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Abstract
Spatiotemporal data pose serious challenges to analysts in geographic and other domains. Owing to the complex-
ity of the geospatial and temporal components, this kind of data cannot be analyzed by fully automatic methods
but require the involvement of the human analyst’s expertise. For a comprehensive analysis, the data need to be
considered from two complementary perspectives: (1) as spatial distributions (situations) changing over time and
(2) as profiles of local temporal variation distributed over space. In order to support the visual analysis of spa-
tiotemporal data, we suggest a framework based on the "Self-Organizing Map" (SOM) method combined with a
set of interactive visual tools supporting both analytic perspectives. SOM can be considered as a combination of
clustering and dimensionality reduction. In the first perspective, SOM is applied to the spatial situations at differ-
ent time moments or intervals. In the other perspective, SOM is applied to the local temporal evolution profiles.
The integrated visual analytics environment includes interactive coordinated displays enabling various transfor-
mations of spatiotemporal data and post-processing of SOM results. The SOM matrix display offers an overview
of the groupings of data objects and their two-dimensional arrangement by similarity. This view is linked to a
cartographic map display, a time series graph, and a periodic pattern view. The linkage of these views supports
the analysis of SOM results in both the spatial and temporal contexts. The variable SOM grid coloring serves as
an instrument for linking the SOM with the corresponding items in the other displays. The framework has been
validated on a large dataset with real city traffic data, where expected spatiotemporal patterns have been suc-
cessfully uncovered. We also describe the use of the framework for discovery of previously unknown patterns in
41-years time series of 7 crime rate attributes in the states of the USA.

Categories and Subject Descriptors (according to ACM CCS): H.1.2 [User/Machine Systems]: Human information
processing—Visual Analytics; I.6.9 [Visualization]: Information Visualization—

1. Introduction

Spatiotemporal data pose serious challenges to analysts.
Firstly, owing to the complexity of the geographical space,
data having a geospatial component cannot be adequately
analyzed by fully automatic methods, but require the in-
volvement of the human analyst’s sense of the space and
place, tacit knowledge of their inherent properties and rela-
tionships, and space / place -related experiences [AAD∗08].
These are incorporated into the analysis through the use of
an appropriate representation of the space such as a carto-
graphic map, which serves as a model of the reality through

which the analyst can interpret data associated with the
space and its places. Secondly, time is also a complex phe-
nomenon. Time flows in a linear way, however the events
happening over time can be periodically recurring, with mul-
tiple cycles forming hierarchical structures, overlapping, and
interacting. Like space, it is heterogeneous; thus, day dif-
fers from night and working days differ from weekends and
holidays. Humans have good understanding of time, which
is very hard to convey to the machine. Hence, data having
a temporal component also require human involvement in
the analysis through the use of appropriate representations
[Peu02].
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The analysis of spatiotemporal data may be, however, too
complex for humans: the number of distinct places can be
too large, the time period under analysis too long, and/or the
attributes depending on space and time too numerous. There-
fore, human analysts require a proper support from compu-
tational methods capable to deal with large and multidimen-
sional data.

Comprehensive analysis of spatiotemporal data requires
consideration of the data in a dual way [AA05b]:

• As a temporally ordered sequence of spatial situations. A
spatial situation is a particular spatial distribution of ob-
jects and/or values of attributes in some time unit (i.e. mo-
ment or interval);

• As a set of spatially arranged places where each place
is characterized by its particular temporal variation of at-
tribute values and/or presence of objects. We shall call it
local temporal variation.

Accordingly, there are two high-level (synoptic) subtasks in
analysis of spatiotemporal data:

• Analyze the change of the spatial situation over time, i.e.
temporal evolution of the situation.

• Analyze the distribution of the local temporal variations
over space.

In order to support both tasks, we suggest a framework for
analyzing spatiotemporal data with the use of the computa-
tional method called Self-Organizing Map (SOM) [Koh01].
SOM combines clustering with dimensionality reduction:
objects are not only grouped but also arranged in one- or
two-dimensional space according to their similarity in terms
of multidimensional attributes. We have built a visual an-
alytics environment in which it is possible to apply SOM
to spatial situations and temporal variations and explore the
results obtained by means of various visual and interactive
techniques.

An overview of related research concerning the use of
SOM for visual data exploration is given in Section 2. Sec-
tion 3 describes our tools for spatiotemporal analysis with
the use of SOM. In Section 4, we describe an application
of the tools to real data about city traffic in Milan with pre-
viously expected spatiotemporal patterns. We demonstrate
that the tools allowed us to detect these patterns. In Sec-
tion 5, we show how these tools allow uncovering previously
unknown spatiotemporal patterns in another real dataset de-
scribing crimes in the USA. This is followed by a discussion
of our contribution in comparison to the state of the art and
conclusion in Section 6.

2. Related work

The SOM methodology is discussed in depth in Kohonen’s
monograph [Koh01]. The Self-Organizing Map is a neural
network type vector projection and quantization algorithm.

By means of a competitive, iterative training process, a net-
work of prototype vectors (or neurons, or cells) is trained
(adjusted) to the input vector data. The output of the algo-
rithm is a network of vectors that is approximately topology
preserving w.r.t. the input data. The network can be inter-
preted as a set of clusters and simultaneously as a map to
lay out the input data elements (e.g., in the nearest neigh-
bor sense w.r.t. the prototypes). Typically, two-dimensional
rectangular or hexagonal prototype vector networks are as-
sumed. The SOM algorithm is usually outperformed in terms
of vector quantization capability by algorithms not requiring
the network constraint. On the other hand, the capability of
SOM to arrange input data in a regular network structure
provides good opportunities for visualization. This makes
the method very convenient for integration in an environ-
ment for interactive visual exploration of multidimensional
data. To date, SOM has been successfully used for a number
of visual analysis applications.

The SOM method is applicable to any data type that
can be represented by vectors. Specifically, complex and
multimedia data can be addressed by SOM if represented
by appropriate feature vector data. A few example applica-
tions to name in this respect include financial data [DK98],
text [ND06], images [Bar08], or time-dependent scatter data
[SBvLK09]. Vesanto [Ves99] describes the basic analytic
tasks that can be addressed with SOM and options for SOM
visualization supporting these tasks. The tasks include anal-
yses of cluster structure, of prototype vectors, and of overall
data distribution.

The SOM method has been successfully applied in the
geospatial data analysis domain, where its data aggregation
and sorting properties are leveraged. A wealth of applica-
tions are described in a recent book on the topic [AS08].
As the SOM network itself represents an abstract map for
data, color-coding can be used to link the location of data
elements in SOM space with their respective geospatial co-
ordinates [KK08, ST08]. VISSTAMP is a system linking
views based on geospatial maps, SOM maps, parallel coor-
dinate and table plots [GCML06]. Besides using simple lin-
early scaled two-dimensional color maps, approaches exist
for advanced mappings adjusting for non-uniform distribu-
tions of SOM distances [KVK00] and considering percep-
tual issues [GGM∗05]. Variants of the SOM algorithm exist
that include also geospatial coordinates in the SOM train-
ing process, allowing a tradeoff of multivariate and geospa-
tial data properties in the obtained SOM [BLP05]. An inter-
esting way of linking SOM to geographical space and time
is described in [Sku08]. A trajectory made by a person in
the geographical space is projected onto the space of SOM
where geographical places are arranged according to their
similarity in terms of multiple attributes.

The most related to our work are the works where SOM
is applied to spatiotemporal data. Hewitson [Hew08] applies
SOM to time series of spatial distributions of air pressure

submitted to Eurographics/ IEEE-VGTC Symposium on Visualization (2010)



G. Andrienko et al. / Space-in-time and time-in-space SOMs 3

values in order to find the archetypal distributions for a re-
gion and then looks for certain temporal patterns such as fre-
quencies of the archetypes in dry and wet years. Hewitson
does not consider the complementary analytic task, analysis
of the spatial distribution of the local temporal variations.

In [GCML06], SOM is applied to combinations of val-
ues of multiple attributes characterizing pairs <place + time
unit>. Assessing similarities and differences among spatial
situations is done by visual inspection of multiple maps
(one map per time unit) where each place has the color of
the SOM cell containing the particular combination of this
place and the time unit. Assessing similarities and differ-
ences among local temporal variations is done using a re-
orderable matrix where the rows correspond to the places,
columns to the time units, and cells have the colors of the
SOM nodes. Hierarchical clustering groups the rows by sim-
ilarity; however, the spatial context is missing. We apply
SOM to spatial situations and temporal variations; hence, the
results directly match the analytic tasks.

3. Description of the tools

We have integrated the SOMPAK SOM engine [KHKL96]
in a visual analytics environment for spatiotemporal analy-
sis. The environment supports transformations of spatiotem-
poral data, controlling the work of the SOM algorithm, post-
processing of the SOM results, and putting the results in the
spatial and temporal contexts for human interpretation.

The Self-Organizing Map method is used for grouping
and arranging spatial distributions and temporal variation
profiles according to their similarity. The results are pre-
sented in the SOM matrix display. Two-dimensional color
mapping links the SOM matrix with additional data views
for supporting multi-perspective data analysis. Thus, the car-
tographic map display represents SOM results in the geo-
graphical context. For this purpose, places in the map are
colored according to the positions of the respective profiles
of local temporal variation in the SOM matrix. Two types
of temporal displays, time graph and time arranger, repre-
sent SOM results in the temporal context. For this purpose,
segments of these displays are colored according to the posi-
tions of the respective spatial situations in the SOM matrix.
The time arranger supports detection of periodic temporal
patterns in the occurrence of similar spatial situations.

The system also includes interactive tools for spatiotem-
poral aggregation and other data transformations, which may
be needed for preparing data to the application of the SOM
method and for interpreting the results obtained. Examples
of the use of these tools are given in Sections 4 and 5.

3.1. Parameterization of SOM Algorithm

The SOM algorithm requires a number of parameters to be
set. We distinguish between the network size (number of

prototype vectors) and training parameters (including learn-
ing rate and neighborhood kernel function). Suitable train-
ing parameters can be set according to the empirical rule-
of-thumb recommendations [KHKL96]. An alternative is to
automatically evaluate a series of different parameterizations
and take the best result as judged by an objective SOM qual-
ity measure such as quantization or topology error. We re-
gard the network size as a user-chosen parameter. Typically,
it will depend on the user task and data size. If the data set
is large and data reduction is desired, the number of proto-
types is set much smaller than the number of data items, thus
providing data aggregation. If the data set is rather small,
the network size may be set about equal to the number of
data items. In this case, the SOM algorithm mainly acts as a
similarity-preserving layout method.

In principle, different parameterizations may give differ-
ent results in terms of prototype vectors and their layout
in the network. However, we practically observe that the
results are rather stable even over larger parameter varia-
tions. If desired, stability can further be enhanced by data-
dependent and supervised training initialization methods
(see [Koh01, KHKL96]).

In our system, we apply the rule-of-thumb parameteriza-
tions suggested in [KHKL96] for training and let the user
select the network size interactively. For simplicity of the
implementation, we stick to a rectangular SOM network.
While SOMPAK is an efficient implementation, depending
on the data size and training parameterization, SOM calcula-
tion runtime may not be interactive. While for our data sets,
runtimes were quite fast, we note that interactive SOM cal-
culation is not a necessity in our application.

3.2. SOM matrix display

We apply the SOM method to two types of complex ob-
jects: (1) spatial situations that occurred in different time
units, and (2) local temporal variations that occurred in dif-
ferent places. Accordingly, there are two variants of SOM
outcomes called ’space-in-time SOM’ and ’time-in-space
SOM’, respectively. The interactive visual interface to the
SOM engine consists of a matrix display of the SOM out-
comes and a control panel, which allows the user to set the
parameters of the SOM tool and modify the display of the
results. The cells of the SOM matrix may include variable
numbers of objects depending on data characteristics and the
size of the SOM grid; some of the cells may be empty. The
number of objects contained in a cell is shown graphically by
a bar where the full length represents the maximum number
of objects among all cells and the filled part is proportional
to the number of objects in the cell. The innovative features
of the SOM matrix display are the specific coloring of the
matrix cells that reflects the degree of their similarity and
two types of automatically generated images representing
the contents of the cells, feature images and index images.
The images provide a combined representation of the spa-
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Figure 1: Possible appearances of cells in a SOM matrix.
Left: space-in-time SOM (grouping of spatial situations).
Right: time-in-space SOM (grouping of places according to
temporal variations of attribute values). A,B: one attribute
with values for 41 years. C,D: 7 attributes with values for
41 years. E,F: one attribute with values for 7x24 hours. The
upper image in each cell is the feature image, the lower im-
age is the index image.

tial, temporal, and thematic (attributive) components of the
data.

3.2.1. Feature images

Feature images represent the objects to which the SOM tool
has been applied, i.e. spatial situations in a space-in-time
SOM and local temporal variations in a time-in-space SOM.
Spatial situations are represented by maps (Figure 1, left),
and local temporal variations by diagrams (Figure 1, right);
we call them ’temporal mosaics’. A map image portrays
the attribute values attained in all places in one time unit.
A temporal mosaic portrays the attribute values attained in
one place in all time units. In both cases, values of space-
and time-dependent numeric attributes are represented by
color coding. The user may choose one of the multiple color
scales available in the system, which include all variants of
diverging color scales from Color Brewer [HB03]. Thus, in
Figure 1, a Color Brewer’s scale is used where shades of
green correspond to low values, shades of red to high val-

ues, and yellow stands for values close to the average. In
Figure 2, a modified variant of one of the Color Brewer’s
scales where color brightness is enhanced for more visual
salience. Here, shades of blue are used for low values, shades
of yellow for medium values, and shades of red for high val-
ues. The system also includes some of the palettes suggested
in [WVvWvdL08].

It should be noted that feature images are not meant for
conveying detailed information about the values of attributes
in each particular place and time unit. The system has other
tools that enable detailed reading of values. For example,
the cartographic map display not only allows the user to de-
code the colors by means of the legend but also shows the
exact values when the user points on a place in the map.
The images in the SOM cells are intended for providing
an overview, so that the user can approximately estimate
whether the values are low, medium, or high and notice ma-
jor differences between cells.

The cartographic representation technique used in the
map images depends on the number of attributes selected
for the analysis. Values of a single attribute are represented
directly by colors of the map elements depicting the places
(territory compartments). Examples can be seen in Figure
1A and E. In case of two or more attributes, the map con-
tains diagrams, called ’multi-attribute mosaics’, which are
positioned in the places (Figure 1C). Each diagram consists
of pixels colored according to the attribute values and ar-
ranged in a rectangular layout with user-preferred number
of columns. Thus, in Figure 1C, the multi-attribute mosaic in
each compartment consists of 7 pixels arranged in one col-
umn. The pixels correspond to 7 attributes selected for the
analysis. Overlapping of the mosaic symbols on the small
maps is a serious problem, which is only partly reduced by
semi-transparent rendering. Still, the images are adequate for
providing an overview: the user can see which colors prevail
where.

The temporal mosaics shown in the cells of a time-in-
space SOM (Figure 1, right) are built similarly to the multi-
attribute mosaics drawn on a map as in Figure 1C. The pixels
represent attribute values by color coding. The set of pixels
corresponding to one attribute is arranged in a rectangular
layout with user-chosen number of columns. Thus, in Fig-
ure 1B, the pixels representing values of one attribute for 41
years are arranged in one row. In Figure 1F, the values of
one attribute for 168 consecutive hourly intervals (7 days x
24 hours) are arranged in 7 rows corresponding to the days;
hence, the columns correspond to the hours of a day. In case
of multiple attributes, the respective mosaics are combined
in a single image. Thus, the feature image in Figure 1D rep-
resents values of 7 attributes for 41 years. The values of each
attribute are represented by a mosaic consisting of 41 pixels
laid out in one row, as in Figure 1B. The mosaics of the 7
attributes are automatically placed one below another. This
produces the overall rectangular layout with 41 columns and
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Figure 2: An additional window displays the content of a
cell of a time-in-space SOM.

7 rows. Although the resulting image is similar to that in
Figure 1F, the meaning of the rows is different.

In case of multiple attributes, the values of each attribute
are color-coded independently of the other attributes while
the same color scale is used. Since the same colors may rep-
resent different value intervals for different attributes, fea-
ture images are not meant to be used for inter-attribute com-
parisons. Their role is to give an idea about the relative mag-
nitudes of the individual attribute values.

When a SOM matrix cell contains two or more objects,
the displayed image represents the best fitting object, that is,
the object with the smallest distance to the cell’s prototype
vector (nearest neighbor). Images of all objects included in a
cell can be seen in an additional window which appears after
clicking on the cell (Figure 2).

3.2.2. Index images

Index images show the temporal or spatial positions of the
objects included in the SOM matrix cells. In a space-in-time
SOM, temporal index images show the temporal positions
of the spatial situations (Figure 1 left). An image consists
of small squares representing the time units, which are tem-
porally ordered and arranged in rows of user-chosen length.
The squares representing the objects included in the respec-
tive SOM cell are filled in black. Thus, in Figure 1A and B,
the temporal index images have 10 columns; hence, the rows
correspond to decades. In Figure 1C, the temporal index im-
age has 24 columns corresponding to 24 hours of a day and
7 rows corresponding to 7 consecutive days.

In a time-in-space SOM, spatial index images show the
spatial positions of the local temporal variations. Each image
is a map where the spatial positions are marked by black
filling of the corresponding territory compartments (Figure 1
right). The combination of feature images and index images
provides a combined representation of the space, time, and
values of one or more attributes. The user may arbitrarily
switch on and off the drawing of the feature images and the
index images.

3.2.3. Distances between SOM cells

In a SOM, not every single neuron necessarily represents a
meaningful cluster. In many cases, it is useful to see a com-

bination of nearby neurons as representation for such a clus-
ter. The u-matrix [Ult99], which consists of the pair-wise
distances between neighboring cells in the space of the at-
tribute values, is a common way to address this problem. In
our implementation, the information about the distances may
be conveyed in the SOM matrix display through the shading
of the cell borders (Figure 8). The border of a cell is divided
into 8 segments corresponding to the 8 neighbors of this cell.
The degree of darkness of each segment between white and
black is proportional to the Euclidean distance to the respec-
tive neighbor in terms of the attribute values. The distances
among the SOM cells are also reflected in the coloring of
the SOM cells, as explained below. Therefore, the drawing
of the so shaded borders between the cells is optional and
can be switched off by the user.

3.2.4. Coloring of SOM cells

Coloring of the cells in the SOM matrix is the primary means
for visual linking of the matrix display to the other visual dis-
plays and thus for putting SOM results in the spatial and tem-
poral contexts. For this purpose, the colors of the cells are
assigned to the spatial or temporal positions of the thereby
represented objects and used for coloring the corresponding
visual elements in the other displays. To enable correct per-
ception of the similarities and dissimilarities from the dis-
plays linked to SOM, the coloring of the SOM cells must re-
flect the distances among them in the attribute values space.

To achieve this, we create for a SOM matrix with m
columns and n rows a two-dimensional color map with
10*m columns and 10*n rows. In the next step, we place
the first neuron in the corresponding corner of the color ma-
trix. Then each next neuron is iteratively placed in the color
matrix according to the distances to its previously placed
neighbors. Using this strategy, neighboring cells with a small
distance have more similar colors than cell pairs with a big
distance, reflecting the actual data similarity. For a two-
dimensional color map, we use the CIELab color space as
suggested in [WD08].

4. Validation of the framework: detecting the expected

For testing our framework and tools, we used a dataset where
certain spatial and temporal patterns were previously ex-
pected. The dataset consists of GPS-tracked positions of
17,241 cars in Milan (Italy) during one week from Sunday
to Saturday (April 1-7, 2007). The framework is not directly
applicable to this kind of data. We transformed the data by
means of spatial and temporal aggregation [AA08], which is
suitable for the exploration of the spatiotemporal patterns of
the city traffic. We divided the territory of Milan into com-
partments by means of a rectangular grid with the horizontal
and vertical spacing of 1km. We obtained 396 compartments
(= 18 columns * 22 rows), further referred to as "places". We
divided the time span of the data into hourly intervals and
thereby obtained 168 time units (= 7 days * 24 hours). For
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Figure 3: The space-in-time SOM matrix with the hourly
traffic situations in Milan characterized in terms of the mean
speeds in the spatial compartments.

each pair <place, time unit> we computed the mean speed
of the movement. This attribute is adequate for character-
izing traffic conditions. The mean speed is high when the
conditions are favorable and low when the movement is ob-
structed, e.g. because of traffic congestion. The data were
previously cleaned so that the cars that did not move for 10
or more minutes were not taken into account. The combina-
tions <place, time interval> in which there were no cars have
got zero values of the mean speed.

Hence, the spatial situation in each time unit is character-
ized by the mean speeds in all places. The local temporal
variation in each place is characterized by the time series of
the mean speeds in this place.

4.1. Detection of temporal patterns among spatial
situations

The typical temporal patterns of traffic situations in a big city
are well known. Thus, there are particular intervals in the
mornings of the working days, called "rush hours", when the
major streets are crowded with vehicles and the movement
is obstructed. Similar situations occur in the afternoons. Be-
tween these intervals, the situation may improve but the
movement is not as free as in late evenings and nights. The
patterns on weekends and holidays are usually quite differ-
ent. Situations with heavily obstructed traffic either do not
occur or occur in other time intervals. If shops are closed on
Sundays, differences between Sunday and Saturday patterns
can be expected. We tried to detect these expected temporal
patterns by grouping similar spatial situations with the help
of SOM.

Figure 4: The Time Arranger exposes periodic temporal
patterns in the evolution of the traffic situation in Milan over
the week. The columns correspond to the 24 hourly intervals
of a day and the rows to the 7 days from Sunday to Saturday.
The pixels have the colors of the SOM cells (Figure 3) in
which the respective time units belong.

We ran SOM with the following parameters: matrix size
5x3, 300,000 iterations, learning radius 2, learning rate 0.02.
The resulting space-in-time SOM matrix is shown in Figure
3. As mentioned before, cell colors in a SOM matrix link
it to other displays. Colors from a space-in-time SOM can
be transmitted, in particular, to a time arranger display (Fig-
ure 4). It consists of rectangular pixels representing the time
units and having the colors of the SOM cells the units be-
long in. The pixels are chronologically ordered and arranged
in rows. By choosing suitable row length and indention of
the first row, the user can detect periodic temporal patterns
in the occurrence of the spatial situations. Periodicity is man-
ifested by vertical alignments of identically or similarly col-
ored pixels. Thus, the pixels in Figure 4 represent hourly in-
tervals within a 7-day period from Sunday to Saturday. They
are arranged in rows of the length 24, which corresponds
to 24 hours of a day. The prominent vertical alignments of
similarly colored pixels mean that the spatial situations were
similar in the corresponding hours of different days. It is
easy to see that Sunday (first row) and Saturday (last row)
differ from the working days. Friday morning is similar to
the mornings of the other working days while the color pat-
tern of the rest of the day is more similar to that on Saturday.
We found out that this was not a typical working Friday but
the Good Friday before Easter, which may explain the dif-
ference.

Concerning the typical working days, we can see that the
hours from 0 to 3AM are colored in olive green, which cor-
responds to a cell in the upper left part of the matrix. The fea-
ture image shows us that the speeds on the belt roads around
the city are high in these hours while there are large areas
with no movement (signified by the darkest green shade).
The next two hours fit in the region from the lower left cor-
ner to the center of the matrix. The speeds on the belt roads
remain high while the no movement areas reduce. Starting
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Figure 5: The time-in-space SOM matrix with the local tem-
poral variations of the mean speeds in the spatial compart-
ments in Milan.

from the interval 5-6AM, the pixels are colored in light blue,
which corresponds to the upper right corner of the matrix.
The speeds are low almost throughout the whole city. Very
close to that are the situations in the middle right cell of
the matrix (light violet); only on the west and south of the
city the speeds are somewhat higher. Apparently, the inter-
val 5-6AM is the beginning of the rush hours, which last
till 10AM from Monday to Wednesday and on Friday and
till 18 o’clock on Tuesday. From Monday to Wednesday, the
obstructed traffic situations repeat from 15 to 17 o’clock. Be-
tween and after the rush hours the speeds are higher mainly
on the major roads (lower right corner of the matrix). In the
evening (from about 20 o’clock), the speeds increase also in
other parts of the city (lower left corner).

Hence, we can conclude that our tools allowed us to detect
the expected periodic temporal patterns in the weekly traffic
in Milan. Periodicity in time-dependent data can also be re-
vealed using other arrangements of display elements; thus,
in [SDW08], a diagonal arrangement is used.

4.2. Detection of spatial patterns among local temporal
variations

An obvious spatial pattern that can be expected in the dis-
tribution of the local temporal variations is that the traffic
on the major roads differs from that in the city center. One
can also expect a different profile of the traffic variation in
residential areas. To detect such patterns, we group the local
temporal variations with the help of SOM using the same pa-
rameters as in the previous experiment. The resulting time-
in-space SOM matrix is shown in Figure 5. In Figure 6, the
colors of the SOM cells are used for painting the places on

Figure 6: The map of Milan with the places colored as the
cells of the time-in-space SOM (Figure 5) they belong in.

the map of Milan. The places on the major roads are colored
mostly in red, which clearly differentiates them from the re-
maining territory. The speeds in these places are high except
for the rush hours (see the temporal mosaics in the lower left
corner of the matrix). The places in the city center are col-
ored in pink. Here the speeds are always quite low. Shades of
light blue are in places with little or no movement (many of
the mean speed values are zeros). It is highly probable that
they are in pedestrian or residential areas. Hence, we can
say that our tools, indeed, enabled us to detect the expected
spatial patterns. We also noticed something unexpected: the
speeds on the belt road on the northeast are much lower than
typically on the belt roads (see cell 2,2 of the matrix).

5. Application of the framework: discovering the
unexpected

In this experiment, we apply our framework to the
USA crime dataset published by the US Department
of Justice. We downloaded the data from the URL
http://bjsdata.ojp.usdoj.gov/dataonline/ in March 2003. For
50 states of the USA plus District of Columbia, there are
annual statistics for the years from 1960 to 2000 including
the rates of seven types of crime: Murder and non-negligent
manslaughter, Forcible rape, Robbery, Aggravated assault,
Burglary, Larceny-theft, and Motor vehicle theft. We want
to explore the spatial and temporal patterns of these crime
rates. Before starting the analysis, we look at the variation of
the values of the attributes using a time graph display (Figure
7). For each attribute, there is a graph where the horizontal
axis represents time and the vertical axis the attribute’s value
range. The variation of values in each state is shown by a
line; hence, each graph includes 51 lines. The time graph
display shows us that District of Columbia has extraordinar-
ily high values of some of the attributes (the corresponding
lines are highlighted in white in Figure 7; the pop up win-
dow shows the value of the robbery rate in 1996). In order
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Figure 7: A fragment of the time graph display of the tem-
poral variations of the crime rates.

Figure 8: The space-in-time SOM matrix of the yearly crime
situations in the USA.

to make the values in the states more comparable, we trans-
form the original data into differences from the states’ mean
values divided by the respective standard deviations. For this
purpose, we use the interactive interface for data transforma-
tion integrated in the time graph display. Figure 9A shows
the result for 4 out of 7 attributes. From now on, we use the
transformed data.

5.1. Discovery of temporal patterns among spatial
situations

To investigate how the spatial distribution of the crime rates
values evolves over time, we apply SOM to the spatial situ-
ations in the years from 1960 to 2000 where each situation
is characterized by the values of the seven crime rates. We
use the following parameters: matrix size 4x3, 200,000 it-
erations, learning radius 2, learning rate 0.02. The resulting
space-in-time SOM is shown in Figure 8. In this case, we
used a color scale with enhanced brightness for the color
coding of the attribute values in order to increase the visibil-
ity of the semi-transparent symbols on the maps. Below the
matrix, Figure 8 shows a fragment of the time arranger dis-
play where the pixels are arranged in one row and have the
colors of the respective SOM cells. The pixels in the index
images are also arranged in one row. It is well visible that

Figure 9: A) A fragment of the time graph display where
the original data have been transformed to normalized dif-
ferences from the mean values. The background painting of
the time intervals uses the cell colors from the space-in-time
SOM in Figure 8. B) The data have been further transformed
to the differences with respect to the previous years. Instead
of the lines of the individual states, the 0th, 20th, 40th, 60th,
80th, and 100th percentiles in each year are indicated by the
vertical positions of the edges of the alternating stripes with
lighter and darker shading, as suggested in [AA05a].

the period 1960-2000 has been divided into continuous in-
tervals. The way in which the colors change from interval to
interval indicate gradual or abrupt changes of the crime sit-
uations. From the feature images in the matrix it is clear that
the crime rates were low in the initial interval and then in-
creased reaching maximums in 1975-1981. After that, there
was some decrease in 1982-1983 and 1984-1989 and then
increase during the following intervals but without reaching
such extreme values as in 1975-1981. In 2000, many of the
values go down again.

In Figure 9A the colors of the SOM cells have been trans-
mitted to the time graph display. To understand better the
character of the changes from one interval to another, we do
a further data transformation in the time graph display: the
values in each year are replaced by the differences w.r.t. the
previous year. In Figure 9B the differences are represented
in a summarized form as suggested in [AA05a]. The verti-
cal lines mark 1973 as a year of substantial change, judg-
ing from the remarkable color assigned to the interval 1973-
1974. We can see that the burglary and robbery rates (and the
larceny-theft rate, which is not shown in Figure 9) highly in-
creased in 1974 in at least 80% states.

With the time graph display, it is easy to note coherent
increases or decreases of the values in all or the majority
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Figure 10: Top: the time-in-space SOM matrix grouping
and arranging the states of the USA according to the tempo-
ral variations of the values of 7 crime attributes. Bottom: the
map of the USA with the states painted in the colors of the
matrix cells.

of the states. However, this is not the only possible type of
situation change; thus, it seems that the change in 1968 was
not of this kind. We additionally look at an animated map
display presenting the values of the seven attributes. Like
the time graph, the map display allows us to transform the
values into the differences with respect to previous years, so
that we can see where the values substantially increased or
decreased. For instance, in 1968 four out of the seven crime
rates highly increased on the northwest of the USA.

5.2. Discovery of spatial patterns among local temporal
variations

Now we apply the SOM to the local temporal variations in
the states using the parameters: matrix size 5x3, 200,000 it-
erations, learning radius 2, learning rate 0.02. We use the
index images in the SOM cells and the SOM-linked map dis-
play (Figure 10) to see how the states with similar temporal
variations are distributed in space. There are several spatial
clusters formed by neighboring states with identical or simi-
lar coloring. Some states are not very similar to their neigh-
bors; thus, California is more similar to the states near the
Great Lakes. The group of states on the southeast, evidently,
differs greatly from the states on the northeast, as indicated
by a sharp difference in the colors. The commonalities and
differences among the states can be understood by inspect-
ing the feature images and by transmitting the grouping and

colors of the states to the time graph display, as described
in [AA05b]. Thus, we found that the values of all crime rates
except the first one (murders) in the southeastern states (see
Figure 2) mostly increased during the period 1960-2000 and
reached their maximums an the last decade. The variation
pattern in the other states is different: the highest values were
achieved in the middle of the period (around 1975-1985)
but than decreased. Only the group of states Texas, Okla-
homa, Louisiana, and Florida (middle top cell of the matrix)
is somewhat similar to the southeastern states in terms of the
temporal variation patterns.

6. Discussion and conclusion

We have demonstrated how our tools, which combine in-
teractive visual interfaces with the computational SOM
method, enable comprehensive exploration of multivariate
spatiotemporal data and discovery of high-level patterns. Al-
though SOM has been previously applied to spatial, tempo-
ral, and spatiotemporal data, our framework uses this method
in a novel way. Our main innovation with respect to the
state of the art is the support of two complementary an-
alytic tasks based on two perspectives of spatiotemporal
data: as spatial situations changing over time and as tem-
poral variation profiles distributed over space. To the best
of our knowledge, there are no analogues to our framework
in the literature. Previously, SOM has been applied to com-
binations of attribute values describing pairs <place + time
unit> [GCML06]. We apply SOM to higher level constructs,
namely, spatial situations and local temporal variations. As a
result, the outcomes of the method match the two high-level
analysis subtasks much more closely than in the previous
approaches.

We have also developed innovative ways to visualize
SOM outcomes. While propagating cell colors from SOM to
other displays is a common approach, we use special color
scales reflecting the similarity among the cells. We put fea-
ture images and index images in SOM matrix cells to give
a combined representation of the spatial, temporal, and at-
tributive (thematic) components of the data and thereby fa-
cilitate understanding of the SOM outcomes. The coordi-
nated spatial and temporal displays with integrated tools for
interactive visually-supported data transformations help in
preparing data to the application of SOM and in interpreting
its results.
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