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Abstract
This thesis addresses the problem of specifying, designing and implementing 
parallel computer architectures based on wafer scale integration (WSI). The 
requirements and constraints of WSI are considered and the class of computer 
architecture that is most suited to the technology is identified. This takes 
the form of a regular array of similar processors connected by a general 
purpose communications network. The communications function of the array 
is considered separately from the processing function.

Three routing algorithms for regular two dimensional arrays of proces-
sors are proposed. These are specified, and their properties are analysed. 
The performance of each of these is measured by simulation under varying 
conditions.

The problem of specifying and designing the processors is addressed next. 
A functional language engine is chosen as the target architecture. The pro-
cessor specified and designed is a parallel graph reduction machine (named 
Cobweb) that uses directors as the instruction set. The programs executed 
on the machine are compiled from strictness analysed Hope+ via FLIC to a 
director and parallelism annotated directed acyclic program graph.

A specification of a single processor, using a novel object-oriented paral-
lel graph rewrite notation (named Paragon) is given. A methodology for 
translating Paragon specifications into a hardware design is given. This 
methodology is applied to the Cobweb specification. The resulting design 
is seen to be inefficient, so the specification is transformed, whilst retaining 
its semantics, to make it more efficient, and the translation process applied 
again. The resulting design has been simulated and some of the results from 
the simulator are shown.

The COBWEB specification is expanded to a multiprocessor one. Some 
of the problems in producing a specification for this type of machine are 
discussed. This specification is used to produce a design.

The results from a simulation of the multiprocessor COBWEB along with 
the results from the communications network chapter are used to predict the 
performance of a multiprocessor WSI graph reduction machine.

The thesis ends with a discussion of the merits and problems of specifica-
tion and evaluation of this type of computer architecture. The communica-
tions architecture is found to be especially suitable for WSI; the specification 
and design tools are found to be sufficiently powerful, although limited in 
their scope. Finally the conclusion is drawn, with caveats, that WSI is a 
suitable technology for parallel graph reduction.
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Chapter 0 

Introduction

The recurring dilemma in the study of the design of computer architecture 
is whether raw speed is preferable to programmability. In traditional sys-
tems, this has been a simple tradeoff. However, as alternative programming 
paradigms and implementation technologies emerge, it is becoming more rea-
sonable to expect speed as well as programmability. This thesis reports on 
an investigation into one way of achieving this goal. We attempt this by 
coupling two very different areas of computer science and engineering: Wafer 
Scale Integration (WSI) for the increased performance; and parallel graph re-
duction as an implementation technique for a class of languages with highly 
desirable features. In one line, the question that this thesis addresses is: “Is 
graph reduction feasible on a wafer?” .

Inevitably, many other issues are raised as this question is addressed. 
Two of these become particularly prominent in this work. These are commu-
nications for WSI, and the formal specification and derivation of hardware.

0.1 Wafer Scale Integration
Since the advent of the integrated circuit, the method of manufacture has 
remained fairly constant. A large number of individual circuits are etched 
using photolithographic techniques onto a large slice of ultra-pure silicon 
known as a wafer. The wafer is then diced into “chips” , and each is tested 
individually. Unfortunately, because of defects originally in the silicon crys-
tal, or introduced at the time of manufacture, many of the circuits will be 
faulty and will not work. After testing, the working circuits are packaged 
and delivered, and the non-working ones are discarded. The principle idea 
behind WSI is that the entire wafer is packaged into a working product and 
sold.

The motivation behind moving to wafer scale integration can be sum-
marised as follows. Basically WSI is
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• cheaper <

• faster

• smaller

• more reliable

It is cheaper because the dominant costs in all phases of production are 
reduced. It is faster because slow off-chip communications are reduced. It is 
smaller because more components can be packed into a smaller space. It is 
more reliable, because there are fewer unreliable off-chip connections. These 
are compelling reasons, but the reason that WSI has not taken the world 
by storm is because of the scale and the difficulty of the one dominating 
problem. This is that the device must be guaranteed to work in the presence 
of the inevitable defects, ie it must be fault-tolerant.

In the past, this problem has proved so intractable that despite the obvi-
ous benefits of WSI, designers have opted to stick with tried and tested VLSI 
technology rather than attempt ambitious solutions to the fault-tolerance 
problem. As they have demanded increasing levels of integration and speed 
from their systems they have remained happy with their choice, because each 
new generation of VLSI component has consistently managed to deliver more 
performance over the previous. However, time is running out for VLSI. It is 
becoming much harder to extract yet more speed, and to make circuits even 
smaller.

What would a WSI device look like? Relatively vast areas of silicon are 
available, yet we know that a lot of circuits will be unusable because of 
faults. To get round this many circuits will be replicated, so that if one is 
faulty, another can be used instead. The replication may be at many levels, 
for example from extra rows and columns in a block of memory, to entire 
microprocessor blocks being replicated across the silicon. It is the latter type 
of system that we are most interested in.

At the same time WSI is offering substantial performance advantages 
over VLSI. The most dramatic of these is the vast increase in communica-
tions bandwidth between system components on the wafer. VLSI systems 
are limited by their off chip communications which tend to be slow, power 
hungry, unreliable, and limited by their physical size. However communica-
tions between blocks on a wafer do not have any of these problems. Very 
wide parallel data paths are fast, cheap and reliable.

Given such a system, where there are a large number of identical proces-
sors that can communicate with each other, we can separate the processor and 
communication function and consider each in turn. We call the processor- 
communication pair a node.

12



0.2 Wafer Scale Communications
Communications on a wafer are not straightforward. The nature of the tech-
nology is such that long connections must be avoided, so the natural solution 
is one where each node can communicate with its physical neighbours only. 
Communications then take place as a number of steps from neighbour to 
neighbour. Communications between non-neighbouring nodes must then be 
via a set of intervening nodes. Of course, if a node is faulty, then it must be 
avoided. A suitable analogy is of an explorer in the dark equipped with a 
weakly powered lamp. The explorer needs to get from A to B as quickly as 
possible, and cannot afford to spend much time deciding where to go next. 
Unfortunately the way is made dangerous by patches of quicksand randomly 
placed in her way. The lamp allows her to see only a yard in frqnt, but 
happily this is the length of her stride, so she can always avoid unwittingly 
stepping into the quicksand. However, this does not stop her from getting 
into a situation where she is totally surrounded by quicksand except for the 
way she came in. We provide three ways of allowing the explorer to complete 
the journey safely and in good time. The first is equivalent to planting a 
homing beacon on the destination, so that she can see the direction in which 
she should be going, and how far away she is. For the second, we provide a 
set of instructions at the outset in the form of “two steps forward, turn right, 
one step forward....” . For the third, we provide a roadsign at each position 
that indicates “this way to your destination | —> | ” .

Each method has its advantages and disadvantages. For example, method 
two will get her to the destination in fewer steps than method one, but if 
even one of the instructions in method two is wrong, then our explorer will 
end up anywhere but at the correct location.

Each of these methods has been designed as a communications algorithm 
for WSI, and we will discuss and evaluate each in turn.

0.3 Graph Reduction
Since the invention of the electronic digital computer, the dominating archi-
tecture has been the “von Neumann” . This is the class of computer designs 
that consist of a single processor plus some memory, where the program that 
the processor runs is stored in the memory. The processor executes one in-
struction at a time, after which it computes where the next instruction to 
be executed is located. This class of computer was designed for the efficient 
execution of a particular class of languages known as the sequential impera-
tive languages. Over the years designs have become highly optimised for this 
task, and present day von Neumann computers can now execute sequential 
imperative programs fast and efficiently.
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However, at the same time large programs written in the sequential im-
perative paradigm have become increasingly unwieldy. The problems of man-
aging large programs with complicated relationships of components are im-
mense. It is difficult to state that the programs match their specification, 
and they are expensive to maintain. This has led to the “software crisis” — 
the realisation that programming large systems is difficult.

Many solutions have been proposed to deal with this problem. The one 
that is of interest to this thesis is the recognition that the underlying program-
ming paradigm — the imperative sequential one is fundamentally unsuited 
to the requirements of constructing large software systems. There many 
other paradigms —  the object oriented paradigm is one that has received 
most attention recently. However, the one we deal with in this thesis is the 
functional paradigm. In this paradigm, programs are expressed as sets of 
functions mapping input to output. As the functions are pure mathematical 
entities, the task of reasoning about programs is made much easier than with 
the imperative paradigm.

The paradigm has a hidden bonus —  functional programs have the prop-
erty that expression evaluation is guaranteed to be side effect free. This 
means that as a given expression will always evaluate to the same result, it 
does not matter when it is evaluated as long as it is safe to evaluate it in the 
first place. Many expressions can thus be evaluated concurrently. It is much 
easier to exploit hidden parallelism in functional languages than it is in the 
imperative paradigm.

Graph reduction is a technique for the execution of functional languages. 
In this thesis we present a formal specification for a graph reduction archi-
tecture and translate it into a hardware design. We prototype the design 
using a simulator, and we use the results from the simulator to predict the 
performance of a graph reducer.

0.4 Formal Specification of Hardware
As the level of integration of hardware has increased, hardware systems have 
become much more complex. In the past it has been acceptable to assert that 
a hardware design is correct simply because it has been tested thoroughly. 
However we have long been in the position where it is simply impractical to 
test hardware designs completely because the number of test input/output 
combinations has grown combinatorially with the complexity of the design. 
At the same time, users of such systems are placing increasing confidence 
in them, and are understandably becoming decreasingly tolerant of design 
faults. When a safety critical application has a component whose reliability 
cannot be guaranteed, then the usability of the entire system is brought into 
question.
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A proposed solution to this problem is the use of formal methods for hard-
ware design. This way, designers hope to exclude design faults by deriving a 
design from a specification using rigorous mathematical techniques. Faults 
can then be proved absent rather than tested for presence.

There are various notations for formally specifying hardware. Unfortu-
nately most of these are at a rather low level and express requirements in 
terms of physical hardware blocks with a specified topology and certain tim-
ing characteristics. As these are at such a low level, they make for fairly easy 
translation into hardware designs, and it is not hard to show that the design 
conforms to the specification.

However, there are higher levels at which we wish to express our require-
ments. For example if we require a system that behaves dynamically, one 
that grows and shrinks in size and capacity as demands are made of it, then 
instead of specifying it at a level which emulates the dynamicism, we would 
like a notation that allows us to express such behaviour directly. In this 
thesis we use such a notation. It allows us to leave the implementation of 
its behaviour to the system. Unfortunately this makes the process of pro-
ducing a hardware design much more difficult. Eventually the design must 
be in terms of a physical hardware system, and as these systems cannot be 
physically dynamic such behaviour must be emulated.

We provide a route from this very high level requirements specification to 
a low level hardware design in terms of a number of logic circuits connected 
by wires.

0.5 Contribution
The main contribution of this thesis is threefold. Firstly, designs and per-
formance results for a series of novel communications architectures for WSI. 
This work builds on previous work in [KS86]. Secondly, a formal method-
ology for transforming very high level specifications into hardware designs. 
This builds on the hardware specification language work of [BHK90]i Finally, 
some insight into the properties and problems of wafer scale graph reduction. 
This expands on some of the work done on the two Alvey COBWEB projects 
[HOS85, AHK+87, ABH+89].

0.6 Structure
The structure of this thesis is as follows. In chapter 1 we introduce the 
main subject areas of this thesis — wafer scale integration (WSI) and par-
allel architectures. We give the motivation for WSI and identify its major 
strengths and weaknesses. We introduce parallel architectures, and identify
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the requirement that they be specified rigorously. We identify the type of 
architecture most suited to WSI. In chapter 2 we look at communication 
architectures for WSI and identify one which is especially good. In chapter 
3 we give a full specification for a graph reduction architecture at a very 
high level, and propose a methodology for transforming such specifications 
directly into hardware. We apply our methodology to our specification and 
produce a prototype in the form of a simulator. In chapter 4 we estimate the 
performance of a parallel graph reducer on a wafer. Chapter 5 presents the 
conclusions, which in brief are that WSI is a suitable technology for parallel 
graph reduction.
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Chapter 1

W SI and Parallel 
Architectures

The purpose of this chapter is to review the fundamental issues in the study 
of the two main subjects addressed by this thesis. The first of these is Wafer 
Scale Integration. The second is parallel computer architecture.

1.1 Review of WSI
Since the invention of the integrated circuit, the trend has been towards 
further levels of integration. From single transistors on a chip, we have seen 
an evolution to gates on a chip, to simple system functions, and on to entire 
microprocessors.

From early in the history of the technology the method of manufacture 
has been to etch many devices on a single wafer of silicon, dice the wafer 
into individual devices, test each device, discard the non-functional ones and 
package and deliver those that work. The idea behind WSI is that entire 
systems are fabricated on a single slice of silicon, and it is this slice that is 
packaged and delivered to a user.

There is a growing interest in WSI as reflected in the growing body of lit-
erature. [ST86, Lea87] report on two conferences on WSI. Later conferences 
have been held, but proceedings have not yet been published. [Tew89] is the 
definitive guide to the problems of implementing wafer scale systems. His in-
troduction provides a readable overview of the subject. Two major projects 
in Europe and the UK have been investigating WSI. The Alvey project 073 
is approaching completion. Its goal was to produce two technology demon-
strators, one a non-regular signal processor, the other a regular SIMD image 
processing module. The ESPRIT 824 programme, started in 1986 aims to 
produce three technology demonstrators: a large RAM, a systolic array, and 
a highly fault tolerant microprocessor.
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There are two major approaches to WSI: the monolithic and the hybrid 
(or “jellybean” ). The monolithic is where the device is constructed on a single 
slice of silicon. The hybrid approach is where diced chips are bonded directly 
onto the surface of the wafer. The wafer can then carry communications or 
memory. The scope of this work is monolithic WSI only.

The discussion will outline the issues involved in WSI, concentrating on 
those that are of relevance to the parallel computer architect. Physical im-
plementation issues are beyond the scope of this thesis, although work in 
these areas will be referred to in many places.

1.1.1 W hy W SI?
As mentioned earlier, the reasons why WSI is a better technology than VLSI 
are as follows:

• It is faster

• It is more reliable

• It is smaller

• It is cheaper

• It is the natural successor to VLSI

In this section we will explain why the technology has these properties in the 
context of the differences between a WSI implementation of a system, and a 
VLSI version of the same system with the same functionality. That is, say we 
construct a system from VLSI from a number of discrete packages mounted 
on a PCB, connected to each other using PCB tracks. If we construct a 
functionally identical system in WSI, with each component written directly 
onto the silicon, and connected using on-wafer connections, then what are 
the properties of the WSI system compared to the VLSI implementation.

We will then discuss some of the problems associated with the implemen-
tation of wafer scale devices.

Technology Issues

WSI is in fact a fairly old idea, but has met with spectacular failures in 
the past, notably and infamously with the Trilogy project [Pel83]. This is 
not because the technology is fundamentally unsound, but is evidence of the 
difficulty of solving the related problems in the context of a rapidly expanding 
and vigorous VLSI industry.

Although WSI has been unsuccessful in the past, considerable progress 
has been, and is being made in addressing the problems that WSI raises.

18



Much of this progress has arisen as the result of research into increasing 
integration for VLSI. WSI can thus be considered not as a radical departure 
from the conventional, but as another step, though in a different direction, 
in the evolution of integrated circuits.

VLSI has evolved with spectacular speed and has consistently delivered 
major performance and integration improvements from generation to gener-
ation. It has done so while many of the enabling underlying factors remain 
constant. However the evidence is that these underlying factors are approach-
ing their fundamental limit.

Here we expand on the reasons VLSI is approaching its fundamental limit.

Feature Size. We have seen the continual shrinkage in the physical size 
of VLSI structures. The evidence is that the laws of classical digital 
electronics will not hold as devices get much smaller.

Feature sizes have been getting smaller at an exponential rate since the 
introduction of VLSI [TewS9]. State of the art commercial processes 
can now deliver chips with sub-micron devices. However the lower limit 
is expected to be about 0.25//m.

As the feature size gets smaller, laws governing the behaviour of the 
devices break down. The statistical laws that normally apply simply 
cannot be relied upon when the number of charge carriers in a device 
gets small. Devices begin to behave non-deterministically, displaying 
behaviour that varies around an average.
As dimensions shrink, they begin to approach the physical dimensions 
fundamental to the classical analysis of electronic devices. Quantum 
effects come into play and also introduce non deterministic effects. Al-
though there might be a place and an application for such devices, they 
are quite different from conventional electronic devices.

Integration We have seen increasing levels of integration. This has resulted 
from the decreasing feature size, but also from improvements in com-
ponent density and packing efficiency.

Packing efficiency measures the fraction of silicon actually used for 
devices. Silicon is unusable due to the requirement for minimum sep-
arations between devices. The packing efficiency has been increasing, 
leading to a greater density of components on the silicon, but it will be 
difficult to increase packing density much further.

Chip Size Of particular interest to the study of WSI is the projected in-
crease in chip size. Chip edge sizes have been increasing exponentially 
since the introduction of the technology [Tew89]. However as the chip 
size increases, it becomes increasingly difficult to make chips that are 
free of fabrication defects.
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The .manufacture of VLSI devices has until recently relied on the pre-
sumption of perfection. If a device has a fault, no matter how small the 
defect that caused the fault, the entire device is discarded. This is be-
coming increasingly unreasonable. The system designer must provide 
for the component to function effectively in the presence of faults.

At the same time it becomes more and more difficult to test these 
chips as access to components located centrally through the peripheral 
connections is not easy.

We can see from the above that VLSI has almost exhausted every avenue 
available for increasing the number of components on a chip. The only avenue 
left is the one that increases the size of the chip, and which deals directly 
with new the issues implied. Thus there is a trend which will inevitably lead 
the study of VLSI towards WSI.

Speed, Reliability and Size

As well as offering increased levels of integration, the technology of WSI offers 
an increase in component connectivity which has implications on the speed 
of the system, its reliability, and its size. The number of pins on a package, 
and indeed in an entire system is a crucial limiting factor on VLSI systems 
for the following reasons:

• Connections from chip packages to PCBs are the most unreliable com-
ponent of a system. •

• Driving pins involves transforming the on-chip voltage and current lev-
els to off chip levels, a process that consumes both time and power.

• VLSI packages are bulky compared with the chip itself.

These three reasons impose several limits on VLSI systems. First, the chip 
pin-out must be kept low so as to enhance the reliability. At the same time, 
the total number of connections in the system must be kept down, for the 
same reasons of reliability, and because of the physical space occupied by 
inter-chip connections. Second, the speed at which the chips are driven must 
be kept artificially low because they are physically distant from each other 
(compared with internal chip distances), and because driving pads at a high 
frequency incurs a high overhead in terms of power consumption.

WSI avoids the above problems because connections between circuits on 
a wafer are reliable, fast, and cheap to drive. Because the circuits are packed 
much closer together, they can be driven at a much higher clock rate, al-
though for reasons given in section 1.1,2, it is not desirable for clocks to 
be distributed across the entire wafer. The greatest boon to the designer is
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that the level of connectivity between on-wafer circuits is much increased. 
Extremely wide parallel data paths are easily achievable at levels VLSI can 
never attain.

Economic Issues

The key question here is if a system designed from WSI components will be 
cheaper than an equivalent system designed from VLSI components. The 
cost of such a system can be broken down into five areas[Sum86]:

D ie cost includes the cost for processing the silicon, dicing the wafer into 
chips, and testing using probes.

Component cost consists of packaging the device, and doing a final com-
ponent test.

Board cost consists the cost of the PCB the component is attached to, 
mounting the component on the PCB, and a test of the PCB.

System Hardware cost will include the cost of connecting the PCBs to-
gether, cooling, supplying power, and the cabinet, and top level inter-
face.

Ownership cost includes the cost of maintaining the system throughout its 
lifetime. The factors that influence this cost are the system’s reliability 
and “diagnosibility” , and the cost of spares and services. .

We consider each of the above in turn, and focus on the cost differences 
between a WSI system and a VLSI system.

Die cost The cost of a die is proportional to the number of working com-
ponents that can be yielded from the wafer. Because we throw away all the 
non-working VLSI chips, the WSI approach is more cost-effective because we 
can (nearly) always yield a working device. With a WSI system, no dicing 
is done, and because testing is usually left until later, the amount of probe 
testing will be minimal.

Component cost The cost of a package for an integrated circuit is pro-
portional to the number of pins. With a WSI system, only one device needs 
to be packaged. With a VLSI system the packaging cost is replicated for each 
component. Although the package for one WSI device will be more expensive 
than one VLSI package, the total cost will be less simply because the total 
number of pins will be less.
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Board cost The board cost is dependent on its sophistication, and the 
number of boards. A WSI system wins on both counts as higher integration 
leads to simpler boards and less of them. The cost of testing a PCB once the 
components have been mounted is proportional to the number of integrated 
circuit pins attached to the board. Again, the WSI system has the edge.

System Hardware Cost The cost of board interconnection, the cooling 
system, the power supplies, and the cabinet is directly proportional to the 
number of boards. As the increase in integration leads to fewer boards, the 
cost for a WSI system is less than for a VLSI system.

Ownership cost The cost of ownership includes the cost of services such 
as space, cooling, and power. As a WSI system will be physically smaller 
because it contains fewer boards, it will cost less in respect of space occupied. 
However the situation regarding cooling, and thus power consumption is less 
clear. The total cost of ownership is dominated by the maintenance costs 
for the system, and is thus proportional to the reliability of the system. The 
reliability of any integrated circuit is inversely proportional to the number of 
pins, as the connections to the PCB are by far the most unreliable component 
of any such system. So the WSI system wins again.

It is clear from this discussion that a WSI system offers substantial cost 
benefits over an equivalent VLSI system.

1.1.2 Implementation Issues
The principal difficulty in the implementation of wafer scale systems is the 
avoidance of the inevitable faults. The problem is approached at a two levels: 
the circuit level, and the architectural level. Additional difficulties include 
testing, electrical design issues such as power distribution, and physical de-
sign issues such as packaging and cooling. Here we summarise these issues.

Reconfiguration and Redundancy

Given a circuit with a defect, there are three basic methods of working around 
that defect:

1. Physical repair including laser “zapping” to either cut connections and 
thus bypass the fault, or to add connections and enable the use of spare 
components.

2. Electronic switching using programmable switches.

3. Functional avoidance whereby a faulty circuit is simply ignored.
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Each of the above methods requires some redundancy to be present. For the 
faulty block that is configured out, there needs to be a spare present to be 
configured in as a replacement. In some applications (for example memories) 
it may be possible to use the spares as well. Redundancy is a double edged 
sword however, as the discussion on yields will show.

Architectural Structures

A WSI architecture will typically consist of a number of circuits connected 
together using an interconnect. These can be characterised as having a reg-
ular or irregular structure. There will need to be some type of architectural 
reconfiguration mechanism to allow faulty units to be disconnected and re-
placed, or simply avoided. Standard reconfiguration techniques are explained 
in [NSS89].

Regular arrays The wafer scale device might take the form of a large 
number of identical or similar circuits replicated in a regular manner across 
the wafer. This might be so for several reasons. The application area might 
demand a regular architecture. For example systolic arrays demand an array 
of identical processors operating in lock-step. However, this has the require-
ment that the architecture must be made to look regular even though faults 
may have disrupted the physical layout.

Another reason for regularity is that the application might demand a 
large number of identical units, irrespective of their topology. In this case 
the application problem would be mapped on to a number of these units. In 
this case the physical layout is unimportant.

This class of WSI device requires some sort of interconnect structure 
exists to connect the elements together. Again there are several classes of 
interconnect, for example an architecture might only allow a circuit to com-
municate to its nearest neighbour, or the circuits might be connected in a 
tree fashion. Again the choice is very much application dependent.

Irregular structures A wafer scale device may simply be an extension 
of a VLSI type device where the entire silicon area embodies one function, 
albeit much more integrated. For example an entire CPU for a mainframe 
computer implemented in random logic. Faults are much less forgiving in 
this type of scheme —  a small set of well placed faults can make the entire 
wafer unusable. This type of structure requires a much more sophisticated 
level of fault tolerance, and at several levels.
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Defects, Failures and Yield Models

A defect is defined as a fault introduced at the time of manufacture. A fail-
ure is defined as a fault introduced after manufacture, typically appearing 
as the device is begin used in service. Defects are caused by imperfections 
in the manufacturing process. A wafer is manufactured from an ingot of sil-
icon which has undergone extensive purification. However the process is not 
perfect, impurities are left behind and faults develop in the lattice structure 
of the silicon crystal. As the wafer is processed it is subjected to further 
stresses, such as impurities introduced by its chemical treatment, and ther-
mal expansion and cooling. The lithography process whereby the wafer is 
etched may also be imperfect. Thus every wafer that is produced will have at 
least some faults on it. These faults are not distributed randomly. Analysis 
has shown that they are more likely to occur towards the edge of the wafer.

The yield Y  of an integrated circuit manufacturing process is the fraction 
of working circuits to the total number manufactured. The principal problem 
with manufacturing large chips including wafers is that the yield decreases 
exponentially (or nearly so) with the area of the chip. Thus a whole wafer 
chip, with no fault tolerance has an infinitesmally small chance of working.

Early yield models were applied to VLSI processes with some success. The 
simplest model uses Poisson statistics and relates Y  to the defect density D 
of a process and the area of the chip as follows:

Y  =  e~DA

where D is measured in terms of the number of defects per unit area, and 
is a constant for the entire wafer. However this model is inappropriate for 
WSI in several respects. Firstly it takes no account of the fact that defects 
tend to cluster together, and that different types of defects have different 
tendencies to cluster. Secondly it does not address the fact that the defect 
density varies over the surface of the wafer, with the purest section around 
the center, and defects tending towards the edge.

More sophisticated models are sensitive to this clustering. [HS88] give the 
generalised negative binomial model. The yield of a circuit is dependent on 
the contributions of different types of defects. Each defect j  has a coefficient 
ctj that models its tendency to cluster. Higher values of a  indicate lower 
clustering, with unity indicating no tendency to cluster. The yield of a circuit 
that has area prone to fault j ,  Aj depending on a fault type j  is given by

Yj =  (i + aj

and the yield of the entire cell Yc where there are m types of fault is given:
m D A -Yc = na+

J=1 a j
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Whichever model is used, it can be seen that the yield of a circuit is 
strongly dependent on its area. This has several important implications:

• A single large structure within a circuit may cause that circuit to yield 
unacceptably. This large structure is known as a yield hazard. For 
example long connections such as busses in WSI circuits are known to 
be significant yield hazards.

• The addition of fault tolerant circuits may have a deleterious effect on 
the yield. The extra area occupied may cause the entire cell to yield at 
a lower level than before. The net effect might be fewer working cells 
than if fault tolerance had not been attempted at all.

Recognition of the radial distribution of defects is important for WSI, as 
a designer can choose to place critical circuits near the center of the wafer, or 
the more robust circuitry towards the edge [HS88]. This is modelled using the 
generalised negative binomial model by making D a function of the distance 
from the center of the wafer.

Testing

As fault tolerance is of prime importance to WSI, testing of all circuits is 
necessary so that the non functional ones can be configured out. Testing can 
be performed either internally, or externally. Internal testing techniques allow 
the circuits to test themselves or each other. A common technique is to wire 
in a test circuit that generates a “signature” only if all the components of the 
circuit are working correctly. The correct signature can be generated during 
the design phase using simulation and can be hard-wired into the testing 
circuitry for comparison. This technique is known as signature analysis.

External techniques usually take the form of generating test vectors, ap-
plying them to the inputs, and checking if the outputs are correct. The 
number of test vectors required to rigorously test a circuit increases rapidly 
with the number of inputs, so the number of test vectors for a WSI device is 
expected to be unreasonably large. It is therefore necessary for test circuitry 
to be built into the device so as to minimise the amount of external testing.

One technique for testing WSI systems is to have a configuration phase 
when the device is powered up. This will consist of initiating internal test 
sequences and constructing an external view of the wafer that indicates where 
the faulty areas lie. This map can be used for several purposes, for example 
to switch in spare circuitry, or configuring the communications so that the 
faulty areas can be avoided.
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Electrical issues include the distribution of power and signal. Signal distri-
bution is particularly difficult as clock skew is an unwanted effect associated 
with distributing signals along long wires. A global clock is needed when all 
the circuits on the wafer need to operate synchronously, such as in a systolic 
array to give a regular example, or in a large processing unit. However more 
liberal architectures will operate asynchronously, so the signal distribution 
problem can be avoided.

Power distribution has not been identified as a major problem by any 
of the workers in the field [WL87], although it is important to be able to 
isolate power shorts. The major physical implementation issue is packaging 
which comprises mounting, and heat dissipation. [ML86] shows that WSI 
packaging is not simply an natural extension of VLSI packaging, assuming 
SIMD processors. [Pit87] proposes some methods of cooling WSI devices. 
The amount of heat generated is very application dependent. For example 
the Anamartic wafer memory product generates so little heat that it does 
not even need cooling fins.

Electrical and Physical Issues

1.2 Parallel Architectures
Since the invention of the electronic digital computer the dominant design has 
been the “von Neumann” architecture. This architecture is characterised by 
a single processor executing a program which stored in a linear memory along 
with the data required for running the program. The model was designed for, 
and is particularly suited to running a class of programs known as sequential 
imperative programs.

However it is becoming evident that the premises on which the architec-
ture is based, ie: “imperative” and “sequential” are limited. Imperative lan-
guages have been blamed for the “software crisis” — a phenomenon whereby 
the dominant cost in the production of most software is maintenance. At the 
same time, as increasing performance is demanded from computer systems, 
the single processor model is being being abandoned in favour of the multi 
processor.

The multiprocessor model also demands a different model of computation. 
Here there is a mismatch between the nature of the imperative paradigm, and 
this new model of computation. That is, it is difficult to program impera-
tively so as to exploit parallelism. Again a promising solution to the prob-
lem of efficiently exploiting parallel architectures is a different programming 
paradigm, where parallelism does not need to be made explicit.

More recently, as alternative programming paradigms have come to the 
fore, it has been realised that the von Neumann architecture has some fun-
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damental problems executing such programs efficiently. The cause that has 
been identified is the memory bottleneck. This is a term that is used to 
describe the single narrow access point to the memory, and the mismatch 
between the speed of the processor and the relative sluggishness of the mem-
ory.

1.2.1 Specifying Parallel Architectures
If we are to implement a parallel architecture, we first need to be able to 
specify it. Also, once we have a specification, we need to be able to trans-
form that specification into a design. Specification is a hierarchical process. 
We start from requirements and move through stages of adding increasing 
detail and constraints until we arrive at a design that is capable of being 
implemented. As we progress through the stages we would like to be able to 
assert with confidence that certain properties remain invariant

For example the stages in specifying an parallel architecture might be as 
follows [BHK90]:

1. High level requirements statement, known as the logical model.

2. The systems architecture, which specifies logical processes and commu-
nications between these processes.

3. The processor architecture, where the logical processes are mapped 
onto virtual processors.

4. The physical architecture, where the virtual processors are mapped 
onto physical processors with associated memory and communications 
medium.

The top level requirements statement should be in a language close to the 
problem domain. However the process of getting down to the physical level 
is not easy. Some of the problems are elucidated in [BHK90].

The problem of formally specifying hardware has been studied extensively. 
Gordon at Cambridge has proposed a specification system based on higher 
order logic [Gor86]. Inmos have specified a hardware floating point unit for 
the Transputer [MK87]. The specification was originally written in Z, and 
transformed to OCCAM and then compiled into silicon.

However the specification of hardware systems that consist of a number 
of concurrently active agents, and especially those that communicate asyn-
chronously and are dynamic, poses special problems. Several teams have 
proposed languages in which to specify this kind of architecture. DACTL 
[GKS87] and Lean [BvEG+87] are languages based on term graph rewrit-
ing. FP2 is a language based on term algebras for transition systems [SJ89].
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AADL is an axiomatic specification language [DD89], with behavioural spec-
ifications expressed in an extension of CSP.

1.3 Summary
In the light of the technological requirements and constraints, we can rec-
ommend a particular kind of parallel computer architecture as well-suited to
WSI.

This takes the form of a regular array of similar processors connected to a 
general purpose communications network. The communications architecture 
consists of a number of communication processors which communicate with 
their nearest neighbours only. Each processor operates asynchronously. Fault 
tolerance is handled mainly at the architectural configuration level, and each 
processor has some built in test circuitry. A configuration phase at power up 
time will arrange for the network and the processors to be tested both inter-
nally and externally by a controller. This controller will contain information 
about the status of the wafer, eg the location of working processors.

We choose a regular array because this is easier to yield than a non-
regular architecture. We choose a general purpose communications network 
so as not to pin down the nature of the processor at too early a stage. So 
as to minimise yield hazards caused by large structures such as long busses, 
we permit nearest neighbour communications only. Because of the problem 
of distributing clock across the wafer, we will allow the processors to operate 
asynchronously relative to each other.

As the processor will replicated across the wafer, and-because we cannot 
guarantee a regular topology, the processor most suited to this kind of ar-
chitecture will be one that can operate concurrently with others, and which 
does not require a regular topology, or synchronous communications. The 
processor that we choose will be specified formally using a notation that 
allows us to express requirements at a very high level.
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Chapter 2

Communications for W SI

In chapter 1 we concluded that the type of architecture most suited to WSI 
is one that is a regular array of similar processors connected by a general 
purpose communications architecture. In this chapter we present several 
communications architectures that match these requirements, and are inde-
pendent of any specific processing element.

To aid in the analysis of these architectures we first introduce some termi-
nology and metrics, and identify the requirements of a WSI communications 
architecture over and above those of a more general purpose communications 
architecture. We proceed with a review of other communications architec-
tures for WSI. Finally we present three new designs. The designs are pré- 
sented in historical order of conception, rather than in order of merit. For 
each design we say how it meets the requirements and estimate its perfor-
mance in terms of the metrics defined in section 2.1.

In several sections we present results that have been calculated using a 
simulator. These results are generated by creating models of typical wafers 
at random, and measuring their properties. The location of faulty CEs on 
these synthetic wafers accurately reflects the radial distribution of defects 
found in real wafers [HS88].

2.1 Terminology, Metrics & Requirements

2.1.1 Terminology &; Metrics

As explained earlier, the class of WSI computer we are studying here con-
sists of a regular array of processors connected by a communications net-
work. Each processor is connected to the communications network, and the 
processor-connection pair is called a node. A node can be thought of as a 
communications element (CE) connected a processing element (PE). Ideally, 
the CE and PE are independent of each other, though this is not always the
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case in implementation.
Two types of network are of interest — packet-switched, or store-and- 

forward, and circuit switched. Processors communicate messages across the 
network. In a packet-switched network, units of communication are called 
packets which for this design will be units of 128 bits. Messages are then 
sent as a series of one or more packets. A communications step in a packet- 
switched system consists of the complete transfer of a packet from one node to 
another. This is known as a hop. In order to complete a communication from 
a source node to a destination node the packet must perform a number of hops 
via a series of intervening nodes. In a circuit-switched network, messages are 
broken up and sent in pieces from a source to a destination over a path that 
is fixed and held open for the duration of the communication.

In order to be able to compare different communicatiops networks we 
need to be able to describe these networks in terms of a number of network 
terms and metrics. These are introduced here. Some of these are specific to
WSI.

C onnectiv ity  is defined as the maximum number of nodes any given node 
can be directly connected to. For example, a mesh type architecture, where 
each node is connected to nearest four neighbours only, has a connectivity of 
four.

R outing  algorithm . A communications network I  is a directed graph 
/  =  G (C , N) where N  represents the set of nodes and C represents the set of 
communication channels or links between nodes. A particular channel is de-
noted c,-, and an individual node is denoted n,-. Routing functions determine 
where to route individual packets. Routing functions are denoted by a type, 
eg: : JV x iV h  C, that is a function that takes the current node and the
destination node, and produces the channel on which to forward the packet. 
A routing function or algorithm is said to be correct if it correctly routes a 
packet from its source to its destination in a finite time.

D eadlock  freeness. One of the fundamental requirements of any routing 
algorithm is that it be deadlock free. There are various ways of ensuring that 
any particular algorithm is deadlock free, and these are reviewed for different 
networks in the context of WSI in section 2.3. Deadlock occurs when a set of 
processes is blocked because each is waiting for the exclusive use of a resource 
which is held by one of the other processes in the set, and where no process 
can back off.

Deadlock occurs in packet switched communication networks when there 
is a cycle of dependencies in the packet buffer dependency graph. Figure 2.1 
shows an example of how deadlock might occur in this manner. Deadlock
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►

Figure 2.1: Deadlock in a dependency graph

avoidance strategies in general involve either breaking the dependency graph 
when it forms, or ensuring that it can never form in the first place.

CE/PE binding. A CE and a PE are logically independent blocks. In 
principle a PE may be connected to a number of CEs. However a PE will 
not in general be usable if its CE, or set of CEs do not work. A CE on the 
other hand will generally be usable if the PE is faulty. A PE is tightly bound 
to its CE (and vice versa) if the functionality of each is dependent on the 
other. The elements are loosely bound if the CE can work independently of 
the functionality of the PE. Obviously it is more advantageous in terms of 
functionality if the elements are loosely bound, and can work independently. 
Some architectures however are such that they are tightly bound.

Harvest/Sacrifice. A given CE/PE design will have a yield denoted Fce 
and Fp e - Some CEs will be in strategically important positions on the wafer 
such that if these do not work, then they will cause other nodes to be un-
reachable, that is, the only communications to them is broken. The Harvest 
H  is defined as the proportion of working nodes that can actually be used. 
H  is of course sensitive to Tc e - Usually there is a certain value of Yq e  at 
which H  becomes unacceptably low. This is known as the Yield cutoff point 
Pcutoff-

If the elements are loosely bound then some PEs will not be usable be-
cause their CEs will not be working. These PEs are said to be sacrificed. 
Also, some nodes may be working, but unusable because there are no com-
munication paths to them. These are also said to be sacrificed.
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Latency / is defined as the amount of time taken between dispatch of a 
message by a sender, and its complete receipt at the destination. A given 
network will have an average latency l and a maximum latency /max- The 
average latency is defined as the average time taken to communicate a mes-
sage between a source and a destination chosen at random. The maximum 
latency is defined as the time taken to communicate between the two furthest 
removed nodes.

Performance. The performance of a network can be defined fairly loosely 
as how it behaves in terms of metrics such as latency as certain parameters 
are varied. Parameters of interest include yield, and load. For example if 
the load rises, this can lead to increased congestion, and the latency might 
increase.

Overhead is defined as the amount of information in addition to the pay- 
load, a message must carry in order to complete successfully. This usually 
includes the destination address.

2.1.2 Requirements

The requirements of a communications network for WSI are a superset of the 
requirements of a general purpose communications network, that all messages 
must be guaranteed to get to their destination within a finite time. A corol-
lary of this is that the network must be deadlock free.

WSI introduces some other requirements. The most important of these is 
that the communications node must be sufficiently small and simple to allow 
it to yield well. That is: Tc e  > Fcutoff- A second requirement is that a WSI 
communications architecture must be fault tolerant. That is it must be able 
to guarantee delivery of messages in the presence of faulty nodes. This may 
involve a configuration phase either when the WSI device is fabricated, or at 
power on time when CEs are tested and, if necessary, informed of the state 
of their neighbours.

2.2 Review

There have been a number of studies of communications networks for WSI. 
This section reviews two of interest.

In the context of regular WSI communications networks, figure 2.2 shows 
the convention for illustrating the functionality of nodes.

32



□ Functional node

■ Non-functional node

m Sacrificed node

i Unusable  node

Figure 2.2: Diagramming convention

2.2.1 Catt’s Spiral

Catt’s Spiral was one of the original communications networks for WSI. It 
was. proposed as a method for configuring working processors in a highly 
regular array [AC78]. It has had some success. The Catt spiral has been 
used in several designs for WSI machines. Cobweb-1 [Shu83, Kar87] used 
the spiral as its communications network. Anamartic Ltd. manufacture a 
wafer memory device using the Catt spiral [Cur89].

The spiral is basically a string of nodes linked together, usually start-
ing from an node close to the edge of the wafer. Each node on the spiral 
is identified by an address which is relative to the start of the spiral. To 
communicate with another node the packets are sent along the spiral in the 
direction dictated by the difference between the current node address and the 
destination node address. In the context of the spiral, this is known as serial 
communication. Alternatively packets can be transmitted radially, that is a 
packet can go from an outer shell of the spiral to an inner one in one hop. At 
power up time the wafer controller initiates a test and configuration sequence 
which arranges for the nodes to be tested and working ones configured into 
the spiral.

The spiral is grown from a single node close to the edge of the wafer. This 
means that a number of external devices wishing to access the wafer must 
contend for access to this port. Any communication to the outside world 
must also go via this port.

Figure 2.3 shows an example four-connected wafer configured as a spiral. 
There are no dud CEs on this example wafer.

Figure 2.4 shows a typical node n,- with its connections to the nodes in 
the “forward” , “backward” and “in” and “out” directions.
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Figure 2.3: A wafer configured as a Catt spiral

Characteristics

Connectivity The standard Catt spiral with no radial routing has a con-
nectivity of two. However with radial routing, the connectivity goes up to 
four. The spiral can also been proposed for wafers with connectivity six 
and eight [Shu83], although because eight does not tessellate, some tricky 
electronics are involved.

Routing algorithm The best thing that can be said about the spiral is 
that the routing algorithm is so simple that it is extremely easy to implement 
in hardware and as a result it is very fast. For the simple non-radial case each 
node has a forward connection and a reverse connection to its neighbours in 
the spiral. Each node has an address such that nodes near the start of the 
spiral have low addresses and those towards the end have, high addresses. 
The routing algorithm is then as follows: given the address of the current 
node and the address of the destination node it returns the channel on which 
to forward the packet.

7̂ -Catt ■ N x N C

ftcatt(n,-,nd) = <
for ward if i <  d

C i,reverse if i > d
£i,home if i =  d

(2 .1)

When there are radial connections the routing algorithm is more complex. 
As well as having links to the forward and reverse directions, the node must 
also have links to, and know the address of the nodes towards the center and
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Direction of Spiral

Center of wafer

Figure 2.4: A single node in a Catt spiral

towards the edge of the wafer. These new directions are called “in” and “out” 
respectively. Of course some nodes will not have links in these directions if 
they are either on a corner of the spiral, or are next to a dud node. To 
describe this algorithm we need to define the function link : C N  which 
takes a channel and returns the node that is connected to that channel (if 
one exists). This new routing algorithm is as follows:

7^-Catt • N  x N C
*

Q  .home i f i =  d
c t,in i f i <  d A x <  d
Ci .forward i f i < d A x >  d
Ci .out i f i >  d A y >  d

, Cj.reverse i f i >  d A y  <  d
where
nx =  l i n k ( c , iin)

riy — l i n k ( c , iOUt)

Deadlock The Catt spiral is naturally deadlock free. This is because a 
packet is routed either in the directions forward and in or the directions out 
and reverse. Routing is essentially unidirectional. The cycle of dependencies 
can thus never form.

Harvest &: Sacrifice One of the main problems with the Catt spiral is the 
fact that in its simplest form, not all nodes can be configured for use, even
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though they are working perfectly and they have perfectly working neigh-
bours. This is because there are situations where the spiral advances into 
what are termed “blind alleys” — positions from which it cannot continue. 
It must then backtrack and sacrifice the nodes along this section. Figure 2.5 
shows an example of a wafer on which several nodes are sacrificed because 
they are in a blind alley some nodes are sacrificed because the spiral cannot 
use them.

Figure 2.5: Catt spiral sacrificing several nodes that are in “blind alleys” , 
and ignoring others that are unconfigurable.

This means that the harvest of working nodes is far from perfect.
Another problem with this is that Tcutoff is fairly high. So in order for 

it to work, the designer of the CE must ensure that Vc e  is high. Figure 2.6 
shows the results of the simulation of the harvest given by the Catt spiral 
against Tc e - It can be seen from this that the harvest is far from ideal. Here 
we see the communications architecture dictating which PEs are usable. The 
purpose of the CE is to serve the processors, not limit them.
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Figure 2.6: Harvest versus Yield for Catt spiral

CE/PE binding Some of the original designs using the Catt spiral were 
such that the CE and PE were tightly bound [Shu83]. This was because the 
PE address was the same as the CE address. If the PE did not work, then 
the CE could have no logical significance in the spiral, therefore it would be 
sacrificed, despite working perfectly. However, later COBWEB designs and 
the Anamartic wafer memory have the PE loosely bound to the CE.

Latency With the simple Catt spiral with no radial connections, if there 
are x nodes configured into the spiral, then the average latency is proportional 
to half the length of the spiral: / oc |.

With radial connections the latency is proportional to the dimension of 
the wafer: l oc y/x. The Catt spiral has a fairly high average latency com-
pared to the average physical distance between nodes. Consider the example 
in figure 2.7. The figure to the right shows path of the spiral, and to the left 
the route taken by a packet. The packet must go all the way round the wafer 
before it can get to its destination even though it is physically fairly close. 
This is true even for a wafer with radial connections.

Performance The Catt spiral is essentially a serial configuration mecha-
nism. Although there may be many packets in flight at once in the machine, 
they must all be travelling along the spiral, or along radial connections, with 
the majority travelling along the length of the spiral. Queues inevitably 
build up along the spiral and lead to congestion. The performance does not 
respond well to increasing congestion[A088].
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P ath  from  s o u rc e  to de stin a tio n

Figure 2.7: An unnecessarily long route taken by a packet following the spiral

2.2.2 Other networks

Tree networks

Some teams have identified tree networks as the basis of possible commu-
nications architectures. Lea at Brunei University has developed the WASP 
architecture for image processing based on string processors [JHL90] which is 
based on a tree architecture. Brunei WASP is a radically different architec-
ture from the main subject of this thesis in that it is SIMD, and thus operates 
synchronously, and requires a fairly regular physical topology. This topology 
is achieved by linking a number of processors into “branches” around a cen-
tral “trunk” . The branches then link together to form a “string” . Thus it is 
not subject to all of the terms and metrics described in section 2.1.

Although the team have had some success with the approach [JHL90], 
the communications network is not recommended for all applications. This is 
because a badly placed fault in the structure of the communications network 
can have disastrous consequences. For example, if a node close to the root 
of the tree fails, this can potentially cut off all the nodes on the other side of
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the branch, and thuŝ  waste many good nodes even though they might have 
many working neighbours.

2.3 The Navigation Algorithm
As mentioned in the introduction the architecture for which this algorithm is 
defined is a highly regular packet-switched communications architecture. All 
nodes are identical except for a number of I/O  nodes close to the boundary 
of the wafer.

2.3.1 Routing
The Routing Algorithm

In order to achieve communications between non-neighbouring nodes, we 
need a communication algorithm. To take a first step towards finding such 
an algorithm, let us imagine a perfect wafer where everything works totally 
reliably. Each node on this wafer is fully connected to its four nearest neigh-
bours. We can think of this wafer as a two-dimensional mesh. Each node 
has a location in the mesh which can be written as the cartesian co-ordinates 
of that node in the mesh relative to some origin. Each node has a set of 
channels linking it to its neighbours. These can be envisaged as a set of 
directions D =  {north, east, south, west, home} as in figure 2.8.

A simple communications algorithm can be devised based on this address-
ing system. The routing function is shown below. This function maps the 
current node and the destination node onto the channel on which to forward 
the packet. It is a simple matter to prove this correct. For each hop, the 
packet is routed to a node closer to its destination. As long as the path is 
not blocked, the packet is guaranteed to be delivered.

7̂ -Nav N x N >—> C

^xd,yd) — '

i-i,j,home if (x ,y ) =  (xd,yd)
hc,2/, north if y >  yd
Cx,i/,south if y < yd
Cx.j/.east if x >  xd
Cx,y,west if x <  xd

(2.3)

However, things are not so simple on a real wafer. The perfect mesh 
assumed for this routing algorithm is inevitably disrupted by defects. Any 
routing algorithm for WSI must take account of these defective areas and 
cause the packet to avoid them. Of course these areas can be arbitrarily 
complex. Figure 2.9 shows a particularly nasty wafer.

In a wafer that does form a perfect mesh, the. routing algorithm above 
is sufficient. Indeed, there will be regions of a non-perfect wafer where this
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Figure 2.8: Channels to neighbours as compass points

routing algorithm will work. However, when there are defective areas, this 
naive routing algorithm leads packets into areas from where they cannot 
progress closer to their destination. The packet cannot backtrack, because 
the routing algorithm would take it right back to where it got stuck, leading 
to a livelock situation.

The strategy we adopt is to let a packet know when it is blocked from 
further progress and to let it then take evasive action. To implement this, 
the packet must operate in two modes. We call these blocked and unblocked 
modes. This algorithm has some origins in the cartesian routing algorithm 
mentioned in [KS86]. However that algorithm requires CEs to be sacrificed 
using convex wrapping so that “concavities” in areas of faulty CEs can be 
filled.

The routing algorithm for when the packet is unblocked is simple and 
is based on the previous routing algorithm with a minor modification. The 
modification is based on the observation that at some points in the mesh, the 
packet can move in more than one direction to get closer to its destination. 
For example if a packet is on the south-western diagonal, it can go either 
north or east. The modification to the routing algorithm is as follows: If the 
packet cannot move in the optimal direction, it will be routed in one of the less 
optimal directions. This relies on any particular channel knowing whether 
or not it is connected to a working CE. The predicate dud : C {T ,F }  
indicates if a particular channel is connected to a non-working CE.
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The formal definition of the routing algorithm with the modification is 
given below. It is easy to prove that this routing algorithm is correct. Again, 
each step routes the packet closer to its destination.

7̂ -Nav N  x N

7 £ n  av(^'27,y5 Tlxd,yd)

where
north if 

j  _  south if 
west if 

. east if

C

{  dr,y,home if
dr,y, d if

y < yd 
y > yd 
x < xd 
x > xd

(x ,y )  =  (xd,yd) 
-'dud(d)

(2.4)

As defined here, this is non-deterministic. If a packet can go in one of two 
directions, say north and east, then either can be chosen. However, the 
hardware to implement such a routing algorithm would be deterministic and 
would choose one direction in preference to the other.

If the packet cannot move in any direction that would take it closer to 
its destination, then it becomes blocked. At the time it becomes blocked 
the packet is effectively facing a wall of dud nodes. The purpose of the 
routing algorithm is to move the packet into a position where it can become 
unblocked and thus resume moving closer to its destination.

The condition that the packet will become unblocked when it is closer 
to its destination than it was when it became blocked, is essential if we are 
to prove that the routing algorithm works. If we can prove that when the
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packet is blocked the routing algorithm manoeuvres the packet closer to its 
destination then we can be sure that the routing algorithm is correct.

Figure 2.10: The routing algorithm in full action

In fact, getting into such a position is quite easy. All the packet has to 
do is to follow the edge of the area of duds. This is guaranteed to bring it 
closer to its destination. Figure 2.10 illustrates the action of the algorithm 
in the blocked phase.

There is an important optimisation that can be made to the algorithm. 
Consider the action of the algorithm when it encounters the physical edge 
of the wafer. One of the options open to it is to crawl round the edge as if 
the edge were just another area of duds. This is obviously non-optimal. The 
optimisation that can be made is for the packet to recognise that it has hit 
the physical edge and to simply go back the way it came. Figure 2.11 shows 
this optimisation.

Obviously this routing algorithm requires the packet to carry some state, 
which can change as the packet is routed towards its destination. For example 
the mode needs to be changed as the packet becomes blocked and unblocked.

This requires the routing algorithm to be of type

U - . P x N x C ^ P x C

where P  is the set of packet states. The “state” that the packet needs to 
carry is denoted ps,b,h where each subscript denotes
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Figure 2.11: Packets “bouncing” off the edge of the wafer

• A displacement field 0 < s < maxs where maxs is a constant whose 
value is greater than the distance between the two furthest removed 
nodes on the wafer

• A blocked bit b 6 B =  { T , F }

• A handedness bit h € H  =  {L ,R }

The routing function can now be given in its complete form, but first some 
auxiliary definitions are needed. A node nx>y has a number of channels cx<y,<* * 
which connect to each neighbour where d € D  If node nXiV receives a com-
munication from node nx»>y<, on channel then (x ,y ) and (x',y') can be
related by x =  x' -f modx(d) and y =  y' +  mody(d) where modx and mody 
are functions:

modx(d) =  « 

mody(d) =  <

1 if d =  east
-1 if d =  west

0 if d =  north V d =  south
1 if d =  south

-1 if d =  north
0 if d =  east V d =  west

(2.5)

Functions over directions are needed: opp : D i—> D  which maps any direction 
onto its opposite direction (eg: opp(north) =  south); and inc : D x H  D 
which maps a direction, and the state of the handedness bit onto the direction 
clockwise, or anti-clockwise depending on the state of the handedness bit.
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For example, inc(east, L) =  south and inc(east,R) = north Also, several 
more predicates over channels need to be defined. These look at the state 
of the CE that the channel is connected to: good , dud, and edge all of type 
C {T, F }.  Finally, the negation operator -> is defined over H  such that it 
delivers the opposite handedness: -'L =  R and ->R =  L.

So the routing function can now be defined

7̂ Nav : P x N x C \ - + P x C
sp / \ _ j  (Pmaxs,F,hi C-x,y,d) if

5 'H'xd.ych C x'.y '.in )  —  S /  _  \
 ̂ \Ps',Tyh 'i C x,y ,d ')

where

closer A good(cx<ytd)
-1closer V ~‘good(cXiyyd)

x =

closer —

d =

(d',h') =

f(d ,h )  =

x' +  modx(in) 
y' +  mody(in) 
opp{in)
| x -  xd | +  | y -  yd |< s 
f prim if good (cXiy,pr;m)
1 alt if igood(^cx ŷfpYim>)
j  | x — xd | +  | y — yd | if ->b
I s  if b
j  f(prim , h) if -i6
| / (inc(in' , h) , h) if b

(d,h) if good(cXiyi(i)
< f(inc(d,->h),->h) if edge(cx<y>d) 

f(in c(d ,h ),h ) if dud(cXiy<d)
( 2 .6 )

The first clause of 7̂ -Nav deals with the normal unblocked case and the case 
where the packet is ready to leave blocked mode. The second clause deals 
with when the packet is blocked, or if it is just about to become blocked. 
The choice of direction is quite tricky, and is made trickier by its depending 
on the direction of the channel on which the packet arrives at the node and 
whether or not the packet was already blocked. The direction and the hand-
edness when blocked are chosen by the auxiliary function / .  This function 
implements a seek in the compass directions for the first good node available. 
Handedness is flipped if the packet is at the edge, implementing the “bounce” 
optimisation.

When the packet is unblocked, the algorithm chooses one of the directions 
prim or alt representing the primary direction and the alternative. These can 
be a simple table lookup with the keys being the x — xd and y — yd. The 
table is as follows, with x — xd on the horizontal and y — yd on the vertical.

—ve 0 -\-ve
—ve west,south south east,south
0 west home east
+ve west,north north east, north
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When there are two directions, either can be the primary or the alternative. 
If there is only one, this must be the primary.

Deadlock Avoidance

As it stands, the routing algorithm is not deadlock free. Simulation shows 
that it is in fact fairly prone to deadlock at medium loads, ie: when the 
number of packets in flight approaches one per CE, the network will deadlock 
very quickly. This is clearly unacceptable, and we must devise a way round 
the problem. This section looks at some techniques for avoiding or breaking 
deadlock, and their applicability to this architecture.

Deadlock Avoidance Buffers

One solution to the deadlock problem is to have a buffer associated with 
every CE. The CE can guess that it is contributing to a deadlock situation 
when it has failed to forward a packet on a link after a certain number of 
cycles, and can then buffer the offending packet. This effectively breaks the 
dependency cycle.

This strategy does not completely eliminate the chance of deadlock oc-
curring, but simply makes it less likely depending on the size of the buffer. 
The designer of the CE can decide on an acceptable probability of deadlock 
and can choose an appropriate buffer size. Unfortunately, for any realistic 
probability, the buffer needs to be unacceptably large for a WSI design. Sim-
ulation shows that if the buffer is allowed to grow to the necessary size to 
eliminate deadlock, then it takes up more space than is available for the CE 
to yield at an acceptable level. Therefore this method can not be used for 
WSI.

Structured Buffer Pool. A second solution to the deadlock avoidance is 
to create a structured buffer. When packets can not be forwarded on their 
appropriate link, they are inserted in this buffer. The difference • between 
this method and the simple deadlock avoidance buffer mentioned above is 
that packets are assigned an order as they are inserted in the buffer, and 
are released from the buffer in this order. By this method, a network can 
be proven to be deadlock free, as long as it is large enough. [BBG87] give a 
suitable algorithm.

Unfortunately again, the addition of a buffer makes the CE design too 
large for WSI standards, and we must reject this design.

Virtual Channels. Virtual channels are a novel solution to the problem 
of solving the deadlock problem in communications networks [DS87]. The 
method works as follows: Each CE has a number of virtual channels along
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which packets can travel. For each direction, there is an partial order between 
the channels such that packets can move to lower channels, but no packet on 
a lower channel can move to a higher one. The channels are arranged so that 
there is a route to every node by either staying on the current channel, or 
via a series of channels in descending order. There is always a lowest channel 
on which packets cannot be blocked by packets on higher channels. Using 
this mechanism, the dependency graph is guaranteed to be acyclic and so 
deadlock can never arise.

Virtual channels are ideal for regular networks. For example, a torus 
network needs only two virtual channels [DS87]. In terms of hardware re-
quirements, each virtual channel requires one physical queue even if it is only 
one packet long. Unfortunately, the WSI network and we are studying is far 
from regular. It is not possible to prevent deadlock on such a network on a 
wafer using only two virtual channels, and more than two would make the 
design of the CE too large.

Chaining. So far, the deadlock avoidance strategies considered have been 
rejected because their hardware implementation would take up too much 
space. A solution appropriate to WSI should take up very little space. This 
solution is based on [RD86], and is as follows: The communications algorithm 
operates in a normal mode, but when deadlock is suspected it reverts to an 
algorithm which may take longer to deliver the packet, but which guarantees 
to deliver it within a specified number of hops k which is a predetermined 
constant for a particular network. When in this mode, the CE must not 
accept any new packets from the PE. After the time for k hops has elapsed, 
the CE can revert to its normal mode, k is known as the chain delay.

To implement this we need to choose a simpler routing algorithm. The 
one we have chosen connects every working CE in the network into a logical 
“chain” . A packet is guaranteed to be delivered if it simply follows the chain 
until its reaches its destination. Figure 2.12 shows a wafer that has been 
configured as a chain. Every connectable node can be configured into a 
chain in this way. The algorithm for connecting the nodes into a chain is 
similar to the Catt spiral [AC78].

If there are n working CEs on the wafer, then every packet can be deliv-
ered to its destination in a maximum of n hops.

When a CE detects that it is contributing to a deadlock situation it first 
signals to its neighbours that it is going into this mode. It then forwards all 
the packets in turn on its input registers on one of the directions dictated 
by the chain. The CE remains in this mode and continues to forward all 
packets it receives until it has waited for the k hop times to elapse. It will 
then return to normal mode.

A CE goes into chain mode if it detects either of two conditions:
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Figure 2.12: A wafer configured into a “chain” * •

• It has been trying to forward packets for the last h hops and has not 
succeeded, h is known as the chain constant.

• It receives a chain signal from a neighbour.

In each case it counts down from the initial value of the chain delay k, and 
when it reaches zero it reverts to normal mode. The signal to go into chain 
mode propagates from the original CE through to its neighbours, and on to 
their neighbours, and thus to all CEs that are connected in a wave fashion. 
If two distant CEs go into chain mode at the same time, the chain “waves” 
will run into each other. If one chain is older than the other, then the chain 
delay caused by the newest can be added onto the chain delay which already 
exists.

The value of the chain delay is a crucial design decision. If there are n CEs 
in the chain, then in the absence of congestion it takes n cycles to clear the 
network. To be safe, the chain delay should be somewhat greater than n, at a 
level that allows every CE to empty all its input registers. If the chain delay 
runs out before all the packets have been delivered to their destination, then 
as long as the packets are all marked as being unblocked, they will continue 
to their destination as though they had just been generated. The worst that
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could happen in this case is that the network could go into a livelock situation 
where the same packets constantly cause congestion and thus chaining, and 
are constantly routed back to where they came from by the CE operating in 
chain mode. However, even this can be avoided by dynamically changing the 
value of the chain delay. Going into chain mode would then have the effect of 
simply redistributing the packets through the network seemingly at random.

This strategy is provably deadlock free, as long as k is large enough. It is 
fairly harmless if k is not quite large enough to route all packets in the given 
time as explained above. The amount of silicon needed to implement this 
strategy in hardware is small, so this will be the deadlock avoidance strategy 
adopted.

2.3.2 Properties of the navigation algorithm

Harvest &: Sacrifice

Unlike the previous communications architectures, the navigation algorithm 
allows for all working PEs that can be connected to be used. Figure 2.13 
shows the harvest for a wafer with 100 nodes. Tbutofr comes only when no 
I/O  registers can be connected to any other working nodes. For the more 
interesting yield figures, ie between 70 and 90%, this scheme allows for almost 
all working PEs to be used.

Harvest versus CE Xaeld

Figure 2.13: Harvest versus Yield for the navigation algorithm
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Latency

Figure 2.14 shows how the average and maximum latencies vary with Fc e  
for a wafer of 100 nodes. The unit of latency on the graph is one hop, the 
time taken to make a routing decision and transfer a packet to a neighbour.
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Figure 2.14: Average and Maximum latencies versus Yield

Performance

In order to model the performance of such a communications architecture an 
event driven software simulator has been written.

The performance of an individual routing from n,- to nj on a specific wafer 
under some set of conditions is defined as

_ -¿ideal
-¿actual

where .¿¡deal is the latency of routing a packet from nt- to nj on a perfect 
wafer in the absence of congestion, and LactUai is the latency under those 
conditions. The performance of a wafer as a whole is defined as the average 
performance of a large number of routings, while the conditions are held 
constant. Measurement of the performance under differing conditions allows 
us to choose certain design parameters, and to predict results.

What are the design parameters that we can vary? One of the most 
important is the chain constant h. If this is too low then most routings will 
be via the chain, and will take a relatively long time to complete. If it is too 
high, then the network will take an inordinately long time to recover from
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high congestion and the performance will suffer again. There must be an 
optimal value for the chain constant.

Figure 2.15: Performance versus load for increasing chain constants

The most important relationship that can be measured is the relationship 
between the performance and the load. The load is defined as the number 
of packets “in-flight” . Each CE can contain a maximum of four packets in 
its input buffers. The maximum number of packets in a given network is 
equal to the number of connectable input buffers. A CE’s input buffer is 
not connectable if it is up against a dud CE, or the boundary of the wafer. 
A packet is in-flight during the time between its dispatch from the source 
PE and its receipt at the destination PE. The results of simulation are quite 
surprising. Figure 2.15 shows the results on performance for various values 
of the chain constant. The performance levels out very early, prompting the 
choice of 10 for the chain constant.

Overhead

The packet overhead associated with administering a routing algorithm is 
defined as the amount of information additional to the payload that a packet 
has to carry to ensure delivery. The following table shows the overhead per 
packet for a wafer with a diameter of n nodes.
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Overhead number of bits required
Address field 2 [log2 n]

Displacement field [log2 2ii\
Blocked 1

Handedness 1
Total 3 +  3 [log2 n]

If n is as large as 16, the overhead is 15 bits per packet.

Cost in hardware

The cost in hardware is defined in terms of the amount of silicon area needed 
to implement the routing function. The requirements of WSI state that the 
CE must yield well, and it will only do so if it is sufficiently small. In order to 
estimate the amount of silicon needed, we need to do a “floorplan” . Figure 
2.16 shows a proposed floorplan of the CE taken from [AKW90]. Using this

io c  Interface 
controller

Figure 2.16: Proposed floorplan for a node

design, the area of the node is bounded by the length of its edges, edges.
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We are assuming 128 bit wide communications between nodes. For a 6 inch 
wafer, we can lay out approximately 100 nodes of this size. The operation 
of the CE is explained in detail in [AKW90]. Here we outline its function. 
When a full input is detected, the CE controller clocks the first half of the 
packet into the router. As the routing decision is being made, the second half 
is clocked in, and by the time it settles, the decision will have been made, 
and the controller can present the packet on one of the output ports, or to 
the PE. The sizes of the blocks are calculated by using a gate equivalence 
scheme. Assuming 1.5 /̂m CMOS, we have

Structure Area///2 Gate equiv
10 registers 1 .7 x l 0 6 5000

10 controllers 1 8 7 x l 0 3 400
Router 468 x lO 3 1000

CE Controller 936 x lO 3 2000
Routing bus 1 6 x l 0 6 0

Power supply 6.3 x lO 6 0

Assuming the defect density for random logic Dc is 3x 10-8 //r2, and the defect 
density for the metal is 1x10-8 //x2. Using 1.5//m CMOS and assuming an 
area of 98.6x 106/rm2, using the generalised negative binomial yield model, 
with the clustering parameters ac and a,- to be 0.75 [HS88], we estimate Fc e  
to be approximately 75% [AKW90]. This is a sufficiently high yield to make 
the CE a feasible design.

2.4 The Paths Algorithm
The navigation algorithm 7̂ -Nav is deterministic. A packet from a source to a 
destination will always follow the same route. This suggests a new approach 
to routing. Instead of making the same set of decisions for the packet every 
time it is routed, why not make them once. A network address can then be 
defined as a list of directions in which to route the packet. These can be 
determined externally for every source and every destination on the wafer, 
and loaded into some memory associated with the PE. When the PE wants to 
send a message to a particular node, it simply prepends the list of directions 
to the packets comprising that message. The routing algorithm then becomes 
trivially simple. The communications node can simply read the head of the 
packet’s direction list and send it in that direction.

Clearly the directions need to be generated. Any communication network 
is a graph, however, and there exist algorithms that will find the shortest path 
between any two nodes in the graph. This is however not precisely>what we 
need as we shall see later.
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2.4.1 Routing

The Routing Algorithm

The routing algorithm is trivially simple, and is stated here. L is the set of 
path lists. The following operations are defined on a path /,•:

• A predicate empty : L {T, F }  which indicates if the list is empty.

• hd : L x N C which takes the list and a node and returns the channel 
on which to forward the packet.

• tl : L L returns the remainder of the list after its head has been 
removed.

7?path • L X  N  I— > L X  C
V (l. n .\ -  S if em piali) (2.7)
<pathf «, j V (tl(li),hd(li,nj)) if -iempt^U )

Deadlock

This scheme can use the same deadlock avoidance strategy as the navigation 
scheme.

2.4.2 Properties

Harvest Sacrifice

This network uses essentially the same topology as the navigation algorithm, 
so the harvest and sacrifice results are identical.

Latency

The major advantage of this scheme over the navigation scheme is that the 
latency is decreased substantially. This is because we have taken care to 
generate paths that are shorter than those generated by 7̂ -Nav In addition, 
the time taken to make a routing decision will be less because all that is 
required is for the chosen direction to be read from the head of the packet.

Figure 2.17 shows the maximum and average latencies for a wafer of 
diameter 11 versus decreasing Vc e - The average latency remains fairly 
constant as the yield decreases, and the maximum latency increases only 
slightly.
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Figure 2.17: Maximum and average latencies in hops using the paths algo-
rithm

Performance

The performance of a machine using the paths algorithm has been measured 
in the same way as the performance for the navigation algorithm. The same 
metric definitions apply here too. Figure 2.18 shows the performance for a 
set of values of the chain constant. It can be seen from the graph that the 
performance is better than the navigation algorithm, in that it tolerates load 
better. Note that these performance graphs are modulo the average latencies, 
so the scale of the increase in performance is not immediately apparent. That 
is, to find the average latency at a given load, the performance should be read 
from the graph and multiplied by the average latency from graph 2.4.2. The 
effect of the chain constant seems to be less than with 7̂ Nav. The performance 
peaks fairly early, and only starts to drop slowly when the chain constant 
reaches 30.

Overhead

A path is simply a list of directions on how to get from one node to 
another. For example to get from node S to node D in figure 2.19 the path 
would read

[east ,east ,east, nor th ,eas t, east ,east, south ,east, east ,east, 
north,east,east,east,south,res]

There are some other considerations that we need to take into account before 
paths are generated. These have to do with the amount of space needed to
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; store the paths in the CE, and the overhead in terms of bits per packet. 
There are four possible directions in which a packet may be sent from any 
particular node: north, south, east and west. These can be encoded as two 
bits each. The length of the list also needs to be encoded. This can be 
encoded as a count field which is to be decremented every time the head is 
removed. The overhead per packet is defined as follows: For a particular 
wafer, there will be some maximum number of hops that can be taken. Let 
this be denoted M.

Field no. of bits
count P°g2 M ]

directions 2 M

giving a total overhead of 2M  +  [log2 M] bits per packet. M  is about 16 for 
a wafer with diameter 11, this results in 37 bits.

37 bits per packet is too large an overhead per packet to be acceptable, so 
we must devise a method to compress the paths information into a smaller 
space. Run length encoding of paths is one way of compressing the address, 
and there are (at least) two ways of doing this.

Method 1 The first two bits in the packet give the first direction to go 
in. Each following bit instructs the router to either route the packet in the 
same direction, or not. If not, then the following two bits indicate the next 
direction. The number of changes of direction is given by c'

Field no. of bits
count pog2 M\

directions 3 +  3c' +  (M  -  1 -  d)

For a wafer of diameter 11, with a Tc e  of 75% the longest path is 16 hops 
long. This involves about five changes of direction, so the overhead for this 
is 28 bits. If the maximum number of changes of direction is eight, then the 
overhead is 34 bits.

Method 2 This method involves thinking of the move to the PE as just 
another direction. With this method we count the number of changes of 
direction, and have a count field for that. The first two bits give the initial 
direction. If the following bit is a 1 then keep going in the same direction. If 
not, then the bit after that indicates whether to go to the left, or to the right 
of the previous direction. When this is found, the count is decremented. 
However when the count is,found to be zero, then this indicates that the 
packet should be routed immediately to the PE.
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Field no. of bits
count Rog2 c'l

directions 2 +  (M  -  1)

For a wafer of diameter 11, the longest path is about 16, and allowing d to 
be a safe 8, the overhead is calculated to be 21 bits. This method has the 
smallest overhead, so we choose this.

Path Generation

These results have several consequences for the generation of paths. The 
most important of these is that whatever route is generated, it must have as 
few changes of direction in it as possible. can be recast as an algorithm
that generates a list of directions. This happens to have the property that it 
sends packets on paths that have few changes of direction. That is a packet 
will be sent in a straight line rather than change direction. So we can use 
this as a basis for generating the paths.

Because the program that generates paths has a more global view of the 
wafer and can afford to be a lot more ’intelligent’ , it can make a number of 
optimisations to the paths as they are generated.

These optimisations are as follows.

1. If a packet has to backtrack for any reason, then the section of the path 
that the packet backtracks over can simply be deleted completely from 
the path. This situation arises when a packet encounters the physical 
edge of the wafer and changes its handedness.

2. A packet from a source to a destination may take a different path 
depending on its handedness. The optimiser can simply choose the 
shortest of these.

3. A packet from a source to a destination may take a longer way round 
than a packet going in the reverse direction, i.e. from destination to 
source. The optimiser can choose the shortest of these.

4. For each node in the path from source to destination, if there is a 
shorter path from that node to any other node on the path, then the 
optimizer can replace part of that path with the shorter section.

Figures 2.20, 2.21, 2.22 and 2.23 shows how these optimisations shorten 
the paths. Obviously some of the optimisations overlap. The results reported 
in section 2.4.2 are results for paths found after repeatedly applying all these 
optimisations to the paths generated by the navigation algorithm
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Cost in hardware

The cost in hardware of the paths communications algorithm is much lower 
than that for the navigation algorithm. This is because the hardware involved 
is much simpler. If we adopt the same design as in section 2.3.2, the only 
thing that changes is the size of the router. The router is estimated to occupy 
approximately 200 gate equivalents. As the hardware cost is dominated by 
the area occupied by the 10 registers and the routing bus, the Yc e  is not 
affected much by the decrease in complexity of the routing algorithm, and 
the estimated yield figure is 75%.
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Figure 2.18: Performance versus load for increasing chain constants

Figure 2.19: An example path from a source to a destination
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Figure 2.20: Optimisation one: Eliminate backtracking

Figure 2.21: Optimisation two: Choose handedness with shortest path

Forward Reverse

Figure 2.22: Optimisation three: Choose shortest of the forward and reverse

n
Figure 2.23: Optimisation four: Choose shortest paths to other nodes in the 
path
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2.5 The Signpost Algorithm
The signpost algorithm is based on the observation that the paths generated 
for the paths algorithm remain constant for the wafer. Instead of having a 
packet carry around the path, it only needs to carry around the address of 
the destination processor. Now, instead of having a stateless communications 
architecture, each CE has a small amount of memory indexed by the address 
of the, processor. The memory contains the direction in which to route the 
packet next. This set of directions is known as the “signpost” . The paths 
can be generated beforehand in the same way as they were generated for the 
paths algorithm, and loaded into each CE at system initialisation time.

As the paths are the same, many of the properties of this algorithm are 
identical to 7£path.

2.5.1 Routing
The Routing Algorithm

The routing algorithm is defined in terms of the signpost. Each CE i has a 
signpost set 5;. The function operates on the destination address, the current 
address, and the signpost, and is thus trivially defined as follows:

f t SP : N  x N  x S ^  C 
7̂ -SP =
where (2.8)
, _  J home if i =  j  

{ Sj,n if
The routing algorithm delivers the packet to its destination as long as the 
signposts have been set up correctly. Therefore the burden of proof of correct-
ness is upon the path generator. As we have shown that the path generator 
generates correct paths, we can assert that 7£sp is correct.

This algorithm is more powerful than it looks. It offers two features that 
neither of the previous two offered. These are graceful degradation, and 
dynamic routing. If a routing fails with either of or 7£path, we have a 
problem. With 7̂ Nav there is potential for recovery but only if the packet is 
not in blocked mode. If it is in blocked mode, then on average, it will never 
get to its destination. With 7£path, if a direction is wrong, then because the 
paths are context sensitive, the packet will end up anywhere but its correct 
destination. With 7?-s p , if a direction is given wrongly by a faulty CE, then 
as long as the packet is not returned to the faulty CE, then it will still get 
to its destination.

The second advantage is with dynamic routing. In both and 7̂ path, 
the route from source to destination is fixed. With 7̂ s p , the route is con-
trolled by the contents of the signpost at each CE. As this can be changed,
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there is the potential for routes to be changed even as packets are being 
routed. We might want to use this so as to avoid heavily used “highways” 
on the wafer so as to minimise congestion. There is even no need for instan-
taneous consistency in the directions. A packet can get temporarily “lost” 
without harm as long as all the signposts eventually become consistent. This 
also has implications for graceful degradation. If a CE fails suddenly, then the 
controller can route packets round it without halting the machine, although 
detecting the failure is another story.

Deadlock Avoidance

We can use the same deadlock avoidance scheme as we did for 7̂ path.

2.5.2 Properties

Harvest &: Sacrifice

The results for harvest and sacrifice are identical to 7£path. 

Latency

The latency results are identical to 7^ath.

Performance

The performance results are also identical to 7£path-

Overhead

The overhead for this algorithm is extremely low. Each packet only needs 
to carry the identifier of the destination processor. For a wafer of n nodes, 
there are y/n nodes in each dimension, so we have the overhead as follows:

Field no. of bits
destination address 2 x f ^ l

For a wafer with 16 nodes in each dimension, this is an overhead of only 8 
bits.

As the overhead is constant, we no longer have the constraint of needing 
to keep the number of changes of direction down. We can thus choose a path 
generation algorithm freely.
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Cost in Hardware

Again we use the same floorplan as in section 2.3.2. This algorithm is also 
fairly easy to implement in hardware. It will consist of some memory to store 
the signpost, plus a small amount of addressing logic. The total amount of 
memory required for the signpost is given by the number of processors times 
the number of bits required to store one direction. If the total number of 
nodes on the wafer is 100, and there are four directions then this amounts to 
100 x 2 =  200 bits. Using static RAM to store the directions, we estimate 
this area to be 670 gate equivalents. This gives us a Tc e  of approximately 
75%.

2.6 Summary
We have shown introduced and studied three communications algorithms for 
regular arrays on WSI. We have measured the performance by simulation of 
these, and estimated their size, and therefore their yield. It is not immedi-
ately obvious which algorithm is best for a general purpose WSI product. 
Each has its good and bad points.

All the designs for CEs yield at acceptable levels, however, as we have 
seen, the area of the router is “in the noise” , so the yield is a property of the 
CE design rather than the communications algorithm.

If a routing algorithm is to be chosen for a particular application, the best 
depends very much on the requirements of that application, and in particular 
on the number of nodes on the wafer.

The navigation algorithm has a higher latency than the others. For the 
design shown it would not be chosen, but for a different application, where the 
nodes are much smaller it might win over the other two. This is because the 
properties of both 7£path and 7̂ sp are a function of the number of nodes on the 
wafer. If we increase the number of nodes n on the wafer then the dominating 
factor in the overhead for 7̂ -Nav is 30(log2 n), for 7̂ sp it is 0 (log2 n) and for 
7̂ -Path it is However the dominating factor in the space for the router
is 0 (log 2 n) for 7?-sp and 7̂ -Nav, but less than this for 7£path.

Another factor to be taken into consideration is whether dynamically 
changing routing, or some degree of graceful degradation is required. If these 
are required the only suitable algorithm is 7?-sp.

If the number of nodes is very large, then 7̂ Nav wins overall in terms 
of low overhead and high yield, despite its greater latency. If the number of 
nodes is small, then 7̂ sp would win because of low latency compared to 7̂ Nav 
and the dynamic routing capability compared to 7£path. Somewhere between 
these two and,.in applications where the size of the router is critical, then 
7 -̂Pathwould be the preferred choice.
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So we have a variety of routing algorithms within a common design for 
a CE. For this design IZsp is the preferred because of its low latency with 
respect to TIn&v and its low overhead with respect to 7£path- A bonus is the 
potential for dynamic routing and graceful degradation.
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Chapter 3

A Graph Reduction Engine

One paradigm that promises to help solve some of the problems of the soft-
ware crisis, and some of the problems of exploiting parallelism is the func-
tional paradigm. The implementation of functional languages requires spe-
cial techniques not especially suited to conventional computer architectures. 
Some alternatives to the von Neumann have been proposed which are better 
suited to executing functional languages.

Basically there are two feasible methods for the implementation of func-
tional languages. These are graph reduction, and dataflow. This chapter 
reviews computer architectures that have been devised to execute functional 
languages efficiently, and introduces COBWEB —  the parallel graph reduction 
architecture that is the subject of this thesis.

An abstract machine for graph reduction can be specified at many levels. 
The highest level at which we specify COBWEB is as a term rewrite system 
(TRS). Using such a system we can make fairly strong assertions about a 
machine. However while this is a considerable bonus this level tells us nothing 
about what the lower level functions of the machine might be. In order to 
complete a design for a machine from this specification we must proceed by 
transforming the high level specification into a low level design.

We proceed in phases starting with the original specification. The input 
to each phase will be a specification. The output from each phase will be a 
specification which is at a lower level (ie more detailed) than the input one. 
Each phase will thus consist of a process that adds constraints to the input 
specification and translates it into a specification at a lower level. For each 
phase we need to show that the output specification is correct with respect 
to the input specification.

In this chapter we demonstrate the translation process at each phase of 
the design process. The final output from this process is a design for an 
abstract machine expressed in terms of a topology and a number of blocks 
whose operation is described in terms of a low level imperative language. This 
design is then translated into a working program which we use to determine
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some architectural parameters, and to eventually decide if a graph reduction 
engine using WSI is in fact feasible.

The chapter is structured as follows: We start with a brief review of 
dataflow architectures for functional languages. Section 3.1.2 will present a 
review of other work in the area of graph reduction architectures. To set 
the following sections in context, section 3.2 will provide an overview of the 
COBWEB system, and explain the route from a high level program written 
in a functional language to a representation of that program running on 
the machine. Two specification languages are used to specify COBWEB. The 
languages, one a term rewrite system (TRS), the second an object based TRS 
with message passing are introduced in section 3.3. This section goes on to 
introduce the specifications themselves. Section 3.4 shows how to translate 
a specification written in Paragon into a hardware design. Section 3.5 forms 
the body of this chapter. This chapter discusses the transformation of the 
high level specifications from section 3.3 into a low level design. Finally 
section 3.6 discusses an implementation of the final design from section 3.5.

3.1 Implementation Techniques for Functional 
Languages

As mentioned earlier, the two modern techniques for the implementation of 
functional languages are dataflow and graph reduction. In this section we 
review parallel computer architectures that are designed to execute functional 
languages based on both techniques. A more general overview of the field 
can be found in [Veg84].

3.1.1 Dataflow
Although dataflow is a feasible technique for the implementation of func-
tional languages, it is beyond the scope of this thesis. Parallel dataflow 
computers for functional languages have been studied extensively. Arvind 
and his team at MIT have designed the Tagged Token Dataflow Architecture 
[AN87], and MONSOON [PC90]. Gurd and his colleagues have designed the 
Manchester Dataflow machine [GKW85]. At Southampton University and 
Imperial College Hugh Glaser leads the FAST project, which aims to have 
an implementation of the m ’Tuki abstract machine running on a network of 
Transputers [Gla90].

3.1.2 Graph Reduction Architectures
Although graph reduction is a standard technique there are many abstract 
machine designs. The basic principle is that the functional program is rep-
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resented as a graph. Applying transformation rules to the graph is known 
as reduction. A reduction rule can only be applied to an expression which is 
reducible —  this is known as a redex. Repeated reduction of the graph will 
eventually deliver the result of the program. Throughout this document we 
discuss evaluating to weak head normal form  (whnf) [Pey87]. This effectively 
means that evaluation proceeds until there are no top-level redexes.

The standard mechanisms for the implementation of graph reduction are:

• Combinators [Tur79]

• Supercombinators [Hug84]

• Directors [KS81]

A set of combinators correspond to the instruction set of a simple imperative 
computer, for example move and copy. Supercombinators can be described as 
an instruction set that has been invented to suit the program being executed. 
Directors can be thought of as annotations to the graph that indicate where a 
parameter is needed. Directors can be shown to be equivalent to combinators.

Concurrency in graph reduction machines is exploited by observing that 
many parts of the graph can be evaluated to normal form concurrently. 
Which parts of the graph this can be applied to can be elicited using strictness 
analysis, or by annotations added by the programmer.

Parallel machines can be tightly coupled or where the processors share 
some global memory and any local memory is a cache, or loosely coupled 
where the processors have local memory only. A machine is neighbour coupled 
if memory access to close neighbours is quicker than memory access to other 
processors.

Load balancing is achieved in tightly coupled machines by allowing idle 
processors to evaluate reducible parts of the graph at will. The situation 
with loosely coupled machines is more complex as the cost of exporting a 
graph to be evaluated by another processor may be greater than waiting for 
it to be evaluated locally.

The mapping of program code onto processor memories is another issue. 
The goal is to reduce communication by maintaining locality of access as 
much as possible. As machines get more tightly coupled, the problem of 
mapping a program onto a set of processors gets more difficult.

Parallel machines in general can be categorised by their grain size. This 
is defined by the size of a task, where a task is the minimum amount of 
work a processor can do in parallel with another task. A fine grain machine 
is one where a task might consist of a basic operation such as a copy, or 
an add. A medium grain machine is one where a task might consist of a 
small number of basic operations, perhaps at the function level. A large 
grain machine is one where the amount of work in a task is large, usually
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at the program level. Combinator machines are typically fine grain, whereas 
supercombinator machines are medium grain.

GRIP

GRIP [PCS89] is a high performance graph reduction machine based on the 
Spineless Tagless G-machine, a supercombinator based abstract machine. It 
consists of a number of conventional CPUs attached to a number of memories 
(IMUs) which are managed by a novel intelligent controller and a packet 
switched bus. Each IMU contains a fixed segment of the global heap. Each 
processor in the machine contains some local memory, known as the local 
heap, in which new graph nodes are created, and which acts as a cache for 
the global heap. The machine can be said to be “programmably” -coupled as 
the level of coupling is dependent on the programming of thé IMU. Load is 
distributed automatically by having idle processors poll IMUs for redexes.

Alice & FLAGSHIP

At Imperial College and at ICL the ALICE machine has been designed and 
a prototype has been built. Alice is a tightly coupled medium grain packet 
based reduction machine. It consists of a number of processors each of which 
has access to a packet pool. Reduction proceeds by processors taking re-
ducible expressions from the pool, reducing them, and returning the result 
plus any new packets generated to the pool. This process proceeds until the 
packet that represents the result of the program has been reduced to normal 
form. Load is distributed automatically by having idle processors scan the 
pool for redexes.

A prototype machine has been built from Transputers connected by a 
delta network.

FLAGSHIP, formerly a collaborative venture involving Imperial College, 
Manchester University and ICL, is a descendant of the ALICE project [Kir89]. 
It is a system designed for declarative programming and so supports a larger 
computational model than graph reduction for functional programming. The 
heart of the FLAGSHIP system is an ALICE type graph reducer. The load 
balancing system is more sophisticated, and is controlled by an intelligent 
network. Each processor propagates some measure of how busy it is to the 
network, which can route tasks from processors which are busy to those which 
are idle.

The HDG-machine

The HDG machine is an abstract machine designed at GEC for the execution 
of lazy functional languages using graph reduction [LB90, Bur89b]. The 
machine has been designed to exploit evaluation transformers. These are a
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way of expressing strictness in data structures, and functions which operate 
on data structures as well as functions which operate on basic values. It is 
based on the Spineless G-machine. The HD in the name indicates that it 
is highly distributed. That is to say that the program graph is distributed 
throughout the memory of the machine. This project is still in progress, and 
the current literature does not specify a particular load distribution scheme. 
A realisation of the abstract machine on a network of transputers is underway.

MaRS

MaRS is a graph reduction multiprocessor being developed by a team at 
the Centre d ’Etudes et de Recherches de Toulouse in France [CCC+89]. A 
programming language named “MaRS_LISP” has been developed which in-
cludes constructs to control parallelism explicitly. The instruction set is 
indexed combinators which have a slightly larger grain than Turner style 
combinators. There are several types of processor, the most important being 
the reduction processors and the memory processors. It is a tightly coupled 
machine with processors connected using an Omega network. The network 
processors measure and control the spread of tasks throughout the machine.

ALFALFA

Paul Hudak at Yale leads a team at Yale University [GH86]. Their archi-
tecture is an implementation of distributed graph reduction on the iPSC, a 
loosely coupled MIMD architecture. The source language is one of Alfl or 
ParAlfl, the former being a functional language in the style of SASL, and 
containing no parallelism constructs; and the former being a language that 
permits the programmer to express parallelism. The grain of computation 
is the serial combinator, which are larger than supercombinators, and which 
contain no concurrent substructure. This enables parts of the program to 
be evaluated using the conventional stack, rather than on the heap. Work is 
distributed by diffusion scheduling whereby the program graph is distributed 
throughout the machine based on workload and locality.

PAM

PAM is a parallel abstract machine being developed mainly at RWTH Aachen 
in Germany [LKID89]. Their approach combines the work of Hudak on 
serial combinators, and Burn on evaluation transformers. Parallelism is thus 
detected automatically by the compiler. It is a medium grain architecture. 
Redexes waiting to be evaluated are stored in the communications processor, 
which can decide to export them to other processors if work is requested. 
Each processor has some local cache, so it is shared memory architecture.

69



An implementation of the abstract machine has been implemented on a 
network of transputers.

3.2 Overview of Co b we b

COBWEB is a parallel graph reduction architecture for functional languages. 
This section gives a brief overview of the philosophy and operation of COB-
WEB. Much of the material introduced here will be expanded upon in later 
sections. The purpose of this section is to explain how a program in a func-
tional language is run on the machine.

The way COBWEB runs programs is as follows. The functional language 
Hope+ [Per88] (with pure lazy semantics) is compiled to the intermediate 
code FLIC using the program hfc [Hun90]. A program in FLIC consists of a 
set of definitions in the enriched A-calculus [PJ89]. One of these definitions 
has the name MAIN. The result of evaluating the body of this definition is 
the result of the program. Hfc produces a FLIC program with strictness 
annotations in the form of evaluators and evaluation transformers [Bur89a]. 
This program is then compiled into a director graph using techniques from 
[Pey87, BHK88]. The director graph is in the form of triples —  each repre-
senting a node in the graph and consisting of a string of directors (including 
strictness annotation), and the left and right subgraphs.

The graph is loaded into the machine and the result is requested. Execu-
tion proceeds by transforming the graph into weak head normal form.

3.2.1 Hope+ -> FLIC
Parallelism in a functional program can be detected using techniques known 
as abstract interpretation, or projection analysis [Wad87, AH87, Bur87]. One 
of the most important properties of a program that can be revealed by these 
techniques is the strictness of functions. A function /  is strict in its argument 
iff:

/  JL =  ±
where A-(bottom) represents the undefined expression. If it is known that a 
function is strict in its argument, then it is safe to evaluate the argument in 
parallel with the body of the function. This is the only source of parallelism 
exploited in COBWEB.

Recently abstract interpretation has been used to reveal strictness of data 
structures in functional programs [Bur89a]. Given a data structure and a set 
of functions that operate on that data structure, this technique can reveal 
how much “evaluation” of the data structure that function requires. For 
example consider a list of 2-tuples. The function length returns the length 
of the list. When applied to an argument it only needs to know how many
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elements are in the top level list, and needs no evaluation of the tuples. 
However, the function first which returns the list containing the first value 
of the 2-tuple, needs to evaluate the structure of each tuple in the list. First 
is said to do more evaluation than length.

Expressions and functions in a program can be annotated with informa-
tion indicating the amount of evaluation to be done. This type of annotation 
is known as an evaluator. There are four evaluators:

£o indicates no evaluation

£1 means that the expression can be evaluated safely to whnf 

£2 the spine of the list can be evaluated

£3 the spine of the list can be evaluated and all the element’s of the 
list can be evaluated to whnf

These evaluators have an order:

6  >  6  >  £1 >  &

where the > indicates “does more evaluation than” . In our example, the 
function first will be annotated with evaluator £3 and length will be annotated 
with evaluator £2.

In addition there are evaluation transformers, which map evaluators for 
an expression onto safe evaluators for its sub-expression. However these are 
beyond the scope of this study.

The program hfc [Hun90] compiles programs written in Hope+ to FLIC 
with strictness annotations of the form defined in [Bur87].

3.2.2 FLIC —> Co b we b

FLIC programs consist of a set of definitions. For example, consider the 
following program in Miranda.

triple x =  3 * x 
twice f  =  f  . f

along with the application twice triple 7.
Ignoring for now the strictness annotations, this program will compile 

into the following FLIC program:

M A I N  (twice triple 7) 
twice (A f At ( f  ( f  t ) ) )  
triple (Ax (* 3 x ))
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This program can be represented as a graph, as figure 3.1 shows.
The evaluation technique chosen for COBWEB is directors [KS81]. A di-

rector is an annotation on a graph node that indicates which subgraph of that 
node an argument is needed in. A director simply defines a transformation 
on the graph. Arguments to functions can be envisaged as being sent down 
the graph following the directions indicated by the directors. At the leaves 
of the graph are “boxes” which the argument will eventually slot into. The 
process of transforming a program graph into a director graph is performed 
by abstracting out all the A expressions. Figure 3.2 shows the program as a 
director graph.

Figure 3.1: The program graph for twice triple 7

A C o b w e b  program consists of a set of “triples” . Each triple represents a 
node in the graph, and consists of the list of annotations plus the left and right 
subgraphs of that node. Boxes are represented by the identity combinator
I. Directors are effectively the “machine-code” of COBWEB corresponding to 
actions such as copying and moving data in a more traditional machine.

In addition to the directors, COBWEB uses some built-in functions and 
data constructors/selectors mostly taken from the standard FLIC set.

For example, the above program compiles to the following COBWEB pro-
gram.

M A IN : [] MAIN_2 7
MA!N_2: [] twice triple
twice: [A\] 1 twice_2
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MAIN

/  \  
M AIN -2 7

Figure 3.2: The director graph for twice triple 7

twice_2: [/\] 1 1
triple: [\] triple_2 1
triple_2: [] X 3
M AIN ?

Each line represents a triple, or the name of a node to be reduced. The 
result of this program will be the result of evaluating the node named M AIN .

Parallelism

COBWEB has two parallelism primitives. These represent context sensitive 
strictness and context free strictness. The context free strictness operator 
is the dyadic combinator P, whose semantics is that it evaluates. both its 
operands in parallel. This operator is used in an application f x  when it 
has been deduced that /  always needs the value of x. The context sensitive 
parallelism primitive is an annotation written #  which resides in the director 
list.

These are fairly primitive parallelism operators, and take no account of 
data strictness. The FLIC to COBWEB compiler compiles evaluators to ex-
pressions involving P and # .

If a function /  is labelled as having an evaluator >  on an argument x, 
then this is compiled to the expression P /  x. If a graph node is annotated 
with the evaluator >  then the context sensitive parallelism annotation is 
added to the list of annotations.
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3.3 Specification of Cob web

COBWEB is a parallel graph reduction architecture. We can describe the 
machine at its instruction level using a term or graph rewrite system. This 
system would describe the basic transformations to the graph. However, 
a description of this form is at a fairly high level. It can only give us an 
abstract view of how concurrency is exploited and how work is distributed 
among processors.

We wish to specify the operation of the machine at a lower level, and 
in particular we wish to describe the program graph and the mechanism by 
which the graph is reduced in more concrete terms.

This section introduces two specifications of COBWEB. The first is a 
traditional term-rewrite specification of the basic operations of the machine, 
and the second is a specification in Paragon of the machine at a lower level.

3.3.1 C o b w e b  as a Term Rewriting System
COBWEB can be described using a term rewriting system. A program in the 
term rewriting system consists of an expression to be reduced. An expression 
(e) has the syntax

<e> (e) (e)
1 ((e))
1 [(¿)](e)(e) 
1 (P)

(d) ::=  (d')(d)
1 e

(d>) ::=  A | -  | /

where (p) represents a primitive operator, combinator, or constant value for 
example + , i, the numerical constants.

For example the program in section 3.2.2 can be represented by the term:

m \ ]  i d/\] 11; ;  (N  ( x  s) i;  ?)

Redexes and Directors

The next redex in a term rewriting system is implicit: as an expression is 
reduced the leftmost outermost reducible expression is the next one to be 
reduced.

The rewrite rules for directors are very simple. For example the “left” 
director is defined as follows:
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[d] (f  x ) a 
[d] x  a

([/::d] f  a) x  -»
([/::d] I a) x  ->•

Appendix A gives a complete set of the term rewrite rules for the directors. 

Primitives

The original COBWEB description in [BHK88] contained rules for a few of 
the primitives of the machine, for example the strict basic dyadic operator 
+ , and the parallel combinator P, as well as some of the directors. However, 
the paper does not define a full set of primitives. A real specification for a 
machine needs a full set of primitives for operations such as data construc- 
tion/selection, as well as a full set of arithmetic and logic operators..

The choice of primitives is itself a problem. This reflects the traditional 
debate between choosing a large set, and losing speed in the instruction 
cycle and choosing a small set and implementing the more complicated oper-
ations in terms of these. The balance that was struck was to choose almost 
the same set of primitives as are provided in the compiler target language 
FLIC. These include conditionals, data constructors/selectors, a wide choice 
of integer and floating point operators, and a few pragmatic primitives for 
sequencing, strictness and program termination. These are specified using 
a term-rewriting system in the FLIC report [PJ89], and are reproduced in 
appendix A.

The main difference between FLIC and COBWEB primitives is that some 
of the COBWEB primitives are indexed with integers. For example the selec-
tion primitive K-n-i is defined in FLIC so that it takes two integer arguments 
followed by a number of following arguments depending on the value of one 
of the integers:

K n i xo . . .  xn —*• x,-

In COBWEB all of these types of primitive are indexed so that K-n and 
K-n-i represent a family of primitives for a small set of values of n and i. 
COBWEB only allows primitives without indexes. The presence of the indexes 
is a syntactic requirement of FLIC, so the transformation from non-indexed 
to indexed primitives is performed when FLIC is compiled to COBWEB-code.

Selection There are two selection primitives: K-n and K-n-i. The former 
is a weaker form that rewrites into the latter when applied to an argument 
as follows:

K-n i —> K-n-i
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The full form is, as implied above:

K-n-z xo . . .  xn_i —> Xi

Data Constructors/Selectors FLIC provides several data structure ma-
nipulation primitives. PACK, SEL, UNPACK and its strict version UNPACK!, 
and finally CASE and TAG. Disregarding typing issues, the rest of the FLIC 
primitives can all be written in terms of these.

Data structures are written as a tag, followed by the data. This is de-
noted (d | s o ,. . . ,  xn), where d is the tag, and a 0 <  i < n is the zth data 
component of the structure.

Packing PACK is the primitive for data construction. Given a number of 
arguments and a tag, it packs these up into a structure.

PACK-n d -  PACK-n-d
PACK-n-d x0 . . .  xn_i —> (d|x0, . . .  ,xn_i)

Selection from structures Selection of one element from a data structure 
has two forms. SEL-n takes one argument to become SEL-n-z which in turn 
expects one argument which is expected to be in the form (d | x q , . . . ,  xn-\). 
SEL-n-z is strict, so it is defined as follows for n >  0, z < n:

SEL-n-z 
1  

xt-

Unpacking structures There are two primitives for unpacking: one strict 
version and the other non-strict. These are defined for COBWEB as follows, 
n >  1 :

SEL-n i 
SEL-n-z X
SEL-n-z (d|x0, . . . ,x n_!)

UNPACK ! - n f l  -+
UNPACKi-n f  (d|x0}. .. ,xn_i) -> 
UNPACK-n f e  ->

X
f  X o  . . . X n _ i

f  (SEL-n-0 e) ('SEL-n-(n—1) e)

Case analysis and tag extraction CASE-r does a case analysis on a list 
of arguments and a data structure. CASE-r is defined for r >  1 , d <  r as

CASE-r eo . . .  er_i X 
CASE-r e0 . . .  er_i (d|x)
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Finally TAG is defined. This simply returns the tag of its argument, which 
must have been evaluated to a data structure.

TAG X —> _L 
TAG (d\x) -> d

B ooleans C o b w e b  has the boolean values TRUE and FALSE and the 
boolean operators IF, NOT, OR, AND and XOR.

However, not all the boolean operators are strict in both arguments. For 
example AND and OR are defined:

OR 1  x —* 1
OR TRUE x -> TRUE
OR FALSE x -> x

AND l x  -> 1
AND FALSE x -> FALSE
AND TRUE x -* x

Comparision and Numerical operators Several polymorphic compar-
ison operators are defined: POLY=, POLY!=, POLY>, POLY<, POLY< = 
and POLY>=. These are all strict in both arguments. For example the 
polymorphic comparison operator POLY= is defined

POLY= 1  -> 1
POLY= a b -> a =  b
POLY= (d|x0, . . . ,x n) (d|x0, . . . ,x „ )  -> TRUE
POLY= (d|x) (d'|y) -> FALSE

C o b w e b  arithmetic is with integers and floating point values. These are 
all strict in their arguments. The full set for integer arithmetic is given in 
the appendix. For a generic strict dyadic arithmetic operator f, and a generic 
strict monadic operator g  we can define them as follows:

f l  b -> 1
f  a l -> 1
f a b —» f a b

g-L 1

g a -* £ a

where the underlining indicates the actual result of applying the operator.
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Lists Lists can be defined using the structure manipulation primitives de-
fined above as shown in the FLIC report.

Sequencing, Strictness & Termination Three primitives are defined. 
SEQ forces its first argument to be evaluated before returning the value of 
the second. STRICT is applied to a function and an argument, and forces the 
argument to be evaluated before it is passed to the function. ABORT is used 
for program termination. Any attempt to evaluate it results in an error.

SEQ J_ h -> 1
SEQ a h -> h

STRICT f ±  1
STRICT f x  -*  f x

ABORT -»  ±

Parallelism

The two parallelism constructs represent context free and context sensitive 
parallelism. The context free parallelism operator is P and is defined:

P a h  —» a h

The intention is that both a and b are evaluated in parallel, however note 
that this term rewriting system does not describe this.

The context sensitive parallelism construct is #  which resides in the list 
of directors:

([#  ” d\ab) =  ([d] a b)

Again the intention is that a and b are evaluated in parallel.

The example

Having defined the operation of the machine we can now see it in action. 
The program defined earlier, twice triple 7 can be reduced to normal form 
using the rules introduced above. The complete set of rules is reproduced in 
appendix A.
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m \ ]  i (i n  11); (N  (x  3 ) \) ?)
(AJ (AJ ( x  3)  \) (([/\] 11;  (AJ (X 3) \)) 7)
( ( N  ( x  3)  \) (d/\]  11; (AJ ( x  3)  \)) 7) )
( ( x  3)  (([/\] I i; (AJ (X 3)  \)) 7) )
( (X  3)  (AJ ( M  (X 3)  \) \) 7) )
( (X  3)  ((AJ (x 3)  \) 7) )
((x 3)  ((x 3) 7) )
( ( x  3)  21)
63

3.3.2 Co b we b  in Paragon

The description of COBWEB in the term rewriting system is at too high a 
level to be of immediate use to the designer. Before a design is attempted 
the designer needs to know more about the following:

1. How to select the next redex. This needs to be made explicit. The 
abstract machine cannot afford to look for the leftmost outermost ex-
pression as is implied by the term rewriting system. The next redex to 
be reduced can always be derived from the current one being reduced.

2. How to distribute concurrency. That is how to execute the two arms 
of a P operator or a #  annotation, and how to distribute the work 
throughout the machine.

The designer could then proceed with a design, but a description that ad-
dressed just these issues still leaves the designer with some problems. How is 
the program represented? When has an expression been reduced to normal 
form?

The original COBWEB specification is described in [BHK88] using a no-
tation named “Paragon” . Paragon is an message passing object based term 
rewrite system. It is an experimental language and as such its syntax has not 
yet settled. This thesis is written using the latest version. The specification 
of COBWEB has highlighted some problems in the initial definition of the 
language. Here we provide two extensions to the language to handle variable 
sized left and right hand sides. This section gives a short explanation of 
the language and the original COBWEB specification. The extensions to the 
language are introduced as needed.

A Paragon specification consists of a number of class definitions Each 
class has a number of instance variables, and a set of methods. The driving 
force in Paragon is message passing. A Paragon specification for a method 
consists of a number of rules. A typical rule has the following structure

79



S given m(x) when
Q
-> S' 

then 
C
where
B

Each rule has two sides, the lhs followed by the —> symbol (read “rewrites 
to” ) followed by the rhs. A rule basically says that when objects which 
have state S receive the message m with arguments x , then if the conditions 
specified in the guard Q apply, this object will be rewritten into state S ' , 
and the communications C are generated. A list of bindings of expressions 
to names is provided in B.

The message m carries an optional list of arguments. The arguments can 
be patterns, in which case the rule only matches when the pattern matches 
the incoming message. Q consists of a set of pattern matching equations and 
boolean expressions. The pattern matching equations can match on any of 
the objects named in S or x. A underscore in a pattern matching equation 
is a “don’t care” .

The rhs includes a list of message sending actions. These messages can be 
synchronous or asynchronous denoted by the symbols ! and !! respectively. 
The actions are composed in sequence using the ; operator, or in parallel 
using the || operator.

Each rule can be given a name eg: [o x 4].
Figure 3.3 shows the partial syntax for a Paragon rule.
B introduces a list of bindings of expressions to names. We allow pure 

functions to be defined here, but only if they run in constant space, ie iterative 
or tail recursive and no dynamicism.

Expressions can contain references to s e lf  which indicates the object re-
ceiving the message, or n il which indicates the null object. New objects are 
created using the expression new(classname, initialstate). In addition to the 
rules for messages a class may contain spontaneous rules. These have no 
g iv e n  clause and are thus applied whenever the left hand side matches.

There are two types of object in Paragon: class objects, which are objects 
that can receive messages; and data objects which cannot receive messages, 
but can only be created or matched. These are written in the same way. 
All types are sums of products of types or basic types. These are written 
in the style of Miranda, except that the notation (,)  is used to denote the 
anonymous data constructor when a type consists of just one product.
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(rule)
(lhs)
(message)
(guard)

(rhs)

(tasks)

(outgoing)

—> (lhs) (rhs)
—► (state) [ given (message) ] [ when (guard) ] 
—► (name) [ ( (state) { , (state) }o ) ]
—» (name) =  (state) 

(predicate)
| (guard) A (guard) 

(guard) V (guard)
I ( (guard) )

—» (state) [ then (tasks) ]

—> (name) ! (outgoing) 
(name) !! (outgoing) 
(tasks) || (tasks) 
(tasks) ; (tasks)

| ( (tasks) )

where (bindings) ]

synchronous 
asynchronous 

parallel composition 
sequential composition

-> (name) [ ( (expr) { , (expr) } 0 ) ]

Figure 3.3: A partial BNF for Paragon rules

Packets and Agents

The original specification for COBWEB described two classes in the machine: 
packets and agents. A program in COBWEB is represented by a number 
of packets forming the program graph which is distributed throughout the 
machine. Execution of this program takes place by repeated transformation 
of this graph into a normal form. The class agent represents the objects 
that perform the transformations on the packets. These transformations are 
known as reductions.

Packets have instance variables representing their state. The state of a 
packet is its left and right subgraphs, a list of directors, a flag indicating 
if it is in normal form, a flag indicating if it is currently being reduced by 
an agent, and finally a list of agents that are waiting for this packet to be 
reduced to normal form. The packet class in the Paragon description is 
defined:

class packet (rator.rand.string.m nf,act,list agent)
data rator : :=  packet | basic-value 
data rand packet | basic-value 
data innf N f | Notnf
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d a ta  act : :=  Active | Inactive

where a basic-value can be a built-in operator, or a literal constant.
Agents reduce packets to normal form. As an agent is reducing a packet, 

it can be suspended as it waits for the result of a reduction of another packet, 
typically one or both of its subgraphs. The agent goes to sleep until it receives 
a “wakeup” message from a packet that has been reduced to normal form. 
A packet has two instance variables: the identifier of the packet that it is 
reducing, and a number that indicates the number of “wakeup” messages 
it needs to receive before it can continue. The agent class is defined as 
follows:

class agent (packet,integer)

Packets respond to three messages:

rewrite indicates that the packet is to be rewritten. The arguments 
to this message are the new structure of the packet.

need indicates that the packet is needed by an agent.

fire indicates that the packet is to be evaluated to normal form.

Agents respond to two messages:

reduce indicates that the agent is to reduce the packet which is an 
argument to the message.

wakeup indicates that the agent can resume reducing a packet.

For example, consider the strict basic operator x (multiply). Both arguments 
to x need to be integers. If any are packets, then they need to be fully 
evaluated to integers. In this case the agent sends a need message to the 
packets that have to be evaluated further, and it sleeps until these have been 
reduced to normal form.

This is modelled in Paragon by an agent receiving a reduce message. The 
argument to this message is the packet to be reduced. The Paragon for this 
operator is firstly for the case in which both arguments are integers and then 
for the case in which both are packets.

[o x l]
(_,0) given reduce^) when
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Pi =  (P2 ,n1nil,__1,) A 
p2 =  ( x .m .n i l , - , - , . )  with 
¡sJnteger(m ) A isJnteger(n)
— > self 

then
Pi ! re w rite (m x n ,n il,n il1Nf)

[ox 4]
(_,0) given reduce(pi) when 

Pi =  (p2, P 4 , n i l , A  
P2 =  (x ,p3, nil,
- *  ( P i - 2 )

then
p3 !! need(self) || 
p4 !! need(self)

The first rule rewrites the target packet so that it contains the result of 
multiplying m by n. The agent is no longer needed to reduce this packet, 
and so its state is unchanged.

The second rule changes the state of the agent so that it is suspended 
waiting for the packets p3 and p4 to be reduced to normal form. These 
packets are sent need messages.

Redexes and Directors. The process of finding the next reducible ex-
pression is made explicit in the Paragon description. The Paragon rule is as 
follows:

[ot]
(_,0) given reduce^) when 

P4 =  (P 2 , - ,n i l , A  
P2 =  Notnf,_,_)

-  (Pi.l)
then
P2 !! need(self)

This rule corresponds to looking down the spine of the program graph for a 
redex. The agent receives a message asking it to reduce the packet p\. If the 
director list at this packet is empty, and the left subpacket is not in normal
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form, then the agent sends p2 a need message, and it goes to sleep until it 
receives one wakeup message. This vvakeup message will come when p2 is 
reduced to normal form.

Primitives. In the term rewriting system, we defined several primitives 
which take variable numbers of arguments. As defined in [BHK88] the lan-
guage only allows us to define rules in terms of a constant number of matches 
on the lhs. For example, recall the definition of the selection primitive K-n-i:

K-n-i x0 . . .  xn_i —> x,-

This is can be defined in Paragon, as the following illustrates:

[K-n-i]
(_,0) g ive n  reduce(pn) w h en  

P n  =  ( P n - l  ,Xn_i,ml,_,_) A  

P n - l  =  (p„_21X„-2,nil,_,_) A

Po =  (K-n-f,x0,nil,
-  ( - )

then
pn ! rewrite(x,-,nil,nil,notnf) ; 
s e lf ! !  reduce(pn)

This involves a slight extension to the language in that it must now allow a 
variable number of matches on the lhs. Of course we could have completely 
defined the operation of K-n-i by writing n rules, one for each value of n, 
which would have been tedious and unnecessary.

Data Constructors/Selectors A similar problem arises when we come to 
specify the operation of some of the data constructors/selectors. PACK-n-d is 
treated almost exactly like SEL-n-f above. However the main problem arises 
this time from the rule requiring a variable number of packets on the rhs, 
and is present in the data structure unpacking primitives UNPACK-n, and 
UNPACKi-n.

The solution for the non-strict version is given here, as this is the most 
complicated of the two unpacking primitives.

[UNPACK-n]
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(_,0) given reduce(Pi) when 
Pi =  (P2, e , m l , A 
P2 =  (UNPACK-n,f,nil,_,_,_) A 
n >  2
-  (Pi.O)

then
Pi ! rewriteipn-a.Sn-i.nil.notnf) ;
self!! reduce(Pj) 
where
s j  —  new(packet,(SEL-n-y,e,nil,notnf,inactive,nil)) 
p0 = new(packetl(f,s0,nil,notnf1inactive,nil))
Pj =  new(packet,(pJ_1,Sj,nil,notnf,inactive,nil))

Unfortunately the n =  1 clause does not fit in to the general pattern and 
needs to be stated separately.

[UNPACK-1]
(_,0) g iv e n  reduce(Pi) w h e n  

P i =  (P 2,e,nil,_,_,_) A 
P2 =  ( U N P A C K -U  n i l ,  _,_,_)

-  (Pi.O)
th e n
P i ! rew rite (f,p ,n il,notnf) ; 
s e lf  !! reduce(Pi) 
w h e re
p =  n e w (p a ck e t,(S E L -l-0 ,e , n i l ,  notnf, inactive, n i l ) )

Again, we have to add slightly to the language. In this case, we use the 
where clause to allow us to introduce new packets using a schema for new 
definitions. The variable n is bound to a value when the rule is matched. We 
rewrite Pi to a packet that contains packets sn_i and p„_2. We then provide 
a generic definition for the set of packets pj and Sj. As the definition for pj 
is recursive, we provide the base case definition for po.

B o o le a n s  It is worthwhile looking at the Paragon for the boolean operator 
OR to demonstrate the strictness of the operator.

[ b o o l l ]
(_,0) g iv e n  reduce(Pi) w h e n  

P i =  (P 2.y ,n il ,_,_,_) A
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P2 = (OR,x,n i l , A  
is_packet(x)

-  (Pi.l)
then
x !! need(self)

[°rl]
(_,0) g iv e n  reduce(Pj) w h e n '

Pi =  (P2,y,n i l , A 
P2 =  (O R ,F A L S E ,n il,

-  ( - )
then
Pi ! re w rite (y ,n il,n il,n o tn f) ; 
s e l f ! !  reduce(Pi)

[°rl]
(_,0) g iv e n  reduce(Px) w h e n  

Pi =  (P 2,y ,n il,__ ,_) A 
P2 =  (O R ,T R U E ,n il,

-  ( ->
then
Pi ! re w rite (T R U E ,n il,n il,n f)

There are three rules. The first indicates that the operator is strict in 
its first argument. If it has not been evaluated, then it is sent a need, and 
the agent waits for a response indicating it has finished. The second rule 
applies when the first argument has been evaluated to FALSE. In this case 
the result is the result of the second argument. The agent continues to reduce 
the second argument to normal form. The final rule applies when the first 
argument to OR has been evaluated to TRUE. In this case the result is TRUE 
and no further evaluation needs to be done.

Comparison and Numerical operators The comparison and numerical 
operators are all defined in terms of a generic, as they are all strict in both 
their arguments. See the appendix for details.

Sequencing, Strictness and Termination Of the three operators SEQ, 
STRICT and ABORT, SEQ is the most interesting. It is defined to evaluate 
the first argument, then evaluate and return the second. There is no reason 
why this needs to be done sequentially, as long as the first argument has been 
fully evaluated before the second is returned. The Paragon for this might 
be:
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[SEQ1]
(_,0) g iv e n  reduce(Pi) w h e n  

P i =  (P 2la r g 2 , n i l , A 
P2 =  ( S E Q . a r g l . n i l , A
-  (P..2)

then
a rg l !! need(self) || 
arg2 !! need(self)

[SEQ2]
(_,0) g iv e n  reduce(Px) w h e n  

Pi =  (P 2,arg21n il,__ ,_ ) A 
P2 =  ( S E Q , a r g l , n i l , A 
a rg l =

-  ( - 0)
then
P i ! rew rite (a rg2 ,n il,n il,notn f) ; 
s e l f ! !  reduce(P i);

The first equation applies when argl has not been fully evaluated. We 
can safely spawn the evaluation of arg2 in parallel with that of a rg l. The 
second equation applies when arg l has been fully evaluated to normal form. 
It is only then that we can continue the evaluation of arg2.

STRICT can also evaluate its arguments in parallel. This time however, 
we must wait for the complete evaluation of the second argument before 
returning the result of applying the first argument as a function to the second. 
It can be defined in a similar way to SEQ and is included in appendix B.

ABORT handles exceptions. The graph is rewritten so that the ABORT 
operator propagates all the way to the top level.

[ABORT]
(_,0) g iv e n  reduce(Pi) w h e n  

Pi =  (A B O R T .x , - , - , - , . )  A 
x ^  n i l  
—► s e lf  

th e n
Pi ! re w n te (A B O R T ,n il,n il,n f)
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T h e  In terface

The specification of C O B W E B  given here introduces a new class named in-
terface. This class deals with loading the program graph into the machine 
and starting it running. This is defined in terms of a number of “built-in” 
objects and methods which define the Paragon system interface with the 
outside world.

A Paragon specification has two objects already defined. These are named 
i and o for input and output. The input object that can send messages 
to objects within the system. Any object within the system can send the 
message output to the output object. Input and output are meant to define 
raw communication with the outside world.

The interface class for C O B W E B  is defined in terms of these objects. 
The function of this class is to load packets in, and arrange for them to be 
executed by an agent. When the result is known, then the interface class will 
be responsible for communicating the result to the outside world.

This class might be defined, as follows.

c lass  interface (packet)

(_) g iv e n  run(p)

-  < P )  

th e n  
p !! fire

(p) w h e n
p =  ( - . - . - .n f , , , - )
—» s e lf  

th e n
o !! output(p)

The only instance variable known to the interface is a packet identifier. 
When the interface is given a packet to evaluate, then the interface fires 
the packet. It then waits until the packet has evaluated to normal form, 
whereupon it sends this packet to the outside world.

The system will be started with an instance of the class interface, and 
will be told that the input object o will be able to communicate with this 
instance.

In practice, this class will be more much complicated than this. For 
example it will arrange for errors to be reported, and for the complete result 
to be output if it is a data structure. We explain it here to introduce the 
concept of input and output in a Paragon system.
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3.4 Translating Paragon to hardware
The previous section gave a specification for C O B W E B  in Paragon. This 
section will show how to translate any Paragon specification into a hardware 
design. The resulting general purpose design will be seen to be restrictive 
in several senses, so we suggest a design methodology that will allow us to 
avoid these restrictions.

3.4.1 The Target Description

Before addressing the problem of how to translate Paragon into hardware, 
we need to identify what we are to translate the specification to.

Hardware systems consist of physical circuits connected by a physical 
communications medium. This is the kind of design we wish to produce. 
This requires us to produce two parts to the design, the first is the topology 
of the blocks, and the second is a specification of the operation of those 
blocks.

The topology can be presented as a directed graph, where the nodes are 
the blocks, and the arcs are the connections. The direction of the arc specifies 
the direction of communications. The operation of the blocks can be specified 
in some target language.

As a language for describing hardware, the target language should be a 
hardware description language (HDL) for example ELLA [E1186], or OCCAM 
[MK87] that allows compilation to silicon. Silicon compilation techniques are 
described in [Gaj88].

However Paragon is of course suitable for specifying systems other than 
hardware, for example we might want to describe a simple program running 
on a microprocessor in an embedded system. In this case the target language 
would need to be a program in the machine code of the microprocessor, or a 
program in a high level language that will compile to machine code for that 
microprocessor.

Even if we are specifying hardware with Paragon, we might want to first 
compile the Paragon to a program in a high level language so that we can 
simulate it, and maybe fine-tune some parameters. Given these requirements, 
the target language chosen is a procedural imperative language with some 
message passing primitives. It is restricted in the sense that it must be static, 
that is without dynamic storage management, or non-tail recursion. In this 
respect it is similar to 0CCAM2, but with an algol-like syntax and data 
structures.

A program in this language consists of a set of procedure definitions plus 
a description of the initial state of the system. This describes objects plus 
their connectivity in the same way as the main body of an OCCAM program.
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There are three message passing primitives. Read from a connection, 
write to a connection, and acknowledge that a message has been received. 
Messages are written and composed using the same syntax as in Paragon, 
except that only synchronous message passing is allowed, and that messages 
can be replied to. For example we can write

a := o ! m(x)

meaning send message m with argument list x to object o and assign the 
result to the variable a. In addition, the language has a reply x construct 
which sends the value x back to the caller.

3.4.2 The translation process
The fundamental constructs of Paragon are objects and messages. Objects 
have a state, and in a design this state must be stored somewhere. Objects 
also have methods, and there must be some mechanism for executing these 
methods after a message has been received. A simple first attempt at a hard-
ware solution is to have a block of logic with memory that can store the state 
of the object, and execute the methods. We shall call these object processors. 
If there are a number of static objects in the system, then we can have num-
ber of static object processors in our design, each of which corresponds to 
an object in our Paragon specification. However in any system of reasonable 
complexity, we inevitably need to create new objects dynamically, and as 
we cannot create physical circuits dynamically, we can only use this solution 
when there are only static objects.

Messages can be synchronous or asynchronous. A possible design for a 
message passing medium is a physical synchronous connection joining two 
object processors. However this will only be feasible if all the messages are 
synchronous.

So the simplest Paragon system is one that is both static and synchronous. 
We shall see that it is fairly easy to translate a specification of this type into 
a hardware design. If we can translate a more general specification into 
one that is synchronous and static, then this will provide a route towards a 
general design methodology.

We can proceed by classifying Paragon specifications in increasing order 
of complexity.

1. A system with a fixed set of objects, and synchronous communications 
only.

2. A static system as above but with asynchronous communications as 
well as synchronous.
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3. A dynamic system with synchronous and asynchronous communica-
tions.

First we shall concentrate on producing a specification of the topology of the 
system. Second we shall show how the specification of the operation of the 
blocks is produced.

Before dealing with these systems, we introduce some terminology.
A specification (C , 0 ) is a tuple consisting of a set of classes, and a set 

of objects. The set of objects is known as the configuration, and comprises 
the objects that the system will start out with. A given class c is defined in 
terms of its structure, and its methods. We denote the set of all instances of 
a class c by 1(c) .

There are two types of communication in Paragon. An object o  that 
communicates synchronously with a set of objects 0  is said to be synchron ou s  

in 0 .  This is written S (o )  = 0 .  Similarly an object o that communicates 
asynchronously with a set of objects 0  is said to be asynchronous in 0 ,  and 
is written A (o )  =  0 .  Finally, an object o that can create objects which 
are instances of the classes in C is said to be dynam ic in C , and is denoted 
D ( o ) =  C. We can define S  and A  over classes using the same criteria, but 
note that if a class C is synchronous or asynchronous in a set of classes C ' , 
that does not imply that an object of class C , say o, is necessarily synchronous 
in all objects, or indeed any objects of class C'. For example, an object may 
be synchronous or asynchronous in another object depending on the value of 
one its instance variables, or the value of one of the messages it receives. We 
can potentially analyse our specification and find that these circumstances 
can never arise. An object or a class can only be dynamic in a class however, 
as it is meaningless to assert that an object is dynamic in another object.

A  m essage  is a data construction appearing in a g iv e n  clause. The mes-
sage is identified by the constructor appearing outermost in this construction. 
Such constructors must appear only there or as the object of the “ !” and 
“ !!” message transmission operators. The signature of a class is the set of 
messages to which it may respond— that is, the set of constructors appearing 
in the class’s rules’ g iv e n  clauses.

A message is total if, for the class to which it applies, it can always 
be consumed. That is, the rules admitting the message must cover all the 
possible values of the target object’s class. A message is partial (i.e. not total) 
if pattern matching after message receipt can fail, requiring the message to 
be retained for re-matching whenever the target object’s state changes.

3.4.3 A  static synchronous system
The simple system is the static synchronous system, and as such is fairly 
easy to translate into a hardware design.
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Consider a specification (C, 0 )  which is static and synchronous with a 
configuration 0 . As the total number of objects is constant, we can create an 
object processor for each object in 0 . This might seem reminiscent of a CSP 
description, but there is one crucial difference: in Paragon, the address of an 
object can be communicated in a message, or indeed stored as an instance 
variable. So the set of other objects that a given object can communicate 
with is given by the union of all the domains of all the object variables known 
to that object.

For example consider a Paragon system (C, O) with four objects Oq . . .  O3, 
involving three classes Co- - -C2 with the following rules: Oo is an instance of 
Co, 0\ is an instance of C\ and both O 2 and O3  are instances of C2. The 
classes have the following partial specification. The structures of the packets 
have been omitted for clarity.

class Co ::= ()
() g iv e n  m (x)

-  0
then
Ox ! z (x )

class C\ ()
() g iv e n  n(c,x)

-  0
then
c ! y (x )

class C2 ::=  ()
() g iv e n  o (x )

-  0
then
0 \  ! n (se lf,x )

The first object Oo communicates only simple messages, and only ever to 
0\. So Oo needs to be connected only to 0\, and only in one direction, as no 
other object can send a message to Oo- 0 \ however can receive a message that 
contains an object address c. The objects that send this message to 0\ are 
O 2 and O3 , and we can see that the only addresses that they communicate are 
the addresses of themselves. 0 \ must therefore be connected bidirectionally 
to both O 2 and O3 Figure 3.4 shows the topology of this system.

In any system there may be some hidden communication between objects. 
For example, consider the following Paragon specification.
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Figure 3.4: The topology of objects Oq to O3

class a (integer,b)
class b ::=  (in teger,in teger)

(B,c) given  m(x) 
w hen 
c =  (0,0)
-  (B + l,c )

then  
c ! n(x)

mis a message sent to objects of class a. This class contains an identifier 
for objects of class b. We attempt to pattern match against the structure 
of the object that this identifies. This requires a communication with the 
object. As we shall see in section 3.4.6 these communications can be made 
explicit.

Now the general case is when every object can potentially communicate to 
every other object in the system. This implies that they must be all connected 
directly. The obvious way of doing this is in hardware is by connecting all 
the object processors together using a synchronous interconnection network 
such as a synchronous bus, though we then lose some concurrency as object 
processors contend for its use. We can now see that it is a fairly easy matter 
to design a hardware system that will implement a Paragon specification that 
is static and synchronous.

3.4.4 A  static asynchronous system

The second class of Paragon specifications has static objects, but there are 
asynchronous communications as well as synchronous. Given that we now 
know how to design a hardware system for the static synchronous system,
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then if we can transform our specification into one where all the communica-
tions are synchronous, then we can design a hardware system for this class 
of specifications as well. In practice, this is easy. We can do this by creating 
a new object called the task pool. The task pool is written T(C)  where C is 
a set of classes. T(C)  is a task pool that can handle messages from all the 
classes in C. The function of the task pool object is to buffer asynchronous 
communications. We can then transform all the asynchronous communica-
tions to ones that communicate to the task pool. The task pool is made up 
of a list of tasks, where a task is defined as a destination, a message and a 
list of arguments. The task pool may be defined as follows.

class task-pool =  list task
data task =  (destination,message,args)

(M) given add(d,m,x)
- »  (M+-}-(d,m,x))

((d,m,x)::M)
-  (M) 

then  
d ! m(x)

Now all asynchronous communications, for example 

a !! m(x)

can translated into 

t ! add(a,m ,x)

where t is an instance of task-pool. We need an instance of task-pool for 
every object that is asynchronous in any other object. Each instance of task- 
pool associated with an object o must be shared with (ie connected to) every 
object in which o is asynchronous.

Although the task pool is specified as being a list of tasks, for the system 
to remain static, this list must have an upper bound. This inevitably con-
strains the specification. As the methods for the task pool are synchronous, 
the whole system is now static and synchronous, so we can design a hardware 
system using the same technique as before. For example, consider a system 
consisting of four objects Oq . .. O3 with the following properties:
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S(0o) =  0
A(O0) =  {Or}
s(0 i) = {o3}
A (O x) =  { 0 2,0 3}
S(O2,O0) =  0
A ( 0 2,0 3) =  {Or}

This system will have a topology as shown in 3.5 Notice that the functions

Figure 3.5: The topology of a system of four objects.

S and A dictate the direction of message flow in the design.
In general, where all objects are both synchronous and asynchronous in 

all others, we can design a system as follows. If we have a system (C, O)  with 
n objects in O numbered from 0 to n — 1 , then we can connect the objects, 
and the task pool up to a bus as in figure 3.6.

Synchronous Interconnection Network

Figure 3.6: A general topology for a system from a static synchronous & 
asynchronous Paragon specification
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3.4.5 A  Dynamic system

We can now turn our attention to the problem of designing a system that 
is dynamic. The immediate problem is that we cannot simply create new 
physical object processors in hardware to model the new objects in our spec-
ification. What we need to do is to transform the system somehow to make 
it static. One solution is to say that all classes that are known to be dynamic 
will use a heap to store instances of the class. Each heap will be specific to 
its class. Individual objects will then be identified by their place in the heap. 
New objects will be created by allocating space from the heap. If we have in 
our configuration a class c that is dynamic, then we must replace this class 
with two new objects in our configuration: H (c) which represents the heap 
for objects of class c, and P ( c ) known as the class processor {or c which will 
implement in hardware the methods for class c.

All objects in our configuration that are dynamic in c must now be con-
nected synchronously to H (c), and all objects that are synchronous or asyn-
chronous in c must now be connected in that manner to P(c).

The heap can be described as a static Paragon object, and will receive 
messages such as new, to allocate space to objects, free to release it again, 
and read and write to provide access. As the heap will be bounded, there 
is a need to reclaim space so the heap must be garbage collected. We can 
define the operation of the heap in Paragon, but it is better to define in the 
target language, as certain messages need to be replied to.

The class processor P(c) is a static object to which all messages sent to 
objects of class c are delivered. Objects of class c will now be identified by 
their address in H ( c ) ,  so the operation of P ( c ) when it receives a message 
will be to read the body of the object from H ( c ) ,  execute the method, and 
write the object back if it has been rewritten.

The main issue that arises from transforming a configuration that is dy-
namic into one that is static but uses a heap is the loss of concurrency among 
objects of the same class as they are now multiplexed in time over P(c). How-
ever there is no reason why there should not be many instances of P (c )  each 
with access to H ( c ) .  This is a choice the designer must make based on knowl-
edge of the critical components of the system. Analysis of a specification can 
also tell us if we can create multiple instances of H { c ) .  If two object proces-
sors o and o' are dynamic in a class c, we can potentially find out from static 
analysis of the specification if H (c )  and P (c )  need to be shared physically 
between the o and o'. For example if o and o' create instances of class c for 
their personal use, and never communicate them directly or indirectly in a 
message, then we know we can create an instance of H (c )  and P (c )  for each 
object o and o'.

The most general system is one in which all the classes are dynamic in 
all others and themselves. The topology of a completely general system is
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shown in 3.7.

Synchronous Interconnection Network

Figure 3.7: The topology of a completely general dynamic system

Now the task-pool T  is itself an object processor, and the task-pool class 
can also be seen as a dynamic class. Therefore we can create a heap H ( T ) 
and a processor P ( T ) for the set of task pools in the same way as we did for 
the other dynamic classes.

We now have a clear separation of functions among object processors. For 
each class we have a processor, and a heap. Although the heap is an object 
processor itself, the methods for all the heaps are essentially the same, and 
we can therefore unify all the heaps into one greater heap H(C,T) .

We can make a further generalisation by observing that we can create a 
unified class processor P ( C , T ) that will execute methods for all the classes, 
including the task pool. If we can express the methods for all these classes 
as a stored program, then we can express all the class processors as a single 
processor which takes its instructions from a heap. A processor of this type 
would be written P (P (C , T)),  and its heap H(P(C,T) ) .  This method heap 
can then be merged with the object heap, and what we are left with is a 
general processor P(P(C,T) ) ,  plus some memory H( P( C, T) ,C ,T ) .

It is interesting to derive what looks suspiciously like a conventional mul-
titasking von Neumann uniprocessor from a general purpose Paragon speci-
fication. However, we do not always need to go down this route to a design, 
and can use analytical techniques on individual specifications to derive more 
concurrent designs.

3.4.6 The design of object processors
As defined above, object processors are blocks of logic. So far, we have con-
centrated. on producing a static synchronous Paragon specification from a 
dynamic general one. This gives us a fixed topology for the system. Here we
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will discuss how we might translate the methods for the classes into specifi-
cations for the operation of the object processors.

One way of doing this is to transform all the original Paragon methods 
into ones that use the heap and the task pool, and then translate these 
methods into our target language. This proves to be fairly awkward because 
Paragon has no mechanism for a “call-and-reply” type of construct, which 
is necessary when performing operations such as requesting space from the 
heap. So instead of transforming our specification into one that is static and 
synchronous, we can translate the methods directly into a procedure in our 
target language.

We start by giving a transformation scheme for a static synchronous sys-
tem, and proceed by saying how we would add to it to handle asynchronous 
communications and dynamic classes.

We can describe a general rule TZj as follows:

Sj given  m(x) 
w hen  G j

-  3
then  C j  

w here B j

A rule 7Zj, 0 <  j  < k has a list of guards Gj that operate on the 
arguments passed by the message, and the variables bound by - S j .  If these 
evaluate to true, then the object which matches S j  is rewritten to Sj and the 
communications C j  are generated. A list of bindings B j  to names is provided.

In addition there may be a number of spontaneous rules for each class. If 
there are l of these rules, they take the following form for 0 <  j  < l

Tj w hen Gj

-  V
then  C ' j  

w here B ' j

We can produce a specification for an object processor given these rules. This 
will listen on its inputs for messages, read them, and execute the methods 
for these messages. It will also take care of executing the spontaneous rules. 
This is described as an infinitely looping procedure defined in terms of its 
connections.
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def o b je ct-p ro ce sso r(co n n e ctio n s) =  

w h ile  true  do

if  there is a message pending then

if the spontaneous rule applies to  the ta rget then 

apply the spontaneous rule

fi;
execute the m ethod fo r tha t message; 

if  the m ethod has succeeded then acknow ledge sender fi 

else a tte m pt to  apply the spontaneous rule to  the ta rget 

fi

od

enddef

A message is pending if the sender has presented some data on a con-
nection. The message remains pending until it has been acknowledged by 
the receiver. As there are a number of connections, the object processor will 
arbitrate among the connections by checking whether a message is pending 
on each one in turn.

Before we can define a translation function we need to address a problem 
that arises with these spontaneous rules. Imagine a “stopwatch” class with 
the following definition.

c lass  stopwatch : :=  (in te g e r,s ta tu s)

(O.Off)
(n.On)
(n.Off)

ty p e status :: =  On | Off

(n,on) -> (n-fl.On)
<-. -) g iven reset —>
(n--) given start —»

off) given stop —>
<n,-) given read(c)

-► (n--)
then
c !! reply(n)

This defines an object that behaves like a stopwatch and can be reset, 
started, stopped and read by a user. This definition has one spontaneous 
rule. We expect this rule to be applied spontaneously. If the class is dynamic 
then we are storing objects of this class in a heap. One option is for the class 
processor to cycle through every object in the heap and attempt to apply this 
rewrite rule to each object in turn. This could be done when the processor 
is idle waiting for a message. However if we are using the object processor 
heavily, we do not want to lock out the spontaneous rewrite indefinitely.
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A partial solution is to transform the rule so that the rewrite takes place 
when a special message has been received. For example the new transformed 
definition would read:

c lass  stopwatch (in teger,sta tus) 
t y p e  status on | off

(n,on) g iv e n  spontaneous 
->  (n + l,o n )  

th e n
s e lf ! !  spontaneous

g iv e n  reset 
->  (0,ofF)

(n,_) g iv e n  start 
->  (n.on) 

th e n
s e lf  !! spontaneous

(n,ofF) g iv e n  stop
-»(n.oflF)

(n,_) g iv e n  read(c)

( " - )
th e n
c !! reply(n) || 
s e lf ! !  spontaneous

That is, every time an object is rewritten into a form where the sponta-
neous rewrite might apply, we send the spontaneous message to that object. 
When an object is created it will be sent this message.

Unfortunately, one of these rules might apply to an object even if it has 
not been rewritten itself. Consider for example the following example for a 
dynamic class:

class A  ::=  (a,a) 
type a : :=  in te g e r  | A

(x ,y ) ^ w h e n
x =  (0,0)
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(y.y)

The spontaneous rewrite applies to an object, which contains other object 
identifiers. Now the rewrite only applies when one of the sub objects has a 
certain structure, the top level object may never be rewritten, yet the rewrite 
might apply.

There are two alternative solutions to the problem: We can get the class 
processor to cycle through all the objects in the heap when it is idling, or 
we can send every object an spontaneous message every time they receive 
any message not just when they are rewritten into a form where the rewrite 
applies. These amount to the same thing, but the latter is the cleaner of the 
two, and for now this is the solution we will adopt.

Our example will thus need to be transformed into

c lass  stopwatch : :=  (in te g e r,s ta tu s ) 
t y p e  status : :=  on | off

(n,on) g iv e n  spontaneous 
->• (n + l,o n )  

th e n
s e lf  !! spontaneous

g iv e n  reset 
->  (O.off) 

th e n
s e lf  !! spontaneous

(n,_) g iv e n  start 

- »  (n.on) 
th e n
s e lf  !! spontaneous

(n.off) g iv e n  stop 
— > (n.oflf) 

th e n
s e lf  !! spontaneous

(n,_) g iv e n  read(c)
->  (n,_) 

th e n  x 
c !! reply(n) ||
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s e l f !! spontaneous

We can sketch a set of translation functions that will translate the set 
of rules into a procedure in an imperative language that will execute the 
method for that message.

TM[[Paragon method]] which maps a complete set of Paragon rules for a 
given message onto a procedure in our target language.

TO [[Object]] will map an object on the lhs of a Paragon rule onto a set of 
statements that will both test if the current object matches and bind 
names in the pattern match to values (if necessary). If the match is 
successful, a flag success is set.

T B [[Where binding]] maps a set of Paragon where bindings onto a set of 
similar binding statements for variables in the target language.

TC[[Communication]] will map the set of communications onto a list of 
procedure calls that carry out these communications.

T G [[Guard]] will map the set of Paragon guards and required where bind-
ings onto a logical expression in the imperative language. These guards 
will operate not only on the variables bound by the message, but also 
on the variables bound by TO, the required subset of those bound by 
TB and self.

TS [[Object]] will map an object onto an expression in the target language 
representing the structure of that object.

The body of each method is defined as a procedure using an informal 
pseudocode. For example TM[[K]] is defined in figure 3.8. The procedure 
has the same name as the message being received and is defined in terms 
of self which indicates the object receiving the message. We can refine and 
optimise this procedure using standard techniques such as removing common 
subexpressions, and omitting statements that can never be reached, such as 
the FAIL which is not needed if the method is total.

Another issue with the specification is that all rules must be mutually 
exclusive. This is a side effect of there being no matching order. For the 
sake of proving the correctness of the specification, this is a bonus, but as a 
specification for a physical machine that might be implemented, this might be 
construed as a slight deficiency. The onus of specifying the order of matching 
is left to the designer. An arbitrary order is not going to be the most efficient. 
The designer must therefore inspect the rules and give to them an order which 
will be most efficient.

We can now take a further look at the definition of the translation func-
tions.
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def m (se lf, x 0, . . . .  x ^ j )  =

T O M ;
if  success and T G [ [ ? o ] ]  ( x o , . . .  ,x n_ i ,  se lf) 

then T B p 0]];
self :=  T S [ [ S f t ] ;

T C [ [C o ]J
else T O P , ] ] ;

if  success and T G [ p ] ]  ( x 0 l. . .  , x „ _ i ,  se lf) 

then . . .

else T O [ [ c > j t _ i ] ] ;

if  success A T G p j t _ 1] ] (x 0, . . . , x n - i ,  se lf)
then T B [ [ B fc_ j ] ] ;

else

self :=  T S P j U J J ;  
T C  [[C fc -i]]

fi
F A IL

fi

fi

enddef

Figure 3.8: Translation function TM[[7lj]

T C  The translation of the communications is fairly easy. If the communica-
tion is synchronous and the target is a static object, then we can simply write 
the communication as a synchronous procedure call. As communications are 
composed in the same way as in Paragon, we can have:

TC[[a ! m(x)]] =  a ! m(x)
TC[[x||y]] = TC[[x]] || TC[[y))

when a is a static object.
If it is asynchronous, we need to express the communication in terms of 

the task pool for that object. That is:

TC[[a !! m(x)]] =  T ! add(a,m,x)

when a is a static object, and where T is the task pool that has been assigned 
to objects of the class that a belongs to.

If the target is in a dynamic class then we need to send the communication 
to the class processor.
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i TC[[a ! m(x)]] =  P ! m(a,x)

when a is an object in a dynamic class, and where P is the class processor 
for that class.

The final case is when the target is in a dynamic class and the commu-
nication is asynchronous. In this case we must send the message to the task 
pool for that class.

TC[[a !! m (x )]]  =  T (P )  ! add(P,m,(a,x)) 

that is, the target is the task pool for the class processor for a.

T B . The binding function is the easiest to define. Given that we are using 
an imperative language, we can say that we have a number of variables to 
hold the values of the bindings. However, if the rhs of the binding is a new 
expression then this requires that we communicate with the heap associated 
with the class that is being allocated. This will take the form of a synchronous 
communication of the message new to the appropriate heap, and a wait until 
it returns.

TO . This function is fairly difficult to define, as it needs to do three things. 
It needs to test if the object on the rhs matches, and if so, it needs to bind 
some values to names, and set a flag success if the match was successful. This 
can be done in two stages —  first check if the object matches the structure, 
and then bind the names. This part of the procedure would benefit from 
optimisation.

T G . The translation of the guards is also fairly difficult. The function 
generated can be thought of as delivering true or false, and having the side 
effect of binding some values to names. Techniques used for compiling pattern 
matches for functional languages [Pey87] may be used here.

TS. This function simply returns an expression representing the structure 
of its argument, and as such is fairly easy to define.

3.4.7 A general purpose methodology
The sections above suggest a general purpose methodology for translating a 
specification in Paragon into a hardware design. This consists of the following 
phases

1. Write down the system equations. That is for each object and class say 
what objects or classes it is synchronous, asynchronous or dynamic in.
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2 . ; Remove all dynamic classes by creating heaps and class processors for 
these classes. All classes and objects that were dynamic in these classes 
now become synchronous or asynchronous in these new objects depend-
ing on an analysis of the methods. Rewrite the system equations.

3. Remove all asynchronous objects by creating task pools. All objects 
that were asynchronous in other objects now become synchronous in 
the task pool allocated to those objects. The system equations should 
now be in terms of the synchronous function S only. This completely 
defines the minimum topology for the hardware design.

4. For each static object create an object processor, and specify the oper-
ation of each object by applying TR to each method.

Backtracking will possibly be necessary at any of these stages. For example 
if any of the block definitions prove too complex, then we might want to 
simplify some of the earlier rules.

This provides an algorithmic route from a specification to a design. In 
the next section we shall see that we can derive some heuristics in order to 
tune our design more closely to requirements not made explicit.

3.5 Design of COBWEB
In this section we shall apply our design methodology to the specification of 
C O B W E B .  We shall see that the specification as it stands is too complicated 
to make an efficient machine, so we shall return to the specification to make 
some amendments.

3.5.1 Design of the Co b we b  class topology
There are three classes in the specification of C O B W E B :  Agent ( . 4 ) ,  Packet 
(V),  and Interface (T). The specification is ({.4 , V , l ] ,  {¿ ,o }). By analysing 
these classes by hand we come up with the following equations.

S(A)  =  { V }  A(A)  =  { A , 9 )  D(A)  =  { A , V }
S(V)  = 0 A(V)  =  M) D(V)  = { A }
S ( l )  =  M  A (l )  = { V )  D ( l )  =  { V )

Following the methodology we remove dynamic classes by creating heaps, 
and class processors. The dynamic classes are V  and A.  For A  we need 
H ( A ) and P(A) ,  for V  we need H(V)  and P(V) .  We shall merge the heaps 
into one H(V,  A).  ^

Our set of objects becomes
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{ H ( A , V ) ,  P(P) ,  1, 0 }

and the new set of system equations is

S(P(A))  
A(P(A) )  
S(P(V))  
A(P(V) )  
S( H( A, V) )  =  
A ( H ( A , P ) )  =
m
A(i)

{ H ( A , V ) ) 
{ H ( A , V ) , P ( V ) }  
W A , p )}
{ H ( A , V ) , P ( A )} 
{ P ( A ) , P ( V ) }  
{ P ( A ) , P { V ) }  
{ o ,H (V ) )
m

To deal with the asynchronous message passing we need to create a task 
pool. This gives us the new object T(A,  V , 2 ) ,  and the system equations now 
read

S(P(A) )  
S ( P ( V )) 
S( H( A, V) )  
S ( T ( A , V , I ) )  
S ( l )
S(i)

{ H ( A , V ) , P ( V ) T ( A , V , 1 ) } 
{ H ( A , V ) , P ( A ) , T ( A , V , X ) }  
{ P ( A ) , P ( V ) , T ( A , V , 1 ) }  
{ P ( A ) , P ( P ) , P ( I ) }
{ o , H ( V , A ) , T ( A , V , I ) }  
{ X , T ( A , V , 1 ) }

This defines the minimum necessary topology for C o b w e b . We can imple-
ment this topology using a bus as in figure 3.9. This introduces slightly 
more generality than specified. For example i can now communicate with 
H ( V , A ) ,  but this does no harm.

Figure 3.9: The topology of class processors for COBWEB.
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3.5.2 Methods for the Object Processors

Now let us attempt to produce methods for the object processors. The object 
processors are:

P( A)
P(V)  
HIV,  A)  
T ( 1 , V , A )

The processor for the agent class.
The processor for the packet class.
The heap for packets and agents.
The task pool for the interface, packets, 
and agents.
The input from the outside world of 
class I .

The following procedures have been designed by applying T M  informally. 
As such each procedure has been refined quite substantially from the original 
output from the T M  function. TM[[reu;n7e]] is shown to illustrate the result 
of simply applying the function blindly.

The interface

The interface has a structure that consists of one instance variable. This is 
an identifier of a packet, and as one of the rules for the interface consists of 
looking at the structure of this packet, then we need to look at the heap.

stru ct interface =  

packet 

endstruct

The class processor is defined as follows:

def In te rfa ce (se lf) =

if  message =  ru n (p )  then 

self :=  p;

T ( I , P ,A ) ! a d d (fire ,p ) 

else if  message =  spontaneous then

n f :=  H (P ,A )  ! re a d (p a ck e t.n f); 
if  n f then

o ! o u tp u t(p )  

fi 
fi

T ( I ,P ,A )  ! add (se lf,spontaneous)

enddef
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The Packet processor

In this definition, the parameter self refers to the state of the processor. The 
parameter a refers to the heap identifier for the object that is receiving the 
message. The packet processor itself has no state — all the packet state is 
held in the heap. We pass the packet identifier as a parameter to the auxiliary 
procedures. These will refer to this as self to indicate we are working with 
the state of a packet, as opposed to the state of the processor.

def P a cket-p rocessor(se lf,a ) =

if  message =  re w rite (o p ,a rg ,a n n ,fo rm ) then 

p a ck e t-re w rite (a ,o p ,a rg ,a n n ,fo rm ); 

else if  message =  need(agent) then 
packet-need (a ,ag ent) 

else if  message =  fire then 
p ack e t-fire (a )

fi

enddef

Rewrite is a procedure that can benefit substantially from refinement. 
TR[[reu?n7e]] will produce the following procedure. This is shown in a struc-
tured english form rather than as a syntactically correct program.

def p a c k e t-re w rite (se lf,o p ,a rg ,a n n ,fo rm ) =  

if  (ann  =  n o tn f) then

H (P ,A )  ! w rite (se lf,(o p ,a rg ,a n n ,n o tn f,

se lf.activ ity, se lfagentlis t)) 

else if  (a n n  =  n f )  then

H (P ,A )  ! w rite (se lf,(o p ,a rg ,a n n ,n f,in a c tive , 

se lf.a g e n tlis t));

wakeup every agent in self.agentlist 

else E R R O R  
fi

enddef

This can be refined into the following procedure.
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def p a ck e t-re w rite (se lf,o p ,a rg ,a n n ,fo rm ) =  

H ( I ,P ,A )  ! w r ite (s e lf .o p ,o p );

H ( I ,P ,A )  ! w rite (se lf .a rg ,a rg );

H ( I ,P ,A )  ! w rite (se lf.a n n ,a n n );

H ( I ,P ,A )  ! w rite (se lf .n f,fo rm ); 

if  fo rm  =  n f then

a :=  H ( I ,P ,A )  ! read(se lf.agentlist) 

w hile al ^  nil do

a :=  H (P ,A )  ! re a d (h d (a l)) ; 

T ( I ,P ,A )  ! add(a .w akeup); 

al :=  t l(a l)

fi
enddef

Need is defined as follows. As fire has a similar method, we do not it here.

def packet-need(self,agent) =
packet := H(P,A) ! read(self); 
if packet is active then

append(packet.agentlist,agent) 
else if packet is in nf then

T(I,P,A) ! add(agent,wakeup)
else

append(packet.agentlist,agent); 
new-agent := H(I,P,A) ! new(Agent);
T(I,P,A) ! add(new-agent,reduce,self)

fi;
H(I,P,A) ! write(self.packet)

enddef

The Agent processor

Spontaneous rewrites As explained in section 3.4.6 there is a problem 
with spontaneous rewrites. We described a solution for the general case, 
but with the C O B W E B  specification we find that there is an easier solution. 
The two rules of interest are [oul] and [ou2]. The presence of these rules 
means that we need to make a check continuously to see if the conditions for 
applying them exist as in section 3.4.6. This might seem a large overhead, 
but in practice we narrow down the number of checks by observing that we 
only need to apply these rules when we need a particular section of the graph. 
Of course there is no point checking if a spontaneous rewrite might apply if
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that part of the graph is no longer going to be used, so the check is made 
only when it is known that the packet is known to be needed for evaluation.

The top level is defined as follows:

def A g e n t-p ro c e sso r(se lf) =

if  message =  wakeup then 

a gent-w akeup(se lf) 

else if  message =  re d u ce (p ) then 

agent-red uce (se lf.p ) 

else E R R O R  

fi

enddef

Wakeup can be defined easily.

def agent-w ak eup(se lf)

agent :=  H (P ,A )  ! re ad (se lf); 
if  agent.count >  2 then

agent.count :=  a gent.count -  1

else

T ( I ,P ,A )  ! add(self, reduce, se lf.packet)

fi;
H (P ,A )  ! w rite (se lf,a g e n t)

enddef

Reduce. Defining the procedure for reduce is more difficult. The first 
attempt at producing methods for this message runs into some difficulty. 
This is because some of the rules are defined in terms of a variable number 
of packets, ie some of the operators have a variable reach. This is a problem 
because it implies that we never know an upper bound on how far to look 
down the spine of the graph.

We need to backtrack into our specification somehow in order to simplify 
things so that this situation does not occur. The design can proceed by 
transforming some of the high level rules in the paragon specification into 
simpler rules. This will yield a set of rules that will be closer to how the 
machine will be implemented. There is a need to show that the semantics of 
the original rule is preserved.

Reducing arities

It is the set of rules that are defined in terms of a variable number of packets 
on the lhs that are particularly difficult to implement, so the first design
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decision we make is to specify the machine so that it never needs to look 
at more than two packets in any one step before applying a rule. That is 
we make all operators short reach. This implies that all the primitives are 
defined as having an arity less than or equal to two.

For example, the select K-n-i primitive can be defined as an arity two 
primitive as follows using the TRS:

K-1-0 a —» a
K-n-0 a x  —* K-(n—1)-0 a
K-n-i a x —► K-(n—l)- ( i—1 ) x

It is a simple matter to prove this is equivalent to the original specification 
for K.

The new Paragon specification for these is shown in appendix section B.2. 
Note that these transformations do not change any of the system equations 
we derived earlier, so we do not have to backtrack our design all the way to 
the beginning.

The same problem exists with several of the primitives. IF takes three 
arguments. The rule can be rewritten as follows in terms of K-n-i:

IF ±  a b —► _L 
IF TRUE a b - »  K-2-0 a b
IF FALSE a b —> K-2-1 a b

In addition, as the above forms of K-n-i will be frequently used, we can 
provide two specialised rules which are optimised for these forms:

K-2-1 a b -> b 
K-2-0 a b —> a

The data constructor/selector primitives PACK and CASE in their general 
forms take a variable number of arguments. Recall the definition of PACK

PACK-ra d -*  PACK-n-d
PACK-n-d x0 . . .  xn_i —► (d|x0, . . .  ,x„_i)

We can transform PACK into an arity two primitive by introducing the 
new primitive STRUCT-n-z. The new rules for PACK are:

PACK-n d 
PACK-n-d a
STRUCT-n-(n—1) (d|x0,. . .  x„_i) a 
STRUCT-n-i (d|x) a

PACK-n-d 
STRUCT-n-0 (d|a)
(d|xo, . . .  ,xn_i, a) 
STRUCT-n-(z+l) (d|x,... ,xn, a)
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STRUCT-n-i is a primitive operator that takes two arguments. The first 
is a structure type with a tag and a body. The second argument is an element 
to be inserted into the structure. STRUCT-n-f is indexed with n and i where 
n represents the number of elements expected in the structure, i represents 
the number of elements that the structure so far contains. If n =  i then the 
structure is full. Again it is a simple matter to prove that this is equivalent 
to the original definition.

Recall the definition of CASE:

CASE-r eo . . .  er_i (d|x) —> ej

For C o b w e b  we need to use an intermediate, DCASE-r.

CASE-r a —> DCASE-r (_|a)
DCASE-0 (_|x) (d\y) —> Xd
DCASE-n (_|x0r .. ,xjt) a —> DCASE-(n— 1 ) (_|x0, . .. ,Xk,a)

That is, CASE-r uses DCASE-n to package up its r arguments in a struc-
ture. When all have been packaged, DCASE-0 indexes into this structure 
using the tag from its second argument which will also be a structure. The 
tag of the first structure is unused.

Importantly, we observe that the transformation on the methods for the 
reduce method does not invalidate any of the procedures that we have already 
defined. We can now continue with a definition for the reduce procedure.

Reduce As this is by far the most complicated of the procedures, figure 
3.10 is a structured description of the operation of the procedure. The agent 
operates on a packet. The square brackets enclose the Paragon rule from the 
transformed specification that may apply. This code references additional 
procedures, for example execute-basic-operator which will include the methods 
for monadic operators and rewriting to normal form.

112



def a g e n t-red u ce (se lf,p a ck et) =

[o l]; [o u l] ;  [ou2]; 

if  annota tion  starts w ith  # then 

[# ]
else case p acket.ra to r o f 

Y  : [o Y ]

O P E R A T O R :

execute basic operator 

P R IM IT IV E :

execute p rim itive  

C O N S T A N T :

[onf]

P A C K E T :

[o u l] ;  [on f]; 

if  not in n f then 

[ot]
else

if there are d irectors then 

[directors]

else

[dyop] o r [2ary prim itives] 

fi 

fi

o therw ise: error 

endcase 

fi

enddef

Figure 3.10: The pseudocode for the method re d u ce
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3.6 Results of Implementation
A working simulation of the COBWEB abstract machine based on the design 
of section 3.5 has been developed. This has enabled us to validate that the 
design works, and predict the performance of a single processor C o b w e b . 
This section reports some results of running small programs on the simulator. 

For example, consider the following small program in Miranda:

f x y = (x * y) -  (x + y)

? f 10 20

This compiles into the following director code:

f: [#AA] f_2 f_5
f_2: [#\\] l-NT- f_3
f_3: [#/\] f.4 1
f_4: [#\] . INT* 1
f_5: [#/\] f_6 1
f_6: [#\] INT+ 1
MAIN: [] MAIN22 20
MAIN.2: [] P MAIN-3
MAIN-3: [] MAIN-4 10
MAIN.4: 
MAIN ?

[] P f

When we run this on our machine, forty-eight Paragon rules from the 
specification of appendix B.2 are applied to evaluate the expression. Figure 
3.11 shows a graph to indicate the relative frequencies of rules applied, and 
the number of the step at which each was applied.

In addition, we can trace the number of reducible expressions as the 
program runs. Figure 3.12 is a diagram of this activity. The horizontal axis 
represents time in terms of reductions performed, and the vertical represents 
the total number of reducible expressions in the task pool at that time.

Of course the trace is simple for this program, and the number of redexes 
never exceeds two. The number of redexes increases when a fire or need 
message is sent to a packet. Note that this happens when the #  annotation 
is executed at steps five and sixteen; and when a strict basic operator is 
executed at step twenty-three. The task pool shrinks when an packet that 
has been the target of a fire reaches normal form.

The standard functional programming benchmark is nfib. In Miranda 
this is defined as follows
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[ # ] [5,6,15,16,36,37]
[d y o p l] [44,45,48]
[d yop 4] [23]

[ o / l ] [26,27]

[oP] [1.3]
[°\ 1 ] [19,21]

[o\2] [30,31,40,41]
[oAl] [9,11]
[onf] [7 ,8 ,10,17,18,20,22 ,28,29 ,38,39 ,42,43]
[ot] [2 ,4 ,12,13,14,24,25,32,33,34,35]
[o u l] [47]
[ou2] [46]

Figure 3.11: Relative frequencies of rules applied to the graph

Figure 3.12: A trace of reducible expressions

nfib n =  1, n <  2

=  1 +  (n fib  ( n — 1 ))  +  (n fib  ( n — 2 )) ,  otherw ise

The special property of nfib is that it delivers the number of function 
instantiations it has evaluated in calculating the result. In addition to the 
code for the function, is an application of the function to an argument.

For example the execution of nfib  to the argument 4 has a rule frequency 
table as shown in figure 3.13 . The execution profile for this program is 
shown in figure 3.14 .
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#
IFO
IF1

P A C K -n -i
SE L -n -i
U N P A C K -n
d y o p l

dyop2
dyo p 3
dyo p 4
o / l

0 / 2
oY
o \ l

° \2
O A 1
o n f

ot

o u l
ou2

:[2 0 ,21 ,30 ,41 ,44 ,46 ,42 ,54 ,60 ,62 , 114 ,115 , 141 ,144 ,153 ,156 , 163 ,2 9 6 ,2 9 9 ,305 ,3 0 8 ,313]
:[3 6 ,129 , 131 ,273 ,275 ,277 ,279 ,374 ,376]
:[2 6 ,96 ,97 ,220 ,221 ,222 ,223,34  7 ,348]
: [280 ,281 ,282,3 77,3 78]
: [37 ,132 ,133 ,283]
:[8 ,75 , 183 ,326]
:[4 , 10 , 70 ,77 ,176 ,185 ,321 ,328]
:[1 ,6 ,73 ,181,324] ,
:[34 ,122 ,123 ,125 ,127 ,260 ,261 ,262 ,263 ,265 ,26 7 ,269 ,271 ,2 8 7 ,293 ,36 7 ,368 ,37 0 ,372 ,381 , 
385 ,387 ,390 ,392 ,395]

:[106 ,107 ,240 ,241 ,242 ,2 4 3 ,357 ,358]
:[67 ,171 , 173 ,318]
:[61 ,164 , 165 ,314]
.[17 ,27 ,88 ,89 ,9 8 ,99 ,108 ,109 ,204 ,205 ,206 ,207 ,224 ,22 5 ,226 ,22 7 ,244 ,245 ,2 4 6 ,247 ,3 3 9 ,340 ,349 ,
350 ,359 ,360]

:[2 ,42 ,5 7 ,142 ,159 ,297 ,310]
:[5 ,72 , 179 ,323]
:[7 ,13 ,2 4 ,5 1 ,5 3 ,56 ,64 ,65 ,6 9 ,74,82 ,92 ,9 3 ,152 ,154 ,157 ,158 ,167 ,168 ,169 , 170 , 
175 ,177 , 182, 194 ,212 ,213 ,214 ,215 ,304 ,306 ,30 9 ,316 ,317 ,32 0 ,32 5 ,33 3 ,343 ,344]

:[32 , 102 ,103 ,118 , 119,232 ,233 ,234 ,235 ,252 ,253 ,254 ,255 ,3 5 3 ,354 ,3 6 3 ,364] 
■•[15 ,4 0 ,45 ,84 ,85 ,140 ,145 ,146 ,196 ,197 ,198 ,199 ,295 ,300 ,335 ,336]
:[14 ,2 2 ,23 ,25 ,31 ,33 ,43 ,47 ,4 9 ,54 ,58 ,59 ,6 3 ,6 6 ,8 3 ,94 ,9 5 ,104 , 105 ,116 ,117 ,120 ,121 ,143 ,147 ,155 , 
160 ,161 ,162 ,166 ,195 ,216 ,217 ,218 ,21 9 ,236 ,237 ,238 ,239 ,256 ,257 , 258 ,259 ,28 4 ,285 ,288 ,29 8 ,301 , 
307 ,311 ,312 ,31 5 ,334 ,3 4 5 ,346 ,355 ,356 ,365 ,36 6 ,379 ,382]

:[3 , 12 ,16 , 18 ,19 ,28 ,2 9 ,3 9 ,48 ,50 ,68 , 71,8 0 ,8 1 ,86 ,87 ,90 ,91 ,100 , 101 ,110 ,111 ,112 , 113 , 138 ,139 , 148 , 
149 ,150 ,151 ,172 ,174 ,178 ,180,190 ,191 ,192 ,193 ,200 ,201 ,20 2 ,203 ,20 8 ,209 ,210 ,211 ,228 ,229 ,230 , 
231 ,248 ,249 ,250 ,251 ,294 ,302 ,303 ,319 ,322 ,331 ,332 ,337 ,33 8 ,34 1 ,34 2 ,351 ,35 2 ,361 ,362]

:[11 ,3 8 ,78 ,79 , 135,137 , 186 ,187 ,188 ,189 ,290 ,329 ,330]
:[9 ,3 5 , 76 ,124 , 126,128 ,130 ,134 ,136 ,184 ,26 4 ,266 ,26 8 ,270 ,27 2 ,274 ,276 ,278 ,286 ,28 9 ,291 ,292 ,327 , 
369 ,371 ,373 ,3 7 5 ,380 ,3 8 3 ,384 ,386 ,38 8 ,389 ,391 ,393 ,394]

Figure 3.13: Rule frequencies for nfib 4

0 50 100 150 200 250 300 350

Figure 3.14: Profile of nfib 4
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3.7 Summary
In this chapter we introduced and defined COBWEB —  a computer architec-
ture for the execution of functional languages.

We began by identifying the various techniques for the implementation of 
functional languages. For historical reasons, we concentrated on one of these 
techniques —  graph reduction. We reviewed contemporary parallel graph 
reduction architectures.

We then described the operation of C o b w e b . COBWEB is a machine 
that executes programs in the form of director graphs. The director graph 
is generated from FLIC which has been generated from programs written 
in Hope+. The Hope+ to FLIC compiler performs strictness analysis and 
produces annotations on the FLIC output in the form of evaluators and 
evaluation transformers. The FLIC to COBWEB compiler translates these 
annotations into parallelism operators and directors.

We identified the need to specify computer architectures formally. COB-
WEB can be defined formally using a term rewrite system. We saw that this 
method did not allow us to express some of the lower level details of how 
we wish the machine to operate. We introduced Paragon as an object based 
term rewriting system with message passing to specify COBWEB at a lower 
level. In the course of specifying COBWEB we found that the language in its 
original form was not suitable for specifying some aspects of the machine so 
we introduced some minor extensions. Paragon is found to be an expressive 
hardware specification language. Unlike other HDLs it can describe dynamic 
systems cooperating using asynchronous message passing. We found that 
this is precisely the level that is appropriate for the high level specifation of 
graph reduction architectures.

Given that we wish to produce hardware designs from our specification 
we defined a route from Paragon to hardware designs. As hardware systems 
consist of static logic blocks connected by a synchronous communications 
medium (wires), the methodology proceeds by translating the dynamic and 
asynchronous objects into objects that are static and synchronous. This pro-
cess involves introducing heap storage for the dynamic objects, and task pools 
to allow asynchronous communications. The output from the methodology 
consists of a number of objects and a description of their connectivity. The 
behaviour of these objects is described in a simple static imperative language 
similar to a conventional HDL. The connectivity of the blocks is expressed 
as a directed graph where the arcs are synchronous connections, and the 
direction of the arcs indicate the direction of message flow. Applied to a 
generalised Paragon description, the methodology produces a description of 
a system that closely resembles a multi tasking von Neumann uniprocessor. 
However, we noted that static analysis techniques can bemused to produce 
better designs for less general specifications.
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We applied the methodology to our specification of COBWEB and found 
that the resulting design was inefficient in some respects due to the long reach 
of some of the built in operators. We transformed our original specification 
to reduce the reach of all operators and applied the methodology again. The 
new design was satisfactory so we used the design to produce a prototype in 
the form of a simulator.

We have compiled several programs written in Hope+ into C O B W E B  code 
and have executed them on the simulator. We have shown the results as 
profiles of operations on the program graph, and as redexes available for 
execution.
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Chapter 4

A Parallel W SI Cobweb

In chapter 2 we introduced a communications architecture for WSI. In chap-
ter 3 we introduced a graph reduction architecture. In this chapter we bring 
these threads together by designing a parallel graph reduction architecture 
for WSI.

We proceed as follows. In section 4.1 we show how we can construct a 
model for measuring the performance of a fairly general purpose loosely cou-
pled multiprocessor. In section 4.2 we expand our specification of chapter 
3 to include support for multiprocessors. We apply the design methodol-
ogy of the previous chapter to this specification and produce a simulator as 
a prototype. In section 4.3 we present the results of this simulation. Fi-
nally in section 4.4 we bring the results together to produce estimates of the 
performance of a parallel graph reduction architecture for WSI.

4.1 A performance model for W SI multipro-
cessors

In [AKW90] we introduce a performance model for loosely coupled WSI 
multiprocessors. We measure the performance as the total number of memory 
accesses per second. The machine is modelled as a memory hierarchy. Each 
processor has some local memory, and is connected to every other processor 
in the system by a network. A processor can access the memory associated 
with another processor by communicating a message to it, and waiting for a 
reply.

Programs in this system are modelled by a single parameter, M , which 
represents the percentage of non-local memory accesses. Two schemes are 
modelled, characterised by whether their memory accesses are synchronous 
or asynchronous. In the suspension scheme, the processor must wait idly 
until the result of an access is returned. With the multiplexing scheme, the 
processor schedules another program for running while it waits for the result
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to be returned.

T h e P erform a n ce  M o d e l

We model the performance in terms of the following parameters.

¿1 local memory access time.

¿hop time taken to transfer one packet between CEs.

N  the number of working PEs.

L the loading factor, that is the percentage of working CEs that have a 
working PE.

C(x)  is the congestion function defined in terms of the number of messages 
in the network per CE. This measures the ratio of hops taken to the 
ideal minimum number of hops. This can be read straight from the 
performance graphs in chapter 2 .

p is the average path length. Again, this can be read from the graphs of 
chapter 2 .

(f> is the traffic level — the total number of messages in the network at 
once. The number of packets per PE is <j>/N, the number per CE is 
L(j>/N.

M  is the miss rate — the number of memory accesses that are non local.

The PE is modelled by r, the time taken to access non-local memory. It 
is the sum of three components:

ttx is the time taken to transmit

tTX is the time taken to receive a message

tcs is the time taken to restart the process upon receipt of a message.

The reply will become available after a latency. The average latency T 
can be calculated in terms of the above as follows.

T =  2pthopC(L<t>/N)

This assumes a random non-local target.
The total average non-local memory access time igis thus given

ts =  T +  t

— 2pthopC'(T< /̂A )̂ +  ftx +  trx

We model two schemes:
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T he suspension schem e. Under this scheme, all memory accesses are 
synchronous. When a process attempts a non-local memory access, the CPU 
must wait until the value has been returned. This means that the maximum 
number of packets in the network will never exceed the number of working 
processors, ie <j> <  N. The performance in terms of the number of memory 
accesses per second is given by

N
TM ~  M ts +  (1 -  M)t\

The m ultiplexing schem e. Under the multiplexing scheme we have a 
number of processes per PE. When one process requests a non-local read, it 
is stopped, and the CPU can schedule another to run until the result comes 
back. The non-local access delay is now increased by the context switch time 
tcs. We have a number of processes ready to run scheduled in a cycle. This 
can increase congestion because each process may have a message pending 
in the network, so we put an upper limit V on the number of messages a PE 
can have current in the network. We can think of each process in the cycle as 
a loop making 1/M local memory accesses followed by one non-local access. 
If there are enough processors in the cycle then the PE need never be idly 
waiting for a message to return. This is the latency concealment condition, 
and it can be expressed

V(r  +  j } tl) > T

To increase latency tolerance, we increase V,  but this also increases the 
congestion in the network, and we may lose any benefit. If we can satisfy the 
condition, then the overall performance is independent of T, so we have

tg — T — tix T Ux T tcs

and the overall performance is given by

N
TM " M r - f  (1 -  M)t\

Assuming latency concealment, then the multiplexing scheme wins over the 
suspension scheme when

N
>

N
M (ttx T t™ +  tcs) +  (1 — M)t\ M(2pt^opC(L)  +  ttx -f tTX) +  (1 — M)t\

or,
tcs < 2pihopC(T)

ie when the context switch time is less than the average round trip time.
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Som e real numbers The results from the performance model when some 
numbers are fed in are reported in [AKW90]. These are worth repeating 
here. One figure that should be explained is the yield of the PE. We assume 
a fairly small (eg Transputer sized without the floating point) PE with some 
memory. The memory is arranged in blocks of 512 bytes. For a PE to work, 
we need the first of these blocks to work. We can use all of the other blocks 
that we can yield. The maximum amount of memory available to one PE is 
25 kilobytes.

ti =  70 ns

ttx =  70 ns

tIX =  70 ns

tcs =  420 ns

¿hop =  100 ns

p =  6 hops. This is read from the graph for the average latency for the 
7̂ -Path in chapter 2

L = Y PE =  62.7%

N  — VpE x I c e  x  Nf.^ ~  47 PEs.

M  =  2%

For the suspension scheme, the result is approximately 370 million mem-
ory accesses per second. For the multiplexing scheme, as latency concealment 
is easily satisfied, the result is approximately 590 million memory accesses 
per second.

The only problem is the total amount of memory available —  approx-
imately 1.5 megabytes per wafer. As explained in [AKW90] this could be 
improved by use of a high density custom memory process.

4.2 Specification of a multiprocessor Cob-
web

The conclusion of the previous section is that multitasking within processors 
is essential. The spécification of the previous chapter does not consider mul-
titasking because each agent needs synchronous access to the global heap. If 
we are to do multitasking then we need to rewrite the specification. It is not 
enough to just replicate this design a number of times.
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We proceed by explicitly describing the role of processors as localities 
where objects are processed. The key point is that every object in the system 
is to be “associated” with a processor. Although the specification does not 
need to say this explicitly, this effectively means that each object is stored in 
a heap local to a particular processor. The program graph is now assumed to 
be distributed throughout the machine, with each packet residing in the heap 
associated with a particular processor. Similarly agents will be associated 
with particular processors.

We then need to specify how we deal with agents that need to access 
packets that are not on the same processor. We do this using a form of 
remote copy. When an agent decides it needs to know about a packet that 
is on a remote processor, then it sends a message to that remote processor 
asking it for the values it needs. While it waits for the result, it goes to sleep. 
In the interim another agent can be scheduled for execution by the processor. 
Access to remote packets is now asynchronous, and we thus have achieved 
multitasking.

Now that we have a collection of processors, we can arrange to have a 
number of them evaluating different parts of the graph concurrently. We 
do this by transmitting need and fire messages across the network, and by 
exporting work to processors when necessary. Note that no load balancing 
is attempted, just load distribution.

We specify this by labelling each packet and agent with the processor 
identifier on which it resides.

We shall now discuss the new specification in terms of the new classes 
and modified methods.

4.2.1 The new classes
We introduce a new class to deal with “remote” packets. The previous packet 
definition will now be known as a local packet. A remote packet is identified 
by the processor it resides in plus the local packet identifier. Any packets’ 
left and/or right subpackets can be situated on remote processors. We have 
our new class definitions as follows:

class rpacket : :=  (processor,packet)
class packet : :=  (rator,rand,ann,activity,¡nnf,list agent)
d ata  rator : :=  basic-value | rpacket
d ata  rand : :=  basic-value | rpacket

We must also distinguish local agents from remote agents. We do this by 
modifying our agent class so that it includes the name of the processor on 
which the agent resides.
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class agent ::=  (processor.rpacket,integer)

The processors themselves are actually stateless.

class processor ()

We shall consider the methods for each class in turn.

4.2.2 Packets
S p on tan eou s tran sform ation s

Theré is a problem with spontaneous transformations on packets. For ex-
ample, consider the following two graph fragments to which a spontaneous 
transformation applies.

Po

Pi g

f  nil

Po

f  Pi

g nil

In both cases the graph rewrites to f  applied to g using a spontaneous rule. 
However consider the case when pi is not on the same processor as po- The 
rewrite can only be applied when the body of pi is known. We have the 
situation where a spontaneous rewrite implies knowing the body of a non-
local packet.

We solve this problem by asking the processor associated with pi to say 
whether the spontaneous rewrite applies. If it does, then thé remote proces-
sor can return the value of the appropriate packet. The rules for the first 
spontaneous rewrite are as follows.

[spon tan eou s-loca l]
(x,lp) when

Ip =  (Po.Pi-ann.flag,-,-) A  

Po =  (x,(f,nil,_,
- »  (x^f.p^ann.flag,.,.))

[sp on tan eou s-rem ote]
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(x ,lp ) w hen
Ip =  ( p o , P i , A  
Po =  (y,rp) A 
x ^  y 

- »  (X-!P> 
then
y !! p-spontaneous(self,rp)

The first rule applies when a spontaneous rewrite applies to a packet that 
is known locally. It is rewritten to eliminate the nil. The second applies 
when the packet has a rator that is not local. The rule might apply, so a 
message is send to the processor on which it resides. See section 4.2.4 for the 
specification for p-spontaneous.

R e m o te  Packets

We first deal with remote packets. These are a tuple consisting of the pro-
cessor name, and the packet body. Remote packets respond to two messages: 
need and fire. When a packet is needed or fired, and it is not active or in 
normal form, we create an agent to reduce it. Until we actually create the 
agent, we have the freedom to choose where it will be situated. It is here 
that we deal with load distribution, by asking a different processor to reduce 
the packet. There is little point exporting the agent to another processor 
if everything necessary for the agent to perform a reduction is local to the 
current processor, so we only export an agent when we know that some of 
the information needed is definitely on a remote processor.

For example consider the situation where the expression f  g h receives a 
fire or need message. The graph is shown in the first part of figure 4.1 Packet 
pO is local to processor 0, and packet p i is local to processor 1. We do this 
in three steps. The first step is to create an agent newagent to be responsible 
for reducing this packet, and rewrite packet pO so that it is marked as being 
active. In addition if the message received is need then the agent argument 
is appended to pO’s pending list.

The second step is to send a message p-balance to the processor on which 
p i resides. This message takes four arguments. The first three arguments 
are the operator, operand and the annotations of pO. The fourth argument is 
newagent. When this has been received by processor 1, the processor creates a 
new packet p identical in contents to pO, but residing on a different processor. 
The pending list of p is set to contain newagent. An agent then is created to 
reduce the packet p.

The third step is to inform pO, which is now semantically equivalent to p 
that it is being evaluated elsewhere. The processor sends a message p-return- 
balance with arguments newagent and p to the original processor. Upon
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pO

f

h

Packet pO on processor 0 receives a fire 
message. To be reduced it needs p i which 
is on processor 1. It is marked as active 
and balance(pl,h,ann,newagent) is sent to 
processor 1

Processor 1 receives the balance message, 
and creates p and an agent to reduce p. 
pO is unchanged.

Processor 0 receives the return-balance 
message and rewrites pO

f  g

Figure 4.1: The three stages involved in exporting agents to remote proces-
sors.

receipt of this message, packet pO is rewritten so that it has operator p, and 
operand and annotations that are nil.

The Paragon for the fire message is as follows: The first two rules are 
largely unchanged.

(_,lp) g iv e n  fire 
w h e n
Ip =  Active,q)

—> self

(_,lp) g iv e n  fire 
w h e n
Ip =  Nf, Inactive, q)
—> self

Rule [rem ote-fire] sends a message to a remote processor in the manner 
described above.
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[ lo c a l-f ire ]
(r,lp ) g iv e n  fire 

w h e n
Ip =  (rator,rand,annot,Notnf,Inactive,q) A 
(unary(se lf) V (-> unary(self) A rator =  (r,_ ))) 
—> (r,(rator,rand,annot,Notnf, Active,q)) 

th e n
newag !! reduce(self) 
w h e re
newag =  n e w (a g e n t,(r ,se lf,0 ))

[ re m o te -f ire ]
(r,lp ) g iv e n  fire 

w h e n
Ip =  (rator,rand,annot,Notnf,lnactive,q) A 
rator =  (r',_) A r' /  r A 
- i  unary(self)
— > (r,(rator,rand,annot,Notnf,Active,q)) 

th e n
r’ !! p-balance(rator,rand,annot,newagent) 
w h e re
newagent =  n e w (a g e n t,(r ,se lf,l))

The Paragon for need is similar. The only difference is that the needing 
agent must be added to the packets pending queue.

(r,lp ) g iv e n  need(agent) 
w h e n
Ip =  (rator, rand, annotjsnf, Active, q)

-*■ ( r -nP) 
w h e re
np =  (rator, rand, annotjsnf, Active, agent::q)

(r,lp ) g iv e n  need(agent) 
w h e n
Ip =  (_,_,_Nf,Inactive,.)
—> s e lf  

th e n
r !! p-wakeup(agent)

[ lo c a l-n e e d ]
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(r,lp ) g iv e n  need(agent) 
w h e n
Ip =  (rator,rand,annot.Notnf,Inactive,q) A 
(unary(se lf) V (-> unary(self) A rator =  (r,_ ))) 
—>• (r, (rator, rand,annot,Notnf,Active,agent::q)) 

th e n
newag !! reduce(self) 
w h e re
newag =  n e w (a g e n t,(r ,se lflO))

[rem ote-n eed ]
(r,Ip ) g iv e n  need(agent) 

w h e n
Ip = (rator,rand,annot.Notnf,Inactive,q) and
rator = (r',_) A r ^ r’ and
unary(self)
—» (rator,rand,annot,Notnf,Active,agent::q) 

then
r’ !! p-balance(rator,rand,annot,newagent) 
w here
newagent =  n e w (a g e n t,(r ,s e lf ,l))

There might be other reasons for exporting agents to remote processors. 
For example each processor could maintain a map of which of its neighbours 
are idle, and export the agent to them. However these are not considered 
here.

L oca l packets

We only provide one method for local packets. This is rewrite. We always 
know that all rewrites take place on the processor on which the packet resides. 
Therefore we can keep the method almost exactly the same as before. The 
only complication is that we need to send p-wakeup messages to all the agents 
waiting on the packet via their processors.

(_,-------- act.q)
g iv e n  rewrite(op,arg,ann,Notnf)
— > (op,arg,ann,Notnf,act,q)

act,as)
g iv e n  rewrite(op,arg,ann,Nf)
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(op,arg,ann,Notnf,act,nil)
then
q !! p-wakeup

4.2.3 Agents
The method for the reduce message is most affected by the changes we have 
made. However due to our transformations of section 3.5, we know that every 
rewrite of the graph in response to the reduce message is one of two forms, 
a unary rewrite or a binary rewrite as shown below.

Po

f  a

A unary rewrite can always be executed immediately because all the infor-
mation is available to the agent. Also, the agent can always tell if a unary 
rewrite applies. However if a binary rewrite applies, and if the pi is associ-
ated with a different processor than the agent, then the agent must get the 
body of px before it can decide which rule applies, and before it can continue.

Before giving the full specification, a short example is in order. Consider 
a simple program as follows:

t l  

t2

[\] t3 4

/  v ,
+

Say that we have two processors numbered zero and one, and that packets 
t l  and t2 are associated with processor 0, and that t3 is associated with 
processor 1 .

To execute the program we create an agent on processor 0 to reduce 
packet t l .  We need to know which rule applies, and to do this we need to 
look at the left subgraph of t l .  That is, we need to look at the annotations 
and the left and right subgraphs of t2. We can do this easily because t2 is 
associated with the same processor as t l  and the agent. A rule for executing 
the /  director applies, and the graph rewrites to the following form:
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tl

+

4

That is, we create a new packet called t4 which is associated with processor 
0, and rewrite t l .

The next rule to apply is to t4. However in order to know which rule 
applies, we need to know about packet t3. As this is associated with another 
processor, we cannot look at its body directly, but must ask that remote 
processor to look at it. So we send a message to processor 1 to ask it to send 
back the body of packet t3. The agent suspends while the body is returned, 
and when the body does arrive back, the correct rule can be chosen. The 
graph is transformed into the following:

t l

t4 4

+  8

and finally the plus operator is executed and t l  rewritten to 1 2 .
By asking the processors to handle delivering messages to agents and 

packets, and to handle the copying of bodies of packets, we enforce a locality 
of access. That is, an agent associated with one processor cannot directly 
look at the body of a packet that is associated on another processor, therefore 
the embodiment of the agent need not be directly connected to the packet 
heap of the remote processor.

This mechanism is specified in Paragon as follows. These first two rules 
specify when the reduction can be done locally. A reduction can be performed 
locally when a unary rule applies, or when a binary rule applies and the 
appropriate packet is local.

[reduce-unary]
(r,_,_) g iv e n  reduce(p) 

w h e n  
unary(p)

(r,P>0)
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th e n
se lf! reduce_unary(p)

[binary-local]
(r,_,_) given reduce(p) 

when
-> unary(p) A 

P =  (r.lp ) A
Ip =  (rator,rand,annot,Nf,_,_)

- »  ( r -P-0) 
then
s e lf  ! reduce-binary(p,rator,rand,annot,Nf)

When the packet is not local, we send a message to its processor.

[binary-remote]
(r,_,_) given reduce(p) 

when 
1 unary(p) A 

P =  (r.lp ) A 
lP =  ( r ’ , -)  A r ±  r ’
-»  (r.p.l)

then
r ’ !! p -getbody(p ,self)

The remote processor will return the body of the packet to the agent via 
the local processor. The Paragon for this is as follows:

[return-body]
( r ,p , l )  g iv e n  return-body(rator,rand,annot,Nf)

- »  ( r-P.°) 
then
s e lf  ! reduce-binary(p,rator,rand,annot,Nf)

As the agent requesting the remote copy has been put to sleep, when the 
body of the requested returns, it must be woken, and the reduction process 
begun.

The reduce-binary message and reduce-unary are introduced above. These 
effectively do the job of the reduce message in the specification of chap-
ter 3.5. For example the paragon for two of these messages are given be-
low.
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[Y ]
(r,_,0) g iv e n  reduce_unary(p) 

w h e n  

P =  ( - I p )  A  
Ip =  (Y ,f, n i l ,  __,_,)

- »  (r.P.O)
t h e n .
Ip ! rew rite(f,p ,n il,Notnf) ; 
s e lf  !! reduce(p)

[\ i]
(r,_,0) g iv e n  reduce-binary(p,rator,rand,annot,isnf) 

w h e n  

P =  ( r , lp )  A  
annot =  n i l  A 
rator =  (op,argl,\::ann,_)

-»• ( r -P -° ) 
th e n
p ! rewrite(op,newp,ann,Notnf) ;
s e l f ! !  reduce(p)
w h e re
newp =  ne w (p a ck e t,(ra n d ,a rg l,n il,N o tn f,In a ctive ,n il))

The final method we consider handles the case when a balance mes-
sage has been replied to by a processor as explained in the previous sec-
tion.

[ re tu rn -b a la n c e ]
( r ,p , l )  g iv e n  return-balance(p) 

w h e n  

P =  (r.lp) A 
Ip =  Active,q)

(r.p.O)
th e n
Ip ! re w rite (p ,n il,n il,N o tn f,A ctive ,q )

Another rule not shown here simply ignores the message if the above rule 
does not match.
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4.2.4 The Processor Class
Processors act as a collators of requests that come in from remote processors 
to operate on packets or agents. They also deal with requests for remote 
copies, requests for spontaneous rewrites, and requests for the export of work.

Most of the methods are fairly straightforward, and simply embody the 
purpose of the processor as a global collator of requests. Note that the state 
of the processor never changes, but that we need to know its name. The 
following three rules simply forward the appropriate message to the object 
which resides in the processor.

[p-reduce]
g iv e n  p-reduce(p)
—» s e lf  

th e n
ag ! reduce(p) 
w h e re
ag =  n e w (a g e n t,(se lf,p ,0 )))

[p-need]
g iv e n  p-need(ag,rp) 
—♦ s e lf  

th e n
rp ! need(ag)

[p-fire]
g iv e n  p-fire(rp) 

s e lf  
th e n  
rp ! fire

The next two rules implement the remote copy. The first deals with a 
request for a copy of a local packet. The agent that requested the copy is sent 
copies of the instance variables of the packet in question via the processor 
on which that agent resides.

The second rule deals with the copies being received by a processor. 
The agent that requested the copy is woken and sent the binary-reduce mes-
sage.

[p-getbody]
given p-getbody(lp,ag)
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w h e re
Ip =  (rator,rand,annot,Nf,_,_)
—* self 

then
r !! p-return-body(rator,rand,annot,Nf,ag) 
w h e re
ag =  ( r , - , - )

[p-return-body]
g iv e n  p-return-body(rator,rand,annot,Nf,ag) 
—> s e lf  

th e n
ag !! return-body(rator,rand,annotIN f)

The management of agent exporting is handled by the following messages. 
When a balance message is received, the processor creates a packet, and an 
agent to reduce the packet.

[p-balance]
g iv e n  p-balance(f,g,annot,agent) 
w h e n
agent =  (r,_)
—> self 

then
r !! p-return-balance(newp,ag) || 
newag !! reduce(newp) 
where
newp =  n e w (P a ck e t,(se lf,lp ))
Ip =  (f.g.annot.Notnf.lnactive,agent) 
newag =  ne w (A ge n t,(se lf,ne w p ,0 ))

[p-return-balance]
g iv e n  p-return-balance(agent,newp)
—> self 

then
agent !! return-balance(newp)

Finally, to deal with spontaneous rewrites on the graph, we have the 
following methods. The first clause deals with when the graph is in a state 
that can be rewritten. The first parameter to the message is the packet 
(that is associated with processor y) that is to be rewritten. The second
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parameter is the name of the local packet whose state is being tested. A 
rule not shown simply accepts the message without changing anything if the 
guards are not true. This is provided so that the p-spontaneous message is 
not kept pending.

[p-spontaneous]
g iv e n  p-spontaneous(rp,lp) 
w h e n
rp =  (s e lf^ ra to r.n il.a n n o t.N f,-,.))  A
Ip =  (r,_)

self
then
r !! p-reply-spontaneous(lp,rator)

[p-reply-spontaneous]
g iv e n  p-reply-spontaneous(rp,new-rator) 
w h e n
rp =  (_,lp) A 
Ip =  (_,rand,
—* self 

then
Ip ! rewnte(new-rator,rand,annot,Nf);

4.3 Design and Simulation
In this section we outline a design that has been produced from the spec-
ification in the previous section. The design has been derived by applying 
the methodology from chapter 3.4 to the specification. We then discuss the 
metrics needed for measuring the performance of the machine. This design 
has been prototyped as a simulator written in C, and we then present some 
of the results of running programs on the simulator.

4.3.1 The design
The design that we produce is a result of applying the method of chapter
3.4 to the specification in the previous section. As the specification has been 
written with a loosely coupled multiprocessor in mind, we first confirm that 
the specification matches up to our expectations.

We begin by identifying the classes. These are:

• Processors abbreviated V,
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• Packets V

• Local packets C

• Agents A

The system equations are as follows:

S ( V ) = { L , P )  
S(C) =  { i l
S(A)  =  { A , P , L )  
S(K)  =  { A , P , L }

A(V) =  { A , R )  
A(C) =  { P )
A(A)  =  { A , P , R } 
A(R)  =  { P , A }

D(P)  =  {A }
D(C) =  0 
D(A)  =  { A , P , L )  
D(K)  =  { P , A )

The first thing to note is that nothing is dynamic in TZ, so we can implement 
this system using a finite number of processors. Although we need heap 
processors for packets and agents, we can distribute these by observing that 
the objects only create or change packets and agents if they are on the same 
processor.

The following is a description of a design for a single processor that satis-
fies the above equations. In the machine, it will be replicated several times. 
Each instance will be connected to the communications network.

Our system consists of a number of class processors P{7V). As these are 
stateless, there is no need for PI (TV). Processor are connected by a network. 
The methodology states that the communications network connecting the 
processors must be synchronous, and that it is controlled by a task pool T(7V). 
However we note that 71 is not synchronous in TZ, so it can be asynchronous.

Packets, Local Packets and Agents are stored in H{7:>,C ,A )  and con-
nected to P [ V , C, A).

This can be physically implemented as in figure 4.3.
The design is clearly divided into a communications element and a pro-

cessing element. The Processing element consists of a heap and a proces-
sor. The heap embodies H(A,  V, C, T(A,  V, C)), and the processor embodies 
P( A,  V, C, T(A,  V, C)). The communications element embodies P (7 l, T(7V) ) 
and H{T(7l)) .

The simulation

A prototype of this design has been developed in the form of a simulator 
written in C.
z It implements all the defined methods for the classes, with space for agents 
and packets being allocated from a local heap.
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Communications Network

Figure 4.2: A single processor

4.3.2 Assumptions

The primary assumption with the metrics is that one hop equals one reduc-
tion step. This includes the time taken to read from the CE buffer, calculate 
a new direction, and to forward the packet in that new direction.

The second assumption we make is that the garbage collection has little 
effect on the overall performance. This is confirmed in practice by the GRIP 
architecture [HP90], where garbage collection is found to take no more than 
2% of the total time spent executing programs.

4.3.3 Code distribution

There are many different ways that code may be distributed throughout the 
machine. [Kel89] introduces the functional language Caliban which allows 
the programmer to place functions on physical processors taking account of 
their topology. However, no automatic methods have been implemented for 
Cobweb. For these experiments, the code has been distributed by hand.

Several experiments were attempted based on the distribution of the code 
for the function nfib. The simplest is to put all the code on one processor. 
Because the machine does not attempt to balance the load, this meant that 
the entire expression is evaluated on one processor.

The next experiment simply distributed the code at random throughout 
all the processors available.

The third experiment was based on distributing identical copies of the 
code onto all the processors. For example, nfib can be rewritten as follows.
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Figure 4.3: A physical implementation of a Cobweb node

nfib n =  1, n <  2

=  1 +  (m fib  ( n - 1 ) )  +  (o fib  ( n - 2 ) ) ,  otherw ise 

m fib n =  1, n <  2
=  1 +  (o fib  ( n - 1 ) )  +  (n fib  ( n - 2 ) ) ,  otherw ise 

ofib  n =  1, n <  2

=  1 +  (n fib  (n  — 1 )) +  (m fib  ( n - 2 ) ) ,  otherw ise

For this experiment, with three processors, the code for nfib  was placed 
on processor zero, and the code for m fib  and o fib  on processors one and two 
respectively. The application code was placed on processor zero.

4.3.4 Results
The results for the first experiment, where all the code is on processor 

zero are unsurprisingly identical to the results for the single processor case. 
The execution profile for nfib  9 is shown in figure 4.4. The profile graph 
includes one extra feature —  the network traffic. This is a measure of how 
many messages are in transit in the network. Being ‘in transit’ can include 
waiting in a CE buffer. The single message shown in figure 4.4 is the message 
sent to begin the computation.

The results for the random case are interesting. Figure 4.5 shows the 
execution profile.

The third experiment was when the code for the main function was repli-
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cated across three processors, with the application code on processor zero. 
Figure 4.6 shows the execution profile for this case.

The results for when the code is distributed are disappointing. The above 
show little speedup in time. This is a result of the large expense associated 
with spontaneous rewrites. At low values of the argument to nfib, although 
there are three processors sharing the work, the overhead of managing the 
sharing causes it to take longer to execute than on one processor.

The following is a table showing speedups for a three processor COBWEB 
executing nfib n.

n nfib n one rfib speedup msfib speedup

4 9 358 531 0.67 486 0.73

5 15 564 811 0.69 669 0.84

6 25 892 1233 0.72 894 1

7 41 1403 1887 0.74 1214 1.15

8 67 2219 2926 0.76 1756 1.26

9 109 3523 4601 0.77 2352 1.49
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Figure 4.5: Execution profile for when code is randomly distributed

The one column shows the number of steps taken to evaluate the expression 
on one processor. The rfib column shows the result when the code is randomly 
distributed. The msfib column shows the result when the code is replicated. 
Each of the latter two columns have associated speedup columns which show 
the absolute speedup over the single processor version.

4.4 The performance of COBWEB

Having done the simulation, we can now estimate the performance of a mul-
tiprocessor COBWEB. We will look at the results for calculating nfib 9, first 
for the single processor COBWEB. The number of reduction steps needed to
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Figure 4.6: Execution profile for when code is replicated

evaluate the expression is 3523. As nfib 9 =  109, this give us approximately 
35 steps per function call. This is approximately the number of rewrites for 
all values of n. A very rough estimate at the number of memory accesses 
taken to execute the average reduction is 40. At 70ns per memory access 
we have 10,000 nfibs per second on a one processor C o b w e b . A s a three 
processor COBWEB goes 1.5 times faster for this computation, we can say 
that a three processor COBWEB does 15,000 nfibs per second.

This result compares fairly unfavourably with current graph reduction 
machines. For example, GRIP delivers a scalable 36,000 nfibs per second 
per processor [HP90]. We see from the table of results that the parallelism 
exploited increases as the size of the problem increases. Unfortunately it is 
not at all clear if the parallelism scales well in COBWEB as the tools used to
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generate the results break down ab higher levels. However, we can see from 
this small set of data in conjunction with the network profile, that the level 
of communications are a problem.

The reason that COBWEB does not perform as well as hoped is undoubt-
edly due to the grain size. The fact that the architecture cannot efficiently 
exploit the inherent parallelism of one of the most parallel of all programs is 
due to the communications overhead associated with the grain. Figure 4.6 
shows that huge demands are made of the network despite the problem being 
fairly small. We chose WSI as a technology mainly because of the very large 
communications bandwidth. However we see here that despite this, directors 
are still too fine a grain of computation to be a competitive technique for 
graph reduction.

4.5 Summary
We have constructed a performance model for multiprocessors and identified 
that in the context of WSI, multi-tasking in processors has significant perfor-
mance benefits. We have expanded our specification of chapter 3 to support 
multi-tasking. We support this by implementing a remote read facility, and a 
method for exporting agents to remote processors so as to enchance locality. 
We do not attempt load balancing but identify the importance of placing 
programs on processors so as to enhance locality and parallelism.

We have constructed a prototype in the form of a simulation and have 
investigated running programs on it using three program placing techniques. 
The results are not especially impressive. This is due to the grain of compu-
tation, which has resulted in a too large communications and synchronisation 
overhead, and little speedup is obtained with modest sized problems.
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Chapter 5 

Conclusion

The initial aim of this work was straightforward. It was to determine if the 
implementation of a parallel graph reducer on a wafer was feasible. The em-
phasis here was on the word feasible — the intention was never to produce 
a competitive graph reduction implementation. Although a definitive con-
clusion on this may still be in some doubt, there is no question that several 
positive results have emerged from this work.

5.1 Communications for WSI
The first positive result concerns communications for wafer scale integration. 
At an early stage we identified the need to separate the communications 
and processing functions of a WSI device. We then devised and investigated 
three different routing algorithms for random point to point communications 
between nodes in a highly regular arrays of processors on a wafer. Each 
algorithm has been shown to be useful for different applications.

We have identified that the signpost algorithm is the superior solution 
for the design presented. We have estimated its performance and found that 
its average latency under a wide range of conditions is low. It is simple 
to implement, and thus yields well — a crucial property for WSI. We have 
indicated that the algorithm has untapped potential because of its ability to 
be configured dynamically by the wafer controller.

Although the communications algorithms were designed with graph re-
duction in mind, they have more general properties and have potential ap-
plications in many areas of computer architecture. For example, we could 
design a wafer memory device by having a large block of memory in place of 
the processor at each node. This would be superior to the Anamartic wafer 
memory device because it would have lower latency, and concurrent access.

Another application, which is being investigated in this department, is 
neural networks. Each node consists of a number of artificial neurons which
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can communicate directly, or remotely using the communications architec-
ture.

It is clear that there are many potential applications that could exploit the 
high communications bandwidth of WSI using one of these communications 
architectures.

5.2 Formal Specification of Hardware
We have found that the specification language Paragon with some extensions 
is indeed suitable for specifying hardware. It allows expression of high level 
constructs such as dynamicism and asynchronous communications, yet at 
the same time can be used to specify much lower levels. It captures well 
the nature of hardware designs as collections of communicating objects. It 
is however limited in its scope, as in its. present form it is not suitable for 
expressing very low level behaviour such as the control of timing.

The second positive result is that we have shown that there exists a 
route from our very high level specification language to hardware designs 
that can potentially be shown to be correct with respect to the specification. 
This differs from previous work in this area in that the specification is at 
a much higher level. We have shown how the methodology can be applied 
by hand to a specification of a parallel graph reducer. The methodology has 
demonstrated itself to be useful in several respects. First, it has allowed us to 
spot undesirable properties in our specification —  for example objects being 
synchronous when we do not want them to be. Second it has provided us 
with a prototype in the form of a simulator that has allowed us to experiment 
with the architecture, and that has allowed us to estimate its performance.

5.3 Graph Reduction for W SI
As far as the feasibility of graph reduction on a wafer is concerned, the case 
is not yet proven beyond all doubt. Although the communications latency 
of WSI communications is extremely low, the overhead associated with such 
a fine grain of computation as directors still seems to be a limiting factor. 
However, having said that, the performance at least seems to be within an 
order of magnitude of contemporary parallel graph reduction architectures.

In addition, we have shown just how important is the mapping problem 
with such a fine grain of computation. The performance of our machine was 
substantially impaired by careless mapping of programs onto processors.

To complete the study of whether graph reduction is feasible on a wafer, 
we need to attempt computation at a higher grain, and we need to be able 
to map programs onto processors with more confidence. Supercombinators
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would probably offer a better grain of computation for WSI graph reduc-
tion. Any grain coarser than this would probably be unable to exploit the 
potential of on-wafer communications. Static program analysis techniques, 
and programmer annotations will lead to better solutions on the program 
mapping problem.

5.4 Further Work
It is difficult to see how further study of the wafer scale communications ar-
chitecture would further advance knowledge in the area. We believe that any 
of the communications architectures could easily be combined with a simple 
processor and taken all the way to design and manufacture. An appropriate 
application might be a wafer disk, or a communications switch.

Much of the work on the formal derivation of hardware from Paragon 
would benefit from further investigation and experimentation. Although the 
route has been sketched, some of the major problems have not been ad-
dressed. This includes proofs of the correctness of the method, which is 
probably the most difficult of the problems.

Automation of the method, including facilities for the static analysis of 
specifications is another area that would benefit from further research. In 
fact, automation would not be useful unless tools for the analysis of spec-
ifications were available, because it is only from such analysis that we can 
derive efficient designs.

Finally to decide if wafer scale is a suitable technology for graph reduction, 
an investigation into a higher grain of computation with appropriate program 
mapping techniques is needed.
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Appendix A

Cobweb as a TRS

This appendix contains a complete description of COBWEB as a term rewrit-
ing system. As defined in 3.3.1 the syntax of a term is:

<e) : :=  (e)(e)
i m m
I ((e))
I (P)

(d) (d')(d)
nil

(d') ::=  A | -  | /  | \ | #

where (p) represents a primitive operator, or constant.

A .l Directors

The full set of directors is given here. 

Send the operand to the right subgraph.

([\::d] f  a) x  —* [d] f  (a x) 
([\ ::d ]f\ )x  -> [d] f  x

Send the operand to the left subgraph.

([/::d] f  a) x  —► [d] (f  x ) a 
([/::d] \ a) x  —y [d] x  a

Discard the operand.
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([~::d] f  &) x

Send the operand to both subgraphs.

[d] f  a

((A

(/A

(/A
i/A

d] { \) x  
d] I a) x  
d] \\)x 
d] f  a) x

[dì ( f x )  x 
[d] x (x a)
[d] x  x
[d] (f x) (a x)

Context sensitive strictness director.

( l # : : d l t  * ) [d] f  a

A .2 Strict built in operators

The full set of strict dyadic operators is:

INT. INT+ INT- INT x
INT/ INT < INT% (remainder)
INT< INT= INT> INT >
INTyi
There is a similar set for floating point:
FLOAT. FLOAT+ FLOAT- F LO AT x
FLOAT/ FLOAT< FLOAT^ FLOAT=
FLOAT> FLOAT> FLOAT/

The only monadic strict operator for the integers is the negation operator 
INT_ . The set for floating point numbers is:

SQRT SIN COS ARCTAN
EXP (natural exponential) LN (natural log)

And finally there are two conversion operators: INT—>FLOAT and FLOAT—dNT.

The generic rules for all these operators in terms of a monadic operator g 
and a dyadic operator f:

f i b  —» 1  
f a i  —> T 
f a b  — > f a b  
g ±  -L
g a - »  g a
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A .3 Primitives

The set of primitives includes the boolean operators, the selection operator, 
the context free parallelism operator and the fixedpoint operator.

OR TRUE x 
OR FALSE x 
OR 1  x

AND FALSE x 
AND TRUE x 
AND 1  x

X O R x l  
XOR 1  x 
XOR x x

NOT 1 
NOT FALSE 
NOT TRUE

I F i a b  
IF TRUE a b 
IF FALSE a b

-> TRUE 
—> x 
-4  Jl

-* FALSE
—> x 
-> 1

-> X 
-*  T 
-> FALSE

-»  1  
-► TRUE 

FALSE

-> X
—> ¿L
—> b

K-n 1 —» K-n-i
K-n-i xq  . . .  xn —> x,-

P a h  —> a b

Y f  -> f ( Y f )

A .4 Data Constructors/Selectors

Data constructors and selectors are given below.
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PACK-n d ->
PACK-n-d x0 . . .  xn- i  —>

SEL-n i —»
SEL-n-z X —►
SEL-n-i (d|x0, . . . ,x n_i) —►

UNPACK\ - n f l  -»
UNPACK!-« f  (d|x0, . .. ,x„_i) —» 
UN PACK-n f e  -*

CASE-r eo . . .  er_i (c/|x) —>
CASE-r eo . . .  er_i X —>

TAG X -+
TAG (d|x) ->

P A C K -n -d
(d|xo, ... ,xn_i)

SEL-n-i
X
x,

1
f  X0 . . .  Xn_i
f  (S EL -n -0  e j . . .  (S E L -n -(n — 1) e)

e<*
1

X
d

A .5 Sequencing, Strictness and Termination

SEQ X b -c  X
SEQ a b -> b

STRICT f  X -»  X
STRICT f  x -  f x

ABORT -»  X
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Appendix B

Cobweb in Paragon

This appendix contains the specification for COBWEB at two levels. The first 
section describes the highest level, and contains a complete paragon speci-
fication for all the classes defined for the machine as introduced in section 
3.3.2.

Section 3.5 contains a discussion of some of the design decisions made for 
the machine. These were expressed as a set of simplified paragon rules. The 
second section in this appendix contains these new rules.

B .l High level specification

B .l .l  Packets and Agents

We first need to describe the packet and agent class

class Agent (packet.integer)
class Packet (rator,rand,string.innf,act,list agent)
data rator =  packet | basic-value
data rand = packet | basic-value
data innf =  Nf | Notnf
data act =  Active | Inactive

A basic-value can be a constant integer floating point value, or boolean; or it 
can be a basic operator or primitive. The full set of primitives is as follows:

B o o le a n s  IF ,A N D ,O R ,X O R .N O T JR U E ,F A L S E
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Selection  K-n, K-n-i n >  0,0 < i < n

M iscellaneous SEQ, STRICT, ABORT, P, Y

D ata  co n s tru cto rs /se le c to rs  for n >  0,0 <  i < n, r > 0
TAG, CASE-r, PACK-n, PACKET SEL-n, SEL-n-z, UNPACK!-«, UNPACK-?!

Packets respond to three messages:

rewrite indicates that the packet is to be rewritten. The arguments 
to this message are the new structure of the packet.

need indicates that the packet is needed by an agent.

fire indicates that the packet is to be evaluated to normal form.

Agents respond to two messages:

reduce indicates that the agent is to reduce the packet which is an 
argument to the message.

makeup indicates that the agent can resume reducing a packet.

B.1.2 Rewrite

{ - i  - i  - i  - i  - i  p)
given rewnte(op,arg,ann,Notnf) 
-> (op,arg,ann,Notnf,_,p)

(---------- p)
given rewnte(op,arg,ann,Nf)
—> (op,arg,ann,Nf,Inactive,nil) 

then
p !! wakeup

Note that in the above rule p is a list of agents. There is an implied mapping 
of wakeup onto all the elements in the list.
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B.1.3 Need

Active,p) given need(agent)
-»  Active,agent::p)

Nf,Inactive,p) given need(agent)
—> Nf,Inactive,p)

then
agent !! wakeup

(_,_,_,Notnf,Inactive,p) given need(agent)
—> Notnf,Active,agent::p)

then
new(Agent,(self,0)) !! reduce(self)

B.1.4 Fire

Active,p) given fire 
-*• Active, p)

Nf,Inactive,p) given fire 
Nf,Inactive,p)

Notnf,Inactive,p) given fire 
—> Notnf,Active,p)

then
new(Agent,(self,0)) !! reduce(self)

B.1.5 Wakeup

(_,c) given wakeup when c > 2
-  (-.c-1)

(P,l) given wakeup



self!! reduce(P)

B.1.6 Reduce

N o rm a l form  and finding next red ex

[onf]
(_,0) given reduce(Pi) when

Pi =  ( o p , a r g , a : : x , A a / #

-  (Pi.O)
then
Pi !! rewrite(op,arg,a::x,Nf) 

[o t]
(_,0) given reduce(Pi) when 

Pi =  (P2,-nil,__,_) A 
P2 = Notnf,_,_)
-  (Pi.l)

then
P2 !! need(self)

U nlabelled  rewrites

[ou l]
(Pi,0) w hen

Pi =  (P 2.a,ann,flag,_,_) A 
P2 =  ( f ,n il,n il,N f ,_ _ )

-  (Pi.O)
then
Pi !! rewrite(f,a1ann,flag)

[ou2]
(Pi,0) w hen

Pi =  (f>P2lann,flag,_,_) A 
P2 =  (a ,n il,n il,N f,_ ,_ )

-  (Pi.O)
then
Pi !! rewrite(f,a,ann,flag)
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F ix e d  p o in t  co m b in a to r

[oY]
(_,0) given reduce(Pi) when 

Pi =  (Y.arg,nil,
-  <Pi.O)

then
Pi ! rewrite(arg,Pi,nil,Notnf) ; 
self !! reduce(Px)

D ire c to rs

[o\l]
(_,0) given reduce(Pi) when 

Pi = (P2 ,argl,nil,__,_) A 
P2 =  (op, arg2,\::ann,
-  (Pi.O)

then
Pi ! rewrite(op,newpacket,ann,Notnf) ;
se lf!! reduce(Pi)
w here
newpacket = new(Packet,(arg2,argl, nil, Notnf, Inactive, nil))

[°\2]
(_,0) given reduce(Pi) when 

Pi =  (P2,argl,nil,___) A 
P2 =  (op,l,\::ann,_,_,_)
-  (Pi.O)

then
Pi ! rewnte(op,argl,ann,Notnf) ; 
self !! reduce(Pi)

[o / l]
(_,0) given reduce(Pi) when 

Pi =  (P2, a r g l , n i l , A  
 ̂ P2 =  (op,arg2,/::ann,

-  (Pi.O)
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th e n
Pi ! rewrite(newpacket,arg2,ann,Notnf) ;
s e l f ! !  reduce(Pj)
where
newpacket =  n e w (P a ck e t,(o p ,a rg l,n il,N o tn f,In a ctive ,n il))

[o/2]
(_,0) g iv e n  reduce(Pj) w h e n  

Pi =  (P 2,o p ,n il,_,_,_) A 
P2 =  (l,arg,/::ann,

-  ( P i . O )
th e n
Pi ! rewrite(op,arg,ann,Notnf) ; 
s e l f ! !  reduce(Pi)

[°A1]
(_,0) g iv e n  reduce(Pi) w h e n  

Pi =  ( P2la r g , n i l , A  
P2 =  (op,arg2,A::d,

-  (Pi.O)
th e n
Pi ! rewrite(newop,newarg,d,Notnf) ;
s e lf  !! reduce(Pi)
where
newop =  new (Packet, (op, arg, n il , Notnf, Inactive, n i l ) )  
newarg =  new (P acket,(a rg2 ,a rg ,n il,N otnf,Inactive ,n il))

[oA2]
(_,0) g iv e n  reduce(Pi) w h e n  

Pi =  (P 2 .arg l ,n i l ,_,_,_) A 
P2 =  (I,a rg2 ,A ::d ,_,_,_)

-  ( P i . O )
th e n
Pi ! rew rite(argl,newarg,d,Notnf) ;
s e lf  !! reduce(Pi)
where
newarg =  new (P ack e t,(a rg 2 ,a rg l,n il,N o tn f,In a ctive ,n il))

[o A 3 ]

(_,0) g iv e n  reduce(Pi) w h e n  
Pi =  (P i,a rg ,n il,_,_,_) A 
P2 =  (op,l,A::d,_,_,_)
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<Pi.O>
then
Pi ! rewrite(newop,arg,d,Notnf) ;
s e lf  !! reduce(Pi)
where
newop =  new (P ack et,(o p ,a rg ,n il,N o tn f1lnactive ,n il))

[o A 4 ]
(_,0) g iv e n  reduce(Pi) w h e n  

P i =  (P 2 ,a rg,n il,__,_) A 

P2 =  ( I . I .A -d ,

-  <Pi.0>
then
Pi ! rewrite(arg,arg,d,f\lotnf) ; 
s e lf  !! reduce(Pi)

[o-j
(_,0) g iv e n  reduce(P i) w h e n  

Pi =  (P 2. a r g , n i l , A 

P2 =  (op,arg,-::d ,

-  <Px.O) 
then
Pi ! rew rite(op,arg,d,Notnf) ; 
s e l f ! !  reduce(Pi)

[o # ]
(_,0) g iv e n  reduce(Pi) w h e n  

P i =  (op ,arg,# ::d ,n ,_ ,_) A 

ispacket(arg)

-  <Pi.O)
then
(arg !! fire ||
Pi ! rewrite(op,arg,d,n)) ; 
s e lf  !! reduce(Pi)

Context free parallelism

[o P ]
(_,0) g iv e n  reduce(Pi) w h e n  

P i =  (P 2,P3,nil,n,_,_) A
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P2 =  ( P , f , A  

ispacket(P3)

-> (Pi.O)
then
(P3 !! fire ||
Pi ! rewrite(f,P3ln i l ,n ) )  ; 
s e lf  !! reduce(P!)

Monadic strict primitive operators

[monopl]
(_,0) g iv e n  reduce(Pi) w h e n  

Px =  ( o p , n , n i l , A  
isJnteger(n) Aarity(op) =  1

-  <->
then
Pi ! rewrite(op n ,n il ,n il ,N f )

[monop2]
(_,0) g iv e n  reduce(Pi) w h e n  

Pi =  ( op, P2, n i l , A  
P2 =  Notnf,_,_)

-  (Pi.l)
then
P2 !! need(self)

Dyadic boolean operators

[ b o o l l ]
(_,0) g iv e n  reduce(Pi) w h e n  

P i =  (P 2.y ,n iU _ ,_ )  A 
P2 =  ( o p , x , n i l , A  
is_packet(x) A 
op =  A N D  or op - OR



[a n d l]
(_,0) g iv e n  reduce(Pi) w h e n  

Pi =  (P 2, y , n i l , A 
P2 =  (op,x ,n i l , A 
op =  A N D  A x  =  T R U E

-  { - )
then
Pi ! re w rite (y ,n il,n il,N o tn f) ; 
s e lf  !! reduce(Pi)

[° r l]
(_,0) g iv e n  reduce(P!) w h e n  

P i =  (P 2,y.n il,__,_) A 
P2 =  (op,x ,n i l , A 

op =  OR  A x  =  FALSE

-  ( ->
then
Pi ! re w rite (y ,n il,n il,N o tn f) ; 
s e l f ! !  reduce(Pi)

[and2]
(_,0) g iv e n  reduce(Pi) w h e n  

P i =  (P 2,y,n il,__,_) A 
P2 =  (op,x,n i l , A 
op =  A N D  Ax =  FALSE

-  <->
then
Pi ! re w rite (FA L S E ,n il,n il,N o tn f) 
s e l f ! !  reduce(Pi)

[°r2]
(_,0) g iv e n  reduce(Pi) w h e n  

Pi =  (P 2, y , n i l , A 
P2 =  ( o p , x , n i l , A 
op =  OR Ax =  T R U E

-> ( - )  
then
P i ! re w rite (T R U E ,n il,n il,N o tn f) 
s e l f ! !  reduce(Pi)

[IFl]
(_,0) g iv e n  reduce(P l) w h e n
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Pi =  (P2. b , n i l , A 

P2 =  (P3. a , n i l , A
P3 =  (IF,P4 ,nilI_,_,_) A
¡ S _ p 3 € k e ^ p 4 4 ) )

then
P4 !! need(self)

[IF2]
( - .0) given reduce(Pl) when 

Pi = (P2, b , n i l , A 
P2 =  (P3, a , n i l , A 
P3 =  (IF ,F A L S E ,n il ,A 
is_packet(P4)
-  ( - )

then
Pi ! rewrite(b,nil,nil,Notnf) ; 
self!! reduce(Pi)

[IF 2]
(-.0) given reduce(Pl) w hen 

Pi =  (P2, b , n i l , A 
P2 =  (P3,a,nil,__,_) A 
P3 =  ( I F , T R U E , n i l , A 
is_packet(P4)
—> (-,-) 

then
Pi ! re w rite (a ,n il,n il,N o tn f) ; 
s e l f ! !  reduce(Pi)

Dyadic strict primitive operators

[dyopl]
(_,0) g iv e n  reduce(Pi) w h e n  

Pi =  ( P2, n , n i l , A  
P2 =  (op ,m ,n il,__,_) A 
isJnteger(m ) A isJnteger(n) A 
arity(op) =  2

-  ( - )
then
Pi ! rewrite(op m n ,n il,n il ,N f )
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[dyop2]
(_,0 ) g iv e n  r e d u c e ^ )  w h e n  

Pi =  (P 2 ln1n il ,_ _ 1_) A 
P2 =  (op ,P 3 , n i l , A 
P3 =  (_,_,_,Notnf,_,_) A 
isJnteger(n)

-  ( - 1)
th e n
P3 !! need(self)

[dyop3] ^
(_,0) given reduce(P!) when

P i  = ( P 2, P 3,n i l , A  
P 2 =  ( o p , n , n i l , A  
P 3 =  (_,__,Notnf,_,_) A 
isJnteger(n)
-  ( - 1)

then
P3 !! need(self)

[dyop4]
(_,0) g iv e n  reduce(Pi) w h e n  

Pi =  (P 2 .P 4 .n il ._ _ _ )  A 
P2 =  (op ,P 3 ,n il ,_ _ _ )  A 
P3 =  (_ _ _ N o tn f,_ _ ) A 
P4 =  (_ _ _ N o tn f,_ _ )

-  (-.2)
th e n
P3 !! need(self) ||
P4 !! need(self)

Primitives

[IFO]
(_0 ) g iv e n  reduce(Pi) w h e n  

Pi =  (P 2 .a rg2 ,n il,___ ) A 
P2 =  ( IF ,a rg l,n il ,_ _ _ )  A 
is_bool(argl)

-  ( - 0)
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th e n
Pi ! rewrite(K-2-n,arg2,nil,f\lotnf)
s e lf ! !  reduce(Pi)
where
n =  0, if argl =  True 
n =  1, if arg l =  False

[IF1]
(_,0) g iv e n  reduce(Pi) w h e n  

Pi =  (P 2 , a r g 2 , n i l , A 

P2 =  ( I F , a r g l , n i l , A 
is_packet(argl)

-  <p .. i >
th e n
a rg l !! need(self)

[SEQ1]
(_,0) g iv e n  reduce(Pi) w h e n  

Pi =  (P 2 , a r g 2 , n i l , A 
P2 =  ( S E Q , a r g l , n i l , A 

Notnf,_,_) argl

-  <Pi.l)
th e n
arg l !! need(self)

[SEQ2]
(_,0) g iv e n  reduce(Pi) w h e n  

P i =  (P 2 ,a rg2 ,n il,___) A 
P2 =  ( S E Q , a r g l , n i l , w h e r e  
not ¡s.packet(argl)

( - - 0 )
th e n
Pi ! re w rite (a rg2 ,n il,n il,N otnf) ; 
s e l f ! !  re d u c e ^ )

[STRICT]
(_,0) g iv e n  reduce(Pj) w h e n  

Pi =  (P 2 , a r g 2 , n i l , A 
P2 =  ( S T R I C T , a r g l , n i l , A 

(_,_,_,Notnf,_,_) arg2

-  (Pi-1)
th e n
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a rg l !! need(self)

[STRICT]
(_,0) g iv e n  reduce(Pi) w h e n  

Pi =  (P 2 ,a r g 2 , n i l , A 

P2 =  ( S T R I C T , a r g l , n i l , w h e n  
not is_packet(arg2 )

-  (-.0)
then
Pi ! rew rite(argl,arg2 ,n il,N o tn f) 
s e l f ! !  reduce(Pi)

[ABORT]
(_,0) g iv e n  reduce(Pi) w h e n  

P i =  ( A B O R T , x , A 

x  ±  n i l  
—» s e lf  

th e n
Pi ! re w rite (A B O R T ,n il,n il,n f)

Selection

[K-n]
(_,0) g iv e n  reduce(Pi) w h e n  

P i =  ( K - n , i , n i l , A 

¡s_integer(n)

-  (Pi.O)
then
Pi ! re w rite (K -n -i,n il,n il,N o tn f) 
s e l f ! !  reduce(Pi)

[K-n]
(_,0) g iv e n  reduce(Pi) w h e n  

P i =  ( K - n , p , A 

is_packet(p)

-  (-.1)
then
p !! need(self)
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[ K -n - i ]
(_,0) g iv e n  reduce(pn) w h e n  

Pn =  (p „—1 |X„—i . n i l , _) A 
P n -l  =  (Pn-2.Xn-2.nil,-,-) A

Po =  (K-n-i, Xo, n il,

-  <->
th e n
pn ! rew rite (x,,n il,n il,l\ lo tnf) ; 
s e l f ! !  reduce(p„)

Data constructors

[PACK-n]
(_,0) g iv e n  reduce(Pi) w h e n

Pi =  (P A C K -n ,d _____ ) A

isJnteger(d)

-  ( ->
then
Pi ! re w rite (P A C K -n -d ,n il,n il,N f)

[PACK-n]
(_,0) g iv e n  reduce(Pi) w h e n  

Pi =  ( P A C K - n , p , A 

¡s_packet(p)

-  ( - 1 )
then
Pi !! need(self)

[SEL-n]
(_,0) g iv e n  reduce(Pi) w h e n  

Pi =  ( S E L - n , i , n i l , A 

isJnteger(i)

-  ( - )
then
Pi ! re w rite (S E L -n -i,n il,n il,N f)

[SEL-n]
(_,0) g iv e n  reduce(Pi) w h e n  

Pi =  ( S E L - n , p , n i l , A 

¡s_packet(p)
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( - .1 )
then
p !! need(self)

[SEL-n-i]
(_,0) given reduce(Pi) when 

Pi =  (SEL-n-i,s,nil,_,_,_) A 
is_struct(s)
- >  ( - 0 ) ' 

then
Pi ! rewrite(x_i,nil,nil,Notnf) ;
self !! reduce(Pi)
where
s =  (d|x)

[SEL-n-i]
(_,0) given reduce(Pi) when

Pi =  (S E L -n - i ,p ,n i l ,A 
is_packet(p)
-  ( - 1)

then
p !! need(self)

[UNPACK-n]
(_,0) given reduce(Pi) when 

Pi =  (P2, e , n i l , A 
P2 =  (UNPACK-n, f, nil,
-  <Pi.0>

then
Pi ! rewrite(pn_2,sn_i,nil,Notnf) ;
se lf!! reduce(Pi)
where
Sj =  new(Packet,(SEL-n-j,e,nil,Notnf,Inactive,nil)) 
p0 =  new(Packet,(f,So,nil,Notnf,Inactive,nil))
Pj = new(Packet,(p_,_i,Sj,nil,Notnf,Inactive,nil))

[UNPACK-1]
(_,0) given reduce(Pi) when 

Pi =  (P2,e,nil,_,_,_) A 
(UNPACK-1, f, nil, _.,_)
-  (Pi-0)

then
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Pi ! rew rite (f,p ,n il,N otn f) ; ;
self !! reduce(P!)
where
p =  n e w (P a ck e t,(S E L -l-0 ,e ,n il,N o tn f,In a ctive ,n il))

[UNPACK !-n]
(_,0) given reduce(Pi) when 

Pi =  <P2,(d|x),nil,__t_) A  

P2 = (UNPACK!-n,f,nil,_,_,_)
-»  (nodeniO) 

then
Pi ! rewrite(f,Xo,nil,Notnf) ; 
self !! reduce(node„) 
where
nodei = new(Packet,(Pi,Xi,nil,Notnf,Inactive,nil)) 
nodej = new(Packet,(nodej_i,Xj_i,nil,Notnf,Inactive,nil))

[CASE-r]
(_,0) given reduce(Pi) when 

Pi =  (CASE-r,a,nil,_,_,_)
-

then
Pi ! rew rite (D C A SE -r,(_|a ),n il,N f)

[TAG]
( - .0) given reduce(Pi) when 

Pi =  (TAG,s,nil,__,_) A  

is_struct(s)
-

then
Pi ! rewrite(d,nil,nil,Nf) 
where 
s =  (d|x)

[TAG]
(_,0) given reduce(Pi) when 

Pi =  (TAG,p , nil,_,_,_) A  

is_packet(p)
-  ( - 1)

then
p !! need(self)
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B.2 Transformed specification

The I combinator

[ol]

( - 0 ) given reduce(Pi) when
Pi = (I, P2,
-  (Pi.O)

then
Pi !! rewrite(P2,nil,nil,Notnf) ; 
self ! reduce(Pi)

Selection

[K-l-O]
(_,0) given reduce(Pi) when 

Px =  (K-1-0,argl,_,
-  <Pi.0>

then
Pi ! rewrite(argl,nil,nil,Nf) ; 
self !! reduce(Pi)

[K-2-0]
(_,0) given reduce(Pi) when 

Pi =  (P2, x , n i l , A  
P2 =  (K-2-0,a,nil,
->  ( - 0)

then
Pi ! rewrite(a,nil,nil,Notnf) ; 
self !! reduce(Pi)

[K-n-O]
(_,0) given reduce(Pi) when

Pi =  (P2,x____) A
P2 =  (K -n -0 ,a ,

-  (Pi.0)
then
Pi ! re w rite (K -(n -l)-0 ,a ,n iI,N o tn f) ; 
self !! reduce(Pi)
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[ K - n - i ]
(_,0) g iv e n  reduce(Pi) w h e n  

Pi =  (K -n -i,

-> (->  
then
Pi ! rewrite(K-(n-l)-(i-l),nil,nil,Nf)

Data Construction/Selection

[PACK-n-d]
(_,0) g iv e n  reduce(Pi) w h e n  

P j =  (P A C K -n -d ,a_____ )

-  (->-)
then
Pi ! re w rite (S T R U C T -n -d ,a ,n il,n il,N f)

[STRUCT-n-(n-l)]
(_,0) g iv e n  reduce(Pi) w h e n  

P i =  ( P i , a , n i l , A 
P2 =  (S T R U C T -n -(n -l) ,(d | x ) ,n il ,

then
Pi ! re w rite (S T R U C T -n (d | x+ -| -a ),n il,n il,N f)

[STRUCT-n-n]
(_,0) g iv e n  reduce(Pi) w h e n  

Pi =  (P 2, a , n i l , A 
P2 =  (S T R U C T -n -n ,(d | x ),n il,

th e n
Pi ! rew rite ((d|x),a ,n il,N f)

[STRUCT-n-i]
(_,0) g iv e n  reduce(Pi) w h e n  

Pi =  (P 2,a,n il,__,_) A 
P2 =  (S T R U C T -n -i,(d | x ) ,n il,

, -  ( - )
th e n

174



Pa ! re w r ite (S T R U C T -n -( i+ l) ,(d | x -f -fa ) ,n il ,N f )

[DCASE-O]
(_,0) g iv e n  reduce(Pa) w h e n  

Pa =  ( P2, ( d | y ) , n i l , A  
P2 =  (D CA SE -O , (_ ,x), n il ,

-  (Pi.O)
■ then

Pa ! rew rite(x_d ,n il,n il,l\ lotnf) ; 
s e lf  !! reduce(Pa)

[DCASE-n]
(_,0) g iv e n  reduce(Pa) w h e n  

Pi =  (P 2 . a . n i l , A  
P2 =  (D C A S E -n ,(_|x),n il,

-  ( - 0 )
then
Pa ! re w rite (D C A S E -(n -l) ,(x + -) -a ),n il,N o tn f) ; 
s e lf  !! reduce(Pa)
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