04 × 10−4 1.67 × 10−4 26.03 15.0 0.9989
6 0.99967 0.9997 0.99961 8.66 × 10−5 9.7 × 10−5 1.08 × 10−4 20.37 14.18 0.9993
7 0.99979 0.99973 0.99968 5.89 × 10−5 6.93 × 10−5 8.53 × 10−5 17.1 11.67 0.9995
8 0.99983 0.99983 0.99979 4.58 × 10−5 5.29 × 10−5 5.12 × 10−5 14.72 10.03 0.9996
9 0.99988 0.99988 0.99982 3.26 × 10−5 3.51 × 10−5 4.28 × 10−5 12.52 8.71 0.9997
Fig. 5. Impact of input parameters on the resistance.
Fig. 6. Contribution (%) of input parameters to the resistance (5 neurons).
geometric ratios (𝑑𝑜/H, w/𝑑𝑜 and R/𝑑𝑜) and the web thickness must
remain constant.

Fig. 6 illustrates the importance of the five input parameters. The
most important input corresponds to highest contribution value calcu-
lated using Garson algorithm as explained in Section 3.5.2. It can be
observed that the beam height, web thickness as well as web opening
height and width of the perforated beams are the significant parameters
on the shear resistance, while the opening radius R has less effect on
the resistance. Fig. 6 also shows the percentage contribution of each
input parameter to the shear resistance. The contribution of the input
parameters H , t𝑤, d𝑜, w and R is 18.4%, 24.7%, 19.9%, 30.3%, and
6.7%, respectively. In conclusion, as the ANN model with five neurons
provides predictions with high level of accuracy and the impact of the
7

inputs on the resistance is as physically expected, it will be used in the
following sections.

Fig. 7 represents the performance of the failure classification pre-
diction using ANN. The figure shows the cross-entropy error as a
function of epochs. It can be noted that as the epoch increases the cross-
entropy error decreases, indicating that the accuracy of the predictions
increases. The neural network training was ended when the general-
ization stopped improving, to prevent overfitting, at which the best
validation performance for the ANN classification model is obtained.
At this point, indicated by the green circle in Fig. 7, the best validation
performance with minimal cross-entropy error is 0.0881 at epoch 57.

To evaluate the performance of the ANN in classification, a con-
fusion matrix was used (Fig. 8). On the confusion matrix, the rows
correspond to the predicted class while the columns correspond to
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s

Fig. 7. Performance evaluation of ANN in terms of cross-entropy against number of epochs.
+

+

b
a
e

the true/target class [46]. As previously highlighted, classes 1 and
2 represent the WPB and VM failure modes of the beams, respec-
tively. The diagonal cells of the matrix illustrate failure modes that
are correctly classified. The off-diagonal cells correspond to incorrectly
classified failure mode. The number of the observed failure modes and
the percentage of the total number of failure modes are shown in each
cell. For example, 4212 failure cases are correctly classified as WPB.
This corresponds to 78% of all 5400 data. Similarly, 820 failure cases
are correctly classified as VM. This corresponds to 15.2% of all data.
The column on the far right of the matrix shows the percentages of
correct and incorrect classifications for each predicted failure mode.
Out of 4448 WPB failure predictions, 94.7% are correct while 5.3%
are wrong. Out of 952 VM failure predictions, 86.1% are correct while
13.9% are wrong.

The row at the bottom of the matrix illustrates the percentages
of all cases belonging to each class that are correctly and incorrectly
classified. Out of 4344 WBP cases, 97% are correctly predicted as WBP
failure and 3% are predicted as VM failure. Out of 1056 VM cases,
77.7% are correctly classified as VM failure and 22.3% are classified
as WPB failure. The cell in the bottom right of the matrix indicates
the overall classification accuracy. Hence, the overall classification
accuracy of the ANN model is 93.2%. This clearly confirms that the
ANN algorithm can detect the failure mode (i.e., WPB or VM) of
perforated beams with the elliptically-based web openings.

5. ANN-based formula and interactive graphical user interface

An ANN-based formula to predict the normalized shear resistance
of the web-post is shown in the Eq. (19). The input parameters, which
should fall within 𝑋max and 𝑋min range as indicated in Table 2, should
be normalized using Eq. (11). In order to calculate the normalized shear
resistance of the perforated beam with elliptically-based web opening
(V)𝑛, the values 𝐻1, 𝐻2. . . 𝐻5 should be calculated using Eq. (20) and
ubstituted into Eq. (19). In these equations, (H)n, (t𝑤)n, (d𝑜)n, (w)n,

and (R)n represent the normalized values of the inputs H , t𝑤, do, w
and R, respectively, w1(i,j) are the connection weights between neuron
in the hidden layer (i) and input (j), while w2(i) are the connection
weights between the neuron in the hidden layer (i) and the output, as
seen in the Table 4. B1(i) are the bias for each neuron (i) in the hidden
layer, and B2 is the output bias and is equal to 0.077617. To determine
the shear resistance (V ), denormalization need to be conducted.

(𝑉 )𝑛 = 𝐵2 +
𝑛=5
∑

𝑤2(𝑖)
(

2
−2𝐻𝑖

− 1
)

(19)

𝑖=1 1 + 𝑒 e

8

Fig. 8. Confusion matrix based on classification results by ANN.

Table 4
The connection weight and the bias values.

Neuron 𝑤1(i,j) 𝑤2(i) 𝐵1(i)

H 𝑡𝑤 𝑑𝑜 w R V

1 3.8348 1.4794 −3.4851 −5.0850 −2.4212 0.3354 −7.2860
2 0.7013 0.3435 −0.8183 1.0805 −0.2660 −0.8849 0.7064
3 −0.4329 −0.8036 0.5024 0.2778 0.0261 −2.5624 0.9842
4 0.1039 −0.8327 −0.0777 0.9004 0.0056 1.9833 1.1943
5 −0.6187 −0.6568 0.7405 −0.8120 0.2772 −0.8742 −0.6614

𝐻𝑖 = 𝐵1 (𝑖) +𝑤1 (𝑖, 1) (𝐻)𝑛 +𝑤1 (𝑖, 2)
(

𝑡𝑤
)

𝑛

𝑤1 (𝑖, 3)
(

𝑑𝑜
)

𝑛 +𝑤1 (𝑖, 4) (𝑤)𝑛

𝑤1 (𝑖, 5) (𝑅)𝑛

(20)

Comparisons between the vertical shear resistance results predicted
y FEA with those predicted by Ferreira et al. [20] and ANN formulas
re presented in Table 5 and Fig. 9. It can be noted that the ANN over-
stimates the shear buckling resistance by up to 24.55% while Ferreira
t al. [20] analytical model overestimates the shear buckling by up to
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Table 5
Statistical comparison between FEA shear buckling results with analytical and ANN predictions.

Analysis Ferreira et al. [20] ANN-based formula (Eq. (19))

R2 (Regression) 0.9871 0.9989
RMSE (Root Mean Square Error) (kN) 91.09 26.03
MAE (Mean Absolute Error) (kN) 46.24 15.0
Minimum relative error −26.89% −23.38%
Maximum relative error 28.02% 24.55%
Average (FEM/Predicted) 0.982 1.00
S.D. 7.71% 4%
Var. 0.59% 0.12%
Fig. 9. Comparison of the predicted shear strength with the FE shear strength.
Fig. 10. Interactive graphical user interface.
8.02%. Furthermore, ANN underestimates the shear buckling results
y up to 23.38% while Ferreira et al. [20] analytical model underesti-
ates the shear buckling by up to 26.89%. The RMSE and MAE values

or the ANN predicted shear resistance are lower than those for Ferreira
t al. [20] analytical models and resulting in higher level of accuracy.
ased on the regression values, it can be seen that ANN provides the
reatest correlation. Fig. 9 shows a graphical representation of ANN and
he analytical model together with the FE predictions. Overall, the ANN
odel tends to provide accurate shear resistance predictions while the
9

analytical models tend to underestimate the predicted web-post shear
resistance of perforated beams with elliptically-based web openings.

It can be concluded that the ANN model with five neurons can
accurately predict the vertical shear resistance of perforated beams
with elliptically-based web openings, hence, the ANN-based formula
(Eq. (19)) can be used as a design tool, thus it has been implemented
in user graphical interface using MATLAB [46]. Fig. 10 illustrates
the main user interface which is simple and easy to use. The user
can enter the input parameters of the perforated beam and the web-
post buckling resistance is displayed by clicking on Solve button. The
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graphical interface is available for users at https://github.com/Rabee-
Shamass/ANN

Conclusion

A data-driven machine learning-based computational framework is
developed using artificial neural network (ANN) algorithm for predict-
ing the web-post buckling resistance and the failure mode of perfo-
rated steel beams with elliptically-based web openings. The proposed
framework consists of data generation from FEA, web-post buckling
resistance predictions, and failure mode classification. The ANN results
were compared with the analytical prediction model. Based on the
results, the following conclusions are found:

• The ANN model with five neurons provided web-post buckling re-
sistance predictions with high level of accuracy while the impact
of the geometries of the beam on the resistance is as physically
expected.

• The proposed ANN-based formula for web-post buckling resis-
tance of steel beams with elliptically-based openings can be safely
adopted for design purposes while a design tool has been imple-
mented in user graphical interface using MATLAB and it is free
to use.

• ANN algorithm is effective in predicting the failure modes (web-
post buckling and Vierendeel mechanism) of perforated beams
with the elliptically-based web openings. In this study, the overall
accuracy was 93.2%.
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