IT City Research Online
UNIVEREIST;]OggLfNDON

City, University of London Institutional Repository

Citation: Chelsom, J.J.L. (1990). The interpretation of data in intensive care medicine: An
application of knowledge-based techniques. (Unpublished Doctoral thesis, City, University of
London)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/28493/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

THE INTERPRETATION OF DATA
IN INTENSIVE CARE MEDICINE:
AN APPLICATION OF KNOWLEDGE-BASED TECHNIQUES

JOHN JAMES LEONARD CHELSOM

Thesis submitted for the degree of Doctor of Philosophy

City University
Research Centre for Measurement and Information in Medicine

January 1990

CONTENTS

List of Tables

List of Figures

Acknowledgements

Declaration

Abstract

PART ONE
1.

Introduction

11
12
13

Background
Objectives
Outline of the Thesis

Knowledge-Based Systems in Medicine

21
2.2

2.3

2.4

2.5

Methods of Knowledge Representation and Control

31
3.2

3.3

3.4

Introduction

Early Systems

2.2.2 The MYCIN System .

2.2.3 CASNET

2.2.4 The Present lllness Program
2.2.5 INTERNIST-1

The Second Generation

2.3.1 Introduction

2.3.2 ABEL

2.3.3 ATTENDING

2.3.4 CADIAG-2

2.3.5 A Set Covering Model of Diagnosis
The Third Generation

2.4.1 Introduction

2.4.2 MUNIN
243 CHECK
Summary

Introduction

Rule-Based Representation
3.2.1 Background

3.2.2 Structure

3.2.3 Representation

3.24 Control

3.25 Summary
Frame-Based Representation
3.3.1 Background

3.3.2 Structure

3.3.3 Control

3.3.4 Summary

Semantic Networks

3.4.1 Background

3.4.2 Reasoning in a Semantic Network
3.4.3 Summary

10

11

14
15

16
16
18
18
23
26
29
31
31
33
35
37
38
41
41
42
43
46

47
47
48
48
48
49
50
53
54
54
54
55
56
56
56
56
59

PART TWO

4.

3.5

3.6

3.7

3.8

3.9

3.10

The Blackboard Architecture
3.5.1 Origins
3.5.2 The Hearsay-1l System
3.5.3 The HASP Project
3.5.4 Multiple Blackboard Panels
3.5.,5 Generalization
3.5.6 Summary
Data Classification
3.6.1 Introduction
3.6.2 Interval Classification
3.6.3 Fuzzy Set Theory for Data Classification
3.6.4 Classification Using Probability Distributions
3.6.5 Summary
Treatment of Uncertainty
3.7.1 Introduction
3.7.2 MYCIN's Certainty Factor Model
3.7.3 Bayesian Methods
3.7.3.1 Introduction
3.1.32 Bayesian Updating in a Hierarchical
Hypothesis Space
3.7.4 The Dempster-Shafer Theory
3.7.5 Possibility Theory
3.7.6 Discussion
Explanation and Query Handling
3.8.1 Introduction
3.8.2 Types of Query for Knowledge-Based Systems
3.8.3 Understanding Queries
3.8.3.1 Introduction
3.8.3.2 Handling Queries with PROLOG
3.8.4 Generating Textual Output
3.85 Summary
Knowledge Acquisition
3.9.1 Introduction
3.9.2 Knowledge Elicitation Techniques
3.9.2.1 Introduction
3.9.22 Interview Strategies
3.9.2.3 Observational Strategies
3.9.3 Computer Aids in Knowledge Acquisition
3.9.3.1 Introduction
3.9.3.2 Knowledge Base Editors and Browsers
3.9.3.3 Domain Dependent Knowldege Acquisition Tools
3.9.3.4 Domain Independent Knowledge Acquisition Tools
3.9.4 Summaiy
Summary

The Evolution of a Knowledge-Based System

4.1
4.2

4.3

Introduction

An Initial Phase of KnowledgeAcquisition

4.2.1 Introduction

4.2.2 Structured Interview Sessions

4.2.3 Summary

Design of a Knowledge-B asedSystem for Laboratory Data

Interpretation

4.3.2 The Blackboard Diagnostic Module

4.3.3 A Method for Updating Belief in a Hierarchy of Hypotheses
4.3.3.1 Introduction

59
59
60
63
65
66
68
69
69
69
70
74
78
78
78
79
81
81

82
84
86
87
89
89
90
92
92
93
94
95
95
95
97
97
98
99
101
101
102
103
105
105
106

107
107
108
108
110
113

114
115
117
117

4.3.32 A Method for Evidence Handling
4.3.3.3 Discussion
4.3.4 Laboratory Data as Evidence
4.4 FRAMEBUILDER: A Knowledge Editing Environment
4.4.1 Introduction
4.4.2 Overview of FRAMEBUILDER
4.4.3 Representation of Primitive Objects
4.4.4 Representation of a Structured Hypothesis Space
4.45 Frame Representation
446 Summary
4.5 Knowledge Acquisition Using FRAMEBUILDER
4.6 Summary

5. Implementation of a Knowledge-Based System
51 Introduction
5.2 Blackboard Representation and Control
53 Patient Data
5.3.1 Data Structures
5.3.2 Data Transfer From Database to Blackboard
5.3.3 Truth Maintenance
5.3.4 Data Derivation
5.3.5 Data Tranfer From Blackboard to Database
5.3.6 Data Classification
5.4 Handling Evidence
54.1 Overview
5.4.2 Signs/Symptoms and History
5.4.3 Laboratory Data Variables as Evidence
5.4.4 Relationships as Evidence
55 Combining Hypotheses
5.6 Diagnosis Critique
5.7 Dialogue Interaction
5.7.1 Introduction
5.7.2 Textual Presentation of Diagnoses
5.7.3 Handling User Queries
5.7.3.1 Overview
5.1.32 Information Requests
5.7.3.3 Suppositions
5.7.3.4 Explanations
5.7.3.5 Finding The Effect of Evidence
5.8 Summary
PART THREE
6. Evaluation of a Knowledge-Based System

6.1 Introduction

6.2 Evaluation in Clinical Practice

6.3 Evaluation of Prototype Systems
6.3.1 Introduction
6.3.2 Selecting Test Cases
6.3.3 Comparison With a Gold Standard
6.3.4 Expert Critique
6.3.5 Measuring Diagnostic Accuracy
6.3.6 Discussion

6.4 Bench Tests
6.4.1 Introduction
6.4.2 Performance With Laboratory Data
6.4.3 Performance With Incomplete Data
6.4.4 AnExample Dialogue

118
121
122
124
124
125
126
131
133
137
138
141

142
142
144
148
148
149
150
151
152
152
153
153
155
156
157
159
161
163
163
163
166
166
167
167
169
171
172

173
173
173
175
175
177
177
178
179
181
182
182
183
184
186

6.4.5 Evaluation of System Speed

6.5 Evaluation of a Knowledge-Based System for Blood Gas Analysis
6.5.1 Introduction
6.5.2 Analysis of Results
6.6 Summary
7. Evaluation in a Second Application Domain
7.1 Introduction
7.2 Knowledge Acquisition
7.2.1 Introduction
7.2.2 First Session
7.2.3 Second Session
7.2.4 Third Session
7.3 Evaluation
7.4 Discussion
7.5 Summary

8. Conclusions

References

APPENDICES

l. Blood Gas Analysis and Acid-Base Balance

All
Al2
Al3
Al4
Al5

Introduction

Physiology

Data Measurements in Blood Gas Analysis
Acid-Base Disorders

Bibliography

1. Computer-Aided Interpretation of Blood Gas Data

A2.1
A2.2
A2.3
A2.4
A2.5
A2.6

Introduction

Early Systems
Algorithm-Based Systems
Nomogram-Based Systems
Intelligent Systems
Summary

I11. Knowledge Base for Blood Gas Interpretation

V. Evaluation of the Blood Gas System: Case Data

V. Lipid
A5.1
Ab5.2
Ab5.3

Physiology and Hyperlipidaemia
Physiology

Measurements and Observations
Hyperlipidaemia

VI. Knowledge Base for Hyperlipidaemia

VI1l. Evaluation of the Hyperlipidaemia System: Case Data

VIIl. An Overview of PROLOG

A8.1
A8.2

Foundations
Programming in PROLOG

IX. Program Listings

188
189
189
190
195

196
196
196
196
197
199
200
201
203
204

205

208

224
224
224
226
227
228

229
229
230
231
231
232
233

234
238
246
246
247
247
249
251
257
257
258

261

LIST OF TABLES

Table 2.1
Table 2.2
Table 2.3
Table 3.1
Table 3.2
Table 3.3
Table 4.1
Table 4.2
Table 4.3
Table 4.4
Table 5.1
Table 5.2
Table 5.3
Table 5.4
Table 5.5
Table 5.6
Table 5.7
Table 5.8
Table 6.1
Table 6.2
Table 6.3
Table 6.4
Table 6.5
Table 6.6
Table 6.7
Table 6.8
Table 7.1
Table 7.2
Table 7.3
Table 7.4
Table A4.1
Table A7.1

Translation of Linguistic Terms in CADIAG-2

Example Sets of Manifestations and Causes
Building M+, SCOPE and FOCUS

Conceptual Categories of Questions

Query Types in EMYCIN

Questions for Knowledge Acquisition
Relationships for Data Derivation

Compensation Limits

Signs and Symptoms

Probability Assignments for Signs and Symptoms
Knowledge Sources in the Diagnostic Module
Translation of Numerical Belief Measures
Forms of Differential Diagnosis List

Rules for the Output of Diagnoses

Information Requests

Suppositions

Explanation Requests

Requesting the Effect of Evidence

Performance Indices in the Abdominal Pain System
The Evaluation of PUFF

Evaluation of Some Knowledge-Based Systems
Timing of Diagnosis on Ten Test Cases
Summary of Diagnoses Made

Agreement on Diagnosis

Development Expert as Gold Standard

Senior Clinician as Gold Standard

Disease States for Secondary Hyperlipidaemia
Summary of Signs and Symptoms for Hyperlipidaemia
Summary of Diagnoses for Hyperlipidaemia
Breakdown of Results by Diagnosis

Summary of Diagnoses for Acid-Base Balance
Summary of Diagnoses for Hyperlipidaemia

LIST OF FIGURES

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9
Figure 2.10
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10

General Model of a Knowledge-Based System
Overview of MYCIN

The MYCIN Context Tree

A Three-Level Network in CASNET

The Structure of a Frame in PIP

Property Types in the INTERNIST-1 Knowledge-Base
The Three-Level Disease Description in ABEL

An Augmented Decision Network in ATTENDING
MUNIN's Graphical Interface

A Causal Network in CHECK

A Rule-Based System

The Structured Representation of a Rule

The Rete Match Algorithm

A Rete Network for Checking Premise Conditions
A Frame Taxonomy

A Simple Semantic Network

The Proposition Node for the Reaction Between H20 and CO2

A Partitioned Network Containing Figure 3.7 as a Space
Demons in Pandemonium
Blackboard Levels and Knowledge Sources in Hearsay |l

38

39

40

90

91

98
138
139
140
140
147
164
164
165
167
167
169
171
174
178
182
188
190
191
194
194
197
199
202
203
243
255

17
19
21
24
27
29
34
36
43
45
49
50
52
53
54
57
57
58
60
61

The Structure of Hearsay |1
The HASP/SIAP System
Three-Interval Classification Using 95% Confidence Limits
Seven Interval Classsification of pH
Membership Functions for Low, Normal and High pH
a) Using Zadeh's Functions
b) Using a Simple Ramp Function
Increasing the Fuzzy Sets for Classification
a) Defining Further Ramp Functions
b) Using Linguistic Hedges
Probability Distributions in MUNIN
Inter- and Intra-Individual Differences
Probability That Observed Value is Normal
A Hierarchical Hypothesis Space
A Hierarchy of Subsets
Handling a Dialogue Between Computer and Clinician
A Parse Tree
PROLOG Grammar Rules
PROLOG Qauses Translated From Grammar Rules
Definite Clasue Grammar Extension
Knowledge-Based System Development Cycle
Repertory Grids
a) Simple Yes/No Rating
b) Rating on a Scale of 1-10
¢) Rating Based on a Ranking Scheme
Taxonomies of Acid-Base and Hypoxaemic State Disorders
Preliminary Design for a Knowledge-Based System
Structure of the First Interview Session
Structure of the Second Interview Session
A Simplified Classification of Disorders
The Third and Fourth Interview Sessions
The Fifth Interview Session
Design of a Knowledge-Based System: Overall Structure
Design of the Blackboard Diagnostic Module
A Hierarchy of Hypotheses with Assigned Evidence
The Probability of a High, Normal or Low Value
Comparison with Tango's Method of Data Classification
The Structure of FRAMEBUILDER
FRAMEBUILDER as a Frame-Based Organization of Knowledge
The Main Command Line in FRAMEBUILDER
Primitive Data Objects: Laboratory Data
a) FRAMEBUILDER Display
b) PROLOG Representation
Primitive Data Objects: Data Derivation Relationships
a) FRAMEBUILDER Display
b) PROLOG Representation
Primitive Data Objects: Signs and Symptoms
a) FRAMEBUILDER Display
b) PROLOG Representation
Primitive Data Objects: Patient History
a) FRAMEBUILDER Display
b) PROLOG Representation
Primitive Data Objects: Disorder Classes
a) FRAMEBUILDER Display
b) PROLOG Representation
The Frame Hierarchy
a) FRAMEBUILDER Display
b) PROLOG Representation

62
64
70
70
72

74

75
76
7
82
85
89
92
93
93
94
96
104

108
109
110
m
112
112
113
115
116
119
123
123
125
126
126
127

128

129

130

131

132

Figure 4.22

Figure 4.23

Figure 4.24

Figure 4.25

Figure 4.26
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9
Figure 5.10
Figure 5.11
Figure 5.12
Figure 5.13
Figure 5.14
Figure 5.15
Figure5.16
Figure 5.17
Figure 5.18
Figure 5.19
Figure 5.20
Figure 5.21
Figure 5.22
Figure 5.23
Figure 5.24
Figure 5.25
Figure 5.26
Figure 6.1
Figure 6.2
Figure 7.1
Figure 7.2
Figure 7.3
Figure 7.4
Figure 7.5
Figure 7.6
Figure A8.1

Frame Instances: Laboratory Data

a) FRAMEBUILDER Display

b) PROLOG Representation
Frame Instances: Data Relationships

a) FRAMEBUILDER Display

b) PROLOG Representation
Frame Instances: Signs and Symptoms

a) FRAMEBUILDER Display

b) PROLOG Representation
Frame Instances: Patient History

a) FRAMEBUILDER Display

b) PROLOG Representation
The Revised Hypothesis Hierarchy for Acid-Base Disorders
The Implemented Design of the Blackboard Diagnostic Module
PROLOG Representation of Blackboard Data Entries
PROLOG Representation of Knowledge Sources
The Control Cycle
Control Cycle with Improved Efficiency
PROLOG Representation of Patient Data
Transfer of Data Between Files, Database and Blackboard
Mapping of Data From Database to Blackboard
Pre-processing for Data Derivation
Data Mapping Achieved by derive-data Knowledge Source
Mapping of Data From Blackboard to Database
Data Mapping Achieved by classify_data Knowledge Source
Pre-processing For Hypothesis Hierarchies
Algorithm for Evidence Handlers
Finding P(elhi) For Diseases and Disorders Added as History
Calculation of P(elhi) for Classified Data Variables
Pre-processing for Relationships
Algorithm for Calculating P(elhi) for Relationship Evidence
Algorithm for sum-hypothesis Knowledge Source
Combining Hypotheses at the sub-diagnosis Level
Action of predict_disorders Knowledge Source
Action the critique_diagnosis Knowledge Source
From Qutput Data Structures to Text
Algorithm for Processing Suppositions
Algorithm for Explaining a Diagnosis
Finding the Updating Factor for a General Hypothesis Node
Diagnosis Based on a Single Laboratory Data Variable
Form for Gathering Evaluation Results
Hypothesis Hierarchy for Hyperlipidaemia
Hierarchies for Cholesterol and Triglyceride Levels
Blood Pressure Level
Coronary Risk Factor
Elicitation Grid for Family History
Elicitation Grid for IHD/PVD
A Simple PROLOG Program

133

134

135

136

139
142
143
144
145
146
148
149
150
151
151
152
153
154
154
155
156
157
158
159
160
161
162
163
168
170
171
183
189
197
198
199
200
200
201
258

ACKNOWLEDGEMENTS

I would like to acknowledge the following people who have help with this work over the

last three years.

My supervisors at City University were Dr Tim Ellis and Prof Ewart Carson who sparked

my initial interest and kept me going in the right direction.

At the Royal Free Hospital, Dr Derek Cramp, Dr Bob Simons, Dominic Cox and other
members of the Department of Medical Informatics, the Department of Anaesthesiology and

the Intensive Care Unit.

Dr Paul Collinson from the Department of Clinical Biochemistry at the West Middlesex

Hospital provided his knowledge and great enthusiasm in the latter stages of the work.

All my friends and colleagues from the Department of Systems Science at City University
who made my time there so enjoyable. George Zarkadakis helped me with knowledge
acquisition at the Royal Free Hospital and Chris Stevens encouraged me to use the Apple
Macintosh. | owe special thanks to Ron Summers for his support and guidance throughout

the three years.

Finally, I would like to thank Pam Woodcock, my parents, family and friends who

supported me during long periods of absent mindedness and absent finances.

DECLARATION

I grant powers of discretion to the University Librarian to allow this thesis to be copied in
whole or in part without further reference to me. This permission covers only single copies

made for study purposes subject to normal conditions of acknowledgement.

ABSTRACT

Faced with a rapid increase in the amount of data available to form the basis of diagnostic
and management decisions in intensive care medicine, clinicians will require the assistance
of computers, and in particular knowledge-based systems, if they are to avoid being
overwhelmed. The development of knowledge-based systems in medicine can be traced
through three generations, starting with systems that reasoned in an ad hoc fashion using
surface level knowledge and progressing to systems that attempted to capture deeper
knowledge of their specialist domains. More recently, a third generation of systems has
emerged that use more rigorous methods of reasoning with surface level knowledge as a

platform for the application of deeper knowledge.

A knowledge-based system has been developed for the diagnosis of disorders of acid-base
balance and hypoxaemic state using a blackboard architecture to control processes of data
classification and belief updating in a hierarchy of hypotheses. To acquire the knowledge
for the diagnostic system, a knowledge editing environment was developed and the two
systems have been combined to form a set of domain independent tools. These tools were

applied to a second domain - the diagnosis of hypeiiipidaemia.

Evaluation studies performed in the domains of acid-base balance and hyperlipidaemia
have shown that the system performs at a level comparable to that of an expert clinician.

10

Cogito, ergo sum. Je ne pense pas donc je suis une moustache.
- René Descartes, - Jean-Paul Sartre,
Le Discours de la Méthode, 1637. La Nausée, 1938.

PART ONE

CHAPTER ONE
INTRODUCTION

1.1 Background

In 1950, Alan Turing posed the question Can computers think? - almost 40 years later the
question remains unanswered. In many respects Turing's question was a hypothetical one,
prompted more by intellectual curiosity than practical necessity and posed at a time when
debugging a computer program involved the removal of insects from electronic valves.
However, the search for a machine-based intelligence has assumed a greater significance in
recent years. The computational power of computers has risen to a level at which the
concept of a thinking machine has become a realistic possibility, and at the same time the
practical necessity of such a machine has begun to emerge. In the field of medicine, the
advent of the computer age has brought a remarkable change to clinical practice, with an
explosion in the number of data available to form the basis of diagnostic and management
decisions. Yet, in the face of an enormous increase in the complexity of the decisions he
must make, the average clinician continues to rely on his own powers of reasoning and
judgement and on the accumulation of knowledge across a wide range of disciplines. To
avoid being overwhelmed, it is becoming necessary for clinicians to look to computers for

assistance with medical decision making.

One of the earliest mechanical aids to differential diagnosis was a device called the Group
Symbol Associator, which resembled a slide-rule and was capable of matching patterns of
symptoms with diseases (Nash, 1954). Within a few years, pattern matching using digital
computers was being applied to medical diagnosis. In one system, a three symbol logic (1
true, O false, ? unknown) was used as a basis for matching strings of patient symptoms
with disease characteristics to reach a diagnosis and to make prognostic and therapeutic
suggestions (Paycha, 1958).

The possibility of using computers for medical diagnosis prompted an examination of the
foundations of the reasoning processes involved (Ledley & Lusted, 1959). Whilst the
importance of heuristic reasoning, based on the accumulated experience of the clinician,
was recognized, it was maintained that the basis of diagnosis is the logical combination of
medical knowledge and patient observations. The categorical statements of formal logic can
be augmented by the use of probabilistic reasoning. Once logic has reduced the number of

n

diagnostic hypotheses to a manageable size, probabilistic techniques can be used to find the
most likely diagnosis. Ledley & Lusted advocated the use of Bayes' Theorem to transform
conditional probabilities of symptoms given disease states (which they assumed to be
readily available) to the conditional probability of disease hypotheses given the symptoms

observed in a particular patient:

P(DIS) = PfDLPfSID)
P(S)

or in other words the probability of a disease hypothesis D, given a set of observed
symptoms S is equal to the a priori probability of D multiplied by the conditional
probability of the symptoms given the disease state divided by the apriori probability of the
symptoms. Following the lead of Ledley & Lusted, and utilizing ever more powerful
computers, many researchers began to investigate the application of Bayes' Theory and
logical pattern matching to problems of medical diagnosis (Croft, 1972).

By the late 1960s, the art of medicine had, in the clinical laboratory at least, been
transformed into a science. Some argued that all of clinical medicine could be similarly
transformed and that clinicians should operate within a framework based on mathematics
and logic (Card, 1970). Obviously computers would play an important role in such a
science of medicine. Others, though strongly advocating the use of scientific principles in
medicine, argued that an essential element of the art of medicine could not be captured by
the type of logic used in digital computing (Feinstein, 1967). Nevertheless, it was predicted
that computers would become increasingly prominent in clinical practice, taking over the
scientific aspects of data collection, diagnosis and therapy selection, and freeing clinicians

to devote more time to the art of medicine (Schwartz, 1970).

At the start of the 1970s it had become clear that the expert level of performance displayed
by a number of computer diagnosis programs would not be sufficient to bring about their
use in clinical practice; clinicians were not willing to adapt their reasoning processes, in
the manner envisaged by Card, so as to accommodate the computer. If computers were to
be used as diagnostic assistants then the reasoning processes that they employed would
have to be adapted to accommodate clinicians. Such thinking led to the development of a
new breed of knowledge-based diagnosis systems that attempted to model more closely the
way in which human clinicians reason, drawing on methods from the field of artificial
intelligence which had begun to emerge as a scientific discipline at about the same time as
Ledley and Lusted were analyzing the reasoning foundations of medicine. These systems
employed both categorical and probabilistic reasoning (Szolovits & Pauker, 1978) as had

been suggested by Ledley & Lusted, but were also able to explain the reasons for their

conclusions and advice in a manner that had not been possible with the systems based

purely on Bayes' Theory or pattern matching techniques.

The first generation of knowledge-based systems in medicine were intended primarily as
exploratory research projects and none were accepted for routine clinical use. However,
two systems developed with tools that emerged from the first generation systems - PUFF
(Aikins et al, 1983) and SPE (Weiss et al, 1981) - are currently in routine use and,
although there are still some major problems (not least in the legal implications of computer
diagnosis), such successes have led to renewed predictions that computers will play an
important role in medical diagnosis provided that they are made quick and easy to use (de
Dombal, 1987) and once the cost of the technology on which they are based falls to a level
affordable by the majority of clinicians (Kulikowski, 1988).

Nowhere has the explosion in measured data, caused by advances in technology, been
greater than in intensive care medicine. In one Intensive Care Unit (ICU), the number of
data measured routinely for each patient rose from 37 to 94 in the period from 1970 to
1986, with over 100 data being recorded in the initial phases of patient management (Price
& Mason, 1986). The technological solution to this problem has been the development of
patient data management systems such as the hospital-wide system called HELP at the
Latter-Day Saints Hospital in Utah (Warner et al, 1971) and the dedicated ICU system at
Kuopio, Finland (Kari et al, 1988). An obstacle to the widespread use of such systems has
been the length of time required to input data, but technological solutions are emerging in
the form of light pens, touch sensitive screens, hand-held remote keypads and customized

graphics tablets (Collinson et al, 1988).

The availablity of on-line data from a patient data management system provides the
opportunity to incorporate computer-based advice without the need for further interaction
between computer and clinician. Several systems have already been developed that work in
this way with the HELP system (Gardner et al, 1975; Sittig, 1987). Although methods of
multivariate cluster analysis are currently being applied to the type of quantitative data
available from patient data management systems or directly from laboratory equipment (eg
Coomans et al, 1984) it seems that they suffer the same weaknesses as the diagnostic

systems developed in the 1960s.

The requirement, therefore, is for knowledge-based systems that can reach an initial
diagnosis based only on quantitative laboratory data. Such systems are likely to be accepted
into routine clinical use, as has been demonstrated by PUFF and SPE which are interfaced
directly with laboratory equipment, the latter being incorporated on a microchip within the
equipment itself. Two of the early knowledge-based systems have also been applied to the
interpretation of laboratory data: INTERNIST-1 has demonstrated an accuracy of 50%

13

(16/32) in advising clinical pathologists on the results of laboratory tests (Myers, 1986) and
the EXPERT model has been used to construct a system for the interpretation of
biochemical and haematological tests in an out-patient clinic (van Lente et al, 1986). Neither
INTERNIST-1nor EXPERT were designed specifically for the interpretion of laboratory
data and the difficulties encountered with the implementations mentioned above suggest that
knowledge-based systems should be developed for the specific purpose of laboratory data
interpretation.

1.2 Objectives

This thesis describes the design, development and evaluation of a knowledge-based system
for diagnosis of physiological disorders based on the interpretation of laboratory data. The
intended users would be qualified clinicians, not expert in the specialist domain of the
system. Initially, disorders of acid-base balance and hypoxaemic state were chosen as the
target for diagnosis, based on the results of blood gas analysis (see Appendix I). This is an
area of medical diagnosis that causes considerable problems for non-expert clinicians and a
number of computer-aided diagnosis systems have already been developed, using
conventional programming techniques (see Appendix Il). In order to make the system as
portable as possible, it was developed on an IBM-compatable microcomputer which has the
facility to interface with laboratory equipment through an RS232 interface. Although the
system could be interfaced directly with an automatic blood gas analyser, this was seen to

be a technological problem and was not addressed in the context of this project.

The overall objective of this work was to apply knowledge-based techniques to the
interpretation of data in intensive care medicine through the development of a knowledge-
based system for the diagnosis of disorders of acid-base balance and hypoxaemic state.
Specific objectives were:

(D to make the system easy to use and to keep interaction between

computer and clinician to a minimum

(2) to combine different methods of knowledge representation and

reasoning within a single system

(3) to provide detailed explanation of the system's conclusions and of the

domain of acid-base balance in general

(4) to make the system's knowledge easily accessible to clinicians for

review and update

As will be described in Chapter 4, the utility of a general, domain independent, system for
diagnosis based on laboratory data was recognized during the early stages of the project.
As a result, the emphasis was placed on the creation of a set of domain independent tools

with which to achieve the initial objectives set out above.

14

1.3 Outline of the Thesis.

The thesis is divided into three parts: the first deals with background issues in the
development of a knowledge-based system for medical diagnosis, the second with the
design and implementation of the prototype of such a system and the third with the

evaluation of that prototype.

In Part One, Chapter 2 reviews some of the existing knowledge-based systems for medical
diagnosis, introducing the main issues involved in their design and development and
identifying the shortcomings that have prevented all but a few from entering into routine
clinical use. Chapter 3 discusses in more detail the relevant issues of knowledge
representation, manipulation and control introduced in Chapter 2 and concludes with an
analysis of the methods by which knowledge can be acquired for incorporation into a
knowledge-based system.

In the second part of the thesis, Chapter 4 describes the early phases of knowledge
acquisition in the domain of acid-base balance, explaining how the original objectives of the
project were modified to encompass the development of a set of domain independent tools.
The design is then presented for the first of these tools - a knowledge-based diagnostic
system, featuring a method of belief updating in a hierarchically organized set of
hypotheses. The second tool developed is a knowledge editing environment, called
FRAMEBUILDER, which allows a knowledge base to be created, browsed and edited
through a graphical interface. Chapter 4 concludes with a description of
FRAMEBUILDER, the structure of the knowledge base it creates and its use in knowledge
elicitation sessions at two hospitals. Chapter 5 focusses on the implementation of the
diagnostic system using an IBM compatable microcomputer and the logic programming
language PROLOG (these were also used for the implementation of FRAMEBUILDER).

Part Three deals with the evaluation of the tools described in Part Two. Chapter 6 reviews
some of the issues in the evaluation of knowledge-based systems in medicine and
concludes with a description of the evaluation of the diagnostic system described in
Chapters 4 and 5, applied to the diagnosis of disorders of acid-base balance and
hypoxaemic state. Chapter 7 describes the application of both tools to the development of a
knowledge-based system for the diagnosis of hyperlipidaemia and Chapter 8 presents the
conclusions drawn from the work. Background information about the medical domains of
acid-base balance and hyperlipidaemia, a review of computer-aided decision support
programs for the interpretation of blood-gas data, an overview of the logic programming
language PROLOG, details of the results of the system evaluation and listings of the suite

of programs developed are included as appendices.

15

CHAPTER TWO
KNOWLEDGE-BASED SYSTEMS FOR MEDICAL DIAGNOSIS
2.1 Introduction

This chapter reviews the evolution of knowledge-based systems in medicine and highlights
some of the interesting features of the landmark systems. Before embarking upon such a
review, it seems appropriate to define what is meant by the term knowledge-based system.
At the most fundamental level, a knowledge-based system is a knowledge-intensive
program that solves problems that normally require human expertise (Hayes- Roth, 1984).
Leaving aside arguments about the definition of the word knowledge, it would seem that a
great many computer programs could lay claim to the title of knowledge-based system on
the basis of this broad definition. There are, however, some characteristics common to all
knowledge-based systems which are not generally found in other computer programs,

regardless of how complex they may be. Knowledge-based systems...
...solve problems and operate in a role normally undertaken by a human expert
...generate and reason with symbolic descriptions of data

...reason in an opportunistic fashion, persuing goals and strategies relevant to a particular
situation, instead of following a predetermined reasoning path (however complex that
might be)

...explicitly represent knowledge about the domain in which they operate, as distinct from

the strategies for applying that knowledge.
...can function with uncertain or incomplete data

...can entertain multiple, possibly competing hypotheses and reach conclusions that may

not be categorically proven
...can explain their reasoning and justify their solutions.

Structurally, most medical knowledge-based systems can be viewed at some level of their
design along the lines shown in Figure 2.1.

It is clear from the characteristics listed above, that the computer programs developed in the
1960s for medical diagnosis were not knowledge-based systems in any respect other than
that they were performing tasks normally performed by human specialists. Generally, these

programs operated either by making statistical predictions based on large amounts of

16

recorded data (see Croft, 1972 for a review) or by following rigidly prescribed protocols in
which knowledge of the domain and procedures for its application were thoroughly
intermingled (eg Bleich, 1969).

The failure of early computer programs to be accepted by clinicians can be attributed to their
inflexibility and tendency to produce solutions ‘out of a hat', without any justification or
explanation of their reasoning process. By the start of the 1970s, however, the potential for
computers to play a significant role in the processes of information retrieval and decision
making in medicine had been recognized (Schwartz, 1970) and a new breed of systems
was about to emerge. At four institutions in the United States (Stanford University,
Rutgers University, the University of Pittsburgh and the Massachussettes Institute of
Technology) work began on the first generation of medical knowledge-based systems,
which have been followed, roughly speaking, by two further generations (Kulikowski,
1988). The following sections trace the evolution of medical knowledge-based systems
through these three generations and introduce the important issues of knowledge
acquisition, representation and manipulation which have emerged. The four major first
generation systems are reviewed in some detail, since they introduce many of the themes
that will recur throughout this thesis; thereafter attention will be focussed on systems that

introduced new and interesting ideas.

Figure 2.1 General Model of a Knowledge-Based System. Domain knowledge is input
through the knowledge engineer's interface. The user inputs data and queries to receive

advice and explanation.

17

2.2 Early Systems
2.2.1 Introduction

The first generation of knowledge-based systems in medicine, developed at the four
institutions mentioned above, encompassed the three knowledge representation schemes
that have formed the basis of many subsequent systems (rule-based, frame-based and
causal/semantic network). The emphasis, then, was on the exploration of fundamental
methods for acquiring knowledge from expert clinicians, explicitly representing this
knowledge and reasoning with it in a manner that could be satisfactorily explained to the
systems' users. Given the basic level of the research and the computing resources available
(typically mainframe computers with teletype terminals) it does not seem surprising that
none of the early systems found their way into routine clinical use. The success of these
systems lies in the way in which they set the guidelines for the development of the

subsequent generations.
2.2.2 The MYCIN System

The original MYCIN system (Shortliffe et al, 1973) was implemented with the aim of
advising clinicians about antimicrobial therapy and highlighting research issues in applied
artificial intelligence; specifically in the areas of knowledge acquisition, representation and
inference. The structure of the system is shown in Figure 2.2, and it can be seen that it
comprised three main sub-programs: the consultation system, whose operation is outlined
below, the explanation system and a mle-acquisition system. These latter two became
research projects in their own right (Scott et al, 1977; Davis, 1979); indeed MYCIN
provided the basis for over a decade of research at Stanford Univerity (Buchanan &
Shortliffe, 1984).

MYCIN reasoned about the patient, cultures grown, organisms isolated, operative
procedures undergone and drugs and therapies administered. These were organized into a
hierarchy of CONTEXTS, and during a consultation, specific nodes were created as
instances of each type of CONTEXT. Each node was charcterized by the values of clinical
parameters, of which there were 65 in the original system. Parameters were of three types:
single-valued parameters could take one of several mutually exclusive values (eg organism
identity); multi-valued parameters could have more than one value at a given time (eg drag
allergies); yes-no parameters were either true or false (eg adequate drug dose). As part of
its static knowledge base, MYCIN held information about the properties of each clinical
parameter: its expected value (ie numeric, yes/no, etc), prompts (sentences used to ask the
user about the parameter), a condition to be evaluated before asking the user to input its

18

Figure 2.2 Overview of MYCIN. The flow of control is shown by heavy arrows, the
flow of information by light arrows. (From Shortliffe et al, 1975).

value, whether it was laboratory data, a list of rules that inferred its value, a list of rules that
referenced it without updating its value, its units of measurement and an English language
description. A list of properties was also stored for each CONTEXT type.

The main body of the static knowledge base was made up of four types of representation
structure: a dictionary was used for language understanding; lists were used to group

knowledge in easily handled units (eg ORGANISMS was a list of all known organisms);
tables contained information about clinical parameters (eg one table held the gram stain,
morphology and aerobicity of each organism); rules contained the knowledge used to make

inferences.

The rules were grouped into categories according to the CONTEXT about which they made
inferences. There were about 200 rules in the original system and about 500 by 1978. Each
rule consisted of a premise and an action. The premise was a conjunction of conditions
which were themselves functions that could incorporate logical or or not. Disjunction of
conditions was not allowed; this was handled by having two or more rules with the same
action. The action typically concluded the value of a clinical parameter and had associated
with it a certaintyfactor (CF) which indicated the strength of the conclusion given that the
premise of the rule was true. An example of one of MYCIN's rules is:

19

RULE 037
IF The stain of the organism is gramneg
AND The moiphology of the organism is rod
AND The aerobicity of the organism is anaerobic
THEN There is suggestive evidence (.6) that the
class of the organism is bacteroides
(adapted from Shortliffe et al, 1975)

During a consultation with MYCIN, a dynamic knowledge base was created, consisting of
a context tree, hypotheses about the values of the clinical parameters characterizing nodes in
the tree and a record of the consultation (ie the questions asked and the rules invoked). At
the start of a consultation the node for PATIENT was created as the root of the context tree

and the following goal rule was considered:

RULE 092

IF There is an organism which requires therapy

AND Consideration has been given to the possible existence of additional
organisms requiring therapy, even though they have not actually been
recovered from any current cultures

THEN Compile the list of possible therapies which, based on sensitivity
data, may be effective against the organisms requiring treatment

AND Determine the best therapy recommendations from the list

(adapted from Shortliffe et al, 1975)

MY CIN built up its dynamic knowledge base by backward chaining through its rule-base:
in order to reach the goal in Rule 092, the premise conditions had to be evaluated.
Evaluating the conditions usually required the values of certain clinical parameters; if some
of these were unknown, then rules were invoked that concluded the values required;
evaluating the conditions of these rules involved the invocation of further rules, and so on.
This behaviour was achieved by using two simple procedures which called each other
recursively. The MONITOR procedure took each condition in the premise of a rule,
gathered the information needed to evaluate it, performed the evaluation and then either
rejected the rule or moved on to the next condition, depending on whether the evaluation
yielded false or true. To gather information that was not available on the database, the
FINDOUT procedure was called. For laboratory data, the user was first asked to supply a

value; if this could not be done, the list of rules which could be used to infer the required

20

Figure 2.3 The MYCIN Context Tree. A patient with two recent cultures, one old culture
and one recent operation. Context types are shown in brackets. (Adapted from Buchanan &
Shortliffe, 1984; 84).

value was retrieved. The MONITOR procedure was then applied to each rule in the list until
the value was returned. For other types of data, MONITOR was called immediately and the

user was only questioned if the value could not be inferred from the rules invoked.

There were several ways in which nodes could be added to the context tree as it expanded
from the PATIENT root node during a consultation. When a condition in the premise of a
rule referenced a context type for which no nodes had been created, the context type was
passed to the FINDOUT procedure which then asked the user to input nodes of that type.
Nodes could also be created implicitly when an associated node was created (eg each
organism had an associated culture) or when the action part of a rule was executed. A
typical context tree for a consultation is shown in Figure 2.3.

Associated with each node of the context tree were hypotheses of the values of
characteristic clinical parameters. Each hypothesis had a certainty factor which ranged from
-1 (definitely untrue) to +1 (definitely true). The certainty factor could be input by the user
when asked for the value of the parameter (CF=1 was assumed as the default) or it could be
calculated when the value was inferred by a rule. In this case, the calculated certainty factor
depended on the combined uncertainty of the conditions in the premise (called the TALLY)
and the certainty factor associated with the action. Consider, for example, Rule 037 given

above, with the data:

Val[ORGANISM-I,GRAM] = ((GRAMNEG 1.0))
Val[ORGANISM-1,MORPH] = ((ROD ,8)(COCCUS .2))
Val[ORGANISM-LAIR] = ((ANAEROBIC ,6)(FACUL .4))

21

The TALLY of the premise would be .6 (the minimum of the certainty factors of the
conditions) which would be combined with the certainty factor .7, to calculate the certainty
factor of the hypothesis that the class of ORGANISM-1 was bacteroides. The method used
to calculate the new certainty factor is discussed in Section 3.7.2. Since the premises of
rules were programmed with linguistic terms (eg KNOWN, SAME, NOTSAME,
MIGHTBE, etc) special functions were used to combine them with the numerical certainty
factors in the knowledge base. For instance, the function for KNOWN returned true if the
CF of the parameter on the database was more then 0.2, otherwise it returnedfalse.

When MYCLN questioned the user during the execution of the FINDOUT procedure, one
of the prompt properties of the parameter required was used to pose the question in the
manner most appropriate to the prevailing situation. A set of questions was also asked
whenever a new node was added to the context tree (the set was stored as a property of the
CONTEXT type). Several levels of assistance were offered to aid users in answering
questions: recognized responses could be listed, the rule generating the question could be
displayed, detailed explanation of the question could be obtained by asking WHY, or
access to the more detailed explanation facilities could be gained.

After the premise of the top goal had been evaluated, the dynamic database would contain
various hypotheses as to the identity of the organisms present. Associated with each
organism was a rule which listed possible dmg therapies with a measure of the sensitivity
of the organism to each drug. These mles were used to compile a list of potential therapies
for the patient. The best therapy was selected by using a complex algorithm which took into
account the sensitivity information, details of any existing therapy and a desire to prescribe
the minimum number of drugs necessary (this part of the original MY CIN system did not
use rule-based reasoning). Rule-based reasoning was used to prevent the use of drugs that

were contra-indicated for a particular patient.

The success of the MYCIN project was measured more in terms of its contribution to
applied artificial intelligence than to medicine. Nevertheless, its generalization as the
knowledge-based system shell, EMYCIN (Van Melle, 1979), was used for the
development of a system for the interpretation of pulmonary function test data (Aikins et al,
1983) which became one of the first (and still one of the only) knowledge-based systems

used routinely in clinical practice.

22

2.2.3 CASNET

The CASNET model (Weiss et al, 1978) was proposed as a general model of diagnosis and
was applied in practice to the diagnosis and treatment of the eye disease glaucoma.
Knowledge about a patient was represented at three levels: observations, physiological
states and categorizations for diagnosis, prognosis and treatment. The physiological states
represented summaries of abnormal physiological events and were connected by causal
links of varying strength to form a directed, acyclic graph. Diseases were represented by
particular pathways in the causal network; the progression of a disease was modelled by
adding further nodes to its pathway. Observations were connected with one or more
physiological states by associative links of varying strength; any one state could have any
number of associated observations. Figure 2.4 shows the three-level NETwork with its
CAusal and Associative links (hence the name CASNET).

At the start of a consultation, each node, nj, in the network of physiological states had an
assigned measure of confidence, Cf(nj) = 0. As observations were made, the associative

weights between observations and states updated the Cfvalues in the following way:
If ICf(nj)I < layl then Cf(nj) was set to ay

If Cf(nj) = -ay then Cf(nj) was set to zero until an observation with

association laiyl > layl was made
In other instances, Cf(nj) remained unaltered.

(where ay was the associative weight between the ith observation and the state nj and -1<

ay <1).

According to its Cfvalue, a node could be either confirmed, denied or undetermined.
If Cf(nj) > 0 then nj was confirmed
If Cf(nj) < -0 then nj was denied
otherwise nj was undetermined

(where 0 was a positive threshold value).

23

Disease secondary glaucoma
) glaucoma
Categories
chronic angle
acute angle closure
closure glaucoma
open angle glaucoma
glaucoma
classification
links
corneal
_] oedema
Pathophysiological
States
cupping of
optic disc
alngle elevated
closure intraocular
pressure
associational
links
Observations gomoscopy "
synechias FonometryT~ >s>d
symptoms _ iop=45mmHg f
visual*' . -
acuity: perimetry: E
\ 20/10'0 arcuate scotoma
opthalmoscopy
bI_urred dilated 0 c/d>0.7
signs vision. pupil

angle closure

causal
links

glaucomatous
visual field

loss

Figure 2.4 A Three-Level Network in CASNET (Adapted from Weiss et al, 1978)

24

Nodes in the network which had no causal antecendents were designated as starting nodes,
and played an important role in identifying a patient's diseases. These starting nodes
represented the basic causes or mechanisms of diseases - the set of most likely starting
nodes competed to describe the disease(s) present for a particular patient. The progression
of a disease was modelled by tracing an admissible pathway of nodes, in a causal chain that
originated from one of the starting nodes. An admissible pathway was one that passed
through confirmed or unconfirmed nodes only, without including any denied nodes. The
classification of pathways of nodes into disease states was achieved by a set of tables
which also indicated appropriate treatment plans for each disease. Consider for example,

the following table:
(n25,DI,TI) (n26,D2,T2) (n30,D3,T3) (n31,D4,T4)

If an admissible pathway existed from n25 to n31 then disease D4 and treatment T4 were
indicated; if the pathway only extended as far as n26 then D2 and T2 would be indicated.
The tables could also contain rules which indicated that certain states should be denied for a
particular disease to be present. Since treatment should depend not only on the identified
disease, but also on the current therapy and observed contra-indications, the treatment plans
contained ranked lists of therapies. Each therapy was linked to observations by preference
measures which were used to score the possible therapy options in exactly the same way

that the associative links were used to confirm physiological states.
Three possible strategies were developed to focus questioning of the user:
a set of questions could be asked when certain logical conditions were met

questions could focus on pathways classified as the most likely disease
states as described above

the pathophysiological states could be weighted as described below, and
the highest weighted state could then used to focus questioning

Two weights could be calculated for a node; itsforward weight and its inverse weight. The
forward weight measured the evidence accumulated by the causes of a node and was
calculated by identifying all admissible pathways to the node, from starting or confirmed
nodes, which did not pass through any other confirmed nodes. The weight of each
pathway was the product of the causal link strengths along it; the weights for all possible
paths were then added to give the forward weight. The inverse weight of a node was a
measure of the belief in those nodes of which it was the cause The inverse weight of a
node nj, due to nj (a confirmed node lying on a causal pathway from nj) was proportional

25

to the forward weight of pathways passing through both nj and nj divided by the forward
weight of all possible pathways through nj. The overall inverse weight of nj was then fixed
as the maximum inverse weight from all possible confirmed effects. Finally, the node with
the greatest weight, forward or inverse, was chosen to be the focus for questioning.

The developers of CASNET recognized the similarity between their model and a Markov
model of diagnosis (eg Gheorghe et al, 1976) since the weight assignments of nodes were
derived from their immediate causal antecedents. The relaxation of the conditions of
exhaustivity and mutual exclusivity on the causal successors of a node, led to an enormous
reduction in the size of model required (the vast number of probability assignments
required by more formal statistical models remains one of their major limitations).
CASNET introduced into the domain of computer-aided medical decision making, the
notion of updating beliefs in networks of hypotheses, albeit in an ad hoc manner. The
search for more formal methods of evidential updating in belief networks has since become
an important area of artificial intelligence research (see Section 3.7). CASNET was also
unique amongst the first generation systems in that it explicity represented knowledge about
diseases at different levels of abstraction; an idea which was developed further in the
system ABEL (Patil, 1981) which is discussed in Section 2.3.2.

2.2.4 The Present lllness Program

The first description of an artificial intelligence program to appear in a purely clinical
journal was that of the Present Iliness Program (Pauker et al, 1976). The emphasis of the
project, which was developed at MIT and Tufts University School of Medicine, was to
model the cognitive behaviour of a clinician as he took the history of a patient with oedema
(an excessive retention of fluid by body tissues). Knowledge of diseases and clinical or
physiological states was held in frames (see Section 3.3) which were considered as
hypotheses for explaining findings about the patient. The structure of a frame, with its
associated slots of information, is shown in Figure 2.5. Two types of links were used to
connect frames together; links between competing hypotheses that could form a list of
differential diagnoses and links between complementary hypotheses that could be present
together to explain a patient's findings. The complementary links could describe causality
(CAUSE-OF, CAUSED-BY), complications (COMPLICATION-OF, COMPLICATED-
BY) or simple associations between hypotheses in cases where the phsyiological
mechanism of the connection was unclear.

26

relation to findings
TRIGGERS <findings>
FINDINGS <findings>

logical decision criteria

I1S-SUFFICIENT <findings>
MUST-HAVE <findings>
MUST-NOT-HAVE <findings>

complementary relation to other hypotheses

CADSED-BY <hypotheses>
CAUSE-OF <hypotheses>
COMPLICATED-BY <hypotheses>
COMPLICATION-OF <hypotheses>
ASSOCIATED-WITH <hypotheses>

competing relation to other hypotheses
DIFFERENTIAL-DIAGNOSIS
(ccondition Ixhypotheses> (<condition kxhypotheses>)

numerical likelihood estimator

SCORE
((«jcondition I,IXscore 1,1>) ...(<condition I,nlxscore 1I,nl>))
((<condition m, Ixscore m, 1>) ... (ccondition m,nmXscore m,nm>))

Figure 2.5 The Structure of a Frame in PIP (From Szolovits & Pauker, 1978)

A method which combined both categorical and uncertain reasoning was used to update the
beliefin hypothesis frames as findings about the patient were gathered under the guidance
of the program (Szolovits & Pauker, 1978). Each hypothesis frame could be in an active,
semi-active or inactive state depending upon the way in which input findings matched the
prototypical findings held in the frames. When an input finding matched a FINDING of an
active frame, the belief in that frame was updated using the method described below. When
an input finding matched a TRIGGER for a frame then that frame was put into its active
state (if it wasn't already) and its belief was updated. At the same time any complementary
frames were semi-activated and the condition clauses associated with competing frames
were evaluated; frames whose conditions evaluated to true were also semi-activated. Once a

frame had been made semi-active, all its prototypical findings acted as if they were triggers.

Uncertain reasoning was accomplished by a scoring mechanism which involved calculating
a likelihood estimate for each active frame; when the likelihood estimate exceeded an upper

limit, the frame was confirmed and if it fell below a lower limit the frame was returned to a

27

semi-active state. The likelihood estimate was the average of a binding score and a
matching score. The binding score of a frame measured the extent to which a hypothesis
accounted for the observed findings - it was the ratio of the number of observed findings
appearing in the frame or any of its complementary frames to the total number of observed
findings. The matching score of a frame measured the extent to which the observed
findings fitted the hypothesis. The local matching score was calculated by evaluating the
scoring clauses for the frame and dividing by the maximum possible score (its value thus
ranged from one to arbitrarily large negative numbers). The total matching score for a frame
was the sum of the local matching score for that frame and all its complementary frames.

As well as the scoring mechanism just descibed, a degree of categorical reasoning was
employed. No hypothesis frame could be confirmed on the basis of its score, unless the
conditions specified in its MUST-HAVE and MUST-NOT-HAVE slots held. Also a frame
could be confirmed, without recourse to the scoring mechanism, if any of the findings in its
IS-SUFFICIENT slot were observed.

Questioning of the user was controlled by asking for information about unknown findings
in the highest scoring hypothesis frame. Once a finding had been input, frames were
confirmed, activated, semi-activated or de-activated as necessary, belief in active frames
was updated and the next question was selected. This strategy could lead to rather eratic
behaviour when two or more hypotheses were scoring at about the same level - the focus of
questioning would shift rapidly from one hypothesis to another.

The developers of PIP took great care to point out the analogies between their program and
the thought processes of clinicians. Hypothesis frames were equated with a human’s long-
term memory, findings and active frames with short-term memory. The semi-activated
frames were said to model hypotheses that were 'in the back of the physician's mind'
(Szolovits & Pauker, 1978). The way in which the system considered a small number of
active hypotheses, persued the most promising with an appropriate questioning strategy
and then updated the active list, was was also said to reflect the behaviour of an expert
clinician. What was not explored, however, was the question of whether this was the best
way to reach a diagnosis or was the method employed by human problem solvers because
they were unable to consider more than a handful of hypotheses simultaneously. Should
the developers of computer systems try to model the cognitive processes of humans, or
should they try to exploit to the full the computer’s ability to store and manipulate large

quantities of data?

28

2.2.5 INTERNIST-1

Perhaps the most ambitious of the early medical knowledge-based systems was developed
at the University of Pittsburgh and originally called DIALOG (Pople et al, 1975), later to be
known as INTERNIST-1 The aim of the project was to diagnose diseases across the
whole spectrum of internal medicine and to achieve this, a massive knowledge base was
constructed under the guidance of an eminent internist, Jack D. Myers. When the first
documented evaluation of the system was performed, the knowledge base comprised some
500 disease profiles, with 3550 different manifestations, and was estimated to cover 70-
75% of internal medicine (Miller et al, 1982).

Each disease profile listed the possible manifestations of the disease, which could be
patient history, signs, symptoms or laboratory test results. Associated with each listed
manifestation (a typical disease profile had 85 of them) were two positive, integer
parameters; the evoking strength and the frequency of the manifestation. The evoking
strength was a measure of the degree to which the disease should be considered as an
explanation for the manifestation. It ranged from 0, for a manifestation so common that it
could not be considered specific to that disease, to 5 for pathogenic manifestations. The
frequency of a manifestation corresponded to the probability of the manifestation given the
disease expressed on a scale of 1, for rarely occurring manifestations, to 5 for those
occurring in every case.

Order in which Conditions to be Prevent system Derive value of
findmgs ire to met before asking from requesting findings not
be requested for a finding a finding already requested

Figure 2.6 Property Types in the INTERNIST-1 Knowledge Base. (Adapted from
Masarie et al, 1985).

29

As well as disease profiles, the knowledge base contained details about the properties of the
manifestations (Masarie et al, 1985). The properties represented information such as the
relationships between findings, the clinical significance of a finding and the cost of
obtaining it. Much of the common sense displayed by INTERNIST-1 in its later versions

was accredited to this part of the knowledge base.

By 1985, fourteen basic properties had been defined, which were of two general types -
those which were properties of a single finding and those which represented a relationship
between two or more findings. Further classification of the properties took place along the
lines shown in Figure 2.6. The only property directly used for creating and ranking
diagnostic hypotheses was the import property. It was an integer in the range 1to 5, which
expressed the extent to which a finding had to be explained by a patient's diagnosis; a
finding with an import of 5 had to be explained by the diagnosis, an import of 1 indicated
that the finding often occurred in healthy patients and need not necessarily be explained.

Before beginning a consultation, the disease profiles in the knowledge base were
reorganized so that each finding was stored with a list of all diseases that could explain it.
At the start of a consultation, the user input an initial set of findings from which an initial
list of hypotheses was formed. The members of this list were diseases that could
individually, or in combination, explain all the input findings. The hypotheses were ranked
according their scores, which were calculated in the manner described below; hypotheses
which scored less than a certain threshold were temporarily inactivated but could be

reconsidered when further evidence became available.

INTERNIST-1 ranked hypotheses by assigning positive and negative points in an ad hoc
fashion. Each observed finding that appeared in the profile of a disease contributed a
positive score, whose magnitude depended upon the evoking strength of the finding in the
profile. Bonus points were awarded to hypotheses that were linked to diseases already
confirmed by the system. Negative scores for findings which were observed to be absent
were assigned in the same way. Additional negative points were awarded for each observed
finding left unexplained by a hypothesis; the number of points depending upon the import
property of the finding.

Once the hypotheses had been scored, the system identified sets of competing hypotheses,
called problem areas, which explained the same set of findings. A diagnosis was concluded
if it had no competitors or if the difference between its score and that of its nearest
competitor was above a certain threshold. In each problem area for which no diagnostic
conclusion had been reached, one of three questioning strategies was persued. If the

leading hypothesis was scoring far higher than its nearest competitor then the system tried

30

to confirm this hypothesis by asking about findings which had a high evoking strength in
its disease profile. If there were five or more closely competing hypotheses then findings
with high frequency scores in their profiles were asked, in the hope that some hypotheses
would be eliminated if the finding proved to be absent. When there was a lesser number of

competing hypotheses the system tried to maximize the spread in their scores.

The major shortcomings of INTERNIST-1, as identified by its developers (Miller, 1984),
were its failure to take account of the severity of findings and diseases (they were either
present or absent), its lack of anatomical or temporal reasoning and its insufficient
knowledge of causality. These problems were addressed by the specification of the
CADUCEUS system (Pople, 1977), whose implementation was expected to continue into
the 1990s (Mifier, 1984).

In the meantime, INTERNIST-I's vast knowledge base has continued to expand and has
been adapted to operate as an electronic textbook of medicine, both on mainframe and
micro computers (First etal, 1985; Masarie & Miller, 1987).

2.3 The Second Generation
2.3.1 Introduction

A second generation of knowledge-based systems emerged from two sources. As the four
major projects described above drew to a conclusion, their developers started work on new
systems, building on their earlier experience. Although evaluations of the early systems
revealed that they approached the accuracy of expert clinicians in their diagnostic
conclusions (see Section 6.2), none were accepted into routine clinical use. Partly this can
be attributed to their poor user interfaces and the fact that they had been intended originally
as research projects, not practical clinical tools. One general criticism could also explain, to
a degree, their non-acceptance by clinicians; they failed to structure their task of diagnosis
in the same way as their human counterparts (Feinstein, 1977). The successors to
INTERNIST-1 and MYCIN, CADUCEUS (Pople, 1977; 1982) and NEOMYCIN
(Clancey & Letsinger, 1981) both incorporated the concept of taxonomies of disease
hypotheses as a fundamental organization of medical knowledge. These taxonomies could
be used to model the way in which a clinician can form a general hypothesis based on a few

observations, refining it to more specific hypotheses as more data are gathered.

Problems with MYCIN's reasoning strategy emerged when it was used as the basis for the
teaching system GUIDON (Clancey, 1979). The backward chaining rules did not result in
the same patterns of reasoning as human clinicians and couldn't be used to teach diagnostic

skills to students. MYCIN's rules were reconfigured, separating out the factual knowledge

31

from the strategic knowledge. Not only were disease hypotheses organized hierarchically,
but so was the strategic knowledge. In the resulting hierarchy of tasks, each strategic
procedure was represented as a set of metarules; it was these rules that controlled the
problem solving strategy and the way in which data were requested of the user. An
interesting description of the evolution from MYCIN to NEOMYCIN and the impact of
increasingly powerful technology is given by Clancey (1986).

Out of the first generation of knowledge-based systems came the first domain-independent
knowledge-based system shells, EMYCIN (van Melle, 1979) and EXPERT which was
developed by the designers of CASNET to be a relatively simple language and notation to
represent expert knowledge (Weiss & Kulikowski, 1979). Like CADUCEUS and
NEOMYCIN, EXPERT allowed for the taxonomical classification of diseases and also
allowed the same classification for therapies. It provided different mechanisms to question
the user for findings which could be used to infer intermediate and causal hypotheses
related to the disease hierarchies. Reasoning was accomplished by decision rules providing
for finding-finding, finding-hypothesis and hypothesis-hypothesis relations. Weiss &
Kulikowski expressed the desire to place an emphasis on categorical reasoning instead of
suboptimal scoringfunctions, but included just such a function nevertheless. EXPERT has
been used to develop a number of systems including AI/RHEUM (Lindberg et al, 1980) for
diagnosis in rheumatology and ANEMIA (Quaglini et al, 1986) for diagnosis and
management of anaemic patients.

It was during the development of the second generation systems that the distinction
between different knowledge levels was formalized. In particular, there was recognition of
the distinction between heuristic knowledge, which captures the skill of problem solving,
and causal knowledge of the domain (Michie, 1981) as evidenced by the separation of these
types of knowledge in NEOMYCIN. Similarly, the ABEL project (Patil, 1981) was an
attempt to model the deeper, physiological level of knowledge that had been absent in the
first generation systems.

As well as the second generation of projects developed by the original workers at Stanford,
MIT, Rutgers and Pittsburgh, new projects emerged from research groups attracted by the
promise shown in the application of artificial intelligence techniques to medical problem
solving. Many of these groups had been working for some time in the field of computer-
aided diagnosis and were able to offer interesting new perspectives on the knowledge-
based system approach. Three such perspectives are described below along with the

multiple-level causal model of ABEL.

32

2.3.2 ABEL

At MIT, one of the major drawbacks of the first generation systems was seen to be their
inability to deal adequately with co-occurring diseases and the way in which their
manifestations affected each other. In an attempt to remedy these shortcomings, the ABEL
system was developed (Patil, 1981; Patil et al, 1981), with causal knowledge about

diseases, observations and pathophysiology represented at multiple levels of abstraction.

Each level of description consisted of a semantic network of nodes and (predominantly)
causal links. Normal or abnormal states of physiological parameters were represented as
nodes, characterized by a set of attributes (eg severity, value, temporal characteristics, etc).
The causal links were modelled as multi-variable relationships which mapped the attributes
of one node to the attributes of another, under particular prevailing conditions. A node at
one level of description was described as a composite node if it could be represented by a
network of nodes (called the elaboration structure) at the next, more detailed level of
description. One of the nodes in the elaboration structure was designated the focus node
and was linked to the composite node by a focus link. Two other types of link specified an
undefined association between nodes or a grouping of nodes that were of semantic interest

(eg symptoms suggesting a common disorder) but which were not causally related.

Given a set of observations about a patient, ABEL constructed a set of patient specific
models which were portions of the causal network, spanning all possible levels,
instantiated by the data. There would usually be a number of patient specific models
competing to explain the data and for each one ABEL generated a set of diagnostic
closures. A typical patient specific model would contain an incomplete causal pathway; the
set of diagnostic closures for the model was formed by finding the possible extensions that
could be traced. The diagnostic closures provided predictions of the patient observations; if
a reported finding contradicted all the predictions then a new set of patient specific models
had to be generated.

The user input a set of patient data to start the consultation; thereafter data were gathered by
questioning of the user, the order of questions being decided by constructing a hierarchy of
the goals to be satisfied in order to discriminate between the competing patient specific
models and diagnostic closures (Patil et al, 1982). The initial set of patient specific models
was generated by identifying possible areas on an acid-base nomogram (see Appendix II)
based only on blood gas and electrolyte data. Each area of the nomogram corresponded to a
node at the highest level in ABEL’ knowledge structure. The nodes instantiated in this
way were expanded so that the lower, physiological level nodes which they subsumed also

became instantiated.

33

Clinical Level

hypokalaemia-2
‘const-of

hypokalaemia-1

const-of
normokalaemia-1 s acidaemia-I metabolic- \
. acidosis-1 i
Intermediate Level
hypokalaemia-2
‘ionst-of
hypokalaemia-1 i
.const-of))])
causes acidaémia-1 hypobicarbonataemia-1
" causes
Vi e ks o)
normokalaemia-1
j hypocapnia-1
Pathophysiological Level]
ECF ECF
) K-loss-1 K-loss-2 :
i causes
low- low-
serum- total-
K-1 K-I I
ECF-K-gain-1 low-
total
\ causes HCO03-1|
1%
const-oF causes low-
HCO03-1
low-pCO02-I no-net-HCO03-
change-1
const-of
A -onst-of const-of
'reduced-renal-threshold-1 (reduced)HCQ3-gaii™ |- HC03-1055-1
no-net-titration-of-body-buffer-1 causes no-net-HCO03-change-2

Figure 2.7 The Three-Level Disease Description in ABEL (Adapted from Patil, 1981).

34

At the physiological level of representation the process of component summation could take
place; quantititive causal relations could be combined so that two or more causes could
contribute to the instantiation of a node. Networks instantiated at the lower levels could
then be aggregated to instantiate higher level nodes through the focus links between the
representation levels. This provided an important mechanism, whereby the interaction
between the manifestations of co-occurring disorders could be determined at the

physiological level and then propagated to the level of observations.
2.3.3 ATTENDING: A Critiquing Approach

The ATTENDING system (Miller, 1983) proposed a new role for knowledge-based
systems in medicine. It's task was to plan the anaesthetic management of patients
undergoing surgery, but in addition to the planned surgical procedure and the patient's
relevant medical problems, the user was asked to input his own anaesthetic management
plan. This plan was then critiqued by the system and any other feasible alternatives were

suggested.

The generation of an anaesthetic management plan involves a series of decisions in which
the benefits and risks for the patient must be weighed. The first decision is whether to give
general or local anaesthesia. For general anaesthesia, decisions must be made about how to
induce and maintain anaesthesia and how to intubate the patient. Each decision involves the
selection of different dmgs or techniques in order to achieve a goal; this knowledge was
represented in ATTENDING by adapting the augmented transition network formalism from
linguistic analysis (where it is used as a method of top-down parsing for natural language
understanding). The resulting Augmented Decision Network (ADN) consisted of a series
of nodes connected by arcs, where each arc represented the outcome of a decision. Part of
the ADN used by ATTENDING is shown in Figure 2.8. In order to generate an anaesthetic
management plan, the topmost network in Figure 2.8 was traversed from a start node (one
with no incoming arcs) to a terminal node (one with no outgoing arcs). Each arc traversed
represented a decision made about the plan; when two or more arcs connected two nodes,
there were a number of alternative ways in which the same goal could be achieved. Some
arcs represented sub-networks in the ADN. In order to traverse such an arc, the sub-
network had to be traversed successfully from its start node to a terminal node. In this way,
the hierarchical nature of the decision making process in anaesthesia management was
captured, although the full potential of the ADN representation was not exploited because
the networks were restricted to linear progressions of nodes, with one start and one

terminal node.

35

INTUBATION:

RAPIDSEQ:

RELAXANT:

PANCURONIUM

Figure 2.8 An Augmented Decision Network in ATTENDING (Adapted from Miller,
1983).

The ADN can be described as augmented because each arc had routines attached which
activated or deactivated it in the context of a particular case (eg the arc for spinal anaesthesia
was deactivated for a case of eye surgery). Knowledge about how the clinical condition of
the patient affects the anaesthetic techniques used, was held in frames which consisted of
managementprinciples and riskfactors associated with the condition. These were linked to
arcs in the ADN, so that each arc was augmented by a list of risks and benefits (defined as
LOW, MODERATE, HIGH or EXTREME) which were used in deciding whether to
traverse that arc or not. The risks (benefits were defined as negative risks) were combined
heuristically when several alternative actions were under consideration. First, the
alternatives were broadly considered by assigning to each an overall risk equal to the
greatest risk associated with its constituent elements. The alternative with the lowest risk
was then chosen; if two or more alternatives shared the same, lowest risk a set of domain

specific rules was used to discriminate between them.

36

When an anaesthetist input his management plan, ATTENDING converted it into apatient
action tree, which was a hierarchical structure representing the major management actions.
These actions were then used to guide the system through a traversal of its ADN. Where
alternative arcs existed one of them would, necessarily, correspond to an action in the
patient action tree. Any alternative whose risk was less than or equal to the risk of the
anaesthetist's own input action was included as a feasible alternative in the final output

critique.

The generation of the prose form of ATTENDING's critique was achieved by a second
adaptation of the augmented transition network formalism. Traditionally, ATNs have been
used to parse sentences as part of the process of language understanding; ATTENDING
stored fragments of prose along the arcs ofthe ATN so that sentences were generated as the

arcs were traversed.

The critiquing approach has been generalized in a shell program called E-ATTENDING
(Miller, 1986) which consists of a production rule interpreter, a system of expressive
frames that can be manipulated to transfer data input by the user or inferred by the
production rules into critiquing comments, and a prose generation module. Although the
ATTENDING systems introduced some powerful ideas about the role to be played by
knowledge-based systems in medicine, the novel knowledge manipulation techniques
proposed (ADNSs, prose generation, expressive frames) have not been exploited to their full
potential. How well these techniques would scale up to function at their full theoretical

power remains unclear.
2.3.4 CADIAG-2

The system CADIAG-2 (Adlassnig, 1980; Adlassnig et al, 1985) usesfuzzy set theory
(Zadeh, 1965) and compositional rules of inference (Zadeh, 1973) to produce sets of
confirmed, excluded and hypothesized diseases. The knowledge base contains factors
expressing the frequency of occurrence of symptom S with disease D (actually P(SID)) and
the strength of confirmation of S for D (P(DIS)). Similar relationships are specified for
combinations of symptoms with diseases, symptoms with other symptoms and diseases
with other diseases. The relationships are represented as rules of the form:

IF <antecedent>
THEN <consequence>
WITH frequency of occurrence O and strength of confirmation C

37

Frequency of Interval Strength of

Occurrence Confirmation
always [1.00,1.00] always
almost always [0.99,0.98] almost always
very often [0.97,0.83] very strong
often [0.82,0.68] strong
sometimes [0.67,0.33] medium
seldom [0.32,0.18] weak
very seldom [0.17,0.03] very weak
almost never [0.02,0.01] almost never
never [0.00,0.00] never

Table 2.1 Translation of Linguistic Terms in CADIAG-2 (From Adlassnig, 1980)

The knowledge base can be built up either by statistical studies on a patient database or by
having experts express linguistic estimates of O and C. These linguistic terms are then
translated using the scheme in Table 2.1.

At the start of a consultation, data can be input using linguistic terms (eg high fever) which
are translated in a similar manner to above. Alternatively, numerical data can be transferred
from the hospital database and classified by afuzzy interpreter as described in Section

3.6.3. After gathering patient symptoms, the symptom-symptom rules are used to infer
unknown data, fuzzy values are assigned for symptom combinations and the diagnostic
process begins. Three rules of compositional inference are used - confirmation

composition, positive exclusion composition, negative exclusion composition -to produce
a fuzzy description of a patient's disease based on the fuzzy symptom data. These rules will
be described in more detail in Section 3.7.5.

2.3.5 A Set Covering Model of Diagnosis

An interesting perspective on the problem of medical diagnosis was provided by the
incorporation of a set covering model into a functional knowledge-based system for the
diagnosis of liver disorders (Reggia etal, 1983).

Consider a set D={dl,d2,d3...dn} of diseases and let M= {ml,m2,m3...mp} be the set of
all manifestations that could be observed in D. Further sets can be defined as follows:

man(di)={ma,mb,...} the set of manifestations of disease di

causes(mj)={da,db,...} the set of diseases that cause mj

38

di man(di) mi causes(mi)

dl ml m4 ml dl d2d3 d4
a2 ml m3 m4 m2 d5d6d7d9
a3 ml m3 m3 d2d3 d5d6
dl ml m6 m4 dld2d5d8
b m2 m3 mé4 m5 d7d8d9

d5 m2 m3 m6 d4ds

d7 m2 m5

0'¢] m4 m5 m6

do m2 m5

Table 2.2 Example Sets of Manifestations and Causes (Adapted from Reggia et al, 1983)

An example of the sets defined above is shown in Table 2.2. If M+ is the set of
manifestations observed in a particular patient, then sets of diseases E can be generated
such that E explains M+ ie each manifestation in M+ is caused by one or more of the
members of E. The best explanation of M+ is given by the set E with the least members
(the set with the lowest cardinality).

The set covering model can be implemented by updating three data structures as
manifestations are observed:

M+ the set of manifestations so far observed
SCOPE the set of diseases that cause at least one member of M+
FOCUS the set of sets of lowest cardinality that explain M+

The sequence of updating can be summarized:

1) Get the next manifestation mj
2) Retrieve the causes of mj ie the set causes(mj)
3) Generate the new scope which is SCOPE u causes(mj)
ie add any causes of mj that are not already in the SCOPE
4) Form the new FOCUS

Table 2.3 shows how M+, SCOPE and FOCUS are built up using the above algorithm.
When the first manifestation m1 is observed, the scope contains the four diseases that cause
m1 and the focus is the same four diseases (ie four sets of cardinality 1). When the next
observation, m4, is made, d5 and d8 are added to the scope and the new focus {dl,d2} is
formed by intersecting the causes of m4 with the old focus (ie either d1 or d2 could explain
both the manifestations ml and m4). When m5 is observed, d9 is added to the scope, but

when the causes of m5 are intersected with the focus, the empty set is obtained. This

39

indicates that no single disease can explain the three manifestations and that sets of
cardinality 2 must be created from the diseases in the scope to form the new focus.

A knowledge-based system which used the set covering model as the basis of its reasoning
strategy, held knowledge about liver disorders in frame-like descriptions-, findings were
associated with each disorder using a symbolic probability estimate ranging in five steps
from never to always. A distinction was made between those findings caused by a disorder
and those which suggested its presence but were not caused by it; these were called setting
factors and included findings such as age and sex.

The disorder descriptions were used to construct the sets causes(mj) and also played a role
in the control of the system. The pattern of questioning was determined by finding the most
commonly occurring manifestation in the descriptions of the disorders in the current focus -
these disorders were considered as being the active hypotheses. The descriptions could also
categorically reject a disorder during the process of gathering manifestations. If a
manifestation which always occurred with a disorder was observed to be absent, or if one
that never occurred with that disorder was present, then the disorder was effectively
removed from the set of possible disorders, D.

Once all possible questions had been asked, the focus would typically contain more than
one possible explanation for the observed manifestations. At this stage, a scoring scheme
was used to rank the alternative hypotheses. The score for each hypothesis was based on
the combination of a setting score and a matching score. The setting score represented the
general likelihood of a disorder in a particular context and was the sum of the initial
probability of the disorder and the probability estimates associated with its setting factors
(symbolic probabilities were converted to integer scores in the range 0 to 4). The matching

score was a measure of how well a disorder fitted the manifestations.

The set covering model provided an important theoretical basis for the notion of coverage
and parsimony in a medical diagnosis, that was interesting not only in its application as a

knowledge-based system but also as a cognitive model in its own right.

Observation M+ SCOPE FOCUS

made

none 0] 0) 0]

ml (ml) {dld2d3d4} {dld2d3d4}

m4 {ml m4) {dl d2d3 d4d5d8) {dld2}

m5 {ml m4 m5} {dld2d3d4d5d6d7d8d9} {dld2}x{d7d8d9}
and

{d8d3} {dsd4}

Table 2.3 Building M+, SCOPE and FOCUS (Adapted from Reggia et al, 1983).

40

2.4 The Third Generation
2.4.1 Introduction

By the mid 1980s, rapid technological developments had made powerful microcomputers
and Al workstations widely available, and knowledge-based system shells, similar to
EMYCIN and EXPERT, were beginning to emerge as commercial products. As a result, a
large number of small, specialized knowledge-based systems began to be developed. These
projects have introduced an ever widening audience of clinicians to the concept of
knowledge-based consultation systems in medicine, and this may prove to be their main
achievement; in terms of their method of implementation they show little advance on the
first generation systems and whether they will be accepted for routine use remains to be

seen.

At the other end of the scale, powerful technology has led to the development of some
extremely large systems. The INTERNIST-1 knowledge base has continued to expand and
has been transported to microcomputers, on which it operates as an electronic textbook of
medicine (Masarie & Miller, 1987). The DXplain project has a knowledge base covering
about 2000 diseases, 4700 manifestations and 65,000 inter-relationships (Barnett et al,
1987). It uses a simple algorithm for generating lists of diagnostic hypotheses - its aim
being to suggest all possibilities, not to identify a specific diagnosis. DXplain is supported
by the American Medical Association and has been made available at over 40 locations on
their nationwide computer network. In England, the Oxford System of Medicine (Fox et al,
1987) is aimed at providing support for general practitioners, which requires a massive
knowledge base, accessible in a variety of different ways through a user-friendly interface.

The distinction between surface and deep levels of knowledge representation has continued
to occupy researchers in artificial intelligence. Whilst some have explored the use of deep
level, qualitative, causal models (Forbus, 1984; Kuipers, 1986), or combined
qualitative/quantitative models (Kunz, 1984) others have searched for more rigorous
methods of reasoning at the surface level (see Section 3.7). Reasoning with deep level
knowledge is computationlly expensive; reasoning with heuristic, surface level knowledge
is more efficient but at the cost of losing the richness of explanation offered by deeper
representations. A number of systems have recently been proposed which combine deep
and surface level knowledge. The developers of ABEL have described the redesign of their
system along such lines (Patil & Senyk, 1987) and two systems that combine efficient

surface level reasoning and deep physiological knowledge are described below.

41

2.4.2 MUNIN

MUNIN is a knowledge-based system which is designed to diagnose neuro-muscular
diseases based on the results of EMG tests and to advise the electromyographer on the best
tests to perform (Andreassen et al, 1987). Two knowledge bases exist in the system, one
holding details of neuroanatomy, the other representing a causal network of diseases,
pathophysiological features and EMG findings. A prototype network is based on a
nanohuman with only one muscle and consists of 4 disease states (including normal), 8
pathophysiological features and 15 EMG findings. The causal links between nodes are
quantified by conditional probabilities and the a priori probabilities of the diseases are
updated using a Bayesian scheme that propagates the effect of evidence through the
network (see Section 3.7.3.2). The direction of propagation can also be reversed, allowing
the expected frequency of EMG findings to be calculated for a given distribution of disease
probabilities. This feature is useful for verifying the subjective conditional probabilities
associated with the network links; by assuming a 100% probability for a disease, the
expected frequency of various EMG findings can be compared to real case data and the
network adjusted to achieve a match.

A graphical interface allows the user to see the probabilities of the various hypotheses
change as evidence is propagated and is shown in Figure 2.9. It can be seen from Figure
2.9 that a diagnosis of Others is defined. All possible evidence is assigned with equal
weighting for this node, thus ensuring that Others will be diagnosed if all other hypotheses
have been ruled out by the evidence. Another interesting feature of MUNIN is the method
of classification of numerical data using probability distributions - this is discussed in more
detail in Section 3.6.4.

Therapeutic decisions are made using a utility matrix which specifies a subjective utility for
the treatment of each disease when applied to each of the other possible diseases. The
benefit of selecting the treatment Tj (corresponding to disease DO is given by:

BEN(TO =TjUTIL(Tiipj).P(Dj)

where UTIL(T]jIDj) is an element from the utility matrix expressing the utility of treatment
Tj with disease Dj and P(Dj) is the probability of Dj based on MUNTN's assessment of the

patient observations. The treatment affording maximum benefit is selected. The system's
developers have noted the ethical difficulties in determining the elements of the utility
matrix since many varied and conflicting considerations must be reduced to a single

number.

42

Atrophy
Hyper
ran--------- HHHbT T -"
0---- Reduced
Moderate Discrete
Severs No units
Total Inconclusive
Other
MU STRUCT! RE
verysmall 1 3 1 1
V. a not atro.
Small
S. not atro
Normal
Increased . TA.CONCLUSION
Large
Vay small
Very large Small
ﬁ‘rﬂuedlalrgmqu Other . Normal
Increased
Large
Very large
v W11 11 Other
A roaan ery smal
Limb-grdI*I*Arogh small
Normal MUP.AMPLITUDE
HZ X - Inrsass
Large
Very large 1
Other Lo
Viid «7 SD 304

Sfoderate

Congenil

MUP.POLYPHASIC
<m

POSTSYN.NEUMUSCTRANS

Deercm 12%-24%
Normal - >24%
Other 1

MUP.SATELLITES

REPSTIMSLOW
Decrement

Inconclusive 1

REPSTIM.FAST
Decrement
Normal
Increment L]
Inconclusive =

SPONTMYODIS

Fasciculation
Neumyo 1

Figure 2.9 MUNIN's Graphical Interface (Adapted from Andraessen etal, 1987)

The current implementation of MUNIN uses a very small causal network but already the
computational expense of evidence propagation is creating problems (it takes about 20
seconds to propagate evidence through the network). It is hoped that the use of better
algorithms, computer languages and hardware will make it possible to expand the prototype

into a fully functional system.
243 CHECK

A knowledge-based system for the diagnosis of liver disease, called CHECK and
developed at the University if Turin, combines heuristic and deep causal knowledge within

a single system (Molino et al, 1986). At the surface, heuristic level, knowledge held in

43

frames is used to produce ranked lists of hypotheses in a fashion similar to the operation of
PIP. The knowledge held as a causal network can be used to confirm hypotheses from the
surface level, to provide explanations for a specific case or to give general explanations of
the domain.

The knowledge frames at the surface level are organized hierarchically; there are 10 frames
representing broad classifications of liver diseases and each of these has a number (1-13) of
sub-classifications. Slots in each frame represent major and supplementary findings,
triggersfor the frame, associated and alternative hypotheses and confirmation rules which
can exclude a hypothesis or alter its degree of belief under certain conditions. After some
initial data have been entered, the broad classification frames are scored and refinement
focusses on the sub-classifications of the highest-ranking hypothesis (and any associated
classes specified in its frame). If no hypothesis is triggered and supported by some
evidence, default hypotheses are used for focussing further investigation.

The deeper level knowledge is a causal network with four types of node; hypotheses
correspond to diagnostic hypotheses at the surface level; initial states represent
pathophysiological conditions that can be considered as the causes of disease - other
intermediate states or final states represent pathophysiological conditions in the evolution of
a disease; findings are manifestations from the surface level; actions represent types of
cause/effect relationships. It follows that states are only connected together through action
nodes; findings are connected to states; hypotheses are connected to findings. The
connecting arcs can also be of several types, defining:causal relationships, links between
states and manifestations, hypotheses that can be considered as sets of states,
subclassifications, or network loops. Arcs can be labelled as MUST (be traversed) or MAY
(be traversed) and can have attached conditions to be evaluated before traversal. Arcs can
be connected together at entry or exit to nodes with logical constraints (AND,OR) or
quantifications (eg at least one of, at most one of,...). Part of CHECK'S network for

alcoholic cirrhosis is shown in Figure 2.10.

Reasoning in the causal network is initiated by instantiating hypothesis nodes from the
conclusions reached at the surface level. The states representing underlying physiological
causes of the hypotheses are then identified and paths are traced from these causes to the
hypotheses, with arc conditions and action nodes being evaluated so that a portion of the
network becomes instantiated. If no suitable instantiation of the network proves possible,
the initial hypotheses from the surface level may be rejected. The network can also be used

to search forward from a hypothesis to identify its consequences and manifestations.

44

Figure 2.10 A Causal Network in CHECK (Adapted from Molino et al, 1986).

The network is implemented through object-oriented procedures (see Section 3.3)
programmed in PROLOG. Nodes are represented as objects with the inherited properties of
their class (classes being hypotheses, states, findings and actions); the arcs are
implemented by message passing between the objects. The surface level of CHECK is
based on an earlier system, LIT02 (Cravetto et al, 1985), and comprises 400k of PROLOG
code. The first version of the causal network in CHECK covered only one disease class
(cirrhosis) but comprised over 100 nodes and another 400k of PROLOG - an indication of
the enormous effort and computing resources needed to represent and reason with deep

level knowledge.

45

2.5 Summary

This chapter has outlined the development of the field of knowledge-based systems,
applied to the problem of medical diagnosis, since its inception in the early 1970s. A
description has been given of four early systems (MYCIN, CASNET, PIP and
INTERNIST-1) which encompassed the three main methods of knowledge representation -
rules, frames and semantic/causal nets. The major shortcomings of these systems have
been identified as poor user interfaces, the failure to represent knowledge at a physiological
level, poor modelling of human clinicians in terms of the structure of the diagnostic process

and a reliance upon ad hoc scoring mechanisms for the handling of uncertainty.

A second generation of systems has been described which explored the use of deeper
knowledge representations and introduced the concepts of the set covering model and the
computer-generated critique. Finally, the emergence of a new generation of knowledge-
based systems has been identified. These systems exploit the increasing power of
technology to provide improved user interfaces and employ more rigorous methods of
reasoning in the presence of uncertainty. Generally speaking, deep level causal knowledge
has been found to be unnecessary and inefficient for routine diagnosis and is now being
incorporated in systems to augment an initial diagnosis based on more efficient surface

level reasoning.

Some of the themes of knowledge representation, manipulation and acquisition that have

been introduced above will be developed further in the next chapter.

46

CHAPTER THREE
METHODS OF KNOWLEDGE REPRESENTATION AND CONTROL

3.1 Introduction

The last chapter introduced some of the issues of knowledge representation and control that
have been explored in the context of knowledge-based systems in medicine. This chapter
presents in more detail a selection of those issues which are relevant to the knowledge-

based system described in Chapters 4 and 5.

There are many different types of knowledge that could be represented in a computer
system; the best representation for a body of knowledge depends on its type and the way in
which it is to be manipulated. One way in which knowledge can be categorized is to
describe it as declarative orprocedural. Declarative knowledge is descriptive, factual
knowledge; procedural knowledge is the knowledge of action. Knowledge can also be
represented at different levels (Michie, 1981): surface-level or heuristic knowledge
expresses associations without regard for the underlying cause; deeper-level, causal

knowledge explores the reasons for these associations at different levels of complexity.

Three main methods of knowledge representation have been discussed in connection with
knowledge-based systems in medicine: rule-based, frame-based and semantic network
representations. These are considered in more detail in Sections 3.2, 3.3 and 3.4, which
discuss the types of knowledge accommodated by each representation and the methods of

reasoning that can be employed.

Section 3.5 describes the blackboard architecture which can be used for the overall control
of a knowledge-based system. The next two sections are concerned with the manipulation
of data and knowledge; Section 3.6 discusses the problem of data classification, which is
of special interest in medical systems; several methods of handling uncertainty in
knowledge-based systems are presented in Section 3.7 and their relative merits are
discussed.

The interface between a knowledge-based system and its users is an important factor in its
acceptability. Two aspects of the use of a natural language interface are presented in Section
3.8 - the understanding of user queries and the generation of textual output.

Finally, Section 3.9 addresses the problem of how knowledge can be acquired by

interaction between domain experts and knowledge engineers.

47

3.2 Rule-Based Representation
3.2.1 Background

The origin of rule-based systems is to be found in the production system method of
inference proposed by Post (1943). Discrete chunks of knowledge are encoded as
conditional statements of the type:

If <condition 1>,

<condition 2>,
Left Hand Side (LHS)

Premise
<condition n>
Then execute <action> Right Hand Side (RHS)
Action

and the system operates by successively executing such rules to produce a chain of

reasoning.

It has been suggested (Newell & Simon, 1972) that this representation of knowledge
reflects the way in which humans organize their own knowledge for problem solving.
Production rules appear a direct and natural way to encode the heuristic rules often
expressed by expert human problem solvers when asked to explain their reasoning process;
the realization that these rules could be captured and used by a computer has led to renewed

interest in the study of heuristics in their own right (Lenat, 1982).

Rule-based systems operate best in domains characterized by a large number of distinct
states, where knowledge about how to move from state to state can be separated from
knowledge about the states themselves. They are not well suited to domains involving well
defined governing principles, complex control processes or strong prescriptions for the use

of specific items of knowledge (Davis & King, 1977).
3.2.2. Structure

There are three basic elements to a rule-based system; a dynamic database of facts about the
current problem, a knowledge base of rules and an inference engine which matches rules
with the database and executes their actions so as to infer new data. An elaboration of this

basic structure is shown in Figure 3.1.

48

Figure 3.1 A Rule-Based System. (Arrows show the flow of information)

The inference engine can be viewed as a three stage process of matching rales in the
knowledge base with data in the database (the match can be with the LHS or RHS of the
rales, depending on the control strategy used), selecting one of the matched rales (conflict
resolution) and then modifying the database by execution of the action in the RHS of the
selected rale. Discussion of these three elements is left until Section 3.2.4, but it is worth
noting here that the inference mechanism can be made completely independent of the
domain represented in the knowledge base.

3.2.3 Representation

When used in a practical system implementation, it is useful to represent rales as more than
simple premise-action pairs. At the lowest level, rales are represented in a machine-
executable format - perhaps LISP, PROLOG or a specially designed rule-based language
with its own interpreter and compiler. When the chaining of rales is traced to generate
explanations of the system's conclusions, it can be advantageous to present rales to the
user in an English language format; it may also be useful to specify rales in an intermediate,
restricted vocabulary format to aid in editing and debugging.

Rules can be organized into hierarchical sets, each set being used in a particular problem-
solving context to perform a specific function (MYCIN's rales were organized according to
the CONTEXT tree - see Section 2.2.2). The speed of system execution can be improved
by storing lists of variables used in the premise of a rale and concluded by its action. The
properties described above can be organized into an information structure for each rale,
such as the one shown in Figure 3.2.

49

Rule set: Lab data Rule no: 045

Premise: current_data(variable,pH,V), V>7.45.

Action: assert(current_data(disorder,alkalaemia)).

Edited by: JohnChelsom Date: 25/6/89
English Translation: If arterial blood pH is greater than 7.45

then the patient has alkalaemia

Intermediate Translation: If pH>7.45 then conclude alkalaemia
Premise Dependents: pH
Concludes Data: disorder

Figure 3.2 The Structured Representation of a Rule.
3.2.4 Control

There are two basic strategies that can be used for the control of a rule-based system;
forward-chaining or backward-chaining (both strategies can be used at different times in the
same system). Backward-chaining, or goal-directed, systems seek first to satisfy the LHS
of a top-goal rule, so that its RHS can be evaluated to achieve the overall goal of the
system. In order to satisfy the LHS conditions, information that is not available in the
database must be inferred by the execution of further rules; the system therefore searches
for rules whose RHS can be used to infer the information required. Invocation of these
rules will require additional data, leading to the invocation of further rules and so on. The

MY CIN system operates in this fashion and has been described in Section 2.2.2.

The forward-chaining, or data-driven, strategy involves scanning the LHS of all rules to
find those whose conditions are satisfied by the current state of the database. One of the
matching rules is then chosen for execution, the database is modified by the RHS of the

chosen rule and the process of scanning recommences.

Since a piece of data is normally only inferred by a few rules, the process of matching the
RHSs of rules in a backward-chaining system is quite straightforward and this can make
such systems very efficient. The matching of LHSs is potentially very inefficient, since it
may involve the evaluation of many conditions; forward-chaining systems can spend a

large proportion of their execution time performing LHS matches. For a system of any

50

great size (more than a hundred rules, say) a full scan of each LHS would become
extremely expensive, computationally, and alternative means of triggering rules must be
found. One solution to this problem is to execute the first rule for which a LHS match is
found in the database; this also eliminates the need for the step of conflict resolution on a

set of matched rules.

Another way to improve the efficiency of rule matching (in either forward- or backward-
chaining systems) is the use of indexing. Each rule has an associated set of descriptors
which are matched against features in the database to produce a list of rules whose LHSs
might be matched successfully. The exhaustive evaluation of LHS conditions is then

performed onjust this subset of the total rule set.

Efficiency can be further improved by the use of meta-rules (Davis, 1980). Meta-rules are
rules which reason about other rules in the knowledge base, either to control the process of
LHS pattern matching or to assist in the selection of one matched rule for execution. An

example of a meta-rule that could be used in this selection procedure might be:

IF the age of the patient is greater than 60
AND there are rules that mention high risk
AND there are rules that mention low risk
THEN it is very likely (0.8) that the former should be used after the latter.

(adapted from Davis, 1980).

Meta-rules are used in the following way. After indexing has produced the set of potentially
useful rules, S, any meta-rules are evaluated and executed so that S may be reduced in size
before pattern matching takes place. Meta-level rules thus represent a higher level of rules
in the system. In theory, there could exist meta-meta-rules, executed before and reasoning
about the meta-rules; indeed the use of meta-rules could be extended to an arbitrary number

of levels.

The generation of a set of matched rules can also be made faster by improving the
efficiency of the pattern matching algorithm itself. The most rudimentary pattern matcher
would examine every element in the database on each control cycle of the system and
match these with every LHS in the rule set. Usually, only a few database elements will be
changed on each cycle, and so many unchanged expressions will be re-evaluated
unnecessarily. By introducing a memory of all matched LHS conditions and updating it as
changes are made to the database, unnecessary re-evaluations can be eliminated. One
pattern matching algorithm that works in this manner is the Rete Match Algorithm (Forgy,
1982).

51

Figure 3.3 The Rete Match Algorithm (Adapted from Forgy, 1982)

The Rete algorithm can be viewed as a black box which ouputs changes to the conflict set
{ie the set of rules with LHS matches in the database) on receipt of an input of changes
made to the database (Forgy, 1982). This concept is illustrated in Figure 3.3. Changes to
the database are recorded as tokens consisting of a tag indicating the type of change {eg'+
indicates addition to the database, indicates retraction) and a set of arguments

corresponding to database elements.

The process of matching a LHS expression can be thought of as a series of tests that must
be performed on that expression. The Rete algorithm stores each LHS expression as a
network of nodes in which each node represents one such test. The root node in the
network is the input to the central box in Figure 3.3, the terminal node is its output. The
algorithm works by passing tokens to the root nodes of networks, performing the tests at
each node and propagating the token down the network if the test is successful. A LHS
match is indicated when a token reaches the terminal node of a network.

There are two basic types of test that can be performed on a LHS expression. Intra-element
tests involve only one database element {eg pH>7.45) and are represented by nodes with
one input and one or more outputs; inter-element tests involve more than one database
element {eg ApH <0.8ApCC>2) and are represented by nodes with two inputs and one
output. In the most basic Rete network, information is stored on each system cycle by

saving the inputs to every two input node. A simple Rete network is shown in Figure 3.4.

The TREAT algorithm (Miranker, 1987) improves on the performance of Rete by explicitly
storing the conflict set on each cycle so that re-evaluation of conditions is limited to those
that involve altered database elements. Both TREAT and Rete rely on careful organization
of memory storage locations and representation at machine level to achieve efficiency, but
even without using these, pattern matching in rule-based systems can be made more

efficient by adopting some of the concepts of the algorithms.

Once the conflict set has been generated, several strategies have been suggested (Davis &
King, 1977) for selecting one rule for execution (conflict resolution). Apart from the use of

meta-rules, mentioned above, these strategies could be:

52

Rule 1 If (abf) Rule2 If (abc)

Figure 3.4 A Rete Network for Checking Premise Conditions

arrange all the rules in the system according to their priority for execution: execute

the highest priority rule in the conflict set

arrange elements in the database according to their priority for discovery: execute
the rule that infers the highest priority data

execute the most specific rules first
execute the most recently triggered rule in the conflict set

In fact it could be argued that all these strategies can be implemented as meta-rules of

various degrees of generality.
3.2.5 Summary

This section has described how discrete chunks of problem-solving knowledge can be
captured in the form of production rules which make alterations to a dynamic database if
certain conditions are satisfied. It has been shown that these rules can be chained together
to reason towards problem solutions and that the efficiency of this process depends
critically on the control mechanisms used. Representation of rules in a practical system
implementation can be achieved by storing the facets associated with each rule in
knowledge structures that closely resemble the frame-based representation of knowledge

described in the next section.

53

3.3 Frame-Based Representation
3.3.1 Background

The general notion of organizing knowledge into structured descriptions calledframes, was
first explicitly formulated in the field of computer vision (Minsky, 1975). The theory of
frames represented a middle ground between the proponents of declarative and procedural
knowledge representations, and just as these representations formed the basis for two
classes of programming languages, so frames provided the basis for a new class of object-
orientated languages such as KRL (Bobrow & Winograd, 1977), RLL (Greiner & Lenat,
1980) and KL-ONE (Brachman & Schmolze, 1985). Other programming environments
have been developed, for example KEE (Kehler & Clemenson, 1984) and LOOPS (Stefik
et al, 1983), which combine production rules and frames, thus exploiting the strength of
rules in representing knowledge of actions and the strength of frames in representing large

bodies of static knowledge.

Frame-based systems are best suited to solving classification problems (including
diagnosis) since they provide an explicit and efficient method of representing the attributes

of prototypical objects, against which particular instances of objects can be matched.
3.3.2 Structure

A knowledge frame contains a structured description of an object or class of objects.
Frames can be organized into taxonomies in which a link between two frames indicates that
one is either a member or a subclass of the other. Features of an object are represented by
slots in the frame; there are two main classes of slots. Where a frame represents a class of
objects, slots can refer to features of the class itself (these will be referred to as generic

slots), or to properties of the class members (member slots).

Figure 3.5 A Frame Taxonomy. (Note that a frame can be a member of more than one

class)

54

Frames which represent individual objects have only generic slots, describing features of
the object. Each slot has a set of facets, which are properties of the slot, and each facet has
a value. A frame taxonomy and an example of a frame with two slots is shown in Figure
3.5. Notice that a frame can be a member of more than one class simultaneously.

An important feature of frame-based representation is the ability for frames to inherit
features through the taxonomy. This means that features common to an entire class of
objects need only be stored once - as a member slot in the frame for that class. Since frames
may be objects in more than one class, there could be a conflict if a frame inherits the same
slot from two different sources; in this case the precedence for inheritence must be
specified.

3.3.3 Control

The purpose of the frame taxonomies in many systems is to exploit the properties of
inheritence to achieve efficient knowledge representation; the reasoning process is achieved
by an external inference engine operating on that knowledge base (Fikes & Kehler, 1985).
Some reasoning mechanisms can be incorporated into the frame structure itself by the use
of message passing, methods and demons. Messages can be passed between frames to
activate methods attached to the receiving frame. A method is a procedure that performs a
sequence of operations which may depend on the content of the activating message.
Demons are methods that are attached to particular frame slots and are activated when the

slot is accessed.

The structured representation of a rule in a rule-based system, shown in Figure 3.2, can be
viewed as a frame for the rule and the CONTEXT tree in a system such as MYCIN
corresponds to the frame hierarchy. The control mechanism of a rule-based system could
also be replicated using messages, methods and demons. The premise conditions for the
rule can be placed as a demon in the premise slot of the frame. When the slot is accessed,
the demon is evaluated, sending a message to its own frame to execute the rule action,
stored as a method for the frame. The action method then sends messages to other frames
in order to update the database and trigger further rules.

When a frame-based system is used for classification problems, the observed data define a
frame for the object to be classified. This frame is then matched with the prototypical
frames in the knowledge base to find the most likely classification. One control strategy that
manipulates frame-based knowledge in this manner was used in the Present Illness

Program, described in Section 2.2.4.

55

3.3.4 Summary

Knowledge bases organized as a hierarchy of frames provide an efficient way of
representing both declarative and procedural knowledge. A frame is a structured description
of an object or class of objects, comprising slots, facets and values. Declarative knowledge
of the attributes of an object is represented as <slot, facet, value> triples in its frame;
procedural knowledge is represented by attaching methods and demons to frames. Frame-
structured knowledge bases can be used with an external inference engine to solve
classification problems - they can also replicate the function of a rule-based system by

using messages, methods and demons.
3.4 Semantic Networks
3.4.1 Background

Semantic networks were developed as a model of the long-term human memory structures
that represent the meaning of English words (Quillian, 1967). This model was built up
using nodes, connected by associative links, to form a network stmcture. At a basic level
of representation, semantic networks can be coded as <node-association-node> triples, but
it is more usual to think of them in terms of graphical analogues of data structures
representing "facts" (Schubert, 1976). A simple network of nodes and links is shown in
Figure 3.6.

In the network proposed by Quillian (1967) each node was identified by an English word
and could be one of two varieties. Type nodes were linked to a sub-network, or plane, of
token nodes representing the meaning of the word. Each token node had a link to its own
type node - tokens for the same word could appear repeatedly throughout the network as
members of different planes. Thus the whole stmcture could be thought of as a three-
dimensional space of nodes and links in which a series of intersecting planes drawn

through the space represented the meanings of words.
3.4.2 Reasoning in a Semantic Network

A semantic network is a static body of declarative knowledge which can be manipulated by
a separate inference engine to perform particular functions. Indeed, the same network could
be manipulated in several different ways to achieve different goals, although in general the
stucture of the network will be influenced by the intended use and method of inference. The
early semantic network described above was used to compare and contrast the meanings of
words by searching for the possible pathways between a pair of type nodes that existed in
the network.

56

Starting from each node simultaneously, the search explored links, tagging each new node
encountered with the name of its predecessor in the path and the name of the start node.
When a node was encountered on the path from the first node, that had already been tagged
with the name of the second, a connection had been found and the entire pathway could be
generated by advancing to the tagged predecessors on the path from the second node.

This process can be described as a breadthfirst intersection search on the network. Such a
search could be used in the network shown in Figure 3.6 to answer the question How does
CO?2 in extracellularfluid affectpC02? with the pathway CO2 in extracellularfluid diffuses

to CO2 in plasma which dissolves and gives rise topC02

The nodes in Figure 3.6 can be thought of as simple concept nodes representing basic
concepts in the domain of the semantic net. Another useful type of node is the proposition
node which represents relationships between concept nodes. The proposition node can be
viewed as a predicate with links to concept nodes that form its arguments; these links have
been referred to as case roles (Fillmore, 1968). An example for the chemical reaction of

water and carbon dioxide in red blood cells is shown in Figure 3.7.

Figure 3.7 The Proposition Node for the Reaction Between H20 and CO2

57

It may be useful to refer to the structure in Figure 3.7 as the reaction between carbon
dioxide and water in red cells and to use this aggregation as a concept node. This
introduces the notion of partitioning the network into spaces (Hendrix, 1975) , where a
space consists of a sub-network of nodes and any one node can be a member of several
spaces. A partitioned network is shown in Figure 3.8, containing the space in Figure 3.7.
The problem of expressing such concepts as quantification and logical connection in
semantic networks has been addressed by extending the ideas of proposition nodes
(Schubert, 1976) and partitioning (Hendrix, 1979).

The networks presented so far could be used to generate detailed, deep level explanations
of a domain by fairly straightforward tracing of pathways; the arcs in these networks act as
simple descriptive links between nodes and no restrictions are placed on the arcs that can be
used. Other semantic networks have made use of a limited set of arc types which convey
specific information to the network interpreter as it explores paths through the nodes and
arcs; the networks in CASNET, ABEL and CHECK that were described in Chapter 2
would fall into this category.

Diffusion of bicarbonate from red cells to plasma

Diffusion of chloride from plasma to red cells

Figure 3.8 A Partitioned Network Containing Figure 3.7 as a Space

58

One of the most commonly used (and misused) types of arc is the IS-A link. It can form the
connection between two concept nodes where one is a sub-classification of the other and
allows the inheritance of properties. The two basic types of IS-A link connect classes to
sub-classes and classes to individual elements; there are also other, more subtle differences
in the possible meanings of I1S-A links that should be considered when constructing
networks (Brachman, 1983). A semantic network containing 1S-A links bears more than a

passing resemblance to the frame-based representation described in Section 3.3.
3.4.3 Summary

Semantic networks of nodes linked by associative arcs were developed in the late 1960s as
a method for representing the meanings of English language words. Knowledge can be
retrieved from semantic networks by simple tracing of pathways between nodes. More
sophisticated analysis can be performed by the use of propositional nodes, partitioning or
definition of special arc types that affect the way in which the network is manipulated.

3.5 The Blackboard Architecture
3.5.1 Origins

In the late 1950s, Oliver G. Selfridge proposed a model in which a collection of
independent processing modules could interact in parallel to solve complex pattern
recognition problems, such as the production of type-written text from spoken input
(Selfridge, 1959). In its most elementary form, the model comprised a collection of
demons each of which was designed to recognize a particular pattern and to indicate the
extent to which this pattern matched the input data. A control demon had the task of
deciding which of the 'shrieking demons' had the loudest output; the whole ensemble being
called Pandemonium. A slightly refined model was used in practice, since it was found that

many of the patterns to be recognized had similar features.

In the arrangement of Pandemonium shown in Figure 3.9, the pattern recognition process
was split into four levels. At the lowest level were demons which held the input data; at the
second level were computational demons which extracted features from the data; at the third
level were cognitive demons and at the highest level was the decision demon which selected
one of the cognitive demons as output. The cognitive demons were weighted, linear
combinations of the output from the computational demons and were in effect hypotheses

of the problem solution.

59

cognitive
demons

computational
demons

data or image
demons

Figure 3.9 Demons in Pandemonium. Each cognitive demon is a weighted, linear

combination of the set of computational demons. (Adapted from Selfridge, 1959)

In 1962, Allen Newell described a problem solving strategy in terms of a group of workers
viewing a blackboard on which is written the emerging solution to the problem; each
worker can see from the blackboard when he has something useful to contribute (Newell,
1962). Newell went on to point out that this is precisely the idea behind the Pandemonium
model. Newell's colleague Herbert Simon is reported (Nii, 1986) to have suggested the use
of this blackboard model to the designers of the Hearsay Il speech understanding system
(Reddy et al, 1973), which became the inspiration behind a multitude of subsequent
problem-solving systems.

3.5.2 The Hearsay-lIl System

The Hearsay systems were developed at Camegie-Mellon University as part of the Speech
Understanding Systems Program organized by the Advanced Research Projects Agency
(ARPA) of the US Department of Defence between 1971 and 1976. The first Hearsay
model was demonstrated in June 1972 and claimed to be thefirst system to demonstrate

live, connected speech recognition using nontrivial syntax and semantics (Reddy et al,

60

1973). Although many of the features of a blackboard system are evident in this early
version of Hearsay, it was not until the development of Hearsay-Il (Erman & Lesser,
1975) that the blackboard model was explicitly defined.

Hearsay-1l1 was designed to handle two types of uncertainty inherent in the process of
speech understanding; uncertainty introduced by imperfect speech production and
detection, and uncertainty introduced during the process of understanding the detected
signal. In order to achieve this, Hearsay-Il had to be capable of entertaining a series of
hypotheses at every level, from the processing of raw signal data, through the formation of
words and phrases, to a complete interpretation of the spoken utterance. Creating and

refining these hypotheses would require the interaction of many diverse sources of

knowledge.
LEVELS KNOWLEDGE SOURCES
DATA BASE
INTERFACE A SEMANT
1
Ol ES PREDICT RI™OL
PHRASE ; STOP e
PARSE yCONCATAH €
\ / WORD-SEQ-CTL _
WORD-SEQUENCE 0 i -
WORD-SEb \ // = « o -
0 ‘1 0 WORD-CTL 0 -eeeeee
WORD i low VERIEA JOR
i
SYLLABLE ; 0o —
0 ikxpom
SEGMENT o . 0
Sec ©O A
PARAMETER 0 M—

Figure 3.10 Blackboard Levels and Knowledge Sources in Hearsay-1l. POM creates
syllables from segments, MOW creates words from syllables, WORD-CTL controls the
number of words created, WORD-SEQ creates word sequences, WORD-SEQ-CTL
controls the number of word sequences created, PARSE parses word sequences to form
phrases, PREDICT predicts words that follow phrases, VERIFY rates segments against
word-phrase hypotheses, CONCAT joins word-phrase pairs, RPOL rates hypotheses,
STOP decides when to finish, SEMANT creates the final, unambiguous interpretation.
(Adapted from Erman et al, 1980)

61

The knowledge sources were defined as condition-action pairs; the condition module
specified the circumstances in which the action could be executed, so as to contribute to the
problem solving process. The knowledge sources were independent modules (typically 30
pages of Algol-like code) whose only inter-communication was through the blackboard - a
global database of hypotheses split into a hierarchy of discrete levels, ranging from raw
signal data at the lowest level to a definite interpretation of the spoken utterance at the
highest. The knowledge sources and blackboard levels, as they existed in September 1976,

are shown in Figure 3.10.

BLACKBOARD

KEY

O PROGRAM MODULES DATA FLOW

DATABASES CONTROL FLOW

Figure 3.11 The Structure of Hearsay-Il (Adapted from Erman et al, 1980)

62

Hearsay-11 operated in a cyclic fashion. A scheduling queue of activities was maintained -
an activity being either the execution of a condition module or of an action whose condition
had already been successfully evaluated. On each cycle the scheduler selected an activity to
perform by finding the highest priority amongst the members of the scheduling queue.
When a knowledge source condition module was selected, the current data on the
blackboard were used to find all possible instantiations of the conditions - the set of which
was called the stimulusframe. The corresponding action module of the knowledge source
was then added to the scheduling queue. When an action module was selected as the next
activity, the action itself was performed and any resultant changes made to the blackboard
were noted by a blackboard monitor. Any knowledge source condition modules affected by
these blackboard changes were added to the scheduling queue. When rating the activities in
the scheduling queue, Hearsay-Il used the stimulus frame mentioned above, the response
frame (a description of the likely effect of executing a knowledge source action), and
general information on the state of the problem solution, such as the strength of the
hypotheses at each level of the blackboard and the amount of processing time being used.
Figure 3.11 shows the overall architecture of the HEARSAY-II system.

3.5.3 The HASP Project

Work on the HASP system (Nii et al, 1982), developed jointly by the Stanford Heuristic
Programming Project and Systems Control Inc, was begun in 1972 with the aim of
identifying ocean-going vessels primarily using information gathered by arrays of
underwater sonar detectors, but also utilizing information such as the location of shipping
lanes and intelligence reports on ship movements. The sonar detectors produced a series of
frequency spectra of the received signal over time. A persistent source of constant
frequency would produce a solid line trace on a frequency vs time display. Rotating shafts,
propellors and on-board machinery create a distinctive sonarfootprint for a particular class
of vessel, but the problem of identifying the class, speed and course of several vessels
from a noisy picture of their overlapping footprints is by no means easy.

The blackboard in the HASP system was called the current best hypothesis of the situation.
It was split into four levels - at the lowest level were sonogram lines, at the next level were
harmonics (groupings of the lines), then signal sources (eg propellors, shafts, etc) with
their estimated position, and at the highest level were hypotheses of the vessels present,
with their class, velocity and position. Nodes at different levels were linked so that the
entire structure formed a hierarchy of hypotheses. There were two types of link:
expectation links connected high level nodes to nodes suggested by them at lower levels

and reduction links connected low level nodes to aggregations at higher levels.

63

The knowledge sources were rule-based modules which were organized into a three level
hierarchy. Specialist knowledge sources made modifications to the blackboard, knowledge
source activators were responsible for selecting which specialists to execute and at the head
of the hierarchy was the strategy knowledge source responsible for overall control of the
system. There were four types of knowledge source activators; the clock event manager,
expectation event manager, the problem event manager and the blackboard event manager.
Each type was associated with a list of events. The blackboard event list recorded all
changes made to the blackboard; the expectation event list contained events that were
expected at some future, unspecified time {eg intelligence reports that a particular vessel
might be present); the problem event list held information which was not available at the
time a knowledge source was executed but which would have been useful to know (the
knowledge source could then be re-executed when the information became available); the
clock event list held the type and time of predicted events {eg the temporal characteristics of
the sonograms of some vessels were known). A diagram of the structure of the HASP

system is shown in Figure 3.12.

BLACKBOARD
CONTROL
DATA
CONTROL
MODULES
CONTROL FLOW e DATA FLOW

Figure 3.12 The HASP/SIAP System

64

On each cycle, the strategy knowledge source selected a knowledge source activator, which
in turn selected a node from the appropriate event list to be the nextfocus ofattention. The
focus of attention was used to select and execute all the relevent knowledge source
specialists which made changes to the blackboard and event lists so that the cycle could
begin again.

One of the most interesting aspects of HASP was its use of top-down, model-driven
reasoning, wherby important features of a model (in this case represented as a knowledge
frame) were searched for in the lower level data. This feature of control was built into many
of the later blackboard systems and indeed the Hearsay-Il model itself was adapted to
incorporate both data-directed and goal-directed scheduling (Corkill et al, 1982). The
HASP project was concluded in 1975, but work was continued by the commercial partner
as the SIAP project until 1980. It is reported (Nii et al, 1982) that an evaluation of the
HASP/SIAP system produced results comparable with, and in some cases better than, the

human experts.
3.5.4 Multiple Blackboard Panels

The CRYSALIS system (Englemore & Terry, 1979) extended the blackboard model by
introducing a dual panelled blackboard. The system's task was to construct a three
dimensional model of proteins, based on information derived from x-ray diffraction called
electron density maps (EDMs). The knowledge sources and control modules were all rule-
based and the control structure consisted of strategy, activator and specialist knowledge
sources operating in the same manner as HASP. However, there were no condition
modules in the knowledge sources to check whether they were suitable for execution - in
this sense the process was not truly opportunistic, leading to doubts about classifying
CRYSALIS as ablackboard system (Nii, 1986b).

The dual panelled blackboard comprised a density plane and a model plane. The density
plane held information concerning the electron density map and was split into four levels -
the lowest, parametric level held the raw EDM data and the higher levels contained
abstractions derived from the parametric level. The model plane contained a three level
hypothesis of the protein structure; the atomic level indicated the spatial location of atoms,
the superatomic level described groups of atoms and the stereotypic level held details of
large parts of the protein structure which formed recognized structures. Nodes on the levels
of each blackboard panel were linked to form a hierarchy of hypotheses within each panel;
there were also links between data on the density panel and the hypotheses which these

supported on the model panel.

65

3.5.5 Generalization

Within the last decade, the designs of many Al systems have been based to varying degrees
on the blackboard model. Primarily these systems have been concerned with the
transformation of raw signal data into a symbolic description, although some have had
other functions - the planning system OPM (Hayes-Roth et al, 1979) being a good
example. As well as these specialist blackboard systems there have also been attempts to
produce general expert system shells which implement a domain independent blackboard
model. One of the designers of the Hearsay systems went on to collaborate in the
production of Hearsay-Ill which can be viewed as an extension along some directions of
the Hearsay-11 architectural style, and as a generalization of it along others (Erman et al,
1981).

At Stanford University, the home of HASP and CRYSALIS, the AGE system (Attempt to
Generalize) was intended to ease the process of knowledge engineering by creating a suite
of useful software tools (Nii & Aiello, 1979). Though originally conceived as more than a
general blackboard shell, the first task undertaken was to implement a set of tools for
construction of blackboard systems. Facilities were provided to accommodate hierarchical
blackboard structures with expectation and reduction links as in HASP, which could be
arranged in multiple planes as in CRYSALIS. The knowledge sources were sets of rules
with associated triggering conditions, lists of hypothesis levels spanned and links created
by the knowledge source, and means of binding variables in the knowledge source when
triggered. A mechanism for handling uncertainty in the rules was included; it was also
possible to incorporate user-defined uncertainty handlers. Control modules were provided

to provide both model-driven and data-driven strategies.

A particularly interesting feature of AGE was the use of an intelligent front-end to the
system which not only made general help facilities available but also guided the user
through the process of construction of an expert system. AGE was used to develop a
number of systems from scratch and also to reimplement CRYSALIS and the rule-based
system PUFF (Aikins et al, 1983), originally developed using EMYCIN (see Section 2.3).
Work on AGE ceased in 1983 but the experience gained contributed in part to the BB1

system described below.

The BB1 system, developed by the Heuristic Programming Project at Stanford University,
is a practical implementation of a blackboard architecturefor control (Hayes-Roth, 1985). It
provides the basic mechanisms of a blackboard system and tools for creating and editing
blackboard structures and knowledge sources. There is a low-level blackboard-

manipulation language which incorporates the ability to execute LISP functions.

66

Knowledge source actions and control mechanisms can be programmed using this language
or in alanguage defined by the user, suitable for a particular domain application (this is the
recommended way of programming in BB1). The blackboard structures supported by BB1
can be split into an arbitrary number of levels which contain objects composed of attribute-
value pairs and links which can be used to connect the objects into hierarchical structures.
Facts about objects are inherited through the hierarchy, making a blackboard structure
similar to a frame-based knowledge base (see Section 3.3). A graphical editor, BBEDIT, is
used to create and modify the blackboard structures.

There are two types of knowledge source in BB1 - domain or control - but they have a
uniform structure consisting of 16 fields. Trigger conditions are evaluated and cause the
knowledge source to become triggered if they are all true; at this stage context variables
derived from the prevelant blackboard data are bound to form knowledge source activation
records (KSARs); more than one KSAR can be created for each triggered knowledge
source. When a KSAR is formed, a list of pre-conditions is evaluated; if they are all true
then the KSAR is designated as executable, if not the KSAR is designated triggered and the
unmet preconditions are rechecked on each appropriate cycle. Obviation conditions are
evaluated in the same way as trigger conditions - when all the obviation conditions are true,

the KSAR is removed from the system.

The knowledge source variables are a list of variable-expression pairs which are evaluated
just before the knowledge source is executed. The knowledge source actions are the rule set
which is evaluated when the KSAR is executed. Other knowledge source fields identify the
blackboard from which triggering occurs and the blackboard(s) affected when the actions
are evaluated, the levels worked from and acted upon, the cost and reliability of the
knowledge source (used for control purposes as defined by the user) and several

administrative fields such as the name, author and description of the knowledge source.

The operation of BB1 involves the characteristic cycle of blackboard systems: execute a
knowledge source activation record, update the agendas of triggered knowledge sources
and schedule the next KSAR for execution. The cycles on which the obviation and
preconditions described above are checked can be defined by the user (the default is every
cycle). The cycle proceeds as follows. The interpreter acts on the KSAR that has been
chosen for execution, executing the actions and recording the blackboard events generated.
The agenda maintainer then makes changes to the agendas of triggered, executable and
obviated KSARs. If the cycle has been designated for checking preconditions, then this is
done for all executable and triggered KSARs. If any of the preconditions of an executable
KSAR are not true, the KSAR s returned to its triggered state; if all the preconditions of a

triggered KSAR are true, it becomes executable. The events generated by the most recently

67

executed KSAR are used to generate new KSARs in either the triggered or executable
states, depending on the evaluation of the preconditions. If the cycle has been designated
for checking of obviation conditions, any KSARs whose obviation conditions are satisfied
are removed to the obviation agenda, effectively eliminating them from the system. The
interpreter selects the next KSAR for execution by rating each executable KSAR using the

control mechanisms described below.

The control-plan blackboard is defined as part of the BB1 system and has four levels;
strategy (highest), focus, heuristic and schedule (lowest). Objects at the strategy level

describe the overall problem solving behaviour desired; objects at the focus level can be
part of one or more strategies and define the attributes of KSARs that should be executed to
achieve a specific local goal; at the heuristic level are defined specific LISP functions that
can be used to rate KSARs. Finally an object is created at the schedule level on each cycle
to describe the KSAR that was executed. Often a single strategy will be sufficient to guide
the entire problem solving process. The strategy is used to make decisions on which focus
(or foci) to persue; it is at the focus and heuristic levels that executable KSARs are rated. It
has been shown (Hayes-Roth, 1985) that the blackboard architecture for control can
replicate the control of other blackboard systems such as Hearsay-11 and HASP, and also
of systems which use meta-level control rules (see Section 3.2).

3.5.6 Summary

The major drawback of using a blackboard architecture for problem solving is that it
introduces overheads that are expensive both in terms of computing resources and speed at
run time. To offset this there are many advantages both as a means of analyzing a problem
and as a method for developing a solution. The use of independent knowledge sources
means that fields of knowledge, diverse in origin, content and representation, can be
brought to bear on a problem and that these can be developed and adapted without affecting
the rest of the system. This has the added advantage that experiments with different
configurations of knowledge sources can easily be performed within the overall system
framework. The blackboard model allows reasoning with uncertain and unpredictably
incomplete data to produce competing solution hypotheses of varying degrees of certainty
which can share the same data and sub-hypotheses. The blackboard database means that the
problem solving process can be interrupted and resumed at will and allows for truely
opportunistic problem solving behaviour, whereby the most appropriate data, knowledge
and control strategies can be used to advance the most promising hypotheses towards the
desired solution.

68

3.6 Data Classification

3.6.1 Introduction

The numerical value of a laboratory data measurement conveys no information in itself; in
order to provide information it must be compared with some reference. The concept of
reference values was introduced to describe the measurements taken from a reference
population, where the precise nature of the population and the conditions under which the

measurements were taken are specified (Grasbeck & Soris, 1969).

There are four ways in which variation in the value of a laboratory data variable can be
introduced (Kringle & Johnson, 1986). Inter-individual variation stems from the
differences (eg age, sex, general health, etc) that exist between the members of a
population; intra-individual variation is due to changes in a particular individual over time
(eg diet, emotional state, etc); pre-analytical variation is introduced by the manner in which
samples are handled in the laboratory (eg storage conditions, processing in a centrifuge);
analytic variation is introduced by the actual method of measurement. If care is taken to
eliminate systematic errors (biases), the four sources of variation each introduce random
errors and contribute to the formation of a Gaussian distribution of values in the reference
population. The distribution may become skewed if some factor introduces a systematic
bias in all measurements. If the factor responsible for the bias can be identified then the
skewness can be corrected by partitioning the reference population. For instance the bias
introduced by a subject's age could be eliminated by dividing the reference population into
different age groups and calculating a separate reference range for each one. An alternative
way to correct a skewed distribution in the reference population is to apply a transformation

to the measured data values in order to present them as a standard Gaussian distribution.

Many different methods have been proposed for relating observed values to reference
values in clinical chemistry (Dybkaer, 1981); the following sections describe three methods

that have found application in knowledge-based systems.
3.6.2 Interval Classification

One of the simplest and most widely used methods of classification for laboratory data is
to divide the range of possible values into intervals, using reference limits, and to classify
data according to the interval in which they fall. The classification into three intervals can be
made by setting two reference limits at the 95% confidence limits on a Gaussian
distribution. This is shown in Figure 3.13.

69

low normal high

Figure 3.13 Three Interval Classification Using 95% Confidence Limits (Gaussian
distribution with mean p and standard deviation a)

The disadvantage of this method is the enormous loss of information that it entails; for
instance, values of i0-1.95g and |0+1.950 would both be classified as normal. The

information loss can be reduced by increasing the number of classification intervals. Figure
3.14 shows the classification of pH into seven intervals - very low, low, fairly low,

normal, fairly high, high and very high.

The reliance on the Gaussian distribution for interval classification has been criticized by
many authors (eg Mainland, 1969) who advocate the use of non-parametric methods of
determining reference limits (a non-parametric method makes no mathematical assumptions
about the distribution of values in the reference population). One such method,
recommended by the International Federation of Clinical Chemistry (1982) is to calculate
the 0.95 interfractile interval, by removing the highest 2.5% and lowest 2.5% of values in
the reference population and setting the reference limits at the highest and lowest remaining

values.

very low fairly normal fairly high very

Figure 3.14 Seven Interval Classification of pH

70

3.6.3 Fuzzy Set Theory for Data Classification

Consider a space of elements, U={ui,112113...} and a subset of elements
A={ai,a2,...an} in that space. According to traditional set theory, each element aj is a
member of A and not a member of its complement A'. The theory of fuzzy sets (Zadeh,
1965) introduces the notion of elements that are partly members of A and partly members
of A’. The degree to which an element u of the space U is a member of the fuzzy set A, is
represented by a membership function f(ui) which assigns a number in the range [0,1] to
each element uj expressing its grade of membership of A. If f(uj)=I then ui is a member of
A, if f(ui)=0 then ui is not amember of A; if 0<f(ui)<1 then the degree to which ui is a
member of A increases with f(uj). The membership function of the complement of A, A', is
defined as I-f(ui). It can be seen that a set in traditional set theory corresponds to a fuzzy
set for which f(uO=0 or 1.

Fuzzy set theory provides a useful method for data classification. Returning to the problem
of classifying pH values, three fuzzy sets can be defined; low pH (acidaemia), high pH
(alkalaemia) and normal pH. Three membership functions can now be defined so that for
any observed pH value, three measures are obtained, expressing the degree to which it can
be considered as high, low or normal. The membership functions can take any form; two
types that have been used in practice are described below.

Zadeh (1972) has defined some useful functions:

Sl(ui;a,p,x) =0 forui<a
= 2((ui-a)/(x-a))2 for a<ui<(3
= 1- ((ui-x)/(3C-a))2 for p<ui<%
=1 for ui>x

where p=(a+x)/2
S2(ui;a,p) = Sl(ui;p-a,p-0</2,p) forui<p
= |-Sl(ui;P,(3+a/2,p+a) forup>p

These can be used to define three membership functions for high, low and normal pH,
shown graphically in Figure 3.15a:

low pH 1-SI(ui;7.25,7.35,7.45)
normal pH S2(ui;0.1,7.4)

high pH SI(ui;7.35,7.45,7.55)

71

Figure 3.15 (a) Membership Functions for Low, Normal and High pH,

Using Zadeh's Functions

Alternatively, a simple ramp function could also be used:

S3(ui;a,BR,x,5) =0 forui<a
= (ui-a)/(3-x) for a<ui<B
=1 for R<ui<x
= (5-ui)/(d-c) for x<ui<8
=0 forui>5

Figure 3.15b shows the membership functions defined by:
low pH S3(ui;0,0,7.3,7.4)
normal pH S3(ui;7.3,7.4,7.4,7.5)
high pH S3(ui;7.4,7.5,10,10)

low normal high

Figure 3.15 (b) Membership Functions for Low, Normal and High pH.
Using a Simple Ramp Function

72

Fuzzy set theory offers two methods to increase the number of groups (fuzzy sets) into
which data are classified. The first method is simply to define additional fuzzy sets and
associated membership functions. This approach has been used in a knowledge-based
system for the assessment of liver function (Lesmo et al, 1984) which uses the
classifications normal, slightly altered, altered and very altered. The classification of pH
according to this scheme is shown in Figure 3.16a using the membership functions:

very low $3(0,0,7.25,7.3)

low S$3(7.25,7.3,7.3,7.35)
quite low S3(7.3,7.35,7.35,7.4)
normal S3(7.35,7.37,7.43,7.45)
quite high S3(7.4,7.45,7.45,7.5)
high $3(7.45,7.5,7.5,7.55)
very high S$3(7.5,7.55,10,10)

A second method for classification into the same seven groups defined above, is to
consider the terms very and slightly as modifiers or linguistic hedges (Zadeh, 1972). Such

modifiers define a transformation for the membership function of a fuzzy set. For instance,
if ui is a member of A according to membership function f(ui), then it is a member of

very.A according to [f(ui)]2 and it is a member of quite. A according to [f(ui)]0-5

Figure 3.16b shows the membership functions defined by:

very low [1-Sl(ui;7.25,7.35,7.45]2
low 1-Sl(ui;7.25,7.35,7.45)
slightly low [1-Sl(ui;7.25,7.35,7.45)]°-5
normal S2(ui;0.1,7.4)

slightly high [S1(ui;7.35,7.45,7.55)]0-5
high Sl(ui;7.35,7.45,7.55)

very high [SI(ui;7.35,7.45,7.55)]2

73

(b) Using Linguistic Hedges
Figure 3.16 Increasing the Fuzzy Sets for Classification

It is tempting to think of fuzzy classifications in terms of the probability that ui is low, very
low etc. It can be seen, however, that Xf(uj) is not equal to unity in the above definitions,
as it would have to be for a probabilistic interpretation. Indeed, the notion ofafuzzy setis
completely non-statistical in nature (Zadeh, 1965) and special rules of fuzzy inference must
be applied when fuzzy classification is employed as part of a knowledge-based system (see
Section 3.7.5). The next section describes a method in which probability theory is used to
derive classifications similar to those of fuzzy set theory.

3.6.4 Classification Using Probability Distributions

It has been proposed (Cheeseman, 1985) that a probabilistic method of classification exists,
similar to the method using fuzzy set theory described above. The probability that a data
value will be classified in a particular interval can be expressed as a series of probability
distributions. Such a method has been used in the knowledge-based system MUNIN (see
Section 2.4.2) and an example from this system for the classification of the duration of

motor unit potential into six intervals is shown in Figure 3.17.

74

small normal increased

Figure 3.17 Probability Distributions in MUNIN

One major problem associated with the use of probability distributions for data
classification lies in the definition of the distributions themselves. A method of generating
the distributions for a classification into three intervals has been proposed, using the
concept of an individual difference quotient (Tango, 1981). The derivation of the
individual difference quotient for a laboratory test is based on the assumption that the
Gaussian distribution of values observed in a reference population, N(|i,a2), is due to

inter-individual and intra-individual differences in the population (analytical variation is

assumed to be negligible). The intra-individual variation of observed values for a subject i,
is represented by the distribution N(p.j,0i2) and the assumption is made that Gi=ce for all

subjects ie inter-individual differences are restricted to variation in the mean value for each

subject.

The value vi obtained in a laboratory test on subject i can be thought of as the sum of the

reference population mean, the difference between the subject's mean and the reference
population mean (Bj) and the difference between the value itself and the subject's mean (eR.

This is illustrated in Figure 3.18.

If it is assumed that the inter-individual differences are distributed as N(0,082) then the

variation in the reference population can be written as:

c2=o0R2+o0c2 (3.6.1)

and the individual difference quotient O can be defined for the laboratory test as:

(3.6.2)

75

Figure 3.18 Inter- and Intra-Individual Differences

The value of 0 has been measured for 23 laboratory tests in a population of 24 carefully

selected, healthy patients and was found to lie in the range 0.5 to 2.5 (Tango, 1981). In 17
of the 23 tests 0>1 indicating that inter-individual differences outweighed intra-individual

differences.

For the classification of test data, consider the value vi of the laboratory data variable V,

that has been measured in a subject and that lies t standard deviations above the population
mean ie

Vi = p+to

If the reference range for V is defined in the intra-individual distribution as pi-20e <V <
pi+20¢, then the probability that vi is normal is given by the probability that |ij lies within
+/- 2ae of vj. The distribution of pi is known to be N(p,a2) and so

Vi+2ae

P(v- is normal) = ; <>(ul
vi’2ce

where 9 is the Gaussian distribution function

substituting u'=u-pi

P(Vj is normal) = J (>(u'|0,<7R32)du'

Vi-Ni-2ae

76

Ja + 2cM
= (D('l0,ap2)du*

ta-2a®

where O=N(ul0,l) the standard Gaussian distribution function

buto2=ap2+0@~" 0=op/ae from (3.6.1) and (3.6.2) and hence

P(v- is normal) = (J) itV 1+8 2+2
V 0

Similar expressions can be derived for P(vj is low) and P(vi is high) enabling the
classification of V into three intervals when 0 is known for the laboratory test. The

probability that the observed value is normal as t varies from 0 to 2 is shown in Figure 3.19
for several values of 0.

Figure 3.19 Probability That an Observed Value is Normal (Using data from Tango,
1981)

77

3.6.5 Summary

Laboratory data variables can be classified by comparison with typical values from a
reference population. The standard method of classification, both in the clinical laboratory
and in knowledge-based systems, has been to divide the range of reference values into
three intervals and to classify data according to the interval in which they fall. This method
involves a substantial loss of information and several alternative methods are available
which preserve a greater proportion of the information content of the original data. These
methods include the division of the reference values into more than three intervals, the
application of fuzzy set theory and the definition of probability distributions for
classification. In the latter case, a method has been presented for direct calculation of
probability distributions, which exploits the difference between inter-individual and intra-

individual variations of laboratory data variables.
3.7 Treatment of Uncertainty
3.7.1 Introduction

The ability to function under conditions of uncertainty is an important feature of
knowledge-based systems (Hayes-Roth, 1984). Uncertainty can exist both in the
representation of the knowledge contained in the system and in the data input to it, and
these can introduce uncertainty into the system's output. Most of the first generation
knowledge-based systems used ad hoc scoring schemes to handle uncertainty under the
assumption that these were the best way to explicitly represent uncertainty in a knowledge
base.

A general dissatisfaction with the performance of the early ad hoc methods led to a search
for more formal methods of handling uncertainty. There was renewed interest in the use of
Bayes' Theory, extended from its simplest application to operate in structured hypothesis
spaces; the Dempster-Shafer Theory of evidence (Shafer, 1976) was recognized as having
potentially useful applications in knowledge-based systems; the Theory of Possibility
(Zadeh, 1978) which emerged from Fuzzy Set Theory, was proposed as an alternative to

probability theory.

The following sections present MY CIN's certainty factor model as an example of an early
ad hoc scoring scheme, then examine the simple application of Bayes' Theorem and its use
in a hierarchically organized set of hypotheses. Finally the Dempster-Shafer theory and the
Theory of Possibility are presented and the relative merits of the Probability, Possibility
and Dempster-Shafer theories are discussed in the context of knowledge-based systems.

78

3.7.2 MYCIN's Certainty Factor Model

The development of MYCIN's certainty factor model was prompted by its designers'
dissatisfaction with existing techniques for handling uncertainty (Shortliffe & Buchanan,
1975). It was intended to be similar to the existing theory of confirmation (Carnap, 1950),
adapted for the practical purposes of a rule-based reasoning strategy. It is interesting to note
that one of the main doubts expressed about subjectivist Bayesian updating was its reliance
on clinicians’ estimates of uncertainty measures - a feature that is preserved in the certainty
factor model. Two basic measures are defined in the model:

MB(hle) is a measure of the increase of belief in the hypothesis h when evidence e is

observed

MD(hle) is a measure of the increase of disbelief in the hypothesis h when evidence e is

observed

The measures of increased belief and disbelief can be related to probabilities:

If P(hle)>P(h), MB (hie) = P(hle)-P(h) and MD(hle)=0 (3.7.1)
1-P(h)
0<MB(hle)<I
IfP(hle)<P(h), MD(hlel = P(hVVP(hle) and MB(hle)=0 (3.7.2)
P(h)
0<MD(hle)<I

The certainty factor associated with hypothesis h is defined as:
CF(hle) = MB(hle)-MD(hle) (3.7.3)
-I<CF(hle)<I
It can be seen from (3.7.1) and (3.7.2) that MB(hle)=MD(~hle) which implies that:
CF(hle)+CF(~hle)=0 (3.7.4)

Combining functions for the measures of belief and disbelief were defined in accordance
with certain criteria for the behaviour of the model (Shortliffe & Buchanan, 1975):

MB(h) due to accumulating confirming evidence increases towards unity but is only equal

to unity when a single piece of evidence categorically implies the hypothesis

79

MD(h) due to accumulating discontinuing evidence increases towards unity but is only
equal to unity when a single piece of evidence categorically implies the complement of the
hypothesis

CF(h) due to all evidence is always greater than CF(h) due to discontinuing evidence only
CF(h) due to all evidence is always less than CF(h) due to confirming evidence only
CF(h) remains undefined in the case where MB(h) and MD(h) would both be unity

MB(h), MD(h) and CF(h) do not depend on the order in which evidence is accumulated or

on evidence that is unknown
Using these criteria the following combining functions were devised:

For accumulated evidence el, e2

MB(hlel,e2) =0 if MD(hle1,e2)=1
= MB(hle 1)+MB (hle2)(1-MB (hie1)) otherwise

(3.7.5)

MD(hle1,e2) =0 if MB (hiel,e2)=1
= MD(hlel)+MD(hle2)(I-MD(hlel)) otherwise

(3.7.6)

which indicates that the measure of belief/disbelief associated with the new evidence e2 is
applied to the belief/disbelief remaining uncommited to h after el.

For a conjunction of hypotheses:

MB(hl,h2le) = MIN[MB(hlle);MB(h2le)] (3.7.7)
MD(hl,h2le) = MAX[MD(hlle):MD(h2le)] (3.7.8)

which indicates that the overall belief in a compound hypothesis is only as strong as the
least believed element and that overall disbelief is as great as the most disbelieved element.

For a disjunction of hypotheses:

MB (hl or h2le) = MAX[MB(hlle);MB(h2le)] (3.7.9)
MD(hl orh2le) = MIN[MB(hlle);MD(h2le)] (3.7.10)

which indicates that the overall beliefin a disjunction of hypotheses is as strong as the most

believed element and that overall disbelief is only as great as the least disbelieved element.

80

3.7.3 Bayesian Methods
3.7.3.1 Introduction

The conditional probability of a proposition H, given certain evidence E, can be viewed as
a measure of belief in the proposition (Cheeseman, 1985). This fact forms the basis of any
probabilistic inference system in which the belief in a set of hypotheses
H={hl,h2,h3,...hn} given a set of evidence E={el,e2,e3,...em} is expressed as

Bel(hi)=P(hilE)=P(hilel,e2,e3,...em) (3.7.11)

With any reasonably large set E, it is not practical to measure P(hilel,e2,e3,...em), instead
conditional probabilities of the type P(eilhj) are measured and P(hjIE) is calculated using
Bayes’ Theorem (Bayes, 1763):

P(hjIE) = POiil-PrElhil (3.7.12)
P(E)

where P(hj) and P(E) represent the apriori probabilities of hj and E.

The assumption could be made that the pieces of evidence ei are statistically independent:
Assuming P(eilek)=P(ei) (3.7.13)
then P(E) = P(el).P(e2).P(e3)....P(em) (3.7.14)

Another assumption could be made that the pieces of evidence ei are statistically

independent in the presence of hj:
Assuming P(eilek,hj)=P(eilhj) (3.7.15)
then P(Elhj) = P(ellhj).P(e21hj).P(e3lhj)...P(emlhj) (3.7.16)
Combining the assumptions leading to (3.7.14) and (3.7.16) with (3.7.12):

P(hjIE) = Ptellhi").P(,e2lhil.Pte31hi)...Ptemlhil.P(hil (3.7.17)
P(el).P(e2).P(e3)...P(em)

which enables the belief in hypotheses hj to be updated on the evidence given the apriori
probabilities P(hj), P(ei) and P(eilhj).

The number of apriori probabilities required can be reduced if the set of hypotheses H is
exhaustive (it would be necessary to include healthy as a member of H). In this case the

evidence probabilities can be calculated as:

81

P(ei)=P(ei h1).P(h 1)+P(ei 1h2),P(h2)+..,+P(ei Ihn),P(hn) (3.7.18)

The apriori probabilities can be calculated from large samples of the population or they can
be estimated by experts (leading to subjective Bayesian updating of belief). Probably the
most successful of the many computer applications of Bayes' Theorem in its simplest form,
has been developed and tested over a period of many years at the General Infirmary, Leeds
for the diagnosis of abdominal pain (Horrocks et al, 1972; de Dombal et al, 1972).

Although it employs only a very simple diagnostic algorithm, the system consistently out-
performs even senior clinicians when the a priori probabilities used in the Bayesian

updating are calculated from retrospective data (Leaper et al, 1972). A number of
interesting points regarding the use of subjective estimates of probabilities emerged from

the evaluation of the system. For commonly occurring diseases clinicians were out-
performed by the system using their own probability estimates; for rarer diseases the
clinicians out-performed the computer. In either case the system was more accurate when it
used probability estimates pooled from several clinicians than when it used estimates from
a single clinician. The conclusion drawn from this (Leaper, 1972) is that real data should be

used to calculate the a priori probabilities whenever possible.
3.7.3.2 Bayesian Updating in A Hierarchical Hypothesis Space

A method of Bayesian updating in a hierarchically organized set of hypotheses has been
suggested by Pearl (1986a). Consider a set of exhaustive and mutually exclusive
hypotheses H={hl,h,2h3,...hn} and an arbitrary number of subsets of H that are of
interest as hypotheses themselves. A hierarchy can be constructed in which H is the root
node, the individual hl,h2,h3,...hn are leaf nodes and subsets of H are arranged as
intermediate nodes which are the disjunction of their immediate descendent nodes. Such a
hierarchy is shown in Figure 3.20.

H={hl,h2,...hn)

S$3={hl,h2)

Figure 3.20 A Hierarchical Hypothesis Space

82

Suppose that a set of evidence E has resulted in a measure of belief in a leaf node hi and
that this belief is expressed as in (3.7.11):

Bel(hi)=P(hilE) (3.7.19)

Now consider the impact of a new piece of evidence, e, which affects the belief in an

intermediate node, S, without discriminating between its descendents. In other words:
P(elS,R)=P(elS) forRqg$S (3.7.20)
It is also assumed that e does not discriminate between hypotheses outside S:
P(el~S,R)=P(el~S) for R=~S (3.7.22)
Hence for the leaf nodes:
P(elhi) = P(elS) for hie S
= P(el~S) forhie ~S (3.7.22)
Now, Bayes' Theorem states that

P(hile) = Ptelhil.Pthil (3.7.23)
IP(elhj).P(hj)

where the summation is over the n leaf nodes and P(hj) are the probabilities prior to the
observation of e.

For the case hie S

P(hile) = PtelSI.Pthi") (3.7.24)
P(elS).P(S) + P(el~S).P(~S)

so defining the likelihood ratio As=P(elS)/P(el~S)

P(hile) = X.s.P(hil (3.7.25)
P(S) + Xs.P(~S)

and since the hypothése in H are mutually exclusive and exhaustive, P(~S)=1-P(S) and

hence:

P(hile) = As.P(hit (3.7.26)
As.P(S)+I-P(S) for hie S

83

A similar analysis for the case of hie ~S yields:

P(hile) = Pfhil (3.7.27)
Xs.P(S)+I-P(S) for hie ~S

So defining a normalizing factor as=[A,s.P(S)+I-P(S)]‘1, (3.7.26) and (3.7.27) can be

rewritten as

Bel'(hi) = as.X.s.Bel(hi) for hie S (3.7.28)
= as.Bel(hi) for hie ~S

where Bel'(hi) is the updated belief in hi on obseravtion of e.

Since the intermediate node S is the disjunction of its mutually exclusive leaf node

descendents, its measure of belief can be found by:
Bel(S) = ZiBel(hi) forhie S (3.7.29)

The knowledge-base for a system that applied this scheme would contain values for the
likelihood ratio j\.si; on observation of ei, belief in S is increased if Asi>1, decreased if
Asi<l and remains unchanged if Xsi=I.

Pearl (1986a) also shows that the updating of belief can be achieved by propagating
messages between nodes in the hierarchy; indeed the propagation of belief in a hierarchy of
hypotheses is a special case of propagation in belief networks (Kim & Pearl, 1983; Pearl,
1986h).

3.7.4 The Dempster-Shafer Theory

The Dempster-Shafer theory is the result of work by Arthur Dempster (Dempster, 1967)
and Glenn Shafer (Shafer, 1976) on the mathematics of evidence. A set of mutually
exclusive and exhaustive hypotheses H={hl,h2,..hn} is defined as the frame of
discernment, and consideration is given to belief in propositions formed as subsets of H.
For a frame of discernment with n elements there are 2n possible subsets; Figure 3.21
shows the situation for H={hl,h2,h3,h4}.

The direct effect of a piece of evidence on a proposition A, which is one of the 2n subsets
of H, is measured by making a basic probability assignment for A in the range 0 to 1; this

is denoted m(A). The basic probability assignments are made throughout H such that:

Eniii(A) = 1 (3.7.30)

where the summation is over the 2n subsets of H
andm(0) =0 (3.7.31)

The total belief in the proposition A is defined by a belief function Bel(A) which is the sum
of the basic probability assignments for all propositions which are subsets of A:

Bel(A) =ZAm(X) (3.7.32)
where the summation is over the subsets of A.

The belief in a proposition when several pieces of evidence are present is found by defining
a combination rule for the basic probability assignments. Suppose evidence el assigns
mIl(S) to each proposition in H and e2 assigns m2(S), then the combined probability
assignment for a node A, due to el and e2, is given by:

mI2(A) = XmI(X).m2(Y) (3.7.33)

So the combined probability assignment is found by summing the products of the basic

probability assignments for each pair of sets X,Y in H whose intersection is A.
Considering the summation in (3.7.33) over the entire frame of discernment H:

ZHmMI(X).m2(Y) = IHmI(X).IHM2(Y) (3.7.34)
=1

{hih2h3h4}

85

Hence the combined probability assignment satisfies the conditions in (3.7.30). However,
some intersections XnY will yield the empty set 0 and in general mI2(0)*0O, so the

condition in (3.7.31) is violated. This problem is circumvented by normalizing the

combined probability assignments so that:

m'12(0) =0
and m'12(A) = _mI2£A)_
1-ml2(0) (3.7.35)

which ensures that m'12(A) satisfies both (3.7.30) and (3.7.31).
There is no mathematical basis for the validity of this normalization process.

Unlike Probability Theory, the Dempster-Shafer theory does not necessarily assign to the
complement of A (A") the belief that remains unassigned to A: instead this belief can be

assigned to H itself. So for any proposition A:
Bel(A)+Bel(A) < 1 (3.7.36)
(the equlity holds if m(0)=0, which is the case in a probabilistic updating scheme)

This enables a plausibility function to be defined as:

P1(A) = I-Bel(A") (3.7.37)
where P1(A) < Bel(A)

3.7.5 Possibility Theory

The fuzzy set theory presented in Section 3.6.3 as a method for data classification forms
the basis of a method for making inferences in the presence of uncertainty using fuzzy
composition operators (Zadeh, 1973; 1979). An example of the use of these operators will
be presented in the context of the knowledge-based system CADIAG-2 (Adlassnig, 1985)
which was described in Section 2.3.4. Suppose that a data variable U has been observed
with a value u and has been classified as Aj, A2, A3 (eg low, normal, high) by one of the
sets of membership functions defined in Section 3.6.3. so that the degree of membership of
u in Ai is ai. Now suppose that there exist rules of the form:

IF Ai
THEN Dj with oij, cjj

where oy is the frequency of occurrence and cjj the strength of confirmation (see Section
2.3.4).

86

Three fuzzy compositions can be performed in order to find the extent to which Dj is

confirmed (or excluded) by the observation of U.
confirmation: mjc = MAXj MtN[aj;cjj]
positive exclusion: mjpe = MAXj MIN[ai;l-cij]
negative exclusion: mjne = MAXj MIN[I-ai;oij]

Confirmation (mjc) is high if a symptom that is probably present is a strong indicator for
the disease. Positive exclusion (mjpe) is high if a symptom that is probably present is a
strong contra-indication for the disease. Negative exclusion (mjne) is high if a symptom

that probably is not present occurs frequently with the disease.

A fuzzy membership function is defined for the proposition that the observed patient is a
member of the set of patients having disease Dj. If either of the exclusion rules yields a
definite exclusion (ie mjpe or mjne =1) then the diagnosis is excluded; otherwise the

confirmation measure mjc is reported for the disease.
3.7.6 Discussion

When used for handling uncertainty in knowledge-based systems, all the schemes
described above suffera common problem: the certainty measures on which they are based
(probabilities, likelihood ratios, certainty factors, possibilities etc) must somehow be
determined. Only probability theory allows the direct measurement of these parameters, but
this usually involves the collection of a prohibitively large amount of data.

The estimation of subjective certainty measures is beset with problems. Although clinicians
weigh evidence as they make a diagnosis, they do not reason explicitly with numerical
weights. Thus the estimated certainty measures are not based on heuristics used during
diagnosis, instead they are based on heuristics invoked by the knowledge elicitation
process itself. The actual numerical values of the certainty measures will therefore depend

to some extent on the way in which they are elicited (Fox et al, 1983).

To ease the problem of estimation, some systems have associated linguistic descriptions
with the certainty measures (eg INTERNIST used the terms rarely, a substantial minority,
roughly half, a substantial majority and essentially all as descriptions of the frequency of
symptoms with a disease). However, since these descriptions are converted to numerical
weights within the system, they merely introduce a further source of error into the
estimation; there is no formal basis for the mapping of linguistic descriptions into certainty

measures, and the clinician's own cognitive model of the difference between, say, a

87

substantial minority and a substantial majority, is inevitably different from the relationship
between the corresponding certainty measures within the system. This problem is even
greater for systems using fuzzy variables - the availability of numerous linguistic
descriptors, such as never, seldom or often, and the facility to calculate the impact of
modifiers, such as very or quite, encourages their use without a full realization of their

significance within the system.

Subjective probabilities can be elicited by asking such questions as What proportion of
cases of disease X exhibit manifestation Y? and there is no distortion involved in the
mapping of the clinician's response to the weights in the system. In summary, a clinician is
more likely to give an accurate probability than any other weight of evidence (Welbank,
1983).

Probabilistic updating schemes have been criticized for the independence assumptions they
make - the independence of evidence (3.7.13) and the independence of evidence given a
disease (3.7.15). The most notable argument has concerned the Bayesian updating scheme
in PROSPECTOR (Duda etal, 1979) with the claim that no updating is possible under the
assumption of independence (Pednault et al, 1981) being refuted by several authors
(Glymour, 1985; Johnson, 1986).

The two independence assumptions have been defended by Chamiak (1983). He observes
that the assumption of independence of evidence is made to enable the calculation ofthe a
priori probability of the evidence set E in (3.7.14) and that this appears in the denominator
of each updating factor. Thus errors introduced by the assumption of independent evidence
affect each hypothesis to the same degree. The problem of assuming independence of
evidence in a given disease state can be avoided by grouping together all dependent pieces
ofevidence and defining them as a single piece of evidence for the disease. This amounts to

the definition of intermediate disorders based on small sets of evidence.

The Dempster-Shafer theory makes the same independence assumptions as probabilistic
updating schemes. Another problem is that it is not feasible to implement the theory due to
the exponential increase in computation time with the number of hypotheses (Barnett,
1981). For instance, with 20 hypotheses, 220 subsets (about 1,000,000) would be
involved in the calculations. Several methods for reducing the computation time have been
suggested. An approximation to the Dempster-Shafer theory can be made by considering
only those subsets of the hypotheses that have some semantic significance (ie the subsets
are themselves hypotheses that may interest a clinician) and evidence that supports these
hypotheses or their complements. The subsets can be organized into a hypothesis hierarchy
(which is the same hypothesis space as the Bayesian scheme in Section 3.7.3.2) and the
evidence combination rule in (3.7.33) is approximated by a scheme in which the number of

88

computations increases linearly with the number of hypotheses (Gordon & Shortliffe,
1985). Another scheme has been proposed for a full implementation of the Dempster-
Shafer theory in a hierarchical hypothesis space using a method of propagation between the
nodes (Shafer & Logan, 1987). Although it avoids the approximation used by Gordon &
Shortliffe, it involves a greater number of computations (computation time again increases
linearly with the number of hypotheses).

The combination of evidence in Possibility theory has been criticized for its reliance on
MIN and MAX functions (Cheeseman, 1986). The use of the MIN function can be viewed
as an assumption of complete dependence of evidence even when this is obviously not the

case.
3.8 Explanation and Query Handling
3.8.1 Introduction

In a study of clinicians' attitudes towards the use of computer-aided medical consultation
systems (Teach & Shortliffe, 1981) it was found that the most important attribute of such
systems, in the opinion of potential users, is their ability to explain their diagnostic
reasoning and therapy selection. Generally, the presentation of an explanation follows
some specific query from the user and the way in which the computer handles this user-
driven dialogue can be viewed as the three stage process shown in Figure 3.22. The first
stage involves understanding (identifying) the query, the second is the retrieval of the
information necessary to answer it and the final stage is the generation of the textual output.
The following sections analyze the types of query handling that are desirable in a
knowledge-based system, describe how queries can be understood using the PROLOG

programming language, and review techniques for generating textual output.

Figure 3.22 Handling a Dialogue Bewteen Computer and Clinician

89

3.8.2 The Types of Query Handled by Knowledge-Based Systems

Part of the process of understanding a natural language query involves the determination of
the type of the query. Queries can be categorized using syntactic criteria applied to the
question itself (eg who, what, why, how queries) or applied to the response expected (eg

yes/no). A more useful categorization, for the purposes of knowledge-based systems, is
made according to the conceptual type of the query (Lehnert, 1978). A list of 13 conceptual
categories of query is shown in Table 3.1.

All queries in the same conceptual category are processed in the same way, hence in a
knowledge-based system, once the conceptual category has been recognized, the

appropriate query handling routine can be applied in order to generate a response. In terms

of the knowledge representation required to process each category, the first two in Table

3.1 - causal consequent and causal antecedent - are handled most satisfactorily by a deep
knowledge representation such as the semantic networks described in Section 3.4. The
remaining categories can be handled adequately by surface-level representations, although

in some instances (eg goal orientation, enablement) the quality of the response is improved

by deeper representation.

A good example of the way in which deep causal knowledge can enhance the quality of an
explanation is given by the XPLAIN system (Swartout, 1983). If the system has asked for
the value of serum calcium, the user may respond by asking the question Why? (ie Why do
you need to know serum calcium? - a goal orientation query). The system with a surface-
level (rule-based) knowledge representation might respond by stating that its top goal is to
select a therapy and that a sub-goal is to check the sensitivity of various therapies to

different variables, including serum calcium.

Conceptual Category Example

Causal Consequent What is the result of the fall in pH in a respiratory acidosis?
Causal Antecedent Why does pH fall in respiratory acidosis?

Goal Orientation Why did you diagnose respiratory acidosis?

Enablement What did you need to know in order to make the diagnosis?
Verification Did you measure the plasma sodium?

Disjunctive Is the pH low or normal?

Instrumental/Procedural How did you diagnose respiratory acidosis?

Concept Completion Who measured the blood gases?

Expectational Why didn't you diagnose respiratory alkalosis?
Judgemental What if pH had been high?

Quantification What is the value of pH?

Feature Specification What are the symptoms of respiratory acidosis?

Request Would you diagnose this patient please?

Table 3.1 Conceptual Categories of Questions (Adapted from Lehnert, 1978)

90

The same query posed to the XPLAIN system, with a deeper knowledge of physiological
causal relationships, might invoke the response:

The system is anticipating digitalis toxicity. Increased serum calcium causes increased
automaticity, which may cause a change to ventricularfibrillation. Increased digitalis also
causes increased automaticity. Thus, if the system observes increased serum calcium, it
reduces the dose ofdigitalis due to increased serum calcium

(Swartout & Smoliar, 1987)

The EMYCIN knowledge-based system shell handles five types of query concerning a
consultation, as well as general queries (mainly information requests) about the knowledge
base (van Melle et al, 1981). Table 3.2 lists the five types of query in EMYCIN with some

examples - it should be noted that some of these types subsume several of the conceptual

categories in Table 3.1.

MY CIN Category/Examples

W hat is <parameter> of <object>
What is the genus of organism-1?

Is Organism-1 Corynebacterium-non-diphtheriae?

How do you know the value of <parameter> of <object>
Did you consider bacteroides as a possibility for organism-1?

Why don't you think that the site of culture-1 is urine?
Why did you rule out streptococcus as a possibility for organism-1?

How did you use <parameter> of <object>
Did you consider the fact that patient-1is a compromised host?

How did you use the aerobicity of organism-1?

Why didn't you find out about <parameter> of <object>
Did you find out about the patient's CBC?

Why didn't you need to know whether organism-1 is a contminant?

What did <rule> tell you about <object>)
How was Rule 178 helpful when you were considering organism-1?

Did Rule 116 tell you anything about infection-1?
Why didn't you use Rule 189 for organism-2?

General Examination of Knowledge Base
Is blood asterile site?

What are the non-sterile sites?

What organisms are likely to be found in the throat?

Is Bacteroides aerobic?

How do you decide that an organism might be Streptococcus?
Do you use Gram Stain to determine genus?

What drugs would you consider to treat E. Coli?

Table 3.2 Query Types in EMYCIN

91

Conceptual Category

Quantification
Verification

Verification
Expectational
Goal Orientation

Verification
Instrumental/Procedural

Verification
Expectational

Instrumental/Procedural
Verification
Expectational

Verification

Feature specification
Feature specification
Verification
Instrumental/Procedural
Verification

Feature specification

3.8.3 Understanding Queries
3.8.3.1 Introduction

When a string of characters is input as a query to a knowledge-based system, it must be
analyzed in order to extract the information necessary to generate a response. This analysis
should identify the conceptual category of the question and the key data required by the
query processor for that category. The process of analyzing a character string in this way is

called parsing.

Several strategies have been developed for the parsing of natural language input to a
computer system. The earliest language understanding systems, such as ELIZA
(Weizenbaum, 1966), used the technique of template matching in which the input character
string is compared with a series of templates until a match is found (with variables in the
template being instantiated by data in the input string). Another important class of parsers

are based on representations of the grammar of the language.

The basic building blocks of a language are words (terminal symbols) and the set of
allowable words is the lexicon for the language. Words can be used to create compound
structures (non-terminal symbols) such as phrases and sentences. The grammar is a set of
rules (rewrite rules) describing relationships between terminal and/or non-terminal symbols
that can be used to generate every allowable character string for the language. There are a
number of different types of grammar, distinguished by the form that their rewrite rules
may assume. Of particular interest to computer-based understanding systems is the context
free grammar in which each rewrite rule describes a single non-terminal symbol in terms of
a set of terminals and non-terminals; it is context free because parsing is not affected by
relationships between terminal symbols. A context free grammar can generate a parse tree
such as the one shown in Figure 3.23.

Query

Interrogative Verb Determiner Adjective Noun

what IS the plasma sodium

Figure 3.23 A Parse Tree

92

query — > Interrogative phrase,noun phrase.

interrogative phrase — > interrogative,verb.
noun_phrase — > determiner,adjective,noun.
interrogative(what) - > [what].

verb(is) - > [is] -
determiner(the) — > [the].
adjective(plasma) - > [plasma].

noun(sodium) — > [sodium].
Figure 3.24 PROLOG Grammar Rules

Grammar-based parsers can operate top-down, starting with rules describing sentences,
decomposing these into phrases and then into terminal symbols that are matched with the
input character string. They can also operate bottom-up starting with words identified in the
character string, organizing them into phrases and then into sentences. One method of
implementing a grammar-based parser on a computer is to use the augmented transition
network formalism (Woods, 1970). Another method which uses the programming
language PROLOG is discussed in the next sub-section.

3.8.3.2 Understanding Queries with PROLOG

The computer language PROLOG (see Appendix VIII) incorporates a special notation for
expressing context free grammars so that they can be used for efficient top-down parsing of
natural language input. Figure 3.24 shows the PROLOG grammar rules that could be used
to parse the query in Figure 3.23. The special symbolis read 'can take the form' so
that the grammar rule for query is: query can take the form interrogative_phrase and
nounjphrase. Grammar rules are translated by the PROLOG interpreter into ordinary
PROLOG clauses - clauses for the grammar rules in Figure 3.24 are shown in Figure 3.25.
query(X1,X2) :-interrogatlve_phrase(X1,Z),noun phrase(Z,X2).
interrogative_phrase(X1,X2) :-Interrogative(Xl,Z),verb (Z,X2) .
noun_phrase(X1,X2) :—determiner(X1,Z),adjective(Z,Y) ,noun(Y,X2).
interrogative([what]z],2).

verb ([is 12].2) .

adjective([plasma 12],2) .

determiner([the]Z].,2) .

noun([sodium 12],2) .

Figure 3.25 PROLOG Clauses Translated From Grammar Rules

93

The grammar rules illustrated so far will only parse a list of words and identify it as a query
- they do not extract any information from the query. This can be achieved by adding extra
arguments to the grammar rules in Figure 3.24 which extend the context free grammar into
a definite clause grammar (Pereira & Warren, 1980). The extended grammar rules that
parse the query, extracting its type (information_request) and the data necessary to process
it (in this case the name of a data variable) are shown in Figure 3.26.

query(information_request,Data variable) — >
interrogative_phrase(request) ,noun_phrase(Data variable).

interrogative_phrase(request) - > interrogative(what),verb(be,Tense).
noun_phrase(Noun) — > determiner,adjective,noun(Noun).
interrogative(what) — > [what],
verb(be,present) — > [is),
determiner(the) - > [the],
adjective(plasma) — > [plasma].

noun(sodium) — > [sodium].

Figure 3.26 Definite Clause Grammar Extension
3.8.4 Generating Textual Output

There are two basic methods that can be used to generate textual output for a knowledge-
based system. These can be described as the grammar-oriented and goal-oriented methods
(Patten, 1988). Grammar oriented methods generate sentences by application of the rewrite
rules of the grammar. In its simplest form this would generate every allowable sentence,
checking each one to see if it conveyed the desired meaning. Obviously this would involve
generating many sentences unnecessarily and the computational load can be reduced by
invoking higher level knowledege at the same time as the grammar rules in order to limit the

number of applicable rules.

Goal-oriented (or rule-based) methods create a plan of goals that must be persued in order
to generate the desired textual output. As each goal is achieved, textual fragments are
output. This approach is taken by PROSENET (Miller & Rennels, 1988) which generates
prose for the ATTENDING system discussed in Section 2.3.3. Somewhat confusingly,
PROSENET is based on an augmented transition network which would normally be used
to store grammar rules (in fact PROSENET is not a grammar-oriented system). The
network is traversed, with tests on each arc relating to the conclusions of the medical

94

consultation system; if the test on an arc evaluates successfully, the arc is traversed and an

associated fragment of prose is output.
3.8.5 Summary

A knowledge-based system produces explanation of its conclusions in response to specific
queries from the user. Understanding a query involves the identification of its conceptual
category and the extraction of data which can be passed to a processing routine for that
query category. The PROLOG programming language has the facility to understand queries
in this way, using a definite clause grammar. Once the necessary information has been
retrieved to generate the response to a query, textual output can be produced using a
grammar-oriented or goal-oriented method.

3.9. Knowledge Acquisition
3.9.1. Introduction

The process of developing a knowledge-based system involves the close co-operation of
one or more domain experts and the knowledge engineers) responsible for the computer
implementation. Selection of suitable experts for the chosen domain is a crucial aspect of
the development process and factors such as the degree of experience, ability to
communicate reasoning processes and knowledge, availability and enthusiasm for the
project should be taken into account when chosing a domain expert (Prerau, 1987).

It has been widely recognized (eg Grover, 1983; Welbank, 1983; Summers, 1988) that
knowledge-based systems evolve as the result of a cyclic development process such as
shown in Figure 3.27. Often the rigid segregation of the different phases will not be
apparent in a project (Welbank, 1983) and there may indeed be instances where it is not
desirable to progress from one phase to the next in a formal manner. The basic problem
definition may be the result of a particular requirement identified by workers in the
application domain of the system; in the medical domain, the problem definition has often
been motivated as much by the research interests of the knowledge engineers as by the

needs of the medical profession.

Some projects are blessed with the asset of researchers expert in both the application
domain and in the field of artificial intelligence. In other cases, there must be an initial
period in which knowledge engineers gain an insight into the application domain and the
domain experts become acquainted with the way in which their knowledge is to be
modelled. Once this first stage is completed, knowledge can be acquired to form the basis
of a first prototype system. A cyclic process of knowledge base refinement then takes place

as the prototype is debugged and feedback is obtained from its performance on test cases.

95

The knowledge acquired during this phase of development can come from a number of
sources: it can be extracted from textbooks, deduced from the analysis of case data or

elicited from the domain experts.

The eventual success or failure of a knowledge-based system depends to a large extent on
the outcome of the knowledge acquisition process and this in turn depends on the
psychology of the interaction between domain experts and knowledge engineers. Any
individual whose expertise is worth capturing in a knowledge-based system is likely to lead
a very busy professional life, and hence the process of eliciting knowledge must be made

as efficient as possible, in order to limit demands on the expert's time.

Figure 3.27 Knowledge-Based System Development Cycle

96

The technique used for knowledge acquisition must take account of the fact that there are
different types of knowledge. Declarative domain knowledge is knowledge of facts -
objects or concepts - and the way in which they are related. Procedural knowledge is
knowledge of the actions needed to solve domain problems, the sequence of goals to be
persued and how they should be achieved. A distinction can be made between these two
types of knowledge, which are properties of the domain, and knowledge about the domain
experts themselves. An expert's strategic knowledge includes knowledge about how to
decide between alternative actions, how to handle uncertainty or what to do when data is
missing or incomplete - special techniques may be required to elicit such knowledge
(Gruber, 1988). Strategic knowledge can be used to determine the way in which overall
control of a knowledge-based system is achieved; it may not be possible or desirable to
model a human's strategy in a computer system. A detailed modelling of the cognitive
processes by which an expert makes inferences is not normally attempted unless the system

is designed specifically to study those processes.

The next two sections describe methods that can be used to elicit knowledge from experts
in a form that can be utilized in a knowledge-based system and review some of the

computer aids developed for use during the knowledge acquisition cycle.
3.9.2. Knowledge Elicitation Techniques
3.9.2.1 Introduction

The term knowledge acquisition refers to the complete process of acquiring knowledge, by
whatever means, for incorporation in a knowledge-based system. Knowledge elicitation is
concerned only with those knowledge acquisition procedures in which knowledge is
obtained directly from human experts, through an interaction with knowledge engineers.
Two basic strategies exist for knowledge elicitation (Welbank, 1983): interview of experts
by knowledge engineers and observation of experts at work. There are a number of
variations of the basic strategies, which are discussed in the next two sections.

Whichever knowledge elicitation method is used, the first representation of knowledge
usually takes the form of a transcript of the knowledge elicitation session, either as a tape
recording or as handwritten notes. The task of the knowledge engineer is then to extract the
useful information from the transcript and incorporate it in a knowledge base. Several
researchers have advocated the use of an intermediate knowledge representation whereby
the knowledge extracted from the transcripts is expressed in a textual form of the

representation method to be used in the computer system (rules, frames etc) so that it can be

97

easily reviewed by the expert before being incorporated into the computer knowledge base
(Grover, 1983; Prerau, 1987).

3.9.2.2 Interview Strategies

An interview between knowledge engineers and domain experts is the most commonly
used knowledge elicitation technique (Welbank, 1983; Shadbolt & Burton, 1989).
Completely unstructured, informal interviews can be used, but generally a structured
interview yields faster results. One structure proposed by Shadbolt & Burton is:

(1) Ask the expert for a brief outline of the task to be modelled by the knowledge-based
system. Specifically ask for:

a description of possible problem solutions
descriptions of variables that affect the choice of solution
a list of the main rules connecting variables and solutions

(2) Consider each rule elicited in (1) and ask for the circumstances under which it is

applicable. This should have the side effect of eliciting further rules from the expert.
(3) Repeat (2) until no further information is gathered.

Obviously this technique, which has been described as distinguishing the goals (Welbank,
1983) presumes that the general task is one of diagnostic classification and that knowledge
is to be represented as rules; similar questions could be devised for other tasks or
representations. Examples of the type of question that can be asked in stage (2) are given in
Table 3.3.

Question Purpose

Why would you do that? Converts assertions to rules
How would you do that? Generates lower order rules

When would you do that? Reveals rule applicability and
Is <the rule> always the case? may generate further rules

What alternatives to <this action/decision> are there? Generates more rules

What if it were not the case that ccurrently true condition>? Generates more rules

Can you tell me more about <any subject already mentioned>? Generates further dialogue

Table 3.3 Questions for Knowledge Acquisition

98

Grover (1983) describes a similar method of reclassification used to elicite knowledge in
the form of frames. Starting from observable objects in the domain, rules are sought from
the expert to reclassify them into higher level abstract objects, these are then reclassified
into yet higher levels. The abstract objects can be represented as frames in the knowledge-
based system and the reclassification rales used to fill slots in those frames. A practical
method of achieving the reclassification is to perform a card sort (Shadbolt & Burton,
1989) in which the expert repeatedly sorts cards, labelled with the domain objects, into
different groupings.

Grover also describes the method offorward scenario simulation in which the expert
choses a typical problem situation in the domain and describes the way in which he would
solve that problem. This is similar to the critical incident technique (Flanagan, 1954) in
which subjects describe their experiences in particularly memorable past incidents; both
techniques resemble the observational methods of knowledge elicitation described in the

next section.
3.9.2.3 Observational Strategies

Observational strategies for knowledge elicitation involve the knowledge engineer making
observations of a domain expert solving problems. These can be real-life problems (ie the

expert is observed on the job) or hypothetical problems of various levels of contrivance.

The process of eliciting knowledge by observing an expert at work on a real-life problem is
called protocol analysis (Grover, 1983; Welbank, 1983; Shadbolt & Burton, 1989). The
expert can be asked to make a commentary as he solves a problem and the resulting
transcript can then be analyzed to extract knowledge. Alternatively, the expert can make a
retrospective commentary on his problem solving behaviour whilst viewing a video of
himself at work (Elstein et al, 1978) - this approach can be extended to a commentary by a
panel of experts, which need not necessarily include the original expert.

Protocol analysis can also be performed on test cases presented to the expert in the form of
a written summary. This has the advantage over observation in a real-life situation, in that
the precise nature of the cases analyzed can be carefully controlled. Such a technique has
been reported as part of the knowledge acquisition cycle of a system for the diagnosis of
leukaemia (Fox et al, 1985) which was constructed using EMYCIN. Tape recordings were
made of an expert diagnosing 63 documented cases of leukaemia, in the presence of two
knowledge engineers who were able to ask clarifying questions where necessary. The
recordings were analyzed in three stages: passages in the session transcript were isolated

where they appeared to contain, in the opinion of the knowledge engineers, substantative

99

information-, the content of each passage was then reduced to its underlying statement of
knowledge and any duplications were eliminated; the knowledge statements were then
translated into EMYCIN's IF-THEN rule format. It was found that the protocol analysis
was not useful for organizing the basic structure of the domain (the CONTEXT TREE in
EMYCIN - see Section 2.2.2). Instead, the basic structure was determined by an informal
interview with the expert followed by a process of trial and error. It was also noticed that
the knowledge obtained was mainly of a qualitative nature - precise quantitative data,
particularly estimates of certainty factors, had to be obtained by separate discussion with
the expert.

Protocol analysis has also been used to elicit knowledge in order to reconstruct the
cognitive causal model of anatomy and physiology used by expert clinicians (Kuipers &
Kassirer, 1984). It was observed that highly experienced clinicians have compiled
knowledge into heuristic rules that may mask the underlying model being used and that it
may be better to study less experienced clinicains. A single clinical case, a patient with a
kidney disorder, was used as the basis for the knowledge elicitation session, in which the
clinician was asked to think aloud as he performed a diagnosis. After this procedure had
been completed, the clinician was cross examined by the knowledge engineers in order to

clarify particular points.

The session transcript was reduced to a list of informative passages in much the same way
as described above. Kuipers & Kassirer had noted that a subject is in no better position to
explain his own mental processes than an outside observer (Ericsson & Simon, 1980) and
hence they ignored any passages in the transcript in which the clinician attempted to
describe his actual process of thinking as opposed to describing processes in the domain.
The extracted statements were first analyzed to determine the basic objects - substances,
locations,forces,flows and concentrations - in the clinician's model. The causal
relationships between the objects were then identified. It should be noted that the
knowledge engineers in this project possessed considerable knowledge of the
physiological models they were eliciting and that the final computer model relied heavily on
their own knowledge and knowledge from medical textbooks. This would seem to bear out
the conclusion that protocol analysis ...does not give a complete and accurate picture ofthe
expert's knowledge (Fox et al, 1985).

Other observational knowledge elicitation techniques are more contrived than basic protocol
analysis, forcing the expert to work in unusual ways in order to illuminate his knowledge
of the domain. One such method resembles a game of twenty questions and is reported by
Welbank (1983) for eliciting the knowledge of computer programmers. The programmers
were asked to reformat a data file but were not given any details about the contents of the

100

file; they were encouraged to discover these by questioning the knowledge engineers. It
was hoped that the questions they asked would reveal their knowledge; it was found that
the technique could be used to elicit high level goals and strategies but not detailed

procedural knowledge.

An evaluation of three knowledge elicitation techniques - structured interview, twenty
questions and card sort - has been performed in the domain of industrial inspection lighting
(Schweickert et al, 1987). Two knowledge engineers were able to elicit 61 rules using
structured interview, 50 using twenty questions and only 10 with a card sort. Of the elicited
rules, a higher percentage were validated by the expert for interview and twenty questions
than for card sort. The twenty questions method was found to be time-consuming to
prepare and compared with the other techniques, a lower percentage of the rules it elicited
were suitable for implementation in a knowledge-based system.

3.9.3. Computer Aids in Knowledge Acquisition
3.9.3.1 Introduction

In addition to the strategies for knowledge elicitation described above, three further
methods of knowledge acquisition can be identified, which involve the use of computer
aids (Fox et al, 1985). These methods are the induction of rules or other structured
knowledge following analysis of statistical or case data in the domain (Michalski &
Chilausky, 1980; Blum, 1982; Weiss et al, 1986), similar induction following analysis of
the knowledge base itself (Davis, 1979) and the use of interactive computer-based tools as
an aid to knowledge acquisition. The first two methods are forms of machine learning
which are not yet reliable enough to be considered as practical options for routine

knowledge acquisition - for this reason they are not discussed here.

An important advantage associated with the use of knowledge acquisition tools is the
facilitation of knowledge verification (Mars & Miller, 1987). Knowledge verification
ensures that the knowledge base is consistent, acccurate and complete - a process which

can take a great deal of time when performed as part of the system's evaluation. Three
types of knowledge acquisition tools are discussed in the following sections. Knowledge
base browsers or editors are the simplest implementation of a knowledge acquisition tool;
they can be used interactively for knowledge elicitation, but do not contain any knowledge
about how the interaction should proceed. Knowledge acquisition tools designed for a
particular application can contain knowledge about the domain that is useful for guiding the
knowledge elicitation session. A third category of knowledge acquistition tools are domain
independent but contain knowledge about how a knowledge elicitation session should

proceed.

101

3.9.3.2 Knowledge Base Editors and Browsers

Knowledge acquisition can be facilitated by the use of knowledge base editing
environments. These provide easy (often graphical) access to a knowledge base so that
both its overall structure and its detail can be surveyed. To some extent, commercial
toolkits such as KEE (Kehler & Clemenson, 1984), which have some graphical knowledge
editing facilities, could be said to fall into this category of knowledge acquisition tools.
However, knowledge-based system toolkits and shells are generally concerned with the
machine representation of knowledge and their knowledge base editing facilities operate at

this level.

To be useful for knowledge acquisition, a knowledge base editor interfaces with the user at
a higher level than the basic machine representation of knowledge; the user is concerned
with manipulating graphical objects or natural language expressions, not mles, frames or
computer languages. Facilities must then be provided for translation of the high level into

the machine level representation.

Knowledge base browsers and editors designed for a particular application can be thought
of as containing a model of the domain in which they operate. The difference between these
tools and the domain dependent knowledge acquisition tools described in Section 3.9.3.3 is
that the domain model is passive - the tool is completely user-driven and no explicit
information is given about how to proceed with knowledge acquisition.

A knowledge acquisition environment for the domain of aerial image interpretation was
developed with the aim of eliminating the distortion in knowledge that occurs when a
knowledge engineer acts as an intermediary between domain experts and the computer
(Tranowski, 1988). The system was designed to allow experts to input knowledge in a
format that is tailored to the domain, not the way in which it is to be represented in the
computer.

The KREME system (Abrett & Burstein, 1987) contains editors for knowledge expressed
as frames, procedures & rules. The system contains meta-knowledge about the nature of
and interaction between different types of knowledge. The interface is a graphical
windowing system with the facility to analyze knowledge in more detail by pointing to it
with a mouse (in the manner of hypertext). Frame hierarchies can be displayed as lattices of
nodes and each frame can be browsed by pointing to its node in the lattice. The frame
structures are the central feature of the system with rules, procedures and methods all being

attached to them.

102

3.9.3.3 Domain Dependent Knowledge Acquisition Tools

Domain dependent knowledge acquisition tools are designed for a particular application and
use knowledge of the domain to guide the expert through the process of knowledge
elicitation. The tool can be considered as having a model of the domain that is parallel to the
one elicited from the expert (Mars & Miller, 1987).

A knowledge acquisition tool called OPAL (Musen etal, 1987) has been developed to elicit
knowledge about cancer treatment protocols for the ONCOCIN system (Shortliffe et al,
1981). Two types of knowledge are incorporated in ONCOCIN. Generators are structures
which define the sequence in which a patient receives chemotherapy or radiotherapy and the
transitions in patient state. The generators describe the basic treatment plan for the patient;
details of particular therapies and drugs are represented as knowledge frames. Rules
associated with the frames are used to determine details of the protocol according to specific
patient data.

OPAL mirrors the two types of knowledge representation - generators and frames - in its
graphical interface with the user. The sequence of states and therapies in a protocol can be
specified by using a graphical tool in which icons representing therapies, states and
decisions are selected from a palette and linked to form a flowchart. The flowchart is
translated by OPAL into an ONCOCIN generator. The acquisition of knowledge to be

represented as frames or rules is achieved by the use of forms.

The forms are structured representations of ONCOCIN's knowledge, presented in a
manner that is familiar to clinicians (often the form replicates one of the paper forms used
routinely in patient management). The forms are used by clinicians tofill in the blanks with
information about drugs or laboratory tests - this information is then translated into frames

or rules as appropriate.
3.9.3.4 Domain Independent Knowledge Acquisition Tools

Domain independent knowledge acquisition tools can be thought of as knowledge-based
systems whose task domain is knowledge elicitation ie they contain knowledge about how
to elicit knowledge. One of the most widely used knowledge elicitation methodologies
incorporated into such systems is the repertory grid technique, based on personal construct
theory (Kelly, 1955). According to this theory, the human's perception of the world is
represented internally by cognitive structures called constructs. Contsructs are based on
sets of elements and specify the differences and similarities between the elements perceived
by an individual according to his past experience. Using his personal constructs, an

individual attempts to predict and control his environment.

103

Personal constructs can be directly and accurately elicited using a repertory grid (Easterby-
Smith, 1980). Such a grid consists of a set of elements, constructs and a method of linking
the two together. The elements can be thought of as the fundamental objects in a cognitive
process and the constructs as characteristics of these objects. A contract is represented by
two opposite poles which denote the two extremes of a characteristic on a linear scale.
Figure 3.28 shows a simple repertory grid in which each column represents an element and
each row a construct; note that the elements must form a homogeneous set, in this case a set
of US Presidents.

E 8 i3

M iz l§ & %
Honest \Y X V X \Y Dishonest
Sharp \Y \Y X X \Y Muddled
Sensitive \Y X \Y V X Insensitive
Popular \Y X X V \Y Unpopular
Liberal \Y X \Y X X Conservative

(a) Simple Yes/No Rating

T 3 S &

i2 £ g R (%
Honest 8 | 9 4 6 Dishonest
Sharp 9 7 5 1 7 Muddled
Sensitive 8 2 8 7 4 Insensitive
Popular 10 1 4 9 7 Unpopular
Liberal 9 4 7 3 3 Conservative

(b) Rating on a Scale of 1-10

g ¢ 5 -
Honest 2 5 1 4 3 Dishonest
Sharp 1 3 4 5 2 Muddled
Sensitive 2 5 1 3 4 Insensitive
Popular 1 5 4 2 3 Unpopular
Liberal 1 3 2 5 4 Conservative

(c) Rating Based on a Ranking Scheme

Figure 3.28 Repertory Grids

The constructs can be chosen by considering sets of three elements and finding ways in
which any two are similar and different from the third. The similarity-difference pair form
the poles of a construct. Each position in the body of the grid is filled by a link for the
element-construct pair it represents. The most usual method of linkage is by adopting some
sort of rating scheme. This could be a simple yes/no rating, a score (on the scale 1to 10
say) or a ranking for each element for the given construct. These methods are illustrated in
Figures 3.28a,b,c.

There are several ways in which a repertory grid can be analyzed. The grid can befocussed
by grouping together constructs which have similar rows of links and elements with similar
columns. In this way it is easy to see which constructs and elements are similar to each
other (if the rows for two constructs are identical, one of them is redundant). The same
information is expressed by the correlation matrices for the constructs and elements. The
correlation matrix for constructs is formed by finding the number of matching links in the
rows in each possible pairing of constmcts; the matrix for elements is formed with the
number of matching links between columns in the grid.

A number of computer tools have been developed to assist with the construction and
analysis of repertory grids, including KITTEN (Shaw & Gaines, 1987), KRITON
(Diederich et al, 1987) and AQUINAS (Boose, 1988). These tools are best suited to
ehcitation of knowledge for problems of diagnosis, classification and inteipretation (Boose,
1988). They assist the user with the choice of constructs, specification of links, focussing
and construction of correlation matrices and can generate knowledge bases of production

rules directly from the repertory grid.
3.9.4 Summary

The process of knowledge acquisition is an important part of the development cycle of a
knowledge-based system. Knowledge can be acquired from textbooks, analysis of large
quantities of data or directly from domain experts. There are two basic strategies for
eliciting knowledge from experts - interview and observation. Interviews can be informal
and unstructured or can be structured, using techniques such as distinguishing the goals,
reclassification or forward scenario simulation. Observational strategies involve the
analysis of an expert engaged in problem solving (either on real-life domain problems or on
contrived problems). Observation of the expert solving real-life problems is called protocol
analysis and has been found insufficient to elicit a complete and accurate knowledge base.

In practice, a combination of observational and interview strategies may be most effective.

105

Three types of computer aids to knowledge acquisition have been identified. Knowledge
base editing environments allow users to input knowledge at a higher level than the internal
knowledge representation but do not assist directly in knowledge acquisition. Domain
dependent tools have a model of the domain which is used to guide users through the
process of knowledge acquisition. Domain independent tools contain detailed knowledge
about the process of knowledge acquisition itself. Several tools of this type have been

developed using the technique of repertory grid analysis.
3.10 Summary

This chapter has described three general methods of knowledge representation - production
rules, frames and semantic networks - and indicated how this knowledge might be
manipulated in a knowledge-based reasoning system. The blackboard architecure has been
presented as a method for overall control of a system which displays opportunistic problem

solving behaviour and incorporates different sources of knowledge.

Two important issues, particularly relevant to knowledge-based systems for laboratory data
interpretation, have been discussed. The first of these, data classification, has proved to be
a problem both in knowledge-based system design and in laboratory medicine itself.
Several methods have been described in which knowledge can be applied to the
classification of data in order to avoid excessive information loss. The second issue
concerned the handling of uncertainty. Four approaches to reasoning in the presence of
uncertainty have been presented: ad hoc scoring schemes, probabilistic methods,
application of the Dempster-Shafer Theory and fuzzy techniques from Possibility Theory.
It is proposed that Probability Theory offers the only completely consistent method of
handling uncertainty and it will be demonstrated in the next chapter that the apparent
richness of expression that has encouraged the use of the other methods can be captured

implicitly within a probabilistic framework.

A brief overview of the extensive subject of dialogue interaction between man and machine
was presented as preparation for the last section in Chapter 5. Finally, the problems of
acquiring knowledge for a knowledge-based consultation system were discussed.

The overall design, knowledge representation and knowledge acquisition for a knowledge-
based system for the interpretation of laboratory data are presented in the next Chapter.

106

PART TWO
CHAPTER FOUR

THE EVOLUTION OF A KNOWLEDGE-BASED SYSTEM
4.1 Introduction

This chapter describes the evolution of the design and the process of knowledge acquisition
for a knowledge-based system for the interpretation of the results of blood gas analysis.
The overall guidelines for the design, as have been stated in Chapter 1, were:

(1) to make the system easy to use and to keep interaction between
computer and clinician to a minimum.

(2) to combine different methods of knowledge representation and
reasoning within a single system.

(3) to provide detailed explanation of the system's conclusions and of
the domain of acid-base balance in general.

(4) to make the system's knowledge easily accessible to clinicians for
review and update

The process of knowledge acquisition and the development of a design for the knowledge-
based system followed the cycle described in Section 3.9.1 and depicted in Figure 3.27.
An initial period was spent gaining background knowledge of the physiology of cardio-
pulmonary homeostasis (see Appendix | for an overview) during which time a tentative
system architecture was proposed. Armed with this background knowledge and initial
system design, a series of interview sessions was held with critical care clinicians in the
expectation of eliciting the knowledge necessary to build a prototype system; these sessions
are described in Section 4.2.

In fact, the initial knowledge acquisition sessions served only to confirm the structure of
the domain, the types of knowledge representation required and the architecture of the
prototype system; it proved impossible to elicit the detailed knowledge required for a full
prototype implementation. However, enough insight was gained to enable the development
of a detailed system design, which is presented in Section 4.3. At the same time, a
knowledge acquisition tool was developed in order to facilitate the elicitation of detailed
domain knowledge and to make the knowledge base easily accessible for review and update
by clinicians, which was one of the original project aims. Section 4.4 contains a description
of this knowledge acquisition tool and Section 4.5 describes its use in knowledge elicitation
sessions at two hospitals.

107

4.2. An Initial Phase of Knowledge Acquisition
4.2.1 Introduction

Before beginning knowledge acquisition in a clinical environment, background knowledge
of the physiology of acid-base regulation and of the techniques and equipment involved in
blood gas analysis was acquired by a review of the medical literature and informal
discussion with clinicians (Chelsom et al, 1987a). Taxonomies of disorders of hypoxaemic
state and acid-base balance were produced as a framework for classification as shown in

Figure 4.1.

HAO Metabolic Acidosis

NAG Metabolic Acidosis
p—Metabolic

Compensated Metabolic Alkalosis

Uncompensated Metabolic Alkalosis

—Simple Disorder
Acute Respiratory Acidosis
-Respiratory Acidosis -

Chronic Respiratory Acidosis
-Respiratory

Acute Respiratory Alkalosis

»-Respiratory Alkalosis
= C Chronic Respiratory Alkalosis

Respiratory Addosis & Metabolic Addosis
Add-Base Disorders Mixed Metabolic Respiratory Acidosis & Metabolic Alkalosis
and Respiratory Respiratory Alkalosis & Metabolic Addosis
Respiratory Alkalosis & Metabolic Alkalosis
—Double Disorder
Mixed HAG Metabolic Addosis
Mixed NAG Metabolic Addosis
-Mixed Metabolic
HAG Metabolic Acidosis & NAG Metabolic Addosis

Metabolic Addosis & Metabolic Alkalosis

-Mixed Disorder m

Metabolic Addosis
"& Metabolic Alkalosis
& Respiratory Addosis

-Triple Disorder,

Metabolic Addosis
Metabolic Alkalosis
& Respiratory Alkalosis

Uncorrected Hypoxaemia

Corrected Hypoxaemia

Excessive Oxygen Therapy
Hypoxaemic State,

Adequate Oxygen Tension

Mild Hypoxaemia

Moderate Hypoxaemia

Severe Hypoxaemia

Figure 4.1 Taxonomies of Acid-Base Balance and Hypoxaemic State Disorders
(HAG is High Anion Gap, NAG is Normal Anion Gap)

108

At this stage it was postulated that the interpretation of blood gas analysis results was
achieved in two phases; blood gas data are used to infer the presence of acid-base and
hypoxaemic state disorders and these conclusions are then used in conjunction with further
clinical observations to diagnose clinical disease states. The interpretation could therefore
be considered on two levels - a physiological level and a clinical level. Based on this
conjecture, a preliminary architecture was proposed for a knowledge-based system to
interpret the results of blood gas analysis (Chelsom et al, 1987b). A blackboard architecture
(see Section 3.7) was selected for the overall control structure of the system and the
interpretation of data at two levels - physiological and clinical - was modelled by splitting
the blackboard into two panels. Figure 4.2 shows the preliminary design for the blackboard

diagnostic system.

In order to build a prototype system, it was decided to elicit knowledge from clinical staff at
the Intensive Care Unit of the Royal Free Hospital by holding a series of structured

interviews (see Section 3.8). These interviews are described in the following section.

Figure 4.2 Preliminary Design for a Knowledge-Based System

109

4.2.2 Structured Interview Sessions

A series of five interviews was held at the Royal Free Hospital over a period of
approximately one month. Each interview was attended by two knowledge engineers, the
senior ICU technician and up to two registrars. The sessions were recorded on audio tape
and the tapes were analyzed to extract useful information. It was expected that these

sessions would:

(1) determine the general working procedures in the ICU and the role
(if any) that could be played by computerized consultation systems

(2) determine the equipment available, variables measured and
terminology used

(3) verify the preliminary knowledge-based system design

(4) elicit detailed knowledge of the signs & symptoms, history and
temporal characteristics of acid-base and hypoxaemic state disorders.

The structure of the first interview session is shown in Figure 4.3. At the start of the
interview, one knowledge engineer briefly described the project and the purpose of the
series of interviews. There then followed a general discussion of the role of computers in
the ICU which revealed that the clinicians were favourably disposed to their use as
diagnostic and management aids, and that the specific application for blood gas analysis

would be useful.

SESSION ONE: Introduction

Introduction to the project

General discussion of computers in the ICU
What are the needs?

Patient management: admission-management-discharge
What is the general pattern?

How does blood gas analysis fit into general patient
management?

When is blood gas analysis called for?
Under what circumstances?
How often?

Do you use laboratory analysers or ICU-based analysers?

Review the structure of the next sessions

Figure 4.3 Structure of the First Interview Session

110

Overall, the session established a liaison between the clinical staff and the knowledge
engineers and enabled the latter to gain an overall picture of the working practices of the
ICU. In this respect, it was found that it is difficult to isolate blood gas analysis from
general patient management, for the purposes of therapy and the decision was made to omit
the therapy modules from the prototype implementation; a related project has dealt with the

management of patients receiving mechanical ventilatory support (Summers etal, 1988).

The second session (Figure 4.4) was designed to define the diagnostic categories of acid-
base balance and the relevant data used. The classification of disorders shown in Figure 4.1
was used as the basis for the discussion of diagnostic categories. It was found that triple
and mixed metabolic disorders were not considered as diagnoses, metabolic alkaloses were
not distinguished as compensated or uncompensated and that metabolic acidoses were sub-
classified according to their underlying causes. This led to the simplified classification for

acid-base disorders shown in Figure 4.5.

An important aspect of overall strategy was revealed at this second interview. The clinical
condition was usually known before blood gases were taken; blood gas data were not used
for making clinical diagnoses, rather the acid-base disorder that they indicated was
compared with the disorder expected on the basis of the patient's clinical condition. This
suggested a revision of the original design, to allow the the clinical diagnosis panel to
operate in a top-down fashion, using the input of a clinical diagnosis to drive a critique
based on the disorders diagnosed on the physiological panel.

SESSION TWO: Inputs and Outputs
Feedback from session one
Which data from the blood gas analyser do you use?

What are the units of measurement and normal ranges
of these data?

Which other measured data do you use in conjunction
with the blood gas data?
eg Haemoglobin, electrolytes

Which other derived data do you use?
eg Anion gap

What do you expect to learn from blood gas analysis?
ie review classification and terminology of disorders

Figure 4.4 Structure of the Second Interview Session

111

Acid-Base Disorders -

HAG Metabolic Acidosis
NAG Metabolic Acidosis

r—Metabolic Acidosis -
r-Metabolic -
* Metabolic Alkalosis

—Simple Disorderm

. L Acute Respiratory Acidosis
—Respiratory Acidosis
Chronic Respiratory Acidosis

.Respiratory .

)) Acute Respiratory Alkalosis
—Respiratory Alkalosis
Chronic Respiratory Alkalosis

Respiratory Acidosis & Metabolic Acidosis
Respiratory Acidosis & Metabolic Alkalosis
Respiratory Alkalosis & Metabolic Acidosis
Respiratory Alkalosis & Metabolic Alkalosis

Figure 4.5 A Simplified Classification of Acid-Base Disorders

Problems with the structured interview approach began to emerge during this second

session. Too often the interview lapsed into a general discussion of the domain; it became

difficult to impose the intended structure on that discussion. Moreover, the questions asked

by the knowledge engineers were too general, leading the clinicians to express doubts that

their expertise was being adequately captured. It would, they felt, be easier to respond to

more specific questions, but these could only be asked by a knowledge engineer who
already possessed the detailed knowledge of the domain that the interview session was

intended to reveal.

SESSION THREE/FOUR: Acid-Base Disorders

Feedback from last session

Using the list of disorders agreed in Session Two, what
information do you use to identify each one?

e
s?gns & symptoms FACTS
history

temporal characteristics

causes

How do you decide that a patient

has a certain disorder?
STRATEGY

Work through some example cases

Figure 4.6 The Third and Fourth Interview Sessions

112

SESSION FIVE: Hypoxaemia & Respiratory Function

How do you decide that a patient is hypoxaemic?

What clinical information do you use?

How do you take account of factors such as:
age & sex of the patient
inspired oxygen content

How do you decide whether to mechanically ventilate
a patient? What information do you use?

Figure 4.7 The Fifth Interview Session

The problem of directing a vague and rambling discussion that emerged in the second
interview became even more pronounced in the next three sessions (Figures 4.6, 4.7)
which were intended to elicit detailed knowledge of the relationships between observations
and diagnoses. Whilst a general impression of these relationships could be sketched, it was
not possible to gain a complete and accurate picture. At this stage, the form of knowledge
representation to be used in the knowledge-based system had not been finalized and so it
was not possible to use this to structure the way in which knowledge was elicited. In
particular there was no framework in which the clinicians could consistently express the
uncertainty inherent in the process of diagnosis. The knowledge engineers gained little
knowledge from the final three sessions that they had not been able to acquire from a study
of medical textbooks.

4.2.3 Summary

The conclusions that can be drawn from analysis of the structured interview sessions
described above are:

(1) the structured interview was useful for establishing details of
general working practice not usually published in medical texts

(2) it provided information on the laboratory data used, units of

measurement, terminology and diagnostic categories

(3) it did not elicit comprehensive knowledge of relationships between

observations and diagnoses, the uncertainty associated with such

113

relationships or the way in which data should be used to discriminate
between competing hypotheses.

It was felt that enough knowledge of the structure of the task and the type of knowledge
used in diagnosing acid-base disorders had been gained to enable a prototype system to be
built. This prototype would work with a knowledge base structured to accommodate the
types of knowledge identified in the initial knowledge acquisition phase. It was decided to
develop an editing environment for the knowledge base and to use this tool in a second
phase of knowledge acquisition to capture the detailed knowledge that had been impossible

to elicit in the interview sessions.

Since the prototype diagnostic system would be built to operate on a knowledge base of
known structure but unknown content, the opportunity existed to create a domain-
independent system that could be used not only for the interpretation of blood gas data but
also for any similar problems of laboratory data interpretation. The design of a knowledge-
based system for the interpretation of laboratory data and details of the knowledge editing

environment are presented in the next two sections.
4.3 Design of a Knowledge-Based System for Laboratory Data Interpretation
4.3.1 Overview

The overall design of a knowledge-based system for the interpretation of laboratory data is
shown in Figure 4.8. The user has control over four system modules: data input,
diagnosis, diagnosis presentation and dialogue management. At the start of a consultation
the user inputs the clinical condition (diagnosis) of the patient and a basic set of laboratory
data - the size and nature of this set depends on the data available. The blackboard
diagnostic module then produces a differential diagnosis of disorders and a critique of the
clinical diagnosis based on the disorders diagnosed. Although the implemented version of
this system requires the user to input all data at the keyboard, the initial set of laboratory
data could be transferred on-line from laboratory equipment, which would allow an initial
diagnosis to be made without any interaction between computer and clinician.

Once the initial diagnosis has been made, control passes to the diagnosis presentation
module which allows the user to view the differential diagnosis lists and to input signs,
symptoms, patient history or further laboratory data. The diagnoses and critique can also be
accessed in textual form through an interaction with the dialogue manager. This module
also allows the user to ask questions about the diagnoses in order to receive explanations
about the conclusions reached by the system; the facility to interrogate the knowledge base
itself has been developed as part of another study (Smith, 1988).

114

Figure 4.8 Design of a Knowledge-Based System: Overall Structure
4.3.2 The Blackboard Diagnostic Module

The organization of knowledge sources in the blackboard diagnostic module is shown in
Figure 4.9. It preserves the basic architecture of the preliminary design in Figure 4.2; a
dual panelled blackboard reflects the distinction between diagnosis at the physiological and
clinical levels. The lower, physiological diagnosis panel operates in a bottom-up fashion
inferring diagnoses from observations. Unlike the preliminary design, the clinical diagnosis

panel operates top-down, critiquing the clinical diagnosis in the light of the conclusions
from the lower panel.

The physiological diagnosis panel is split into four levels: raw data, processed data,
hypotheses and diagnoses. Data from the database (signs, symptoms, history or laboratory
data) are written on to the lowest level (raw data) by the write data knowledge source. The
data derivation knowledge source monitors the raw data level and derives the value of new
data when the necessary information becomes available. Laboratory data written to the raw
data level are classified at the processed data level by the classify raw data knowledge

source - the method used for this classification is presented in Section 4.3.4. Since the user
may wish to alter the values of previously input data, a truth maintenance knowledge

source monitors changes at the raw data level, ensuring that these are propagated through to
any dependent derived data and to the processed data level.

115

From Input

Database Diagnosis ;
Pridut
Disorders
Critique
To *po : .
Database ; Diagnosis
Knowledge
To Transfer iSis'Schrceisis
Database Data
Combine Kank
Hypotheses Hypotheses ;
Laboratory
Data
Numerical
Relationships
Truth Classify
Maintenance Raw Data
From __ Write Data Data
Database Derivation

Figure 4.9 Design of the Blackboard Diagnostic Module

Four evidence handling knowledge sources - numerical relationships, signs & symptoms,
laboratory data, patient history - generate hypotheses of physiological disorders from
processed or raw data. The knowledge base contains details of the associational links
between observations and disorders, which are organized into hierarchical classification
structures. The effect of observations as evidence is impacted on the hypothesis hierarchies
using the method that will be presented in Section 4.3.3.

Invoking of the evidence handling knowledge sources will usually generate several
hypotheses of varying degrees of belief for each diagnosis in the hierarchy of a disorder
class. These multiple hypotheses are aggregated by the combine hypotheses knowledge
source to give a single hypothesis for each disorder. The hypotheses are then written by the
rank hypotheses knowledge source as differential lists at the diagnosis level, ranked

according to the degree of belief in each alternative. This knowledge source also ensures

116

that the diagnosis is reported at the most appropriate level of generality. For example, if the
disorder metabolic acidosis is sub-classified as compensated or uncompensated and both
sub-classifications are confirmed as diagnoses, then the single diagnosis of metabolic
acidosis is reported.

Output of disorder diagnoses from the top level of the physiological diagnosis panel is
written both to the database and to the lowest level (manifestations) of the clinical diagnosis
panel. The presence of a diagnosed disorder in the database triggers the write data
knowledge source so that the disorder appears as raw data at the foot of the physiological
diagnosis panel, where it can act as evidence for disorders of another class {eg the presence

of hypoxaemia can lend support to hypotheses of acid-base disorders).

On the clinical diagnosis panel, the input diagnosis knowledge source writes clinical
diagnoses from the database to the uppermost, diagnosis level. The knowledge source
predict disorders lists at the hypotheses level, the disorders expected to occur with each
clinical diagnosis. These hypotheses are then compared with entries at the manifestation
level to produce a critique of the clinical diagnosis based on the differences between the

expected and observed disorders.
4.3.3 A Method for Updating Belief in a Hierarchy of Hypotheses
4.3.3.1 Introduction

The first generation of knowledge-based medical consultation systems used ad hoc scoring
mechanisms to deal with the uncertainty inherent in medical diagnosis (see Chapter 1).
These mechanisms were not only able to account for the frequency with which a
manifestation occurred in a given disease state, but could also distinguish between the
major and minor manifestations of a disease and the degree to which a given manifestation

must be explained by the final diagnosis.

More recently, efforts have been made to structure the hypotheses generated by knowledge-
based systems and to use more formal and consistent approaches to the handling of
uncertainty, based on the Dempster-Shafer theory, probability theory or possibility theory
(see Section 3.7). Often the commitment to a formal and consistent handling of uncertainty
must be made at the expense of the flexibility embodied in the ad hoc methods of earlier

systems.

The next section describes a method for updating beliefin a hierarchical hypothesis space.
It is demonstrated that many of the desirable features of the scoring mechanisms of systems

such as PIP or INTERNIST-1 can be implicitly embodied within a more formal approach.

117

4.3.3.2 A Method For Evidence Handling

A method for evidence handling was developed to manage the impact of evidence on the
belief of hypotheses organized as a hierarchy, in which the root node describes a class of
diagnoses and the leaf nodes form a mutually exclusive and exhaustive set of hypotheses,
H, for that class. An intermediate hypothesis, S, is the disjunction of its immediate
descendents and can be thought of as a subset of H, whose members are the leaf nodes

which are descendents of S.

Pearl (1986) outlines a method of Bayesian updating of belief in this type of hypothesis
hierarchy , as has been described in Section 3.7.3.2. The knowledge base is specified in
terms of the likelihood ratio, X, for evidence e at a node S, where X= P(elS)/P(el~S).
Specification of evidence for the node S provides no information for discrimination
between its individual members ie P(elS)=P(elhj) where hj is any leaf node descendent of

S. The degree of belief in the leaf node hj is defined as:
Bel(hO = P(hilE)

and E is {ei,e2,...en}, the set of evidence impacted on the hierarchy. The belief in an

intermediate node is found by summing the belief of its descendent leaf nodes. Pearl
demonstrates that a simple application of Bayes' Theorem can be used to define an updating
factor wi such that the impact of a new piece of evidence en+1 on belief in the node hi is

given by:
Bel'(hi) = P(hilE,en+1) = wj.Bel(hj)
where wj is calculated in terms of the likelihhod ratio X

Pearl's method has been adapted to accommodate certain features of a practical knowledge

base. These features are:

1) Probability assignments of the type P(elSi) are made for nodes Si at various levels of the
hierarchy in such a way that no leafnode is a descendent of more than one Si (ie nSi=0)

2) There is no requirement that every leaf node is covered in the assignment of probabilities
for a particular piece of evidence (ie uSjaH)

Figure 4.10 shows a hierarchy in which the shaded nodes (S2, S3, S4) have a probability
assignment P(elSi) in the knowledge base. Leaf nodes descended from S2, S3 or S4 will
be referred to as assigned nodes; they have been covered by the assignment of probability

in the knowledge base. The remaining leaf nodes will be referred to as unassigned nodes.

118

hi

h2
H={hl,h2,...hn}
S3={hl,h2}
Nodes with an
assignment P(elS)
in knowledge base

hn-2

hn-1

hn

Figure 4.10 A Hierarchy of Hypotheses with Assigned Evidence

Consideration will now be given to the way in which the unassigned nodes are to be treated
by the updating scheme, when the evidence e is impacted on the hierarchy. Since no
indication has been given in the knowledge base about the association between an
unassigned node hu and the evidence e, it will be assumed that observation of e has no

effect on the beliefin hu. Hence
P(hule) = P(hu) 4.1
where P(hu) is the probability of hu prior to the evidence e.

Bayes' Theorem states:
P(hule) = P(elhi,).P(h,,) 4.2
[iP(elhi).P(hi)
where the summation 1j is for i=1 to n ie over the n leaf nodes.
Combining (4.1) and (4.2):

P(elhu) = 1iP(elhi).P(hi) (4.3)

which implies that P(elhu) is a constant for all unassigned nodes. The summation in (4.3)
can be split into the summation over the assigned nodes, denoted by | a>and the sum over
the unassigned nodes, denoted by Xu, so that (4.3) can be rewritten as:

119

P(elhu) = 1 aP(elhj).P(hi) + XuP(elhi).P(hi) (4.4)

Now consider the summation of P(elhi).P(hj) over the unassigned nodes:

EuP(elhi).P(hj) = P(elhu).ZuP(hi) since P(elhu) is constant (4.5)

P(elhu).(I-1aP(hi))

since the leaf nodes are mutually exclusive and exhaustive, and so ZuP(hj) = I-ZaP(hi).
Substituting for P(elhu) from (4.4) and rearranging:

ZuP(elhi).P(hi) = (SaPfelhil.Pthill.fl-SaPthi)) (4.6)
XaP(hi)

Now consider the impact of evidence e on an assigned node ha. Bayes' Theorem states:

P(hale) = PrelhaVPihal 4.7
XiP(elhi).P(hi)

where Pih” is the probability of ha prior to evidence e.

Splitting the summation in the denominator of (4.7), as before, into summation over the

assigned and unassigned nodes:

P(hale) = P(elha).P(ha) (4.8)
| aP(elhi).P(hi) + ZuP(elhi).P(hi)

Substituting for XuP(elhj).P(hi) from (4.6):

P(hale) = P(elha).Prha) (4.9)
I aP(elhi).P(hi) + (1aP(clhi).P(hi)).(I-1aP (hi)laP(hi))

So,
P(hale) = P(elha).SaP(hi).P(ha) (4.10)
I aP(elhi).P(hi)
Or Bel’(ha) = w.Bel(ha)
where w= P(elhg). Z"Pihil (4.11)

ZaP(elhi).P(hi)

Hence the updating factor for assigned nodes is calculated directly from the probability

assignments P(elS) in the knowledge base.

120

In summary, it can be said that when a piece of evidence is impacted on the hypothesis
hierarchy, the beliefin a node remains unchanged if no association with the evidence has
been specified in the knowledge base. The body of belief in the remaining nodes undergoes
a Bayesian redistribution according to the formula in (4.10).

The updating factor in (4.10) is calculated using the probabilities of hypotheses
immediately prior to the observation of evidence e. The updating of belief as successive
pieces of evidence {ei, €2, e3...} are observed could be viewed as a Markov process in

which each new state of belief distribution across the hypothesis hierarchy depends only on
the preceding state. In this case, evidence would have a greater impact on hypotheses that
were already strongly supported than on less favourable hypotheses. Whilst this may
model, to some extent, the way in which a human diagnostician searches for, and weighs,
evidence in favour of leading hypotheses, it was considered unsuitable because in cases
where a number of pieces of evidence are reported simultaneously (the results of a
laboratory test, for instance) the belief in final diagnoses would depend on the order in
which the evidence was input to the system. For this reason, the updating factors used in
the practical implementation of the evidence handling scheme are calculated using the a
priori probabilities of hypotheses before any evidence was observed; each piece of evidence

is treated as if it were the first observation.
4.3.3.3 Discussion

The scoring mechanism in INTERNIST-1 (Miller et al, 1982) used three numerical
measures. The IMPORT of a manifestation was a measure of the extent to which it must be
explained by the final diagnosis; the EVOKING STRENGTH of a manifestation in the
profile of a disease measured the extent to which that disease explained the manifestation;
the FREQUENCY of a manifestation, e, in the profile of disease S, corresponded to
P(elS). Disease profiles in the Present Iliness Program (Pauker et al, 1976), contained
TRIGGER findings which could activate hypotheses, FINDINGS which could lend
support to already activated hypotheses, MUST-HAVE and MUST-NOT-HAVE
conditions for manifestations of the disease and IS-SUFFICIENT labels for findings
pathogenic to the disease.

The prototype knowledge-based system for the interpretation of laboratory test results has
two main cycles of operation. On the first cycle, the laboratory test data are entered and the
belief in an initial set of hypotheses is calculated. On the second cycle, further signs,
symptoms or patient history can be entered to update belief in the diagnostic hypotheses.
Thus the laboratory data set acts in the same way as TRIGGERS in PIP or as
manifestations with a high IMPORT value in INTERNIST-1

121

INTERNIST-I's EVOKING STRENGTH and PIP’s IS-SUFFICIENT findings are
modelled by the distribution of probability assignments across the hierarchy of hypotheses.
The EVOKING STRENGTH of a manifestation for a hypothesis will depend on the extent
to which that manifestation appears in probability assignments for other hypotheses in the
hierarchy; if it appears often, the implicit EVOKING STRENGTH is low; if it appears in
few other assignments, the EVOKING STRENGTH is high. The IS-SUFFICIENT
findings for a hypothesis are those that have assignments P(elS)=0 across the rest of the
hierarchy.

By making probability assignments for only a few nodes, specific pieces of evidence can
be used to discriminate between targeted hypotheses. If, for instance, only two hypotheses,
Si and S2, are assigned probabilities for evidence e, with P(elSi)=I and P(elS2)=0, then

when e is observed the new beliefin Si is the sum of the previous belief in Si and S2, the

new belief in S2 is zero, and belief in other hypotheses remains unchanged.
4.3.4 Laboratory Data As Evidence

The knowledge base used for the interpretation of laboratory test results contains
probability assignments regarding the level (low, normal or high) of data variables for
particular diagnostic hypotheses. Thus for laboratory data variable V, the following

probability assignments are stored for hypothesis S:
P(V is lowlS) P(V is normallS) P(V is highlS) (4.12)

Assuming that the probability distribution of V is known for a reference population of
healthy individuals, a measurement of V can be defined as low if it falls further than 2
standard deviations (a) below the mean value (|x), high if it falls further than 2a above the
mean and normal if it lies between these limits. Now, given that a particular value X, of
variable V, has been observed in a patient, what is the probability that X is low, normal or
high according to the definitions above? If the normal value of V for this patient, when
healthy, is more than 2a above X, then it has now fallen by more than 2a and it should be
classified as low. Thus the probability that X is low for this patient is the same as the
probability that this patient's normal value lies more than 2a above X. Similarly, the
probability that X is normal is given by the area within +/- 2a of X, and the probabilty that
X is high is given by the area more than 2a below X. Using this method of classification,
the probabilities that X is low, normal or high are shown in Figure 4.11 for X=p, X=ja.+a
and X=(j.+20. Although the distributions shown are Gaussian, the method described is

appropriate for any probability distribution.

122

X=g X=li+o X=lj.+2a

P(X is low) 0.0228 P(X is low) 0.0014 P(X is low) 0.0001

P(X is normal) 0.9554 P(X is normal) 0.8399 P(X is normal) 0.4999

P(X is high) 0.0228 P(X is high) 0.1587 P(X is high) 0.5000
(a) (b) ©

Figure 4.11 The Probability of a High, Normal or Low Value. (The shaded area is the
probability that X is normal).

Using the probability assignments in (4.12), and the calculated probabilities that an
observed value X is low, high or normal, the term P(elha) in (4.10) can be replaced by:

P(V lowlS).P(X low)+P(V normallS).P(X normal)+P(V highlS).P(X high)

Figure 4.12 shows the comparison of the method presented above with Tango's method
(Section 3.6.4) for values of the individual difference quotient of 0.2, 1.0, 1.8 and 2.6. It
can be seen that within the range of 0 observed by Tango (0.56-2.35), the new method
provides a more conservative classification: the probability that an observed value is normal
falls off less sharply with the distance from the mean. In particular, at two standard
deviations from the mean the probability is 0.5 with the new method, 0.422 for 0=0.2 and
0.204 for 0=1.

Figure 4.12 Comparison with Tango's Method of Data Classification. 0 is the Individual
Difference Quotient and t the number of standard deviations from the mean value of a

measured variable. The new method of data classification is shown as the bold line.

123

4.4 FRAMEBUILDER: A Knowledge Editing Environment
4.4.1 Introduction

A knowledge editing environment, called FRAMEBUILDER, has been developed to enable
clinicians to construct and browse knowledge bases suitable for use with the diagnostic
system described in Section 4.3. FRAMEBUILDER is implemented in PROLOG2 (see
Appendix VIII) and allows graphical, mouse-driven access to a knowledge base
represented as PROLOG clauses. The advantages of using FRAMEBUILDER are these:

1) A clinician can construct a knowledge base by direct interaction with the computer,
through a graphical interface - no knowledge of computer programming is required and the
role of the knowledge engineer as an intermediary between experts and the computer is

eliminated.

2) By making appropriate checks as each new piece of knowledge is added, it can be
ensured that the knowledge base is logically consistent - this is an important aspect of the
evaluation of a knowledge-based system and can be a time-consuming task if performed

manually.

3) By providing a structured framework in which knowledge can be expressed, the
knowledge editing environment facilitates the acquisition of detailed domain knowledge that

is difficult to elicit by standard interview techniques.

4) The entire knowledge base can be browsed at any time, and modifications are made
quickly and easily.

It can be seen that FRAMEBUILDER operates in a number of roles: as a tool for
knowledge acquisition, as a convenient editor for an existing knowledge base, as a
knowledge verification mechanism and as a means of explanation, by allowing a user to
browse the knowledge on which the diagnostic system's conclusions are based.

There are a number of aspects of the use of FRAMEBUILDER (or indeed any such tool)
that call for a cautious approach on the part of the clinician-user:

1) FRAMEBUILDER does not check the completeness of the knowledge base, only its
internal consistency. Failure to appreciate this point could lead to over-confidence in the

validity of the knowledge base.

2) Knowledge must be expressed in a certain format that may not be the most natural for a

particular situation. This problem has been discussed in Section 3.9.

124

3) Once a knowledge-based system has been evaluated in a clinical setting, the facility to
modify the knowledge within it must be carefully controlled, since any such modification

would render the evaluation invalid.
4.4.2 Overview of FRAMBUILDER

The FRAMEBUILDER environment can be viewed on the three levels shown in Figure
4.13. At the level of primitive data objects are defined the characteristics of various
laboratory data, signs and symptoms, aspects of patient history and relationships that exist
between laboratory data variables. These should cover the complete set of observations that
could be made for a patient. In addition, the broad classes of diseases and disorders for

which diagnoses are to be made can be defined at this level.

At the second level, offrame hierarchies, hierarchies of clinical diseases and physiological
disorders are defined; each hierarchy is headed by one of the disorders or diseases defined
as a primitive data object. The hierarchies should satisfy the conditions of exhaustiveness
and exclusivity specified in Section 4.3.3, but since checking of these conditions requires a
complete prior knowledge of the domain, it is the responsibility of the user to ensure that
they are complied with.

At the level offrame instances, each node in the hierarchies of diseases and disorders can
be viewed as a frame of information for which characteristic observations are specified
(chosen from the set defined at the level of primitive data objects) along with subjective
estimates of the probability of the observation in the presence of the disorder or disease
defined by the frame.

Figure 4.13 The Structure of FRAMEBUILDER

125

Figure 4.14 FRAMEBUILDER as a Frame-Based Organization of Knowledge

When used in its role as a knowledge acquisition tool, the three levels of
FRAMEBUILDER correspond to the three levels involved in the technique of
distinguishing the goals - definition of observations, definition of goals and definition of
the relationships between observations and goals (see Section 3.9.2). A description of this
three-levelled process of knowledge acquisition will be presented in Section 4.5.

In terms of a frame-based representation of knowledge, FRAMEBUILDER can be viewed
as a tool for defining frames, the inheritance between them (through the frame hierarchies)
and the possible facets and values for the frame slots (see Section 3.3). The frame-
structured knowledge base created by FRAMEBUILDER is shown in Figure 4.14; the next
three sections give a detailed description of the knowledge base and of FRAMEBUILDER
itself.

4.4.3 Representation of Primitive Objects

A session with FRAMEBUILDER starts at the level of primitive data objects with the main
command line shown in Figure 4.15. The user can select to edit disorders, diseases,
laboratory data variables, signs/symptoms, relationships between variables or patient
history by clicking with the mouse over the appropriate field in the command line.

When the variables field is selected, a list of all laboratory data variables is displayed in a
drop-down menu and the user has the option of adding new variables, deleting existing

ones or editing the parameters associated with each.

Disorder Disease Variables Signs/Symptoms Relations History EXIT |

Figure 4.15 The Main Command Line in FRAMEBUILDER

126

These parameters are the units of measurement, the upper and lower limits (defining the
allowable range for input), the mean and standard deviation for a reference population (a
Gaussian distribution is assumed) and the default value (if any). Figure 4.16a shows the
screen after the user has chosen to edit the parameters of pCC>2; Figure 4.16b shows the
PROLOG representation of pC02 as a laboratory data variable.

As can be seen in Figure 4.16b, the definition of a laboratory data variable produces an
entry for that variable as a noun in the system's lexicon. This lexicon is used for the
understanding of user queries in the dialogue management module of the diagnostic
system. This process will be discussed in Section 5.7.

(a) FRAMEBUILDER Display

variable("'PC02') data_parameter('PC02",units,"kPa").
data_parameter ("'PC02", upper_limit, 50.000).

data_parameter("'PC02",lower_limit,0.000).
data_parameter('PC02" ,mean,5.320).

data_parameter("'PC02",standard_deviation,0.333).
data_parameter("'PC02",default,none).
noun ("'PCO2", variable) — > [pco2] (lexicon entry)

(b) PROLOG Representation

Figure 4.16 Primitive Data Objects: Laboratory Data

127

The mathematical relationships that exist between laboratory data variables can be defined
by selecting relations in the main command line. The relationships are used to derive data
values and consist of an equation whose left hand side is a single data variable and whose
right hand side is an expression involving one or more other variables. The relationships
are edited by clicking the mouse over appropriate fields in a keypad of digits, operators and
a list of data variables as shown in Figure 4.17a. Figure 4.17b shows the way in which
relationships are represented in PROLOG.

Selection of the signs!symptoms field, produces a drop-down menu display of all signs and
symptoms in the knowledge base. New signs or symptoms can be added, existing ones
deleted and the attributes of each one can be edited. When a new sign/symptom is added, it
is assigned a single attribute, unknown. Further attributes can be added by selecting the edit
option in the drop- down menu and clicking the mouse over the appropriate sign/symptom.
Figure 4.18a shows the editing of attributes for the symptom vasodilatation and the
representation in PROLOG is given in Figure 4.18b.

relation ('1", ["Anion Gap"™,"Na","Cl","HC03"])

relation(*'2",["Base Excess","=","(","1", "Hb","/", "4" "3" ")", "*",

ti e« |n ~iQtJlQo3 " fm2*»F 45 *» »»2H M5 " M) " @it A H2 m M ii ii3n

T, UHR™, T, T, BVAFES B G I T A 2D I i) I
(b) PROLOG Representation

Figure 4.17 Primitive Data Objects: Data Derivation Relationships

128

Disease Variables Signs/Symptoms Relations History EXIT |

vasodi latation coma

normal tetany

vasodi lated tremor

vasoconstricted anxiety

unknown somnolence/headaches

TAdd Delete Exitl vasodi latation
acid ingestion
diuretics
Gl fluid loss
Kussmaul breathing
T Add Delete Edit Exiti

(a) FRAMEBUILDER Display

symptom(“coma™, ["unknown","absent","present","unknown"])

symptom (“tetany",["unknown","absent","present”, "unknown"]).

symptom(“tremor", ["unknown","absent","present™,"unknown"])

symptom(“anxiety", ["unknown","absent","present","unknown"]).
symptom(“somnolence/headaches™, ["unknown™,"absent","present”, "unknown"]).
symptom(“Kussmaul breathing",["unknown™,"absent","present"”,"unknown"]).

symptom (“shock", ["unknown™,"absent","present","unknown"]).
symptom(“vasodilatation™,["unknown","normal","vasodilated","vasoconstricted", "unknown"])
symptom("acid ingestion”,["unknown","absent","present”,"unknown"]).
symptom(“dieuretics”,["unknown","absent™,"present™, "unknown"])

(eion ey)

noun (“"vasodilated", attribute (symptom, "vasodilatation"))- >[vasodilated].

(b) PROLOG Representation
Figure 4.18 Primitive Data Objects: Signs and Symptoms

The definition of items of patient history is achieved in exactly the same way as
signs/symptoms, after clicking the mouse over the History field. However, as Figure 4.19
shows, there are three system-defined items of history; current disorder, previous disorder
and clinical diagnosis. The attributes of these special objects cannot be edited in the same

way as other items of history - their definition and use is described in Section 4.4.5

The two fields on the left of the main command line are used to define classes of
physiological disorders and clinical diseases, which provide the link between the primitive
data object level and the second level of frame hierarchies. Each disorder or disease defined
as a primitive data object forms the root of a hierarchy of the type described in Section
4.3.3.

129

Disease

Variables

smoking habits
0-5 per day
6-10 per day
11-15 per day
16-20 per day
over 20 per day
unknown

Signs/Symptoms

Relations

sex

occupation
disorder
previous disorder
clinical disease
smoking habits

History

EXIT |

TAdd Delete Exit 1 T Add Delete Edit Exitl

(a) FRAMEBUILDER Display

history("'sex", ['unknown","*female™, "male","'unknown']).

history(*'occupation”, ["'unknown','asbestos fitter"," ‘unknown']).

history(*'disorder", ['unknown'’, "'unknown']).

history(“'previous disorder", ['unknown™,"‘unknown']).

history(“'clinical disease", [''unknown',"‘'unknown']).

history(*'smoking habits", ['unknown,''0-5 per day',''6-10 per day",
""11-15 per day",'"16-20 per day','‘over 20 per day","'unknown'T]).

noun(*'0-5 per day",attribute (history, "'smoking habits')— > [0-5,per, day] - (lexicon entry)

(b) PROLOG Representation
Figure 4.19 Primitive Data Objects: Patient History

Figure 4.20a shows the drop-down menu of disorders and the way in which a new
disorder is added. The representation of disorders and diseases forming the roots of
hierarchies is shown in Figure 4.20b. By selecting edit in the drop-down menu of
disorders or diseases and then clicking over one of the entries, the hypothesis hierarchy for
that entry can be edited. This process is described in the next section.

130

|Disorder Disease Variables Signs/Symptoms Relations History EXIT |

hypoxaemic state
acid-base disorder

t Add Delete Edit Exit i T Add Disorder ——————————

(a) FRAMEB UILDER Display

disorder('hypoxaemic state'),

disorder('acid-base disorder™).

(b) PROLOG Representation
Figure 4.20 Primitive Data Objects: Disorder Classes
4.4.4 Representation of a Structured Hypothesis Space

The second level of FRAMEBUELDER is a graphical representation of the hypothesis
hierarchies defined in Section 4.3.3. The display seen on entry to the hierarchy for acid-

base disorders is shown in Figure 4.21a.

The user can scroll around the hierarchy (up-down and left-right) by clicking on the arrows
at the left or top edges of the display and the editing function can be set by clicking over
one of the fields at the top right. Nodes can be added to the hierarchy in two ways. To add
a new node as a descendent to an existing leaf node, the function link is selected and the
mouse clicked over the desired leaf node; the name of the new node can then be input and it
is added to the hierarchy, linked to the former leaf node. The add function can be selected
to add an additional descendent to a non-leaf node; the mouse is clicked over one of the
existing descendents and the name of the new node is then input. Nodes can be removed by

selecting delete and clicking the mouse over the appropriate node. If the link function is

131

selected and the mouse is clicked over a non-leaf node, the weights on the links to its
descendent nodes can be assigned - these weights are used to calculate the a priori
probabilities of each hypothesis in the hierarchy. The PROLOG representation of the
hierarchy in Figure 4.21a, including the weights on the links, is shown in Figure 4.21b.

The third level of the FRAMEBUILDER environment is entered by selecting the view
function and clicking over one of the nodes in the hierarchy; the knowledge frame for that

node can then be viewed and edited.

< 1 | »

acid-base disorder LINK

measurement error 0.10

neutral ph 0.30
0.30 ket acid & met alk
0.30

dominant acidosis
enormal blooc_iﬂ(_1;('=\ses2

dominant alkalosis

- mhigh HCO3 wi
EXIT olo%thos with pC0O2 —
_ i} g mleasurement error m-mixed met acid _
acid-base disorder- | B ~ 1-resp_acid & met acid
ominant acidosis L-respiratory acidosis
ominant alkalosis metabolic acidosis—

eresp alk & met alk
mesp alkalosis
etabolic alkalosis-

(a) FRAMEBUILDER Display

disorder("acid-base disorder","acid-base disorder",["measurement error","neutral ph",
“dominant acidosis","dominant alkalosis"]),

disorder(acid-base disorder™,"neutral ph"”,["met acid & met alk","normal bllod gases",

"high HCO3 with pC02","low HCO3 with pC02"]).

disorder("acid-base disorder™,"dominant acidosis",["mixed met acid”,"resp acid & met acid"”,
“respiratory acidosis","metabolic acidosis"]),

disorder("acid-base disorder™”,"dominant alkalosis",['resp alk & met alk","resp alkalosis",

"metabolic alkalosis']).

link('acid-base disorder"”, "acid-base disorder","measurement error",0.1).
link("acid-base disorder"”,"acid-base disorder","neutral pH",0.3).

link("acid-base disorder", "acid-base disorder","dominant acidosis",0.3).
link("acid-base disorder"”,"acid-base disorder","dominant alkalosis",0.3)

(b) PROLOG Representation

Figure 4.21 The Frame Hierarchy

132

4.4.5 Frame Representation

The command line for a knowledge frame mirrors the main command line, allowing the
selection of variables, signs/symptoms, relations and history for that frame. Figure 4.22a
shows the drop-down menu displayed after the selection of variables in the frame for
metabolic acidosis. The variables displayed are those that have a mean and standard
deviation defined as attributes and the probabilities of observing low, usual or high levels
are set by clicking over the appropriate field. Checks at this stage ensure that the same data
variable does not appear in two related frames (for instance the level of Base Excess cannot
be specified for uncompensated metabolic acidosis if it already appears in the frame for
metabolic acidosis). Checks also ensure that IP(LevellHO=I for any specified variable.

The PROLOG representation of laboratory data levels in the frame for metabolic acidosis is

shown in Figure 4.22b.

metabolic acidosis Variables Signs/Symptoms Relations History EXIT

DATA VARIABLE LOW USUAL HICGH

pH
PC02

Hco3 E -nl
Base Excess r~n
Na

K

a

Anion Gap
Buffer Base

Temperature

Add Delete Edit Exit J

(a) FRAMEBUILDER Display

frame_variable("metabolic acidosis',"acid-base disorder",""HC03", low,1.000).

frame_variable('metabolic acidosis', acid-base disorder”,'"Base Excess',low,1.000).

(b) PROLOG Representation

Figure 4.22 Frame Instances: Laboratory Data

133

Relationships between data variables that are characteristic of a hypothesis are built up
using a keypad, in the same way as the primitive data relationships. However, the left and
right hand sides of relationships for frames can both be expressions beween arbitrary
numbers of variables and they can be related by any one of {=,<,=<,>,>=}. The A symbol
on the keypad can be used to denote changes in the value of a variable over time. For
instance, the relationship shown in Figure 4.23 is between the change in pCC>2 and the
change in HCC>3*

(a) FRAMEBUILDER Display

frame_relation('comp met acid",'acid-base disorder","1",["'PCO2","=<",
0"t L o» , » 2 "HCO3"]).

frame_relation(C'comp met acid",'acid-base disorder","2",["'PCO2",">=",
O, LT, LT, M3, 3T » ¥y, THCO3").

(b) PROLOG Representation

Figure 4.23 Frame Instances: Data Relationships

134

Figure 4.24a shows the drop-down menu for the specification of the signs and symptoms
of a frame. The signs and symptoms are added by selecting with the mouse from the set
defined at the primitive data object level. A newly added sign/symptom is displayed with
the attribute unknown and probability 1 (the probability is the conditional probability of the
sign/symptom given the frame hypothesis). The same sign or symptom can appear more
than once in a frame with different attributes. Checks are performed to ensure that the same
sign/symptom is not specified in two related frames and that for any sign/symptom, S,
ZP(SIHj)=I, where the sum is over the attributes specified for S in the frame. Figure 4.24b

shows the PROLOG representation of the signs and symptoms of a frame.

(a) FRAMEBUILDER Display

frame_symptom(*comp met acid","'acid-base disorder","Kussmaul breathing","present’,0.7).
frame_symptom(“comp met acid",'acid-base disorder’,"Kussmaul breathin%","absent",0_3).
frame_sympotm(*'comp met acid","acid-base disorder","'shock’, " present,0.7).

frame_symptom(comp met acid","acid-base disorder","'shock", " absent',0.3).

frame_symptom(“'comp met acid"’,"acid-base disorder",'‘tremor'’,"present",0.3).
frame_symptom('comp met acid","acid-base disorder","tremor', absnet’,0.7).

(b) PROLOG Representation

Figure 4.24 Frame Instances: Signs and Symptoms

135

Finally, the history slots for a frame can be specified in exactly the same way as signs and
symptoms (Figure 4.25a). As was mentioned in Section 4.4.2, there are three special
history facets defined by the system: disorder, previous disorder and clinical disease. The

disorder facet allows a hypothesis from any other disorder class lie from any class other
than the class of the current frame) to be specified in the history slot of the frame. This
provides a mechanism for linking the hypothesis hierarchies so that the confirmation of one
disorder can act as evidence for the confirmation/disconfirmation of a disorder in another
class. Itis also the mechanism by which the disorders expected with clinical diseases are
specified in frames of disease hierarchies (these are used in the critiquing process of the
diagnostic system).

[\
comp met acid Variables Signs/Symptoms Relations History EXIT |
QEE'NG- .- HISTORY ATTRIBUTE PCh)
occupation } L
disorder metabolic acidosis was present 0.3
previous disorder T Add Delete Edit Exit T
clinical diagnosis
T EXIT

(a) FRAMEBUILDER Display

frame_history('comp met acid","acid-base disorder",
"metabolic acidosis'","was present”,0.3).

(b) PROLOG Representation

Figure 4.25 Frame Instances: Patient History

136

The previous disorder facet allows the specification of the temporal progression of
disorders in a class. For instance, the fact that a compensated metabolic acidosis is likely to
be preceded by an uncompensated or partially compensated metabolic acidosis is captured
by specifying the latter two disorders as previous disorder facets in the frame for

compensated metabolic acidosis.

Nodes from the hierarchies of diseases can be specified as characteristics of disorders by
clinical disease facets in disorder frames. If the current disease state of the patient is to be
critiqued in the light of the disorders diagnosed, then diseases should not be specified as
evidence in the disorder frames (since the critique would then be redundant). Hence it
would not normally be necessary to use the clinical disease facet in disorder frames - there
are, however, occasions on which this can be useful, as will be demonstrated in Chapter 7.

4.4.6 Summary

FRAMEBUILDER allows a knowledge base of PROLOG clauses to be created, edited and
browsed through a graphical interface, that requires no knowledge of computer
programming. In this respect it provides an excellent means by which clinicians can
develop and maintain a knowledge-based system without relying on an intermediate
knowledge engineer. Observations, diagnostic hypotheses and associations between
observations and hypotheses are organized in frame-like structures. A limited knowledge of
temporal dependencies can be captured by the use of the A symbol in data relationships and

the previous disorder facet in hypothesis frames.

As a knowledge acquisition tool, FRAMEBUILDER falls into the category of domain
independent knowledge editing environments described in Section 3.9.3.2, although its
three-level structure contains implicit knowledge of the knowledge acquisition technique of
distinguishing the goals described in Section 3.9.2.2. The use of FRAMEBUILDER for

knowledge acquisition is described in the next section.

137

4.5 Knowledge Acquisition Using FRAMEBUILDER

FRAMEBUILDER was used in knowledge elicitation sessions with a clinical biochemist at
the West Middlesex Hospital. In the first session, the knowledge engineer demonstrated the
use of the knowledge editing environment which had been loaded with some of the
knowledge from the first phase of acquisition. This included the hypothesis hierarchy and
the relationships for data derivation shown in Table 4.1.

The expert first constructed the new hypothesis hierarchy shown in Figure 4.26, which can
be compared with the hierarchy in Figure 4.5. He preferred to make an initial sketch by
hand - this was then transferred to FRAMEBUILDER for minor alterations and additions.
The node for normal blood gases was included in order to make the hypotheses exhaustive
for the class of acid-base disorders, and the node for measurement error was defined in the
manner suggested by the MUNIN system (see Section 2.4.2). The measurement error
frame contains all possible observations, with equal probability assignments, so that a
measurement error will be diagnosed if all the other hypotheses have been ruled out.

Five items of laboratory data - pH, pC02, HCO3", Base Excess, Anion Gap - were
specified as evidence for disorder hypotheses across the entire hierarchy. For the first four
of these data, the low, normal or high level expected with a particular disorder were
assigned categorically (ie P(levelldisorder)=I). For Anion Gap, some disorders were
considered to have a normal level (P(normalldisorder)=I) and others were considered as
having either a normal or high level (assigned as P(normalldisorder)=0.5,
P(highldisorder)=0.5).

Van Slyke Equation: Base Excess=(I-Hb/43).((HCC>3--24.25)+(2.3.Hb+7.7).(pH-7.4))

Henderson-Hasselbalch Equation: HC03'=0.23.pC02.10(pH-6.1)
Buffer Base =Na++K+-Cl-

Anion Gap=Na++K+-CT-HC03"*

Table 4.1 Relationships For Data Derivation

138

I— Measurement error

— neutral pH

acid-base disorders —

— dominant acidosis

_ dominant alkalosis

met acid & met alk
low hco3 & low pco2—
high hco3 & high pco2
normal blood gases

mixed metabolic acidosis
metabolic acidosis

resp acid & met acid
respiratory acidosis

respiratory alkalosis,
resp alk & met alk
metabolic alkalosis.

s pensated metabolic alkalosis
acid & met alk
igmpensated respiratory acidosis
1 ompensated respiratory alkalosis
sp alk & met acid
yompensated metabolic acidosis
ncompensated metabolic acidosis
Cart compensated metabolic acidosis

ncompensated respiratory acidosis
C art compensated respiratory acidosis

ncompensated respiratory alkalosis
art compensated respiratory alkalosis
ncompensated metabolic alkalosis

C art compensated metabolic alkalosis

Figure 4.26 The Revised Hypothesis Hierarchy for Acid-Base Disorders

In the second session, some hypothetical cases were run, using the knowledge base

constructed in the first session. It was found that the basic model was working correctly,

but diagnoses were often reported at a general level, not in terms of specific leaf node

hypotheses. For example, the diagnosis high HC03 with pC02 would be reported rather

than one of the leaf nodes comp met alk, resp acid & met alk or comp resp alk. The

problem, therefore, was to find evidence that would discriminate between the members of

these subsets of leaf nodes. This was achieved by specifying electrolyte levels (Na+, K+,

CI") and the expected degree of compensation for simple metabolic and respiratory

disorders, indicated by the expressions in Table 4.2.

Compensated Metabolic Acidosis

Compensated Metabolic Alkalosis

Compensated Respiratory Acidosis

Compensated Respiratory Alkalosis

ApCO02>0.2.AHCO3-
ApCO2<0.6.AHCO3"
ApC02>0.033.AHCO03"
ApCO2<0.133.AHCO3"

AHCO03">3.ApC02-4

AHCO03"<3.ApC02+4

AHC03">3.75.ApC02-4

AHCO03"<3.75.ApC02+4

Table 4.2 Compensation Limits (From Schreck et al, 1986)

139

Compensated Respiratory ~ Respiratory Alkalosis ~ Compensated Metabolic ~Compensated Respiratory ~ Respiratory Acidosis ~ Compensated Metabolic
Alkalosis & Metabolic Acidosis Acidosis Acidosis & Metabolic Alkalosis Alkalosis

coma X \% \Y < \% X
tetany \ \% X X \Y \%
anxiety X \% \% \ % X
somnolence/headache X X X \ \% X
vasodilatation normal vasoconstriction vasoconstriction vasodilation vasodilation normal
acid ingestion X < \% X X X
diuretics X X X X \% \%
G1 fluid loss X v < X X X
Kussmaul breathing X \% \% X X X
shock X \% v X X X
pregnancy \Y ; X X X X

Table 4.3 Signs and Symptoms

Clinical signs and symptoms were also used for discrimination between the leaf nodes. A
list of some 50 useful signs and symptoms was used as a basis for knowledge elicitation at
the Royal Free Hospital, with a consultant anaesthetist in the ICU. From the list of 50, only
those shown in Table 4.3 were considered to be of sufficient predictive power to warrent
inclusion in the knowledge base. The expert was reluctant to estimate probability
assignments for the symptoms and observed that although the presence of a symptom
might suggest a particular disorder (or disorders), the actual probability of the symptom
given the disorder was very low. In effect he was able to estimate P(disorderlsymptom) but
not P(symptomldisorder) - a contradiction of the generally accepted situation (Welbank,
1983).

The signs and symptoms were elicited in the form of the grid in Table 4.3: atick indicating
the cases in which a disorder is suggested by the presence of the sign or symptom. The
grid was translated into FRAMEBUELDER entries by assigning probabilities according to
Table 4.4. The assignments were intended not to be realistic estimates, but to capture the
fact that the observation of these signs and symptoms increases belief in certain hypotheses
although their absence does not completely rule out those same hypotheses; the
probabilistic inference mechanism is being used to implement an ad hoc scoring of

hypotheses.

Symptom indicates hypothesis Symptom does not indicate hypothesis
P(symptom is present)=0.8 P(symptom is present)=0.2
P(symptom is absent)=0.2 P(symptom is absent)=0.8

Table 4.4 Probability Assignments for Signs and Symptoms

140

4.6 Summary

The design of a knowledge-based system for the diagnosis of physiological disorders,
based on laboratory data and clinical observations, has been described. The control of the
diagnostic process is achieved by a blackboard architecture, allowing for independent
development of knowledge sources and providing the framework for an opportunistic
problem solving process which can easily be interrupted and resumed as necessary. Two
important knowledge sources handle the classification of data and the impact of
observations on diagnostic hypotheses. It has been shown that a Bayesian updating of
belief in a hierarchy of hypotheses can be achieved with a knowledge base consisting only
of estimates of the frequency of observations in given disorder states and implicity captures
the behaviour of systems requiring a wider range of parameter estimates. A detailed
description of the implementation of the design is given in the next chapter.

To complement the diagnostic system, a knowledge editing environment has been
developed. This allows the entire knowledge base to be browsed and edited by a purely
graphical interaction and is suitable for the direct development of knowledge-based systems
by clinicians. Knowledge acquisition sessions have been described for the developement of
a system for the interpretation of blood gas analysis results, in which the
FRAMEBUILDER environment was used as a tool for knowledge base construction. It has
been shown that the probabilistic framework can be used not only for well defined
estimates (and ultimately measurements) of probabilities but also for more ad hoc

definitions of symptom-disorder associations.

141

CHAPTER FIVE

IMPLEMENTATION OF A KNOWLEDGE-BASED SYSTEM

5.1 Introduction

The practical implementation of the blackboard diagnostic module (in PROLOGZ2) differs
slightly from the conceptual design presented in Section 4.3. The hypothesis level on the
physiological diagnosis panel is split into two sections: the sub-hypothesis level contains
the hypotheses generated by individual pieces of evidence, the hypothesis level contains the
accumulated hypothesis for each disorder based on all the evidence. The sumjiypothesis
knowledge source performs the transformation from the sub-hypothesis level, where there
may be more than one entry for each disorder, to the hypothesis level where there is at most
one entry for each disorder.

Knowledge
Source
Input
Diagnosis
Predict
Disorders:
Sum

sHypotheses
Evidence.

Truth
Maintenance

Wrrite Default
I;® Data

Write Data

Figure 5.1 The Implemented Design of the Blackboard Diagnostic Module

142

The single knowledge source write_data shown in Figure 4.9 has been split into the two
knowledge sources write_raw_data and write_default_data. Evidence from
signs/symptoms and patient history is processed in exactly the same manner; hence the two
knowledge sources in Figure 4.9, have been combined into a single evidence knowledge
source. The diagnosis level on the physiological panel has been renamed sub-diagnosis in
order to distinguish it from the diagnosis level on the clinical diagnosis panel. The final
structure of the blackboard diagnostic module, as it has been implemented, is shown in

Figure 5.1.

The next section describes the way in which the blackboard architecture has been realized in
PROLOG and the following four sections deal with the knowledge sources in more detail.

Finally, the dialogue interaction module is described in Section 5.7.

blackboard(Blackboard,diagnosis,Root,Disease).
blackboard(disorder,diagnosis,”Impaired Lung Motion'","Pleural Effusion').

blackboard(Blackboard,prediction,Disease,Disorder).

blackboard(disorder,prediction,”Pleural Effusion”,"comp resp acid).

blackboard(Blackboard,critique,Disorder_Root,Disease,Disorder,Critique_type).

blackboard(disorder,critique, acid-base disorder'”,"Pleural Effusion™,"comp resp acid",expected).

blackboard(Blackboard,manifestations,Root,Disorder).

blackboard(disorder,manifestations, acid-base disorder™, comp met acid"),
blackboard(disorder,manifestations, acid-base disorder","part comp met acid™).

blackboard(Blackboard,sub_diagnosia,Root,Disorder,Belief).

blackboard(disorder,sub_diagnosis,"acid-base disorder","comp met acid",0.500).
blackboard(disorder,sub_diagnosis,"acid-base disorder',"part comp met acid",0.500).

blackboard(Blackboard,hypothesis,Root,Hypothesis,Belief).

blackboard(disorder,hypothesis,"acid-base disorder","comp met acid",l.525).
blackboard(disorder,hypothesis,"acid-base disorder™,"part comp met acid",l.525).

blackboard(Blackboard,Hypothesis_type,Root,Hypothesis,Evidence,Belief).

blackboard(disorder,variable_hypothesis,"acid-base disorder™,"dominant acidosis","pH",1.024).

blackboard(disorder,relation_hypothesis,"acid-base disorder"," " comp met acid”,
[change(**"HC03") ,change ("'PC02'")],1.007).

blackboard(disorder,evidence_hypothesis,"acid-base disorder","comp met acid",'"coma’,1.115).

blackboard(Blackboard,classified_data,Data_name,Classification,Probability) .

blackboard(disorder,classified_data, "pH",high,0.000).
blackboard(disorder,classified_data,"pH",usual ,0.655).
blackboard(disorder,classified_data,"pH", low,0.355).

blackboard(Blackboard,raw_data,Data_type,Data__name,Value,Status).

blackboard(disorder,raw_data,variable,pH",7.350,measurement) .
blackboard(disorder,raw_data,variable,"Base Excess'",-2.000,derivation).
blackboard(disorder,raw_data,variable,"F102",21.000,default).
blackboard(disorder,raw_data,symptom,*coma’,"present’,measurement).

Figure 5.2 PROLOG Representation of Blackboard Data Entries

143

5.2 Blackboard Representation and Control

Blackboard entries are represented as PROLOG terms with the functor blackboard and 4 to
6 arguments. Figure 5.2 shows the representation of entries at each level. The first two
arguments in each term specify the name of the blackboard and the level of the entry. The
entire blackboard data structure can be copied simply by changing the first argument in each
term; this is a very useful facility since the state of a problem solution is completely
determined by the data on the blackboard and a list of executed knowledge sources.

Each knowledge source is represented as a pair of PROLOG clauses; the first defines the
triggering conditions, the second defines the actions to be performed when the knowledge
source is executed. In fact this second clause is normally split into a sequence of action
sub-goals and comprises between about 5 and 50 lines of PROLOG code. Figure 5.3
shows the PROLOG representation of a knowledge source with the simple example of

write_raw_data.

TRIGGER CLAUSE FORMAT

trigger (BLACKBOARD , KNOWLEDGE_SOURCE ,CONDITIONS, ACTIVATION)
check for activation,

condition 1,

condition 2,

condition n,
instantiate conditions,
check for previous execution.

EXAMPLE

trigger(Blackboard,write_raw_data,Condition_l1lst,Active_ks):-
actice ks([write_raw_data,data handler] ,Active ks),
current_data(Type,Facet,Value),

hypothesis_type(Type,),
Condition_list=[Type,Facet,Value],

not blackboard(Blackboard, raw_data,Type,Facet,Value,S).

KNOWLEDGE SOURCE CLAUSE FORMAT

Knowledge_source (BLACKBOARD , KNOWLEDGE_SOURCE ,CONDITIONS, ACT IVATION)
goal 1,
goal 2,

goal n,
record execution of knowledge source.

EXAMPLE

knowledge_source(Blackboard,write_raw_data, [Type,Facet,Value],
[write_raw_data,data_handler,evidence_handler])
entry_display(Variable,Value,"M,Entry_display),
window(blackboard” text(Entry_display)),
retractall(blackboard(Blackboard, raw_data,Type,Facet),
asserta(blackboard(Blackboard(raw_data,Type,Facet,Value,measurement)),
retractal I (executed_ks(Blackboard,write_raw_data, [Type,Facet,_])),
retractal I (executed_ks(Blackboard,derive_data, [Type,Facet,Value])),
retarctal l (executed_ks(Blackboard,write_default_data, [Type,Facet,Value])),
assert(executed_ks(Blackboard,write_raw_data, [Type,Facet,Value])).

Figure 5.3 PROLOG Repesentation of Knowledge Sources

144

CYCLE GENERATES CONTROL INFORMATION

Figure 5.4 The Control Cycle

The control cycle of the blackboard system is shown in Figure 5.4. The first step in the
cycle is to evaluate the trigger conditions for each knowledge source in order to generate a
set of Knowledge Source Activation Records (KSARs). This process is made faster by
passing to the trigger clauses a list of knowledge sources activated by the last executed
knowledge source (stored as the Activation argument in the knowledge_source clause). The
first test performed by each trigger clause is a check on the Activation list to see if the
knowledge source is currently active; if it is not, the trigger fails immediately. Each
successfully evaluated trigger clause generates a list of instantiated variables as its
Conditions argument which is stored in the KSAR generated.

When all possible KSARs have been generated (there may be more than one, with
differently instantiated conditions, for each knowledge source trigger) the scheduler selects
one for execution. The corresponding knowledge_source clause is then evaluated using the
instantiated condition list and the KSAR is recorded as an executed ks (this prevents the
same KSAR from being regenerated by the trigger clauses). Finally, the unexecuted
KSARs are deleted and the cycle begins again; it terminates when no KSARs are generated

in the first step.

145

The speed of the system execution depends on the strategy employed by the KSAR
scheduler, three strategies have been implemented so that their effect on the efficiency of the
system can be compared (see Section 6.4.5). The full_schedule strategy scans all the
KSARs generated and selects the one triggered at the lowest (or highest) blackboard level
in order to implement a bottom-up (or top-down) strategy. This could be considered as the
simplest form of a sophisticated scheduler (ie one that makes a scheduling decision based
on the set of all possible KSARs on each cycle).

A sophisticated scheduler is slow because it requires many KSARSs to be generated on each
cycle but executes only one (the others are discarded and many may be regenerated on the
next cycle). By ordering the knowledge sources so that those triggered at the lowest
blackboard level have their trigger conditions evaluated first, the bottom-up strategy of the
full_schedule can be implemented by executing the first generated KSAR. This control

strategy has been implemented as thefirst triggered strategy.

Figure 5.5 Control Cycle with Improved Efficiency

146

A third control strategy, the mixedschedule, operates using the modified control cycle
shown in Figure 5.5. Like the full_schedule strategy this is a sophisticated scheduler
working with the set of all possible KSAR generations at each cycle. Just as in the
full_schedule strategy, the KSAR triggered at the lowest level is executed; knowledge of
the nature of the knowledge sources is then used to execute further KSARs without the
need for regeneration. If the execution of a knowledge source modifies the blackboard only
at levels higher than that at which it was triggered, any KSARs generated on the current
cycle from the same knowledge source will also be generated on the next cycle. Hence it is
possible to schedule these KSARs for execution without the need to re-evaluate trigger
conditions. Once all such KSARs have been executed, the cycle can begin again with the

generation of a new KSAR set.

The following four sections describe the implementation of the knowledge sources
themselves and indicate how they are used to create the blackboard data structure shown in
Figure 5.2. Table 5.1 provides a summary of the knowledge sources, the blackboard
levels at which they are triggered, the levels at which they write entries and the knowledge

sources they activate.

KNOWLEDGE
SOURCE

data handlers

truthjmaintenance
write_raw_data
derive_data

wrile_default_data

classify_data

evidence handlers

relation evidence
variable_evidence

evidence

sum_hypotheses
rank_hypotheses
transfer_data

clinical diagnosis

write_disease_diagnosis
predict_disorders

critique_diagnosis

TRIGGERED
AT LEVELS
database, ravvedala
database

raw_data

raw_data

raw_dala

raw_data
classified_data

raw_data

sub_hypothesis

hypothesis

sub_diagnosis

database

diagnosis

manifestations, prediction

147

WRITES
TO LEVELS

raw_data, classitied"data,

sub_hypothesis
raw_dala

raw_data

raw_data

classitied data

sub_hypothesis

sub_hypothesis

sub_hypothesis

hypothesis

sub_diagnosis

database, manifestations

diagnosis

prediction

critique

ACTIVATES
LEVELS

data_handler, sum_hypothesis

write_raw_data, write_default_data,
derive_data, classify_data, evidence_handler

write_default_data, derive_data,
classify_data, evidence_handler

write_default_data, derive_dala,
classify_data, evidence_handler

classified_data,evidence_handler

evidence_handler, sum”hypothesis,
clinical_diagnosis
variable_evidence, evidence,
sum_hypothesis, clinical_diagnosis
evidence, sum__hypothesis,
clinical_diagnosis

sum_hypothesis, rank_hypothesis
rank_hypothesis, transfer_data,
clinical_diagnosis

data_handler, clinical_diagnosis

predict_disorders

critique_diagnosis

critique_diagnosis

Table 5.1 Knowledge Sources in the Diagnostic Module

5.3 Patient Data
5.3.1 Data Structures

During a consultation session, the system maintains a patient specific database comprising
four data types: variables (laboratory data variables), symptoms (actually signs or

symptoms), history and diseases. Additionally, the data can be defined as:

current_data: data currently available for use in diagnosis
archive_data: time stamped data from previous sessions

personal_data: demographic patient data (hospital id, name, sex, age, occupation)

Between sessions, archive data are stored in an individual file for each patient; personal
data for all patients are stored in a single file. At the start of a session, the patient's personal
and archive data are recovered and certain current data are set. The personal data of age, sex
and occupation can all be useful during diagnosis and so these are transferred from
personal to current data. Similarly, the archived data about a patient's underlying clinical
disease state (which is likely to remain constant between sessions) and previously
diagnosed disorders are set as items of history in the current data. The clinical diagnosis is
also set as the special disease data type in the current data (this reflects the dual role it can
play - either as evidence for the diagnosis of disorders or as the context in which to critque
this diagnosis). The PROLOG structures of personal_data, archive_data and current_data
are shown in Figure 5.6.

current_data(Data_type,Data_name,Value).

current_data(variable,"pH"™, 7.32) .
current_data(symptom,coma","present").
current_data(history, " metabolic acidosis","present').
current_data(disease,"diabetes mellitus","present™).

personal_data(ldentifier,Data,Value).

personal_data("PTO01","age",27).
personal_data("PTO01","occupation","asbestos fitter").

archive_data(Date,Time,Data_type,Data_name,Value).

archive_data((050889,1205,variable,"pH",7.32).
archive_data(050889,1205,history,"metabolic acidosis","present").

Figure 5.6 PROLOG Representation of Patient Data

148

transferred at
start of session

Figure 5.7 Transfer of Data Between Files, Database and Blackboard

The patient specific database is kept separate from patient data on the blackboard; data are
transferred from the database to the raw_data and diagnosis blackboard levels and from the
raw_data and sub_diagnosis levels back to the database. An overview of the data transfer

between the files, database and blackboard is shown in Figure 5.7.

The four sub-sections below, describe the knowledge sources which manipulate raw

patient data (collectively known as data handlers).
5.3.2 Data Transfer From Database to Blackboard

The raw_data knowledge source monitors the database for the variable, symptom and
history data types and is triggered by any such data that exist in the database but not on the
blackboard, or by data that have a different value in the database than on the blackboard.
Write_raw_data operates simply by replacing any existing value of the data at the raw_data
blackboard level with the new value found in the database. The write_disease_diagnosis
knowledge source operates in the same way, monitoring the database for data of the disease

type and transferring them to the diagnosis level of the blackboard.

The knowledge source write_default_data monitors laboratory data variables that have
default values specified in the knowledge base; it is triggered after write_raw_data and
derive_data and if neither has been able to provide a data value, the default is written as an
entry at the raw_data level. The mapping of data representations from the database on to the

blackboard is shown in Figure 5.8.

149

current_data(Type,Name,Value).
write_raw_data

blackboard. (Blackboard, raw_data, Type, Name, Value,measurement) .

data_parameter(Variable,default,Value).
write_default_data

blackboard(Blackboard,raw_data,variable,Variable,Value,default).

current_data(disease,Root_disease, Disease_name)>
write_disease_diagnosis

blackboard(Blackboard,diagnosis,Root_disease,Disease_name,1.000).

Figure 5.8 Mapping of Data from Database to Blackboard

5.3.3 Truth Maintenance

Any changes in the values of data in the database are detected by write_raw_data and the
entries at the raw_data blackboard level are updated accordingly. Entries at the
classified_data and sub_hypothesis levels are automatically updated because the knowledge
sources that produced them are re-triggered by the changes at the raw_data level. Similarly,
any necessary changes to default or derived data are made by simple re-triggering of the
appropriate knowledge source. Thus truth maintenance is largely achieved by a passive

process of knowledge source re-triggering.

If, however, the user changes a data value to ‘unknown' then it is completely removed
from the database and write_raw_data does not detect a change. This problem is solved by
the truth_maintenance knowledge source which is triggered by data that have entries as
raw_data on the blackboard but no corresponding entry in the database. Truthjnaintenance
removes any relevant entries from the classified_data and sub_hypothesis levels and also

removes raw_data entries that were derived using data that are now unknown.

150

relation(Relation_no, [Variable, =" IExpression]) .

derivation(Variable,Expression,Dependents_list).

For Example:

relation("1",["Anion Gap”, Na* K , "HC03",-"CI"].

derivation("Anion Gap-,[*Na”","+"," K * "H C 0 3 *CI*7],

[*Na®, "K","HC03","CI"])-
Figure 5.9 Pre-processing for Data Derivation
5.3.4 Data Derivation

The knowledge base contains expressions of the relationships between variables that can be
used to derive data values. These relationships are of the form:

Data variable = Expression (5.3.1)

where the expression involves one or more other data variables. Some pre-processing is
performed on the relationships as they are stored in the knowledge base in order to isolate
the variable on the LHS of (5.3.1) and to identify the variables involved in the RHS
expression. The results of this pre-processing are shown in Figure 5.9. The
data_derivation knowledge source is triggered when all the items in the Dependentsjist
appear as entries at the raw_data level; the Expression is then evaluated and the derived data
variable is written on the blackboard. The data transformations occurring in this process are
shown in Figure 5.10.

blackboard(Blackboard,raw_data,variable,Variablel,Valuel,Statusl).

blackboard(Blackboard, raw_data,variable,Variable2,Value2,Status?2).

derivation(Variable,Expression, [Variablel,Variable2]).

| derive_data

blackboard(Blackboard,raw_data,variable,Variable,Value,derivation).

Figure 5.10 Data Mapping Achieved by derive_data Knowledge Source

151

blackboard{Blackboard, raw_data,variable,Name,Value,default).
rwite default data

current_data(variable,Name,Value).

blackboard (Blackboard,raw_data,variable,Name,Value,derivation)

Iderive_data

current_data(variable,Name,Value).

blackboard(Blackboard,sub_diagnosis,Root,Disorder,Belief).
N transfer_data (if Belief>0.95)

current_data(history,Disorder, "present”).

Figure 5.11 Mapping of Data from Blackboard to Database
5.3.5 Data Transfer From Blackboard to Database

Default and derived data are written to the database, as well as to the blackboard, by the
appropriate knowledge source; the only other transfer of data from the blackboard is
achieved by the transfer_data knowledge source. Transfer_data takes each diagnosed
disorder from the sub_diagnosis level and writes it at the manifestation level of the clinical
diagnosis panel. In addition, any disorders that have been diagnosed with a belief greater
than 0.95 are written to the database as patient history. The mapping of data structures from

the blackboard to the database is shown in Figure 5.11
5.3.6 Data Classification

The method of data classification introduced in Section 4.3.4 is implemented in the
classify_raw_data knowledge source. It is triggered by variables that have a value written at
the raw_data level and a mean and standard deviation specified as data parameters in the

knowledge base.

From Figure 4.11, if a laboratory data variable V is measured as X and the reference
population mean and standard deviation are jxand a respectively:

P(X is low) = P(ulu>X+20)

=H (xx2p)
(5.3.2)

152

P(X is normal) = P(ulX-2o0<u<X+2d)

SH A)-<K)

(5.3.3)

P(X is high) = P(ulu<X-20)

(5.3.4)

where 9 is the standard Gaussian distribution function.

The classify_data knowledge source calculates the probabilities in (5.3.2), (5.3.3) and
(5.3.4) using a look-up table of the standard Gaussian distribution function and writes
entries at the classified_data level of the blackboard. The operation of the knowledge source

is represented in Figure 5.12.
5.4 Handling Evidence
5.4.1 Overview

Three knowledge sources (collectively called evidence handlers) implement the method of
evidence propagation presented in Section 4.3.3. Before the session begins, some pre-
processing is performed on the hypothesis hierarchies stored in the knowledge base. The a
priori probability of each hypothesis is calculated by multiplying the weights of the links
from the hypothesis to the root node of the hierarchy; the set of descendent leaf nodes is
also formed for each hypothesis. The results of the pre-processing are shown in Figure
5.13.

data_parameter(Variable,mean,Mean).
data_parameter(Variable,standard_deviation,SD).

classify_data

blackboard(Blackboard,classified_data,Variable,low,Pl).
blackboard(Blackboard, classified_data,Variable,normal,Pn) .
blackboard(Blackboard,classified_data,Variable,high,Ph).

Figure 5.12 Data Mapping Achieved by classify_data Knowledge Source

153

uncompensated respiratory alkalosis

respiratory alkalosis -i
C part compensated respiratory alkalosis
acid-base disorders — — dominant alkalosis respiratory alkalosis & metabolic alkalosis
uncompensated metabolic alkalosis
metabolic alkalosis — * n

C part compensated metabolic alkalosis

link('acid-base disorder™,"acid-base disorder",""dominant alkalosis™,0.3).
link('acid-base disorder","dominant alkalosis","resp alkalosis™,0.33).
link('acid-base disorder™,"resp alkalosis","uncomp resp alk"™,0.5).
link("'acid-base disorder™,"resp alkalosis™","comp resp alk™,0.5).

i
apriori(disorder,"acid-base disorder”,"uncomp resp alk",0.0495).

singleton_descendents(disorder,acid-base disorder”,"resp alkalosis",
["'uncomp resp alk™,"comp resp alk™]).

Figure 5.13 Pre-processing for Hypothesis Hierarchies

Figure 5.14 shows the algorithm used to implement the updating function in (4.10).
Operating separately on each hypothesis class, the algorithm first forms a list of all
hypotheses that have a probability assignment in the knowledge base for the piece of

evidence under consideration (Step 1).

Figure 5.14 Algorithm for Evidence Handlers

154

The apriori probabilities of each hypothesis, P(hi), are summed to S1, the probabilities of
the evidence given each hypothesis, P(elhi), are found and the products P(elhj).P(hi) are
summed to S2 (steps 2, 3 and 4). The updating factor in (4.11) is then calculated as
wj=P(elhi).SI/S2 and an appropriate entry is written at the sub_hypothesis level of the
blackboard.

For different types of evidence there are variations in Steps 1 and 3 of the basic algorithm
which are described in the next three sub-sections.

5.4.2 Signs/Symptoms and History

The evidence knowledge source is triggered by entries at the raw_data level of the data
types symptom or history. A piece of evidence is a facet-attribute pair, for example ("Gl
fluid loss","present") or ("smoking habits","0-5 per day"). Recalling from Figures 4.20b
and 4.21b that the knowledge base contains entries for hypothesis frames of the type

frame_symptom(Hypothesis,Root,Facet,Attribute,Probability).

framejhstory (Hypothesis,Root,Facet, Attribute,Probability).

the list of hypotheses with assignments for the evidence (Step 1) is formed from all
hypotheses for which the evidence facet matches a Facet in the knowledge base. If the
evidence attribute also matches an Attribute in the knowledge base then P(elhi) is simply

recovered as the Probability argument; if no match for the attribute is found then P(elhj)=0.

2A
1D

Class 1 Class 2 2B
IE

2C

frame_history('2C"”,"Class 2" ,"IE",present,0.7) .
frame_history('2C"”,"Class 2","ID",present,0.3).
frame_history('2B”,"Class 2","1C",present,1.0).

evidence is:

blackboard(Blackboard,raw_data,history,"1B" ,present).

P(evidencel2C)=0.7+0.3=1.0

P(evidencel2B)=0.0

Figure 5.15 Finding P(elhi) for Diseases and Disorders Added as History

155

For diseases or disorders that have been specified as pieces of history evidence, the
situation is a little more complicated. The list in Step 1is formed from all hypotheses which
have a Facet in the knowledge base that is in the same class of diseases or disorders as the
evidence facet. The probability P(elhj) is found by summing the Probability arguments of

all knowledge base entries for the hypothesis for which the Facet is the same as or a
descendent of the evidence facet and the attributes are the same; an example is shown in
Figure 5.15.

5.4.3 Laboratory Data Variables as Evidence

Entries describing variables at the classified _data level trigger the variable_evidence

knowledge source. The knowledge base contains entries of the type
frame_variable(Hypothesis,Root,Variable,Level,Probability)

and so the list in Step 1is formed by finding hypotheses matching the Variable argument
with the evidence variable. The Probability argument expresses P(Variable is

LevellHypothesis) and so the probability of the evidence given the hypothesis is:
P(elhj) = P(lowlhi).P(lowle)+P(normallhi).P(normalle)+P(highlhi).P(highle)
where P(lowle), P(normalle) and P(highle) are found at the classified_data level of the

blackboard. An example calculation is shown in Figure 5.16.

BLACKBOARD

blackboard(Blackboard,classified_data,V,low,0.35).
blackboard(Blackboard,classified_data,V,normal,0.65).
blackboard(Blackboard,classified_data,V,high,0.0).

KNOWLEDGE BASE

frame_variable("HI","Root",V,low,0.5).
frame_variable(C'HI","Root",V,normal ,0.5).

frame_variable('H2","Root",V,normal ,0.5).
frame_variable('H2","Root",V,high,0.5).

P(VIH1) = 0.35*0.5 + 0.65*0.5 + 0.0*0.0
=0.5

P(VIH2) = 0.35*0.0 + 0.65*0.5 + 0.0*0.5
= 0.325

Figure 5.16 Calculation of P(elhj) for Classified Data Variables

156

5.4.4 Relationships as Evidence

Hypothesis frames in the knowledge base contain relationships between laboratory data
variables that are characteristic of the hypothesis (see Figure 4.19a,b). The general form of

these relationships is:
[LHS Expression] [Comparator] [RHS Expression]

where the comparator is one of {=,<,>,=<,>=} and the two expressions contain laboratory
data variables. Pre-processing of the relationships identifies the comparator, separates the
LHS and RHS expressions and forms the list of variables involved in them. The special
symbol A, representing the change in value of a variable, must also be identified; in the
current implementation AV is taken as the change in Vfrom its mean value and so AV is
replaced by (V-pV) wherever it occurs in the relationship. It could also be interpreted as the
change in V since it was last measured, in which case AV could be replaced by V-Va,
where Va is the value retrieved from archive_data. The results of pre-processing for some

typical relationships are shown in Figure 5.17.

frame_relation('mild hypoxaemia',"hypoxaemic state', "1",
["PO2", "7" " "9","8"]) .

relation__occurrence(""hypoxaemic state™,["P02"]).

relation_evidence("mild hypoxaemia",'"hypoxaemic state™,"1",
rpo27], L"798"1, ">=")

frame_relation('comp met alk',"acid-base disorder"™,"1",
[*\127","PCO2", " =<", "0","_"0","3","3","*","\127",""HC03""])-

relation_occurrence('acid-base disorder™,[""PC02",HC03"]).-

relation_evidence ('comp met alk.", "acid-base disorder, 1",
r¢,"pPco2, "5.32",'"Y)'"],
o™, TOT, U3, e, R, (T, UHCO3™, M-, 24T,)] M)

Figure 5.17 Pre-processing for Relationships

157

It can be seen from Figure 5.17 that the occurrence of each set of variables {VI,V2,...Vn}
that appears in some relationship is recorded. These sets are used to trigger the
relation_evidence knowledge source when all the variables they contain become available at
the raw_data level. The evidence considered by the triggered knowledge source is then a
relationship between the variables {VI,V2,...Vn}. The set of hypotheses in Step 1 of
Figure 5.14 is generated by finding all hypotheses featuring in a relation_evidence entry
with the same set of relationship variables. The algorithm for finding P(elhi) is shown in
Figure 5.18. There may be more than one relationship between the same variable set for a
given hypothesis hj: if all the relationships hold then P(elhj)=I; if any one of the

relationships does not hold, P(elhj)=0.

Test LHS against RHS with the comparator

v t

P(elHi)=I P(elHi)=0

Figure 5.18 Algorithm for Calculating P(elhi) for Relationship Evidence

158

5.5 Combining Hypotheses

The three knowledge sources described in the last section calculate the updating factors for
the belief hypotheses and write them to the sub_hypothesis level of the blackboard. This
section describes how the hypotheses are combined and reported as differential diagnosis
lists.

The hypotheses at the sub_hypothesis level for a particular class of disorders can be at any
level in the hierarchy and there may be more than one entry for each hypothesis. The
sum”hypothesis knowledge source is triggered by the entries at the sub_hypothesis level
and writes the updated belief of leaf nodes in the hierarchy at the hypothesis level. The
algorithm used by sum_hypothesis is shown in Figure 5.19.

Figure 5.19 Algorithm for sum_hypothesis Knowledge Source

159

For each hypothesis at the sub_hypothesis level, with associated updating factor w, the
belief in each of its descendent leaf nodes is updated by w. If an entry for the leaf node
already exists at the hypothesis level then it is the belief specified there that is updated;
otherwise the apriori belief is updated and written to the hypothesis level. This method of
updating ensures that however high its a priori probability may be, a hypothesis does not
appear at the hypothesis level of the blackboard until some evidence is observed that affects
its belief.

The rank_hypothesis knowledge source is triggered by entries at the hypothesis level and
reports diagnoses in rank order at the sub_diagnosis level of the blackboard.
Rank_hypotheses ensures that diagnoses are reported at the most appropriate level of
abstraction in the disorder class hierarchies. If each of the descendent leaf nodes of a
hypothesis appears at the hypothesis level of the blackboard with belief increased from its a
priori value, then they are combined to form a single diagnosis with belief equal to the sum

of the beliefs of the leaf nodes. This is illustrated by an example in Figure 5.20.

confirmed hypotheses

O other hypotheses

blackboard(Blackboard,hypothesis, H, hn, Beln) .

blackboard(Blackboard,sub_diagnosis,H,hi,Bell).

blackboard(Blackboard,sub_diagnosis,H,h9,Bel9).

Figure 5.20 Combining Hypotheses at the sub_diagnosis Level

160

5.6 Diagnosis Critique

A critique of the disorders diagnosed at the sub_diagnosis level of the physiological
diagnosis panel is achieved by the top-down operation of the clinical diagnosis panel; the
structure of the entries on this panel has been shown in Figure 5.2. Section 5.3 described
how the patient’s underlying clinical condition, input by the user, is written at the diagnosis
level by the write_disease_diagnosis knowledge source and how disorders from the
sub_diagnosis level are transferred to the manifestation level of the clinical panel by the
knowledge source transfer_data.

The knowledge source predict_disorders finds in the knowledge base all the disorders that
could be associated with the patient's diseases and writes them as entries at the prediction
level of the clinical diagnosis panel. The action of predict_disorders is shown in Figure
5.21.

The critique is produced by comparing entries at the manifestation level with those at the
prediction level. For each class of disorders appearing as manifestation entries, there are
two types of critique that could be produced. If any one of the manifestations matches one
of the predictions, the critique identifies those disorders consistent with the diagnosed
diseases and those that are inconsistent. If none of the disorders in a class are consistent
with the diseases diagnosed, the critique identifies the disorders that are expected with the

diseases. The action of the critique_diagnoses knowledge source is shown in Figure 5.22.

blackboard(Blackboard,diagnosis,Root,Diseasel).
blackboard(Blackboard,diagnosis,Root,Disease?).

frame_history(Diseasel ,Root,DisorderX,"present” ,ProbabilityX).
frame_history(Diseasel ,Root,DisorderY, "present"” ,ProbabilityY) .
frame_history(Disease2,Root,DisorderZ,"present”,ProbabilityZ).

blackboard(Blackboard,prediction,Diseasel,DisorderX).
blackboard(Blackboard,prediction,Diseasel ,DisorderY).
blackboard(Blackboard,prediction,Disease2,DisorderZ2).

Figure 5.21 Action of the predict_disorders Knowledge Source

161

The critiquing implemented by the clinical diagnosis panel is a fairly simple comparison of
the disorders diagnosed with those expected from the patient's clinical condition. The
critique could be made more sophisticated by taking into account the probabilities of
disorders with given diseases and the beliefin each disorder diagnosed.

blackboard(Blackboard,manifestations,Root,Disorder).

blackboard(Blackboard,prediction. Disease,Disorder) .

blackboard(Blackboard,critique, blackboard(Blackboard,critique,
Root,Disease,Disorder,consistent) Root,Disease,Disorder,expected)

Figure 5.22 Action of the critique_diagnosis Knowledge Source

162

5.7 Dialogue Interaction
5.7.1 Introduction

The preceding sections in this chapter have described the blackboard diagnosis module of
the knowledge-based system depicted in Figure 4.8; this section describes the dialogue
management module, which handles the presentation of diagnostic results in textual form,
the processing of user queries and the output of responses to those queries. The ouput of
text, either for diagnosis results or query responses, is achieved in two phases. First, the
content of the text is generated and stored in temporary data structures using the predicate
output - the arguments of this predicate can be single words, groups of words, punctuation
descriptions or special instructions to output lists. The second phase of text output is to
retract the output predicates in the order that they were generated, displaying the text and
inserting the appropriate punctuation and formatting. An example of the transformation of

output predicates to text is shown in Figure 5.23.

The remaining sections of this chapter describe the methods used to output the diagnoses of
disorders and to handle four types of user query: requests for information, requests for
explanation of the diagnosis, requests for details of the way in which an observation

affected the diagnosis and suppositions about further observations.
5.7.2 Textual Presentation of Diagnoses

The results of the diagnosis of physiological disorders appear at the sub_diagnosis level of
the blackboard as differential lists in which each possible diagnosis has an associated belief
in the range [0,1]. The presentation of these diagnoses in a textual form is achieved by a

rule-based text generator (see Section 4.8).

output(new_paragraph).
output([my,diagnosis,for,”Fred Bloggs",is]).-
output(list(["compensated metabolic acidosis'],

["'compensated respiratory alkalosis™]),
output(end_text).

My diagnosis for Fred Bloggs is compensated metabolic
acidosis or compensated respiratory acidosis.

Figure 5.23 Form Output Data Structures to Text

163

P(Dle) > 0.95 certainly true

0.7 < P(Dle) < 0.95 likely
0.35 < P(Dle) < 0.7 quite likely
P(Dle) >0.1 possible

Table 5.2 Translation of Numerical Belief Measures

The first step towards text generation is to form a list of the diagnoses for each class of
disorders, in which the numerical belief measures are translated into linguistic terms using
the criteria in Table 5.2. This should be compared to the translation of fuzzy measures in
CADIAG-2 which is featured in Table 2.1. Using these criteria, it can be seen that there are
only five possible forms for the diagnosis list of any disorder class; these are shown in
Table 5.3.

For each list of diagnoses, rules can be written for the generation of text, which take into
account the type of the list and the context in which that passage of text is presented. The
context is set by each generating rule and depends on the current and the preceding types of
diagnosis list. The entire rule set required to generate the textual output of diagnoses is

shown in Table 5.4.

Type 1 < One Certain Diagnosis >

Type 2 <One Likely Diagnosis> <Zero, One or Two Possible Diagnoses>
Type 3 <Two Quite Likely Diagnoses> <Zero or One Possible Diagnoses>
Type 4 <One Quite Likely Diagnosis> <Zero to Six Possible Diagnoses>
Type 5 <Zero to Nine Possible Diagnoses>

Table 5.3 Forms of Differential Diagnosis List

164

If this is the first diagnostic statement about <patient>
and the differential diagnosis list for disorder class <Root> is Type 1
then output: My diagnosis for <patient> is <Certain Diagnosis>

If this is the first diagnostic statement about <patient>
and the differential diagnosis list for disorder class <Root> is Type 2
then output: The most likely diagnosis for <patient> is <Likely Diagnosis>

If this is the first diagnostic statement about <patient>
and the differential diagnosis list for disorder class <Root> is Type 3
then output: My diagnosis for <patient> is <Likely Diagnosis 1> or <Likely Diagnosis 2>

If this is the first diagnostic statement about <patient>
and the differential diagnosis list for disorder class <Root> is Type 4
then output: <patient> could have <Likely Diagnosis> or possibly <List of Possible Diagnoses>

If this is the first diagnostic statement about <patient>
and the differential diagnosis list for disorder class <Root> is Type 2
then output: | am unable to diagnose <Root> using the available information

If the last diagnostic statement was Type 1, 2 or 3

and the differential diagnosis list for disorder class <Root> is Type 1
then output: with <Certain Diagnosis>

and output: <new sentence>

If the last diagnostic statement was Type 4, 5 or <new sentence>
and the differential diagnosis list for disorder class <Root> is Type 1
then output: <new sentence>

and output: <helshe> also has <Certain Diagnosis>

If the last diagnostic statement was Type 1

and the differential diagnosis list for disorder class <Root> is Type 2
then output: and probably <Likely Diagnosis>

and output: <new sentence>

If the last diagnostic statement was Type 2

and the differential diagnosis list for disorder class <Root> is Type 2
then output: and <Likely Diagnosis>

and output: <new sentence>

If the last diagnostic statement was Type 3, 4, 5 or <new sentence>
and the differential diagnosis list for disorder class <Root> is Type 2
then output: <new sentence>

and output: <he/she> probably has<Certain Diagnosis>

If the last diagnostic statement was Type 1, 2 or 3

and the differential diagnosis list for disorder class <Root> is Type 3
then output: and either <Likely Diagnosis 1> or <Likely Diagnosis 2>
and output: <new sentence>

Table 5.4 Rules for the Output of Diagnoses
(continued on the next page)

165

If the last diagnostic statement was Type 4,5 or <new sentence>

and the differential diagnosis list for disorder class <Root> is Type 3

then output: <new sentence>

and output: <he/she> has either <Likely Diagnosis 1> or <Likely Diagnosis 2>

If the last diagnostic statement was Type 1, 2, 3, 4 or <new sentence>

and the differential diagnosis list for disorder class <Root> is Type 4

then output: <new sentence>

and output: <he/she> could also have <Likely Diagnosis> or <List of Possible Diagnoses>

If the last diagnostic statement was Type 5

and the differential diagnosis list for disorder class <Root> is Type 4

then output: <new sentence>

and output: <helshe> could have <Likely Diagnosis> or <List of Possible Diagnoses>

If the last diagnostic statement was Type 1, 2, 3, 4 or <new sentence>

and the differential diagnosis list for disorder class <Root> is Type 5

then output: <new sentence>

and output: 1 am unable to diagnose <Root> using the available information

If the last diagnostic statement was Type 5

and the differential diagnosis list for disorder class <Root> is Type 5
then output: or <Root>

and output: <new sentence>

Table 5.4 Rules for the Output of Diagnoses
(continued from the previous page)

5.7.3 Handling User Queries
5.7.3.1 Overview

User queries are processed in the three stages shown in Figure 3.22 (understand the query,
retrieve the answer, present the response). The first stage, of understanding the query, is
accomplished using PROLOG'S grammar rule representation to parse the user’s typed input
(see Section 3.8.2). There are five types of sentence recognized by the dialogue parser:
basicjcommand, information request, explanation request, impact_request and
supposition. As well as recognizing the query type, the parser extracts the information
contained in the query that is necessary for retrieval of the answer; this information is
passed to the query handling routine for the identified query type.

A core lexicon of basic words and phrases is augmented by the application-specific lexicon,
built up during interaction with the FRAMEBUILDER knowledge editing tool, to produce
a run-time lexicon used by the dialogue parser. The core lexicon contains details of
synonyms for words that may appear in the application-specific lexicon; this feature is used
to replace abbreviations by their full descriptions in the dialogue output.

166

What is the <Facet> ?

What is the value of <Facet> ?
What is <his/hei> <Facet> ?
What is the level of <Facet> ?

Table 5.5 Information Requests

The basic commands recognized by the dialogue parser scroll the dialogue window up or
down and enable the user to exit from the dialogue module. Throughout the interaction, the
system keeps a record of the context in which the queries are posed; they can refer either to
the actual diagnosis or to hypothetical diagnoses made in response to suppositions on the
part of the user. The methods used to process the four types of query, once they have been

recognized by the dialogue parser, are described in the following sub-sections.
5.7.3.2 Information Requests

The requests for information about patient observations that are recognized by the dialogue
parser are shown in Table 5.5. The parser extracts the tense of the query, the type of
information required (variable, symptom or history), its name and whether a value or level
(in the case of variables) is required. This information is retrieved from the raw_data or

classified_data levels of the blackboard as required.
5.7.3.3 Suppositions

The user can ask about hypothetical diagnostic situations by altering the values of patient
observations from within the dialogue module. The types of supposition recognized by the
dialogue parser are shown in Table 5.6. Information about the type of observation to be
set, its name and value are passed from the parser to the supposition handling procedure.

The algorithm used by this procedure is shown in Figure 5.24.
What if <Facet> was <Value> ?
Suppose that <Facet> was <Value>

What if <Facet> was <Level> ?
Suppose that <Facet> was <Level>

Table 5.6 Suppositions

167

Input from dialogue parser:
Type, Name and Value ofa
hypothetical observation

" .) es L.
== Has the observation already™ "'~ y Remove the old supposition
ITRT] A w .
~~been set as a supposition from the dialogue context
no |
~ H a v e other observations yes
————- set as suppositions ?
no | no Docs the user want to retain”"'-

N "™ AN the previous suppositions

Copy the blackboard from
diagnosis to supposition and yes
restore the original patient data

Set the hypothetical
observation as current data

Set the dialogue context
to supposition

1r

Make the dignosis on the
supposition blackboard

Figure 5.24 Algorithm for Processing Suppositions

On entry to the dialogue interaction module, the current patient specific data are stored in a
temporary database. Hypothetical observations can be made simply by copying the entire
blackboard data structure to a supposition blackboard and asserting the hypothetical data as
current_data on the database; the original diagnosis remains preserved on the diagnosis

blackboard and the original patient data can be restored from the temporary database as

required.

168

A new diagnosis, based on the hypothetical data can be made using the blackboard
diagnostic module operating on the supposition blackboard. This diagnosis, once made, is
output in the manner described in Section 5.7.2 and the dialogue context is set to record
that a hypothetical situation exists, based on the suppositions made by the user. Any
subsequent queries made by the user are processed in the hypothetical context until a
request is made to return to the original diagnosis. These subsequent queries may include
further suppositions, in which case the user is asked if he wishes to retain the hypothetical
context already created or to return to the original diagnosis before making the new

supposition.
5.7.3.4 Explanations

By asking the question why?, the user can obtain an explanation of the diagnosis (either the
original or hypothetical diagnosis, depending on the dialogue context) in terms of the
evidence that supported each item in the differential list. Similarly, a request can be made
for the evidence confirming a single, specified diagnosis or for the reason why a particular
diagnosis was not made (in terms of the disconfirming evidence). A summary of the

explanation requests recognized by the dialogue parser is given in Table 5.7.

The algorithm in Figure 5.25 is used to answer queries about why a diagnosis was or was
not made. First, all the evidence relevant to the diagnosis is retrieved from the
sub_hypothesis level of the blackboard. Evidence is relevant if it affects the belief in any

node related to the disease in the disorder hierarchy.

Why?

Why <Disordei> ?

Why did you diagnose <Disorder> ?
Why was <Disorder> diagnosed ?
Why not <Disordei> ?

Why didn’t you diagnose <Disordei> ?
Why wasn’t <Disordei> diagnosed ?

Table 5.7 Explanation Requests

169

For each piece of relevant evidence, the updating factor, ws, for belief in the diagnosis is
calculated using the scheme shown in Figure 5.26. If ws=I the evidence had no effect on
the diagnosis; if ws>I the evidence can be output as confirming evidence; if ws<I the

evidence can be output as disconfirming evidence.

Figure 5.25 Algorithm for Explaining a Diagnosis

170

X wiP (hi)
P(hs)

Figure 5.26 Finding the Updating Factor for a General Hypothesis Node

For a leaf node hypothesis, the updating factors for each piece of relevant evidence are
stored at the sub_hypothesis level of the blackboard. For a general node, S, in the
hierarchy, the updated belief in the hypothesis after a piece of evidence has been impacted
is given by the sum of the updated beliefs in its descendent leaf nodes. Hence the updating
factor for S can be defined as the ratio of this sum to the apriori beliefin S. This is
illustrated in Figure 5.26.

5.7.3.5 Finding The Effect of Evidence

The questions shown in Table 5.8 are recognized by the dialogue parser as requests to find
the effect that a particular piece of evidence had on the disorders diagnosed. The parser
identifies the data type and name of the evidence and for symptom and history evidence the
effect on diagnoses is easily retrieved from the sub_hypothesis level of the blackboard.

How did <Facet> affect the diagnosis ?

What was the effect of <Facet> ?

How did <Facet> affect <Disordei> ?

How did <Facet> affect the diagnosis of <Disorder> ?
How was <Disorder> affected by <Facet> ?

Table 5.8 Requesting the Effect of Evidence

171

The updating factor, ws, for the belief in each disorder hypothesis S is found and output
using the convention:

ws>| evidence increased beliefin S
ws<I| evidence decreased beliefin S
ws=| evidence did not affect beliefin S

ws=0 evidence ruled out S as a diagnosis

For evidence from laboratory data variables, the situation is a little more complicated since
the variable may appear as evidence due to its classified level and/or in one or more
relationships for a single hypothesis. In this case an overall updating factor for the
hypothesis is calculated as the product of the factors for each entry at the sub_hypothesis
level in which the variable features. The effect of the variable as evidence for the hypothesis
is then output by applying the convention defined above to the overall updating factor.

5.8 Summary

This chapter has described how a knowledge-based system was implemented using the
programming language PROLOG. The basic control mechanism of a blackboard system
was modelled by four PROLOG clauses (knowledge source/4, trigger/4, ksar/3,
executed_ks/3) and three simple control strategies were developed. Knowledge sources
have been implemented to transfer data to and from the blackboard, classify laboratory
data, impact evidence on hypothesis hierarchies, report the diagnosis in the most
appropriate form and critique the diagnosis in the light of information about the clinical
condition of the patient.

The grammar rule notation in PROLOG was used to implement an interface through which
diagnoses can be presented in a textual form and the user can receive explanations of the

system’s conclusions in response to specific queries.

The performance and evaluation of the knowledge-based system, working in the domains
of blood-gas analysis and hyperlipidaemia, forms the subject matter of the next two
chapters.

172

PART THREE
CHAPTER 6
EVALUATION OF A KNOWLEDGE-BASED SYSTEM
6.1 Introduction

Knowledge-based systems, like any other computer software products, should undergo
thorough testing before being released for general use, to ensure that they perform
according to the original design specification. Conventional computer software is most
usually designed to accomplish tasks which are computationally so complex that they
cannot be performed by humans, or to relieve humans of the burden of tasks that are
routine but time-consuming. Knowledge-based systems are designed to accomplish tasks
that are currently performed by human experts and as a consequence they must be evaluated
in ways which are not normally applicable to computer software. Generally speaking there
are no right or wrong solutions to the problems tackled by knowledge-based systems - the
correctness of any solution is a matter of subjective judgement and there may be more than
one satisfactory solution to a given problem.

The next two sections discuss the problems of evaluation for knowledge-based systems in
medicine both as final products delivered into a clinical setting and as prototypes emerging
from the laboratory. This discussion is followed by a description of the evaluation of the
system presented in the preceding chapters. The conclusions drawn from the evaluation of
are presented in the final section of this chapter.

6.2 Evaluation in Clinical Practice

If a knowledge-based system is to be used routinely in clinical practice, it seems reasonable
that it should undergo the same type of stringent evaluation that precedes the introduction of
a new drug. First it should be thoroughly evaluated in the laboratory to verify its safety and
performance under test conditions. Once it has passed this first phase of evaluation, a
carefully controlled clinical trial should take place in which the outcome for a group of
patients managed using the system is compared with the outcome for a group managed
according to existing practice.

One of the few computer-aided diagnosis systems to have reached this level of evaluation is
the system for the diagnosis of abdominal pain developed in Leeds (see Section 3.7.3). A
study involving 8 hospitals, 250 clinicians and 16737 patients was designed to assess the

impact of the system on clinical practice (Adams et al, 1986). The clinicians' performance

173

G a
2 ° s 0
§ § s
i S Vé/ 1 c o}
8 -S «Q 3
e B < 0
IS ‘0
é > g "5 % 1 Ia %A
.S A
5w 10 1 1 1 0
a 2 a w oa a on < S
45.6% 57.9% 6.3% 25.2% 23.7% 6.7 1.2% Baseline
65.3% 74.2% 2.7% 104% 11.5% 5.4 0.92% Test

Table 6.1 Performance Indices in the Abdominal Pain System

was monitored during a base-line period of one year and a subsequent period of two years
during which the computer system was available for use. The indices of performance
measured during the study included: the diagnostic accuracy on first examination, the
diagnostic accuracy after investigation, the number of unnecessary laparotomies (surgical
investigations), the incidence of perforated appendix, the number of bad diagnostic errors
(the patient required urgent surgery, but was not diagnosed), the number of admissions
from the Accident and Emergency Department and the average length of stay in hospital. A
summary of these indices as measured during the base-line and test periods is shown in
Table 6.1.

This study measured the performance of clinicians acting with and without the aid of the
computer system - it was not designed to measure the performance of the system in
isolation. As can be seen from Table 6.1, all the performance indices registered an
improvement during the period in which the computer system was available and it was
estimated that the reduction in admissions, unnecessary laparotomies and length of hospital
stay could lead to an annual saving of £20m for the National Health Service.

Another important observation was made during this study. The accuracy of the initial
diagnosis was measured for several different groups of doctors: one using structured forms
for data collection, one using the forms and receiving feedback about their diagnostic
performance and another using forms, feedback and the computer. It was found that the
use of forms to guide data collection increased diagnostic accuracy from 45.7% to 56.7%
after one month and that in the same time period the use of forms, feedback and the
computer increased accuracy to 64.8%. However, after four months, there was no
significant difference between the group using forms and feedback and the group using

forms, feedback and the computer (in both cases the diagnostic accuracy was over 70%).

174

This would seem to indicate that one of the major contributions to be made by computer
systems is to encourage clinicians to adopt a more structured and systematic approach to
diagnosis and that the provision of feedback about diagnostic performance can significantly
increase accuracy. This latter point could also be viewed as an indirect benefit of the use of

computer aids since they provide the impetus for the type of study decsribed above.

In contrast to a final evaluation of the clinical efficacy of a knowledge-based system along
the lines of the clinical trial of a new drug, it could be argued that such a system should be
evaluated in the same way as a human clinician. In this case the ultimate test of the system
is to make it available for use at the discretion of the clinical staff - they will only come to
depend on the system if it demonstrates a consistently high standard of performance over a
long period of time. Although this may seem a somewhat casual approach , it has been
used as the basic method of evaluation for several systems, most notably the DXPLAIN
project sponsored by the American Medical Association (see Section 2.4.1).

6.3 Evaluation of Prototype Systems
6.3.1 Introduction

The clinical study of the diagnosis of abdominal pain, described above, was the
culmination of almost 20 years of work on a computer system that is, at least conceptually,
quite simple. It is an indication of the enormous effort required to introduce a system for

routine clinical use and could explain why so few systems have achieved this status.

A system must undergo many other evaluations before its impact on clinical practice can be
measured. Informal evaluation of an evolving knowledge-based system occurs throughout
its development - indeed its plays a fundamental role in the development cycle as depicted
in Figure 3.27. In many respects, informal evaluation drives the direction of the research
effort, with modifications to the design and implementation of the system being made in
response to the evaluation results (Cohen & Howe, 1988). However, at some point in the
development cycle, it becomes useful to fix the design, implementation details and
knowledge base of the system and to perform a formal evaluation of the prototype. It has
been suggested that the first formal evaluation should take place once the developers of the
system are satisfied with its performance in the majority of the test cases presented to it
(Buchanan & Shortliffe, 1984; 578).

The purposes of the formal evaluation of the prototype system are these (Chandrasekaran,
1983):

to provide a formal demonstration to those outside the development group

that the system achieves a satisfactory level of performance.

175

to identify the areas in which the system fails to perform satisfactorily so
that further research and development can be directed appropriately. Two
specific areas to be considered are the richness of the knowledge base and

the adequacy of the reasoning mechanism.

to assess the system in different operational roles: as a diagnostician, an
explanation facility or an electronic textbook of medicine, for example.

to assess different facets of each operational role, for instance in a
diagnostic role these might include accuracy, response time, ease of use,

performance with missing data, etc.

The precise method used for evaluation is determined both by consideration of the system
itself - its nature and the goals of the evaluation - and of the resources available for the
evaluation experiment. A full evaluation involving hundreds of test cases requires a great
investment of time by the participating clinicians, many of them, as experts, being
extremely busy people. The number of test cases is usually restrained by this second
consideration, although it must be ensured that a sufficient number are considered to render
the evaluation statistically valid.

Alan Turing proposed that the answer to his question Can machines think? could be found
by playing the imitation game (Turing, 1950). In this game a computer and a human being
are placed in different rooms and are questioned by an observer. The output from each
room is reformulated to disguise its origin and the observer must decide, on the basis of the
responses, which room contains the computer and which the human. If the human and
computer cannot be distinguished, then the computer has passed the imitation test and can
be deemed a thinking machine.

It is this basic philosophy that underlies the methods of evaluation of many prototype
knowledge-based systems (Chandrasekaran, 1983). Two basic variations can be identified
in practice - methods which define a gold standard of diagnosis for each test case and
compare the system with that standard and methods which present the system's output for
critique by expert clinicians. These two methods are described in Sections 6.3.3 and 6.3.4

after a brief discussion of the way in which test cases should be selected.

176

6.3.2 Selecting Test Cases

The test cases to be used for the system evaluation can be selected from either retrospective
or prospective data. Retrospective cases are readily available in the form of clinical patient
records, but may not contain all the data required. Before selecting such cases, a clear
specification of the scope of the knowledge-based system should be determined (ie the
possible diagnoses it can make and the observations on which these are based). These same
criteria can then be used to select the test cases - it is important to note that cases selected in
this way do not test the completeness of the knowledge base. Retrospective cases can be
selected randomly (eg the first 50 cases in a batch that meet the scope criteria) or can be
selected from particularly interesting cases known to the participating clinicians, which is

often the only way to include the rarer diagnoses.

Prospective cases can be gathered over a period of time from the clinical environment in
which the knowledge-based system is intended to operate. The advantages of this method
are that the precise data required can be recorded and that randomly selected cases reflect
the true frequency of occurrence of each category of diagnosis (this may not always be so
for retrospective case data). Incompleteness of the knowledge base may be revealed by
randomly selecting the cases from the working domain of the system, but equally the entire
knowledge base may not be exercised since the rarer diagnoses may not occur during the
period of data collection. The best approach appears to be a random selection of cases
(either retrospective or prospective) followed by a selection of specific retrospective cases
in order to cover the diagnoses that did not occur in the random selection.

6.3.3 Comparison With a Gold Standard

In this method, the role of the human in the imitation game is taken by an expert clinician
who specifies a gold standard of diagnosis for each case in the test set. The same cases are
then presented to the computer system and the role of the observer is simply to report the

number of cases in which the computer agrees the the gold standard.

Where the test cases have been selected from retrospective data, it may be possible to
determine the gold standard from an unequivocal, retrospective diagnosis made at the time
the patient was discharged or from evidence revealed at a post mortum examination. More
often, the gold standard is determined by presenting an expert clinician with the same case
data as the knowledge-based system; ideally, this expert clinician should be someone
unconnected with the original system development (Chandrasekaran, 1983). One problem
associated with this method is that clinical judgements are inevitably subjective and even an

expert clinician may disagree with his peers in a significant proportion of cases. Several

177

MD1 MD1 MD2

DIAGNOSIS MD2 PUFF PUFF
Normal 92 95 92
OAD o 99 94
RLD 92 99 85
DD 90 91 85
Total 92 96 89

OAD Obstrcutive Airways Disease DD Diffusion Defect
RLD Restrictive Lung Disease

Table 6.2 The Evaluation of PUFF

solutions to this problem have been found. The evaluation of the rheumatology consulting
system AI/RHEUM (Kingsland, 1985) used a gold standard set by the consensus opinion
of a panel of three expert clinicians for each of the 384 retrospective test cases. The validity
of the standard was checked using a subset of 48 cases - the three clinicians were asked to
make independent diagnoses for each case and it was found that there was agreement

between at least two of them in 96% of cases (46/48).

Another approach was taken by the developers of the pulmonary function diagnostic
system PUFF (Aikins et al, 1983). Each of 144 cases was diagnosed by the system, the
expert who developed the knowledge base and a second expert unconnected with the
project. The level of agreement was then compared as shown in Table 6.2. The highest
level of agreement was between the system and the expert involved with its development;
the level of agreement between the independent expert and the system was similar to that
between the two experts. This seems to indicate that the system accurately captured the
diagnostic expertise of the clinician on whose knowledge it was based.

6.3.4 Expert Critigque

A more faithful interpretation of the original imitation game was used for the evaluation of
MY CIN after evaluations based on comparison with a gold standard had shown that it was
difficult to achieve accuracy greater than 75% (Yu etal, 1979). Ten cases were selected
which covered a broad range of diagnoses and treatments. Six expert clinicians, one
resident and one student were asked to prescribe therapy for each case; none of the eight
participants were connected with the MYCIN project. The eight sets of prescriptions
together with those of MYCIN and the attending clinician in each case (making 100 in all)

were then presented to eight outside experts who were asked to form their own prescription

178

for each case and to critique the other prescriptions. For each of the 100 prescriptions they
specified whether it was equivalent to their own, an acceptable alternative or unacceptable.
It was found that MYCIN’ prescription was considered acceptable (ie equivalent or
acceptable) by a majority of the eight evaluators in 7 out of the 10 cases - the best clinicians
scored only 5/10.

A critiquing method was also used to evaluate the system CASNET, which diagnosed the
eye disease glaucoma. At a meeting of Opthalmologists, experts were asked to input
difficult cases recalled from their past experience and to critique the diagnosis given by the
system. In 77% of the 44 cases presented to the system, the experts judged it to perform at
a competent level. Although at first sight this evaluation does not seem to be as thorough as
the evaluation of MY CIN, the fact that completely random, difficult cases were used meant
that CASNET faced a far stiffer test than MYCIN.

Overall, it would seem that the method of critique is a less stringent evaluation than a
straight comparison with a gold standard, since evaluators may be more inclined to find the

system's conclusions acceptable in the former method.
6.3.5 Measuring Diagnostic Accuracy

The traditional method of assessing the accuracy of a diagnostic test is to determine its
diagnostic sensitivity and specificity (see for example Sunderman & Van Soestbergen,
1971). The outcome of a test is true positive for the cases in which it correctly indicates the
diagnosis and true negative for those in which it correctly indicates its absence.
Conversely, afalse positive test indicates the diagnosis when it is in fact absent and afalse
negative test indicates its absence when it is present.

The sensitivity of a diagnostic test measures the proportion of cases in which the diagnosis
is present that are correctly predicted by the test:

Sensitivity Correctly Predicted Diagnoses

Total Cases of the Diagnosis

True Positive
True Positive + False Negative

The specificity of a test measures the proportion of cases in which the absence of the
diagnosis is correctly predicted:

Specificity = Correctly Predicted Absence of Diagnosis
Total Cases in which Diagnosis is Absent

179

= True Negative
True Negative + False Positive

The interplay between sensitivity and specificity can be appreciated by considering that a
test which always indicated a single diagnosis, regardless of the true situation, would have
a sensitivity of 1 but a specificity of 0. A completely random test for a diagnosis in which

there were n possible outcomes with equal apriori probability (¥n) would have:

Diagnosis Present 1/n Diagnosis Absent (n-1)/n
True Positive (1/n)2 True Negative ((n-1)/n)2
Sensitivity 1/n Specificity (n-1)/n

Instead of considering sensitivity and specificity in isolation, a better indication of the

adequacy of a test is the diagnostic index:
diagnostic index = sensitivity + specificity

The perfect test has a diagnostic index of 2 and a completely random test a diagnostic index
of 1.

Most of the published results of the evaluation of knowledge-based systems have reported
accuracy as the ratio of correct diagnoses to total cases (where some gold standard has been
used to determine the correct diagnoses):

Diagnostic Accuracy = Number of Correct Diagnoses
Total Number of Cases

Two performance indices were used in the evaluation of a knowledge-based system for the
diagnosis and management of patients with transient ischaemic attacks (Reggia, 1985). The
first of these, the Kappa Statistic (Spitzer et al, 1967) takes account of that part of the

accuracy of the system that could be due to a purely random agreement:

k = Accuracy - Pr
1-Pc

where Pc is the accuracy of a completely random system. If there are n mutually exclusive

and exhaustive diagnostic hypotheses Pc = 1/n.

180

The second index of performance used by Reggia measures the degree of belief assigned
by the system to the true diagnosis in each of the evaluation cases:

Accuracy Coefficient Q = (2/n).1j(Belj-0.5)

where the summation is over the set of n evaluation cases and Belj is the degree of belief
assigned by the system to the true diagnosis in the ith case. A random system would have

Q=0, one that was always incorrect would have Q=-I and a perfect system would have

Q=l.
6.3.6 Discussion

Table 6.3 gives a summary of the evaluation results from a number of medical consultation
systems. It is extremely difficult to compare the performance of these systems, since they
cover a wide range of medical domains and were evaluated in experiments of varying
degrees of rigour. The table shows the number of evaluation cases, the general method
used (gold standard comparison or expert critique) and the highest reported accuracy.

However, there are many other factors to be considered when analyzing these data.

INTERNIST-1 appears at first sight to perform at a much lower accuracy than the other
systems (40% accuracy compared with over 68% for the least accurate of the other
systems). This can be explained in part by the domains in which the systems operate. The
INTERNIST-1knowledge base covered some 75% of internal medicine whereas the other
systems cover only very restricted domains; it is much easier to achieve high accuracy in a
limited as opposed to a wide domain. Another factor is that the data used for evaluating
INTERNIST-1were drawn from a collection of particularly challenging cases published in
the New England Journal of Medicine whereas the other systems were generally evaluated
using routine cases. This touches on something of a paradox in the evaluation and use of
knowledge-based systems. A system that performs well with difficult cases will not
necessarily show the same level of success with the routine ones. However, a system that
does not perform well in routine use will not be readily accepted - one that is correct in the
majority of cases would appear to be more favourable, even though the small proportion of
cases it gets wrong are probably the difficult ones with which clinicians most need its

assistance.

It is important, therefore, to investigate the cases in which the system made an incorrect
judgement, to make sure that useful advice is given in the cases where it is most needed.
This is all the more important when a prototype is evaluated since usually one of the
purposes of the evaluation is to identify the areas in which further development effort

should be concentrated.

181

SYSTEM NO OF CASES METHOD OF HIGHEST REPORTED REFERENCE
EVALUATION ACCURACY

MYCIN 10 critique 70% Yuetal, 1979
AlIIRHEUM 384 gold standard 94% Kingsland et al, 1983
INTERNIST-1 43 gold standard 40% M iler et al, 1982
CASNET 44 critique 7% Weiss et al, 1978
PUFF 144 gold standard 96% Ailrins et al, 1983
(EMYCIN)

ANEMIA 30 critique 87% Quaglini et al, 1988
(EXPERT)

CADLAG-2 327 gold standard 68.2% Adlassnig et al, 1985

(Rheumatology)

TIA 103 gold standard 70.9% Reggia, 1985

Table 6.3 Evaluation of Some Knowledge-Based Systems

Another point to consider in the evaluation of a knowledge-based system is the level of
performance of the experts in the same domain. In certain domains, a system which
nominally has a low level of accuracy may still be performing better than the relevant
experts. Some attempt must be made in any reasonable evaluation to assess the level of

performance of both the system and the human experts.

6.4 Bench Tests

6.4.1 Introduction

A number of bench tests of the knowledge-based system described in Chapters 4 and 5
were performed in order to evaluate the translation of the theoretical design into a working
prototype. The results of these tests are presented in the next four subsections. A small
knowledge base of three disorders was used to investigate the handling of laboratory data
using the method introduced in Section 4.3.4. The performance of the system when
presented with an incomplete set of laboratory data will be illustrated and an example of the
dialogue interaction will be given. Finally, a comparison will made between the three
methods of system control that were described in Section 5.2

182

6.4.2 Performance With Laboratory Data

A small knowledge base was constructed to test the system's performance in discriminating
between possible diagnoses when presented with laboratory data only. The knowledge
base consisted of a single laboratory data variable, V, which was defined as having a mean
value 0.0 and standard deviation 1.0 in a reference population of healthy individuals. Three
disorders were defined:

Disorder 1was characterized by a low or normal level of V
Disorder 2 was characterized by a normal level of V
Disorder 3 was characterized by a normal or high level of V

Values of V in the range [-5,5] were input to the system and the resultant belief in the three
disorders was plotted. Details of the knowledge base and the results obtained in the test are
shown in Figure 6.1.

It can be seen from Figure 6.1 that when V=0.0 the belief in Disorder 2 (0.494) is about
twice that of Disorders 1 and 3 (0.253). As V tends towards large positive values the belief
in Disorder 3 tends towards unity and belief in the other disorders tends towards zero, with
Disorder 2 always having a higher belief than Disorder 1. Similarly, as V tends towards
large negative values the beliefin Disorder 1 tends towards unity and belief in Disorders 2
and 3 tends towards zero.

Disorder 1 P(V low) 0.5 P(V normal) 0.5

Disorders Disorder2 P(V normal) 1.0

Disorder3 P(V normal) 0.5 P(V high) 0.5

3 2 1 0 2 3 4 v

Figure 6.1 Diagnosis Based on a Single Laboratory Data Variable

183

When V=2.0 belief in Disorders 2 and 3 is equal (0.4) and twice that of Disorder 1 (0.2).
Once V has risen to 4.0 belief in Disorder 3 (0.94) is much greater than belief in either
Disorder 2 (0.04) or Disorder 1(0.02).

The behaviour displayed by the system agrees with what is expected intuitively. From the
knowledge base it is seen that a normal value of V is expected in all cases of Disorder 2,
with cases of Disorder 3 it is equally likely that VV will be normal or high and with Disorder
1V is equally likely to be normal or low. So when V has its mean value (is at its most
normal level) it is expected that Disorder 2 is twice as likely as the other Disorders which
could equally exhibit low or high V. Belief in Disorder 2 is not exactly twice that of
Disorder 1or 3 because even when a patient presents with a mean value of V there is still a
small possibility that it is high or low for that particular individual.

In Section 4.3.4 the value of a laboratory data variable was defined as high if it falls further
than 2 standard deviations above the mean and normal if it falls within 2 standard
deviations of the mean. So it would be expected that when V=2.0 (ie 2 standard deviations
above its mean value) it is equally likely to be high or low. Hence Disorder 2, which
always exhibits normal V, and Disorder 3 which could have normal or high V are expected
to be equally likely at this point.

This test has shown that the method of data classification used in the system creates a
smooth and gradual variation of belief in the diagnostic hypotheses as the data values vary
and that the degree of belief assigned to each hypothesis is in accordance with what is
intuitively expected.

6.4.3 Performance With Incomplete Data

The performance of the system when presented with an incomplete set of laboratory data
was tested using one of the evaluation test cases in Appendix IV (Case 22). The full set of

data for this case is:

pH 7.53
pCC>25.06 kPa
HCO03* 32.70 mmol/L

Base Excess 10.10 mmol/L
and the diagnosis based on these data is:

Uncompensated metabolic alkalosis 0.7823

Respiratory alkalosis & metabolic alkalosis 0.1966

184

When presented with the pH value only, the system returns a diagnosis of dominant
alkalosis. If PC02 is now input the result is:

Input pH 7.53 pCC>25.06 kPa

Calculated HCO3- 31.324 mmol/L Base Excess 8.074 mmol/L

Diagnosis Uncompensated metabolic alkalosis 0.782
Respiratory alkalosis & metabolic alkalosis 0.197

The system has calculated HCO3' and Base Excess from pH and pC02- The algorithm
used by the system calculates HCO3"t0 within 5% of the value obtained from the blood
gas analyser; the algorithm for Base Excess is not quite so accurate, giving a discrepency of

about 20%. Despite these differences from the real data, the final diagnosis is almost
identical since both Base Excess and HCO3' are raised well above their normal levels.

The system exhibits different behaviour when the data are presented in a different order. If
pCC>2is input alone the diagnosis is:

pCC>25.06 kPa
Uncompensated metabolic alkalosis 0.212
Uncompensated metabolic acidosis 0.212
Measurement error 0.188

Normal blood gases 0.129

None of the hypotheses are particularly strong. A simple uncompensated metabolic
disturbance is most likely although it is impossible to distinguish between acidosis and
alkalosis. With only one measurement, there is still a possibility that a measurement error
has occurred and since the value of pCC>2is only fairly high the patient may not have an
acid-base disturbance. If HCC>3" is how input:

pCC>25.06 kPa

HCO3' 32.7 mmol/L
Uncompensated Metabolic Alkalosis 0.623
Measurement error 0.166

Respiratory alkalosis & metabolic alkalosis 0.157

Already, uncompensated metabolic alkalosis appears to be the most likely diagnosis. The
hypotheses of normal blood gases and uncompensated metabolic acidosis have been
eliminated although the the probability of a measurement error is only slightly reduced.
Respiratory alkalosis & metabolic alkalosis has emerged as another hypothesis. Base

Excess is how input:

185

pCC>2 5.06 kPa
HC03" 32.7 mmol/L

Base Excess 10.1 mmol/L

Uncompensated metabolic alkalosis 0.734
Respiratory alkalosis & metabolic alkalosis 0.184

The possibility of a measurement error has now been eliminated and the two final

hypotheses are well established.

This experiment has illustrated the difference between the behaviour of the system and the
behaviour of a simple decision tree. In the latter case, the supply of a limited set of data will
at best result in the top branches of the tree being explored; it is more likely that no
conclusions will be reached at all. With the current system, hypotheses at any point of the
hierarchy can be activated by a limited data set and as more data are added the focus of
attention can shift to any hypothesis. The hierarchy is not searched in the way that a
decision tree would be searched; evidence impacts on nodes at any level and its effect is
then distributed throughout.

6.4.4 An Example Dialogue

An example of the type of dialogue that can be conducted is set out below using data from
the evaluation Case 39. In the transcript the user's input is shown in italic script and the

system's output in bold script. The initial diagnosis has been made using the data:

pH 7.01
pCC>29.99 kPa
HCO3' 19.3 mmol/L

Base Excess -12.6 mmol/L
and the user selects dialogue from the main menu of the diagnostic system:

My diagnosis for this patient is respiratory acidosis & metabolic acidosis
with severe hypoxaemia.
Respiratory acidosis & metabolic acidosis is consistent with cardiac arrest.

Why?

Respiratory acidosis & Metabolic acidosis was indicated by:
low base excess
low hco3

186

high pco2
low ph
Severe hypoxaemia was indicated by:
F102=21
P02<5.32

Why didn'tyou diagnose respiratory acidosis?

Respiratory acidosis was contra-indicated by:
low base excess

low hco3
What is thepC02?
The pCO02 is 9.9 kPa by measurement.
How didpC02 affect the diagnosis?

The effect of pC02 on my belief in possible diagnoses was as follows:
High hco3 with pco2 increased
Low hco3 with pco2 ruled out
Measurement error decreased
Metabolic acidosis & metabolic alkalosis decreased
Mixed metabolic acidosis ruled out
Normal blood gases ruled out
Partially compensated metabolic acidosis ruled out
Partially compensated metabolic alkalosis increased
Respiratory acidosis & metabolic acidosis ruled out
Respiratory alkalosis & metabolic alkalosis ruled out
Respiratory alkalosis ruled out
Respiratory acidosis increased
Uncompensated metabolic acidosis ruled out
Uncompensated metabolic alkalosis ruled out

What ifpC02 was 3.7?

My diagnosis for this patient would be partially compensated metabolic
acidosis with severe hypoxaemia.

187

The dialogue above has illustrated the manner in which the system can be interrrogated in
order to obtain explanations for its conclusions. The explanations are in terms of the effects

of evidence on the hypotheses considered - there is no deeper knowledge involved.
6.4.5 Evaluation of System Speed

The speed of the diagnostic system using the three different control strategies presented in
Section 5.2 was evaluated using ten evaluation cases (15 - 24) - the results are shown in
Table 6.4. The system takes 40 - 50 seconds to diagnose a case depending on its
complexity. At the time of the evaluation the system was running as interpreted code and
speed could be increased by a factor of 5 - 10 if the code was compiled. An automatic
blood gas analyzer takes about 30 - 60 seconds to process a sample and in this context the

overall speed of the system is quite acceptable.

Interestingly, the first trigger control strategy (which executes the first knowledge source
triggered) is slightly faster than the mixed schedule (which executes on each cycle all
pending knowledge source activations from the first triggered knowledge source). This is
because additional knowledge source activations in the latter case are found by backtracking

which takes longer than repeating the cycle the necessary number of times.

The times taken for the full schedule strategy are not more than 15% greater than the first
trigger times which suggests that the overhead in implementing a more sophisticated

scheduler would not be excessive.

CASE FIRST TRIGGER MIXED SCHEDULE FULL SCHEDULE
15 41.36 41.63 46.46
16 43.55 43.88 49.54
17 41.47 41.79 47.90
18 40.64 40.81 45.76
19 43.66 44.00 52.51
20 41.20 41.47 47.35
21 43.50 43.66 46.47
22 41.36 41.53 44.99
23 52.46 53.00 59.43
24 45.80 46.08 51.47

Table 6.4 Time for Diagnosis on Ten Cases Using Different Control Strategies.

(Timings are in seconds)

188

6.5 Evaluation of a Knowledge-Based System for Blood Gas Analysis
6.5.1 Introduction

The blood gas analysis system was evaluated using a random set of 51 retrospective cases
gathered from records of patients in the ICU of the West Middlesex Hospital and 9 cases
selected from the literature (so that some of the more unusual diagnoses featured in the
evaluation). These 60 cases were transcribed to the standard format shown in Figure 6.2
and presented to the expert responsible for the knowledge base, a group of three senior
clinicians (senior registrars) and a group of three junior clinicians (senior house officers).

CASE 1

CLINICAL DIAGNOSIS Diabetic
PH e 7.05
pCoO2.......... 1.596 kPa
HCO03-.............. 5 mmol/L

BE ... -30 mmol/L

p02 ... 14.36 kPa
CLINICAL DATA:

age 17

sex female

Kussmaul breathing

Please check ONE interpretation for acid-base balance and ONE for hypoxaemic state:

Acid-Base Disorder Hypoxaemic State

[1 Normal blood gases [1 Adequate 02 tension

[] Uncompensated metabolic acidosis [1 Mild hypoxaemia

[] Partially compensated metabolic acidosis [1 Moderate hypoxaemia

[1 Compensated metabolic acidosis [1 Severe hypoxaemia
[] Uncompensated metabolic alkalosis [] Corrected hypoxaemia
[] Partially compensated metabolic alkalosis []1 Uncorrected hypox
[] Compensated metabolic alkalosis [1 Hyperoxaemia

[] Uncompensated respiratory acidosis

(] Partially compensated respiratory acidosis

] Compensated respiratory acidosis

] Uncompensated respiratory alkalosis

] Partially compensated respiratory alkalosis

] Compensated respiratory alkalosis

% Respiratory acidosis & metabolic acidosis

]

]

Respiratory acidosis & metabolic alkalosis
Respiratory alkalosis & metabolic acidosis
Respiratory alkalosis & metabolic alkalosis

[
[
[
[
[
[
[
[

Figure 6.2 Form for Gathering Evaluation Results

189

For the groups of senior and junior clinicians the evaluation was split into three sets of 20
cases and one set was given to each clinician. In this way a representative diagnosis was
obtained for each case from a senior and a junior clinician but each participant was only
required to diagnose 20 cases. The details of each test case and a summary of the diagnoses
given is included as Appendix IV. The next two sections present an analysis and discussion

of the evaluation results.
6.5.2 Analysis of Results

The system was evaluated only for its diagnosis of acid-base disorders because the
hypoxaemic state was decided using simple ranges of pC>2 - an evaluation would only
reveal whether the clinicians used the same classification ranges as the system. A summary

of the diagnoses made by the system and the clinicians is shown in Table 6.5.

DIAGNOSIS SYSTEM EXPERT SENIOR JUNIOR
Uncomp metacid 1 5 2 3
Partcomp metacid 6 5 9 12
Comp metacid o 4 2 2
Metacid 3

Uncomp met alk 4 5 5 2
Part comp metalk 2 2 2 1
Comp met alk o 0] 0] 1
Met alk 0]

Uncomp resp alk 6 5 5 io
Part comp resp alk 3 4 6 2
Comp resp alk 4 4 3 4
Resp alk 4

Uncomp resp acid 4 5 6 4
Partcomp resp acid 1 1 1 2
Comp resp acid o 1 1 (0]
Resp acid 1

Resp acid Sc met alk 1 (¢} (0] 2
Resp alk Scmet alk 3 o o 3
Resp alk Sc metacid o 3 2 3
Resp acid Scmetacid 11 io io 7
Normal blood gases 4 6 6 2
Low HCO3 with pco2 2

Total 60 60 60 60

Table 6.5 Summary of Diagnoses of Acid-Base Disorders

190

Table 6.6 Agreement on Diagnosis

The system diagnosed 3 cases of respiratory alkalosis & metabolic alkalosis and 1 case of
respiratory acidosis & metabolic alkalosis; neither the expert nor the senior clinicians made
any diagnoses of these two disorders. In 10 cases the system made a diagnosis at an
intermediate level of the hypothesis hierarchy (metabolic acidosis, respiratory acidosis,

respiratory alkalosis or low HCO03 with pC02).

The relative accuracy of the system, the development expert, the senior clinicians and the
junior clinicians is shown in Table 6.6. The set of possible diagnoses made available to the
clinicians (Figure 6.2) comprised only the leaf nodes in the hypothesis hierarchy of the
system which could (and did) make diagnoses at intermediate levels of the hierarchy in
cases where it could not distinguish between a set of leaf nodes. There were ten cases in
which the system behaved in this way. The main figures for the accuracy of the system in
Table 6.6 include only those cases in which the system’s top ranking diagnosis was
identical to the clinician’s; the figures in parentheses include cases in which the clinician's
diagnosis was subsumed by the less specific diagnosis of the system (these will be referred
to as cases of partial agreement). The system showed a similar level of agreement with
both the expert and senior clinicians - 55% (65%) agreement with the expert, 53% (63%)
agreement with the senior clinicians. The agreement between the expert and senior
clinicians themselves was also 55%. Thus it appears, in terms of a simple accuracy test,
that the system operates at the same level as the expert and senior clinicians.

The diagnosis of the junior clinicians agreed with the expert and senior clinicians in 40%
and 37% of cases respectively. The junior clinicians agreed with the system in 43% (58%)
of cases. As was to be expected, there was a lower level of agreement between the junior
clinicians and either the expert or senior clinicians than there was between the expert and
senior clinicians themselves. There was a corresponding drop in the agreement between

junior clinicians and the system and although this level of agreement was a little higher than

191

the agreement with the other clinicians, the difference was not large enough to be

significant.

Ofthe 33 cases in which the expert and senior clinicians’ diagnoses concurred, the system

agreed completely in 25 (75.8%) and partially in another 3. There were thus only 5 cases

(15.2%) in which the system disagreed. These 5 cases are analyzed below:

Case 6

Case 11

Case 21

Case 37

Case 43

The clinicians' diagnosis was respiratory alkalosis & metabolic acidosis, the
system's was partially compensated metabolic acidosis which was the

diagnosis of the junior clinician.

The clinicians' diagnosis was normal blood gases, the system's was
uncompensated metabolic alkalosis which is characterized by normal pCC>2
and high pH, HC03" and Base Excess. In fact the latter three were all raised to
just over 2 standard deviations from their normal values whilst pC02 was
slightly low (within 1standard deviation of the mean) which was enough to

make the diagnosis for the system.

The diagnosis made by the clinicians was compensated respiratory acidosis,
the system had respiratory acidosis & metabolic alkalosis which was the
diagnosis of the junior clinician. The system ruled out compensated respiratory
acidosis because the relationship between ApH and ApCC>2did not hold.

The clinicians' diagnosis was uncompensated metabolic alkalosis whilst the
system had respiratory alkalosis & metabolic alkalosis (0.5377) as slightly
more likely than uncompensated metabolic alkalosis (0.4478). The junior
clinician had respiratory alkalosis & metabolic alkalosis. Overall, the system’s

conclusion would seem to agree well with the clinicians.

The clinicians had compensated respiratory alkalosis, the system had
respiratory alkalosis (0.397) preferred to compensated respiratory alkalosis
(0.2793) or respiratory alkalosis & metabolic acidosis (0.2147). The junior
clinician had partially compensated respiratory alkalosis. Once again, although
the system's top ranking diagnosis did not agree with the two experienced

clinicians, the overall performance of the system seems quite reasonable.

Of the 27 cases in which the expert and senior clinicians did not give the same diagnosis,

the system agreed completely with the expert in 8 cases and partially in another and also in

8 completely and 1 partially with the senior clinicians. There were also 2 cases (17 and 58)

in which the system was in partial agreement with both the diagnoses of the clinicians.

There were thus only 7 cases in which the expert, senior clinicians and system all had

192

different diagnoses (8, 9, 19, 25, 31, 45 and 52). In two of these (8 and 45) the system
agreed with the junior clinician, in a third (52) the closely ranked alternative diagnosis
agreed with both the expert and junior clinicians and in another (19) the alternative
diagnosis agreed with the senior and junior clinicians. The remaining 3 cases are analyzed

below:

Case 9 The system seems fairly confused on this case, and so do the clinicians! The
system gives 4 possible diagnoses, all having fairly low probability (0.1046 -
0.3158). The second ranked diagnosis, normal blood gases (0.1817) agreed
with the expert. The system ruled out the diagnoses of the senior and junior
clinicians because of the relationship between ApH and ApCC>2.

Case 25 The system's preferred diagnosis of respiratory alkalosis (0.7731) was in
partial agreement with the junior clinician. The diagnoses of the expert and
senior clinicians were ruled out by the system because of the relationship
between ApH and ApCC>2.

Case 31 The system gave three possible diagnoses of which the third ranked agreed
with the senior and junior clinicians. The expert's diagnosis of compensated
metabolic acidosis was ruled out by the relationship between ApH and

APCC>2-

From the analysis above it can be seen that the system disagreed with the clinician's
diagnoses of compensated disorders in cases 9, 21, 25 and 31 because of the relationship
between ApH and ApC02- There are three ways in which the system's performance could
be improved in this area. Firstly, the knowledge base could be altered to make the limits on
ApH and ApCC>2less stringent. Secondly, as was mentioned in Section 5.4.4, the term AV
is interpreted by the system as the change in variable Vfrom its mean value (in a reference
population) whereas it may be more correct to interpret it as the change in Vfrom its last
measured value (in the same patient). Thirdly, the relationships are evaluated as either true
or false and in the latter case the hypothesis is then completely ruled out. It might be better
to interpret the set {=,<,>=<,>=) as fuzzy conditions so that the weight of evidence
contributed by the relationship depends on the degree to which the left hand side is less
than, greater than or equal to the right hand side.

Tables 6.7 and 6.8 show the performance of the system broken down by diagnosis. In
cases where the system made a diagnosis at an intermediate level of the hypothesis
hierarchy which subsumed the clinician's diagnosis, atrue +ve was recorded. When it did
not subsume the clinician's diagnsosis a false +ve was recorded for each of the descendent

leaf node diagnoses.

193

DISORDER CASES TRUE +ve FALSE -ve TRUE-ve FALSE +ve sensitivity SPECIFICITY DIAGNOSTICINDEX

Uncomp met acid 5 2 3 54 1 0.40 0.98 138
Partcomp met acid 5 4 1 52 3 0.80 0.95 175
Comp met acid 4 0 4 54 2 0.00 0.96 0.96
Uncomp met alk 5 3 2 54 1 0.60 0.98 158
Part comp met alk 2 2 0 58 0 1.00 1.00 2.00
Uncomp reap alk 5 5 0 51 4 1.00 0.93 1.93
Partcomp resp alk 4 2 2 51 5 0.50 0.91 141
Comp resp alk 4 2 2 52 4 0.50 0.93 143
Uncomp resp acid 5 5 0 55 0 1.00 1.00 2.00
Partcomp resp acid 1 0 1 58 1 0.00 0.98 0.98
Comp resp acid 1 0 1 59 0 0.00 1.00 1.00
Resp alk & Met acid 3 0 1 555 2 0.00 0.96 0.96
Resp acid & Met acid 10 9 1 48 2 0.90 0.96 1.86
Normal Blood Gases 6 4 2 54 0 0.66 1.00 1.66

Table 6.7 Development Expert as Gold Standard

DISORDER CASES TRUE +ve FALSE -ve TRUE -ve FALSE +ve SENSITIVITY SPECIFICITY DIAGNOSTIC INDEX
Uncomp met acid 2 2 1 57 1 1.00 0.98 1.98
Partcomp met acid 9 5 5 48 3 0.55 0.94 1.49
Comp metacid 2 1 2 57 1 0.50 0.98 1.48
Uncomp met alk 5 2 3 53 2 0.40 0.96 1.36
Partcomp metalk 2 1 1 57 1 0.50 0.98 1.48
Uncomp resp alk 5 3 4 50 5 0.60 0.91 151
Partcomp resp alk 6 3 3 52 2 0.50 0.96 1.46
Comp resp alk 3 1 2 54 3 0.33 0.95 1.28
Uncomp resp acid 6 5 2 54 0 0.83 1.00 1.83
Part comp resp acid 1 1 0 59 0 1.00 1.00 2.00
Comp resp acid 1 G 1 59 0 0.00 1.00 1.00
Resp alk & Met acid 2 C 2 57 1 0.00 0.98 0.98
Resp acid & Metacid 10 10 0 49 1 1.00 0.98 1.98
Normal Blood Gases 6 4 2 54 0 0.66 1.00 1.66

Table 6.8 Senior Clinician as Gold Standard

The only significant difference between the pattern of diagnoses by the expert and senior
clinicians is that the senior clinicians tended to make more diagnoses of partially
compensated metabolic acidosis than the expert whose diagnoses of metabolic acidosis
were split fairly evenly between compensated, uncompensated and partially compensated.
The system performed best on cases of respiratory acidosis & metabolic acidosis and worst
on compensated disorders (discussed above). The system did not make any diagnoses of
respiratory alkalosis & metabolic acidosis which is reflected in a low diagnostic index.
There was in fact only one case where the clinicians agreed on a diagnosis of respiratory

alkalosis & metabolic acidosis and this has been discussed above (Case 6). Overall, it is

194

difficult to draw firm conclusions in diagnostic categories where only one or two diagnoses
were made and further investigation of these would be fruitful.

6.6 Summary

This Chapter has discussed the problems associated with the evaluation of knowledge-
based systems in medicine, in particular the method of evaluation, the gathering of test
cases and the analysis of results. The knowledge-based system described in Chapters 4 and
5 was evaluated in a series of bench tests and by a clinical study in the domain of acid-base
balance which showed that the system performs well in comparison with expert clinicians.
In the next Chapter the utility of the diagnostic knowledge-based system and the
FRAMEBUILDER knowledge editing environment as a set of domain independent tools is
evaluated through the development of a system for the diagnosis of hyperlipidaemia.

195

CHAPTER SEVEN
EVALUATION IN A SECOND APPLICATION DOMAIN
7.1 Introduction

The knowledge-based diagnostic system and the FRAMEBUILDER knowledge editing
environment were originally designed to be used for the interpretation of blood gas analysis
results. It was recognized during the design of these systems that they could be applied for
other, similar problems of interpretation and they were therefore developed to be domain
independent. In order to evaluate the applicability of the systems in other domains, a
knowledge-based system was developed for the diagnosis of hyperlipidaemia. The
diagnosis is based on an evaluation of the family history of heart disease, peripheral
vascular disease and hyperlipidaemia, measurement of cholesterol, triglyceride, LDL (low
density lipoproteins) and HDL (high density lipoproteins) and the patient's history and
examination. An overview of lipid physiology and hyperlipidaemia disorders is given in
Appendix V.

The remaining sections in this chapter describe the knowledge acquisition process using the
FRAMEBUILDER tool and the performance of the diagnostic system for some example

cases using real clinical data.
7.2 Knowledge Acquisition
7.2.1 Introduction

The knowledge required to build a knowledge-based system for the diagnosis of
hyperlipidaemia and the assessment of the risk of coronary heart disease was acquired from
an expert clinical biochemist during three knowledge elicitation sessions, each lasting 2-3
hours. From the outset, the knowledge acquisition process was fundamentally different
from the application in blood gas analysis since in the latter case the knowledge engineer
had acquired considerable background knowledge of the domain before knowledge
elicitation sessions commenced. At the start of the first session for hyperlipidaemia
diagnosis, the knowledge engineer was completely ignorant of the domain.

The following three sections describe the three knowledge acquisition sessions that took

place at the West Middlesex Hospital.

196

Exogenous Raised TGC

— Raised Triglyceride
Endogenous Raised TGC

— Normal Lipid Levels
Familial Polygenic H-L

Hyperlipidaemia Primary H-L Combined Type Familial Combined H-L

L. TypelllH-L
_ Secondary H-L

Familial Polygenic H-C
_ Raised Cholesterol

Familial Monogenic H-C

— Raised HDL

H-L is Hyperlipidaemia H-C is Hypercholesterolaemia TGC is Triglyceride
Figure 7.1 Hypothesis Hierarchy for Hyperlipidaemia
7.2.2 First Session

The first task in the first session was for the expert to give a broad outline of the domain:
the principal diagnoses to be made and the relevant patient observations. As in the case of
acid-base disorders, the initial structuring of the domain was best achieved using a paper

and pen, not the computer knowledge acquisition environment.

Once an initial hypothesis hierarchy had been determined, it was entered into the
knowledge base using FRAMEBUILDER. The final hierarchy for Hyperlipidaemia is
shown in Figure 7.1 (in fact the nodes for normal lipid levels and raised HDL were added
in the second session, when some changes to the names of the nodes were also made). At
the first level of the hierarchy, hyperlipidaemia is divided into primary hyperlipidaemia
(cases in which it is the primary physiological disturbance), secondary hyperlipidaemia
(where it is caused by an underlying disease) and normal lipid levels (ie no hyperlipidaemia
present - this node is included to ensure the condition of exhaustiveness on the nodes of the

hierarchy).
Thyroid Disease

Liver Disease
Alcoholism
Renal Disease
Obesity

Diabetes

Table 7.1 Disease States for Secondary Hyperlipidaemia

197

The diagnosis of secondary hyperlipidaemia is made by the observation of one of the
diseases shown in Table 7.1. These were entered in the knowledge base as diseases; their
presence was specified as evidence for secondary hyperlipidaemia and their absence as
evidence for primary hyperlipidaemia. Hence if one of the diseases is present, the only
possible diagnoses are normal lipid levels or secondary hyperlipidaemia. The system could
not be used for critiquing because diseases were specified as evidence for or against
disorder hypotheses. An alternative approach would have been to specify hyperlipidaemia
as a disorder in the frames of the primary disease states, whereby the determination of
primary or secondary hyperlipidaemia would come about as a result of the critiquing

process.

The second level of the hierarchy in Figure 7.1 represents the different categories of
primary hyperlipidaemia. The three hypotheses at this level are distinguished by levels of
plasma cholesterol and triglyceride. It was found that a three interval classification was not
adequate in this instance and so the method presented in Section 4.3.3 could not be used.
Instead two disorder classes were defined - Cholesterol Level and Triglyceride Level - with
the simple hierarchies shown in Figure 7.2. The appropriate levels of cholesterol and
triglyceride were entered as relationship evidence for each node. The nodes such as safe
cholesterol were then added in the history slots of hyperlipdaemia disorders.

v high cholesterol (>8.5)

high cholesterol (> 7.5, =<8.5)
Cholesterol Level raised cholesterol (>6.5, =<7.5)

safe cholesterol (>5.5, =<6.5)

low cholesterol (=<5.5)

v high triglyceride (>10)

_high triglyceride (>4, =<10)
Triglyceride Level . . .
_raised triglyceride (>1.8, =<4)
safe triglyceride (=<1.8)

Figure 7.2 Hierarchies for Cholesterol and Triglyceride Levels

198

Abdominal Pain Lipid Electrophoresis

present shows broad p band
absent shows no p band
Stored Plasma Appearance Xanthoma
clear with creamy layer tuberous
cloudy with creamy layer linear palmar
cloudy erruptive
clear tendon

absent

Pancreatitis
present
absent

Peripheral Vascular Disease
present
absent

Table 7.2 Summary of Signs Symptoms for Hyperlipidaemia

The remainder of the first session was spent in determining the useful observations for
diagnosis of hyperlipidaemia. A summary of these is given in Table 7.2 and an explanation
can be found in Appendix V.

7.2.3 Second Session

It was decided at the first session to assess each patient for the risk of Coronary Heart
Disease (CHD). In the second session a CHD risk factor was defined, based on the three
main contributors to CHD risk - hypertension, elevated plasma cholesterol and cigarette
smoking. These three factors were used by the Framingham Heart Study Group (they also
used sex, age, ECG findings and HDL level) to produce an algorithm for calculation of
CHD risk in terms of the number of deaths predicted over a ten year period. Such an
algorithm was not applicable for use in this system and so a heuristic risk factor was
defined.

very high BP level (>120)
_high BP level (>110, =<120)
Blood Pressure Level _ raised BP level (>100, =<110)
_ safe BP level (>90, =<100)

low BP level (=<90)

Figure 7.3 Blood Pressure Level

199

High CRF

Moderately High CRF
CHD Risk Factor
Average CRF

Low CRF

Figure 7.4 Coronary Heart Disease Risk Factor

Smoking habits were added as an item of patient history and blood pressure level was
specified as a disorder as shown in Figure 7.3 (the category safe BP level is not well
named and would be better named as slightly raised, or even unsafe BP level). The CHD
risk factor itself was defined as low, average, moderate or high (Figure 7.4) and evidence
of smoking habits, blood pressure and cholesterol level were specified for each definition.

Also in the second session, the observations defined in the first session were assigned to
hypotheses in the hyperlipidaemia hierarchy. An important aspect of the diagnosis that was
addressed in the second session is the consideration of the patient's family history of
hyperlipidaemia, ischaemic heart disease and peripheral vascular disease. This knowledge
was elicited from the expert using the grids shown in Figures 7.5 and 7.6 and was then
transfered to the knowledge base using initial probability assignments of 0.0, 0.5 or 1.0 as
appropriate.

7.2.4 Third Session

In the third session some hypothetical cases were run through the system by the domain
expert and adjustments were made to the knowledge base. Most of these involved the
probability assignments for the family history that had been assigned roughly in the

previous session.

FMH-C FP H-C FC H-L FP H-L
Cholesterol v v v -
Triglyceride - - v .
Both
Vv \
FM-HC is Familial Monogenic Hypercholesterolaemia FP H-L is Familial Polygenic Hyperlipidaemia
FP H-C is Familial Polygenic Hypercholesterolaemia FC H-L is Familial Combined Hyperlipidaemia

Figure 7.5 Elicitation Grid for Family History

200

FMH-C FP H-C FC H-L FP H-L

Ischaemic Heart Disease ++/+ +/- ++ +
Peripheral Vascular Disease ++ +
Both ++ +
+ is for relatives aged 50-60 ++ is for relatives aged below 50
FM-HC is Familial Monogenic Hypercholesterolaemia FP H-L is Familial Polygenic Hyperlipidaemia
FP H-C is Familial Polygenic Hypercholesterolaemia FC H-L is Familial Combined Hyperlipidaemia

Figure 7.6 Elicitation Grid for IHD/PVD

Several errors in the knowledge base were corrected, the attribute tuberous was added to
the symptom xanthoma and peripheral vascular disease was added as an item of patient
history (distinct from peripheral vascular disease in the patient's family history). At the end
of the third session the knowledge base was fixed (Appendix VI) and the system was

ready to undergo the evaluation described in the next section.
7.3 Evaluation

The system was evaluated using 38 randomly selected cases from the West Middlesex
Hospital and two hypothetical cases that were included to cover the rather unusual
diagnoses of exogenous and endogenous raised triglyceride. Details of the cases are given
in Appendix VII. The 40 cases were presented to the system and to the expert who
developed the knowledge base; a summary of the diagnoses made is shown in Table 7.3.

In 6 cases the system made a diagnosis at an intermediate level of the hierarchy (Raised
Cholesterol or Combined Hyperlipidaemia) and 5 of these subsumed the expert's
diagnosis. There was complete agreement between the system and the expert in 25 cases
(62.5%) and disagreement in 10 cases (25%). In 7 of these cases the system gave the
expert's diagnosis as its second ranked alternative. The remaining 3 cases are analyzed

below.

201

EXPERT

DIAGNOSIS EXPERT SYSTEM SYSTEM
Endogenous Raised Triglyceride 1 I 1
Exogenous Raised Triglyceride 1 1 1
Raised Cholesterol - 1 -
Familial Polygenic Hypercholesterolaemia 6 8 5
Familial Monogenic Hypercholesterolaemia 12 8 7
Raised HDL 3 2 2
Combined Type Hyperlipidaemia - 5 -
Familial Polygenic Hyperlipidaemia 4 6 1
Familial Combined Hyperlipidaemia 1 6 6
Type DI Hyperlipidaemia 1 1 1
Normal 1 1 1
Total 40 40 25

Table 7.3 Summary of Diagnoses of Hyperlipidaemia

Case 7 The system had familial polygenic or familial combined hyperlipidaemia as
equally ranked alternative diagnoses, the expert had familial monogenic
hypercholesterolaemia. The Triglyceride level (1.9 mmol/L) is only slightly
raised above the safe level (1.8 mmol/L) which is why the expert made a
diagnosis of hypercholesterolaemia. Because the system uses hard limits to
decide Triglyceride levels, the possibility that a level of 1.9mmol/L was in the

safe range was completely ruled out.

Case 19 The system made its diagnosis of Familial Polygenic Hyperlipidaemia because
of the family history of heart disease in the age range 50 - 60 years.The
expert's diagnosis was Familial Combined Hyperlipidaemia which would be
indicted if the family history of heart disease was for ages below 50.

Case 27 The system had Familial Mongenic Hypercholesterolaemia because of the
familily history of heart disease below the age of 50. The expert had Familial

Polygenic Hypercholesterolaemia.

202

DIAGNOSIS CASES TRUE+ve FALSE -ve TRUE-ve FALSE +ve SENSITIVITY SPECIFICITY DIAGNOSTIC INDEX
Endogenous Raised Triglyceride 1 1 0 39 0 1.00 1.00 2.00
Exogenous Raised Triglyceride 1 1 0 39 0 1.00 1.00 2.00
Familial Polygenic Hypercholesterolaemia 6 5 1 31 3 0.83 0.91 174
Familial Monogenic Hypercholesterolaemia 12 8 4 28 0 0.67 1.00 1.67
Raised HDL 3 2 1 37 0 0.67 1.00 167
Familial Polygenic Hyperlipidaemia 4 4 0 31 5 1.0 0.86 1.86
Familial Combined Hypetlipidaemia 1 7 4 28 1 0.64 0.97 161
Type Il Hyperlipidaemia 1 1 0 38 1 1.0 0.97 197

Normal 1 1 0 39 0 1.0 1.00 2.00
Table 7.4 Breakdown of Results by Diagnosis

The diagnoses of the system can also be analyzed by using the expert's diagnosis as a gold
standard and calculating the sensitivity and specificity of the system for each diagnostic
category. Such an analysis is shown in Table 7.4 where the diagnoses made by the system
at intermediate levels of the hypothesis hierarchy were treated in the same way as in Section
6.5.2 (true +ve if they subsumed the expert's diagnosis and false negative for each
subsumed diagnosis if none of these agreed with the expert). It can be seen that the system
had a tendency to under diagnose the monogenic disorders (Familial Monogenic
Hypercholesterolaemia and Familial Combined Hyperlipidaemia) and to over diagnose the
polygenic disorders (Familial Polygenic Hypercholesterolaemia and Familial Polygenic

Hyperlipidaemia).
7.4 Discussion

The purpose of developing the hyperlipidaemia system was to evaluate the
FRAMEBUILDER and diagnostic systems as a set of tools. This evaluation can be
considered successful in that a system was developed in a very short time and was seen to
perform well on a set of 40 tests cases. The evaluation in this second domain also served to

highlight several areas in which the two systems can be extended or improved.

The hyperlipidaemia system is slow (taking over two minutes to diagnose a typical case)
because it has to make two complete bottom-to-top traversals of the physiological
blackboard. On the first traversal the pseudo disorders of cholesterol, triglyceride and
blood pressure levels are diagnosed and on the second traversal they are asserted as
evidence on the raw data level of the blackboard so that diagnoses of hyperlipidaemia and
cardiac risk factor can be made. Moreover, the diagnoses of cholesterol, triglyceride and
blood pressure levels are not entirely satisfactory because they are made by hard limits on
the relevant variables which are set as relationship evidence. Most of the inaccuracies of the
system in the evaluation cases can be attributed to this method of classification.

203

Both the problems outlined above would be solved if the method of classification
introduced in Section 4.3.3 was extended so that more than three intervals could be defined
for the classification. FRAMEBUELDER could then be extended so that for any laboratory
data variable an arbitrary number of intervals could be defined and given appropriate labels.
Another extension would allow distributions other than the Gaussian distribution to be

used.

For classification into an arbitrary number of intervals, if class N is defined for values of a
data variable V that are altered in the range [a,(d from the healthy measurement of an
individual, the probability that an observed value X is classified as N is <>(X-a) - (X3
for a particular patient, where is the probability distribution of the reference population.

Thus the classifiaction in Section 4.3.3 is a special case in which three intervals are defined:

low a=-0RB=-2a
normal a=-2a, R=2a
high a=2a R=0

where o is the standard deviation of the reference population.

7.5 Summary

The diagnostic system and the FRAMEBUILDER knowledge editing environment were
evaluated as a set of domain independent tools by applying them in the domain of
Hyperhpidaemia. A diagnostic system was developed in a short time and was shown to
perform well on a set of test cases. The evaluation identified a number of areas in which the

tools could be extended or improved.

204

CHAPTER EIGHT

CONCLUSIONS

In the opening chapter of this thesis, it was argued that the rapid increase in the amount of
data available to clinicians in intensive care medicine will lead them to seek the assistance of
computers for data analysis and decision making. Although conventional computing
techniques have been applied to medical diagnosis and patient management, the ability of
knowledge-based systems to handle uncertain or incomplete data and to explain the basis

of their conclusions makes them a more attractive means of achieving these goals.

The applicability of knowledge-based techniques to the interpretation of data in intensive
care medicine has been investigated through the design, implementation and evaluation of a
system for the diagnosis of disorders of acid-base balance and hypoxaemic state, based on
the interpretation of data available from an automatic blood gas analyser. The original
objectives for the system, as stated in the first chapter, were:

(1) to make it easy to use and to keep interaction between computer and
clinician to a minimum.

(2) to combine different methods of knowledge representation and
reasoning within it.

(3) to provide detailed explanation of its conclusions and of the domain of
acid-base balance in general.

(4) to make its knowledge easily accessible to clinicians for review and
update.

A review of existing knowledge-based systems in medicine was made in Chapter 2, where
the progression in methods of implementation was traced through three generations of
systems. The early systems used ad hoc methods of reasoning with surface level
knowledge and in the second generation systems the representation of deeper level
knowledge of the physiological causes of disease was explored. A new generation of
systems is emerging which seek to use more rigorous methods of reasoning with surface
knowledge so that deep knowledge need only be used to provide explanations or to clarify
difficult cases.

Methods of knowledge representation, manipulation and control were examined in Chapter
3 and in Chapters 4 and 5 a number of these were developed further and applied in the
implementation of a knowledge-based system. The first of the objectives stated above was
achieved by devoting a large part of the development time to creating an attractive user
interface and by ensuring that an initial diagnosis could be made using only the data

205

available from a blood gas analyser, so that these could in future be passed on-line directly
to the system.

A frame-based representation of knowledge, a method of data classification and a scheme
for impacting the effect of evidence on a hierarchy of hypotheses were combined within a
blackboard control architecture to achieve the second of the objectives. The dual panelled
blackboard architecture has provided an excellent control structure for the data classification
and evidence handling procedures and has proved to be a useful model of the distinction
made in clinical practice between the diagnosis of physiological disorders and underlying

disease states.

The third objective is the only one of the four that has not been fully realized. The
explanations provided by the system are in terms of the effects of the observed evidence on
the various diagnostic hypotheses and there is no deeper knowledge involved. The
incorporation of such knowledge would be one way in which the system could usefully be
extended.

In order to achieve the final objective, a knowledge editing tool, FRAMEBUILDER, was
developed. This tool allows all the knowledge used in making decisions to be inspected by
clinicians and has also proved invaluable as an aid to knowledge acquisition. Because the
diagnostic system assumes nothing about the knowledge base constructed using
FRAMEBUILDER, the two systems can be used together as a toolset for the constuction of
knowledge-based other fields of medicine in which diagnosis is based on the interpretation
of laboratory data.

Chapters 6 and 7 described the evaluation of the system, assessed its strengths and
weaknesses and suggested ways in which it could be developed further. In Chapter 6 an
evaluation of the knowledge-based system in the domain of acid-base balance showed that
it performs at a level comparable with that of an expert clinician. In Chapter 7 the set of
tools was applied to the construction of a knowledge-based system for the diagnosis of
Hyperlipidaemia , demonstrating that it was possible to produce, in a short space of time, a
system that performed well in an evaluation test. More importantly, the application of the
tools to a second domain identified several areas in which further development could be
made.

A fully operational system in the domain of acid-base balance would be connected directly
to an automatic blood gas analyser and incorporate a graded evaluation of data relationships
considered as evidence. More generally, important improvements would be the expansion
of the data classification scheme to accommodate more than three intervals and re-
implementation in a faster language than Prolog (C for instance).

206

This work has contributed to the field of Systems Science...

by developing methods of data classification and evidence handling and

implementing them using a blackboard control structure.

by using a dual panelled blackboard architecture to model the diagnosis of
physiological disorders and underlying disease states.

and to the field of Medicine...

by applying knowledge-based techniques to produce systems that display expert-
level performance in the domains of acid-base balance and hyperlipidaemia.

by developing a knowledge editing tool that can be used with the systems already
created or for the construction of new systems in other fields of medicine.

Overall, this work has indicated that by incorporating knowledge-based techniques in a set
of easily used tools, clinicians will be able to develop their own consultation systems and
that in this way such systems will enter into widespread use throughout many fields of
medicine.

207

REFERENCES

Adams ID, Chan M, Clifford PC, Cooke WM, Dallos V, De Dombal FT, Edwards MH,
Hancock DM, Hewett DJ, Mcintyre N, Somerville PG, Spiegelhalter DJ, Wellwood J,
Wilson DH. Computer aided diagnosis of acute abdominal pain: a multicentre study.
British Medical Journal, 1986; 293: 800-804.

Adlassnig K-P. A fuzzy logical model of computer-assisted medical diagnosis. Meth
Inform Med, 1980; 19: 141-148.

Adlassnig K-P, Kolarz G, Scheithauer W. Present state of the medical expert system
CADIAG-2. Meth Inform Med, 1985; 24:13-20.

Aikins JS, Kunz JC, Shortliffe EH, Fallat RJ. PUFF: an expert system for interpretation
of pulmonary function data. Comput Biomed Res, 1983; 16: 199-208.

Andreassen S, Woldbye M, Falck B, Andersen SK. MUNIN - a causal probabilistic
network for interpretation of electromyographic findings. Proc 1JCAI, 1987; 366-72.

Barnett GO, Cimino JJ, Hupp JA, Hoffer EP. DXplain: an evolving diagnostic decision
support system. Journal American Medical Association, 1987; 258: 67-74.

Barnett JA. Computational methods for a mathematical theory of evidence. Proc 1JCALI,
1981; 868-75.

Bleich HL. Computer evaluation of acid-base disorders. J Clin Invest, 1969; 48: 1689-96.

Bleich HL. Computer-based consultation. Electrolyte and acid-base disorders. Amer J
Med, 1972; 53: 285-91.

Blum RL. Discovery and representation of causal relationships from a large time-oriented
clinical database: the RX project. Comput Biomed Res, 1982; 15: 164-187.

Bobrow DG, Winograd T. An overview of KRL, a knowledge representation language.
Cognitive Science, 1977; 1. 3-46.

Boose JH. Uses of repertory grid-centred knowledge acquisition tools for knowledge-
based systems. Int J Man-Machine Studies, 1988; 29: 287-310.

208

Brachman RJ. What IS-A is and isn't: an analysis of taxonomic links in semantic
networks. IEEE Computer, 1983; 30-7.

Brachman RJ, Schmolze JG. An overview of the KL-ONE knowledge representation
system. Cognitive Science, 1985; 9: 171-216.

Broughton JO, Kennedy TC. Interpretation of arterial blood gases by computer. Chest,
1984; 85: 148-9.

Buchanan BG, Shortliffe EH (eds). Rule-Based Expert Systems: The MY CIN Experiments
of the Stanford Heuristic Programming Project. Reading, Ma: Addison-Wesley, 1984.

Chandrasekaran B. On evaluating Al systems for medical diagnosis. Al Magazine,
Summer, 1983; 34-48.

Chamiak E. The Bayesian basis of common sense medical diagnosis. Proc AAAI, 1983;
70-3.

Cheeseman PC. In defense of probability. Proc IJCAI, 1985; 1002-9.

Cheeseman P. Probabilistic verus fuzzy reasoning. In: LN Kanal & JF Lemmer (eds)
Uncertainty in Artificial Intelligence. North-Holland, 1986; 85-102.

Chelsom JJ, Ellis TJ, Cramp DG, Carson ER. A review of blood gas and pH analysis:
theory, techniques and equipment. London: City University, Centre for Measurement and
Information in Medicine, 1987a. (Research Memorandum No. MIM/JJC-TJE-DGC-
ERC/6).

Chelsom JJ, Ellis TJ, Cramp DG, Carson ER. Computer-aided interpretation of blood gas
data. London: City University, Centre for Measurement and Information in Medicine,

1987b. (Research Memorandum No. MIM/JJC-TJE-DGC-ERC/7).

Clancey WJ. Tutoring rules for guiding a case method dialogue. Int J Man-Machine
Studies, 1979; 11:25-49.

Clancey WJ. From GUIDON to NEOMYCIN and HERACLES in twenty short lessons:
ORN final report 1979-1985. Al Magazine, August, 1986; 40-60.

209

Clancey WJ, Letsinger R. NEOMYCIN: reconfiguring a rule-based expert system for
application to teaching. Proc 1JCAI, 1981; 829-36.

Clark JS, Gardner R. On-line computerized acid-base analysis. Proc 21st ACEMB,
Houston , Texas, 1968.

Clocksin WF, Mellish CS. Programming in Prolog, 2nd ed. Berlin: Springer-Verlag,
1984.

Cohen ML. A computer program for the interpretation of blood-gas analysis. Comput
Biomed Res, 1969; 2: 549-57.

Cohen PR, Howe AE. How evaluation guides Al research. Al Magazine, Winter, 1988;
35-43.

Collinson PO, Jones RG, Howes M, Nicholls J, Sheehy N, Boran GR, Cramp DG. Data
capture in the clinical environment - factors limiting acceptability and methods of data
validation. In; Medical Informatics 88: Computers in Clinical Medicine. British Medical
Informatics Society, London, 1988; 205-9.

Colmerauer A. Prolog in 10 figures. 1JCAI, 1987; 487-99.

Coomans D, Broeckaert I, Derde MP, Tassin A, Massart DL, Wold S. Use of a
microcomputer for the definition of multivariate confidence regions in medical diagnosis

based on clinical laboratory profiles. Comput Biomed Res, 1984; 17:1-14.

Corkill DD, Lesser VR, Hudlicka E. Unifying data-directed and goal-directed control. Proc
2nd Annual National Conference On Artificial Intelligence, 1982; 143-7.

Cravetto C, Lesmo L, Massa Rolandino R, Molino G, Torasso P. An expert system for
liver disease diagnosis (LI1T02). In: Proc 9th SCAMC, 1985; 330-4.

Croft DJ. Is computerized diagnosis possible? Comput Biomed Res, 1972; 5: 351-67.

Davis R. Interactive transfer of expertise: acquisition of new inference rules. Artif Intell,
1979; 12:121-158.

Davis R. Meta-rules: reasoning about control. Artif Intell, 1980; 15: 179-222.

210

Davis R, King J. An overview of production systems. In: E Elcock & D Michie (eds)
Machine Intelligence 8: Machine Representations of Knowledge. New York, John Wiley,
1977; 300-34.

De Dombal FT. Computer-aided decision support - the obstacles to progress. Meth Inform
Med, 1987; 26: 183-4.

De Dombal FT, Leaper DJ, Staniland JR, McCann AP, Horrocks JC. Computer-aided
diagnosis of acute abdominal pain. British Medical Journal, 1972; 9-13.

Dempster A. Upper and lower probabilities induced by multi-valued mapping. Ann Math
Statistics, 1967; 38: 325-39.

Diederich J, Ruhmann I, May M. KRITON: a knowledge-acquisition tool for expert
systems. Int J Man-Machine Studies, 1987; 26: 29-40.

Duda R, Gaschnig J, Hart P. Model design in the PROSPECTOR consultant system for
mineral exploration. In: D. Michie (ed) Expert Systems in the Microelectronic Age.
Edinburgh: Edinburgh University Press, 1979; 153-67.

Dybkaer R. Observed value related to reference values. In: R. Grasbeck, T Alstrom (eds).
Reference Values in Laboratory Medicine. The Current State of the Art. Chichester: John

Wiley, 1981; 263-78.

Easterby-Smith M. The design, analysis and inteipretation of repertory grids. Int J Man-
Machine Studies, 1980; 13: 3-24.

Elstein AS, Shulman LS, Sprafka SA. Medical Problem Solving: An Analysis of Clinical
Reasoning. Cambridge, MA: Harvard University Press, 1978.

Englemore RS, Terry A. Structure and function of the CRYSALIS system. Proc 6th
IJCAI, Tokyo, Japan, 1979: 250-6.

Ericsson KA, Simon HA. Verbal reports as data. Psychological Review, 1980; 87: 215-
51.

Erman LD, Lesser VR. A multi-level organisation for problem solving using many diverse
cooperating sources of knowledge. Proc. 4th IJCAI, Thilisi, USSR, 1975; 483-90.

211

Erman LD, Hayes-Roth F, Lesser VR, Reddy DR. The Hearsay-Il speech understanding
system: integrating knowledge to resolve uncertainty. ACM Computing Surveys, 1980; 12:
213-53.

Erman LD, London PE, Fickas SF. The design and an example use of Hearsay-Ill. Proc
7th IJCAI, Los Altos, California, 1981; 409-15.

Feinstein AR. Clinical biostatics XXXIX. The haze of Bayes, the aerial palaces of decision
analysis, and the computerized Ouiji board. Clinical Pharmacology Therapeutics, 1977; 21.:

482-96.

Fillmore C. The case for case. In: Bach & Harms (eds), Universals in Linguistic Theory.
Chicago: Holt, 1968.

First MB, Soffer LJ, Miller RA. QUICK (QUick Index to Caduceus knowledge): Using
the Internist-1/Caduceus knowledge base as an electronic textbook of medicine. Comput
BiomedRes, 1985; 18: 137-65.

Flanagan JC. The critical incident technique. Psychological Bulletin, 1954; 51: 327-58.

Forbus KD. Qualitative process theory. Artif Intell, 1984; 24: 85-168.

Forgy CL. Rete: a fast algorithm for the many pattern / many object pattern match problem.
Artif Intell, 1982; 19: 17-37.

Fox J , Glowinski A, O'Neil M. The Oxford System of Medicine: a prototype system for
primary care. Proc AIME 87. New York: Springer-Verlag, 1987; 213-6.

Fox MS, Lowenfield S, Kleinosky P. Techniques for sensor-based diagnosis. 1JCAI,
1983; 158-63.

Gardner RM, Cannon GH, Morris AH, Olsen KR, Price WG. Computerized blood gas
interpretation and reporting system. Computer, 1975; 39-45.

Gheorghe AV, Bali H, Carson E. A Markovian decision model for clinical diagnosis and

treatment applied to the respiratory system. IEEE Trans Sys Man Cyber, 1976; SMC-6:
595.

212

Glymour C. Independence assumptions and Bayesian updating. Artif Intell, 1985; 25: 95-
9.

Goldberg M, Green SB, Moss ML, Marbach CB, Garfinkel D. Computer based
instruction and diagnosis of acid-base disorders: a systematic approach. JAMA, 1973; 223:

269-75.

Gordon J, Shortliffe EH. A method for managing evidential reasoning in a hierarchical
hypothesis space. Artif Intell, 1985; 26: 323-57.

Grasbeck R, Saris N-E. Establishment and use of normal values. Scand J Clin Lab Invest,
1969; 26(110); 62-3.

Greiner R, Lenat DB. A representation language language. Proc AAAI, 1980; 283-5.

Grover MD. A pragmatic knowledge acquisition methodology. Proc 1JCAI, 1983; 436-8.

Gruber TR. Acquiring strategic knowledge from experts. Int J Man-Machine Studies,
1988; 29:579-97.

Hayes-Roth B, Hayes Roth F, Rosenschein S, Cammarata S. Modelling planning as an
incremental opportunistic process. Proc 6th IJCAI, Tokyo, Japan, 1979; 375-83.

Hayes-Roth B. A blackboard architecture for control. Artif Intell, 1985; 26: 251-321.

Hayes-Roth F. Rule-based systems. Comms ACM, 1985; 28: 921-32.

Hayes-Roth F. Knowledge-based expert systems - the state of the art in the US. In: J. Fox
(ed) Expert Systems: State of The Art Report. Pergamon Infotech, 1984.

Hendrix GG. Expanding the utility of semantic networks through partitioning. 1JCAI,
1975; 115-21.

Hendrix GG. Encoding knowledge in partitioned networks. In: NV Findler (ed).

Associative Networks. Representation and Use of Knowledge by Computers. New York:
Academic Press, 1979; 51-92.

213

Hingston DM, Irwin RS, Pratter MR, Dalen JE. A computerized interpretation of arterial
pH and blood gas data: do physicians need it? Resp Care, 1982; 27: 809-15.

Horrocks JC, McCann AP, Staniland JR, Leaper DJ, De Dombal FT. Computer-aided
diagnosis: description of an adaptable system, and an operational experience with 2,034
cases. British Medical Journal, 1972; 5-9.

IFCC Scientific Committee, Clinical Section, Expert Panel on the Theory of Reference
Values. The theory of reference values. Part 6. Presentation of observed values related to
reference values. Clin Chem Acta, 1982; 127: 441F-48F.

Jalawayski A, Lauterbach R, Smith BE, Modell JH. A computer method for determination
of acid-base and oxygenation variables in adult and infant blood samples. J Lab & Clin
Med, 1968; 71: 328.

Johnson RW. Independence and Bayesian updating methods. Artif Intell, 1986; 29: 217-
22.

Kaldor G, Rada R. Computerised evaluation of acid-base disorders based on a nine-cell
decision matrix. Med & Biol Eng & Comput, 1985; 23: 269-73.

Kari A, Saijonmaa J, Ruoknonen E, Takala J. The assessment of a data management
system for critical care. In: Medical Informatics 88: Computers in Clinical Medicine. British

Medical Informatics Society, London, 1988.

Kehler TP, Clemenson GD. An application development system for expert systems. Syst
Softw, 1984; 3: 212-24.

Kelly GA. The Psychology of Personal Constructs. New York: Norton, 1955.

Kim JH, Pearl J. A computational model for causal and diagnostic reasoning in inference
systems. Proc 1IJCAI, 1983; 190-3.

Kingsland LC Ill. The evaluation of medical expert systems: experience with the

AI/RHEUM knowledge-based consultant system in rheumatology. Proc 9th SCAMC,
1985; 292-5.

214

Kingsland L, Sharp G, Capps R, Benge J, Kay D, Reese G, Hazelwood S, Lindberg D.
Testing of a criteria-based consultant system in rheumatology. Proc MEDINFO, 1983;
514-7.

Kuipers BJ. Qualitative simulation. Artif Intell, 1986; 29: 289-338.

Kuipers B, Kassirer JP. Causal reasoning in medicine: analysis of a protocol. Cognitive
Science, 1984; 8: 362-85.

Kulikowski CA. Artificial intelligence in medical consultation systems: a review. IEEE Eng
Med Biol, 1988; x: 34-9.

Kunz J. Analysis of physiological behaviour using a causal model based on first principles.
Proc AAAI, 1984; 225-9.

Leaper DJ, Horrocks JC, Staniland JR, De Dombal FT. Computer-assisted diagnosis of
abdominal pain using "estimates" provided by clinicians. British Medical Journal, 1972;

350-4.

Ledley RS, Lusted LB. Reasoning foundations of medical diagnosis. Science, 1959; 130:
9-21.

Lehnert WG. The Process of Question Answering. A Computer Simulation of Cognition.

Hillsdale, NJ: Lawrence Erlbaum Associates, 1978.

LenatDB. The nature of heuristics. Artif Intell, 1982; 19: 189-249.

Lesmo L, Marzugli M, Molino G, Torasso P. An expert system for the evaluation of liver

functional assessment. J Medical Systems, 1984; 8: 87-101.

Lesser VR, Erman LD. A retrospective view of the Hearsay-1l architecture. Proc. 5th
IJCAI, 1977; 790-800.

Lindberg DAB, Sharp GC, Kingsland LC Ill, Weiss SM, Hayes SP, Ueno H, Hazelwood

SE. Computer based Rheumatology consultant. In: DAB Lindberg, Kaihara (eds). Proc
MEDINFO 80. North Holland, 1980; 1311-5.

215

Lowerre BT, Reddy DR. The HARPY speech understanding system. In: WA Lea (ed).
Trends in Speech Recognition. Englewood Cliffs, NJ: Prentice-Hall, 1980.

Mainland D. Normal values in medicine. Ann NY Acad Science, 1969; 161: 527-37.

Mann J, Ball M. Hyperlipidaemia. Medicine International, 1985; 580-4.

Mars NJI, Miller PL. Knowledge acquisition and verification tools for medical expert

systems. Medical Decision Making, 1987; 7: 6-11.

Martin M, Jeffreys B. Use of a minicomputer for storing, reporting and interpreting arterial
blood gases/pH and pleural fluid pH. Resp Care, 1983; 28: 301-8.

Masarie FE, Miller RA. INTERNIST-1 to quick medical reference (QMR): the transition
from a mainframe to a microcomputer. Proc IEEE 9th Ann Conf Eng Med Biol Society,
Boston, 1987; 1521-2.

Masarie FE, Miller RA, Myers JD. INTERNIST-1 properties: representing common sense
and good medical practice in a computerised medical knowledge base. Comput Biomed
Res, 1985; 18:458-79.

Michalski RS, Chilausky RL. Knowledge acquisition by encoding expert rules versus
computer induction from examples - a case study involving soybean pathology. IntJ Man-
Machine Studies, 1980; 12: 63-87.

Michie D. High-road and low-road programs. Al Magazine, Winter, 1981; 21-2.

Miller PL. Attending: critiquing a physician's management plan. IEEE Trans PAMI, 1983;
PAMI-5: 449-61.

Miller PL. Building an expert critiquing system: ESSENTIAL-ATTENDING. Meth Inform
Med, 1986; 25: 71-8.

Miller PL, Rennels GD. Prose generation from expert systems. An applied linguistics
approach. Al Magazine, Fall, 1988; 37-44.

Miller RA. INTERNIST-1/CADUCEUS: Problems facing expert consultant programs.
Meth Inform Med, 1984; 23: 9-14.

216

Miller RA, Pople HE, Myers JD. INTERNIST-1: an experimental computer-based
diagnostic consultant for general internal medicine. New Eng J Med, 1982; 307: 468-76.

Minsky ML. A framework for representing knowledge. In: PH Winston (ed) The
Psychology of Computer Vision. New York: McGraw-Hill, 1975; 211-77.

Miranker DP. TREAT: a better match algorithm for Al production systems. Proc AAAI,
1987; 42-7.

Molino G, Cravetto G, Torasso P, Console L. CHECK: a diagnostic expert system
Combining HEuristic and Causal Knowledge. Int J Biomedical Measurement Informatics
Control, 1986; 1:182-93.

Musen MA, Fagan LM, Combs DM, Shortliffe EH. Use of a domain model to drive an
interactive knowledge-editing tool. Int J Man-Nachine Studies, 1987; 26: 105-21.

Myers JD. The computer as a diagnostic consultant, with emphasis on use of laboratory
data. Clin Chem, 1986; 32: 1714-8.

Narins RG, Emmett M. Simple and mixed acid-base disorders: a practical approach.
Medicine, 1980; 59: 161-87.

Newell A. Some problems of basic organization in problem-solving programs. In: M.C.
Youvits, G.T. Jacobi & G.D. Goldstein (eds). Conference on Self-Organizing Systems.

Washington DC: Spartan Books, 1962; 393-423.

Newell A, Simon H. Human Problem Solving. Englewood Cliffs, NJ: Prentice-Hall,
1972.

Nii HP. Blackboard systems: the blackboard model of problem solving and the evolution
of blackboard architectures. Al Magazine, Summer 1986a; 38-53.

Nii HP. Blackboard systems. Blackboard application systems, blackboard systems from a
knowledge engineering perspective. Al Magazine, August, 1986b; 82-106.

Nii HP, Feigenbaum EA, Anton JJ, Rockmore AJ. Signal-to-symbol transformation:
HASP/SIAP case study. Al Magazine, Spring, 1982; 23-35.

217

Patil RS. Causal representation of patient illness for electrolyte and acid-base diagnosis.
Massachusetts Institute of Technology, 1981; MIT/LCS/TR-267.

Patil RS, Senyk O. Efficient structuring of composite causal hypotheses in medical
diagnosis. Proc 11th SCAMC, 1987; 23-9.

Patil RS, Szolovits P, Schwartz WB. Causal understanding of patient illness in medical
diagnosis. ProclJCAI, 1981; 893-9.

Patil RS, Szolovits P, Schwartz WB. Information acquisition in diagnosis. Proc AAAI,
1982; 345-8

Patten T. Systemic Text Generation as Problem Solving. Cambridge: Cambridge
University Press, 1988.

Pauker SG, Gorry GA, Kassirer JP, Schwartz WB. Towards the simulation of clinical
cognition: taking a present illness by computer. Amer J Med, 1976; 60: 981-96.

Paycha F. Medical diagnosis and cybernetics. Proc. Symposium on Mechanization of
Thought Processes. London: HM Stationery Office, 1959; Vol 2: 635-59.

Pearl J. On evidential reasoning in a hierarchy of hypotheses. Artif Intell, 1986a; 28: 9-15.

Pearl J. Fusion, propagation, and structuring in belief networks. Artif Intell, 1986b; 29:
241-88.

Pednault EPD, Zucker SW, Muresan LV. On the independence assumption underlying
subjective Bayesian updating. Artif Intell, 1981; 16: 213-22.

Pereira FCN, Warren DHD. Definite clause grammars for language analysis - a survey of
the formalism and a comparison with augmented transition networks. Artif Intell, 1980; 13:
231-78.

Pople HE. Heuristics methods for imposing structure on ill-structured problems: the

structuring of medical diagnostics. In: P. Szolovits (ed) Artificial Intelligence in Medicine.
AAAS Symposium Series, Boulder Co: Westview Press, 1982; 119-85.

218

Pople HE. The formation of composite hypotheses in diagnostic problem solving: an

exercise in synthetic reasoning. Proc IJCAI-77; 1030-7.

Pople HE. DIALOG: a model of diagnostic logic for internal medicine. Proc 1JCAI-75;
848-55.

Post E. Formal reductions of the general combinatorial problem.
Amer J Math, 1943; 65: 197-268.

Prerau DS. Knowledge acquisition in the development of a large expert system. Al
Magazine, Summer, 1987; 43-51.

Price DJ, Mason J. Resolving the numerical chaos at the bedside. In J. Bryant, J. Roberts,
P. Windsor (eds), Current Perspectives in Health Computing. London: British Computer

Society, 1986; 147-57.

Quaglini S, Stefanelli M, Barosi G, Berzuini A. ANEMIA: an expert consultation system.
Comput Biomed Res, 1986; 19: 13-27.

Quaglini S, Stefanelli M, Barosi G, Berzuini A. A performance evaluation of the expert
system ANEMIA. Comput Biomed Res, 1988; 21: 307-23.

Quillian MR. Word concepts: a theory and simulation of some basic semantic capabilities.
Behavioural Science, 1967; 12: 410-30.

Reddy DR, Erman LD, Neely RB. A model and a system for machine recognition of
speech. IEEE Trans Audio & Electroacoustics, 1973; AU-21 (3): 229-38.

Reggia JA. Evaluation of medical expert systems. A case study in performance assessment.
Proc 9th SCAMC, 1985; 287-91.

Reggia JA, Nau DS, Wang PY. Diagnostic expert systems based on a set covering model.
IntJ Man-Machine Studies, 1983; 19: 437-60.

Richards B, Goh AES. Computer assistance in the treatment of patients with acid-base and
electrolyte disturbances. Proc MEDINFO, 1977; 407-10.

219

Robinson JA. A macWne-oriented logic based on the resolution principle. J ACM, 1965;
12: 23-41.

Rosner SW, Palmer A, Caceras CA. A computer program for computation and
interpretation of pulmonary function data. Comput Biomed Res, 1971; 4: 141-56.

Screck DM, Zacharias D, Grunau CF. Diagnosis of complex acid-base disorders: physician

preformance versus the microcomputer. Ann Emerg Med, 1986; 15: 164-70.

Schubert LK. Extending the expressive power of semantic networks. Artif Intell, 1976; 7:
163-98.

Schwartz WB. Medicine and the computer. The promise and problems of change. New
Eng J Med, 1970; 283: 1257-64.

Schweickert R, Burton AM, Taylor NK, Corlett EN, Shadbolt NR, Hedgecock AP.
Comparing knowledge elicitation techniques: a case study. Artif Intell Review, 1987;
1:245-53.

Scott AC, Clancey WJ, Davis R, Shortliffe EH. Explanation capabilities of knowledge-
based production systems. In: BG Buchanan & EH Shortliffe (eds). Rule-Based Expert
Systems: The MYCIN Experiments of the Stanford Heuristic Programming Project.
Reading, Ma: Addison-Wesley, 1984; 338-62.

Selfridge OG. Pandemonium : a paradigm for learning. Proc. Symposium on
Mechanization of Thought Processes. London: HM Stationery Office, 1959; Vol 2: 511-
3L

Severinghaus JW. Interpreting acid-base balance. Resp Care, 1982; 27: 1414-5.

Shadbolt N, Burton M. Knowledge elicitation. In: J. Wilson, N. Corlett (eds) Evaluation
of Human Work: Practical Ergonomics Methodology. Taylor and France, 1989.

Shafer G. A Mathematical Theory of Evidence. Princeton: Princeton University Press,
1976.

Shafer G, Logan R. Implementing Dempster's rule for hierarchical evidence. Artif Intell,
1987; 33: 271-98.

220

Shaw MLG, Gaines BR. KITTEN: knowledge initiation and transfer tools for experts and
novices. IntJ Man-Machine Studies, 1987; 27: 251-80.

Shortliffe EH, Scott AC, Bischoff MB, van Melle W, Jacobs CD. ONCOCIN: an expert
system for oncology protocol management. Proc 1JCAI, 1981; 876-81.

Shortliffe EH, Davis R, Axline SG, Buchanan BG, Green CC, Cohen SN. Computer-
based consultations in clinical therapeutics: explanation and rule acquisition capabilities of
the MY CIN system. Comput Biomed Res, 1975; 8: 303-20.

Shortliffe EH, Axline SG, Buchanan BG, Merigan TC, Cohen SN. An artificial
intelligence program to advise physicians regarding anitmicrobial therapy. Comput Biomed
Res, 1973; 6: 544-60.

Sittig DF. Computerized management of patient care in a complex, controlled clinical trial
in the intensive care unit. Proc 11th SCAMC, 1987; 225-32.

Smith J. Design and implementation of a natural language interface which allows
interrogation of a medical database. BSc Project, City University, 1988.

Smith RG, Baker JD. The Dipmeter Advisor System. A case study in commercial expert
system development. Proc IJCAI, 1983; 122-9.

Stefik M, Bobrow DG, Mittal S, Conway L. Knowledge programming in LOOPS: Report

on an experimental course. Al Magazine, Fall 1983; 3-13.
Summers R. Carson ER, Cramp DG, Leaning MS. AIRS - an artificial intelligent respirator
system. In: C Cobelli, L Mariani (eds). Proceedings of the IFAC Symposium on Modelling

& Control in Biomedical Systems. Oxford: Pergamon Press, 1988; 199-203.

Sunderman FW, Van Soestbergen AA. Probability computations for clinical interpretations
of Screeningtests. AmerJ Clin Pathol, 1971; 55: 105-11.

Swartout WR. XPLAIN: a system for creating and explaining expert consulting systems.
Artif Intell, 1983; 21: 285-325.

Swartout WR, Smoliar SW. Explaining the link bewteen causal reasoning and expert
behaviour. Proc SCAMC, 1987; 37-42.

221

Szolovits P, Pauker SG. Categorical and probabilistic reasoning in medical diagnosis. Artif
Intell, 1978; 11: 115-44.

Tango T. An interpretation of normal ranges based on a new concept 'individual difference
quotient’of clinical laboratory data. Medical Informatics, 1981; 6: 161-74.

Teach RL, Shortliffe EH. An analysis of physician attitudes regarding computer-based
clinical consultation systems. Comput Biomed Res, 1981; 14: 542-58.

Turing AM. Computing machinery and intelligence. Mind,1950; 59. Also appears in: E.
Feigenbaum, J. Feldman (eds), Computers and Thought. New York: McGraw-Hill, 1963;
1-35.

Vallbona C, Pevny E, McMath F. Computer analysis of blood gases and acid-base states.
Comput Biomed Res, 1971; 4: 623-33.

van Lente F, Castellani W, Chou D, Matzen RN, Galen RS. Application of the EXPERT
consultation system to accelerated laboratory testing and interpretation. Clin Chem, 1986;

32: 1719-25.

van Melle W. A domain-independent production-rule system for consultation programs.
Proc 1JCAI, 1979; 923-5.

van Melle W, Scott AC, Bennett JS, Peairs M. The Emycin Manual. Stanford: Stanford
University, Department of Computer Science, 1981; Report no STAN-CS-81-885.

Warner HR, Olmsted CM, Rutherford BD. HELP - a program for medical decision-
making. Comput Biomed Res, 1972; 5: 65-74.

Weiner F, Fayman M, Teitelman U, Bursztein S. Computerized medical reasoning in
diagnosis and treatment of acid-base disorders. Crit Care Med, 1983; 11: 470-5.

Weiner F, Weil MH, Carlson RW. Computer systems for facilitating management of the
critically ill. Comput Biol Med, 1982; 12: 1-15.

Weizenbaum J. ELIZA - a computer program for the study of natural language

communication between man and machine. Comms ACM, 1966; 9: 36-44.

222

Weiss SM, Kulikowski CA. EXPERT: a system for developing consultation models. Proc
IJCAI, 1979; 942-7.

Weiss SM, Kulikowski CA, Amarel S, Safir A. A model-based method for computer-aided
medical decision making. Artifintell, 1978; 11: 145-72.

Weiss SM, Kulikowski CA, Galen RS. Developing microprocessor-based expert models
for instrument interpretation. Proc IJCAI, 1981; 853-55.

Weiss SM, Politakis P, Ginsberg A. Empirical analysis and refinement of expert system
knowledge bases. Proc 10th SCAMC, 1986; 53-60.

Welbank M. A review of knowledge acquisition techniques for expert systems. Ipswich:

Martlesham Consultancy Services, British Telecom Laboratories, 1983.

Woods WA. Transition network grammars for natural language analysis. Comms ACM,
1970; 13: 591-606.

Yu VL, Fagan LM, Wraith SM, Clancey WJ, Scott AC, Hannigan J, Blum RL, Buchanan
BG, Cohen SN. Antimicrobial selection by a computer: A blinded evaluation by infectious
disease experts. JAMA, 1979; 242: 1279-82.

Zadeh LA. Fuzzy sets. Information and Control, 1965; 8: 338-53.

Zadeh LA. A fuzzy-set-theoretic interpretation of linguistic hedges. J Cybernetics, 1972; 2:
4-34.

Zadeh LA. Outline of a new approach to the analysis of complex systems and decision
processes. IEEE Trans Systems Man Cybernetics, 1973; SMC-3; 28-44.

Zadeh LA. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1978;
1:3-28.

Zadeh LA. A theory of approximate reasoning. In: J. Hayes, D. Michie, L.I. Mikulich
(eds) Machine Intelligence 9. New York: Halstead Press, 1979; 149-94.

223

APPENDIX 1

BLOOD GAS ANALYSIS AND ACID-BASE BALANCE

Al.l Introduction

This appendix covers the background physiology and details of clinical practice that are
necessary for an full understanding of the material presented in Chapters 4 and 6. Further
details can be found in Chelsom, et al (1987a;b) or in any of the texts listed in the
bibiography.

The next section gives a brief outline of the physiology of cardiopulmonary homeostasis
and acid-base balance. This is followed by a description of the main measurements made
by automatic blood gas analysers and the information that each conveys. Finally, the major
disorders of acid-base balance and hypoxaemic state are presented.

Al.2 Physiology

The continuing function of the human body depends upon the maintenance of a suitable
internal environment. There are many regulatory systems at work in the body and the
process by which these interact in order maintain that internal environment is called
physiological homeostasis.

Cardiopulmonary homeostasis describes the interaction between the cardiovascular and
pulmonary systems in order to achieve a balance between ventilation (exchange of oxygen
and carbon dioxide in the lungs) and internal respiration (consumption of oxygen and
production of carbon dioxide in the tissues). When this balance is achieved, there will be
adequate oxygenation of body tissues, elimination of the carbon dioxide produced in tissue
respiration and maintenance of pH in intercellular and extracellular fluids. Somewhat
confusingly, ventilation is more normally referred to as respiration.

The lungs function as simple gas exchangers: oxygen and carbon dioxide are exchanged
between blood and air by a process of passive diffusion, which is brought about by
differences in the partial pressures (or tensions) of the gases in blood and alveolar air. The

operation of the lungs can be quantified by the respiratory exchange ratio:

Respiratory Exchange Ratio = Carbon Dioxide Eliminated
Oxygen Taken Up

0.8 for a normal, healthy lung

224

The body derives the energy needed to sustain life by metabolising fats, carbohydrates and
proteins (collectively called the substrate). The final stages of metabolism occur in the
tissue cells themselves, where chemical reactions consume oxygen and produce carbon

dioxide, water and energy. This process is quantified by the respiratory quotient:

Carbon Dioxide Produced
Oxygen Consumed

Respiratory Quotient

= 0.8 under normal metabolic conditions

It can be seen that under normal conditions there is a balance between the respiratory
exchange ratio and the respiratory quotient and that cardiopulmonary homeostasis is
achieved.

Most of the oxygen transported in the blood between the lungs and body tissues does so by
combination with haemoglobin; a small amount is actually disolved in the blood and
accounts for the partial pressure of oxygen in blood (p02). Similarly, a small amount of the
carbon dioxide carried in the blood dissolves and creates a partial pressure of carbon
dioxide in blood (pCC>2). A further small amount combines with haemoglobin, but over
90% reacts with water to form carbonic acid which dissociates to produce hydrogen and
bicarbonate ions. The pH of blood is a measure of the level of hydrogen ions (actually the
negative logarithm of the hydrogen ion concentration) and must be maintained within a
restricted range in order for many vital physiological processes to continue. The pH can be
regulated by ventilation (changes in carbon dioxide levels causing changes in the
concentrations of hydrogen and bicarbonate ions) or by various metabolic actions. The
main metabolic control of pH is exercised by the kidneys which secrete hydrogen ions into

the blood and absorb bicarbonate.

A substance that gives up hydrogen ions in solution is an acid; one that combines with
hydrogen ions is a base. Carbonic acid gives up a hydrogen ions in a reversible reaction
with water ie the bicarbonate produced is a base (called the conjugate base of carbonic
acid). A solution containing carbonic acid and bicarbonate ions in equilibrium will tend to
resist changes in pH since an increase in hydrogen ions will be offset by combination with
bicarbonate and a decrease in hydrogen ions will be compensated by dissociation of
carbonic acid. For this reason any such acid/conjugate base pair is called a buffer (ie it
buffers changes in hydrogen ion concentration). As well as carbonic acid/bicarbonate, other
important buffer systems in the body are proteins (chiefly haemoglobin) and phosphates
(operating in the kidneys).

225

There are three main sources of acid in the body. Dietary acids are produced during the
digestion and breakdown of foodstuffs; lactic acid is produced during anaerobic
metabolism (ie production of energy in cells in the absence of oxygen) which occurs
normally in some body cells (eg blood, eye, brain) or during sustained exercise; keto acid

is produced during metabolic processes in the liver.

In summary, it can be said that three main interacting mechanisms operate to maintain acid-

base balance in the body:
respiration
buffer systems
renal mechanisms
Al.3 Data Measurements in Blood Gas Analysis

The three main measurements made by automatic blood gas analysers are pH, pC02 and

pC2, normally using an arterial blood sample.

The pH indicates the degree of acidity (hydrogen ion concentration) of the blood and must
be maintained within a fairly narrow range, in order for the electrical function of the heart
and nervous system, and various biochemical processes of cellular metabolism, to
continue. The cause of fluctuations in pH can be either metabolic or respiratory in origin
and other data must be assessed in order to determine this cause. The carbon dioxide
tension of arterial blood (pCC>2) is a direct indication of how well the lungs are functioning

in their role as gas exchangers; it also indicates the respiratory component of acid-base

balance.

The plasma bicarbonate (HCO3-) is one indicator of the metabolic component and is

calculated from PCO02 using the Henderson-Hasselbalch equation:
HCO3—0.226.pC0O2.exp(pH-6.1)

for HCO3- measured in mmol/L and pCC>2in kPa.

Buffer base (BB) is the total level of all buffer anions in the blood (ie bicarbonate,
phosphate, proteins, haemoglobin) and gives a true reflection of the buffering power of the
blood. Normal buffer base (NBB) is the value of buffer base at normal levels of pH and
pC02 (7.4 and 5.32 kPa). Base excess is the difference between normal buffer base and
the buffer base calculated by automatic blood gas analysers from values of pH, pCC>2and

226

haemoglobin concentration. Base excess gives an indication of the metabolic component of
acid-base balance.

The third main data measurement made by automatic blood gas analysers is oxygen tension
(PC>2). It is used to assess the oxygenation of body tissues; they cannot live without an
adequate oxygen supply. A low oxygen tension is called hypoxaemia but its presence does
not necessarily imply hypoxia (under oxygenation) of body tissues (and conversely,
hypoxia can exist in the presence of an adequate oxygen tension). This is because hypoxia
also depends on the concentration of haemoglobin in the blood and its oxygen saturation (ie
the amount of oxygen it is carrying expressed as a precentage of its maximum oxygen
capacity). Oxygen saturation depends not only on oxygen tension but also on pH, pC02

and temperature.
Al.4 Acid-Base Disorders

There are four simple acid-base disorders: respiratory acidosis, respiratory alkalosis,
metabolic acidosis and metabolic alkalosis. In respiratory disorders a primary change in
pCO02 tension is responsible for the change in pH; in metabolic disorders the change in pH

is caused by a primary change in bicarbonate ion concentration.

Under normal conditions, the mechanisms of acid-base regulation described in Section
Al.2 act to keep pH at its normal value; hence compensatory responses to the primary
influence on pH act to return it to its normal value. Metabolic disturbances are compensated
by an increase or decrease in ventilation, respiratory disturbances are compensated by
appropriate metabolic action. Depending on the length of time over which compensation
has occurred, the simple disorders can be described as uncompensated, partially

compensated or fully compensated.

Mixed acid-base disorders exist when two or more of the simple acid-base disturbances are
present together. They can be detected because the compensation expected in the case of a
simple disorder does not occur. Since carbon dioxide depletion and retention cannot occur
simultaneously, it is impossible to have a mixed disorder comprising respiratory acidosis
and alkalosis. A respiratory disorder and a metabolic disorder can occur together and two
metabolic disorders can be present simultaneously since there are several different causes of
simple metabolic acidosis or alkalosis. In theory, a respiratory disorder could also occur

with a mixed metabolic disorder to produce a triple disorder.

227

AlS Bibliography

Adams AP, Hahn CE. Principles and Practice of Blood-Gas Analysis, (2nd ed).
Edinburgh: Churchill Livingston, 1982.

Beetham R. A review of blood pH and blood-gas analysis. Annals Clinical Biochemistry,
1982; 19:198-213

Davenport HW. The ABC of Acid-Base Chemistry, (6th ed). Chicago: University of
Chicago Press, 1974.

Eastham RD. A guide to Water, Electrolyte and Acid-base Metabolism. Bristol: John
Wright, 1983.

Gardner MLG. Medical Acid-Base Balance: The Basic Principles. London: Bailliere
Tindall, 1978.

Narins RG, Emmett M. Simple and mixed acid-base disorders: A practical approach.
Medicine, 1980; 59: 161-87.

Shapiro BA, Harrison RA, Walton JR. Clinical Application of Blood Gases, (3rd ed).
Chicago: Year Book Medical Publishers, 1982.

Walmsley RN, Guerin MD. Disorders of Fluid and Electrolyte Balance. Bristol: John
Wright, 1984.

228

APPENDIX 11
COMPUTER-AIDED INTERPRETATION OF BLOOD GAS DATA
A2.1 Introduction

Computers have been used in the area of blood gas analysis since the 1960s. Initially,
they were employed in the calculation of various derived parameters and to evaluate the
nomograms used in interpretation (see for example Jalawayski et al, 1968). These
calculations are now performed as an integral part of an automatic blood gas analyser.

By the late 1960s the first programs began to appear that performed the interpretation
of blood gas data. A program written in assembler for a time-shared mainframe
computer (Clark & Gardner, 1968) combined data acquisition and correction with a
limited interpretation of results. The first interpretation programs written in higher level
languages were those of Cohen (1969) and Bleich (1969). These systems are described
in Section A2.2.

Blood gas analysis was one of the first specific areas of medicine in which computers
were successfully applied as interpretative aids, which is an indication of their
suitability for the task. This is a domain which experts find fairly straightforward to
understand but which is notoriously confusing for non-experts - hence a well designed
computer program has the potential to dramatically improve the performance of non-
expert clinicians.

A survey at the Mercy Medical Centre, Denver showed a drop in untimely or
inappropriate therapeutic responses from 33% to 9% when a computerized
interpretation system assisted clinicians in the treatment of patients with life-threatening
acid-base disorders (Broughton & Kennedy, 1984). A separate study revealed that a
cross-section of clinicians from emergency medicine, internal medicine, paediatrics,
surgery and family practice had success rates of 86%, 49% and 17% for the diagnosis

of single, double and triple acid-base disorders (Schreck et al, 1986).

Another study found that 71% of clinicians participating in a trial of diagnostic
accuracy did not regard computer assistance necessary, though the overall success rate
for the group in diagnosing acid-base disturbances was only 39% (Hingston et al,
1982). The circumstances of this trial have been called into question in an argument
over the different procedures that clinicians use to make a diagnosis (Severinghaus,
1982). The basic objection to the trial was that a computer is likely to perform better

than a clinician when an over-complicated approach to diagnosis is proscribed. This

229

argument serves to highlight another feature of blood gas interpretation that can be
confusing for the non-expert clinician, namely the difference in nomenclature and
diagnostic procedure between different centres (particularly between America and
Europe). The use of computer aids to interpretation at least ensures that a common

approach is taken amongst its users.
A2.2 Early Systems

Two systems, developed in the late 1960s, provided the basic models for many
subsequent programs that interpreted blood gas data. At St Joseph's Hospital in
Phoenix, Arizona at program was developed in FORTRAN running on an IBM
mainframe computer (Cohen, 1969). Data were input using punched cards, the
adequacy of arterial oxygenation was checked using 02 saturation and pH, pC02 and
HCO3- were checked with the Henderson-Hasselbalch equation. The main
interpretation was made by identifying the relevant area on a nomogram of pH, pC02
and HCO3-. There were 28 different areas defined on the nomogram and an
interpretation was provided for each one which depended on whether the patient was

mechanically ventilated or not (ie there were 56 possible interpretations).

The second of the early systems was developed at the Beth Israel Hospital, Boston and
was written in a high level language called Stringcomp for a PDP-1D mainframe
computer (Bleich, 1969). It was later translated into BASIC to run on a GE-635. The
main part of the program was based on a comprehensive algorithm which determined
the acid-base disorder and a differential diagnosis of the underlying disease. The user
input the available data which were checked for physiological consistency. The
program then stepped through the algorithm, requesting further data as necessary.
Finally, an evaluation note was printed which indicated the acid-base disorder, a
differential diagnosis of diseases, suggestions for therapy and references to the medical
literature. The program was later extended to cover electrolyte disorders (Bleich,
1972) using the same algorithmic approach. A number of interesting observations were

made by Bleich about the clinical use of his program:

formulation of a computer program forced the researcher to explicitly

state all the medical knowledge involved

the program encouraged clinicians to experiment with hypothetical
patients and data and thus served as an educational tool

clinicians tended to become more disciplined in their evaluation of

laboratory data

230

A2.3 Algorithm-Based Systems

A system for storing, reporting and interpreting blood gas data (and pleural fluid pH)
was introduced at the Mt Sinai Medical Centre, Cleveland in 1979 (Martin & Jeffreys,
1983). An automatic blood gas analyser and a co-oximeter were connected to a DEC
minicomputer through an RS232 interface. Data from the analysers passed on-line to
the computer where they were stored on floppy disk; reports based on these data could
be printed as required. A branched algorithm provided interpretation based on the
numerical data only (no clinical information was used) by selecting one of 16 acid-base
statements, 5 oxygenation statements and 5 ventilaation statements. The management
and interpretation programs were written in BASIC. In clinical use it was found that
the staff, who had little previous experience with computers, encountered only minor
difficulties in using the system. Handwritten reports, with their inevitable transcription

errors, were eliminated and the volume of paperwork was greatly reduced.

A microcomputer program written in BASIC has been evaluated at the Veterans
Administration Medical Centre in Michigan (Kaldor & Rada, 1985). The program used
a branched algorithm to classify pH, pCC>2and HCO3- into five intervals and to check
compensation with published equations (Narins & Emmett, 1980). The program was
evaluated in tests on 50 patients. Each patient was diagnosed using clinical data only
and this was compared with the system's diagnosis based on blood gas data. The
diagnoses were deemed positive (acid-base disorder diagnosed), negative (normal acid-
base status) or equivocal (no firm decision possible) and were compared using a nine-
element matrix.

A2.4 Nomogram-Based Systems

An acid-base map of PC02, pH and HCO03, constructed using the medical literature
and the expertise of clinicians at the Hospital of the University of Pennsylvania formed
the basis of a program written in FORTRAN for a PDP-6 computer (Goldberg et al,
1973). The acid-base map was divided into more than 30 areas, each with an
associated differential diagnosis. When enough information had been input to focus on
one area of the map, an algorithm specific to that area was used to narrow down the
differential diagnosis. A report could be generated in various degrees of detail in order
to accommodate different users, ranging from students to experienced clinicians.

The same acid-base map was used in a modified form for a system at the Latter Day
Saints Hospital in Salt Lake City (Gardner et al, 1975). The logic for determining the

region of the acid-base map corresponding to the input data was implemented using the

231

HELP system, a general program for making decisions based on input data and
previous decisions (Warner et al, 1971). The system was appraised in clinical trials
lasting 17 days by asking clinicians to complete an evaluation note after each computer
interpretation. The conclusions drawn from this survey were:

the interpretation was accurate and was accepted by clinical staff

patient care was improved and reporting time was reduced, especially

in the intensive care unit
procedures and nomenclature were standardized

clinical staff gained educational benefit from the computer
interpretation

A25 Intelligent Systems

The knowledge-based system ABEL (Patil, 1982) also used the acid-base nomogram
for its initial diagnosis of disorders. It was then capable of deep level causal reasoning
as has been described in Section 2.3.2. Another system described by its creators as a
cognitive model approach to the interpretation of acid-base disorders was developed at
the Rambam University Hospital in Israel (Weiner et al, 1983). The system made use
of a series of domain independent programs, written in FORTRAN, that had

previously been used to contract other medical systems (Weiner etal, 1982).

A knowledge-base was created as a tree-like pathway of inferences, using information
from local experts and the medical literature. Each inference in the pathway was
grouped with criteria for its confirmation or rejection to form a medical logic module.
Each of the criteria could be present or absent (Y or N) and carried a points score for
the confirmation, implication or rejection of the module. Each logic module could
appear as one of the criteria in another module.

The program operated by accepting data input from the user and working through the
logic modules, evaluating their criteria. Numerical data were analysed by numerical
modules which classified them into discrete categories so that they could be treated in
the same way as the other (Y or N) criteria. The inference represented by a logic
module became instantiated when the total points contributed by its criteria exceeded a
pre-set threshold value. At the end of a consultation text associated with each

confirmed inference was printed out.

232

In a trial of 54 cases, the system agreed in 50 with the clinicians involved in the
specification of its knowledge base (93% agreement). The developers claimed that the
system can capture the medical reasoning of a group of experts, can express the
nuances of their approach and make such knowledge available to the less experienced
practitioner (Weiner etal, 1983). Such claims seem slightly ambitious: the decision
evaluation process employed was very simple, the user interaction was unfriendly (all
data had to be input at the start of a session) and the explanation consisted of printing
the stored text for confirmed inferences. Despite these criticisms, the system dispalyed
a high degree of accuracy and its modular design and tree structured knowledge base

resemble the system that forms the subject of this thesis.
A2.6 Summary

A number of systems have been described which perform the interpretation of blood
gas data. Generally speaking, these systems adopt an algorithmic approach or an
approach based on the identification of regions on the acid-base nomogram. In either
case, they exhibit purely categorical reasoning and output results in the form of textual
descriptions stored with each possible interpetation. Five such systems were compared
in a study at the University of Manchester (the systems of Cohen, Bleich and Goldberg
described above and two developed by Vallbona, etal (1971) and Rosner, etal
(1971)). The results of this study (Richards & Goh, 1977) showed that there was total
agreement amongst the systems in just over 20% of cases, that 3 or more agreed on
88% of cases and that there was total disagreement in 2% of cases.

233

APPENDIX 11l
KNOWLEDGE BASE FOR BLOOD GAS INTERPRETATION

DATA VARIABLES Respiratory rate /min
PH upper limit 100.000
upper limit 9.000 lower limit 0.000
lower limit 6.000 mean value 18.000
mean value 7.390 std dev 3.000
std dev 0.025 default none
default none

MAP mmHg
PCO02 kPa upper limit 200.000
upper limit 50.000 lower limit 0.000
lower limit 0.000 mean value 90.000
mean value 5.320 std dev 10.000
std dev 0.333 default none
default none

Creatinine umol/L
HC03 mmol/L upper limit 200.000
upper limit - 50.000 lower limit 0.000
lower limit ~ 0.000 mean value none
mean value 24.000 std dev none
std dev 1.000 default none
default none

Glucose
Base Excess mmol/L upper limit none
upper limit 30.000 lower limit none
lower limit -30.000 mean value none
mean value 0.000 std dev none
std dev 1.150 default none
default none

Buffer Base mmol/L
P02 kPa upper limit 100.000
upper limit 100.000 lower limit 10.000
lower limit 0.000 mean value 42.000
mean value 12.640 std dev 5.000
std dev none default none
default none

age years
FI02 % upper limit 120
upper limit 100.000 lower limit 0
lower limit 0.000 mean value none
mean value none std dev none
std dev none default none

default 21.000
RELATIONSHIPS FOR DATA DERIVATION

Hb g/100mlg/100ml 1. Anion Gap=NafK-a-HC03

upper limit 20.000 2. Base Excess=(l-Hb/43)*((HC03-24.25>+{2.3*Hb+7.7)*(pH-7.4))

lower limit 0.000 3. HC03=0.23*PC02*10*(pH-6.1)

mean value none 4. Buffer Base=Na+K-Cl

std dev none

default 16.000 SKINS & SYMPTOMS
coma

Na mmol/L absent

upper limit 200.000 present

lower limit 0.000 unknown

mean value 140.000

std dev 2.500 tetany

default none absent
present

K mmol/l. unknown

upper limit 20.000

lower limit 0.000 tremor

mean value 4.500 absent

std dev 0.500 present

default none unknown

Cl mmol/L anxiety

upper limit 150.000 absent

lower limit 0.000 present

mean value 100.000 unknown

std dev 2.500

default none somnolenee/headaches
absent

C& present

upper limit none unknown

lower limit none

mean value none Kusmaul breathing

std dev none absent

default none present
unknown

02 sat %

upper limit 100.000 shock

lower limit 0.000 absent

mean value none present

std dev none unknown

default 97.500
vasodilatation

Anion Gap mmol/L normal

upper limit 50.000 vasodilated

lower limit 0.000 vasoconstricted

mean value 12.000 unknown

std dev 2.000

default none acid ingestion
absent

P50 present

upper limit none unknown

lower limit none

mean value none diuretics

std dev none absent

default none present
unknown

Temperature C

upper limit 50.000 G fluid loss

lower limit 20.000 absent

mean value 37.200 present

std dev 0.600 unknown

default none

PATIENT HISTORY
sex

234

female variable Base Excess high 1.000

male variable HCO03 high 1.000
unknown

i Frame for uncomp resp acid Type of respiratory acidosis (0.500)
occupation variable Base Excess usual 1.000
unknown variable HC03 usual 1.000
disorder Frame for part comp resp acid Type of respiratory acidosis (0.500)
unknown variable Base Excess high 1.000

variable HCO03 high 1.000

previous disorder

unknown Frame for uncomp met acid Type of metabolic acidosis (0.500)
variable PC02 usual 1.000

clinical diagnosis

unknown Frame for part comp met acid Type of metabolic acidosis (0.500)
variable PC02 low 1.000

FRAMES FOR DISORDERS Frame for uncomp resp alk Type of resp alkalosis (0.500)
CLASS: hypoxaemic state variable Base Excess usual 1.000

variable HC03 usual 1.000
Frame for hypoxaemic state

Frame for uncomp met alk Type of metabolic alkalosis (0.500)
Frame for 02 therapy Type of hypoxaemic state (0.500) variable PC02 usual 1.000
relation 1. F102>21

Frame for part comp met alk Type of metabolic alkalosis (0.500)
Frame for no 02 therapy Type of hypoxaemic state (0.500) variable PC02 high 1.000
relation 1. F102=21

Frame for part comp resp alk Type of resp alkalosis (0.500)

Frame for uncorrected hypox Type of 02 therapy (0.250) variable Base Excess low 1.000
relation 1. PO2<10.64 variable HCQ3 low 1.000
Frame for corrected hypoxaemia Type of 02 therapy (0.250) Frame for comp resp alk Type of low HC03 with pC02 (0.330)
relation 1. PO2>=10.64 relation 2. P02<13.3 variable Anion Gap usual 1.000
variable Base Excess low 1.000
Frame for excessive 02 therapy Type of 02 therapy (0.250) symptom G| fluid loss absent 0.800
relation 1. P02>=13.3 symptom G| fluid loss present 0.200
symptom diuretics absent 0.800
Frame for adequate 02 tension Type of no 02 therapy (0.250) symptom diuretics present 0.200
relation 1. PO2>=10.64 symptom acid ingestion absent 0.800
symptom acid ingestion present 0.200
Frame for mild hypoxaemia Type of no 02 therapy (0.250) symptom vasodilatation normal 0.500
relation 1. P02>=7.98 relation 2. PO2<10.64 symptom vasodilatation vasodilated 0.100

symptom vasodilatation vasoconstricted 0.400
symptom shock absent 0.800

Frame for moderate hypoxaemia Type of no 02 therapy (0.250) symptom shock present 0.200
relation 1. P02>=5.32 relation 2. P02<7.98 symptom Kusmaul breathing absent 0.800
symptom Kusmaul breathing present 0.200
Frame for severe hypoxaemia Type of no 02 therapy (0.250) symptom anxiety absent 0.200
relation 1. P02<5.32 symptom anxiety present 0.800
symptom tremor absent 0.800
CLASS: acid-base disorder symptom tremor present 0.200
symptom tetany absent 0.200
Frame for acid-base disorder symptom tetany present 0.800
symptom coma absent 0.800
Frame for measurement error Type of acid-base disorder (0.100) symptom coma present 0.200
variable Anion Gap usual 0.300 symptom somnolence/headaches absent 0.800
variable Anion Gap high 0.300 symptom somnolence/headaches present 0.200
variable Anion Gap low 0.400 relation 1. AHC03>=3.75*APC02-4 relation 2. AHC03=<3.75*APC02+4
variable CI usual 0.400
var!able CI high 0.300 Frame for resp alk & met acid Type of low HC03 with pC02 (0.330)
var!able Cl low 0.300 variable Anion Gap usual 0.500
variable K usual 0.400 : . .
variable K high 0.300 var!able Anion Gap high 0.500
variable K low 0.300 variable Base Excess low 1.000
symptom G| fluid loss absent 0.200

variable Na usual 0.400

variable Na high 0.300 symptom GI fluid loss present 0.800

variable Na low 0.300 symptom d!uret!cs absent 0.800

. symptom diuretics present 0.200
variable Base Excess low 0.300 A .

iable B E high 0.300 symptom acid ingestion absent 0.200
var.la € Dase mxcess hig . symptom acid ingestion present 0.800
variable Base Excess usual 0.400 . A

. symptom vasodilatation normal 0.500
variable HCO03 low 0.300 . " X

. B symptom vasodilatation vasodilated 0.100
variable HCO03 high 0.300 . N N

iable HCO3 | 0.400 symptom vasodilatation vasoconstricted 0.400
vanan e usual - symptom shock absent 0.200
variable PC02 low 0.300

. B symptom shock present 0.800
variable PC02 high 0.300 N

. symptom Kusmaul breathing absent 0.200
variable PC02 usual 0.400 .

. symptom Kusmaul breathing present 0.800
variable pH low 0.300

. B symptom somnolence/headaches absent 0.800
variable pH high 0.300
variable pH usual 0.400 symptom somnolence/headaches present 0.200

p . symptom anxiety absent 0.200

symptom anxiety present 0.800
symptom tremor absent 0.200
symptom tremor present 0.800
symptom tetany absent 0.200

B R symptom tetany present 0.800
Frame for dominant alkalosis Type of acid-base disorder (0.300) variable pH high 1.000 symptom coma absent 0.200

Frame for neutral ph Type of acid-base disorder (0.300) variable pH usual 1.000

Frame for dominant acidosis Type of acid-base disorder (0.300) variable pH low 1.000

Frame for resp acid & metacid Type of dominant acidosis (0.330) symptom coma present 0.800

van_atélle Anion gap l:ws'uﬁ:]l (?588 Frame for comp met acid Type of low HCO03 with pC02 (0.330)
variable Anion Gap high 0.5 variable Anion Gap usual 0.500
variable Base Excess low 1.000 " : .
oble HO03 1 000 variable Anion Gap high 0.500
Var!able 5Cos hl?wh 1-000 variable Base Excess low 1.000
variable igh 1. symptom G1 fluid loss absent 0.200

symptom Gl fluid loss present 0.800

symptom diuretics absent 0.800

symptom diuretics present 0.200

symptom acid ingestion absent 0.200
symptom acid ingestion present 0.800
symptom vasodilatation normal 0.500
symptom vasodilatation vasodilated 0.100
symptom vasodilatation vasoconstricted 0.400
symptom somnolence/headaches absent 0.800
symptom somnolence/headaches present 0.200
symptom anxiety absent 0.800

symptom anxiety present 0.200

symptom tetany absent 0.800

Frame for respiratory acidosis Type of dominant acidosis (0.330)
variable Anion Gap usual 1.000
variable PC02 high 1.000

Frame for metabolic acidosis Type of dominant acidosis (0.330)
variable Anion Gap usual 0.500

variable Anion Gap high 0.500

variable Base Excess low 1.000

variable HC03 low 1.000

Frame for resp alk & met alk Type of dominant alkalosis (0.330)
variable Anion Gap high 1.000

Var_iaglle 225835;@9'1551'1(;%2 1.000 symptom tetany present 0.200
Var_lable ooz | Y 10-00 symptom coma absent 0.200
variable ow 1. symptom coma present 0.800

symptom Kusmaul breathing present 0.800

Frame for resp alkalosis Type of dominant alkalosis (0.330) symptom Kusmaul breathing absent 0.200

variable Anion Gap usual 0.500

" N N symptom shock present 0.800
var.laktzlle Acn(l)ozn IGap h:]%lg 0-500 symptom shock absent 0.200
variable P ow 1. symptom tremor present 0.800

symptom tremor absent 0.200

Frame for metabolic alkalosis Type of dominant alkalosis (0.330)) R
relation 1. APC0O2=<0.2*AHCO3 relation 2. APC02>=0.133*AHCO3

variable Anion Gap usual 0.500
variable Anion Gap high 0.500

235

Frame for comp metalk Type of high HC03 with pC02 (0.010)
variable K low 0.900

variable Base Excess high 1.000

variable K usual 0.100

symptom acid ingestion absent 0.800
symptom acid ingestion present 0.200
symptom vasodilatation normal 0.500
symptom vasodilatation vasodilated 0.100
symptom vasodilatation vasoconstricted 0.400
symptom shock absent 0.800

symptom shock present 0.200

symptom Kusmaul breathing absent 0.800
symptom Kusmaul breathing present 0.200
symptom somnolence/headaches absent 0.800
symptom somnolence/headaches present 0.200
symptom anxiety absent 0.800

symptom anxiety present 0.200

symptom tremor absent 0.800

symptom tremor present 0.200

symptom tetany absent 0.200

symptom tetany present 0.800

symptom coma absent 0.800

symptom coma present 0.200

symptom G| fluid loss absent 0.800

symptom G| fluid loss present 0.200

symptom diuretics absent 0.200

symptom diuretics present 0.800

relation 1. APC0O2=<0.133*AHCO3 relation 2. APC02>=0.033*AHCO03

Frame for resp acid & met alk Type of high HC03 with pC02 (0.190)
variable K low 0.900

variable Base Excess high 1.000

variable K usual 0.100

symptom acid ingestion absent 0.800
symptom acid ingestion present 0.200
symptom vasodilatation normal 0.500
symptom vasodilatation vasodilated 0.400
symptom vasodilatation vasoconstricted 0.100
symptom shock absent 0.800

symptom shock present 0.200

symptom Kusmaul breathing absent 0.800
symptom Kusmaul breathing present 0.200
symptom somnolence/headaches absent 0.200
symptom somnolence/headaches present 0.800
symptom anxiety absent 0.800

symptom anxiety present 0.200

symptom tremor absent 0.200

symptom tremor present 0.800

symptom tetany absent 0.800

symptom tetany present 0.200

symptom coma absent 0.200

symptom coma present 0.800

symptom diuretics present 0.800

symptom diuretics absent 0.200

symptom G1 fluid loss present 0.200
symptom G1 fluid loss absent 0.800

Frame for comp resp acid Type of high HC03 with pC02 (0.800)
variable K usual 1.000

variable Base Excess high 1.000

symptom GI fluid loss absent 0.800

symptom G| fluid loss present 0.200
symptom acid ingestion absent 0.800
symptom acid ingestion present 0.200
symptom vasodilatation normal 0.500
symptom vasodilatation vasodilated 0.400
symptom vasodilatation vasoconstricted 0.100
symptom shock absent 0.800

symptom shock present 0.200

symptom Kusmaul breathing absent 0.800
symptom Kusmaul breathing present 0.200
symptom somnolence/headaches absent 0.200
symptom somnolence/headaches present 0.800
symptom anxiety absent 0.800

symptom anxiety present 0.200

symptom tremor absent 0.200

symptom tremor present 0.800

symptom tetany absent 0.800

symptom tetany present 0.200

symptom coma absent 0.200

symptom coma present 0.800

symptom diuretics absent 0.800

symptom diuretics present 0.200

relation 1. AHC03>=3*APCO02 4 relation 2. AHC03=<3*APC02+4

Frame for mixed met acid Type of dominant acidosis (0.000)
variable Base Excess low 1.000

variable HC03 low 1.000

variable PC02 low 1.000

variable Anion Gap usual 0.500

variable Anion Gap high 0.500

variable CI high 1.000

Frame for met acid & met alk Type of neutral ph (0.100)
variable Anion Gap usual 0.500
variable Anion Gap high 0.500
variable Buffer Base high 1.000
variable Base Excess low 0.300
variable Base Excess high 0.300
variable Base Excess usual 0.400
variable HC03 low 0.300
variable HCO03 high 0.300
variable HCO03 usual 0.400
variable PC02 low 0.300
variable PC02 high 0.300
variable PC02 usual 0.400

Frame for normal blood gases Type of neutral ph (0.100)
variable Base Excess usual 1.000

variable Buffer Base usual 1.000

variable Anion Gap usual 1.000

variable HC03 usual 1.000

variable PC02 usual 1.000

Frame for high HC03 with pC02 Type of neutral ph (0.400)
variable Anion Gap usual 1.000

236

variable HCO03 high 1.000
variable PC02 high 1.000

Frame for low HC03 withpC02 Type of neutral ph (0.400)

variable HC03 low 1.000
variable PC02 low 1.000

FRAMES FOR DISEASES
CLASS: Causes of resp acid

Frame for Causes of resp acid

history resp acid & met acid present 0.200

history resp acid & met alk present 0.200

history respiratory acidosis present 0.300

history comp resp acid present 0.300

Frame for Ventilator Breakdown Type of Causes of resp acid (0.000)
Frame for Lung Disease Type of Causes of resp acid (0.000)

Frame for Impaired Lung Motion Type of Causes of resp acid (0.000)
Frame for Thoracic Cage Limit Type of Causes of resp acid (0.000)
Frame for Neuromusc Disorders Type of Causes of resp acid (0.000)
Frame for CNS Depression Type of Causes of resp acid (0.000)
Frame for cardiac arrest Type of Causes of resp acid (0.000)

Frame for Sedatives Type of CNS Depression (0.000)

Frame for Resp centre lesion Type of CNS Depression (0.000)
Frame for trauma Type of Resp centre lesion (0.000)

Frame for isthaemia Type of Resp centre lesion (0.000)

Frame for Myopathies Type of Neuromusc Disorders (0.000)

Frame for Neuropathies Type of Neuromusc Disorders (0.000)
Frame for muscular dystrophy Type of Myopathies (0.000)

Frame for potassium depletion Type of Myopathies (0.000)

Frame for Guillain-Barre Type of Neuropathies (0.000)

Frame for Polio Type of Neuropathies (0.000)

Frame for Kyphoscoliosis Type of Thoracic Cage Limit (0.000)
Frame for Scleroderma Type of Thoracic Cage limit (0.000)

Frame for Crush injury Type of Thoracic Cage limit (0.000)
Frame for Pleural effusion Type of Impaired Lung Motion (0.000)
Frame for Pneumothorax Type of Impaired Lung Motion (0.000)
Frame for Acute Obstruction Type of Lung Disease (0.000)

Frame for Chronic Obst Disease Type of Lung Disease (0.000)
Frame for Severe Pneumonia Type of Lung Disease (0.000)

Frame for Pulmonary Oedema Type of Lung Disease (0.000)

Frame for Aspiration Type of Acute Obstruction (0.000)

Frame for Tumor Type of Acute Obstruction (0.000)

Frame for Spasm Type of Acute Obstruction (0.000)

Frame for Laryngospasm Type of Spasm (0.000)

Frame for Bronchospasm Type of Spasm (0.000)

CLASS: Causes of met acid

Frame for Causes of met acid

history metabolic acidosis present 0.200

history resp acid & met acid present 0.200

history resp alk & met acid present 0.200

history comp met acid present 0.200

history mixed met acid present 0.200

Frame for Normal/Hyperkalaemie Type of Causes of met acid (0.000)
Frame for Hypokalaemic ~Type erf Causes of met acid (0.000)
Frame for Lactic Acidosis Type of Causes of met acid (0.000)
Frame for Ketoacidosis Type of Causes of met acid (0.000)
Frame for Toxins Type of Causes of met acid (0.000)

Frame for Renal Failure Type of Causes of met acid (0.000)
Frame for Paraldehyde Type of Toxins (0.000)

Frame for Salicyclates Type of Toxins (0.000)

Frame for Ethylene Glycol Type of Toxins (0.000)

Frame for Methanol Type of Toxins (0.000)

Frame for Glycogenesis Defect Type of Ketoacidosis (0.000)
Frame for Glycogenosis I Type of Ketoacidosis (0.000)

Frame for Diabetes Mellitus Type of Ketoacidosis (0.000)

Frame for Starvation Type of Ketoacidosis (0.000)

Frame for Alcoholism Type of Ketoacidosis (0.000)

Frame for Ureteral Diversions Type of Hypokalaemic (0.000)
Frame for Carb Anhyd Inhibitor Type of Hypokalaemic (0.000)
Frame for Post-Hypercapnic Type of Hypokalaemic (0.000)

Frame for Renal Tubular Acid Type of Hypokalaemic (0.000)
Frame for Diarrhoea Type of Hypokalaemic (0.000)

Frame for Sulphur Toxicity Type of Normal/Hyperkalaemic (0.000)

Frame for Hydronephrosis Type of Nonnal/Hyperkalaemic (0.000)

Frame for Early Renal Failure Type of Nonnal/Hyperkalaemic (0.000)

CLASS: Causes of resp alk

Frame for Causes of resp alk

history resp alkalosis present 0.300

history resp alk & met alk present 0.200

history resp alk & met acid present 0.200

history comp reap alk present 0.300

Frame for CNS Disorders Type of Causes of resp alk (0.000)
Frame for Fever Type of Causes of resp alk (0.000)

Frame for Endotoxaemia Type of Causes of resp alk (0.000)

Frame for Hyperthyroidism Type of Causes of resp alk (0.000)

Frame for Pregnancy Type of Causes of resp alk (0.000)

Frame for Hormones/Drugs Type of Causes of resp alk (0.000)
Frame for Liver Insufficiency Type of Causes of resp alk (0.000)
Frame for Mild Pul Oedema Type of Causes of resp alk (0.000)
Frame for Pulmonary Disease Type of Causes of resp alk (0.000)
Frame for Post Metabolic Acid Type of Causes of resp alk (0.000)
Frame for Pneumonia Type of Pulmonary Disease (0.000)

Frame for Pulmonary Embolus Type of Pulmonary Disease (0.000)
Frame for Restrictive Disorder Type of Pulmonary Disease (0.000)
Frame for Analeptic Overdose Type of Hormones/Drugs (0.000)
Frame for Progesterone Type of Hormones/Drugs (0.000)

Frame for Catecholomines Type of Hormones/Drugs (0.000)
Frame for Salicylates Type of Hormones/Drugs (0.000)

Frame for CNS Infection Type of CNS Disorders (0.000)

Frame for CNS Tumor Type of CNS Disorders (0.000)

Frame for Cerebrovasc Accident Type of CNS Disorders (0.000)

CLASS: Causes of met alk

Frame for Causes of met alk

history metabolic alkalosis present 0.300

history resp alk & met alk present 0.200

history resp acid & met alk present 0.200

history comp met alk present 0.300

Frame for Bartler Syndrome Type of Causes of met alk (0.000)
Frame for Exogenous Steroid Type of Causes of met alk (0.000)
Frame for Adrenal Disorder Type of Causes of met alk (0.000)
Frame for Carbenicillin Type of Causes of met alk (0.000)

Frame for Penicillin Type of Causes of met alk (0.000)

Frame for Post Fasting Glucose Type of Causes of met alk (0.000)
Frame for Hyperparathyroidism Type of Causes of met alk (0.000)
Frame for Cushing Syndrome Type of Adrenal Disorder (0.000)
Frame for Hyperaldosteronism Type of Adrenal Disorder (0.000)

Frame for Carbenoxalone Type of Exogenous Steroid (0.000)

Frame for Licorice Ingestion Type of Exogenous Steroid (0.000)

237

APPENDIX 1V

EVALUATION OF THE BLOOD GAS SYSTEM: CASE DATA

CASE 1

CLINICAL DIAGNOSIS Diabetic

pCO2 1596 kPa
. 5 mmol/l.

BE . =30 mmol/L

p0214.36 kPa

CLINICAL DATA:

age 17

sex female

Kussmaul breathing

CASE 2

CLINICAL DIAGNOSIS Chronic obstuctive airway disease

PH 7.10

pCO02 3.325 kPa

HCO3-.ooo . 8 mmol/L
-20 mmol/L
5.32 kPa

02 sat 52 %

CLINICAL DATA:
age 66
sex female

CASE3

7.42
PCO2 . 3.857 kPa
HCO03-........ ... 19 mmol/L
BE . -4 mmol/L
po02 10.24 kPa
02 sat .o . 96 %

CLINICAL DATA:

age 21 RR 16 /min
sex female

pregnant

CASE 4

CLINICAL DIAGNOSIS Fractured ankle

pH 7.55
pCO2 ... 3591 kPa

23 mmol/L
BE .o .. 0 mmol/L
p02 13.96 kPa
02 sat 100 %

CLINICAL DATA:
age 24

sex female
disorientated
confused

CASE5

CLINICAL DIAGNOSIS Drug Overdose

7.15
pCo02 . 10.640 kPa
HCO3-.i 28 mmol/L
p02......558 kPa
. 80 %

CLINICALDATA:
age 34

sex female
comatose

CASE 6

CLINICAL DIAGNOSIS Salicylate intoxication

7.15
PCO2 . 1.596 kPa
HCO03- . 4.4 mmol/L

CLINICALDATA:
age 3
sex male

CASE7

CLINICAL DIAGNOSIS Respiratory failure

pH 7.257
.30 kPa
21.7 mmol/L
BE . -5.2 mmol/L

CLINICALDATA:

Lymphoma sex male
E. Coli infection age 72
Chemotherapy + pancytopaemia

CASE 8

FOLLOWS CASE (7) AFTER 7 hours

CLINICAL DIAGNOSIS Pneumonia

PH s 7.388
4.06 kPa
18.6 mmol/L
BE wm4.7 mmol/L

CLINICALDATA:

Lymphoma RR 14 /min

E. Coli infection Temp 38.2 C
Chemotherapy + pancytopaemia MAP 50 mmHg
Dopamine sex male
Dobutamine age 72

238

CASE9
CLINICAL DIAGNOSIS Pneumonia

FOLLOWS CASE (8) AFTER 4 hours

pH 7470
pro? 451 VP*
HCO03-

BE . .-0.6 mmol/L
po2 ... 87 VPn
FI02 60 %

CLINICALDATA:

Lymphoma RR 14 /min

E. Coli infection Temp 36.6 C
Chemotherapy + pancytopaemia MAP 60 mmHg
Dopamine sex male
Dobutamine age 72

CASE 10

FOLLOWS CASE (9) AFTER 12 hours

pH 7.421
pCO2 4.85 kPa
24.0 mmol/L
PO2 o 20.2 kPa
02 e 80 %

CLINICAL DATA:

Lymphoma RR 14 /min

K. Coil mfecnon Temp 36.0 C
Chemotherapy + pancytopaemia MAP 85 mmHg
Dopamine sex male
Dobutamine age 72

CASE 11

CLINICAL DIAGNOSIS Pleumonia

FOLLOWS CASE (10) AFTER 1day

PH 7.445

pCo02 5.11 kPa
26.7 mmol/L

BE . 3.2 mmol/L

P02 s 15.7 kPa

FIO2 80 %

CLINICAL DATA:

Lymphoma RR 14 /min

E. Coli infection Temp 36.0 C
Chemotherapy + pancytopaemia MAP 100 mmHg
Dopamine sex male
Dobutamine age 72

CASE 12

CLINICAL DIAGNOSIS Lymphoma

FOLLOWS CASE (11) AFTER 19 days

7.340
. 4.75 kPa
HCO03-.......... . 19.7 mmol/L
-4.7 mmol/L
p02 __ 155 kPa
35 %

CLINICAL DATA:

Lymphoma RR 15 /min

E. Coli infection Temp 35.8 C
Chemotherapy + pancytopaemia MAP 80 mmHg
Dopamine sex male
Dobutamine age 72

CASE 13
CLINICAL DIAGNOSIS Lymphoma

FOLLOWS CASE (12) AFTER 1 day

7.240
PCO2 oo 6.02 kPa
HCO3-..oonoe 19.7 mmol/L
BE .o -6.8 mmol/L

CLINICAL DATA:

sex male age 72
Lymphoma RR 24 /min

E. Coli infection Temp 36.6 C
Extubated MAP IlOmmHg
CASE 14

CLINICAL DIAGNOSIS Septic shock, DIC

10.8 mmol/L

-14.7 mmol/L

. 8.5 kPa

0 %

CLINICAL DATA:

sex female cold & clammy
age 65 Temp 37 C
respiratory distress MAP 60 mmHg
collapse septic shock
CASE 15

CLINICAL DIAGNOSIS Post op

FOLLOWS CASE (14) AFTER 5 hours

pH 7.513

pCo02 ...4.04 kPa
24.7 mmol/L

BE 2.9 mmol/L
6.5 kPa

no2

CLINICAL DATA:

sex female RR 14 /min
age 65 Temp 37 C

resuscitated post op MAP 60 mmHg

CASE 16
CLINICAL DIAGNOSIS Post op

FOLLOWS CASE (15) AFTER 2 hours

22.5mmol/L

CLINICALDATA:
Resuscitated with fluids & dopamine RR 14 /min

MAP 60 mmHg
Temp 37 C

vasodilatation

CASE 17
CLINICAL DIAGNOSIS Post op

FOLLOWS CASE (16) AFTER 1 day

FI02...

CLINICALDATA:
Receiving 50% dextrose infusion RR 18 /min
Temp 36.8 C MAP 100 mmHg

CASE 18
CLINICAL DIAGNOSIS Post op

FOLLOWS CASE (17) AFTER 1 day

pH 7.540

pCo02 5.15 kPa

HCO3-.ii 34.1 mmol/L
11.5 mmol/L

PO 2 i 8.1 kPa

F102 . 30%

CLINICALDATA:
Receiving dextrose & fat infusion RR 14 /min
Temp 37.3 C MAP 70 mmHg

CASE 19

CLINICAL DIAGNOSIS Left ventricular failure

pH 7.321
pCo02........3.98 kPa
HCO03-............ 15.6 mmol/L
BE -8.4 mmol/L
P02 s 18.1 kPa

CLINICALDATA:

sex female RR 20 /min

age 73 MAP 95 mmHg
Hypovolaemia Temp 37.0 C
Diueretics vasoconstriction
CASE 20

CLINICAL DIAGNOSIS Congestive cardiac failure
& pulmonary embolism

FOLLOWS CASE (19) AFTER 3 days

7.343

.....6.06 kPa

HCO3- s 25.0mmol/L

BE . -0.5 mmol/L

.5.6 kPa

CLINICAL DATA:

sex female RR 20 /min

age 73 MAP 110 mmHg
Cyanosis Temp 35.0 C

239

CASE 21
CLINICAL DIAGNOSIS Respiratory failure

FOLLOWS CASE (20) AFTER 2 days

34.2mmol/L
BE 8.7 mmol/L
po029.2 kPa
CLINICALDATA:
sex female RR 12 /min
age 73 MAP 90 mmHg
atrial fibrilation Temp 36.7 C
IPPV
CASE 22

CLINICAL DIAGNOSIS Respiratory failure

FOLLOWS CASE (21) AFTER 6 hours

PH e 7.530
. 5.06 kPa

32.7mmol/L
BE 10.1 mmol/L
po028.6 kPa
CLINICAL DATA:
sex franale RR 13 /min
age 73 MAP 50 mmHg
IPPV Temp 36.7 C
CASE 23

CLINICAL DIAGNOSIS Respiratory failure

pH 7.240
pCO2 -ee 2.92 kPa
HCO3-.i 12.6 mmol/L

CLINICAL DATA:
sex male RR 56 /min
age 22 MAP 100 mmHg

sulphuric acid ingestion Temp 373 C

CASE 24
CLINICAL DIAGNOSIS Sulpuric acid ingestion

FOLLOWS CASE (23) AFTER 2 hours

PH oo, 7.289
pco2 ...6.38 kPa
HCO3-...coceeooes 21.3 mmol/L
BE -3.8 mmol/L
14.90 kPa

60 %

CLINICAL DATA:

sex male RR 16 /min

age 22 MAP 130 mmHg
300 ml 8.4% HCO3 over one hour Temp 37.3 C

CASE 25
CLINICAL DIAGNOSIS Sulpuric acid ingestion

FOLLOWS CASE (24) AFTER 1 hour

pH 7.410

. 3.80 kPa
HCO03- 21.1 mmol/L
p02 . 20.50 kPa
Fl102 . 60 %

CLINICAL DATA:

sex male RR 26 /min
age 22 MAP 80 mmHg
Temp 37.3

CASE 26

CLINICAL DIAGNOSIS Sulpuric acid ingestion

FOLLOWS CASE (25) AFTER 7 hours

PH 7.210
pCO2 531 kPa
15.7 mmol/L
-11.0 mmol/L
. 7.9 kPa
FI02 60 %

CLINICAL DATA:

sex male RR 20 /min
age 22 MAP 50 mmHg
Temp 37.8

CASE 27

CLINICAL DIAGNOSIS Sulpuric acid ingestion

FOLLOWS CASE (26) AFTER 1hour

pH 7.173

pco2 6.85 kPa

HCO03- 16.2 mmol/L
. -10.1 nunol/L
... 7.63 kPa

.60 %

CLINICAL DATA:

sex male RR 22 /min
age 22 MAP 60 mmHg
Temp 37.8

CASE 28

CLINICAL DIAGNOSIS Sulpuric acid ingestion

FOLLOWS CASE (27) AFTER 1 day

CLINICAL DATA:

sex male RR 18 /min
age 22 MAP 80 mmHg
Temp 37.9

CASE 29

CLINICAL DIAGNOSIS Unknown

PH 7.550

pCO2 s 7.70 kPa

HCO03-..ccooooe 49.0 mmol/L
. 20.0 mmol/L

p02 12.0 kPa

FI02 . 21 %

CLINICALDATA:
sex male
age 56

CASE 30

CLINICAL DIAGNOSIS Immediately post op

7.400
. 4.80 kPa
HCO03- . 23.9 mmol/L
. -0.9 mmol/L
P02 . 29.50 kPa
FI02 s 40 %

CLINICALDATA:

sex male RR 14 /min
age 70 MAP 80 mmHg
Temp 34.1 IPPV

CASE 31

CLINICAL DIAGNOSIS Postop

FOLLOWS CASE (30) AFTER 2 days

18.2mmol/L

. -7.8 mmol/L

. 9.88 kPa

CLINICAL DATA:

sex male RR 14 /min
age 70 MAP 50 mmHg
Temp 38.2 IPPV

Atrial fibrillation
vasoconsfiction

septic shock

CASE 32
CLINICAL DIAGNOSIS Post op

FOLLOWS CASE (31) AFTER 12 hours

pH 7.416
..4.66 kPa
24.0 mmol/L
BE . -0.7 mmol/L
p02 23.96 kPa
Fl102 60 %

CLINICALDATA:

sex male RR 16 /min
age 63 MAP 95 mmHg
Temp 38.2 IPPV

240

CASE 33
CLINICAL DIAGNOSIS Post op

FOLLOWS CASE (32) AFTER 3 days

. 12.08 kPa
HCO03-....... ... 24.5 mmol/L
0.0 mmol/L
p02 . 12.08 kPa
Fl102 .40 %

CLINICAL DATA:

sex male RR 30 /min

age 63 MAP 120 mmHg
Temp 37.0 IPPV

atrial fibrilation extubated

CASE 34

CLINICAL DIAGNOSIS Ischaemic faict

7.48
pCO2 . . 2.79 kPa
. 20.2 mmol/L
BE . -4.3 mmol/L
P02 4.23 kPa
CLINICAL DATA:
sex male RR 20 /min
age 68 Temp 36.8 C

sepsis from gangrenous toe
slight dehydration

MAP 100 mmHg

CASE 35
CLINICAL DIAGNOSIS Ischaemic faict
FOLLOWS CASE (34) AFTER 1 hour

pH ------------ 7.500 N 8 oo eeeee 128 mmol/L

. 17.8 mmol/L WBC oo 21.2
. -4.8 mmol/L Urea........ 85
po2 ..3.38 kPa
CLINICAL DATA:
sex male RR 20 /min
age 68 Temp 36.8 C
sepsis from gangrenous toe MAP 100 mmHg
cyanosis tachycardia
CASE 36

CLINICAL DIAGNOSIS Ischaemic farct
FOLLOWS CASE (35) AFTER 1 hour

7.46

18.9mmol/L
BE . -6.8 mmol/L
p02 7.03 kPa
Fl102 100 %

CLINICAL DATA:

sex male RR 20 /min

age 68 Temp 38.0 C
sepsis from gangrenous toe MAP 100 mmHg

CASE 37

CLINICAL DIAGNOSIS Ischaemic farct/
respiratory failure

FOLLOWS CASE (36) AFTER 3 hours

7.500

. 29.8 mmol/L

6.3 mmol/L

CUNICAL DATA:
sex male RR 20 /min
age 68 Temp 38.5 C

sepsis from gangrenous toe MAP 100 mmHg

CASE 38
CLINICAL DIAGNOSIS MI ARDS
FOLLOWS CASE (37) AFTER 3 days

pH 7.413

.....4.85 kPa

FI02 60 %

CLINICAL DATA:

sex male RR 20 /min
age 68 Temp 38.5 C

sepsis from gangrenous toe MAP 90 mmHg

CASE 39
CLINICAL DIAGNOSIS MI ARDS

FOLLOWS CASE (38) AFTER 1 day

Y= 7.01
pCo02 9.99 kPa
HCO03- 19.3 mmol/L
BE . -12.6 mmol/L
PO 2 i 4.60 kPa

CLINICAL DATA:

sex male RR 0 /min
age 68 MAP 0 mmHg
cardiac arrest

CASE 40

CLINICAL DIAGNOSIS Collapse / Cardiac arrest

pH 7.46
pCO02.......3.36 kPa
HCO03-.... 22.2 mmol/L
BE . -2.7 mmol/L
p02 10.50 kPa

.35 %

CLINICAL DATA:

sex male RR 26 /min
age 76 MAP 50 mmHg
collapse due to internal bleeding ~ Temp 35.0 C

CASE 41
CLINICAL DIAGNOSIS Mesenteric embolism, post op

7.259

...4.46 kPa

15.2 mmol/L

-10.2 mmol/L

CLINICAL DATA:

sex male RR 16 /min

age 76 MAP 65 mmHg
Laparotomy - no mesenteric embolus Temp 37.0 C

CASE 42

CLINICAL DIAGNOSIS Collapse Ml (7)

CLINICAL DATA:

sex male RR 10 /min
age 72 MAP 90 mmHg
intubated IPPV Temp 37.0 C

CASE 43
CLINICAL DIAGNOSIS Anoxic cerebral damage
FOLLOWS CASE (42) AFTER 8 hours

7.430

pCo02 3.99 kPa
HCO03- e 22.2mmol/L

-2.1 mmol/L

10.11 kPa

CLINICALDATA:

sex male RR 30 /min

age 72 MAP 140 mmHg
fitting Temp 36.5 C

CASE 44

CLINICAL DIAGNOSIS Collapse

CUNICAL DATA:
sex male RR 0 /min
age 61 MAP 0 mmHg

cardiac arrest Temp 36.0 C

CASE 45
CUNICAL DIAGNOSIS Anoxic cerebral damage

FOLLOWS CASE (44) AFTER 18 hours

pH 7.618

pCO2 . 2.90 kPa
HCO3-..oor 28.5 mmol/L
BE . 45 mmol/L
P02 s 18.35 kPa
Fl102... .40 %

CLINICALDATA:

sex male RR 14 /min
age 61 MAP 80 mmHg
Temp 37.0 C

241

CASE 46

CLINICAL DIAGNOSIS MI. CVA post APSAC

pH
PCO2 -meee 6.58 kPa
HCO03-............... 24.0 mmol/L

P J— 11.30 kPa

.20 %

CUNICAL DATA:

sex male RR 28 /min
age 33 MAP 80 mmHg
CT scan: large infarct Temp 35.6 C

CASE 47
CLINICAL DIAGNOSIS CVA

FOLLOWS CASE (46) AFTER 8 hours

23.1 mmol/L

1.6 mmol/L

CLINICAL DATA:

sex male RR 15 /min

age 33 MAPIOOmmHg
Temp 36.2 C

CASE 48

CLINICAL DIAGNOSIS CVA

FOLLOWS CASE (47) AFTER 3 days

pH 7.20

8.44 kPa

20.7 mmol/L
BE -4.6 mmol/L

15.15 kPa

FI102 .. 100 %
CLINICAL DATA:
sex male RR 15 /min
age 33 MAP 80 mmHg
extubated Temp 35.8 C
brain dead
CASE 49

CLINICAL DIAGNOSIS Pancreatitis

PH 7.30
5.10 kPa
19.6 mmol/L
BE -6.1 mmol/L
po02 14.20 kPa
Fl102 50 %
CLINICAL DATA:
sex female
age 74

vasoconstriction

CASE 50

CLINICAL DIAGNOSIS Unknown

7.55
pCO2 s 6.90 kPa
. 44.01/L
17.0 mmol/L
p02.......9.70 kPa
CLINICAL DATA:
sex male
age 71

CASE 51

CLINICAL DIAGNOSIS Post op aortic aneurism repair

pH 7.451
PCO2 oo, 5.28 kPa
28.0 mrnol/L
4.2 mmol/L
....7.68 kPa
F10260 %

CLINICAL DATA:

sex male RR 14 /min
age 68 MAP 80 mmHg

Temp 395 C
CASE 52

CLINICAL DIAGNOSIS Post op aortic aneurism repair

FOLLOWS CASE (51) AFTER 9 days

pH 7.502
pCoO2........4.79 kPa
HCO03-... 29.9 mmol/L
6.0 mmol/L
10.70 kPa
Fl02... .40 %
CLINICAL DATA:
sex male RR 34 /min
age 68 MAP 95 mmHg
Temp 37.0 C
CASE 53

CLINICAL DIAGNOSIS Postop

pH 7.54
pCo02 ...3.29 kPa
HCO3-...coceeoees 21.4 mmol/L
BE 0.8 mmol/L

..... 5.90 kPa
FI02... 40 %
CLINICAL DATA:
sex male RR 16 /min
age 82 MAP 75 mmHg

Temp 375 C

CASE 54

CLINICAL DIAGNOSIS Post op

FOLLOWS CASE (53) AFTER 13 hours

7.49
pcCo23.83 kPa
HCO03- 23.7 mmol/L

CLINICAL DATA:

sex male RR 16 /min
age 82 MAP 85 mmHg
Temp 37.0 C

CASE 55
CLINICAL DIAGNOSIS Postop

FOLLOWS CASE (54) AFTER 2 weeks

7.41
pCco2 ..2.59 kPa

12.5 mmol/L
BE . -9.2 mmol/L

14.60 kPa
FI102 28 %

CLINICALDATA:

sex male RR 15 /min

age 82 MAP 100 mmHg
Temp 37.0 C

CASE 56

CLINICAL DIAGNOSIS LVF, Diabetic

HCO03- 21.9 mmol/L
BE . -5.9 mmol/L
...7.50 kPa

Fl102...

CLINICALDATA:
sex male

age 53

Acute SOB

GOAD

CASE 57
CLINICAL DIAGNOSIS LVF, Diabetic

FOLLOWS CASE (56) AFTER 1 hour

pco2 . 6.07 kPa
20.7 mmol/L
BE -5.8 mmol/L

FI02 . 28 %
CLINICAL DATA:

sex male
age 53

CASE 58
CLINICAL DIAGNOSIS LVF, Pneumonia, Diabetic

FOLLOWS CASE (57) AFTER 4 horns

pH 7.356
pPCO2....488 kPa
HCO03-... . 20.7 mmol/L
BE . -3.6 mmol/L
po02 8.60kPa
FI102 .. 28 %

CLINICAL DATA:
sex male
age 53

242

CASE 59
CLINICAL DIAGNOSIS LVF, Diabetic, Cardiac arrest

FOLLOWS CASE (58) AFTER 3 days

7.016

HCO03-.......

[= -13.4 mmol/L
po02 67.40 kPa
FI102 100 9,

CLINICAL DATA:
sex male
age 53

CASE 60
CLINICAL DIAGNOSIS LVF

FOLLOWS CASE (59) AFTER 1 hour

pH . 7.258

BE ..
p02 s » 8.70 kPa
FT02 s e 24 9,

CLINICAL DATA:

sex male

age 53

Chest X-ray: pulmonary oedema

CASE

10

11

12

13

14

15

16

17

18

SYSTEM

partcomp metacid 0.9782

partcomp metacid 0.9782

comp resp alk 0.4822
resp alk & metacid 0.3707
partcomp resp alk 0.1247

uncomp resp alk 0.9624

respiratory acidosis 0.6691

partcomp metacid 0.9782

resp acid & met acid 0.8884

comp resp alk 0.5124
resp alk & metacid 0.3939

uncomp resp alk 0.3158

normal blood gases 0.2602
measurementerror0.1817
metacid & met alk 0.1046

normal blood gases 0.7045
uncomp resp alk 0.1290
measurementerror 0.1024

uncomp met alk 0.7284
resp alk & metalk 0.1367

metabolic acidosis 0.5629
comp resp alk 0.2245
resp alk & metacid 0.1741

resp acid & metacid 0.6932
uncomp metacid 0.2945

partcomp metacid 0.9782

uncomp resp alk 0.6254
resp alk & metalk 0.3126

uncomp resp alk 0.6905
normal blood gases 0.1724
measurementerror 0.1082

resp alkalosis 0.6142
measurementerror 0.3769

uncomp metalk 0.8497
resp alk & metalk 0.1251

EXPERT

partcomp metacid

partcomp metacid

comp resp alk

uncomp resp alk

uncomp resp acid

resp alk & metacid

resp acid & metacid

comp metacid

normal blood gases

normal blood gases

normal blood gases

partcomp metacid

resp acid & metacid

resp acid & metacid

uncomp resp alk

uncomp resp alk

part comp resp alk

uncomp met alk

SENIOR

partcomp met acid

resp alk & met acid

part comp resp alk

uncomp resp alk

uncomp resp acid

resp alk & metacid

resp acid & metacid

partcomp metacid

comp metacid

normal blood gases

normal blood gases

partcomp metacid

resp acid & metacid

partcomp metacid

partcomp met alk

normal blood gases

uncomp resp alk

uncomp met alk

JUNIOR

part comp met acid

part comp met acid

comp resp alk

uncomp resp alk

partcomp resp acid

part comp met acid

uncomp resp acid

comp resp alk

comp resp alk

normal blood gases

comp metalk

partcomp met acid

resp acid & met alk

uncomp met acid

uncomp resp alk

comp resp alk

partcomp resp alk

partcomp met alk

Table A4.1 Summary of Diagnoses for Acid-Base Balance

243

CASE

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

SYSTEM

low 11C03 with pC02 0.5448

partcomp metacid 0.4335

uncomp resp acid 0.5615
normal blood gases 0.2889

resp acid & metalk 0.7259
partcomp metalk 0.2056

uncomp metalk 0.7823
resp alk & metalk 0.1966

partcomp metacid 0.9782

resp acid & metacid 0.9086

resp alkalosis 0.4731
measurementerror 0.3068
metacid & metalk 0.2092

uncomp met acid 0.9153

resp acid & metacid 0.9895

partcomp metacid 0.4842

measurementerror 0.2587
metacid & metalk 0.1847

partcomp met alk 0.9782

normal blood gases 0.7734
measurementerror 0.1080

comp resp alk 0.4522
resp alk & met acid 0.3476

partcomp metacid 0.1386

normal blood gases 0.6083
uncomp resp alk 0.1979
measurementerror 0.1148

uncomp resp acid 0.9624

partcomp resp alk 0.9358

partcomp resp alk 0.9748

partcomp resp alk 0.8053
resp alk & met acid 0.1732

resp alk & metalk 0.5377
uncomp metalk 0.4478

normal blood gases 0.7503

measurementerror 0.1018

EXPERT

uncomp met acid

uncomp resp acid

comp resp acid

uncomp met alk

partcomp metacid

resp acid & metacid

comp metacid

partcomp metacid

resp acid & metacid

comp met acid

partcomp met alk

normal blood gases

comp met acid

normal blood gases

uncomp resp acid

part comp resp alk

resp alk & metacid

comp resp alk

uncomp met alk

normal blood gases

SENIOR

partcomp met acid

uncomp resp acid

comp resp acid

uncomp metalk

partcomp metacid

uncomp resp acid

comp resp alk

uncomp metacid

resp acid & met acid

partcomp met acid

partcomp met alk

normal blood gases

partcomp met acid

normal blood gases

uncomp resp acid

partcomp resp alk

partcomp resp alk

partcomp resp alk

uncomp metalk

normal blood gases

JUNIOR

partcomp metacid

part comp resp acid

resp acid & met alk

uncomp met alk

partcomp metacid

partcomp met acid

uncomp resp alk

uncomp metacid

uncomp met acid

resp alk & metacid

resp alk & met alk

normal blood gases

partcomp met acid

uncomp resp alk

uncomp resp acid

resp alk & metacid

uncomp resp alk

resp alk & metacid

resp alk & met alk

uncomp resp alk

Table A4.1 Summary of Diagnoses for Acid-Base Balance (continued)

244

CASE

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

SYSTEM

resp acid & metacid 0.9918

resp alkalosis 0.8370
resp alk & metacid 0.1007

metabolic acidosis 0.9821

resp acid & metacid 0.9735

resp alkalosis 0.3976
comp resp alk 0.2793
resp alk & metacid 0.2147

resp acid & metacid 0.9353

resp alk & metalk 0.9914

uncomp resp acid 0.4703
resp acid & metacid 0.3390

uncomp resp alk 0.9582

resp acid & metacid 0.9892

metabolic acidosis 0.9597

partcomp met alk 0.9809

uncomp metalk 0.8612

resp alk & metalk 0.5015
uncomp metalk 0.4836

uncomp resp alk 0.9055

uncomp resp alk 0.964

comp resp alk 0.4522
resp alk & metacid 0.3476
part comp resp alk 0.1386

resp acid & metacid 0.9824

resp acid & metacid 0.7398
uncomp metacid 0.2470

low HC03 withpC02 0.5788

metabolic acidosis 0.3411

resp acid & metacid 0.9735

uncomp resp acid 0.9427

EXPERT

resp acid & metacid

resp alk & met acid

uncomp metacid

resp acid & metacid

comp resp alk

uncomp metacid

partcomp resp alk

uncomp resp acid

uncomp resp alk

part comp resp acid

uncomp metacid

partcomp met alk

uncomp met alk

uncomp met alk

uncomp resp alk

partcomp resp alk

comp resp alk

resp acid & metacid

resp acid & metacid

uncomp met acid

resp acid & metacid

uncomp resp acid

SENIOR

resp acid & metacid

uncomp resp alk

uncomp metacid

resp acid & metacid

comp resp alk

resp acid & met acid

uncomp resp alk

uncomp resp acid

partcomp resp alk

resp acid & met acid

uncomp met alk

uncomp met alk

partcomp met acid

partcomp resp alk

uncomp resp alk

partcomp resp acid

comp resp alk

resp acid & metacid

resp acid & met acid

comp metacid

resp acid & metacid

uncomp resp acid

JUNIOR

resp acid & met acid

uncomp resp alk

partcomp met acid

resp acid & met acid

partcomp resp alk

uncomp resp acid

resp alk & metalk

uncomp resp acid

uncomp resp alk

resp acid & metacid

partcomp met acid

partcomp metacid

partcomp met acid

uncomp metalk

uncomp resp alk

uncomp resp alk

comp met acid

resp acid & metacid

resp acid & metacid

comp met acid

resp acid & metacid

resp acid & metacid

Table A4.1 Summary of Diagnoses for Acid-Base Balance (continued)

245

APPENDIX V

LIPID PHYSIOLOGY AND HYPERLIPIDAEM IA
A5.1 Physiology n

Lipids are compounds containing carbon, hydrogen and oxygen which are an essential
component of the body structure and form an important source of energy for tissue cells.
They are obtained directly from dietary intake or by synthesis in the body from two carbon
units (acetate) derived from carbohydrates and amino acids. As well as being metabolized
immediately, lipids form a large part of the body's energy store in the form of adipose
tissue. They are an ideal form in which to store energy since they have a higher energy

yield than either proteins or carbohydrates.

There are three types of lipids: simple lipids (including cholesterol and triglycerides),
compound lipids and derived lipids. Since they themselves are insoluble in water, lipids
must be converted into a soluable complex, by binding to apoproteins, before they can be
transported to the body tissues in the blood plasma. The complexes that carry lipids in the
plasma are called lipoproteins, of which there are several types, depending on the types of
apoproteins and the proportion of cholesterol and triglyceride. The different types are:
chylomicrons, very low density lipoproteins (VLDL), low density lipoproteins (LDL),
intermediate density lipoproteins (IDL) and high density lipoproteins (HDL).

Most of the lipid intake in the diet is in the form of triglycerides which are carried from the
intestine to the tissues by chylomicrons. Triglycerides are also synthesized by the body in
tthe liver and transported from there to the tissues by VLDL. In the tissues, triglycerides are
removed from the chylomicrons and VLDL to leave liproprotein remnants which are then
metabolized to form LDL. The LDL, which contains much of the cholesterol, is taken up

by tissue cells through LDL receptors.

Some cholesterol is derived directly from the diet (about 25%) but most is synthesized by
the tissues themselves, primarily in the liver. Cholesterol is carried from the liver to tissue
cells by LDL and from the tissues back to the liver by HDL. The level of lipids in the
plasma depends on the rate of formation of chylomicrons in the intestine and VLDL and
LDL in the liver and the rate of metabolism of triglycerides and removal of LDL in the

tissues.

246

A5.2 Measurements and Observations

The normal laboratory test for plasma lipids measures cholesterol and triglyceride levels; in
some cases, HDL is also measured. Provided that the triglceride level is less than 5
mmol/L, LDL can be calculated from values of cholesterol, HDL and triglceride using:

LDL = cholesterol - HDL - triglyceride/2.2

where all measurements are in mmol/L.

An indication of the levels of VLDL and chylomicrons can be obtained by observing
plasma samples stored in a test tube. Excess VLDL is indicated by a cloudy appearance of

the sample and excess chylomicrons appear as a creamy layer on the top.

Different lipoproteins move with different velocities under the influence of an electric field
due to differences in the charges carried by the molecules. This phenomenon is the basis of
lipid electrophoresis in which a plasma sample is subjected to an electric field and the
resulting pattern, formed by the dispersion of the different lipoproteins, is analysed. A
classification of hyperlipidaemia produced by the World Health Organization is based on
electrophoresis patterns (Types I, Ha, lib, 111, IV, V).

Xanthomas are tumours caused by deposits of lipids. There are several types of xanthoma:
tendon xanthomas can appear on tendons of the hands, ankle and knee; tuberous
xanthomas appear as a swelling of the affected area; eruptive xanthomas are small, flat
nodules on the skin; linear palmar xanthomas are linear lesions occurring on the palms of
the hands, in the strain creases.

A5.3 Hyperlipidaemia

The presence of abnormally high plasma lipid levels is called Hyperlipidaemia and is
associated with an increased risk of cardiovascular disease. A high level of LDL can cause
cholesterol to be deposited on the smooth muscle of arteries (artheroma) leading to
restricted blood flow. Plasma lipid levels are affected by diet, smoking habits and exercise
as well as genetic and hormonal influences. The diagnosis of the various types of
hyperlipidaemia can be made after consideration of the patient's family history, plasma lipid
levels (laboratory measurement), stored plasma appearance and cutaneous signs
(xanthoma). It is particularly important to identify hereditary hyperlipidaemia since the

patient's prognosis in these cases is much worse.

Hyperlipidaemia can be a primary disorder or can be secondary to an underlying disease

state such as diabetes mellitus, alcoholism or renal failure. For about 25% of patients with

247

hyperlipidacmia, it is a secondary disorder (Mann & Ball, 1985) and in these cases the

underlying disease is normally treated in the first instance.

Primary hyperlipidaemia can be divided into three broad categories according to the levels
of plasma cholesterol and triglyceride: raised triglyceride only, raised cholesterol only and
combined raised triglyceride and cholesterol. Raised triglyceride with a normal cholesterol
level is an inherited condition which can be classified as endogenous (caused by over

synthesis of triglyceride) or exogenous (caused by inadequate handling of ingested lipids).

Raised cholesterol with a normal triglyceride level (hypercholesterolaemia) can be classified
into three types. If the raised cholesterol is due to a raised level of HDL, the condition can
be left untreated since a raised HDL level is associated with a decreased risk of coronary
disease. Familial monogenic hypercholesterolaemia is caused by a genetic defect in the LDL
receptors on the surface of tissue cells, leading to a build up of LDL and hence plasma
cholesterol. This disorder is indicated by a high or very high level of cholesterol, the
presence of tendon xanthomas and a family history of ischaemic heart disease. Drug
treatment is preferred to a modified diet alone since this is usually ineffective - without
treatment there is a great risk of myocardial infarction and early death (under 60 years of
age). Familial polygenic hypercholesterolaemia is quite commonly occurring and is
indicated by a high cholesterol level with no strong family history of ischaemic heart
disease. This condition usually responds well to dietary modification alone.

There are three types of combined hyperlipidaemia, in which cholesterol and triglyceride
levels are both raised. Type Il hyperlipidaemia (from the WHO classification) occurs when
lipoproteins are not adequately broken down and converted to LDL.

This disorder is associated with an early incidence of peripheral vascular disease and the
appearance of tuberous and linear palmar xanthomas. Familial combined hyperlipidaemia is
a hereditary disorder that is indicated by high LDL and VLDL, the absence of xanthomas
and a strong family history of ischaemic heart disease and/or raised cholesterol and
triglyceride. Drug treatment can be used if there is no response to modified diet alone. In
cases where there is no strong family history, familial polygenic hyperlipidaemia should be
suspected and like familial polygenic hypercholesterolaemia this disorder should respond to

amodified diet.

248

KNOW

DATA VARIABLES

LED G E

APPENDIX VI

BASE FOR HYPER

FH raised cholesterol

LIPID AEM

1A

cholesterol mmol/L present
upper limit 20.000 absent
lower limit 0.000 unknown

mean value none

std dev none FH raised chol & TGC
default none present
absent

blood pressure mmHg unknown

upper limit 200.000

lower limit 0.000 FHIHD

mean value none aged over 60

std dev none aged SO to 60

default none aged below SO
. . unknown

triglyceride mmol/L

upper limit 20.000 FHPVD

lower limit 0.000
mean value none

aged above 60
aged 50 to 60

std dev none aged below 50
default none unknown
LDL mmol/L FHIHD&PVD
upper limit 20.000 aged above 60
lower limit 0.000 aged SO to 60
mean value none aged below 50
std dev none unknown
default none

PVD
HDL mmol/L present

upper limit 5.000 absent
lower limit ~ 0.000 unknown
mean value none

std dev none

default none FRAMES FOR DISORDERS
CLASS: Hyperlipidaemia

age years

upper limit 120
lower limit 0
mean value none
std dev none
default none

Frame for Hyperlipidaemia

Frame for Normal Lipid Levels Type of Hyperlipidaemia (0.100)
history safe triglyceride present 1.000

history safe cholesterol present 0.500

history low cholesterol present 0.500

RELATIONSHIPS FOR DATA DERIVATION
1. LDL=cholesterol-HDL-triglyceride/2.2 Frame for Primary H-L Type of Hyperlipidaemia (0.800)
history Thyroid Disease present 0.000

A ! history Liver Disease present 0.000

abdominal pain history Alcoholism present 0.000

present history Renal Disease present 0.000

absent history Obesity present 0.000

unknown history Diabetes present 0.000

history Diabetes absent 1.000

SIGNS & SYMPTOMS

lipid electrophoresis

Eo Bdbant;i . Frame for Secondary H-L Type of Hyperlipidaemia (0.100)
road B ban history Thyroid Disease present 0.200
unknown history Liver Disease present 0.200

history Alcoholism present 0.200
history Renal Disease present 0.200
history Obesity present 0.100
history Diabetes present 0.100

stored plasma
clear/creamy
cloudy/creamy

cloudy
C|9kaf Frame for Exog Raised TGC Type of Raised Triglyceride (0.500)
unknown symptom stored plasma clear/creamy 1.000

pancreatitis Frame for Endog Raised TGC Type of Raised Triglyceride (0.500)

present symptom stored plasma cloudy 0.500
absent symptom stored plasma cloudy/creamy 0.500
unknown
Frame for Raised HDL Type of Raised Cholesterol (0.200)
xanthoma history safe cholesterol present 0.300
t.uberous history high cholesterol present 0.300
Imear.palmar history raised cholesterol present 0.400
erruptive relation 1. HDL>=0.9 relation 2. LDL=<5.0
tendon
absent Frame for Famil Polygenic H-C Type of Raised Cholesterol (0.400)
unknown symptom xanthoma absent 1.000

history high cholesterol present 0.400
history FH IHD aged below 50 0.000

PATIENTHISTORY history raised cholesterol present 0.600

Sex history FH IHD aged over 60 0.600
female history FH IHD aged 50 to 60 0.400
male relation 1. LDL>=5 relation 2. HDL=<1.5
unknown

Frame for Famil Monogenic H-C Type of Raised Cholesterol (0.400)

occupation symptom xanthoma absent 0.500
unknown symptom xanthoma tendon 0.500

R history high cholesterol present 0.400
disorder history FH IHD aged below 50 0.300
unknown history FH IHD aged over 60 0.100

history FH IHD aged 50 to 60 0.600
history v. high cholesterol present 0.500
history raised cholesterol present 0.100
relation 1. LDL>=5 relation 2. HDL=<1.5

previous disorder
unknown

clinical diagnosis
unknown Frame for Raised Triglyceride Type of Primary H-L (0.200)
symptom abdominal pain present 0.900

symptom abdominal pain unknown 0.100

symptom pancreatitis present 0.900

symptom pancreatitis absent 0.100

symptom lipid electrophoresis no B band 1.000

symptom xanthoma erruptive 0.800

symptom xanthoma absent 0.200

smoking habits
0-5 per day
6-10 per day
11-15 per day
16-20 per day
over 20 per day

unknown history raised cholesterol present 0.100
history safe cholesterol present 0.400
FH raised triglyceride history low cholesterol present 0.500
present history v high triglyceride present 0.400
absent history high triglyceride present 0.300
unknown history safe triglyceride present 0.100

history raised triglyceride present 0.200

249

relation 1. triglyceride>=cholesterol

Frame for Raised Cholesterol Type of Primary H-L (0.400)
symptom stored plasma clear 1.000
symptom pancreatitis present 0.100
symptom pancreatitis absent 0.900
symptom abdominal pain present 0.100
symptom abdominal pain absent 0.900
symptom lipid electrophoresis no B band 1.000
history raised triglyceride present 0.100
history safe triglyceride present 0.900
history FH raised chol & TGC absent 0.900
history FH raised chol & TGC present 0.100
history FH raised triglyceride absent 0.900
history FH raised triglyceride present 0.100
history FH raised cholesterol present 0.900
history FH raised cholestorol absent 0.100
history FH PVD aged above 60 0.800
history FH PVD aged 50 to 60 0.100
history FH PVD aged below 50 0.100
history FH IHD & PVD aged above 60 0.800
history FH IHD A PVD aged 50 to 60 0.100
history FH IHD & PVD aged below 50 0.100

Frame for Combined Type H-L Type of Primary H-L (0.400)
symptom pancreatitis present 0.100
symptom pancreatitis absent 0.900
symptom abdominal pain present 0.500
symptom abdominal pain absent 0.500
history v. high cholesterol present 0.400
history high cholesterol present 0.300
history high triglyceride present 0.300
history safe cholesterol present 0.100
history raised cholesterol present 0.200
history v high triglyceride present 0.200
history raised triglyceride present 0.500
relation 1. triglyceride=<cholesterol

Frame for Type in H-L Type of Combined Type H-L (0.100)
symptom lipid electrophoresis broad B band 1.000

symptom stored plasma cloudy/creamy 1.000

symptom xanthoma tuberous 0.400

symptom xanthoma absent 0.100

symptom xanthoma linear palmar 0.500

Frame for Famil Combined H-L Type of Combined Type H-L (0.450)
symptom xanthoma absent 1.000

symptom lipid electrophoresis no B band 1.000
symptom stored plasma cloudy 0.500
symptom stored plasma cloudy/creamy 0.500
history FH IHD A PVD aged below 50 0.900
history FH IHD A PVD aged 50 to 60 0.100
history FH PVD aged 50 to 60 0.100
history FH IHD aged 50 to 60 0.100

history FH IHD aged over 60 0.100

history FH IHD aged below 50 0.800

history FH PVD aged above 60 0.100
history FH PVD aged below 50 0.800
history PVD present 0.900

history PVD absent 0.100

history FH raised triglyceride present 0.900
history FH raised triglyceride absent 0.100
history FH raised cholestorol present 0.900
history FH raised cholestorol absent 0.100
history FH raised chol & TGC present 0.900
history FH raised chol A TGC absent 0.100

Frame for Famil Polygenic H-L Type of Combined Type H-L (0.450)
symptom stored plasma cloudy/creamy 0.500
symptom stored plasma cloudy 0.500
symptom xanthoma absent 1.000

symptom lipid electrophoresis no B band 1.000
history FH IHD aged below 50 0.100

history FH PVD aged above 60 0.100
history FH PVD aged below 50 0.100
history FH PVD aged 50 to 60 0.800
history FH IHD A PVD aged below 50 0.200
history FH IHD A PVD aged 50 to 60 0.800
history FH IHD A PVD aged above 60 0.000
history FH.raised chol A TGC present 0.100
history FH raised cholestorol absent 0.100
history FH raised chol A TGC absent 0.900
history FH raised triglyceride absent 0.900
history FH raised cholestorol present 0.900
history FH raised triglyceride present 0.100
history PVD present 0.100

history PVD absent 0.900

history FH IHD aged 50 to 60 0.800

history FH IHD aged over 60 0.100

CLASS: CHD Risk Factor
Frame for CHD Risk Factor

Frame for High CRF Type of CHD Risk Factor (0.250)
history high BP level present 0.400

history very high BP level present 0.500
history raised BP level present 0.100

history low cholesterol present 0.100

history safe cholesterol present 0.100

history raised cholesterol present 0.200
history high cholesterol present 0.300
history v. high cholesterol present 0.300
history smoking habits 11-15 per day 0.100
history smoking habits 0-5 per day 0.100
history smoking habits 6-10 per day 0.100
history smoking habits over 20 per day 0.400
history smoking habits 16-20 per day 0.300

Frame for Moderately High CRF Type of CHD Risk Factor (0.250)
history smoking habits over 20 per day 0.200

history smoking habits 16-20 per day 0.300

history very high BP level present 0.200

history raised BP level present 0.400

history high BP level present 0.400

history v. high cholesterol present 0.100

250

history raised cholesterol present 0.300
history safe cholesterol present 0.200
history low cholesterol present 0.100
history high cholesterol present 0.300
history smoking habits 0-5 per day 0.100
history smoking habits 6-10 per day 0.100
history smoking habits 11-15 per day 0.300

Frame for Average CRF Type of CHD Risk Factor (0.250)
history smoking habits 11-15 per day 0.200
history smoking habits 6-10 per day 0.400
history smoking habits 0-5 per day 0.400
history raised cholesterol present 0.200
history low cholesterol present 0.300
history raised BP level present 0.200
history safe BP level present 0.500

history low BP level present 0.300

history v. high cholesterol present 0.100
history high cholesterol present 0.100
history safe cholesterol present 0.300

Frame for Low CRF Type of CHD Risk Factor (0.250)
history smoking habits 0-5 per day 1.000

history safe BP level present 0.500

history low BP level present 0.500

history safe cholesterol present 0.500

history low cholesterol present 0.500

CLASS: Blood Pressure Level

Frame for Blood Pressure Level

Frame for very high BP level Type of Blood Pressure Level (0.200)
relation 1. blood pressure>120

Frame for high BP level Type of Blood Pressure Level (0.200)
relation 1. blood pressure>110 relation 2. blood pressure=<120

Frame for raised BP level Type of Blood Pressure Level (0.200)
elation 1. blood pressure>100 relation 2. blood pressure=<I10

Frame for safe BP level Type of Blood Pressure Level (0.200)
elation 1. blood pressure>90 relation 2. blood pressure=<100

Frame for low BP level Type of Blood Pressure Level (0.200)
relation 1. blood pressure=<90

CLASS: Cholesterol Level
Frame for Cholesterol Level

Frame for v. high cholesterol Type of Cholesterol Level (0.200)
relation 1. cholesterol>8.5

Frame for high cholesterol Type of Cholesterol Level (0.200)
relation 1. cholesterol>7.5 relation 2. cholesterol=<8.5

Frame for raised cholesterol Type of Cholesterol Level (0.200)
relation 1. cholesterol>6.5 relation 2. cholesterol=<7.5

Frame for safe cholesterol Type of Cholesterol Level (0.200)
relation 1. cholesterol>5.5 relation 2. cholesterol=<6.5

Frame for low cholesterol Type of Cholesterol Level (0.200)
relation 1. cholesterol=<5.5

CLASS: Triglyceride Level
Frame for Triglyceride Level

Frame for v high triglyceride Type of Triglyceride Level (0.250)
relation 1. triglyceride>10

Frame for high triglyceride Type of Triglyceride Level (0.250)
elation 1. triglyceride>4 relation 2. triglyceride=<10 F

rame for raised triglyceride Type of Triglyceride Level (0.250)
relation 1. triglyceride:»1.8 relation 2. triglyceride=<4

Frame for safe triglyceride Type of Triglyceride Level (0.250)
relation 1. triglyceride=<1.8

FRAMES FOR DISEASES

CLASS: Primary disease

Frame for Primary disease

Frame for Thyroid Disease Type of Primary disease (0.160)
Frame for Liver Disease Type of Primary disease (0.160)
Frame for Alcoholism Type of Primary disease (0.160)
Frame for Renal Disease Type of Primary disease (0.160)
Frame for Obesity Type of Primary disease (0.160)

Frame for Diabetes Type of Primary disease (0.160)

EVALUATIO

CASE 1

LAB DATA:
Cholesterol
Triglyceride
LDL
HDL

FAMILY HISTORY:

IHD

CLINICAL DATA:
age

sex

Smoking Habits
Xanthoma

PVD

CASE 2

LAB DATA:
Cholesterol
Triglyceride
LDL
HDL

FAMILY HISTORY:

hid

CLINICAL DATA:
age

sex

Smoking Habits
Xanthoma

PVD

CASE 3

LAB DATA
Cholesterol
Triglyceride
LDL
HDL

FAMILY HISTORY:

IHD

CLINICAL DATA:
age

sex

Smoking Habits
Xanthoma

PVD

Stored Plasma

CASE4

LAB DATA:
Cholesterol
Triglyceride
LDL
HDL

FAMILY HISTORY:

DID
Raised Cholesterol

CLINICAL DATA:
age

sex

Smoking Habits
Xanthoma

PVD

Abdominal Pain

CASES

LAB DATA:
Cholesterol
Triglyceride
LDL
HDL

FAMILY HISTORY:

DID

CLINICAL DATA:
age

sex

Smoking Habits
Xanthoma

PVD

8.8 mmol/L
1.1 mmol/L
6.9 mmol/L
1.4 mmol/L

aged below 50

53
female
6-10/day
absent
no

9.6 mmol/L
3.8 mmol/L
6.0 mmol/L
1.9 mmol/L

aged above 60

64
female
0-5/day
absent
yes

8.7 mmol/L
2.1 mmol/L
6.6 mmol/L
1.1 mmol/L

aged above 60

60

male
0-5/day
absent
no
clear

8.9 mmol/L
2.3 mmol/L
6.7 mmol/L
1.2 mmol/L

aged above 60
yes

46

male
0-5/day
absent
no

no

8.2 mmol/L
1.3 mmol/L
6.1 mmol/L
1.5 mmol/L

aged 50-60

66

male
0-5/day
absent
yes

N

0

F

THE

APPENDIX VII

HYPERLIP

251

IDAEM IA SY

CASE 6

LAB DATA:
Cholesterol
Triglyceride

FAMILY HISTORY:
IHD

CLINICAL DATA:
age

sex

Smoking Habits
Xanthoma

Stored Plasma

CASE 7

LAB DATA:
Cholesterol
Triglyceride

FAMILY HISTORY:
DID
Raised Cholesterol

CLINICAL DATA:
age

sex

Smoking Habits
Xanthoma

CASE 8

LAB DATA:
Cholesterol
Triglyceride

FAMILY HISTORY:
IHD
Raised Cholesterol

CLINICAL DATA:
age

sex

Smoking Habits
Xanthoma
Abdominal Pain

CASE 9

LAB DATA:
Cholesterol
Triglyceride
LDL
HDL

FAMILY HISTORY:
DID

CLINICAL DATA:
age

sex

Smoking Habits
Xanthoma

PVD

Panereatisis

CASE 10

LAB DATA:
Cholesterol
Triglyceride
LDL
HDL

CLINICAL DATA:
age

sex

Smoking Habits

CASE 11

LAB DATA:
Cholesterol
Triglyceride
LDL
HDL

FAMILY HISTORY:
DID

CLINICAL DATA:
age
sex

STEM

9.8 mmol/L
1.8 mmol/L

aged 50-60

55
female
0-5/day
absent
clear

9.7 mmol/L
1.9 mmol/L

aged above 60
yes

42

female

over 20/day
absent

12.1 mmol/L
1.6 mmol/L

aged below 50
yes

33
male
0-5/day
absent
no

7.1 mmol/L
1.2 mmol/L
4.4 mmol/L
2.1 mmol/L

aged below 50

50
female
0-5/day
absent
no

no

7.1 mmol/L
2.1 mmol/L
4.8 mmol/L
1.3 mmol/L

57
female
0-5/day

7.7 mmol/L
2.4 mmol/L
5.8 mmol/L
0.8 mmol/L

aged above 60

64
female

CASE

DATA

CASE 12

LAB DATA:
Cholesterol
Triglyceride

CLINICAL DATA:
age

sex

Smoking Habits

CASE 13
LAB DATA:

Cholesterol
Triglyceride

FAMILY HISTORY:

IHD

CLINICAL DATA:
age

sex

Smoking Habits

CASE 14

LAB DATA:
Cholesterol
Triglyceride
HDL

FAMILY HISTORY:

DID

CLINICALDATA:
age

sex

Smoking Habits
Xanthoma

Stored Plasma

CASE 15

LAB DATA:
Cholesterol
Triglyceride
LDL
HDL

FAMILY HISTORY:

IHD

CLINICAL DATA:
age

sex

Smoking Habits
Abdominal Pain

CASE 16

LAB DATA:
Cholesterol
Triglyceride
LDL
HDL

FAMILY HISTORY:

IHD
Raised Cholesterol

CLINICAL DATA:
age

sex

Smoking Habits

CASE 17

LAB DATA:
Cholesterol
Triglyceride
LDL
HDL

FAMILY HISTORY:

IHD

CLINICAL DATA:
age

sex

Smoking Habits

6.9 mmol/L
3.9 mmol/L

37
male
16-20/day

7.2 mmol/L
1.3 mmol/L

aged below 50

58
male
0-5/day

12.5 mmol/l.
0.6 mmol/L
1.27 mmol/L

aged below 50

36
female
0-5/day
absent
clear

7.4 mmol/L
2.8 mmol/L
5.2 mmol/L
0.9 mmol/L

aged below 50

44

male
0-5/day
yes

6.7 mmol/L
1.4 mmol/L
4.9 mmol/L
1.2 mmol/L

aged below 50
yes

30
male
0-5/day

8.1 mmol/L
3.7 mmol/L
5.7 mmol/L
0.7 mmol/L

aged below 50

50
male
6-10/day

CASE 18

LAB DATA:
Cholesterol
Triglyceride
LDL
HDL

FAMILY HISTORY:
IHD

CLINICAL DATA:
age

sex

Smoking Habits
Stored Plasma

CASE 19

LAB DATA:
Cholesterol
Triglyceride

FAMILY HISTORY:
IHD

CLINICAL DATA:
age

sex

Smoking Habits
Xanthoma

CASE 20

LAB DATA:
Cholesterol
Triglyceride
LDL
HDL

FAMILY HISTORY:
IHD

CLINICAL DATA:
age

sex

Smoking Habits

CASE 21

LAB DATA:
Cholesterol
Triglyceride
LDL
HDL

FAMILY HISTORY:
IHD

CLINICAL DATA:
»«e

sex

Smoking Habits
Xanthoma

CASE 22

LAB DATA:
Cholesterol
Triglyceride
LDL
HDL

CLINICAL DATA:
age

sex

Smoking Habits
Xanthoma

PVD

CASE 23

LAB DATA:
Cholesterol
Triglyceride

FAMILY HISTORY:
IHD

CLINICAL DATA:
age

sex

Smoking Habits

252

9.2 mmol/L
4.5 mmol/L
6.2 mmol/L
1.0 mmol/L

aged 50-60

41

male

over 20/day
cloudy

8.4 mmol/L
2.1 mmol/L

aged 50-60

53

male
6-10/day
absent

7.7 mmol/L
2.2 mmol/L
5.4 mmol/L
1.3 mmol/L

aged 50-60

58
male
0-5/day

8.2 mmol/L
1.0 mmol/L
6.5 mmol/L
1.2 mmol/L

aged below 50

48

male
0-5/day
absent

7.7 mmol/L
0.9 mmol/L
6.1 mmol/L
1.2 mmol/L

52

male
16-20/day
absent

no

8.5 mmol/L
1.6 mmol/L

aged above 60

45
male
0-5/day

CASE 24

LAB DATA:
Cholesterol
Triglyceride
LDL
HDL

CLINICAL DATA:
age

sex

Smoking Habits
Xanthoma

CASE 25

LAB DATA:
Cholesterol
Triglyceride

FAMILY HISTORY:

IHD

CLINICAL DATA:
age

sex

Smoking Habits
Stored Plasma

CASE 26
LAB DATA:

Cholesterol
Triglyceride

FAMILY HISTORY:

IHD

CUNICALDATA:
age

sex

Xanthoma
Abdominal Pain

CASE 27

LAB DATA:
Cholesterol
Triglyceride
LDL
HDL

FAMILY HISTORY:

IHD

CLINICAL DATA:
age

sex

Smoking Habits
Xanthoma

CASE 28

LAB DATA:
Cholesterol
Triglyceride

FAMILY HISTORY:

IHD

CLINICAL DATA:
age

sex

Smoking Habits

CASE 29

LAB DATA:
Cholesterol
Triglyceride

FAMILY HISTORY:

IHD

CLINICAL DATA:
age
sex

CASE 30

LAB DATA:
Cholesterol
Triglyceride

CLINICAL DATA:
age

sex

Smoking Habits

7.8 mmol/L
3.9 mmol/L
6.5 mmol/L
1.2 mmol/L

74
female
0-5/day
tendon

7.5 mmol/L
1.2 mmol/L

aged 50-60

35
male
0-5/day
clear

6.7 mmol/L
1.1 mmol/L

aged 50-60

62
female
absent
no

6.8 mmol/L
1.1 mmol/L
5.2 mmol/L
1.1 mmol/L

aged below 50

60
female
0-5/day
absent

8.7 mmol/L
3.6 mmol/L

aged below 50

42
male
6-10/day

7.3 mmol/L
1.0 mmol/L

aged above 60

68
male

7.3 mmol/L
1.7 mmol/L

59
female
0-5/day

253

CASE 31

LAB DATA:
Cholesterol
Triglyceride

FAMILY HISTORY:

Riased Cholesterol

CLINICAL DATA:
age

sex

Smoking Habits
Xanthoma

Stored Plasma

CASE 32
LAB DATA:

Cholesterol
Triglyceride

FAMILY HISTORY:

IHD

CLINICAL DATA:
age

sex

Smoking Habits
Xanthoma

PVD

CASE 33

LAB DATA:
Cholesterol
Triglyceride

FAMILY HISTORY:

IHD

CLINICAL DATA:
age

sex

Smoking Habits
Xanthoma

CASE 34
LAB DATA:
Cholesterol

Triglyceride

HDL

FAMILY HISTORY:

IHD

CLINICALDATA:
age

sex

Smoking Habits

CASE 35
LAB DATA:

Cholesterol
Triglyceride

FAMILY HISTORY:

IHD
Rasied Cholesterol

CLINICAL DATA:
age
sex

CASE 36

LAB DATA:
Cholesterol
Triglyceride

CLINICALDATA:
age

sex

Smoking Habits

CASE 37
LAB DATA:

Cholesterol
Triglyceride

FAMILY HISTORY:

IHD

CLINICAL DATA:
age

sex

Smoking Habits

8.5 mmol/L
3.0 mmol/L

yes

39

female
0-5/day
absent
cloudy/:reamy

6.84 mmol/L
2.89 mmol/L

aged 50-60

30

male
6-10/day
absent
yes

8.9 mmol/L
3.7 mmol/L

aged 50-60

51

male
0-5/day
absent

8.4 mmol/L
2.1 mmol/L
6.5 mmol/L
0.9 mmol/L

aged above 60

54
male
0-5/day

5.9 mmol/L
0.7 mmol/L

aged below 50
yes

52
female

7.5 mmol/L
2.4 mmol/L

62
male
16-20/day

8.0 mmol/L
2.9 mmol/L

aged below 50

23
female
0-5/day

CASE 38

LAB DATA:
Cholesterol 13.1 mmol/L
Triglyceride 7.0 mmol/L

FAMILY HISTORY:
IHD aged below 50

CLINICAL DATA:

age 35

sex male
Xanthoma tuberous
Lipid Electrophoresis P band
CASE 39

LAB DATA:

Cholesterol 5.1 mmol/L
Triglyceride 6.1 mmol/L

CLINICAL DATA:

age 48

sex male
Abdominal Pain yes

Stored Plasma clear/creamy
CASE 40

LAB DATA:

Cholesterol 5.3 mmol/L
Triglyceride 6.3 mmol/L

CUNICALDATA:

age 48

sex male
Abdominal Pain yes

Stored Plasma cloudy/creamy

254

CASE EXPERT SYSTEM

1 FM H-C FM H-C 1.0

2 FC H-L FC H-L 0.879

3 FM H-C FM H-C 1.0

4 FM H-C FP H-L 0.783, FM H-C 0.209

5 FM H-C FP H-C 0.571,FM H-C 0.429

6 FM H-C FM H-C 1.0

7 FM H-C FP H-L 0.463, FC H-L 0.463

8 FM H-C FM H-C 1.0

9 RAISED HDL RAISED HDL 1.0

10 RAISED HDL COMBINED TYPE 0.667, RAISED HDL 0.267
11 FP H-L COMBINED TYPE 0.489, FP H-C 0.483

12 FP H-L COMBINED TYPE 0.685, FP H-C 0.164

13 FP H-C FP H-C 0.657, RAISED HDL 0.219, FM H-C 0.109
14 FM H-C FM H-C 1.0

15 FC H-L FC H-L 0.747

16 RAISED HDL RAISED HDL 0.986

17 FC H-L FC H-L 0.741,FM H-C 0.103

18 FC H-L FP H-L 0.889,FC H-L 0.111

19 FC H-L FP H-L 0.723

20 FP H-L FP H-L 0.615, FM H-C 0.137

FP H-L is Familial Polygenic Hyperlipidaemia FC H-L isFamilial Combined Hyperlipidaem ia

FP H-C is Familial Polygenic Hypercholesterolaemia FM H-C is Familial Monogenic Hypercholesterolaemia

Table A7.1 Summary of Diagnoses for Hyperlipidaemia

255

CASE EXPERT SYSTEM

21 FM H-C FM H-C 1.0

22 FP H-C FP H-C 0.667, FM H-C 0.333

23 FM H-C FP H-C 0.768, FM H-C 0.128, RAISED HDL 0.104
24 FM H-C FM H-C 0.939

25 FM H-C RAISED CHOLESTEROL 1.0

26 FP H-C FP H-C 0.714, RAISED HDL 0.197

27 FP H-C FM H-C 0.956

28 FC H-L FC H-L 0.773

29 FP H-C FP H-C 0.864, RAISED HDL 0.104

30 FP H-C FP H-C 0.657, RAISED HDL 0.219, FM H-C 0.109
31 FC H-L FC H-L 0.489, FP H-L 0.489

32 FC H-L FP H-C 0.318, FC H-L 0.268, FP H-L 0.239

33 FC H-L FP H-L 0.819, FC H-L 0.102

34 FC H-L COMBINED TYPE 0.545, FP H-C 0.39

35 NORMAL NORMAL 0.679, RAISED HDL 0.235

36 FP H-L COMBINED TYPE 0.685, FP H-C 0.164

37 FC H-L FC H-L 0.75

38 TYPE IE H-L TYPE HIH-L 1.0

39 EXOGENOUS EXOGENOUS RAISED TGC 1.0

RAISED TGC

40 ENDOGENOUS ENDOGENOUS RAISED TGC 1.0
RAISED TGC

FP H-L is Familial Polygenic Hyperlipidaem ia FC H-L is Familial Combined Hyperlipidaemia

FP H-C is Familial Polygenic Hypercholesterolaemia FM H-C is Familial Monogenic Hypercholesterolaemia

Table A7.1 Summary of Diagnoses for Hyperlipidaemia (continued)

256

APPENDIX VIII
OVERVIEW OF PROLOG
A8.1 Foundations

The computer language PROLOG (PROgramming in LOGic) was developed in the early
1970s by Colmeraurer and Roussel as a logical theorem prover based on the principle of
resolution (Robinson, 1965). A number of different implementations of PROLOG exist -
the standard version was developed at Edinburgh University for use on a DECsystemIO

computer and is usually refered to as Edinburgh syntax or DEC10 PROLOG.

The language is built from basic data objects called terms, of which there are three types:
constants, variables and structures. Constants can be integer numbers or atoms (denoted by
a string of characters starting with a lower case letter or enclosed in single quotes). Certain
special symbols such as {}, [], +, * are also defined as atoms. Depending on the
implementation of PROLOG used strings and real numbers may also be available as

constant types.

Variables are denoted by character strings starting with a capital letter or underscore and

represent any other, unspecified PROLOG term. Examples of variables are:
A Attribute Value V _value _

The variable denoted by a singleunderscore,is the special anonomous variable that can
represent several unrelated terms in the same expression when it is not necessary to know

what the terms are, merely that they exist.

Structures are compound terms comprising afunctor and one or more arguments. The
functor is described by its name, which must be an atom, and the number of arguments it
takes, called its arity. An example is given below of a PROLOG structure with the functor

current_data/3 (ie its name is cuirent_data and its arity is 3)
current_data(lab_data,"pH",7.41)

A list is a PROLOG structure that has a special notation: a sequence of terms separated by

commas and enclosed in square brackets. For example

[symptom,lab_data,history]

257

The empty list [] is an atom and other lists are represented in the standard PROLOG syntax
as structures with the functor. and two arguments, the head (which is the first element of
the list) and the tail (which is the list of all remaining elements). Using this standard syntax,
the list presented above would be written:

.(symptom,,(lab_data,.(history,[])))

which is rather cumbersome - hence the special square bracket notation. Within the square

brackets, the head and tail of the list can be explicitly represented using the symbol I:
[symptomllab_data,history]

PROLOG clauses are structures comprising a head (distinct from the head of a list) and a
body, separated by the symbol(which can be read as if). The head of a clause is a goal
and the body is a sequence of goals, so that the clause

A:-B,C.

can be read as the goal A is true ifsub-goals B and C are true. A goal is a normal PROLOG
structure with a functor and arguments - its functor is known as a predicate. The clause

presented above might take the form:
has_been_observed(X):-variable(X),current_data(variable,X,Value).
A8.2 Programming in PROLOG

A PROLOG program is a database of clauses that are of two types: clauses that have no
body (ie they are always true) can be considered as facts; clauses that have one or more
goals in the body can be considered as rules. The program is run by posing a query,
comprising the special symbol ?- and a sequence of one or more goals. The PROLOG
interpreter attempts to satisfy the goals by matching them with the heads of clauses in the

database, returning the answeryes if the goals succeed or no if they do not.

#1 observation("'pH™).
#H2 obseravtion("'pC02™).
#3 current_data(lab_data,"pC02",5.2).

H#4 has_been_observed(X) :-
observation(X),current_data(lab_data,X, ,Value).

Figure A8.1 A Simple PROLOG program. The numbers for the clauses have been added

to allow for reference in the text.

258

Consider, for example, the simple program shown in Figure A8.1. After posing the query
?- has_been_observed("pC02"), the PROLOG interpreter attempts to satisfy the goal
has_been_observed by searching the database for a clause with the head
has_been_observed. The match is found with clause #4, its variable argument is
instantiated to "pC02", and an attempt is made to satisfy the sub-goals in its body. The first
sub-goal observation(X) has the same variable argument as has_been_observed, which has
already been instantiated to "pC02". So the interpreter searches for observation("pC02"),
which it finds as clause #2, thus satisfying the sub-goal. The next sub-goal is evaluated by
searching for current_data(lab_data,"pC02",Value) - a match is found with clause #3 with
the variable Value instantiated to 5.2. Both the sub-goals in the body of has_been_observed

are now satisfied, so the original goal succeeds and the query returns yes.

Suppose that the query ?-has_been_observed(X) is posed. As before, clause #4 is matched
and the sub-goal observation(X) is persued. However in this instance the argument to
observation/1 is an uninstantiated variable and the first match is found with clause #1,
instantiating X to "pH". A search is now made for current_data(lab_data,"pH",Value), but
no match is found with the clauses in the database. The PROLOG interpreter now exhibits
a behaviour called backtracking. Since the second sub-goal to has_been_observed failed,
the interpreter backtracks to the first sub-goal and attempts to re-satisfy it by finding a
different match for observation(X) and hence a different instantiation for the variable X.
The sub-goal is re-satisfied by matching with clause #2, instantiating X to "pC02". The
second sub-goal current_data(lab_data,"pC02", Value) now succeeds by matching with
clause #3 and the original goal succeeds with its argument instantiated to "pC02" - the

query returns yes and the the value "pC02".

The clauses that make up a PROLOG program are placed on the database using the
predicate assert/1 which is defined as part of the language (the argument to assert is the
clause to be added to the database). Clauses can be removed from the database by using the
predicate retract/1. The two predicates assert/1 and retract/1 can can be used as sub-goals in
PROLOG clasues themselves, providing the facility to dynamically alter the database whilst
a program is running - note that there is no distinction between those clauses asserted as
part of the program itself and those asserted whilst it is running.

Another important feature of PROLOG programming is the use of recursion (ie clauses that
include themselves as a sub-goal in the body). Consider for example the simple recursive
definition for the clause member/2 which checks whether its first argument is a member of

the list in its second argument:

259

member(A,[A|L]).

member(A,[B]|L]):-
member (A, L) .

The first clause for member/2 states that any element A is a member of the list which has A
as its head. The second clause states that A is a member of a list if it is a member of the tail

of the list.

The matching of two terms by the PROLOG interpreter is achieved using the principle of
resolution discovered by Robinson (1965) which finds the most general match (ie the one
with the least number of variable instantiations). Generally speaking, the head of a logical
clause could contain any number of terms - the PROLOG notation is restricted to hom
clauses in which the head contains one term at the most. This restriction allows a more
efficient implementation of the resolution theorem proven A full discussion of the relation
of PROLOG to logic is given in Clocksin & Mellish (1984) which also serves as the
standard for Edinburgh syntax PROLOG.

260

APPENDIX IX
PROGRAM LISTINGS

The complete Laboratory Data Analysis System consists of a top level program from which
knowledge bases can be loaded from application sub-directories and where the
FRAMBUILDER knowledge editing environment and the diagnostic system can used with

the selected knowledge base. The files that make up the complete system are:

In the top level directory (\lda):

Ida.run front end and overall supervisor
utility.mod some general utilities

applics.arc archive of the applications available
lexicon.cor the core lexicon (domain independent)
builder.run loading FRAMEBUILDER

build.utl FRAMEBUILDER utilities

build.gen 1st level of FRAMEBUILDER
build.tre 2nd level of FRAMEBUILDER
build.frm 3rd level of FRAMEBUILDER

dasystem.run

loading the diagnostic system

das.utl diagnostic system utilities
das.blk blackboard control and triggering
das.ks knowledge sources

das.ipt data input/output facilities
das.dia dialogue management

In each application sub-directory:
kbase.dat knowledge base
patients.dat patient archive

lexicoadat application-specific lexicon

The system is supplied on two floppy disks - one with the files listed above and the other
with a version of the Prolog 2 environment. The machine used must be compatible with an
IBM AT with a hard disk and at least 512k of working memory. It should also be licensed
to run Prolog 2. The Prolog 2 disk should be copied into the directory \P2 and the system
files intoMda. The application subdirectories are named Mda\0, Mdal\l, etc - these should be
recreated on the hard disk and copied from the floppy disk. To run the system type Idas in
the\P2 directory.

261

/* lda.run front end and overall supervisor */

I* Predicates defined in this file:
run_ldalo

set_state/0
load_application_directory/0
save_application_directory/0
save_applications_directory/0
draw _lda_backdrop/0
remove_lda_backdrop/0

draw _lda_footer/0
set_lda_menu/0
remove_lda_roenu/0
display_lda_m aster/0
lda_action/1
define_menu_entry/1
select_application/o
set_current_application/1
display_application/0
add_application/0
set_application_directory/1
select_index/1
clear_knowledge_base/0

/*

*/

ki
KICKOFF >/

run_Ilda:-

set_state,

open_module(lda_mod daWutility .mod",none,actual),
load_application_directory,

draw_lda_backdrop,

display_app ation,

display_lda_master,

save_application_directory,!,

close_module(lda_mod),

remove_lda_backdrop.

/* set the state of the Prolog2 environment */
set_state

state (window _exception,_,lda_exception),

state (decimals,_, 3) .

/* load the applications */

load_application_directory:-
exists_file("\\lda\\ap cs.arc™),
reconsult(”\\lda\\applics.arc").

load_application_directory:-
create ("WldaWapplics .arc™) .

/* save the applications */

save_application_directory:-

(delete_file ("WldaWapplics .trrp”) ;true) ,
create (daWapplics _trip™),
create_stream (applies, readwrite, asc
open(applies,readw e),
state(output,_,applies),
write_clauses(application/2),
write_clauses(current_application/2),
close(applies),
delete_stream(applies),
(delete_file ("WldaWappl
rename_file ("WldaWapp

, file ("WldaWapplics .trtp™)),

cs .arc") ;true),
cs .tnp”, "WldaWapplics.arc")

save_applications_directory.

/*

ki

BACKDROP ROUTINE *1

draw _lda_backdrop:-
create_stream (Ida_backdrop, readw rite,byte, window (25,80, red
open (lda__backdrop, readw rite) .

screen (Ida_backdrop,create (0,0, [da_backdrop,0.,0,0,none,None, 25,80, reveal
ed)).

create_stream (Ida_header, readw rite,byte, window (l,80,bright
red)), open(lda_header,readwrite),
screen(lda_header,create(0,0,Ida_header,0,0,0,none,None,1,80,hidden)),
window (Ida_header,cursor_address(0,0)),

on black)),

w hite on

window (Ida_header,text(" Laboratory Data Analysis System V1.2 ")),
screen(lda_header,unhide),
create_stream (Ida_footer,readw rite.byte,window (1,80.,bright white on

red)), open(lda_footer,readw rite),
screen(lda_footer,create(24.,0,1da_footer,0,0,0,none,none,1,80. hidden)),
draw _lda_footer,

screen(lda_footer,unhide).

remove_lda_backdrop:-
close(lda_header),
delete_stream (lda_header),
close(lda_backdrop),
delete_stream (lda_backdrop),
close(lda_footer),
delete_stream (Ida_footer).

draw _lda_footer:-

window (Ida_footer,cursor_address(0,1)),
window (Ida_footer,text("Current Application

/*

I *

"))

-DEEFINE THE MASTER MENU.

set_lda_menu:-
create_stream (lda, readw rite,byte, window (6,22, white
open (Ida, readw rite) .

screen (Ida, create (3,1, 1da, 0,0,0,all,black
retractall(menu_selection(_._)).
assert(menu_selection(lda,0)),
assert(menu_selection(applications,0)).

on black)),

on red, 6,22 ,hidden)),

remove_lda_menu:-
close(lda),

delete_stream(lda).

display_lda_master:-
set_lda_menu,

repeat,
once(menu_selection(lda,Selection)),
once(menu(lda,"LDA MASTER",

["Select Application"-"@ "-true-0-help,
help, "Edit Knowledge Base"-"@ "-true-2-help,
true-3-help, “@ “-true-4-help,

"Quit'-"@ "-true-5-help],0 ption,Selection)),
once(retract(menu_selection(lda,Selection))),
once(assert(menu_selection(lda,0 ption))),
once(lda_action (0 ption)),

"Add Application"-"@ “-true-I-
System "-"Q

“Diagnostic

once(screen(lda,unhide)),

/* fails until Exit selected */
Ida_action(0) :-
select_application.
Ida_action(1):-
add_application.
lda_action (2)
current_application(A pplication,Index),
Directory is_string "W ldaW " & Index,
chdir(Directory),
reconsult ("W IdawW builder.run”),
chdir("\\1da"),
clear_knowledge_base.
Ida_action(3):-
current_application(A pplication,Index),
Directory is_string "W Idaw " & Index,
chdir(Directory),
reconsult ("W Idaw dasystem .run®) ,
chdir("\Wida"),
clear_knowledge_base.
lda_action(Selection). /* catches failures */

/*

-SELECTION OF APPLICATION -

/* define the selection */

an entry

in menu
define_menu_entry(M enu_entry):-
application(Appiication,_),
Menu_entry=Application-"@ "-true-set_current_application(Application)-
help.

/* main loop for *1

selecting application

select_application:-

create_stream (applications,readw rite,byte,window (80,24, white on red)),
open(applications,readw rite),
screen(applications,create(3,28,applications,0,0,0,all,black on

red.3,24.hidden)), predicate_size(application/2,N),
((N<22,Menu_size is N); (Menu_size is 22)),
screen(applicaiions,change(3,28 appiications,0,0,0,all,black on
red,M enu_size,24,hidden)),

bagof(Menu_entry.define_menu_entry(M enu_entry),M enu_entry_list),
menu_selection(applications,Selection),
menu(applications,"SELECT

APPLICATION®".Menu_entry_list,0 ption,Selection),
screen(applications,unhide),

window (applications, inquire_cursor_address (Y,X)),

New _selection Y -1,
once(retract(menu_selection(applications,Selection))),
once(assert(menu_selection(applications,New _selection))),

call (Option),

close(applications),

delete_stream (applications).

is

/* set the selected current application */
set_current_application(Entry):-
retractall(current_application/2),
application(Entry,Index),
assert(current_application(Entry. index)),
display _application.

/* display the current application */
display_application :-
current_application(Name,Index),
window (Ida_footer,cursor_address(0,23)),
fill_out(Name,Display.23),

window (Ida_footer,text(D isplay)).

display _application.

/*

—-CREATION OF APPLICATION -

/* add a new application */
add_application :-
fedit(5.40,23,"NEW APPLICATION",
truncate_string (Entry ,Application),

set_application_directory (A pplication).

w hite on blue,Entry),

I* set the directory for the new application */

set_application_directory (

set_application_directory (Application) :-
application (Appiication,_),
warning_box (5,40, ,"APPLICATION EXISTS").

set_application_directory (A pplication):-
select_index(Index),
assert(application(A pplication,Index)),
"W ldaw " & Index,

Directory is_string

262

rakdir (D irectory) .
/* Select the index number for the new application */

select_index (Index)
repeat(X),

NI is_string string(X ,ops),
not application(_.N1) .
Index=N1.

1* ki

I*

CLEARING K-BASE BETWEEN APPLICATIONS -

clear_know ledge_base:-
retractall(current_data/3),
retractall(disorder/1),
retractall(disease/1),
retractall(disorder/3),
retractall(disease/3),
retractall(link/4) .
retractall(variable/1),
retractall (data_parcm Aeter/3) ,
retractall(synptom /2),
retractall(relation/2),
retractall(history/2) .
retractall(frame_variable/5),
retractall(frame_symptom /5),
retractall (fraime_relation/4) ,
retractall(frame_history/5).

263

/* ut y.lda some general ut ties */
/* Predicates defined in this file:
lda_exception/2
sub_category/4

descendent/4

predecessor/3

display _decision_box/3
decision_box/4
decision_action/3
display_warning_box/3
warning_box/3

warning _action/3
write_clauses/1
nurriber_of__clauses/3
member/2

subset/2

intersect/3

delete/3

append/3

next_element/3

substitute/d

sum _list/3

product_list/3

fill_out/3

rule_out/3
truncate_string/2
replace_character/4
delete_character/3
scroll_window _up/l
scroll_window _down/1
scroll_to_foot/l
write_window _entry/2
get_window _entry/2 */
/*

I* - —HANDLING PROLOG2 ERROR >/

/* Trapping window exceptions */

Ida_exception (line_no_room ,window (W indow ,text("
window (W indow text(*\n\r")).

"))

Ida_exception (line_no_room,window (Window,text (Text))) :-
window (Window,inquire_cursor_address (Y. X)),

Y41

window (W indow ,cursor_address(NewY,0)),

window (W indow ,text(Text)).

NewY is

Ida_exception(window _full,window (W indow ,text(Text))) :-
window (W indow .scroll_up),
window (W indow ,text(Text)).

Ida_exception(cursor_undefined,window (W indow ,text(Text))) :-
window (W indow .scroll_up),
window (W indow text(Text)).

lda_exception(window _full,
fail

lda_exception(A ,B).

/*

I *

TREE PROCESSING

/* tree utilities */

sub_category(Type,Root, Parent, Entry):-
Record=.. [Type,Root,Parent,Entry_list],
call(Record),

member(Entry Entry_list).

/* To find a descendent of a node */
descendent(Type,Root,Entry,Descendent):-

sub_category(Type,Root»Entry ,Descendent) .

descendent(Type,Root,Entry,Descendent)
link (Root,Parent,Descendent,_),
descendent(Type,Root,Entry Parent)

I* to find the ancestor of a node */
predecessor(Root,Entry,Predecessor)

link(Root,Predecessor,Entry,_).

predecessor(Root,Entry.Predecessor):-
link(Root,Interm ediate Entry,_),
predecessor(Root,Intermediate,Predecessor) .

I* \%
I* ENERAL UTILITIES *1

/* Decision Box */
display _decision_box(Y ,X ,Title)
screen(decision,create(Y X ,decision,0,0,0,all,red on cyan,3,24,hidden)),
window (decision,cursor_address(0.,1)),

window (decision, text(Title)),

window (decision.attribute(cyan red)),

window (decision,cursor_address(2,2)),

window (decision, text(” OK ")),

window (decision,cursor_address(2,14)),

window (decision, text(" CANCEL ")),

screen(decision,unhide).

on

decision_box (Y X, Title,Result):-

create_stream (decision,readw rite,byte,window (3,24,red on cyan)),

open(decision,readw rite),

display _decision_box(Y X Title),

BY is Y+2,

BX is X+23,

repeat,

locator(Y X,RY,RX,Y X,BY BX),
oY is RY-Y,

OX is RX-X,

decision_action(OY .0 X ,Result),
Result\=continue,
close(decision),

delete_stream (decision).

decision_action(2,0X,0k)
0x>1,
oxclo.

decision_action (2,0 X ,cancel):-
0Xx>13,
0x<22.

decision_action(0 Y ,0 X continue).

/* Warning Box */
display_warning_box (Y X ,Title):-

screen(warning,create(Y X ,warning,0,0,0,all,white on red,3,24,hidden)),
window (warning,cursor_address(0,1)),

window (warning.text(Title)),

window (warning,cursor_address(2,2)),

window (warning,text(" CONTINUE ")),

screen(warning,unhide).

warning_box(Y X ,Title)

create_stream (warning.readw rite,byte,window (3,24, white on red)),
open(warning,readw rite),

display_warning_box(Y X ,Title),

BY is Y+2,

BX is X+23,

repeat,
locator(Y ,X . RY RX,Y X,BY,BX),
oY is RY-Y,

OX is RX-X,

warning_action(OY,0 X Result),
Result=continue,

close (warning) ,

delete_stream (warning).

warning_action(2,0X continue):-
0x>2,
oxen.

warning_action(OY ,0 X ,loop).

/* writing clauses to file */
write_clauses(Predicate):-
clause(Predicate,Clause,N),
once(writeq(Clause)),
once(write(".\r\n")),

fail

write_clauses(Predicate).

/* to find the number of clauses of a certain form */

number_of_clauses(Predicate,Clause Number):-
bagof((N,.Clause)»clause(Predicate,Clause,N),Clause_list),

length(Clause_list,Number)

number_of_clauses (Predicate,Clause,0) .

member (Element, [Element |_]) . /* find member of a list */
member (Element, [_[R est_of_list]) :-

member (Elem ent,Rest_of_list) .

subset ([A[X].Y) /* finds a subset of a list */
member (A,Y),

subset(X,Y) .

subset([].Y).

intersect([].D2.[]). /* find the intersection */
intersect([M ID 1].D 2,[M [1]):-

member(M.D2),

intersect(D 1,D 2,1).

intersect([MIDI1],D2,1):-

intersect (D1,02.,1) .

delete (_, [1.[1). /* delete an element from a list */
delete(X [X|L].M) !, delete(X.L ,M).

delete (X ,[Y [L1],[Y|L2]):- delete(X ,L1,L2).

append([],L.,L). /* append a list to a list */
appendi[XIL1T,L2,[X|L3]):-append(LI,L2,L3).

next_element(E.N ,[E.N|_]). /* find the next element in a list */

next_element (EN, [_|L]) :-
next_element(E,N,L).

264

Test=

substitute (_, . I* substitute an element in a list */ scroll_to_foot (Window)
scroll_window _up(W indow).
substitute (X [XIL], A (A[M))
scroll_to_foot(W indow).
substitute(X ,L A ,M).

substitute(X . (YIL], A .(YM]) write_window _entry (W indow ,no_data). /* traps case of no_data */
substitute (X ,L A, M) .

write_window _entry (Window Entry) :-

window (W indow ,text(Entry)),

sum _list([].S.5). /* sums a list of values */ window (Window,inquire_cursor_address (Y X)),
NY is Y +I,
sum _list([VIL],S_so_far,s) window (W indow cursor_address(NY 1))

New_S_so_far is S_so_far+V,
sum _list(L ,New _S_so_far, S). write_window _entry (Window, Entry) .

get_window _entry (W indow Entry)

product_list((]1.P.P). /* moultiplies a list of values */ screen(W indow ,info(SY ,SX W indow PW Y PW X,D,M . Mat,HW,R)),
Entry_length is W-2,
product_list([VIL].P_so_far,P) Xend is SX+W-1,
New_P_so_far is P_so_far*V, Yend is SY+H-2,
product_list (L .New_P_so_far,P) . locator (SY,SX,Y,X,SY,SX, Yend, X end),
WY is Y-Sy,
fill_out (Input_string,O utput_string,Length) AY is WY+PWY, /* absolute Y pos */
length (Input_string) =Length, window (W indow .cursor_addres3(AY 1)),
Output_string=Input_string. window (W indow .inquire_text(Entry_length Entry)).
fill_out (Input_string,0 utput_string,Length)

length(Input_string)>Length,

Current_length is length(lnput_string),

Output_string is_string delete (Input_string,Length,(Current_length-
Length)).

fill_out(lnput_string,0 utput_string,Length)
New _string is_string Input_string & " ",
fill_out(New _string O utput_string,Length).

rule_out(lnput_string,0 utput_string,Length)
length(Input_string)=Length,
Output_string=Input_string.

rule_out(Input_string,0 utput_string.Length)
length(Input_string)>Length,

Current_length is length(Input_string),

Output_string is_string delete (Input_string,Length,(Current_length-
Length))

rule_out (Input_string,0 utput_string,Length)
New _string is_string Input_string & "\196",
rule_out(New _string,Output_string,Length).

truncate _string

truncate_string (String,String)

E is length(String)-1,

End is_string substring(String ,E 1),
End\="

truncate_string (String ,New _string)s-

E is length(String)-1,

Next_string is_string delete(String,E, 1),
truncate_string (Next_string,New _string).

replace_character(String,String,Character,Replacement):-
L is length(String),

| is index(String,Character,0),

L=1

replace_character(String,New_string,Character,Replacement):
P is index(String,Character,0),

Temp_string is_string delete(String P, 1),

Next_string is_string insert(Temp_string ,Replacement,P),
replace_character(Next_string,New _string,Character,Replacement).

delete_character(String.String,Character)
L is length(String),

I is index(String,Character,0),

L=1

delete_character(String,New _string,Character)
P is index(String,Character,0),

Next_string is_string delete(String,P,1),
delete_character(Next_string,New _string,Character)

/* WINDOW DISPLAY UTILITIES */

scroll_window _up(W indow)
stream (Window, window (Y, X._)._).

screen(W indow ,info(SY.SX,Window WY ,WX,D,M ,Matt,H,W,R)), WY<Y-H,
New_WY is WY+l

screen(W indow ,change(SY,SX W indow ,New_W Y W X.D,M Matt,H W R)).

scroll_window _up(W indow).

scroll_window _down (W indow)
screen(W indow, info(SY ,SX ,Window, WY,WX.,D,M,Matt, H.W,R)), WY>0,
New_WY is WY-1,

screen(W indow change(SY ,SX W indow ,New_W Y W X.,D .M Matt,H,W ,R)).

scroll_window _down(W indow).

scroll_to_foot(W indow)
once(screen(W indow ,info(SY .SX ,Window WY ,WX.,D,M.Matt, HW,R))),
once (BY is WY+H-1),

once (window (Window,cursor_address (BY,0))) ,

once (window (Window,inquire_text (W,Bottom _line))),

once (truncate_string (Bottom _line, Test)),

265

/* builder.run loading FRAMEBUIID R */
/* Predicates defined in this file:

load_systeral0
rerrove_system /0
read_data/o
store_datal/l
run_frame_builder/0 */

I*

-MAIN PROGRAM LOOP AND ACTIONS-—

I* load the frame builder system */

load_system :-
open_module(modi,“\\ida\\build.gen",none.,actual),
open_module(mod2,"\\lda\\build.tre" ,none.,actual),
open_module (mod3,"\\Ida\\build.frm",none,actual),
open_module (mod4, "\\lda\\build.utl*.none,actual)

rerrove_system :-
close_module (modi),
close_module (raod2) ,
close_module (mod3) ,
close_module (modd) .

/* loading/storing the knowledge base */

read _data:-
read_kbase,
load_lexicon.

store_data(ok):-
store_kbase,
store_lexicon.

store_data(Result)

/* main loop */

run_frame_builder:-
load_system,
draw_backdrop,

read_data,
set_protected_slots,
define_main_command_I ine,
main_cornnand_loop,
remove_backdrop.

2- run_frame_builder
7- remove_system .

/* build.utl FRAMEBUILDER utilities */
/* Predicates defined in this file:
related _to/4

get_tree_nodes/3
display_warning_box/5
warning_box/5

w _action/3

get_window _entry /3

draw _backdrop/0

remove_backdrop/0

value_display/2
define_input_window /2

string _input/l
get_rest_of_string/3

in_string/l

change_stream /2

enter_text/3

convert_value/2

enter_data/3

string_to_atoms/2

list_to_atoms/3

form _atom /2

replace_synonym/2

in_word/2

update_lexicon/3

load_lexicon/0

store_lexicon/0

get_rank/4

read_kbase/0

store_kbase/0

print_database/l

print_line/4

print_indented _list/l
print_continuous_list/1
print_variables/o0

print_syrrptoms/ 0

print_history/0

print_relations/0
print_frame_class/2
print_frame_data/2
print_disorder_fram es/0
print_disease_fram es/0 */
/* TREE PROCESSING UTILITIES */

/* To see if two nodes are related */
related _to(Type,Root,Node,Node).
related _to(Type,Root,Nodel,Node2)
descendent(Type,Root,Nodel,Node2).
related _to(Type,Root,Nodel,Node2)
descendent(Type,Root,Node2 ,Nodel).
/* Find all the nodes for a tree */

get_tree_nodes(Type,Root,(Root|Node_list]):-
bagof(Node.descendent(Type,Root,Root,Node),Node_list),!.

get_tree_nodes(Type,Root,[Root]).

/* GENERAL UTILITIES */

/* Warning Box */
display_warning_box(Y .X .M 1,M2,M 3)
screen(warning.create(Y ,X ,warning,0,0,0,all,white
indow (warning,cursor_address(0,1)),

indow (warning,text(M 1)),

indow (warning,cursor_address(1,1)) ,

indow (warning, text(M 2)),

indow (warning,cursor_address(2,1)),

indow (warning, text(M 3)),

indow (warning,attribute(red on white)),

on red,5,24 hidden)),

£ s 55551

=

indow (warning,cursor_address(4,6)),
window (warning,text(" CONTINUE ")),
screen(warning,unhide).

warning_box(Y X ,M I,M2,M3)
create_stream (warning,readw rite,byte,window (5.24,white
open(warning.,readw rite),
display_warning_box(Y,X,MI,M2,M3),

on red)).

BY is Y+4,

BX is X+23,

repeat,

locator (Y X.RY,RX,Y X,BY,BX),
oY is RY-Y,

OX is RX-X,

w _action(0 Y ,0X ,Result),
Result=continue,
close(warning),

delete_stream (warning),!. /* dont want backtracking here */
w _action(4,0X continue)

0X>5,

0X<16.

w _action(0 Y ,0 X ,loop).

/* WINDOW UTILITIES */

get_window _entry (W indow ,X pos,Entry):-

window _drop(W indow,Drop),

Drop>0, /* fails if no entries */

drop_window _width (Window, W idth),
Entry_length is W idth-2,

Xend is Xpos+W idth-1,

locator(2 ,Xpos,Y,X,2 ,Xpos,Drop,Xend),

WY is Y-2,
screen (Window, info (_._
AY is WY+OY,

. Window, OY,

window (W indow ,cursor_address(AY 1)),
window (W indow ,inquire_text(Entry _length,Display)),
truncate_string (D isplay ,Entry),!,

Entry\

draw _backdrop:-

I*

. I* get scroll info
/* absolute Y pos
fails if nothing there

create_stream (backdrop,readw rite,byte, window (25, 80,black on black)),

open (backdrop,readw rit

screen (backdrop,create (0,0,backdrop,0,0,0,none,None, 25,80, revealed)) .

remove_backdrop:-
close (backdrop),
delete_stream (backdrop

value_display(none,"

none

e).

).

")

value_display(Value,Display):-

Value=< -10.000,
Value>= -999.999,
Display is_string strin

g(Value,ops).

value_display(Value,Display):-

Value< 0.000,
Value> -10.000,
Display is_string

value_display(Valu

Value>= 0.000,
Value< 10.000,
Display is_string

& string(Value,0ps).

e.Display):-

& string(Value,ops).

value_display(Value,Display):-

Value>= 10.000,
Value=< 99.999,
Display is_string * "

& string(Value,0ps).

value_display(Value,Display):-

Value>= 100.000,
Value=< 999.999,
Display is_string strin

value_display(Value

g(Value,ops).

/*

I*

define_input_window (Y X) :-
create_stream (input,readw rite,byte,window (1.7 bright

open(inputrreadw rite),

INPUT & DISPLAY 7 CHARACTER STRING ROUTINES

>

red on cyan)),

screen(input,create(Y X ,input,0,0,0,none,None,1,7 hidden)),
window (input,cursor_home),

window (input,tex t("

"))

window (input,cursor_home),

screen(inputunhide).

define_input_window (Y ,X):- I*
close (input),

delete_stream (input),!,

fail

/* input string from current stream */
string_input(String)

geto(C),
get_rest_of_string(C."",String)
get_rest_of_string(13,String,String).
get_rest_of_string(C.S.String):-
in_string (C).

Sl is_string S & (CJ.

geto (C 1),
get_rest_of_string(C1,S1,String).
get_rest_of_string(C.,S.,String):-

geto (Cl) .

get_rest_of_string (C1,S,String)
in_string(C) :- 031,C<123.

/* change the current input stream */
change_stream (O 1d,New);—

see(New).

change_stream (Old,New) :- I* revert
see(01d), !,

fail

/* routine enter text data */

enter_text (Y X ,String)

define_infxit_window (Y,X),

seeing (Stream) ,
change_stream (Stream i
string _input(input),

nput),

truncate_string(Input,String) ,

see (Stream) .
close (input),
delete_stream (input).
/* convert values to
convert_value(Value,Va
real(Value).

267

real

numbers */

lue):-

to

close

O ld

on backtracking

on backtracking

*!
>/

*/

convert_value(V . Value)
Value is float(V). get_rank (frame_relation,Frame_name,Relation_no,Rank)
clause (frame_relation/4,frame_relation (Frame_name, ,Relation_no,) .R),

/* routine enter numerical data value */ Rank is R -1,7
enter_data(Y X ,Value) get_rank (Frame_slot,Frame_name, Facet,Rank) :-
define_input_window (Y .X) . Archive=. . [Frame_slot,Frame_name,_ ,Facet,_,_],
seeing (Stream) . clause(Frame_slot/5,Archive ,Rank),
change_stream (Stream,input),

once(string _input(input)), get_rank (Frame_slot,Frame_name,Facet, 0) .

once(truncate_string(Input»String)),
Vois value(String.ir),

convert_value(V,Value), readkbase:- /* read frame data for session */
see (Stream) , file("KBASE.DAT",_),

close(input), current_application (_, Index) .

delete_stream (input). Filename is_string “\\lda\\" & Index & "\\kbase.dat",

reconsult(Filename).
enter_data(Y X .none).
readkbase.

/*
1% —ROUTINES TO UPDATE THE LEXICON -
store_kbase:- /* stores frame data from session */
/* Change a string to a list of atoms */ (delete_file("KBASE.TM P")itrue),
create("KBASE.TMP"),
string _to_atom s(String,A tom _list) create_stream (data_file,readw rite,ascii,file("K BASE.TM P")),
list(List,String), open (data_file, readw rite) .
list_to_atom s(List JAtom _list). state(output,_ ,data_file),
write_clauses(disorder/1),
string _to_atom s(S,A) write_clauses(disease/1),
warning_box(10,30,S,"cannot be input",""), write_clauses(disorder/3),
fail write_clauses(disease/3),
write_clauses(link/4),
/* Change a list of characters to a list of atoms */ write_clauses(variable/1),
write_clauses (data_param eter/3),
list_to_atom s ((],String,[Atom]) write_clauses (synptom/2),
form _atom (String,Atom). write_clauses(relation/2),
write_clauses(history/2),
list_to_atom s([32|List]»String.[Atom |Atom _list]) write_clauses(frame_variable/5),
form _atom (String, Atom), write_clauses (frame_syrrptom/5),
list_to_atom s(List,"",Atom _list). write_clauses (frame_relation/4),
write_clauses(frame_history/5),
list_to_atom s([C|List]»String,Atom _list) close(data_file),
in_word (C,L), delete_stream (data_file),
New _string is_string String & [L], (delete_file ("KBASE.DAT") itrue) ,
list_to_atom s(List,New _string,A tom _list). rename_file("KBASE.TMP","KBASE.DAT").
/* Form an atom from a string, replacing synonyms */ *
/
form _atom(Input,Atom):- I* -ROUTINES TO PRINT KNOWLEDGE BASE -
name(A . Input),
replace_synonym (A,Atom) . /* main routine to print database */
form _atom (Input,input). /* leave as string if necessary */ print_database(ok)

create_stream (kbout,w rite,ascii,file ("W IdaW kbase.out")),
open (kbout,w rite),

/* replace synonyms and abbreviations */ state(output,0 ld.,kbout),
print_variables,

replace_synonym (Atom ,New _atom) print_relations,

synonym (New _atom ,Atom) . print_synptom s,

print_history,
replace_synonym (Atom, Atom) . print_disorder_frames,

print_disease_frames,

close(kbout),

/* characters that can appear */ state(output,_,0ld).

in_word(C.L) 064, C<91, L is C+32. /* upper case */ print_database(Result).

in_word(c.C) 096, C<123. /* lower case */

in_word(C.C) 046, C<58. /* numbers */

in_word(38,38) . 1x i * /* some utilities */

in_word(39,39) . 1% oy

in_word(45, 45) . I* -~y print_line(A,B,C,D):-

in_word(46, 46) . 1* . xy Line is_string string(A,ops) & " " & string(B,ops) & " " & string(C,ops)
& " " fi string(D ,0ps),
write(Line),

/* main clauses to update the lexicon */ worite ("\r\n")

update_lexicon(add,D ata_type,D ata)f* fails if data invalid */

string _to_atom s(D ata,Atoms), print_indented _list([1)

expand_term ((noun (D ata,Data_type) — > Atoms),Lexicon_entry),

asserta(Lexicon_entry). print_indented _list([ElementlList])
worite ("

update_lexicon(delete,Data_type, Data) write(Element),

retractall(noun(D ata,D ata_type, A ,B)) . w orite("\r\n"),
print_indented_list (List)

/* Loading and storing the lexicon */
print_continuous_list ([]) :-!.

load_lexicon:-

file("LEXICON.DAT",), print_continuous_list([Elem ent|List])

current_application(_,Index), write(Element),

Filename is_string "\\lda\\" & Index & "\\lexicon.dat", print_continuous_list(List).

reconsult(Filename).

load_lexicon
/* print details of data variables */

s t o r e _ 1l e x i ¢ o n [* stores lexicon data from session */

(delete_file("LEXICON.TM P")itrue),

create("LEXICON.TMP"), print_variables:-

create_stream (data_file readw rite,ascii. file ("LEXICON.TMP")), not variable(V).

open (data_file, readw rite),

state(output,_ .data_file), print_variables:-

write_clauses (noun/4), write("DATA VARIABLES \r\n\n"),

close(data_file), variable(V),

delete_stream (data_file) , data_param eter(V ,units,Units),

(delete_file ("LEXICON.DAT")itrue), print_line(V ," "»Units,""),

rename_file("LEXICON.TMP", "LEXICON.DAT") . data_param ster (V,upper_limit,U),
print_line(" upper lim it"," ".U),
data_pararreter (V,low er_lim it L),

/* print_line("" "lower lim it",* " L),

—ROUTINES TO HAMSLE KNOWLEDGE BASE - data_parameter(V .mean,M),

print_line("" ,"mean value "M),

/* get the rank of predicate in knowledge base */ data_parameter(V ,standard_deviation,s),
print_line("" "std dev s,

get_rank(relation,none,Relation_no,Rank) data_parameter(V default,D),

clause(relation/2 relation(Relation_no,_).,R), print_line("","default ".D),

Rank is R-I, I. worite("\n"),

268

fail

print_variables:-
worite ("\rin\n").

/* Print signs and symptoms */

printjsyrrptoms:-
not syrrptom (S,A) .

print_synptoms:-

write("SIGNS & SYMPTOMS \r\n\n "
synptom (S, ["unknown” |A]),
worite(S),w rite("\r\n"),
print_indented _list(A),

worite ("\r\n"),

fail

print_syrrptoms :-
worite ("\rin\n")

/* Print history */

print_history:-
not history(H ,A).

print_history:-
write("PATIENT HISTORY \r\n\n"),
history (H . ["unknown"|A]),
worite(H), w rite("\r\n"),
print_indented_list(A) ,

worite ("\r\in"),

fail

print_history:-
worite ("\rin\n").
/* Print relationships for data derivation */

print_relations
not relation (N.R) .

print_relations:-

write("RELATIONSHIPS FOR DATA DERIVATION \r\n\n"),

relation (N ,R),

write(N), write(". "),
print_continuous_list(R),
worite ("\r\n\n"),

fail.

print_relations:-
worite (“\rin\n")

I* General routines for printing frames */
/* print frames for a tree */
print_frame_class(Root,[]):-1.

print_frame_class(Root,[Root[List])
print_line("Frame for" ,Root,"",""),
print_frame_data(Root,Root),
print_frame_class(Root,List).

print_frame_class(Root,[Frame|List])
link(Root,Parent,Frame,W),

Parent_display is_string " Type of " &Parent,
W eight_display is_string " (" & string(W) & "
print_line ("Frame for". Frame,Parent_display, W e
print_frame_data(Root,Frame) ,
print_frame_class(Root, L ist).

/* Print data for a frame */

print_frame_data(Root, Frame) :-
frame_object (Object,Type) .

Frame_data=. . [Object, Frame,Root,Facet,A ttribute, P],
call(Frarte_data) ,

worite (" "),

print_line(Type.,Facet,Attribute,P),

fail

print_frame_data(Root,Frame):-
frame_relation(Frame,Root,N ,Relation),
worite (" relation "),

write(N),write(". "),
print_continuous_list(Relation),
fail.

print_frame_data(Root,Frame)
worite ("\r\n\n").

/* Print data for frames of disorders */

print_disorder_frames
not disorder(Root).

print_disorder_fram es:-
write("FRAMES FOR DISORDERS \r\n\n"),
disorder(Root),
print_line("CLASS:" , Root,"\r","\n"),
get_tree_nodes(disorder,Root,Nodes),
print_frame_class(Root,Nodes),

worite ("\rin"),

fail.

print_disorder_fram es:-
worite ("\rin\n")

/* Print data for frames of diseases

print_disease_frames
not disease(Root).

print_disease_frames
write("FRAMES FOR DISEASES \r\n\n"),
disease(Root) ,
print_line("CLASSRoOOL"\r" “\n"),
get_tree_nodes(disease,Root,Nodes),
print_frame_class(Root,Nodes),

write ("\r\n"),
fail

print_disease_frames.

269

/* build.gen 1st level of FRAMEBUILDER */
I/* Predicates defined in this file:

object/4
predicate_arity/2
highlight_action/1
define_main_command_line/0
draw _main_coraraand_line/0
main_command_loop/0
main_action/2
sub_corrmand_attribute/3
define_sub_command_line/0
sub_command_line/4
sub_coraraand_loop/2
frame_sub_corarnand_loop/l
relation_sub_cormiand_loop/1
subcommand/3

drop_window _width/2
drop_window /2
define_drop_window /1
drop_window _display/2

draw _drop_window /3
enter_frame/4

add_frame/2

delete _frarre/2
freime_selection_cortrnand/2
set_protected _slots/0
set_a<3e_s1°t/0

set_sex_sl°t/0
set_occupation_slot/0
set_disorder_slI°t/0
set_previous_disorder_slot/0
set_clinical_diagnosis_slot/0
default_attribute/3
enter_facet/3

add_facet/2

delete_facet/2

set_attribute/2

slotc°mmand/2
enter_attribute/2
add_attribute/3
delete_attribute/3
define_attribute_window /1
draw_attribute_window/2
display _attributes/2
attribute_command_loop/2
attribute_action/3
parameter/2

check_data/2
define_data_jparameter_window /0
draw _data_parameter_window /1
data_parameter_command_loop/1
data_parameter_action/3 */

/*
/* MAIN COMMAND LINE */

object(disorder,"D isorder”,1,2).
object(disease,"D isease”,12,13)
object(variable,"V ariables",28,29)
object (synptom, “Signs/Syrrptoms", 39, 40) .
object(relation,"Relations”,55,25)
object(history ,"H istory",66.43)

object(frame_variable,"D ATA VARIABLE LOW USUAL
HIGH",3,29). object(frame_synptom ,"SIGNS/SYMPTOM S ATTRIBUTE
P(a)",55,7) . object(frame_history,"HISTORY ATTRIBUTE

P(h)",1,27)

predicate _arity(disorder,1)
predicate_arity (disease,1).
predicate_arity(variable, 1)
predicate_arity (syirptom,2) .
predicate_arity (relation,2).
predicate _arity (history,2).
predicate_arity (fram e_variable,5).
predicate_arity(frame_synptom ,5).
predicate_arity (frame__relation, 4) .
predicate_arity (frame_hisory,5).

highlight_action (O bject)
object(O bject,Title,Position,W p),
window (main,cursor_address(0,Position)),
window (m ain.attribute(cyan on red)),
window (main,text(Title))

define_main_c°mmand_line:-

create_stream(main, readwrite, byte, window (1, 80, red on cyan)),

open (main, readwrite),

screen(main,create(0,0,main,0,0,0,none,None,1,80,hidden)),

retractall(builder_state/3)»

assert (builder_state(main_command,none, none)),
draw_main_command
retractall(cursor_location(main,SY,SX)),
assert((cursor_location(main, 0,0))) .

draw _main_command_line:-
window (main.,cursor_address(0,0)),
window (main,attribute(red on cyan)),
window (main,text(" Disorder Disease
Relations History EXIT ")), screen(main,pull_up)»
screen(main,unhide).

Variables

main_c°mmand_loop:-
repeat,

once(cursor_location(main,SY SX)),
once(locator(SY ,SX,Y ,X,0,0,0,79)),
once(retract(cursor_location(main,SY ,hSX))) .
once(assert(cursor_location(main,Y .X))),
once(main_action(X .Result)),

Result=exit,

Signs/Synptoms

close(main),
delete_stream (m ain).

moa i n a ¢ t i o n (X . e x i t) /*exitclicked

X>74,

X<79,

decision_box(3,40,"Saving changes .
store_data(Result),
decision_box(3.,40,"Print database
print_database(Result2).

"»Result),

.,",Result2),

main_action (X ,continue)/*disorder selection

x>0,

X<10,

retract (builder_state (main_command,none,none)) .,

assert (builder_state (frame_selection_command,disorder,none)),
drop_window (shortdisorder) .

main _action (X ,continue)]/*disease selection

X>11,

X <19,

retract (builder_state (main_corrmand,none,none)),
assert(builder_state(frame_selection_comm £md.disease.none)),
drop_window (short,disease)

*/

>/

*/

moa in a ction (X ,comntinue)/* laboratory data

X>27,

X<37,

retract (builder_state (main_command,none,none)),
assert (builder_state (slot_command,variable,none)),
drop_window (short,variable)

main _action (X ,continue)/*sign/fsymptom selection

X>38,

X<53,

retract (builder_state (main_command,none,none)),
assert (builder_state (slot_command,symptom,none)),
drop_window (short,synptom) .

m oa in _action (X ,coontinue) /*setrelations

X>54,
X<64,
relation_drop_window (relation).

moain action (X ,comntinue])/*history selection

X>65,

X<73,

retract (builder_state (main_command,none,none)) .
assert (builder_state (slot_command,history,none)),
drop_window (short,history)

main_action(X ,continue).

1 *
I/* SUB CCM4AND LINE */

sub_command_attribute(tiny,23,"\24 Add
3ub_comiriand_attribute (short, 29, "\24 Add

Delete Exit \25").
Delete Edit Exit

sub_command_attribute(long,45,"\24 Add Delete Edit Exit
\25").
define_sub_cormiand_line:- /* if stream is already defined

stream (sub_command,.

define_sub_command_line:-

create_stream (sub_command, readw rite,byte, window (1, 45, white on blue)),

open (subcommand, readw rite),

*/

*!

*/

*/

*/

screen (sub_c°mmand,create (0,0, subcommand, 0,0, 0,none,None, 1,45,hidden)).

sub_c°mroand_line (Window, Y pos,X pos,Return) :-
sub_com fnand_attribute (Window, W idth, Text),

screen (sub_c°mmand, change (Ypos,Xpos,subcommand, 0,0,0,none,None, 1, W idth,

hidden)), window (sub_command,cursor_address (0.,0)),
window (sub_c°mmand,text (Text)),
screen(sub_command,unhide),
screen(subcommand,pull_up),

Xend is Xpos+W idth-1,

cursor_location (subcommand (Window) ,_, SX) ,
locator (Ypos,SX, Y X, Ypos,Xpos,Ypos, Xend) .

retract (cursor_location (subcommand (Window) ._._)).
assert (cursor_location (subcommand (Window), Y X)),
Key is X—Xpos,

subcom mand (Window, Key, Return)

subcommand_loop (W indow ,Position)
builder_state(State,_,_),

retractall (cursor_location (sub_c°mmand (Window),_.,_)) .
assert(cursor_location(sub_c°mmand(W indow),0 ,Position)),
once(window _drop(W indow ,Drop)),

once(CY is Drop+1),

once (sub_c°mmand_line (Window,CY,Position, Result)),
once(Action=.. [State,Result,Drop]),
once(call(Action)),

Result=exit,

close (subcommand),

delete_stneam (subcommand) ,

close (Window) ,

delete_stream (Window) .

frame_sub_command_loop(Frame_slot) :-
object(Frame_slot,Title,Pos,W pos),

retractall (cursor_location (subcommand (long),_,_)),
assert (cursor_location (subcommand(long) *0, W pos)),
repeat,

once(window _drcp (long,Drop)).,

once(CY is Drop+1),
once(sub_c°mmand_line(long,CY W pos,Result)),

once (frame_slot_command(Result, Frame_slot)),
Result=exit,

close (subcommand),

delete_stiream (subcommand) .

270

repeat,

close(long),
delete_stream (long) .

relation_sub_command_loop(Frame_slot):-

retractall (cursor_location (sub_cortiraand(long) ,_._
assert (cursor_location(sub_command(long) .0,25)),

repeat,

once(window _drop(long,Drop)).

once (CY is Drop+1) ,

once (sub_command_line (long.CY,25,R esult)),
once (relation_com mand(Result,Frame_slot)),
Result=exit,

close (sub_corranand) ,

delete_stream (sub_coraraand) ,

close(long),

delete_stream (long)

sub_command(W indow.0,scroll_up).
sub_comrnand (long, 44, scroll_down)

sub_command(long. Key, add)
Key>7,
Key<Il

sub_conmand(long,Key,delete)
Key>14,
Key<21.

sub_comrnand(long Key,edit)
Key>24,
Key<29.

sub_cornmand(long.Key,exit)
Key>32,
Key<37.

sub_command(short,28,scroll_down)

sub_command(short,Key,add):-
Key>2,
Key<6.

sub_command(short,Key.,delete)
Key>7,
Key<14.

sub_command (short. Key,edit)
Key>15,
Key<20.

sub_cornraand(short,K ey exit)
Key>21,
Key<26.

sub_command(tiny,22,scroll_down).
subcommand(tiny.Key,add)

Key>2,

Key<6.

sub_corrn\and (tiny K ey, delete)
Key>7,

Key<14.
sub_cornraand(tiny.Key.exit)
Key>15,

Key<20.

sit>_coraraand(Window Key,continue) .

/*

/* DROP DOWN MENUS */

drop_window _width(long,45).
drop_window _width(short,29)
drop_window _width(tiny,23).

drop_window (W indow O bject):-
highlight_action (Object) .

object(O bject,Title,Position,W position),
define_drop_window (W indow),

draw _drop_window (W indow,O bject, W position),
define_sub_command_line,
sub_command_loop(W indow ,W position) .

draw _main_command_line.

define_drop_window (W indow)
drop_window _width(W indow ,W idth),

create_stream (Window,readw rite,byte, window (60, W idth, w hite

open (Window, readw rite) ,

screen (Window,create (1,1, Window,0.,0,0,all,blue

black,23,W idth,hidden))

drop_window _display (W indow, O bject)
once(predicate_arity (O bject, A)),
once(length(Argument_list,A)),
once(Archive=.. [Object/Argument_list]),

call (Archive) ,

once (Argument_list= [Entry [Other_arguments]),
once(write_window _entry(W indow ,Entry)),
fail.

drop_window _display (W indow ,0 bject).

draw _drop_window (W indow, (Soject,Position):-
predicate_arity (O bject,A),
number_of_clauses (O oject/A,_,N),
((N<22,Drop is N+1); (Drop is 22)),

w/

retractall (window_drop (Window,_)),
assert (window_drop (Window,Drop)),
drop_window _width (Window, W),

screen(W indow ,change(2,Position,Window,0,0,0,all,blue on

black,Drop,W ,hidden)),

window (W indow clear),

window (W indow ,cursor_address(0,1)),
drop_window _display(W indow 0 bject),
scroll_to_foot (Window) ,

screen(W indow ,unhide).

/*

/* FRAME SELECTION */

enter_frame (Action,Frame_type,Drop, Frame_name) :-

object(Frame_type,Title,_ X position),

((Drop<21,Edit_Yposition is Drop+3); (Edit_Y position is 23)),

Edit_X position is Xposition+32,
Instruction is_string Action & Title,

fedit(Edit_Y position,Edit_X position,24 ,Instruction * """
white Entry), truncate_string(Entry,Frame_name).

add_frame(Frame_type,"") .

add_frame (Fraune_type,Frane_name) :-
disorder(Frame_name).

add_frame (Frame_type,Frame_name)
disease(Frame_name).

add_frame (Frame_type, Frame_name) :-
update_lexicon(add,Frame_type,Frame_name),
Archive=..[Frame_type,Frame_name],
assert(Archive).

delete_frame (Frame_type,Frame_name) :-

Archive=.. [Frame_type, Frame_name],
retractall(Archive),
retractall (link (Frame_name,_,_,_)),

update_lexicon(delete,Frame_type,Frame_name),
[Frame_type,Frame_name,Node,_]

Tree_archives=.
retract(Tree_archive),

update_lexicon (delete.Frame_type ,Node) .
fail.

delete_frame (Frame_type,Frame_name)
frame_object (Slot,_).

Archive=.. [Slot,Node,Frame_name,,
retractall(A rchive),
fail

delete_frame (Frame_type, Frame_name) .

frame_selection_commEmd(add,Drop) :-
builder_state (,Frame_type,) ,
enter_frame ("Add "
add_frame (Frame_type, Frame_name),
object(Frame_type,Title,Position,W position),

draw _drop_window (short,Frame_type,W position).

frame_selection_cormiand(delete, Drop) :-
builder_state (_,Frame_type,_),

I*

", Frame_type,Drop, Frame_name) ,

remove

enter_frame ("Delete ",Frame_type.Drop, Fraite_name),

delete_frame (Frame_type,Frame_name) ,
object(Frame_type,Title,Position,W position),

draw _drop_window (short,Frame_type W position).

frame_selection_command(edit,Drop)
Drop>0,

builder_3tate (_,Frame_type,_),

object (Frame _type,Title,_,position),

get_window _entry (short,Xposition Frame_name),

retractall(builder_state/3),

I/* remove the

/* remove the

assert (builder_state (Frame_name,Frame_type, Frame_name)),
draw _main_command_line, I* gets
define_sub_command_line, I* gets

highlight_action(Frame_type),
retractall(builder_state/3),

the

,blue on

run_tree,

root

tree

frame data

overwritten in frames
frame edits

closed in

assert(builder_state(frame_selection_command,Frame_type,none)).

frame_selection_command (scroll_up.Drop) :-
scroll_window _up(short).

frame_selection_command(scroll_down,Drop):-
scroll_window _down(short).

frame_selection_command(exit,Drop):-
retractall(builder_state/3),

assert(builder_state(main_command,none,none))

/*
/+ DEFINITION OF PROTECTED SLOTS */

set_protected _slots
set_age_slot,

set_sex_slot,
set_occupation_slot,
set_disorder_slot,
set_previous_disorder_slot,
set_clinical_diagnosis_slot.

s e t _ a g e _ s 1 o
retractall(variable("age")),
retractall(data_parameter("age
update_lexicon(delete,variable,
assert(variable("age")),
assert(data_parameter(®age”,units,"years")),

assert(data_parameter("age”,upper_lim it,120)),

assert(data_parameter(“age”,lower_limit,0)),

271

I *

always

replace

age

>/

*/

>/

*/
*/

*!

assert (datajparam eter ("age”,mean,none)),
assert (data_parameter ("age”,standard_deviation,none)), set_attribute(variable,"age")
assert (data_parameter ("age”,default,none)) . warning_box(8,30.,"The attributes for age”,"are fixed","")

set_attribute(history,"sex")

set_sex_slot:- warning_box(8,30,"The attributes for sex","are fixed as male
history ("sex",_) or","fem ale").

set_sex_slot set_attribute(history "disorder")

add_facet(history "sex"), warning_box(8,30,"Disorder attributes" set in the
add_attribute(history ,"sex","m ale"), disorder","trees").

add_attribute(history "sex",“fem ale")

set_attribute(history,"previous disorder")
warning_box(8.,30,"Disorder attributes"”
“trees").

set_occupation_slot:- disorder”
history("occupation®,_)

set_attribute(history "clinical diagnosis")

set_occupation_slot warning_box(8,30,"Disease attributes"” set in
add_facet(history "occupation”).

set_disorder_slot:- set_attribute (variable,D ata)

history("disorder”,_) define_data_parameter_window,

draw _data_paraneter_window (D ata),
set_disorder_slot:- data_parameter_command_loop(Data) ,
add_faoet(history "disorder"). close (data_param eter),

delete_stream (data_jparam eter) .
set_previous_disorder_slot
history ("previous disorder”,_).

set_attribute(Slot,Facet)
set_previous_disorder_slot define_attribute_window (Slot),
add_facet(history ,"previous disorder"). draw _attribute_window (Slot,Facet),

attribute_command_loop(Slot,Facet),
set_clinical_diagnosis_slot close(attribute_header),
history (“clinical diagnosis”,_) . delete_stream (attribute_header) ,

close(attributes),
set_clinical_diagnosis_slot delete_stream (attributes).
add_facet(history, "clinical diagnosis").

slot_corrmand(add,Drop)

/* default attributes for disorder histories */ builder_state (_,Slot,_),

enter_facet("Add ",Drop,Facet),

/* previous disorders have same root as present disorder */ add_facet(Slot,Facet),
default_attribute(Root,Facet,("unknown","was present”,"was object(Slot,Title,Position,W position),
absent”,"unknown"]) link (Root,_ ,Facet,_) . draw _drop_window (short, S lot, Wpos n).
default_attribute(Root,Facet,("unknown","present”,"absent” "unknown"]).

/* slot_coimiand(delete,Drop) :-

builder_state (_.,Slot,_),

/ I FACET DEFINITION ie Signs/synptoms and History */ enter_facet("Delete ", Drop,Facet),
delete_facet(Slot,Faaet),

enter_facet(Action,Drop,Facet) object(Slot,Title, Position,W position),

builcter_state (_,Slot,_), draw _drop_window (short,Slot, Wposition).

object(Slot,Title,_ X position),

((Drop<21,Edit_Y position is Drop+3); (Edit_Y position is 23)),

Edit_)Qposition is Xposition-25, slot_command (edit, Drop) :-

Instruction is_string Action & Title, builder_state (_.Slot,),

fedit(Edit_Y position Edit_X position,24 Instruction, .blue on object(Slot,Title,_ X position),

white Entry), truncate_string(Entry Facet). get_window _entry(short,X position ,Facet),
set_attribute(Slot,Facet).

add_facet(Slot,” -warning_box(8,30,"Cannot add nothing slot_command(scroll_up.Drop)

scroll_window _up(short)
add_facet(variable,Data)/* Data variable already defined */
variable (Data) , slot_command(scroll_down,Drop) :-
warning_box(8,30,"Cannot add the variable",D ata,""). seroll_window _down(short).
add_facet(variable,D ata) slot_command (exit,Drop)
update_lexicon (add,variable.Data) , retractall(builder_state/3),
assert (variable (Data)), assert(builder_state(main_com mand,none,none))
assert (data_parameter (Data,units, "")) ,
assert(data_parameter(D ata,upper_limitnone)), *
assert (data_parameter(Data,lower_limitnone)), / ’7
assert(data_parameter(D ata, mean,none)), /* SLOT ATTRIBUTE DEFINITION */
assert(data_parameter(D ata,standard_deviation,none)),
assert(datajparameter(D ata,default,none)).

enter_attribute(A ction A ttribute)

a dd _ facet (S 1 ot,Facet) /*slotalready exists */ builder_state (_,Slot,_),

object(Any_slot,_,_,_) . object(Slot,Title,_,X position),
Archive=..[Any_slot,Facet,A ttribute_list], window _drop(attributes.Drop),

call(Archive), ((Drop<22,Edit_Y position is Drop+3); (Edit_Y position is 23)),
warning_box(8,30,"Cannot add the facet..." Facet,""). Edit_X position is Xposition-39,

Instruction is_string Action & Title,
add_facet(Slot,Facet) fedit(Edit_Y position,Edit_X position,17 Instruction,” """ blue on
update_lexicon(add,Slot,Facet), white Entry), truncate_string (Entry A ttribute).
update_lexicon(add,attribute(Slot,Facet), "unknown"),

Archive=.. (SlotFacet,("unknown" "unknown"]],

assert(Archive). add_attribute(Slot,Facet,""):-
warning_box(8,30,"Cannot add nothing","" "").

/* delete slot facets */

add_attribute(Slot,Facet, A ttribute):-
delete_facet(variable,"age"):-warning_box(8,30,"Age cannot be Archive=.. [Slot,Facet["unknown"|A ttribute_list]],
deleted™ " ""). call (Archive),

member(A ttribute A ttribute_list),
delete_facet(history Facet) warning_box(8,30,A ttribute "already exists").
member(Facet,("occupation”,"sex” “disorder”,“previous
disorder”,"clinical diagnosis"]), add_attribute(Slot,Facet,A ttribute)
warning_box (8,30 Facet,"cannot be deleted","") update_lexicon (add,attribute (Slot, Facet) »A ttribute),

Archive=.. [Slot,Facet,["unknow n"|A ttribute_list]],
delete_facet(variable,Data)/* variable slots */ call(Archive),
retractalli(variable(D ata)), New _attribute_list= [A ttribute |A ttribute _list],
retractali(data_parameter(D ata,_,_)), retractall(Archive),
retractall(frane_variable(Frame_name,Root,Data,Level,Certainty)), New _archive=..[Slot,Facet,["unknown"|New _attribute_list]],
update_lexicon(delete,variable,D ata). assert(New _archive).
delete_facet(SIlot,Facet)/*other slots */

Archive=.. (Slot,Facet,("unknow n"|A ttribute_list]],

retract(Archive) , delete_attribute(Slot,Facet,"unknown")

frame_object (F,rame_slot,Slot) , warning_box (8,30 A ttribute,"This is the default","It cannot be

Frame_archive=.. [Frame_slot,Frame_name,Root,Facet,_,_], deleted”,"").

retractall(Frame_archive),

update_lexicon(delete,Slot,Facet), delete _attribute(Slot,Facet,A ttribute)

member(A ttribute,A ttribute_list), Archive=.. [Slot,Facet A ttribute_list],

update_lexicon(delete,attribute(Slot,Facet)»A ttribute), call(Archive),

Attribute="unknown". delete (A ttribute, A ttribute_list,N ew _attribute_list),
retractall(Archive),

New _archive=..[Slot,Facet,New _attribute_list],

/* set slot attributes */ assert(New _archive),

272

update_lexicon(delete,attribute(Slot,Facet)»A ttribute). fill_out(Units,u.7),
Units_display is_string "Units " & U,
delete _attribute(Slot,Facet,A ttribute). window (data_parameter,cursor_add rc3s (1,1)),
window (data_parameter,text(U nits_display)),
member (Parameter, [upper_lim it, lower_limit,mean,standard_deviation,defaul

define _attribute_window (Slot):- t)), once(data_parameter(Data,Parameter,Value)),
object(Slot,Title,Position,W position), once(parameter(Parameter,Parameter_display)).

Xpos is W position-26, once(value_display(Value,Value_display)).

create_stream (attributes,readw rite,byte,window (60,23 ,red on cyan)), once(Display is_string “\r\n * & Parameter_display & Value_display),
open (attributes, readw rite) . once(window (data_param eter,text(D isplay))),

screen (attributes, create (3,X pos,attributes, 0,0,0,none,None, 20,23, hidden) Parameter=default,

). create_stream (attribute_header, readw rite,byte, window (1,23, white on window (data_param eter,text("\r\n EXIT")),

blue)), open(attribute_header,readw rite), screen(data_parameter,change(3,5,data_parameter,0,0,0 ,none,None,8,22,rev
screen(attribute_header,create(2,X pos,attribute_header,0,0,0,none,None,1 ealed)).

.23 .,hidden))

data_parameter_command_locp (Data) :-

draw _attribute_window (Slot,Facet):- retractall(cursor_location(dp._._)).
once(Archive=..[Slot,Facet,A ttribute_list]), assert(cursor_location(dp.9.6)),

once(call(Archive)), repeat,

object(Slot,Title ,Position,W position), once(cursor_location(dp,SY,SX)),

Xpos is W position-26, once(locator(SY,5,Y,X.4,6,10,26)),

length (A ttribute_list,N), once(EY is Y-3), /* EY Y pos in window */
((N<20,Drop is N); (Drop is 20)), once(window (data_parameter,cursor_address(EY ,1))),
retractall(window _drop(attributes,_)), once(window (data_param eter,inquire_text(12,Action))),
assert(window _drop(attributes,Drop)), once(data_parameter_action(D ata,Action,Y)),
screen(attributes,change(3,X pos.,attributes,0,0,0,none,None,Drop,23,revea once(retract(cursor_location(dp,SY,$X))),

led)), once (assert (cursor_location (<%p, Y,X))).

window (attribute_header,cursor_address(0,1)), Action="EXIT

window (attribute_header text(Facet)),
screen(attribute_header,unhide),

window (attributes,clear), data_parameter_action(D ata,"U nits "Y)

window (attributes,cursor_address(0,1)), data_parameter(Data,units,Units),

display _attributes(Slot,Facet), enter_text(Y ,19,New _units),

screen(attributes,unhide). retractall(data_param eter(D ata,units,Units)),
assert(data_parameter(D ata,units,New _units)),
draw _data_paramster_window (D ata) .

display _attributes(Slot,Facet):-

once(Archive=..[Slot,Facet,[*unknow n"|A ttribute_list]]), data_parameter_action (Data,Parameter_display,Y) :-

once(call(Archive)), parameter(Parameter,Parameter_display),

member(A ttribute A ttribute_list), /* display each attribute */ enter_data(Y .19 ,Value), !,

once(write_window _entry(attributes,A ttribute)), check_data(Parameter,Value),

fail. retractall(data_parameter(D ata,Parameter,_)),
assert(data_parameter(D ata,Parameter,Value)),

display _attributes(Slot,Facet) :- draw _datajparameter_window (D ata)

window (attributes,cursor_home),

scroll_to_foot(attributes). data_parameter_action(D ata,Parameter_display,Y):-

parameter (Parameter, Parameter_display) ,
retractall(data_parameter(D ata,Parameter,_)),
assert(data_param eter(D ata,Parameter,none)),
attribute_com mand_loop(Slot,Facet) draw _data_parameter_window (D ata) .
object(Slot,Title,Position,W position),
Xpos is W position-26,

retractall(cursor_location(sub_command(tiny),_,_)), data_parameter_action(D ata,A ction,Y).
assert (cursor_location (sub_command (tiny),0,)$205s))/
repeat,

once(window _drgp(attributes,Drop)),
once (CY is Drop+2),

once (sub_command_line (tiny,CY ,Xpos,Result)),
once (attribute_action (Result,Slot,Facet)),
Result=exit.

attribute _action(exit,Slot,Facet).

attribute _action(add.Slot,Facet):-
enter_attribute(*Add "»A ttribute),!,
add_attribute(Slot,Facet,A ttribute),
draw _attribute_window (Slot,Facet).

attribute _action(delete,Slot,Facet)
enter_attribute("D elete "» A ttribute),
delete _attribute(Slot,Facet, A ttribute),
draw _attribute_window (Slot,Facet).

attribute_action(scroll_up,Slot,Facet):-
scroll_window _up(attributes).

attribute_action(scroll_down,Slot,Facet):-
scroll_window _down(attributes).

I* ki

/* DATA PARAMETER DEFINITION */

parameter(units,”U nits).
parameter(upper_limit,"Upper Limit ") .
parameter(lower_limit"Lower Limit ") .

parameter(mean,"M ean ")
parameter(standard_deviation,"S.D .).
parameter(default,"Default "y

I/* check values entered as data parameter attributes */

check_data(standard_deviation,Value) :-
Value=<0,1,

warning_box(8,30,"standard deviation”.,"must be > zero

. fail

check_data(Parameter,Value).

define_data_parameter_window :-
create_stream (data_param eter,readw rite,byte,window (8,22,red on cyan)),
open(data_parameter,readw rite),
screen(data_parameter,create(0,0,data_parameter,0,0,0,none,None,8,22,hid
den)).

draw_data_parameter_window(Data) :-
window(data_parameter,attribute(white on blue)),
_out(Data,Data_name,22),
window(data_parameter,cursor_address(0,0)),
window(data_parameter,text(Data_name)),
window(data_parameter,attribute(red on cyan)),
data_parameter(Data,units,Units),

273

* build.tre 2nd level of FRAMEBUILDER */

I/* Predicates defined in this file:

sub_category/2
find_descendent/2
entry _exists/l
run_treelo

draw _horizontal_scale/0
draw_vertical_scale/0
draw _instructions/o
create_base/0
rertove_base/0
display_windows/0
scroll_left/o
scroll_right/o

scroll_up/o

scroll_down/o
set_scrolls/0

follow s/2

create_window /1
set_tree_windows/1
remove_tree_windows/1
load_tree_data/0
save_tree_data/0
highlight/1

set_action/l

get_entry/3
input_Yoffset/2
input_Xoffset/2
input_data/3

check _input/l
command_loop/0
base_action/3
perforra_action/3
edit_entry/2

edit_entry _list/2
edit_frame_data/2

delete _tree_entry /1
delete_frame_data/l
delete_descendents/2
add_tree_entry/2

check _link/3
link_action/2
define_weight_window /0
remove_weight_window /0
draw _weight_window/3
draw _weight_entries/3
draw_weight_line/3
weight_command_loop/3
weight_action/s
update_weight_window /4
get_weight_window _entry /2
update_weight/3
check_veights/2
distribute_residue_weights/3
create_form at/1
create_tree_form at/0

draw _tree/0

draw _generation/1

entry _display/2
write_entry/2

draw _generation_entries/2
draw _brackets/2
bracket_display/2
bracket/2
make_connections/2
create_origin_list/4
add_origins/3
refoxrmat_list/4
génération _size/3
centre_generation/3
get_offset/3
space_out_format/4
create_destination _list/3
draw _connections/3
set_direction/2
set_depth/l

connect/3
horizontal_connection/2
upward_connection/2
downward_connection/2 */

*

/* Check if Entry is in the subset
sub_category(Parent, Entry) :-
tree(Parent,Entry _list),
member(Entry Entry_list).

I/* To find a descendent of a node

find_descendent(Node,Descendent)
sub_category(Node,Descendent).

find_descendent(Node,Descendent):-
sub_category(Node,Child),
find_descendent(Child,Descendent).

I/* Check to see if a node exists */

entry _exists(Entry)
disorder(Entry).

entry _exists(Entry)
disease(Entry)

entry _exists(Entry)
link (_._.Entry.,_) .

of Parent

(tree

I

I*

1%

disorder

disease

tree

OME EXTRA UTILITIES -

version)

entry

(tree

*/

root

root

*/

version)

*!

*/

*!

*1

fe -
/* MAIN FUNCTIONS ‘-—.’1

/* To run the tree display
round the command loop until exit and then reset the database and

display, set the environment, load the tree,
it,run
environment */

run_tree :-
createbase,

set_scrolls,
set_tree_window s(root),
load_tree_data,
create_tree_form at,

draw _tree,

conmand_loop,
remove_tree_windows (root) .
remove base

/* SETTING THE ENVIRONMENT */
/* set background */

draw _horizontal_scale
window (base,attribute(yellow on red)),
window (base,cursor_address(0,0)),
window (base,text(" \17\17")),
window (base,cursor_address(0.,6)),

repeat(X),
window (base,text("\176")),
X=19,

window (base,cursor_address (0,28)),
window (base,text("\16\116")).

draw _vertical_scale:-
window (base,attribute (yellow on red)),
window (base,cursor_address(1,0)),
window (base,tex t("\30\30n)),
repeat(R),

Y is R+3,

window (base,cursor_address(Y ,0)),
window (base,text(M176\176n)),

R=19,

window (base,cursor_address (24,0)),
window (base,text(*\31131")).

draw _instructions
window (base,attribute(red on cyan)),
window (base,cursor_address(0,41)),
window (base,text(n VIEW ")),

window (base,cursor_address(0.,48)),
window (base,text(” ADD ")),

window (base,cursor_address(0,54)),
window (base,text(" EDIT ")),

window (base,cursor_address(0,61)),
window (base,text(® DEL ")),

window (base,cursor_address(0,67)),
window (base,text(" LINK ")),
window (base,cursor_address(0,74)),
window (base,text(" EXIT ")).

createbase:-
create_stream (base,readw rite,byte,window (25,80,black on black)),
open(base,readw rite),
screen(base,create(0,0,base,0,0,0,none,None,25,80,hidden)),

draw _horizontal_scale,

draw _vertical_scale,

draw _instructions,

set_action(view),

screen(base,unhide).

remove_base:-
close(base),
delete_stream (base).

/* Scrolling & Display Operations */
/* Displaying the tree windows */

display_windows:-
current_window (W indow 1),

follows (Window W indow2),

follows(W indow 2,W indow 3),

vertical (V).

Ypos is (V -1)*4,

screen(W indow l,change(3,4,Windowl,Ypos,0,0 none,None, 20,27, revealed)),
screen(W indow2,change(3.,31,Window2,Ypos,0.,0,none,None, 20,27, revealed)),
screen(W indow3,change(3,58,Window3,Ypos,0,0,none,None, 20,22, revealed)).

I* scrolling the tree display */

scroll_left
horizontal(H),
H>1,

NH is H-I,

retractall(horizontal(H)),
assert(horizontal(NH)),

Xpos is (2*NH)+4,

window (base,attribute (yellow on red)),
window (base,cursor_address(0,Xpos)),
window (base,text("\2191219\176\1176")),
retract(current_window (W indow)),
follows(New _window ,W indow) ,
assert(current_window (New _window)),
display_windows.

scroll_left.
scroll_right:-

current_window (W indow),
follows(W indow ,Second),

274

follows (Second, Third) ,
follows (Third,_) .

horizontal(H),

NH is H+I,

retractall(horizontal(H)),
assert(horizontal(N H)),

Xpos is (2*H)+4,

window (base,attribute (yellow on red)),
window (base,cursor_address (0,Xpos)).
window (base,text("\176\176\2191219")),
retract(current_window (W indow)),
follows(W indow ,New _window),
assert(current_window (New _window)),
display_windows.

scroll_right.

scroll_up:-
vertical(V),

NV is V-,

retractall (vertical (V)),
assert(vertical(NV)),

Ypos is NV+2,

window (base,attribute (yellow on red)),
window (base, cursor_address (Ypos, 0)) .
window (base,text("\2191219\n\r\1761176")),
display_windows.

scroll_up.

scroll_down:-
vertical(V),

V<20,

NV is v+,

retractall (vertical (V)),

assert (vertical (NV)),

Ypos is V2,

window (base,attribute(yellow on red)),
window (base,cursor_address(Y pos,0)),
window (base,text("\176\1176\n\r\2191219")),
display_windows.

scroll_down.

set_scrolls
retractall(vertical(V)),
assert(vertical(10)),

window (base,attribute(yellow on yellow)),
window (base,cursor_address(12,0)),
window (base,text (" ")),
retractali(horizontal(H)),
assert(horizontal(1)),

window (base,cursor_address(0,6)),
window (base,text (" ")),
retractall (current_window (_)),
assert (current_window (root)) .

/* SETTING UP THE WINDOWS */
/* define order of windows */

follow s(root,first).
follow s(first,second).

follow s(second,third)

follows (third fourth)

follow s(fourth fifth).

/* extra generations conmented out to save space */
/* follow s(fifth,sixth).*/

/* follow s(sixth,seventh).*/

/* follow s(seventh,eighth). */

/* follow s(eighth,nineth).*/

I/* create window for tree column */

create_window (Window)
create_stream (Window,readw rite,byte, window (96,27, red on black)),
open (Window, readw rite) .

screen (W indow,create (0,0, Window, 0,0, 0,none,None, 22,27, hidden)),
window (Window, cursor_home) .

/* set up tree display windows */

set_tree_windows (Window) :-
once (create_window (Window)),
follows (Window,Next_window) ,
set_tree_windows (Next_window) .

set_tree_windows(W indow) .

/* remove tree display windows */

remove_tree_windows(W indow)
close(W indow) ,

delete_stream (W indow) ,

follows (Window,Next_window) ,
remove_tree_windows (Next_window) .

remove_tree_windows (Window) .

/* Setting the current tree from the database */

load _tree_data:-
once(builder_state(Root, Type,_)) .
once(assert(tree(root,[Root]))),
once(Archive=..[Type,Root,Entry Entry_list]),
call(Archive),

assert(tree(Entry Entry _list)),

fail

load _tree_data.

/* Replacing tree data into general database */

save_tree_data:-
once (builder_state (Root, Type,_)),
once (Archive=.. [Type,Root,_,_1]),
once(retractall(Archive)),
once(retract(tree(root,_))),

tree(Entry Entry _list),

once(New _archive=..[Type,Root,Entry Entry_list]),
once(assert(New _archive)),

fail

save_tree_data:-
retractall(tree/2).

/*
1* --BASE COMMANDS AND ACTIONS-—

/* A FEW DISPLAY AND INPUT ROUTINES */
/* Highlighting the command */

highlight(view) s-
window (base,attribute(cyan on red)),
window (base,cursor_address(0.,41)),
window (base,te x t(* VIEW ")) .

highlight(add)
window (base.attribute(cyan on red)),
window (base.cursor_address(0,48)),
window (base,text(* ADD ")).

highlight(edit)
window (base,attribute (cyan on red)),
window (base.cursor_address(0,54)),
window (base,text(" EDIT ")).

highlight(delete)
window (base,attribute(cyan on red)),
window (base,cursor_address(0,61)),
window (base,text(® DEL ")).

highlight(link)
window (base.attribute(cyan on red)),
window (base,cursor_address(0,67)),
window (base,text(" LINK "))

/* set the current command selection */

set_action (A ction)
retractall(current_action/l),
assert(current_action(A ction)),
draw _instructions,

highlight(A ction).

/* get the node under a mouse click */

get_entry(W indow, Y jpos,Entry)

window (Window,cursor_address (Ypos, 1)),

window (W indow ,inquire_text(20,D isplay)),
truncate_string (D isplay Truncated_display),
delete_character(Truncated_display Entry M196"),1,
Entry\="".

/* To input a node for add or edit routines */

input_Yoffset(Y Y 0)
Y<12,
YO is Y+2.

input_Y offset (Y, YO)
YO is Y -2.

input_Xoffset(X ,3)
X<31.

input_Xoffset(X,57)
X>57.

input_X offset(X ,30)

input_data(Instructions,Edit_string,Input)
cursor_location(base,Y X),

input_Yoffset(Y,Y0),

input_Xoffset(X ,X0),

fedit(Y0.,X 0,22 Instructions,” ", Edit_string,red on cyan,Entry),
truncate_string (Entry. Input),!,

check_input (Input).

check_input(

")

check_input(input):-
entry _exists(Input),
warning_box (8,30, Input,“already exists",""),1 fail

check_input(input).

/* BASIC TREE COMMANDS */

command_loop:-
retractall (cursor_location (base,_,_)),
assert(cursor_location(base,0,0)),

repeat,

once(cursor_location(base,SY,SX)),
once(locator(SY ,SX,Y,X,0,0,24,79)),
once(retractall(cursor_location(base,SY ,SX))),
once(assert(cursor_location(base,Y ,X))),
once(base_action(Y,X,Result)),

275

Result=exit. builder_state (_,Type,_).
update_lexicon(add . Type New _entry),
update_lexicon(delete, Type,Entry),

base_action(0,2,scroll_left):- edit_entry(Entry New _entry),
scroll_left. edit_entry _list(Entry New _entry),
edit_frame_data(Entry New_entry),
base_action (0,3 ,scroll_left) createtree_forraat,
scroll_left. draw _tree.
base_action (0,28,scroll_right) perform _action (root,Entry delete)
scroll_right. warning_box(8,30,"Root of tree”,"Can only LINK or VIEW",
base_action (0,29,scroll_right) perform _action(W indow ,Entry. delete):-
scroll_right. builder_state (_,Type,_),

update_lexicon(delete, Type,Entry),
delete_tree_entry (Entry),

base_action(1,0,scroll_up) create_tree_form at,
scroll_up. draw _tree.

base_action(1,1,scroll_up) perform _action(W indow ,Entry link)
scroll_up. check_link(W indow ,Entry, Action),

link _action(Entry, A ction).
base_action (24,0 ,scroll_down)

scroll_down. perform _action(W indow ,Entry,Action).
base_action(24.,1,scroll_down):-
scroll_down. /* ROUTINES FOR EDITING A NODE */
base_action (0, X,view) /* edit the parent node entry */
X>41,
X <48, edit_entry(Entry New _entry)
set_action (view) . sub_category(Parent,Entry),
retract(tree(Parent,Entry _list)),
base_action (0,X ,add):- substitute(Entry Entry _list,New _entry New _entry_list),
X>48, assert(tree(Parent,New _entry_list)),
X <54, retract(link (Root,Parent,Entry W)),
set_action (add) . assert (link (Root,Parent,New _entry,W)).

base_action(0,X .edit)

X>54, /* edit the node itself */
X<61,
set_action (edit) . edit_entry _list(Entry New _entry):-

once(retract(tree(Entry,List))),
base_action(0,X ,delete) once (assert (tree (New _entry, List))),
X>61, retract(link(Root,Entry Descendent,W)),
X<67, assert(link (Root,New _entry,Descendent, W)),
set_action(delete). fail
base_action(0,X ,link) edit_entry _list(Entry New _entry).
X>67,
X<74,
set_action(link) . /* edit the frame data for a node */
base_action(0,X ,exit) edit_frame_data(Entry,New _entry)
X>74, builder_state(Root,Type,_),
save_tree_data. frame_cfc>ject (Slot,_),

Archive=.. [Slot,Entry,Root,F,A C],
base_action(Y X, first_window) retract(Archive),
X>3, New _archive=..[Slot,Newjentry, Root,F, A .C],
X<31, assert(New _archive),
Y>2, fail
current_window (W indow),
current_action (A ction), edit_frame_data(Entry New _entry):-
vertical(V), retract (frarne_relation (Entry ,Root,N ,R)),
Ypos is ((V-1)*4)+Y-3, assert (frame_relation (New _entry,Root,N ,R)),
get_entry(W indow .Y pos,Entry), fail

perform _action(W indow .Entry,Action) .
edit_frame_data(Entry New _entry)

base_action(Y X ,second_window) retract(frame_history (F,R .Entry, A ,C)).
X>31, assert(frame_history(F.R ,New _entry A ,C)),
X <58, fail.

Y>2,

current_window (W indow), edit_frame_data(Entry New _entry).

follows(W indow ,Second_window),
current_action (A ction),

vertical(V), /* ROUTINES FOR DELETING A NODE */
Ypos is ((V-1)*4)+Y-3,
get_entry(Second_window,Y pos,Entry), /* delete the node from the tree */

perform _action(Second_window Entry, Action)
delete_tree_entry (Entry):-

base_action (Y, X, third_window):- sub_category(Parent,Entry),
X>58, retract(tree(Parent,Entry _list)),

Y>2, delete(Entry Entry_list,New _entry_list),
current_window (W indow), assert(tree(Parent,New _entry_list)),
follows(W indow ,Second_window), retractall(link (_.Parent,Entry,_)),
follows(Second_window ,Third_window), retractall(tree(Parent,[])),
current_action (A ction), delete_frame_data(Entry),

vertical(V), delete_descendents(Type,Entry),

Ypos s ((V-1)*4)+Y-3, retractall (tree (Entry,_)),
get_entry(Third_window .Y pos,Entry), retractall (link (_,Entry,_,_))

perforra_action(Third_window ,Entry A ction).
/* delete the frame data for a node */
base_action(Y ,X ,continue).
delete_frame_data(Entry) :-
builder_state (Root, Type,_),

/* PERFORM TREE ACTIONS AFTER MOUSE CLICK */ retractall(fram e_variable(Entry ,Root,_,_,_)),
retractall(frame_history (Entry ,Root,_,_._)),
perform _action(W indow ,Entry,view) retractall (frame_synptom (Entry,Root,_,_,_)),
retract(builder_state(Root,Fraroe_type,_)), retractall (frame_relation (Entry,Root,_,_)),
assert(builder_state(Root,Frame_type Entry)), retractall(fram e_history (F,R . Entry A P)).
define_frame_command_line,
frame_command_logp.
/* To delete all the descendents of a node */

perform _action(root,Entry,add)
warning_box(8.30,"Root of tree","Can only LINK or VIEW" delete_descendents(Type,Entry):-

once(bagof(Descendent,find_descendent(Entry,Descendent),Descendent_list)

perform _action (W indow ,Entry.,add):-),

input_data ("Input new entry","" ,New _entry), member (D escendent_entry,Descendent_list),

sub_category(Parent,Entry), retractall(tree(D escendent_entry,_)),

add_tree_entry(Parent,New _entry). retractall(link (_,Descendent_entry,_,_)),
update_lexicon(delete.,Type,Descendent_entry),

perform _action(root,Entry,edit) once(delete_frame_data(Descendent_entry)),

warning_box(8,30,"Root of tree”,"Can only LINK or VIEW " ""). fail

perform _action(W indow ,Entry,edit) delete_descendents(Type,Entry).

input_data("Edit entry" Entry ,New _entry),

New _entry\=Entry, /* don't edit if no change */

276

/* ROUTINES FOR ADDING A NODE */ WY is Drop-1,

X>21,
add_tree_entry(Parent,New_entry) :- X<26.
tree(Parent,D escendents),
length (Descendents,L), weight_action(Root,Node,Drop,W Y ,34):-
L=10, update_weight_window (Root,Node,W Y .u) .

warning_box(8.,30,"Cannot add to",Parent,"Too many descendents").
weight_action (Root,Node,Drop,W Y, 36) :-

add_tree_entry(Parent,New _entry) :- update_weight_window (Root,Node, W Y .dpl) .
builder_state(Root,Type,_).

update_lexicon(add,Type,New _entry), weight_action(Root,Node,Drop,W Y ,37):-
retract(tree(Parent,Entry _list)), update_weight_window (Root,Node, WY,dp2) .

assert(tree(Parent,[New _entry [Entry_list])) .
assert(link(Root,Parent,New _entry,0.000)),
ereate_tree_format, /* Updating the weight window */
draw _tree.

/* do the update */

/* ROUTINES FOR LINK OPTION */ update_weight_window (Root,Node, WY,D igit) :-
get_weight_window _entry (Entry, W Y),

check_link(Window Entry,weight)/* link defined */ retract(link (Root,Node Entry W)),

sub_category(Entry,) . update_weight (W DigitNW) ,
assert(link (Root,Node,Entry N W)),

check _link(Window Entry,create)/* link undefined */ Display is_string string(NW ,0ps),

follow s(W indow,_) window (weighttext(D isplay)).

check_link(Window ,Entry,fail)/* link undefined */

warning_box(8,30,"Cannot link to",Entry, "), fail. /* get the node */
get_weight_window _entry(Entry, WY):-

link_action(Parentcreate) window (weightcursor_address(W Y 1)),

input_data("Connect to" ,"",New _entry), window (weightinquire_text(22.,Input)),

builder_state(Root,Type,_), truncate_string (Input,Entry)

update_lexicon(add,Type,New _entry) , window (weightcursor_address(W Y ,24)). I* prepare for display */

assert(link (Root,Parent,New _entry,0.000)),
assert(tree(Parent,[New _entry])),

create_tree_form at, /* update the weight */
draw _tree.

update_weight(1.000,u,0.000). /* units */
link _action (Node,weight):-
builder_state(Root,_,_), update_weight(W ,u,1.000)
define_weight_window,
draw _veight_window (Root,Node, Drop) , update_weight (W,dpI,NW) :- /* first decimal place */
weight_command_loop(Root,Node,D rop), W<0.9,
remove_weight_window. NW is W +0.100.
update_weight(W ,dpl,NW):-
/* ROUTINES FOR WEIGHTING LINKS */ NW is W-0.900
/* setting the window */ update_weight(W ,dp2 ,NW):- /* second decimal place */
U is (10*W)-truncate((10*W)+0.0001),
define_weight_window:- U<0.9,
create_stream(weight,readwrite,byte,window(12,29,black on red)), NW is W +0.010.
open(weight,readwrite),
screen(weight,create(5,10,weight,0,0,0,1r,black on red,12,29,hidden)), update_weight (W,dp2,NW) :-
state(decimals,_,2). NW is W -0.090
remove_weight_window: -
close(weight), /* Checking the sum of link weights for a node */
delete_stream(weight),
state(decimals,_,3). check_weights(Root,Parent):-
bagof (W ,Node+'link (Root,Parent,Node, W), W eight_list),
sum _list(W eight_list,0,Sum),
/* drawing the window */ length (W eight_list,N),
R is (1-Sura)/N,
draw _weight_window (Root,Node,Drop):- Residue is truncate(R*100)/100,!,
window (weight,cursor_address(0,1)), distribute_residue_weights(Root,Parent,Residue).
window (weight,text(Node)),
window (weight,cursor_address(0,24)),
window (weights»text("LINK™")), /* Distribute the residue weight evenly among nodes */
tree(Node,Links),
length(Links,L), distribute_residue_weights(Root,Parent,0.0) I* no residue */
Drop is L+2,
screen(weightchange(5,10,weight,0,0,0,Ir,black on red,Drop,29,hidden)), distribute _residue_w eights(Root,Parent,Residue)/* residue -ve*/
window (weightattribute(red on cyan)), Residue<0.0,
window (weight,cursor_address(1, 0)), warning_box(8,30,"Link weights for",Parent,"badly defined"),! fail
draw _weight_entries(Root,Node,Links),
window (weight,attribute(black on red)), distribute _residue_weights(Root,Parent,Residue):- /* residue +ve */
window (weight,text(" EXIT")), tree(Parent,Node_list),
window (weight,attribute(red on cyan)), member(Node,Node_list),
screen(weight,unhide). once(retract(link(Root,Parent,Node,W))),
NW is W +Residue,
assert(link(Root,Parent,Node, NW)),
/* drawing entries in weight window */ fail
draw _weight_entries(Root,Node,[]). distribute_residue_weights(Root,Parent, Residue).
a : I*
raw _weight_entries(Root,Node,[DescendentiLinks]):-
draw _weight_line(Root,Node,Descendent), I* -~ROUTINES TO DRAW AND DISPLAY A TREE-- -*

draw _weight_entries(Root,Node,Links).
/* The drawing of a tree is performed by two main actions. First the
format of the tree is prepared from the database, then the tree is drawn

draw_weight_line(Root,Node,Descendent) :- from the prepared formats */
link(Root,Node,Descendent,W),

fill_out(Descendent,Node_display,23), /* auto If by window */ /* CREATING THE FORMAT LISTS FOR DRAWING TREES */
Display is_string “\r " & Node_display &string(W ,ops) & " ",

window (weight.text(D isplay)). /* creating the format for a generation */

create_format(W indow):-

/* command loop for adding weights */ once(retractall(format(W indow ,_))),
once(assert(format(W indow, []1))).

weight_command_loop (Root,Node,Drop) :- once (follows (Parent_window W indow)),

BY is Drqp+4, once(format(Parent_window ,Parent_format_list)),

retractall(cursor_location(weight,_,_)), member((Parent_entry,) ,Parent_form at_list) ,

assert(cursor_location(weight,BY,23)), tree (Parent_entry First_generation_list),

repeat, member (First_generation_entry First_generation_list),

once(cursor_location(weight, SY,SX)), once (tree (First_generation_entry, Second_generation_list)),

once(locator(SY ,$X,Y X ,6,11,BY,37)), once (length (Second_generation_list,Size)),

once(WY is Y-5), once (retract (format (Window,Form at_list))),

once(retractall(cursor_location(weight,_,_))), once (append (Form at_list, [(space, 1), (First_generation_entry Size)],New_fo

once(assert(cursor_location(weight,Y ,X))), rmoat_list)),

once(weight_action(Root,Node,Drop,W Y X)), once (assert (format (Window,New _format_list))),

Y=BY, fail

check_weights(Root,Node).
create_format (Window) .

weight_action (Root,Node, Drop,WY X) :- /* range for exit */

277

/* Creating the format for a whole tree */

create_tree_form at
retractall(form at(root,_)),

assert(form at(root,[(space,46), (root,1)])),
follows(Parent_window ,W indow),
once(create_format(W indow)),

fail

format.

create tree

/* ROUTINES TO DRAW THE TREE FROM THE PREPARED FORMATS */

/* Drawing the whole tree: draw the generation for each window */

draw _tree

once(draw _generation(root)),

follows(Parent_window W indow),

once(draw _generation(W indow)),

fail

draw _tree:-

display _windows.

/* To draw a generation, get the format, write the nodes, draw the front
brackets and make the connections to the next generation */

draw _generation(W indow)

form at(W indow ,Form at_list),

window (W indow ,clear),

window (W indow cursor_address(0.,1)),

draw _generation_entries(W indow ,Form at_list) ,

window (W indow cursor_address(0,0)),

draw _brackets(W indow ,Form at_list),

retractall(path(_,_)),

assert(path(level,0)),

make_connections(W indow ,Form at_list).

/* DRAWING THE NODES */

/* prepare the node display */

entry _display(Entry,Display):-

tree (Entry,_) .,

rule_out(Entry,Display,20)

entry _display (Entry Entry).

/* Draw a cluster of nodes in a subset */

write_entry (W indow ,(space,N))

repeat (X),

window (W indow,cursor_down) ,

X is N -I.

write_entry(W indow, (Parent,_))

tree(Parent,First_generation_list),

member(First_generationjentry First_generation_list),

once(entry _display(First_generation_entry,D isplay)),
once(window (W indow ,text(D isplay))),

once(window (W indow text("\r\n "))),

fail

write_entry (W indow ,Entry).

/* Draw all nodes for a generation */

draw _generation_entries(W indow ,[]) .

draw _generation_entries(W indow ,(Entry|[Form at_list]):-
write_entry (W indow ,Entry),

draw _generation_entries(W indow ,Form at_list).

/* DRAWING THE FRONT BRACKETS FOR A GENERATION */

/* Main routine to draw the brackets. For each cluster in the
generation, get the bracket display that fits the cluster and then
display it */

draw _brackets (root,_) /* don't draw brackets for root */
draw _brackets(W indow ,[]) /* end condition */

draw _brackets(W indow ,[Entry[Format_list]) / * loop for each entry */
bracket_display (W indow ,Entry),

draw _brackets(W indow ,Form at_list).

/* Retrieve the bracket display that fits the cluster */
bracket_display(W indow ,(space,N)):- /* no brackets for spaces */
repeat(X),

window (Window,cursor_down) ,

X is N -I.

bracket_display (W indow ,(Category,1)):- /* one element in group */
window (W indow text("\196\r\n"))

bracket_display(Window, (Category,2)) [/ * two elements in group */
window (W indow text(*\194\r\n\192\r\n"))

bracket_display (W indow ,(Category,Size)) [/ * >2 elements in group */

window (W indow text("\218\r\n")),
Upper_drop (size-3)//2,
bracket(W indow ,Upper_drop),
window (W indow text("\197\r\n")),
Lower_drop (Size-2)111,
bracket (Window,Lower_drop) .
window (W indow text("\192\r\n"))

is

is

/* Display brackets for a drop of N */
bracket(W indow,0).

bracket(W indow ,N):-

repeat(X),
window (W indow text("\195\r\n")),

X is N-I

/* DRAWING THE CONNECTIONS BETWEEN NODES */

/* Make connections to next generation. First create the list of origins
to the connections. Next reformat the next generation, create the list
of destinations for the connections and finally draw the connections. */
make_connections(W indow ,Form at_list):-

follows (Window,Next_window),

format (Next_window,Next_format_list),

create_origin_list (Form at_list,0 rigin_list, (],0),
Format_list=[(space,N)[Rest],

generation_size(Rest,0,Size),

reformat_list (O rigin_list,Size Next_format_list,New _form at_list),
retract (format (Next_window,_)),

assert (format (Next_window ,New _format_list)),

create_destination_list (New _form at_list,D estination_list, 0) ,

draw _connections (W indow ,0 rigin_list,D estination _list)
make_connections(W indow ,Form at_list). /* no connections for last */

/* To create the list of origin positions of connections from the format
list of a generation */

create_origin_list((],0 rigin_1list,0 rigin_list,Position).
create_origin_list([(space,N) [Format_list] O rigin_list,List_so_far,Posit
ion) :-

Newjposition is Position+N,

create_origin_list (Format_list,0 rigin_list,List_so_far,New _position)
create_origin_list (((Category,N) [Format_list] ,0 rigin_list,Li3t_so_far,Po
sition)

New _position i3 Position-tN,
tree(Category,Category _list),

add_origins(Category_list,Extra_origin_list,Position),

append (List_so_far,Extra_origin_list,New _list_so_far) ,
create_origin_list (Format_list,0 rigin_list,New _list_so_far,New _position)
/* adding all the origins for a cluster of nodes in a subset */

add_origins((].[].Position).

add_origins([Entry|Category_list] ,[Position|List).Position):-
New _position is Position+1,

tree (Entry,_),

add_origins (Category _list,List,New _

position)

add_origins ([Entry [Category_list],List, Position)
New _position Position+1,
add_origins(Category_list,List,New _position).

is

/* Reformat a generation based on the format list of the preceeding
generation. If the generation size is greater than the preceeding
generation then the generation is centred, otherwise it is spaced
out */

reform at_list (O rigin_list,Lim it_size,Format_list,New _format_list) :-

generation_size (Form at_list, 0,Size),
Size>Limit_size,
centre_generation (Form at_list, Size,New _form at_list) .

reform at_list (O rigin_list,Limit_size ,Format_list,New _form at_list)
space_out_format (O rigin_list,Form at_list,New _form at_list, 0) .
/* Finding the size of a generation */

generation_size([].Size.Size).

generation_size([(_.N)[Format_list],Size_so_far,Size)
New _size_so_far is Size_so_far+N,

generation_size(Format_list,New _size_so_far,Size) .

/* Centring a generation in its window */

centre_generation([(space,N)[Rest_of_list],Size [(space,O ffset)[Rest_of

list])
O ffset is (95-Size)//2.

/* Getting the offset between origin and destination of a connection */
get_offset(O rigin,Destination,0) :-

Destination>O0O rigin.

get_offset(O rigin,D estination, O ffset):-

O ffset is Origin-Destination

/* Spacing out a generation so that origins and destinations match
nicely. If the destination is above the origin then it is left where it
is, otherwise it is spaced down to make a level connection */

space_out_format([].[]1.[].,Position).

space_out_format([O rigin|O rigin_list], [(space.S) [Form at_list], [(space.NS
) . (Entry E)[List].Position):-

Format_list=[(Entry E) [New _form at_list],

Destination is Position+S+((E-1)//2),

get_offset(O rigin,D estination,0 ffset),

NS is S-K)ffset,

278

New _position is Position+NS+E,

space_out_format (O rigin_list,New _form at_list,List,New _position)

I* To create the list of destination points for the connections */
create_destination_list ([], [].Position).

create_destination _list([(space,N)[Form at_list],D estination_list,Positio
n)

New _position is Position+N,

create_destination_list(Form at_list,Destination _list,New_position).

create_destination _list([(Category,N)[Format_list] , [Destination_position
D estination _list]»Position):-

New _position is Position+N,

Destination_position is Position+ ((N-1)//2),
create_destination_list(Form at_list,D estination_list,N ew _position).

/* Drawing the connections */
12345 (depth) direction

down
/* Draw the connections for a generation from the origin and destination
lists. For each origin-destination pair, get the direction and depth
of the connection and then draw it. */

draw _connections(W indow, [],

m -

draw _connections(W indow ,[O rigin|O rigin_list], [D estination|D estination _li

st]) :-

Connection_length is Origin-Destination,
set_direction(Connection_length,D irection),
set_depth(D irection),

connect(W indow ,O rigin.Connection_length),

draw _connections(W indow ,0 rigin_list,D estination_list).

/* set the direction of the connection between nodes */
set_direction(0,level).

set_direction(Connection_length,up):-

Connection_length>0.

set_direction(Connection_length,down).

/* Sset the nesting depth of the connection */

set_depth(level):- /* direction is level */
retract(path(D irection.,Depth)),

assert(path(level,0)) .

set_depth (D irection):- /* same direction again */
retract(path (D irection.,D epth)),

New_depth is Depth+1,

assert(path (D irection,New _depth))

set_depth(D irection):- /* new direction */

retract (path (_,_)),
assert(path (D irection,1)).

/* To draw a single connection when direction and depth have been
connect(W indow O rigin.Connection_length):-

path (level, 0),

window (Window, cursor_address (O rigin,21)) .

window (W indow ,text(*\19611961196119611961196"))

connect(W indow .0 rigin,Connection_length):-
path(up.Depth),

window (W indow ,cursor_address(Origin,21)),
horizontal_connection(W indow ,D epth),
window (W indow text("\217")),
upward_connection(W indow .Connection_length) ,
window (W indow text(*\218")),

Finish_length is 5-Depth,
horizontal_connection(W indow ,Finish_length)

connect(W indow .0 rigin,Connection_length):-
path(down,Depth),

window (W indow ,cursor_address(Origin,21)),
Start_length is 5-Depth,
horizontal_connection(W indow ,Start_length),
window (W indow text("\191")),
downward_connection(W indow .Connection_length),
window (W indow text("\192")),
horizontal_connection(W indow D epth).

/* To draw a horizontal connection of given length */

horizontal_connection(W indow ,0)
horizontal_connection(W indow ,Length):-

repeat(X),
window (W indow text("\196")),

set */

X is Length-1.

/* To draw an upward connection of given length
upward_connection(W indow ,1)

window (W indow cursor_up),

window (W indow ,cursor_left).
upward_connection(W indow ,Length):-

repeat (X) .

window (W indow,cursor_up),

window (W indow ,cursor_left),

window (W indow ,text("\179")),

X is Length-2,

window (W indow ,cursor_up),

window (W indow ,cursor_left).

/* To draw a downward connection of given length

downward_connection(W indow ,-1):-
window (Window,cursor_down),
window (Window,cursor_left)

downward_connection (Window,Length)
repeat(X),

window (Window, cursor_down),
window (W indow ,cursor_left),
window (W indow text(*\179")),

X is -Length-2,

window (Window, cursor_down) ,
window (Window, cursor_left)

279

*!

*!

/* build.frm 3rd level of FRAMEBUILDER */

/* Predicates defined in this file:

frame_object/2
retrieve_frame_data/6
retrieve_frarre_datal/4
retrieve _slot/3
define_frame_command_line/0
draw_frame_command_line/0
frame_command_loop/0
frame_action/2
define_frame_drop_window/0
draw _frame_drop_header/2
display_level/3

write_data/2
frame_drop_window _display/4
draw _frame_drop_window /1
frame_drop_window /1
check_frame_slot/4
check_tree/s
add_frame_slot/4
history_selection/4

history _selection/3
add_history/s
delete_frame_slot/ 4
frame_slot_com mand/2
get_attribute/1
get_certainty/l
edit_variable/4

edit_slot/3
frame_data_edit_action/s
define_selection_window/0
header_display/2
selection_position/2

draw _selection_header/2
draw _selection_window /3
forrn_selection _list/3
display _selection_list/l
write_slot_entry/3
define_selection_command_window/0
selection_command_loop/2
selection_action/3
pad_key/s
define_pad_windows/0
reraove_pad_windows/0

display _pad_key/s

display _keys/0

draw _pad/0

get_pad_entry/3
pad_action/2

pad_input/l
relation_drop_window/1
define_relation_drop_window /0
display _relation_list/1
write_relation_entry/3
set_archive/2

draw _relation_drop_window /1
add_relation/2
enter_relation/2
delete_relation/2
relation_command/2
define_test_window /0
split_list/s

split_process/s
define_relation_window /I
display _edit_relation _list/1
draw _relation/2
set_relation_window _position/2
delete_elem ent/3
insert_eleroent/4
get_relation_archive/2
edit_relation/1

edit_relation_action/4 */
/*
I* FRAME INSTANCES

/* definition of frame slots */

frame_object(frame_variable,variable).
frame_object (frame_symptom symptom) .
frame_object (frame_relation, relation)
frame_object(frame_history history).

/* To retrieve a slot of frame information */

/* Retrieve the root of disorder or disease added as history

retrieve_frame_data (frame_history, Frame_name,Root,D _root,A ttribute, Certa

inty)
frame_history(Frame_name,Root,Facet A ttribute,Certainty),
not history(Facet,_),

link (D _root,_,Facet,_).

/* Otherwise just get the facet */

etrieve_frame_data (Frame_slot,Frame_name Root Facet, A ttribute, Certainty

Archive=..[Frame_slot,Frame_name,Root,Facet,Attribute,Certainty],

call(Archive),
frame_dbject(Frame_slot,Slot),
retrieve_slot(Slot,Facet,) . /* dont want disorders or

/* Retrieve facet information only */

retrieve_frame_data (Frame_slot,Frame_name,Root,Facet)

Archive
call(Archive).

/* To retrieve a slot */

retrieve_slot(variable,V ariable.none)
variable (Variable) .

retrieve_slot(Slot,Facet,A ttributes)

.[Frame_slot,Frame_name, Root,Facet, A ttribute,Certainty],

Archive=..[Slot,Facet,A ttributes],
call(Archive).

/* The main command line for frame instances */

define_frame_command_line:-

create_stream (frame_backdrop,readw rite,byte,window (25.80,black

black)), open(frame_backdrop,readw rite),

on

screen(frame_backdrop,create(0,0 frame_backdrop,0,0,0,none,None, 25,80, re

vealed)),

draw _frame_command_line,
screen(main.pull_up),
screen(main,unhide),
retractall(cursor_location(frame,SY ,SX)),
assert((cursor_location(frame,0,28)))

draw _frame_command_line:-
builder_state(Root,Frame_type Frame_name),
window (main,cursor_address(0,1)),
window (main,attribute(red on cyan)),
fill_out(Frame_name,Display,22),

window (main,text(Display)),

window (main,cursor_address(0,28)),

window (main,text("Variables Signs/Synptoms Relations History

"))

frame_command_loop:-

repeat,

once(cursor_location(frame,SY ,SX)),
once(locator(SY SX .Y ,X,0,28,0,79)),
once(retract(cursor_location(frame, SY,SX))),
once(assert(cursor_location(frame,Y ,X))),
once(frame_action(X ,Result)),

Result=exit.

foroar ae _ action (X , e x i t) [*exit
X>74,

X<79,

screen (main,hide),

close(frane_backdrop),

delete_stream (frame_backdrop) .

frame_action (X,continue) /* set lab data

X>27,
X <36,
frame_drop_window (frame_variable) .

frame _
X>37,
X<53,
frame_drop_window (frame_synptom).

frame _action (X, ,continue)I/*set relations

X>54,
X<64,
relation_drop_window (frame_relation) .

frame _action (X ,continue)/*sethistory

X>65,
X<73,
frame_drop_window (frame_history) .

frame_action (X ,continue).

action (X .continue)/* set signs/symptoms

from

for

for

for

for

EXIT

frame

franc

frame

frame

frame

/*

t* FRAME DROP WINDOWS */

define_frame_drop_window:-
define_drop_window (long),

create_stream (frame_drop_header,readw rite,byte,window (2,45 ,white

black)).
open(frame_drop_header,readw rite),

on

screen(frame_drop_header,create(1,1,frame_drop_header,0,0.0,Irt,blue

black.2.45 hidden)).

draw _frame_drop_header (Header, Wpos) :-

*/

*/

*/

*/

*/

on

screen(frame_drop_header,change(2,Wpos,frame_drop_header,0,0,0,Irt,blue

on black,2,45,hidden)),
window (frame_drop_header,attribute(bright red on black)),
window (frame_drop_header,cursor_address(0,1)),

window (frame_drop_header, text (Header)),

window (frame_drop_header,cursor_ackiress (1,1)),
repeat(Cycle) ,

window (frame_drop_header,text(*\196")),

Cycle=42,

screen(frame_drop_header,unhide).

display_level(Data,Level,Colour)
builder_state (Root,Frame_type,Frame_name),
frame_variable(Frame_name,Root,Data,Level,Certainty),
state(decim als,_, 1),
Display is_string * *
state(decim als,3),
window (long.attribute(black on Colour)),
window (long,text(Display)).

window (long,attribute(red on black)).

& string(Certainty,ops) & " *,

display_level(Data,Level,Colour)
window (long,attribute(Colour on black)),
window (long text(*\176\176\176\176\1176")),
window (long.attribute(red on black)).

write_data(Archive,no_data).

write_data(variable(Data_item),d a t a) /* only want data that..
datajparameter(Data_item,standard_deviation,none)./*_.can be classified*/

write_data(variable(Data_item),data)
window(long, inquire_cursor_address(Y X)),

280

*/

window (long,text(D ata_item)),
window (long.,cursor_address(Y,25)),
display_level(D ata_itera,low ,blue),
window (long.cursor_address(Y ,32)),
display _level (Data_item ,usual,green) ,
window (long,cursor_address (Y, 39)),
display _level (Data_item high,red),
NY is Y+2,

window (long,cursor_address (NY,1)) .

write_data(Archive,data)
Archive=. [Frame_slot,Frame_name,Root,Facet, A ttribute,Certainty],
window (long, inquire_cursor_address (Y.X)),

window (long.text(Facet)),

window (long.cursor_address(Y ,24)),

window (long.text(A ttribute)),

window (long,cursor_address(Y , 40)),

state(decim als,_, 1),

Display is_string string(Certainty.r) & " *,
state(decim als,_, 3),

window (long,text(Display)).

NY is Y+2,

window (long,cursor_address(NY ,1)).

frame_drop_window _display(Title, Archive,N ,W pos) :-
N2 is N*2,

((N2<19,Drcp is N2+1); (Drop is
Total_drop is Drop+2,

draw _frame_drop_header(Title,W pos) ,

retractall(window _drop(long,_)).

assert(window _drop(long,Total_drop)).

screen(long,change(4,W pos,long,0,0,0,Irb,blue on black,Drop,45,hidden)),
window (long clear) ,

window (long.attribute(red on black)),

19)),

window (long.cursor_address(0,1)),
((call(Archive),Data=data); (Data=no_data)),
once(write_data(Archive,Data)),
Data=no_data,

screen(long,unhide).

draw _frame_drop_window (frame_variable)

nunber_of_clauses (variable/l,_,N 1),

number_of_clauses (data_parameter/3,datajparameter (_,standard_deviation,n
one).N2),

N is N1-N2, /* N is no of clauses for variable with SD > 0 */

object(frame_variable,Title,Pos,W pos),
frame_drop_window _display(Title,variable(D ata),N ,W pos).

draw _frame_drop_window (Frame_slot):-
builder_state(Root,Frame_type,Frame_name),

Archive=.. [Frame_slot,Frame_name,Root,Facet,A ttribute,Certainty],
number_of_clauses(Frame_slot/5,Archive,N) .
object(Frame_slot,Title,Pos,W pos),

frame_drpp_window _display (T itle ,Archive N, Wpos) .

frame_drop_window (Frame_slot) :-
frame_object(Frame_slot,0 bject),
highlight_action (O bject),
define_frame_drop_window,

draw _frame_drop_window (Frame_slot) ,
define_sub_command_line,
frame_sub_command_loop (Frame_slot) ,
close(frame_drop_header) ,
delete_stream (frame_drop_header),
draw _frame_command_line.

I* i

—--FRAME SLOT COMMAND *!

1>

/* CHECKS ON SLOT INSTANTIATIONS */

/* check the probability sum for a frame variable slot (must be = 1) */

/* passes if check is ok */
check_frame_slot(frame_variable.,Frame_name,Root, []) .

heck_frame_slot(frame_variable ,Frame_name,Root,[Variable|Variable_list]
once (bagof (C,Afretrieve_frame_data(frame_variable, Frame_name,Root,Variab

le,A .C),Certainties)),
once(sum _list(Certainties,0,Sum)),

sum=1.0, !,
check_frame_slot(frame_variable,Frame_name,Root,Variable_list)
check_frame_slot (frame_variable,Frame_name,Root, [Variable |V ariable_list]
):- warning_box(6,30,V ariable,"is wrongly defined",""),1, fail

I* check the probability sum for a frame slot
/* passes if check is ok */

(must be =< 1) */

check_frame_slot(Frame_slot,Frame_name,Root, [])

check_frame_slot(Frame_slot,Frame_name,Root,[Facet|Facet_list])
once (bagof (C,A *retrieve_frame_data (Frame_slot,Frame_name,Root,Facet,A,C)
»Certainties)),

once(sum _list(Certainties,0,Sum)),

surn=1.0,
check_frame_slot(Frame_slot,Frame_name,Root,Facet_list).

check_frame_slot(Frame_slot,Frame_name,Root,[Facet|Facet_list])
warning_box(6,30,Facet,"is wrongly defined",""),1!,
fail

I/* check tree
I* fails if

when adding frame slots */
check was ok */

check_tree(Frame_type,Frame_name,Root,Entry []):-! fail.

check_tree (Frame_type, Frame_name,Root,Entry, [Frame [Fram e_list])
related _to (Frams_type.Root,Frame_name,Frame),
warning_box(8,30,Entry,"is already defined for",Frame).

check _tree(Frame_type,Frame_name,Root.Entry,[Frame|Frame_list]):
check_tree (Frame_type, Frame_name, Root, Entry, Fram e_list) .

/* add a slot for a frame */

add_frame_slot(Frame_slot,Frame_name,Root,"").

add_frame_3lot(frame_history Frame_name,Root,"disorder")
define_selection_window,

draw _selection_window (add,Frame_name,disorder),
define_selection_command_window,
selection_command_loop(l.Entry), !,

history _selection(Frame_name,Root,disorder,Entry).

add_frame_slot(frame_history ,Frame_name,Root,"clinical diagnosis")
define_selection_window,

draw _selection_window (add,Frame_name, disease),
define_selection_command_window,
selection_command_loop(1,Entry),!,

history _selection (Frame_name,Root,disease,Entry)

add_frame_slot (frame_history, Frame_name,Root, “previous disorder") :-
history _selection (Frame_name,Root,disorder, Root) .

add_frame_slot (Frame_slot, Frame_name, Root, Entry)

setof (Frame, (A,C) Netrieve_frame_data (Frame_slot,Frame,Root,Entry, A,C) ,F
rane_list),

delete(Frame_name,Frame_list,Check_list),

builder_state (_,Frame_type,_),

check _tree (Frame_type, Frame_name,Root,Entry, Check_list) .

add_frame_slot (Frame_slot,Frame_name,Root,Entry) :-
Archive=.. [Frame_slot,Frame_name,Root,Entry,"unknown",1.0],
get_rank (Frane_slot,Frame_name, Entry, Rank),

assert(Archive Rank).

/* adding a disorder or disease as history */

history _selection(Frame_name,Root, Type,"").

history _selection(Frame_name,Root, Type,D _root):-
builder_state(_,Frame_type,_).
define_selection_window,

draw _selection_window (add(D _root) .Frame_name, Type),
define_selection_command_window,

selection_com mand_loop(l,Entry), !,
add_history(Frame_type,Frame_name,Root,D _root,Entry).

history_selection(Frame_name,Root,Disorder_root)
warning_box(8,30,"Cannot add for".,D isorder_root,"").

add_history (Frame_type, Frame__name,Root,D _root

add_history (Frams_type, Frame_name,Root,D _root, Entry) :-
once (bagof (Facet, (A,C) Aframe_history (Frame_name,Root,Facet,A,C) .Check_li
st)),

check _tree (Frame_type, Frame_name,D _root,Entry,Check_list)

add_history(Frame_type.Frame_name,Root,D _root Entry)
assert (frame_history (Frame_nams,Root,Entry, “unknown®, 1.0))

/* delete a slot for a frame */
delete_frame_slot(Frame_slot,Frame_name,Root,Entry)
Archive=.. [Frame_slot, Frame_name,Root, Entry,_,_],
retractall(Archive).

frame_slot_command (scroll_up,Frame_slot) :-
scroll_window _up(long).

frarae_slot_command (scro 11_down,Frame_slot) :-
scroll_window _down(long).
frame_slot_command (add, frame_variable) .

frame_slot_coirmand(add,Frame_slot)
builder_state(Root,Frame_type,Frame_name),
object(Frame_slot,Title,Spos,W pos),
define_selection_window,

draw _selection_window (add, Frame_name, Frame_slot),
define_selection_command_window,
selection_command_loop(Spos,Entry),
add_frame_slot(Frame_slot,Frame_name,Root,Entry),
draw _frame_drop_window (Frame_slot) .

frame_slot_command(delete, frame_variable) .

frame_slot_com mand(delete,Frame_slot):-
builder_state(Root,Frame_type Frame_name),

object (Frame_slot,Title,Spos,W pos),
define_selection_window,

draw _selection_window (delete,Frame_name,Frame_slot),
define_selection_command_window,
selection_command_loop(Spos,Entry),
delete_frame_slot (Frame_slot,Frame_name,Root.Entry) .
draw _frame_drop_window (Frame_slot) .

frame_slot_com mand(edit,Frame_slot):-
builder_state(Root,Frame_type,Frame_name),
object(Frame_slot,Title,Pos,W pos),

window _drop(long,Drop) .

Drop>2,
Xend is Wpos+dd,

retractall(cursor_location(fde,_,_)),

assert (cursor_location (fde, 4,5205)),
repeat.

281

once(cursor_location(fde,SY .SX)),
once(locator(SY ,SX,Y,X,4,Wpos,Drop,Xend)),

once(retractall(cursor_location(fde,_,_))).
once(assert(cursor_location(fde,Y ,X))),

screen (long,info (_._,1 o n g , O Y ., _ , /* get scroll info */
WY is Y+OY-4,

WX is X-Wpos,

once (window (long, cursor_address (WY, 1))),
once(window (long,inquire_text(22,Entry))),
once(truncate_string (Entry. D ata)),

once(frame_data_edit_action(Frame_slot,Data,W Y ,W X ,Result)), Result=exit.

frame_slot_com mand(exit,Frame_slot)
builder_state (Root,Frame_type,Frame_name),

setof (Facet, (A,C)/retrieve_frame_data (Fraroe_slot,Frame_name,Root, Facet, A
.C).Facet_list), !,

check_frame_slot (Frame_slot,Frame_name,Root,Facet_list).

frame_slot_command(Result,Frame_slot)

/*

I

FRAME DATA EDIT COMMANDS */

I* get the attribute of an observation from the window display */

get_attribute (A ttribute)
window (long.inquire_cursor_address(Y X)),
window (long,cursor_address(Y ,24)),
window (long.inquire_text(15,Entry)),
truncate_string (Entry A ttribute).

/* get the probability of an observation from the window display */

get_certainty(Certainty)
window (long.inquire_cursor_address(Y X)),
window (long.cursor_address(Y ,40)),
window (long.inguire_text(3,Entry)),

truncate_string (Entry,String),
Certainty is value(String,ir).

edit_variable (Frame__name,Root,Data,Level) /* old 1%

retract(frame_variable(Frame_name,Root,Data,Level,1.0))

certainty

edit_variable(Frame_name,Root,Data,Level):-
retract (frame_variable (Frame_name,Root,Data,Level,Certainty)),
next_element(Certainty New _certainty,[0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,
0.9,1.0,0]), get_rank(frame_variable,Frame_name.,Data,Rank),

assert (frame_variable(Frame_name,Root,Data,Level,New _certainty) ,Rank) .
edit_variable(Frame_name,Root,Data,Level)/* old 0 */
).

once(setof (Frame, (L.C) "retrieve_frame_data (frame_variable,Frame,Root,D at
a,L.,C).Frame_list)),

builder_state(_,Frame_type,_),
check_tree(Frame_type,Frame_name,Root,Data,Check_list) .

certainty

not .

frame_variable (Frame_name,Root,Data,

>
assert(frame_variable(Frame_name,Root,Data,Level,0.1))

edit_variable (Frame_name,Root,Data,Level) old certainty 0 */

edit_slot(W Y W X ,Archive)

WX>23,

WX<40,

Archive=. [Frane_slot,Frame_name,Root,FacetAttribute,Certainty],
frame_object(Frame_slot,Slot),

Slot_archive=..[Slot,Facet,A ttribute_list],

call(Slot_archive),

next_element(A ttribute,N ew _attribute, A ttribute_list),
New_archive=..[Frame_slot,Frame_name,Root,Facet,New _attribute,Certainty]
. retract(Archive),

assert(New _archive),

window (long.cursor_address(W Y ,24)),

fill_out(New _attribute,D isplay.,15),

window (long.text(Display)).

edit_slot(W Y WX,Archive)/* default for undefined facets */
WX>23,

WX<40,

Archive=. . [Frane_slot,Frame_name,Root,Facet, A ttribute,Certainty],

default_attribute (Root,Facet, A ttribute_list) ,

next_element (A ttribute,New _attribute, A ttribute_list),
New_archive=..[Frame_slot,Frame_name, Root,Facet,New _attribute,Certainty]
. retract(Archive),

assert(New _archive),

window (long.cursor_address(W Y ,24)),

fill_out(N ew _attribute,D isplay,15),

window (long.text(Display)).

edit_slot(W Y W X ,Archive):-
WX>39,

WX<43,

Archive=.. [Frane_slot,Frame_name,Root,Facet,A ttribute,Certainty],
next_element(Certainty New _certainty,[1.0,0.0,0.1,0.2,0.3.,0.4,0.5.,0.6,0.
7.,0.8,0.9,1.0]),

New _archive=..[Frame_slot,Frame_name,Root,Facet A ttribute,New
. retract(Archive) .

assert(New _archive),

window (long.cursor_address(W Y ,40)),

certainty]

state(decimals,_,1),
Display is_string string(New _certainty,r) & " ",
state(decim als,_,3),

window (long,text(Display))

edit_slot (WY.WX,Archive)

frame_data_edit_action (Frame_slot, WY,WX.exit) . /* exit if no data */

frame_data_edit_action (frame_variable,Data, WY,WX,continue) :-
builder_state(Root,Frame_type,Frame_name),

variable(D ata),

WX>24,

WX<30,

edit_variable (Frame_name,Root,Data, low) ,

window (long.cursor_address(W Y ,25)),

display_level(D ata,low ,blue).

frame_data_edit_action (frame_variable.Data, WY,WX,continue)
builder_state(Root,Frame_type,Frame_name),

variable(D ata),

WX>31,

WX<37,

edit_variable (Framejname,Root,Data, usual),

window (long.,cursor_address(WY,32)),

display _level(Data,usual,green).

frame_data_edit_action (frame_variable,D ata, WY,WX,continue)
builder_state (Root,Frame_type, Frarae_name) .

variable(D ata),

WX>38,

WX<44,

edit_variable (Frame_name,Root,Data,high),

window (long,cursor_address(W Y ,39)),

display _level(D ata,high,red)

frame_data_edit_action(Frame_slot,Facet,W Y , W X continue)
builder_state(Root,Frame_type ,Frame_name),

get_attribute (A ttribute),

get_certainty (Certainty),

Archive=.. [Frame_slot,Frame_name,Root,Facet, A ttribute,Certainty],
edit_slot (WY,WX,Archive) .

frame_data_edit_action (Frame_slot,Data,W Y W X .exit) . /* catch failures */
1> */
/* FRAME SLOT FILLER SELECTION ROUTINES */

/* define the window for displaying selections */
define_selection_window:-

create_stream (selection,readw rite ,byte,window (60,24, white on black)),
open(selection, readw rite),
screen(selection,create(1,1,selection,0,0,0,Irb,blue on
black,23,24,hidden)).

define_selection_window :- /* close window on backtracking */
close(selection) ,

delete_stream (selection),

fail

/* the headers for the selection window */
header_display (delete, "DELETING.

header_display (add, "ADDINS.ccu) .

header_display(add(R00t), "ADDING o)

/* the position of the selection window */
selection_position(disease,l) .

selection_position(Selector,Spos):-

object(Selector,Title,Spos,W pos).

/* draw the header */

draw _selection_header(Xpos,A ction):-

create_stream (selection_header,readw rite,byte,window (1,24,white on
blue)), open(selection_header,readw rite),
screen(selection_header,create(2,Xp0OS,selection_header,0,0,0,Irt blue on

black,1,24,hidden)), window (selection_header,cursor_address(0.,1)),
header_display(Action,Header),

window (selection_header,text(Header)),
screen(selection_header,unhide).

/* draw the window */
draw _selection_window (Action,Frame_name,Selector):-
selection_position(Selector,Spos),
form _selection_list(A ction Selector,L
length(List,N),
((N<21,Drop is
retractall(window _

ist),
N +1); (Drop is 21)),

drop (selection,_)),
assert(window _drop(selection,Drop)),

screen(selection,change(3,Spos,selection,0,0,0,Irb,blue on
black Drop,24,hidden)), window (selection,clear),

window (selection,cursor_address(0,1)),

display _selection_list(List),

draw _selection_header(Spos,Action),
screen(selection,unhide).

/* form the list of selections to display in the window */
form _selection_list(add,disorder,List)
bagof(Root,disorder(Root), L),

builder_state(R ,_,_),

delete(R,L,List)

form _selection_list(add disease,List):-1,

bagof(Root,disease(Root),List).

form _selection_list(add(Root), Type,List)
bagof(D ,descendent(Type,Root,Root,D), List).

form _selection_list(add,Frame_slot,List)
frame_object(Frame_slot,Slot),
bagof (Facet, Afretrieve_slot (Slot,Facet, A) L ist)

form _selection _list(delete Frame_slot,List)

builder_state(Root,Frame_type,Frame_name),
setof (Facet, retrieve_frame_data (Frame_slot,Frame_name,Root,Facet) ,List)

282

/* display the list of selections in the window */ pad_key("3"," 3 ",6,9,yellow).

pad_key" - ",6,13,green).
display _selection _list ([]) pad_key(">"," > ".6,17 red).
display _selection _list ([Entry L ist]) pad_key("0"," 0 ",8,1,yellow).
write_window _entry(selection,Entry), pad_key("."," . ".,8.,5, yellow) .
display _selection_list(List). padkey ("="," = ", 8,9, red) .
pad_key("+"," + ", 8,13 green).
/* write a selection in the window */ pad_key("E"," E ",8,17,blue).
write_slot_entry(add, Archive,N) pad_key("\24 \24 ", 10,0,blue).
once(Archive=..[Slot,Facet,_1), pad_key(" (", ", 10,5,green).
call(Archive), pad_key(")".,") ",10.,9,green).
write_window _entry (selection,Facet) . pad_key("DEL","DEL",10,13,blue).
pad_key("\25"," \25 ", 10,17,blue).
write_slot_entry(delete. Archive,N):-
once(builder_state(Root,Frame_type,Frame_name)),
once(Archive=..[Slot,Facet,_]), define_pad_windows :-
once(frame_object(Frame_slot,Slot)), create_stream (pad,readw rite,byte,window (12,21,white on black)),
once (Frame_archive=.. [Frame_slot,Frame_name,Root, Facet,_,_]), open (pad,readw rite),
call(Frame_archive), screen (pad,create (2,1,pad,0,0,0,Irt,blue on black, 12,21 ,hidden)),
write_window _entry(selection,Facet). create_stream (pad_data, readw rite,byte,window (60,23,white on black))
open (pad_data, readw rite),
write_slot_entry (A ction,Archive,N) screen(pad_data,create(14,l,pad_data,0,0,0,Irb,blue on
window (selection,inquire_cursor_address(N,_)). black,10,21,hidden)), window (pad_data,cursor_address(0,1)),
retractall(cursor_location(pad,_,_)),
/* define the command line for the selection window */ assert(cursor_location (pad,1,1))
define_selection_command_window:- remove_pad_windows : -
create_stream (selection_com mand, readw rite,byte,window (1,24,white on close (pad),
blue)), open (selection_command, readw rite) , delete_stream (pad),
screen (selection_command,create (0,0, selection_command,0,0,0,none,None, 1, close(pad_data),
24.,hidden)), delete_stream (pad_data).
window (selection_command,text("\24 EXIT \25")).
/* command loop for selection window */ display_pad_key(Key,Display,Y ,X ,Colour):-
window (pad,attribute(black on Colour)),
selection_command_loop(Spos,Selection):- window (pad,cursor_address(Y X)),
window _drop(selection,Drop), window (pad,text (Display)), !.
BY is Drop+2,
Xend is Spos+23,
screen (selection_command,change (BY ,Spos,selection_command, 0,0,0,none,Non display _keys:-
e,1,24,hidden)), pad_key(Key,Display,Y X ,Colour),
screen(selection_command,unhide) , display_pad_key(Key,Display,Y X ,Colour),
retractall(cursor_location(selection,_,_)), fail
assert(cursor_location(selection,BY ,Spos)),
repeat, display_keys.
once(cursor_location(selection,SY ,SX)),
once(locator(SY ,SX,Y X ,3,Spos,BY Xend)),
once(WY is Y-3), draw _pad:-
once(WX is X-Spos), display_keys,
once(retractall(cursor_location(selection,_,_))), ((variable(D ata)) ; (Data=no_data)),
once(assert(cursor_location(selection,Y ,X))), once(write_window _entry(pad_data,D ata)),
once (selection_action(W Y ,W X ,Result)), Data=no_data,
Result=exit, nurrber_of_clauses (variable/l,_,N),
screen (selection,info (_,_,s e I e ¢c t i on , O Y ,), /*scroll info*/ ((N<Il,Drpp is N); (Drop is 10)),
AY is WY+OY, /* absolute Y pos */ retractall(window _drop(pad,_)),
window(selection,cursor_address(AY, 1)), assert(window _drop(pad,Drop)),
window(selection,inquire_text(22,Entry)), screen(pad_data,change(l4,l,pad_data,0,0,0,Irb,blue on
truncate_string(Entry,Selection), black,Drop,21,hidden)),
close (selection_command), screen(pad,unhide),
delete_stream(selection_command), screen(pad_data,unhide).
close(selection_header),
delete_stream(selection_header),
close(selection), get_pad_entry(Y ,X ,Entry):-
delete_stream(selection). Y>11,
screen (pad_data,info (_ , _ ., pad _data,OY ,, /* scroll info */
WY is Y+0Y-12,
selection_action(W Y ,W X ,scroll_up) window (pad_data,cursor_address(W Y ,1)),
window _drop(selection,Drop), window (pad_data,inquire_text(22,D isplay)),
WY is Drop-1, truncate_string (D isplay Entry).
WX=0,
seroll_window _up(selection). get_pad_entry (Y X Entry):-
pad_key(Entry,Display,Y TX,_),
selection_action(W Y ,W X ,scroll_down):- X-TX>=0,
window _drop(selection,Drop), X-TX<3.
WY is Drop-1,
Wx=23, get_pad_entry(Y X .none).
seroll_window _down(selection).
selection_action(W Y W X ,exit) :- pad_action("\24" continue)
window _drop(selection,D rop), scroll_window _up(pad_data)
WY is Drop-1,
WX>9, pad_action("\25",continue)
WX<14. scroll_window _down(pad_data).

pad_action(none.,continue).
selection_action (WY, WX exit) :-

window _drop(selection.Drop), pad_action(_.exit).
WY <Drep-I.
selection_action (WY,WX,continue) . pad_input(Entry):-

window _drop(pad.Drop),
BY is Drop+13,

I* .
repeat,

I* ENTRY PAD DISPLAY > once(cursor_location(pad,SY ,SX)),
once(locator(SY,SX,Y X,2,1,BY,21)),

pad_key("A"," A", 0,1,green). once(retractali(cursor_location(pad,SY,$X))).

pad_key("log 0g".0.5,green). once(assert(cursor_location(pad,Y ,X))),

pad_key("exp","exp"”,0,9,green). once(WY is Y-2),

pad_key("\127"," \127 *,0,13,green). once(WX is X -1),

pad_key("<"," < ",0,17,red). once(get_pad_entry (W Y W X ,Entry)),
once(pad_action(Entry,Action)),

pad_key("7 7 72,1 ,yellow). Action=exit.

pad_key("8”.," 8 ",2,5,yellow).

pad_key("9"," 9 ",2,9.,yellow). /* ’7

pad_key (" "/ ",2,13,green). /* RELATIONS DROP WINDOWS */

pad_key("=< "2,17 red).
relation_drop_window (Frame_slot):-

pad_key("4"," 4 ", 4,1,yellow). highlight_action(relation),

pad_key ("5 5 ", 4,5,yellow). define_relation_drop_window,

pad_key("6"," 6 ", 4,9, yellow). draw _relation_drop_window (Frame_slot),

pad_key("* * " 4,13 .green). scroll_to_foot(long),

pad_key(">="" 4,17 red). scroll_to_foot(marker),
define_sub_command_line,

pad_key("1"," 1 ", 6,1,yellow). relation_sub_conmand_loop (Frame_slot),

pad_key("2 2 ", 6,5,yellow). close (marker),

283

delete_stream(marker) .

define_relation_drop_window:-

create_stream (long,readw rite,byte,window (60.,42,white on black)),
open (long,readw rite),
screen(long,create(1,1,long.,0,0,0,none,None,23,42,hidden)),
create_stream (marker,readw rite,byte,window (60,45,red on black)),
open(marker,readw rite),

screen(marker,create(1,1,marker,0,0,0,all,blue on black,23,45,hidden)).

display _relation _list((])
window (long,text("\rin\n")).
display _relation _list([Entry|L ist])

window (long.text(Entry)),
display _relation_list(L ist)

write_relation_entry (data, Archive,N) :-

once (Archive=..[relation ,Relation_no,List]),

once (window (long, inquire_cursor_address (N,_))),

once(window (marker,cursor_address(N,0))), /* position marker cursor */
once(window (marker,text(Relation_no))),

once(display _relation_list(List)),

fail

write_relation_entry (data.Archive,N)

once (Archive=..[frame_relation,Frame_name,Root,Relation_no,List]),

once (window (long, inquire_cursor_address (N,_))),

once(window (marker,cursor_address(N,0))), /* position marker cursor */
once(window (marker,text(Relation_no))),

once(display _relation _list(List)),

fail

write_relation_entry (no_data, Archive,N)
window (long, inquire_cursor_address (N,_)) .

set_archive (relation.Archive)
Archive=relation (_._)

set_archive(frame_relation ,Archive) :-
builder_state(Root,Frame_type,Frame_name),
Archive=frame_relation (Frame_name,Root,_,_)

draw _relation_drop_window (Frame_slot) :-
set_archive (Frame_slot,Archive),
window (long.clear),

window (marker,cursor_address(0,0)),

((call(Archive),Data=data); (Data=no_data)), /* loop to... */
once(write_relation_entry(D ata,Archive,N)), /* write data in window */
Data=no_data, /* end of loop */

((N<21,Drop is N+1); (Drop is 21)),

retractall (window _drop (long,_)),

assert (window _drop(long.Drop)),

screen (long, info (_,_,_,P Y . . /* get scroll position */
screen (long, change (2,28, long,PY, 0,0, none,None,Drop,42,hidden)),
screen(marker,change(2,25,marker,PY,0,0,all,blue on
black,Drop.45,hidden)),

screen(marker,unhide),

screen(long,unhide),

screen(long.pull_up).

I* ki

/* RELATIONS ROUTINES */

add_relation(none,_)
repeat(X),

T ois X+,

Relation_no is_string string(T .,ops),
not relation(Relation_no,_),
assert(relation(Relation_no,[]))

add_relation(Frame_name,Roo0t):-
repeat(X),

T is X+,

Relation_no is_string string (T ,ops),

not frame_relation(Frame_name,Root,Relation_no._),
assert(frame_relation(Frame_name,Root,Relation_no,[])).

enter_relation(Instructions,Relation_no)
fedit(3,5,15,Instructions,” “,"",blue on white,Entry),
truncate_string (Entry Relation_no).

delete_relation (none,_)
enter_relation("DELETE No.",Relation_no),
retractall(relation (R elation_no,List))

delete_relation(Frame_name,Root)
enter_relation("DELETE No.." Relation_no),
retractall (frame_relation (Frams_name,Root,Relation_no.List)).

relation_command(add,Frame_slot) :-
builder_state (Root,Frame_type, Frame_name) ,
add_relation (Frame_name,Root) ,

draw _relation_drop_window (Frame_slot),
scroll_to_foot(marker),
scroll_to_foot(long).

relation_command (delete, Frame_slot) :-
builder_state(Root,Frame_type,Frame_name),
delete_relation(Frame_name,Root),

draw _relation_drop_window (Frame_slot).

relation_com mand(edit,Frame_slot)
window _drop(long,Drop),

Drop>2,

enter_relation ("Edit relation",Relation_no),
define_pad_windows,

draw _pad,

edit_relation(Relation_no),
remove_pad_windows,

draw_relation_drop_window (Frame_slot) .

relation_command (scroll_up,Frame_slot) :-
scroll_window _up (marker),
scroll_window _up(long).

relation_command(scroll_down,Frame_slot):-
scroll_window _down(marker) ,
scroll_window _down(long).

relation_con*nand(exitrelation)
retractall(relation (_. [1)).
draw _main_conmand_line.

relation_com mand(exit,frame_relation):-
retractall(frame_relation(Frame_name,_,[])),

draw _frame_command_line.

relation_com mand(Result,Frame_slot)

I* ki

/* EDITING RELATIONS */

/* routines to split a list */
define_test_window :-

create_stream (test,readw rite,byte,window (3,42, white on black)),
open(test,readw rite),
screen(test,create(l,1,test,0,0,0,none,None,3,42,hidden)),
window (test,cursor_home).

/* To split a list at the cursor position */

split_list([]» B ack.Back,Y X)/*position is

window (testinquire_cursor_address(TY ,TX)),
(42%TY) +TX>= (42*Y) +X.

reached */

split_list ([1.(1,[1.Y.,X) . /* if list end is reached */
split_list ([Element[Front] Back, [Element|L ist],Y.X)

window (test,text(Elem ent)),

split_list(Front,Back,List,Y X).

split_process(Front,Back,L ist,Y,X):-
define_test_window,
split_list(Front,Back,List,Y,X),
close (test),

delete_stream (test).

/* display the selected relation for editing */
define_relation_window (PY)
create_stream (relation,readw rite,byte,window (60.42,black on white)),
open(relation readw rite),
screen(relation,create(PY ,1,relation,0,0,0,none,None,23,42,hidden)) .

display _edit_relation _list([])
window (relation,erase_end_of_line).

display _edit_relation _list([Entry|List])
window (relation text(Entry)).
display _edit_relation_list(List).

draw _relation(Relation _list,H)
window (relation,cursor_address(0,0)),

display _edit_relation_list(Relation_list),

window (relation, inquire_cursor_address (Y ,X)),

((Y<2LH is Y+1); (H is 21)),
screen(relation,change(2.,28.relation,0,0,0,none,None,H 42 ,revealed)),
screen(relation,unhide).

set_relation_window _position (Relation_no,2) :-

window (marker,cursor_address(0,0)),

repeat(Shift)

once(window (marker,inquire_text(2,Entry))),
once(truncate_string (Entry Relation_entry)),

once(window (marker,cursor_down)),
((Relation_entry=Relation_no); (Shift=59)),
screen(marker,info(SY ,SX ,marker, WYWX,D,M,M att, H,W,R)),
screen(marker,change(SY ,SX ,marker,Shift, WX,D,M Matt, H,W ,R)),
screen(long.info(SY1,SX1,long,W Y I, W X1,DI,MI,M attl,HI,W I,R1)),
screen(long,change(SY1,5X1,long,Shift, WX1,D1 ,MI,M attl HI, W1, R1)).

/* edit routines */

delete_element(Front,[Element/Back]»Result)
append (Front,Back ,Result) .

delete_element(Front,[J»Front).

insert_element(Front,Back,Element,Result)
append(Front, [Element[Back]»Result).

get_relation_archive(Relation_no,Relation_list)
builder_state(_,_,none),

relation (Relation_no,Relation_list).
get_relation_archive(Relation_no,Relation _list):-
builder_state(Root,Frame_type,Frame_name),
frame_relation(Frame_name,Root,Relation_no,Relation_list).

edit_relation(Relation_no)
get_relation_archive(Relation_no,_), I*
set_relation_window _position(Relation_no,PY),
define_relation_window (PY),
retractall(cursor_location(relation,_

fails if no relation */

=)

assert(cursor_location(relation,PY ,28)),

284

repeat,
once(cursor_location(relation,SY ,S$X)),
once(get_relation_archive(Relation_no,Relation_list)),
once(draw _relation(Relation_list,H)),

once (BY is PY+H-1),
once(locator(SY,SX,Y X ,PY, 28,BY 69)),
once(retractall(cursor_location(relation,_,_))),
once(assert(cursor_location(relation,Y ,X))),

once(WY is Y-2),

once(WX is X-28),

once(pad_input(Pad_entry)),
once(edit_relation_action(Relation_no,W Y ,W X ,Pad_entry)), Pad_entry=
close (relation),

delete_stream (relation)

edit_relation(Relation_no). /* catches case of no archive */
edit_relation_action(Relation_no,Y X ,"E"). /* edit finished */
edit_relation_action(Relation_no,Y X ,"DEL") /* data derivation */
once(builder_state(_,_,none)),

once(get_rank(relation,none,Relation_no,Rank)),
once(retract(relation (R elation_no,List))),
once(split_process(F,B . List,Y X)),

delete_element(F.B ,New _list),
assert(relation(Relation_no,New _list),Rank).
edit_relation_action(Relation_no,Y X "DEL") /* frame relation */

builder_state (Root,Frame_type, Frame_name) ,

once (get_rank (frame_relation,Frame_name,Relation_no,Rank)),

once (retract (frame_relation (Frame_name,Root,Relation_no,List))),
once (split_process (F.B,List, Y,X)),

delete_element(F.B ,New _list),

assert (frarre_relation (Frams_name,Root,Relation_no.New _list) ,Rank) .

edit_relation_action(Relation_no,Y X ,Pad_entry)/* data derivation */
builder_state (_,_.,none),

get_rank (relation,none,Relation_no,Rank),
retract(relation(Relation_no,List)),

split_process(F,B,List,Y,X),

insert_element(F.B ,Pad_entry New _list) ,

assert(relation(Relation_no,New _list),Rank).

edit_relation_action(Relation_no,Y X ,Pad_entry)/* frame relation */
builder_state(Root,Frame_type,Frame_name),
get_rank(frame_relation,Frame_name,Relation_no,Rank) ,

retract (frame_relation (Frame_name,Root,Relation_no,List)),

split_process (F,B,List,Y X),

insert_element(F,B,Pad_entry,New _list),

assert (frarre_relation (Frams_name,Root,Relation_no,New _list) ,Rank) .

/* dasystem.run loading diagnostic system */

/* Predicates defined in this file:

run_dasystem /0
load_systern/o
remove_system /0
set_system /0
set_blackboards/o

set_database/0 */
/*
I —KICK OFF THE SYSTEM-

run_dasystem :-
load_system ,

once(draw _backdrop),
set_system ,

display _current_diseases,
display_m aster,
remove_disease_window,
close_blackboard_display,
archive_database,
remove_backdrgp.

run_dasystem :- /* 1st clause
remove_backdrop.

/* load the system modules */

load_system :-
open_module (modi,"\\lda\\das .utlMnone,actual)
open_module (mod2, "W Idaw das .blk",none,actual)
open_module (mod3, "W Idaw das .ks",none,actual),
open_module (mod4, "W IdaW das .dia", none,actual)
open_module (mod5, "W Idaw das .ipt".,none,actual)

remove_system :-
close_module (modi),
close_module(mod2),
close_module (mod3) ,
close_module (mod4) ,
close_module (mods) .

/* set up ready for operation */

set_system

window (backdrop,cursor_address(5.,5)),

window (backdrop,.text("Please wait while | prepare

set_database,
window (backdrop,text (".")),
set_blackboards,

window (backdrop,text(".")),
set_derivation_inform ation,
window (backdrop,text(".")),
set_relationship_information,
window (backdrop,text(".")),
set_trees,

window (backdrop.cursor_address(5.,5)),
window (backdrop, text(”

set_blackboards:-
clear_blackboard(Blackboard),
set_blackboard_display.

set_database:-
exists_file ("KBASE.DAT"),
current_application (_, Index) .

Filename is_string "\\lda\\" & Index & "\\kbase.dat",

reconsult(Filename),

fails

if

no kbase

myself..")),

Pat_filename is_string “\\lda\\" & Index & "W patients.dat",
(exists_file("PATIENTS.DAT"),reconsult(Pat_filename)itrue),

lexicon is_string "W ldaw " & Index & "W lexicon.dat",
(exists_file("LEXICON.DAT"),reconsult(Lexicon);itrue),

consult ("W IdaW lexicon .cor")
set_database:-

warning_box(5,5,"NO KNOWLEDGE BASE"), ! fail.

2- run_dasystem.
?- remove_system .

286

/* das.utl diagnostic system utilities */ /* search for delta signs in expressions */

/* Predicates defined in this file: replace_deltas ([].[])
related _to/4 replace_deltas (["\127",Element [Ejq?ression], [change (Element) [New _expressi
find_singleton_descendent/4 on])

find_tree_nodes/3 variable(Elem ent),

assert_singletonjdescendents/3 replace_deltas(Expression,New _expression).

find_aprioril4
assert_apriorijprobabilities/3 replace_deltas([Element[Expression], [Element|New _expression])
set_trees/0 replace_deltas(Expression,New _expression).
set_tree_information/2

replace_deltas/2

create_dependents_list/3 /* create a list of variables in am expression */
set_derivation_inform ation/0

set_derivations/o create_dependents_list([],Dependents_list,List_so_far):-

conparator/2 setof(Elementmember(Element,List_so_far),Dependents_list).
divide_expression/4

set_relationship_information/o create_dependents_list(["\127",Elem ent|Expression],Dependents_list,List_
set_relationships/o so_far)

set_occurrence/2 variable(Elem ent),

set_change/3 data_parameter(Elementmean,_),

substitute_values/4 create_dependents_list (Expression,Dependents_list, [chamge (Element) [L ist_
create_expression_string/3 so_far])

evaluate_expression/2

get_facet_entry/3 * create_dependents_list([Element/Expression],Dependents_list,List_so_far)

variable(Element),
create_dependents_list(Expression,Dependents_list, [Elem ent|List_so_far])
/* TREE PROCESSING */

/* To see if two nodes are related */ create_dependents_list([Element|Expression],Dependents_list,List_so_far)
create_dependents_list(Expression,Dependents_list,List_so_far).
related _to(Type.Root,Nodel,Node2)
descendent(Type,Root,Nodel,Node2).
/* data derivation */
related _to(Type,Root,Nodel,Node2) :-
descendent(Type,Root,Node2 ,Nodel) set_derivation_information :-
retractall(dérivation/3),
set_derivations.

/* set singleton lists */
set_derivations :-
/* find a singleton descendent of a node */ relation(Relation_no,[Variable,”="[Expression]),

/* entry is singleton */ once(create_dependents_list(Expression,Dependents_list,[])),
find_singleton_descendent(Type, Root,Entry Entry) once(replace_deltas(Expression,New _expression)),
once(Record=..[Type,Root,Entry,_]), once(assert(derivation(V ariable,New _expression,Dependents_list))), fail
not call(Record),!.

/* entry not singleton */ set_derivations.

find_singleton_descendent(Type,Root,Entry,Descendent)
descendent(Type,Root,Entry,Descendent),

once(Record=..[Type,Root,Descendent,_]), JR— setting frame relationships-—
not call (Record) .

comparator("=",=)

comparator(">
/* Find all the nodes in a tree */ comparator("

comparator("<",<).
find_tree_nodes(Type,Root,Node_list):- comparator(">",>).
bagof(Node,descendent(Type,Root,Ro0t,Node),Node_list).
/* assert terms for singleton descendents */ /* Divide an expression into Ihs, rhs and comparator */
assert_singleton_descendents(Type,Root,[]) divide_expression([C|Expression],[].Expression.,C) :-

comparator (C,_) .
assert_singleton_descendents(Type,Root,[NodelList])
bagof(Descendent,find_singleton_descendent(Typ«,Root,Node,Descendent),Si divide_expression([A|Expression], [A|Left].Right,C)
ngleton _list) , divide _expression(Expression,Left,Right,C).
assert (singleton_descendents (Type,Root,Node, Singleton_list)),
assert_singleton_descendents (Type,Root,List) .
set_relationship_inform ation :-
retractall(relation _evidence/7),
/* set apriori probabilities */ retractall(relation _occurrencel/2),
set_relationships.
/* find the apriori probability of a node from its link weights */
set_relationships

find_apriori(Root,Root,P ,P). frame_relation(Frame,Root,Relation,Expression),
once(replace_deltas(Expression,New _expression)),

find_apriori(Root,Node,P_so_far,P) once(divide_expression(New _expression,Left,Right,C)),

link(Root,Parent,Node,W), once(create_dependents_list(Expression,Dependents_list,[])),

New _P_so_far is P_so_far*w, once(comparator(C,Comparator)),

find_apriori(Root,Parent,New _P_so_far,P). once(assert(relation_evidence(Frame,Root,Relation,Left,Right,Com parator,

Dependents_list))),
once(set_occurrence(Root,Dependents_list)),
/* assert terms for apriori probabilities */ fail

assert_apriori_probabilities(Type,Root,[]) set_relationships.

assert_apriori_probabilities(Type,Root,[NodelL ist])

find _apriori(Root,Node,1.0,P), /* set the occurrence of each relationship */
assert(apriori(Type,Root,Node,P)),
assert_apriori_probabilities (Type,Root,List). set_occurrence(Root,Dependents_list):-

relation_occurrence(Root,Dependents_list).

/* pre-processing for trees */ set_occurrence(Root,Dependents_list)
assert(relation_occurrence(Root,Dependents_list)).

set_trees:-

disorder(Root),

once (set_tree_information (disorder.Root)), I * —evaluating expressions-—
fail

set_change(Mean,Value,Change):-
set_trees Mean>Value,
disease (Root) , Change is Mean-Value

once (set_tree_information (disease.Root)),
fail set_change(M ean,Value,Change):-

Change is Value-Mean
set trees.

substitute_values(Blackboard,Expression,[],Expression).

set_tree_information (Type, Root) substitute_values(Blackboard,Expression, [change(V ariable) [Dependents_lis
find_tree_nodes(Type.,Root,Node_list), t],New _expression):-

retractall(singleton_descendents(Type,Root,_._)), blackboard(Blackboard,raw _data,variable,Variable,Value,Status),
assert_singleton_descendents(Type,Root,Node_list), not member(Value[low ,usual,high]),

retractall(apriori(Type,Root,_._)), not data_parameter(Variable,mean,none),
assert_apriori_probabilities(Type,Root,Node_list). data_parameter(Variable, mean,M),

set_change(M .Value,C),
Vois_string “(" & string(C.,ops) & "),
~DERIVING VARIABLE 4 substitute(change(V ariable),Expression,V ,Next_expression),!,
*/ substitute_values(Blackboard,Next_expression,Dependents_list,New _express

-

ion) .

287

substitute_values (Blackboard, Expression, (Variable [Dependents_list] New_e
xpression):-

blackboard(Blackboard,raw _data,variable,Variable,Value,Status), not
member(Value,[low usualhigh)),

V is_string string(Value,ops),

substitute(V ariable Expression,V ,Next_expression),!,
substitute_values(Blackboard,Next_expression,Dependents_list,New _express

ion) .

create_expression_string([].Expression_string,String_so_far)
Expression_string is_string String_so_far &

create_expre3sion_string ([Element(Expression),Expression_string, String_s
o_far)

New _string_so_far is_string String_so_far &Element,
create_expression_string (Expression,Expression_string,New _string_so_far)

evaluate_expression (Expression, Value)
create_expression_string (Expression, Egression_string,
V is value(Expression_string),

convert_value(V ,Value).

get_facet_entry(W indow ,AY ,Facet)
window (W indow,cursor_address(AY 1)),
window (Window, inquire_text (22, Entry)),
truncate_string (Entry,Facet).

288

/* das.blk blackboard control & triggering */

/* Predicates defined in this file:
clear_blackboard/l
set_blackboard_display/0
close_blackboard_display/0
display _blackboard/0
clear_blackboard _display/0
copy_blackboard/2

entry _display/4
diagnosis_exists/4
no_diagnosisjexists/3
make_diagnosis/1
find_triggered_ks/3

active_ks/2

execution_cycle/3
schedule_all_actions/1
schedule_action/3

trigger/a */

r* 4

BLACKBOARD UTILITIES-

/* routines for blackboard set up */

clear_blackboard(Blackboard)

retractall(ksar(Blackboard, .)) .
retractall(executed _ks(Blackboard,Knowledge_source,Condition_list)),
retractali(blackboard(Blackboard,Level,_,_)),

retractall (blackboard(Blackboard,L e v e I ,),

retractall (blackboard(Blackboard, L e v e | ,).

set_blackboard_display:-
create_stream (blackboard_background, readw rite,byte,window (20,53 ,black
black)),

create_stream (blackboardl,readw rite,byte,window (4,53,bright blue on

black)),

create_stream (blackboard2,readw rite,byte,window (4,53,blue on
create_stream (blackboards,readw rite,byte,window (4,53 ,bright
black)),

create_stream (blackboard4, readw rite,byte, window (4,53, cyan on black)),
open (blackboard_background,readw rite) ,

open (blackboard!, readwrite) ,

open(blackboard2,readw rite),

open(blackboards,readw rite),

open (blackboardd,readw rite),

black)),
cyan on

on

screen (blackboard_background, create(3,26,blackboard_background, 0,0,0,all

red on red,19,53 ,hidden)),
screen(blackboardl,create(3,26,blackboardl,0,0,0,none,red on
black,4,53 hidden)),
screen(blackboards,create(8,26,blackboard2,0,0,0.t,red on
black,4,53,hidden)),
screen(blackboards,create(13,26,blackboards,0,0.,0 t,red on
black,4,53,hidden)),
screen(blackboard4,create(18,26,blackboard4,0,0,0,t,red on
black,4,53 hidden))

close_blackboard_display:-
close(blackboard_background),
close(blackboardl),
close(blackboard2) ,
close(blackboards),
close(blackboard4),

delete_stream (blackboard_background),
delete_streara (blackboardl),
delete_stream (blackboards),
delete_stream (blackboard3) ,
delete_stream (blackboard4).

display_blackboard:-

screen(blackboard_background,info(SY ,SX ,blackboard_background,W Y W X ,D.M,

M att,H W ,R)),

R=hidden, I*
screen (blackboard _background,unhide),
screen(blackboardl,unhide),
screen(blackboards,unhide),
screen(blackboards,unhide) ,
screen(blackboard4,unhide),!

fails if revealed */

display_blackboard:-

screen (blackboardl,hide),
screen(blackboards,hide) ,
screen(blackboards,hide),
screen(blackboard4 . hide),
screen(blackboard_background,hide) .

clear_blackboard_display:-
window (blackboardl,clear),
window (blackboards,clear),
window (blackboards,clear),
window (blackboard4,clear).

/* Copy a blackboard */

copy_blackboard(Frora, To)

once(retractali(blackboard(To,Level,_,_))),
blackboard(From ,Level, A1,A2),
assert(blackboard(To,Level, Al,A2)),

fail

copy_blackboard (From, To) :-
once(retractali(blackboard(To,Level,_._,_))),

blackboard(From ,Level AI,A2,A3),
assert(blackboard(To,Level AIl,L,A2,6A3)),
fail

copy_blackboard(From,To):-
once(retractall(blackboard (To,Level,
blackboard(From ,Level,Al,A2,A3A4),

)

assert(blackboard(To,Level AI,A2 A3 A4)),

copy_blackboard(From,To)
once (retractall (executed_ks (To,_.
executed_ks(From ,A[,A2),
assert(executed_ks(To,Al,A2)),
fail

).

copy_blackboard(From ,To) .

/* displaying an entry on the blackboard */
entry _display(Entry.Value,Certainty, Display)
var(Value),

Display is_string string(Entry,ops) &

string (Certainty,ops) & " ".

unknown " &

entry _display(Entry,Value,Certainty D isplay)

Display is_string string(Entry,ops) & & string(Value,ops) & " " &
string (Certainty,ops) & " ".
/* check the existence of a diagnosis on the blackboard */

diagnosisjexists(Blackboard,Root,Disorder,P)
disorder(Root),
blackboard(Blackboard,sub_diagnosis,Root,Disorder,P), P>0.1.
no_diagnosis_exists(Blackboard,Root,Diagnosed_list)disorder(Root),
member(Root,Diagnosed_list).

1* i

1* - -BLACKBOARD CONTROL. */

not

/* make a dignosis the blackboard

using

system */

make_diagnosis(Blackboard)
clear_blackboard_display,
execution_cycle (Blackboard irst_trigger, [data_handler]).

/* find all triggered knowledge sources */

find_triggered _ks(B lackboard first_trigger.Active_ks)

once(retractall(ksar(Blackboard,_,_))),
trigger(Blackboard,Knowledge_source,Condition _list,Active_ks),
assert(ksar(Blackboard,Knowledge_source,Condition_list))

/* fail here to find all triggered ks - one enough for bottom-up */

/* for mixed strategy find all ksars except for data_handlers */

find _triggered_ks(Blackboard,mixed_schedule Active_ks)
once(retractall(ksar(B lackboard,_,_))),
trigger(Blackboard,Knowledge_source,Condition _list,Active_ks),
assert(ksar(Blackboard ,Knowledge_source,Condition_list)),
member (Knowledge_source, [truth_m aintenance, w rite_raw _data,w rite_default
data,derive_data]).

/* for full_schedule find all ksars */

find_triggered_ks(Blackboard,full_schedule Active_ks):-

once(retractall(ksar(Blackboard._,_))),
trigger(Blackboard ,Knowledge_source.Condition _list,Active_ks),
assert(ksar(Blackboard,Knowledge_source,Condition_list)), fail.

find _triggered_ks(Blackboard,Strategy A ctive_ks).

/* check to see if ks is active */

active _ks([].A ctive_list):-!,fail.

active _ks((TypelType_list],Active_list)
member(Type,Active_list),!.

active _ks([Type|Type_list],A ctive_list)
active_ks (Type__list, A ctive_list)

/* blackboard execution cycle */

/* else schedule & execute ks */
execution_cycle(Blackboard,Strategy,Active_ks)
once(find_triggered_ks(Blackboard,Strategy.A ctive_ks)),
schedule_action(Blackboard,Strategy ,Next_active_ks),!,

execution_cycle (Blackboard,Strategy Next_active_ks)

/% finish
execution_cycle(Blackboard,Strategy Active_ks) .

when no triggered ks */

/* knowledge source execution scheduler */

I* schedule all ksars of one type */
schedule_all_actions(Ks)

ksar(Blackboard,Knowledge_source,Conditions),

once (call (knowledge_source (Blackboard, Knowledge_source,Conditions, [Ks|_]

1)), fail

schedule_all_actions(Ks).

/* mixed schedule identifies multiple ksar executions */
schedule_action (Blackboard,mixed_schedule,Next_active_ks)
once(ksar(Blackboard,Knowledge_source,Conditions)),

once (clause (knowledge_source/d knowledge_source (_.Knowledge_source,_, [Ks
INext_active_ks]):-G)).

ember(Ks,(classify_data,evidence_handler,sum _hypothesis,rank_hypothesis

1
Schedule_all_actions (Ks).

289

/* bottom up takes ks in order of triggering */
schedule_action(Blackboard,Strategy . Next_active_ks)
ksar(Blackboard,Knowledge_source,Condition_list),

call (knowledge_source (Blackboard, Knowledge_source,Condition_list,Next_ac
tive_ks)).

/* *
1* -TRIGGERING FOR KNOWLEDGE SOURCES-

/* bottom up triggering */

/* Truth maintenance */

trigger(B lackboard,truth_maintenance,Condition_list,Active_ks)
active_ks([truth_maintenance,data_handler],Active_ks),
blackboard(Blackboard,raw _data,Type,Facet,Value,Status), not
current_data(Type,Facet, V),

Condition_list=[Type,Facet,Value],

not executed_ks(Blackboard,truth_maintenance,.Condition_list).

/* write raw data */

trigger(Blackboard,write_raw _data,Condition _list,Active_ks):-
active _ks([write_raw _data,data_handler],Active_ks) .
current_data(Type,Facet,Value),

hypothesis_type(Type._).

Condition_list=[Type,Facet,Value],

not blackboard(Blackboard,raw _data,Type,Facet,Value,S).

/* Data derivation */

trigger(Blackboard.derive_data,Condition_list,A ctive_ks)

active _ks([derive_data,data_handler],Active_ks),

derivation(Variable Expression,Dependents_list),

not blackboard(Blackboard,raw _data,variable,Variable,Value,measurement),
substitute_values(Blackboard,Expression,Dependents_list, Instantiated _lis
t). Condition_list=[V ariable D ependents_list,Instantiated _list], not
executed_ks(Blackboard.derive_data,Condition_list).

/* Write default data */

trigger(Blackboard,write_default_data,Condition_list,A ctive_ks)
active_ks([write_default_data,data_handler], Active_ks),
data_parameter(Variable default,Value),

Value\=none,

Condition_list=[V ariable,Value],

not blackboard(Blackboard,raw _data,variable,Variable,V,S).

/* classify raw data */
trigger(Blackboard,classify_data,Condition_list,Active_ks) :-
active_ks([classify data,data_handler],Active_ks),
blackboard(Blackboard,raw _data,variable,Variable,Value,Status), not
data_parameter (Variable, standard _deviation,none),

Condition_list= [V ariable, Value],

not executed ks (Blackboard, classify_data,Condition_list)

I* Considering Variable Evidence */

trigger (Blackboard,variable_evidence,Condition_list, Active_ks)
active_ks ([variable_evidence,evidence_handler],Active_ks),

blackboard (Blackboard,classified_data.Variable, low.Certainty_low),
blackboard(Blackboard,classified_data,Variable,usual,Certainty _usual),
blackboard(Blackboard,classified_data,V ariable,high,Certainty_high),
Condition_list=[V ariable,Certainty _low .Certainty usual,Certainty_high],
not executed_ks(Blackboard,variable_evidence,Condition_list).

/* Considering Signs/symptoms */

trigger(Blackboard,evidence,Condition_list,Active_ks)
active_ks([evidence,evidence_handler], Active_ks) .

blackboard (Blackboard, raw _data, syrrptom.Facet, A ttribute, Status),
Condition_list=[sym ptom ,Facet, A ttribute],

not executed_ks (Blackboard,evidence,Condition_list)

/* Considering History Evidence */

trigger(Blackboard.evidence,Condition _list,Active_ks):-

active _ks([evidence,evidence_handler], Active_ks),
blackboard(Blackboard,raw _data,history Facet,A ttribute,Status),
Condition _list=[history ,Facet,Attribute],

not executed_ks(Blackboard,evidence,Condition_list).

/* Considering Relation Evidence */
trigger(Blackboard,relation_evidence,Condition_list,Active_ks):~

active _ks([relation_evidence,evidence_handler],Active_ks),
relation_occurrence(Root,Dependents_list),
once(substitute_values(Blackboard,Dependents_list,Dependents_list,Instan
tiated _list)),

Condition_list=[Root,Dependents_list,Instantiated _list],

not executed_ks(Blackboard,relation_evidence,Condition_list).

/* Combining the hypotheses */

trigger(Blackboard,sum _hypothesis,Condition_list,Active_ks)
active_ks([sum _hypothesis], A ctive_ks),

disorder(Root),

once (setof ((Disorder,L) , (E,H) 'hypothesis_exists (Blackboard,Root,H ,Disord
er,E,L),Hypothesis_list)),

Condition_list=[Root,Hypothesis_list],

not executed _ks(Blackboard,sum _hypothesis,Condition_list).

/* Ranking the hypotheses */

trigger(Blackboard,rank_hypothesis,Condition _
active_ks([rank_hypothesis],Active_ks),
disorder(Root),
once(setof((Disorder,L)»blackboard(Blackboard,hypothesis,Root,Disorder,L
).Hypothesis_list)),

Condition_list=[Root,Hypothesis_list],

list,Active_ks):-

not executed_ks (Blackboard, rank_hypothesis,Condition_list)

/* Transfer the diagnosis of disorders */

trigger(Blackboard,tran3fer_data,Condition_list,Active_ks)
active_ks([transfer_data],Active_ks),
once(setof((Root,Disorder,P),diagnosis_exists(Blackboard,Root,Disorder, P
).Condition_list)),

not executed _ks(Blackboard,transfer_data,Condition_list).

I* top down triggering */
/* write disease diagnoses */

trigger(Blackboard,write_disease_diagnosi3,Condition_list,Active_ks):-
active_ks ([write_disease_diagnosis,data_handler,diagnosis_ks], Active_ks)

once (setof ((Root,Disease) ,current_data (disease,Root, Disease) .Condition_I
ist)),
not executed ks (Blackboard, w rite_disease_diagnosis,Condition_list)

/* predict disorders from disease diagnoses */
trigger(Blackboard,predict_disorders,Condition_list,Active_ks)
active_ks([predict_disorders],Active_ks),

once (setof ((Root,Disease) »blackboard(Blackboard,diagnosis,Roo0t,D isease),
Condition_list)),

not executed_ks(Blackboard,predict_disorders,Condition_list)

/* critque disease diagnoses */

trigger(Blackboard,critique_diagnoses,Condition_list,Active_ks)
active_ks([critique_diagnoses.diagnosis_ks],Active_ks),

once (setof ((Disease,Prediction).blackboard (Blackboard,prediction.D isease
»Prediction),Prediction_list)),

disorder(Root),

once(bagof (Disorder,blackboard (Blackboard, m anifestations, Root,Disorder) ,
M anifestation_list)),

type_of_critique (Blackboard,M anifestation®ist. Type),
Condition_list=[Root, Type.M anifestation_list,Prediction_list],

not executed_ks(Blackboard,critique_diagnoses,Condition_list).

290

I* das.ks knowledge sources */

I/* Predicates defined in this file:

knowledge_source/4
truth_maintenance_checks/3
check_derived_data/2
dependent_variable/2
check_relation_data/2
transfer_raw _data/3
derive_variable/4
write_level_entry/4

set_level/3

set_low _levell3
set_usual_level/d
set_high_level/3
get_decimal_places/4
distribution_value/2
assign_distribution_value/2
gaussian/2

hypothesis_type/2
hypothesisjexists/6
sum_frame_certainties/4
get_evidencel/6

sum _variable_evidence_certainties/7
get_variable_evidence_probafoility/6
find_variable_incidence_list/4
assert_variable_evidence/9
inpact_variable_evidence/3
sura_evidence_certainties/4
assert_evidence/7
get_evidence_probability/e
find_evidence_incidence_list/6
get_affected _root/3
impact_evidence/3
test_relationship/3
find_relationship_certainty/4
sura_relation_certainties/6
impact_relation_evidence/4
assert_relation_evidencel6
get_current_hypothesis/4
update_hypotheses/4
combine_evidence/3
normalize_likelihoods/3
get_rank/s

set_diagnosis/4
confirmed_diagnosis/3
confirmed_compound_diagnosis/3
compound_diagnosis /4

sum _conpound_evidence/4
retract_current_disorders/1
assert_current_disorder/2
transfer_diagnosis_data/2
transfer_data/2
write_disease_diagnosis/2
assert_disorder_hypotheses/2
find _predicted_disorders/3
type_of_critique/3
assert_critique/d

form _critigue_list/5 */

I* i

KNOWLEDGE SOURCE KERNELS - */
/* KNOWLEDGE SOURCE - Truth M aintenance */

know ledge_source(Blackboard,truth_maintenance,[Type,Facet,Value], [datajh
andler,sum _hypothesis]) :-

retractall(blackboard(Blackboard raw _
retractall(executed_ks(Blackboard,write_raw _
retractall(executed_ks(Blackboard derive_data, [Facet,

data,Type.Facet,Value,_)),

data, [Type,Facet,_])),
1))
retractall (executed_ks (Blackboard, write_default_data, [Facet,_])),
truth_maintenance_checks(Blackboard,Type,Facet),
retractall(executed _ks(Blackboard, truth_raaintenance,[Type.Facet,_])),
assert(executed _ks(Blackboardsruth_m aintenance,[Type,Facet,Value]))

/* KNOWLEDGE SOURCE - W rite Raw Data*/

knowledge_source (Blackboard, write_raw _data, [Type,Facet,Value), [write_raw
_data,write_default_data,derive_data, classify_data,evidence_handler]) :-
entry _display(Facet,Value,”" Entry_display).

window (blackboard4,text(Entry _display)).
retractall(blackboard(Blackboard,raw _data,Type.Facet,_.,_)) .
asserta(blackboard(Blackboard,raw _data,Type,Facet,Value measurement)),
retractall(executed_ks(Blackboard . derive_data,[Facet,_,_])) .
retractall(executed _ks(Blackboard,write_default_data,[Facet,_])),
retractalli(executed _ks(Blackboard,write_raw _data,[Type,Facet,_])),
assert(executed_ks(Blackboard,write_raw _data,[Type,Facet,Value]))

/* KNOWLEDGE SOURCE - W rite Default Data*/

know ledge_source (Blackboard, write_default_data, [Variable, Value], [write_d
efault_data,derive_data,classify _data,evidence_handler]) :-
entry_display (Variable, Value, "" Entry_display) .

window (blackboard4,text(Entry_display)),

retractall (blackboard (Blackboard, raw _data,variable, Variable,_,_)),
asserta (blackboard (Blackboard, raw _data,variable, Variable, Value, default))
. transfer_raw _data (Blackboard,Variable,Value),

retractall (executed_ks (Blackboard, write_default_data, [Variable,_ 1)) .
assert (executed_ks (Blackboard,write_default_data, [Variable, Value])) .

/* KNOWLEDGE SOURCE - Data Derivation */

know ledge_source(Blackboard,derive_data,[Variable Dependents_list,Expres
sion], [derive_data,write_default_data,classify_data,evidence_handler]):-
retractall (blackboard(Blackboard, raw _data,variable.Variable,_._)),
derive_variable(Blackboard,Variable Expression,Value) .

entry _display(V ariable,Value ,Entry _display) .

window (blackboard4 text(Entry_display)),

retractall(executed _ks(Blackboard,derive_data,[Variable,_,_1])),

assert (executed_ks (Blackboard.derive_data, [Variable,Dependents_list,Expr
ession])).

/* KNOWLEDGE SOURCE - C lassify raw data */
know ledge_source(supposition,classify_data,[V ariable,Value], [classify_da
ta,evidence_handler]):-

member(Value,[low,usual,high]),

retractall (blackboard (supposition,classified_data,Variable,_,_)),
set_level (supposition.Variable,Value),

retractall(executed _ks(supposition,classify_data,[Variable,_])),
assert(executed _ks(supposition,classify _data,[Variable,Value]))

know ledge_source(Blackboard,classify_data,[Variable,Value], [classify_dat
a.evidence_handler])

data_j?arameter (Variable,mean,M ean) ,

data_parameter (Variable,standard_deviation, SD) ,

UX is (Value+(2*SD)-Mean)/SD,

LX is (Value-(2*SD)-Mean)/SD,

retractall (blackboard(Blackboard, classified_data.V ariable,_,_)),
set_low _level (Blackboard,Variable,UX),

set_usual_level (Blackboard,Variable, UX, LX),

set_high_level (Blackboard, Variable,LX) ,

retractall(executed _ks(Blackboard,classify_data,[Variable,_])),
assert(executed_ks(Blackboard,classify_data,[Variable,Value])) .

/* KNOWLEDGE SOURCE - Considering variable evidence */

know ledge_source(Blackboard,variable_evidence,Condition_list, [evidence_h
andler,sum _hypothesis,diagnosis_ks]):-

Condition _list= [V ariable, Certainty_low.Certainty_usual.Certainty_high],
setof (Root, (F,L.C) Afram e_variable (F,Root,Variable,L,C) ,Root_list),
retractall (blackboard(Blackboard,variable_hypothesis,_,_,Variable,_)),
inpact_variable_evidence (Blackboard, Root_list,Condition _list),
retractall (executed_ks (Blackboard,variable_evidence, [Variable [_])).
assert (executed_ks (Blackboard,variable_evidence,Condition_list)).
knowledge_source (Blackboard,variable_evidence, Condition _list, [evidence_h

andler,sum _hypothesis, diagnosis_ks]):-
Condition_list= [V ariable,Certainty _low ,Certainty _usual,Certainty_high],
retractall (executed_ks (Blackboard,variable_evidence, [Variable |_])),
assert (executed _ks (Blackboard,variable_evidence,Condition_list)).

/* KNOWLEDGE SOURCE - Considering Signs & Symptoms / History Evidence */

knowledge_source(Blackboard,evidence,Condition _list, [evidence_handler, su
m _hypothesis,diagnosis_ks]):-

Condition_list= [Evidence_type,Facet, A ttribute],

setof (Root,get_affected _root (Evidence_type,Facet,Root) ,Root_list),
hypothesis_type (Evidence_type,Hypothesis_type),

retractall (blackboard(Blackboard,Hyprathesis_type,_ ,_,Facet,L)),
inpact_evidence (Blackboard,Root_list,Condition _list),
retractall(executed_ks(Blackboard,evidence,[Evidence_type.Facet,_])).
assert(executed_ks(Blackboard,evidence,Condition_list))

know ledge_source(Blackboard,evidence,Condition_list, [evidence_handler, su
m _hypothesis diagnos i3_ks]):-

Condition_list= [Evidence_type,Facet, A ttribute],

retractall (executed_ks (Blackboard,evidence, [Evidence_type,Facet,_])),
assert (executed_ks (Blackboard,evidence,Condition _list)) .

/* KNOWLEDGE SOURCE - Numerical Relationships Evidence */

knowledge_3ource(Blackboard,relation_evidence,Condition_list,[evidence_h
andler,sum _hypothesis, diagnosis_ks]):-
Condition_list=[Root,Dependents_list,Instantiated_list],

setof([Frame], (R,Left,Right,Conp)Arelation_evidence(Frame ,Root,R,Left,Ri
ght,Conp,Dependents_list),0 ccurrence_list),

retractall (blackboard(Blackboard,relation_hypothesis,Root,_.Dependents_I
ist,L)),

inpact_relation_evidence (Blackboard, Root,Dependents_list,0 ccurrence_list
)

retractan (executed_ks (Blackboard, relation_evidence, [Root,Dependents_lis

1)),

assert (executed_ks (Blackboard, relation_evidence,Condition _list)).
know ledge_source (Blackboard, relation_evidence, Condition _list, [evidence_h
andler,sum _hypothesis, diagnosis_ks]):-
Condition_list=[Root,Dependents_li3t, Instantiated _list],

retractall (executed_ks (Blackboard, relation_evidence, [Root,Dependents_lis
o1,

assert (executed_ks (Blackboard, relation_evidence,Condition_list)).

/* KNOWLEDGE SOURCE - Sum Hypotheses */

know ledge_source(Blackboard,sum _hypothesis,[Root,Hypothesis_list], [sum_h
ypothesis, rank_hypothesis]):-

retractall(blackboard(B lackboard,hypothesis.Root,Frame,L)),
combine_evidence(Blackboard ,Root,Hypothesis_list),
retractall(executed _ks(Blackboard,sura_hypothesis,[Root,_])),
assert(executed_ks(Blackboard,sura_hypothesis,[Root,Hypothesis_list])) .

/* KNOWLEDGE SOURCE - Rank Hypotheses */

knowledge_source(Blackboard,rank_hypothesis, [Root,Hypothesis_list], [rank
_hypothesis transfer_data,diagnosis_ks]):-

normalize_likelihoods(H ypothesis_list,0 ,NF),
retractall(blackboard(Blackboard,sub_diagnosis,Root,_,_)),

set_diagnosis (Blackboard,Root,NF ,Hypothesis_list),
conpound_diagnosis(Blackboard,Root, [Root].[]), !,

retractall(executed _ks(Blackboard,rank_hypothesis,[Root,_])),
assert(executed_ks(Blackboard,rank_hypothesis,[Root,Hypothesis_list]))

know ledge_source (Blackboard, rank _hypothesis, [Root,Hypothesis_list], [rank
_hypothesis,transfer_data,diagnosis_ks]):-
retractall(blackboard(Blackboard, sub_diagnosis,Root,_,_)),
retractall(executed _ks(Blackboard, rank_hypothesis,[Root,_])),
assert(executed_ks(Blackboard,rank_hypothesis,[Root,Hypothesis_list])) .

291

/* KNOWLEDGE SOURCE - Transfer Data*/ derive_variable (Blackboard, Variable, Expression,Variable_value) :-
evaluate_expression (Expression,Variable_value) ,

know ledge_source(Blackboard. transfer_data,Condition_list, [data_handler,d asserta (blackboard(Blackboard, raw _data,variable.Variable, Variable_value,
iagnosis_ks]) derivation)),
transfer_diagnosis_data (Blackboard,Condition_list) , transfer_raw _data(Blackboard,Variable,Variable_value).

retractall (executed_ks (Blackboard,transfer_data,_)).
assert(executed_ks(Blackboard, transfer_data,Condition_I1st))
/* ROUTINES USED BY CLASSIFY DATA KS */

/* Knowledge sources used for top down operation */ /* write level of classified data on blackboard */
/* KNOWLEDGE SOURCE - W rite D isease Diagnosis */ write_level_entry(Blackboard,Variable,Level,Probability)
entry _display(Variable,.Level Probability,Entry_display),
know ledge_source (Blackboard,write_disease_diagnosis,Condition_list, [pred window (blackboard3,text(Entry_display)),
ict_disorders]) serta (blackboard(Blackboard,classified_data.Variable,Level, Probability
clear_blackboard _display,)j
retractall (blackboard(Blackboard.,diagnosis,).
write_disease_diagnosis(Blackboard,Condition_list),
retractall(executed _ks(Blackboard,write_disease_diagnosis,_)), /* setting levels for supposition of specific level */

assert (executed_ks (Blackboard,write_disease_diagnosis,Condition_list)) .
set_level(Blackboard,Variable,low)
asserta(blackboard(Blackboard,classified_data,Variable,low ,1.0)),
asserta(blackboard(Blackboard,classified_data,Variable,usual, 0.0)),

/* KNOWLEDGE SOURCE - Predict disorders from disease diagnosis */ asserta(blackboard(Blackboard,classified_data,V ariable,high,0.0))
know ledge_source(Blackboard,predict_disorders,Condition _list, [critique_d set_level(Blackboard,Variable usual):-

jagnoses]):- asserta(blackboard(Blackboard,classified_data,Variable,low ,0.0)),
retractall (blackboard (Blackboard,prediction,_,_)), asserta(blackboard(Blackboard,classified_data.V ariable,usual,1.0)),
assert_disorder_hypotheses(Blackboard,.Condition_list), asserta(blackboard(Blackboard, classified_data,V ariable,high,0.0))

retractall (executed_ks (Blackboard.,predict_disorders,_)),

assert (executed_ks (Blackboard,predict_disorders,Condition_list)) . set_level(Blackboard,Variable ,high):-
asserta(blackboard(Blackboard,classified_data,Variable,low,0.0)),
asserta(blackboard(Blackboard,classified_data.V ariable,usual,0.0)),

/* KNOWLEDGE SOURCE - Critique clinical diagnosis */ asserta(blackboard (B lackboard,classified_data,V ariable high,1.0))
know ledge_source(Blackboard,critique_diagnoses,Condition_list,[critique_

diagnoses]) /* setting levels of data variables */
Condition_list=[Root,Type,M anifestation _list,Prediction_list],

retractall (blackboard(B lackboard,critigue,R oot,), set_low _level (Blackboard,Variable, UX) :-

form _critique _list (Root,Manifestation_list,Prediction_list,L ist, Type), assign_distribution_value (UX,D),

assert_critique (Blackboard, Root,L ist, Type), P is 1-D,

retractall (executed_ks (Blackboard,critique_diagnoses, [R 0 o t ,)), write_level_entry (Blackboard,V ariable, low,P) .

assert (executed_ks (Blackboard, critique_diagnoses,Condition_list)).

set_usual_level (Blackboard,Variable, UX,LX) :-
assign_distribution_value(U X ,D 1),
assign_distribution_value(LX ,D2),

P is D1-D2,
write_level_entry(Blackboard,Variable,usual,P).

-—-ROUTINES USED BY KNOWLEDGE SOURCES-

/* ROUTINES USED BY TRUTH MAINTENANCE KS */
set_high_level(Blackboard,Variable,L X)

/* checks for variables */ assign_distribution_value(L X ,D),
P is D,
truth_maintenance_checks(Blackboard,variable,V ariable):- write_level_entry (Blackboard,Variable, high,P) .
retractall (blackboard (Blackboard, classified_data,Variable,_._)),
retractall(executed_ks(Blackboard,classify_data,[V ariable,_1)),
check_derived_data(Blackboard,Variable), /* finding probability of classification from look-up table */
check_relation_data(Blackboard,Variable) ,
retractall (blackboard(Blackboard,variable_hypothesis,Variable,_)), /* getting decimal place information */

retractall (executed_ks (Blackboard,variable_hypothesis, [Variable|_])) .
get_decimal_places(X ,XDP1,DP2,E):-

/* checks for symptoms & history */ XDP1 is truncate(10*X)/10, /* X to one decimal place unrounded
*/ DP2 is fix((X-XDP1)*100), /* 2nd dp rounded as int 0-9

truth_maintenance_checks(Blackboard,Type,Facet) */ E is (X-XDP1-(DP2/100))*100. /* extrapolation factor */

hypothesis_type(Type,Hypothesis),

retractall (blackboard(Blackboard,Hypothesis,_,_.Facet,_)).

retractall(executed_ks(Blackboard.evidence [Type,Facet,_])). /* getting probability distribution value for variable X */

distribution_value(X ,D)

/* checking derived data variables */ XC is X+0.00001, /* prolog2 doesn't round properly */
get_decimal_places(XC,XDP1,DP2,E)

check_derived _data(Blackboard,Variable):- gaussian(X D P1,Distribution), /* find distribution section */

executed _ks(Blackboard,derive_data,[V.Dependents_list,E]), DL1 is DP2+1, /* location in distribution */

once (merrber (V ariable,D ependents_list)), DL2 is DP2+2,

retractall (current_data (variable, VvV,)), arg (D LI,Distribution,D 1),

retractall (executed_ks (Blackboard,derive_data, [V ,Dependents_list,E))), arg(D L2,Distribution,D 2),

fail D is D1+ ((D2-D1) *E) . /* D is DI plus extrapolation */

check_derived_data (Blackboard, Variable) .
/* assign probabilty for value X */
/* find dependent data */

assign_distribution_value(X ,D):- /* negative argument */
dependent_variable(V ariable,Dependents_list):- X<0,
member(Variable Dependents_list),! NX is X,

assign_distribution_value (NX.ND),
dependent_variable(V ariable,Dependents_list):- D is 1-ND
member(change(Variable),D ependents_list),!
assign_distribution_value(X .1 .0 0 0)/* argument >= 3.400 */

/* checking relation hypotheses */ X>=3.400.
check_relation_data(Blackboard,V ariable):- assign_distribution_value(X ,D)/* 0 =< argument < 3 */
executed_ks(Blackboard.,relation_evidence,[Root,Dependents_list,1]), distribution_value(X.D).

dependent_variable (Variable.Dependents_list),

retractall(blackboard (Blackboard, relation_hypothesis,Root,_, Dependent3_1

ist,_)).

retractall (executed_ks (Blackboard, relation_evidence, [Root,Dependents_lis /* look-up table for gaussian distribution */

t11)), fail
gaussian(0.0,distribution(0.5000,0.5040,0.5080,0.5120,0.5160,0.5199,0.52

check_relation_data (Blackboard,Variable) . 39.0. 5279.0.5319.0.5359,0.5398))
gaussian(0.1,distribution(0.5398,0.5438,0.5478,0.5517,0.5557,0.5596,0.56
36.0. 5675.0.5714.0.5753,0.5793))

/* ROUTINES USED BY DERIVE DATA KS */ gaussian(0.2,distribution(0.5793,0.5832,0.5871,0.5910,0.5948,0.5987,0.60
26.0. 6064.0.6103.0.6141.0.6179))

/* Check derived/default data and transfer to database */ gaussian(0.3,distribution (0.6179,0.6217,0.6255,0.6293,0.6331,0.6368,0.64
06.0. 6443.0.6480.0.6517.0.6554))

transfer_raw _data(supposition,Variable,Value). gaussian(0.4.distribution (0.6554,0.6591,0.6628,0.6664,0.6700,0.6736,0.67
72.0. 6808.0.6844.0.6879.0.6915)) .

transfer_raw _data(Blackboard,Variable,Value):- gaussian(0.5,distribution (0.6915,0.6950,0.6985,0.7019,0.7054,0.7088,0.71

data_parameter(Variable,upper_limit,U), 23.0. 7157.0.7190.0.7224.0.7257)) .

data_parameter (Variable, lower_limit,L) , gaussian(0.6,distribution (0.7257,0.7291,0.7324,0.7357,0.7389,0.7422,0.74

Value=<U, 54.0. 7486.0.7517.0.7549.0.7580)) .

Value>=L, gaussian(0.7.distribution (0.7580,0.7611,0.7642,0.7673,0.7704,0.7734,0.77

assert (current_data (variable,Variable, Value)) . 64.0. 7794.0.7823.0.7852.0.7881)) .

gaussian(0.8,distribution(0.7881,0.7910,0.7939,0.7967,0.7995,0.8023,0.80
51.0 8078.0.8106.0.8133.0.8159))

/* derive data value */ gaussian(0.9,distribution(0.8159,0.8186,0.8212,0.8238,0.8264,0.8289,0.83
15.0. 8340.0.8365.0.8389.0.8413))
gaussian(1.0,distribution(0.8413,0.8438,0.8461,0.8485,0.8508,0.8531,0.85

292

54.0 8577.0.8599.0.8621.0.8643))
gaussian(l.1,distribution(0.8643,0.8665,0.8686,0.8708,0.8729,0.8749,0.87
70.0 8790.0.8810.0.8830.0.8849)).
gaussian(1.2,distribution(0.8849,0.8869,0.8888,0.8907,0.8925,0.8944,0.89
62.0. 8980.0.8997.0.9015.0.9032))
gaussian(1.3,distribution(0.9032,0.9049,0.9066,0.9082,0.9099,0.9115,0.91
31.0 9147.0.9162.0.9177.0.9192))
gaussian(1.4,distribution(0.9192,0.9207,0.9222,0.9236,0.9251,0.9265,0.92
79.0 9292.0.9306.0.9319.0.9332))
gaussian(1.5,distribution(0.9332,0.9345,0.9357,0.9370,0.9382,0.9394,0.94
06,0.9418,0.9429,0.9441,0.9452))
gaussian(1.6,distribution(0.9452,0.9463,0.9474,0.9484,0.9495,0.9505,0.95
15,0.9525,0.9535,0.9545,0.9554)) .

gaussian(1.7 ,distribution(0.9554,0.9564,0.9573,0.9582,0.9591,0.9599,0.96
08.0 9616.0.9625.0.9633.0.9641))
gaussian(1.8,distribution(0.9641,0.9649,0.9656,0.9664,0.9671,0.9678,0.96
86.0 9693.0.9699.0.9706.0.9713))
gaussian(1.9,distribution(0.9713,0.9719,0.9726,0.9732,0.9738,0.9744,0.97
50.0. 9756.0.9761.0.9767.0.9772))
gaussian(2.0,distribution(0.97725,0.97778,0.97831,0.97882,0.97932,0.9798
2.0. 98030.0.98077.0.98124.0.98169.0.98214)).
gaussian(2.1,distribution(0.98214,0.98257,0.98300,0.98341,0.98382,0.9842
2.0. 98461.0.98500.0.98537.0.98574.0.98610)).
gaussian(2.2,distribution(0.98610,0.98645,0.98679,0.98713,0.98745,0.9877
8.0. 98809.0.98840.0.98870.0.98899.0.98928)).
gaussian(2.3,distribution(0.98928,0.98956,0.98983,0.99010,0.99036,0.9906
1.0. 99086.0.99111.0.99134.0.99158.0.99180)).
gaussian(2.4,distribution(0.99180,0.99202,0.99224,0.99245,0.99266,0.9928
6,0.99305,0.99324,0.99343,0.99361,0.99379))
gaussian(2.5,distribution(0.99379,0.99396,0.99413,0.99430,0.99446,0.9946
1,0.99477,0.99492,0.99506,0.99520,0.99534))
gaussian(2.6,distribution(0.99534,0.99547,0.99560,0.99573,0.99585,0.9959
8.0. 99609.0.99621.0.99632.0.99643.0.99653)).
gaussian(2.7,distribution(0.99653,0.99664,0.99674,0.99683,0.99693,0.9970
2.0. 99711.0.99720.0.99728.0.99736.0.99744)).
gaussian(2.8,distribution(0.99744,0.99752,0.99760,0.99767,0.99774,0.9978
1.0. 99788.0.99795.0.99801.0.99807.0.99813)).
gaussian(2.9,distribution(0.99813,0.99819,0.99825,0.99831,0.99836,0.9984
1.0. 99846.0.99851.0.99856.0.99861.0.99865)).
gaussian(3.0,distribution(0.99865,0.99869,0.99873,0.99877,0.99881,0.9988
5,0.99889,0.99893,0.99897,0.99900,0.99903))
gaussian(3.1,distribution(0.99903,0.99906,0.99909,0.99912,0.99915,0.9991
8.0. 99921.0.99924.0.99927.0.99929,0.99931)).
gaussian(3.2,distribution(0.99931,0.99934,0.99936,0.99938,0.99940,0.9994
2.0. 99944.0.99946.0.99948.0.99950.0.99952))
gaussian(3.3,distribution(0.99952,0.99954,0.99956,0.99958,0.99960,0.9996
1.0 99962.0.99963.0.99964.0.99965.0.99966))

/* GENERAL ROUTINES FOR CONSIDERING EVIDENCE */

/* relation between type of evidence and asserted hypothesis */
hypothesis_type (syrrptom,synptom _hypothesis) .
hypothesis_type (history history _hypothesis)

hypothesis_type (variable,variable_hypothesis)
hypothesis_type(relation,relation_hypothesis)

/* find an existing hypothesis */

hypothesis_exists(Blackboard ,Root,Hypothesis,Disorder,E, L)
hypothesis_type(_,Hypothesis),
blackboard(Blackboard,Hypothesis ,Root,Disorder,E L).

/* summing apriori probabilities for a list of nodes */

/* total
sum _frame_certainties(Root,[].T fc,T fc).

certainty for frame list */

sum _frame_certainties (Root, [[Frame|_] [0 ccurrence_list] ,Tfc,Tfc_so_far)
apriori (disorder,Root,Frame, A),

New _tfc_so_far is Tfc_so_far + Al

sum _frame_certainties(Root,0 ccurrence_list,Tfc,New _tfc_so_far) .

/* get a piece of evidence from the knowledge base */

get_evidence (synptom.Frame,Root,Facet, A ttribute,Certainty)
frame_symptom (Frame,Root,Facet, A ttribute,Certainty).

get_evidence(history Frame,Root, Facet, A ttribute,Certainty):-
frame_history(Frame,Root,Facet, A ttribute,Certainty).

/* for diseases and disorders added as history A ttribute is present or
absent */

get_evidence(history Frame,Root, Facet, A ttribute,Certainty) :-

link (Evidence_root,Facet,Descendent,_),

get_evidence(history ,Frame,Root,Descendent,A ttribute,C ertainty).

get_evidence (variable,Frame,Root,Facet,A ttribute,Certainty) :-
frame_variable (Frame,Root,Facet, A ttribute,Certainty)

get_evidence (variable Frame Root,Facet A ttribute, 0.0).

/* ROUTINES USED BY VARIABLE EVIDENCE KS */

/* summing the total weight of a piece of variable evidence. The sum is
of the product of (P(1[F)*P(1) + P(u|F)*P(u) + P (h|F) *P (h))*P (F) over
all F. */

sum _variable_evidence_certainties(Root,[],CI,Cu,Ch,Tec,Tec).

sum _variable_evidence_certainties (Root,([Frame,Cfl,Cfu,Cfh]lincidence_li
st],C1.Cu.Ch,Tec,T _so_far)
apriori(disorder,Root,Frame,A),
C is A*((Cf1*C1) + (Cfu*Cu) +
New_T_so_far is T_so_far + C, !,
sum _variable_evidence_certainties (Root,Incidence_list,C1,Cu,Ch.Tec,New _T

(Cth*ch)),

_so_far).

/* get the probabilities of low, usual or high levels for a frame */

get_variable_evidence_probability (Frame,Root,V ariable,Cf1,Cfu,Cfh) :-
once (get_evidence (variable,Frame, Root,Variable, low ,C fl)),

once (get_evidence (variable,Frame,Root, Variable ,usual,Cfu)),

once (get_evidence (variable. Frame,Root,V ariable,high,Cfh)) .

/* find frames with variable evidence */
find_variable_incidence_list(Root,V ariable,[],[])

find _variable_incidence_list (Root»Variable, [Frame [L ist], [[Frame,CfI,C fu,
Cfhllincidence_list])

get_variable_evidence_probability (Frame,Root,V ariable,Cf1,Cfu,Cfh) ,
find_variable_incidence_list (Root,V ariable,List, Incidence_list) .

/* assert hypothesis & weight for each node affected by variable */
assert_variable_evidence (Blackboard,Root,Variable, [],C1.Cu,Ch,Tfc, Tec).

assert_variable_evidence(Blackboard,Root,Variable, [[Frame,Cf1,Cfu,Cfh] |I
ncidence_list],C1,Cu,Ch,Tfc,0.0)

entry _display(Frame,Variable, 0.0 Entry_display),

window (blackboard2,text(Entry _display)),
assert(blackboard(Blackboard,variable_hypothesis,Root,Frame,Variable, 0.0

>>01,
assert_variable_evidence (Blackboard, Root,Variable, Incidence_list,CI1,Cu,C
h,Tfc,0.0).

assert_variable_evidence (Blackboard,Root,Variable, [[Frame,Cf1,Cfu,Cfh] |I
ncidence_list] .CI1.Cu,Ch,Tfc, Tec)

Cf is ((Cfl*Cl) + (Cfu*Cu) + (Cfh*Ch)),

Likelihood is (Cf*Tfc)/Tec,

entry _display (Frame,V ariable,Likelihood,Entry _display),

window (blackboard2,text (Entry_display)),

assert (blackboard(Blackboard,variable_hypothesis.Root Frame,V ariable,L ik
elihood)), !,
assert_variable_evidence (Blackboard,Root,V ariable, Incidence_list,CI,Cu,C
h,Tfc.Tec).

/* iirpact the effect of a clssified data variable on a tree */
irrpact_variable_evidence(Blackboard, [],Condition_list)

npact_variable_evidence (Blackboard, [Root [R oot_list], [Variable,CI1,Cu,Ch]

Setof (Frame, (L,C) Afram e_variable (Frame,Root,Variable,L ,C) ,Occurrence_lis

0,
find_variable_incidence_list (Root»V ariable,O ccurrence_list,Incidence_li3
t).

sum _frame_certainties (Root, Incidence_list, Tfc, 0), sum _variable_evidence_c

ertainties(Root,Incidence_list,C1,Cu.Ch,Tec,0),
assert_variable_evidence (Blackboard,Root,Variable, Incidence_list,CI,Cu,C
h.Tfc.Tec),!,

irtpact_variable_evidence (Blackboard,Root_list, [Variable,CI.Cu,Ch]).

/* ROUTINES USED BY SIGNS*SYMPTOMS AND HISTORY EVIDENCE KS */

/* summing the total weight of a piece of evidence. The sum is of the

product of P(elF)*P(F) over all F. */

sum _evidence_certainties(Root,[],Tec,Tec).

sum _evidence_certainties(Root,[(Frame,Ce) [Incidence_list], Tec,T_so_far) :
- apriori(disorder,Root,Frame,A),
C is A*Ce,

New_T_so_far is T_so_far + C I,
_so_far).

sum _evidence_certaintie3(Root,Incidence_list,Tec,New _T

/* assert hypotheses for all nodes affected by evidence */
assert_evidence(Blackboard,Hypothesis_type,Root,Facet,[],Tfc,Tec).

assert_evidence(Blackboard,Hypothesis_type.Root,Facet,[(Frame,Pe_given_F
)lincidence_list] ,Tfc,0.0)

entry_display(Frame,Facet,0.0,Entry_display),

window (blackboard2,text(Entry_display)),

assert(blackboard(Blackboard ,Hypothesis_type,Root,Frame,Facet,0.0)), !,
assert_evidence(Blackboard,Hypothesis_type,Root,Facet,Incidence_list,T fc

,0.0).

assert_evidence(Blackboard,Hypothesis_type,Root,Facet,[(Frame,Pe_given_F
)lincidence_list], Tfc,Tec)

Likelihood is (Pe_given_F*Tfc)/Tec,
entry_display(Frame,Facet,Likelihood,Entry_display),

window (blackboard2,text (Entry_display)),

assert (blackboard (Blackboard, Hypothesis_type.Root,Frame,Facet,Likelihood
>>,!,

assert_evidence(Blackboard,Hypothesis_type Root,Facet,Incidence_list, Tfc
\Tec).

/* get the probability of evidence for a given tree node */
get_evidence_probability(history,Frame,Root,Facet,Attribute,Certainty)
not(history(Facet,_)),

once (bagof (C.get_evidence (history.Frame,Root,Facet, A ttributed) ,C _list))
. once(sum _list(C _list,0,Certainty)).

/* if another node in the same class is present/absent */
get_evidence_probability(history,Frame,Root,Facet,A ttribute,0.0):-
not (history (Facet,_)),

link (Evidence_root,_.Facet,_),

link (Evidence_root,_ O ther_node,_),

Other_node\=Facet,

get_evidence(history ,Frame,Root,Other_node,A ttribute,Certainty)

get_evidence_probability (Evidence_type,Frame, Root,Facet, A ttribute,Certai
nty)

293

get_evidence (Evidence_type Frame,Root,Facet, A ttribute,Certainty)

get_evidence_probability (Evidence_type,Frame,Root»Facet»A ttribute, 0.0)
get_evidence (Evidence_type, Frame,Root, Facet,_,_) ,
not get_evidence (Evidence_type,Frame,Root,Facet,A ttribute,_) .

/* Find the incidence list of evidence with probabilities */

find _evidence_incidence_list(Root,Evidence_type,Facet,A ttribute,(],[])

find_evidence_incidence_list(Root,Evidence_type,Facet,A ttribute, ([Frame]
[0 ccurrence_list],[(Frame,Certainty)[Incidence_list])

once (get_evidence_probability (Evidence_type, Frame,Root,Facet, A ttributed
ertainty)),
find_evidence_incidence_list(Root,Evidence_type,Facet A ttribute O ccurren
ce_listincidence_list).

/* Get a root disorder affected by a piece of evidence */

get_affected _root(Evidence_type,Facet,Root)
disorder(Root),

once (get_evidence_probability(Evidence_type,_,Root,Facet,_,_))
of evidence on a tree */

/* impact the effect of a piece

inpact_evidence (Blackboard, (].Condition_list)

impact_evidence (Blackboard, [Root|[R oot_list], [Evidence_type,Facet, A ttribu
te])

setof ([Frame] .C/'get_evidence_probability (Evidence_type,Frame,Root,Facet,
Attributed) ,Occurrence_list) ,
find_evidence_incidence_list(Root,Evidence_type,Facet,A ttribute, Occurren
ce_listncidence_list),

sum _frame_certainties(Root,0 ccurrence_list,T fc,0),

sum _evidence_certainties(Root,Incidence_list,Tec,0),
hypothesis_type(Evidence_type,Hypothesis_type),

assert_evidence (Blackboard, Hypothesis_type,Root,Facet, Incidence_list,Tfc
LTec). !,

impact_evidence (Blackboard, R oot_list, [Evidence_type, Facet, A ttribute]).

/* ROUTINES USED BY RELATIONSHIPS EVIDENCE KS */

/* Test a relationship: fails if relationship does not hold */
test_relationship(Comparator,Left,Right)
evaluate_expression(Left,Left_value),
evaluate_expression(Right,Right_value),
Test=..[Corrparator,Left_value ,Right_value], !,

call(Test).

/* find the probability of a relationship
a specific node. P=0 if any relationships for that node do not hold,
otherwise P=1 */

holding between variables for

find_relationship_certainty(Blackboard.D ependents_list,[],1.0).

find _relationship_certainty (B lackboard,Dependents_list,[(Left,Right,Comp
)l0ccurrence _list],P)
once(substitute_values(Blackboard,Left,Dependents_list, Instantiated _left
)8

once(substitute_values(Blackboard, Right,Dependents_list,Instantiated _rig
ht)),

test_relationship(Comp, Instantiated _left, Instantiated _right), !,
find_relationship_certainty (Blackboard, D ependents_list,0 ccurrence_list,P
).

find_relationship_certainty (Blackboard, D ependents_list,0 ccurrence_list, 0

0.

The sum is of the
relationship holds

/* summing the total weight of a piece of evidence
product of P(e[F)*P(F) over all F. P(e|F)=1 if the
for F, otherwise P(e[F)=0 */

sum _relation_certainties (Blackboard,Root,Dependents_list, [],Tec, Tec) .

sum _relation_certainties (Blackboard ,Root,Dependents_list, [[Frame] [Occurr
ence_list], Tec,T _so_far):-

bagof ((Left,Right,Comp), R™relation_evidence (Frame, Root,R,Left»Right,Corrp
.Dependents_list),Frame_occurrence_list),

find _relationship_certainty(Blackboard,Dependents_list,Frame_occurrence_
list,.Ce),

apriori(disorder,Root,Frame, A),

C is A*Ce,

New_T_so_far is T_so_far + C,!,

sum _relation_certainties (Blackboard,Root,Dependents_list,0 ccurrence_list
.Tec,New_T_so_far)

/* impact the effect of a relationship as evidence on a tree */

impact_relation_evidence(Blackboard,Root,Dependents_list,Occurrence_list
)

sum _frame_certainties (Root,0 ccurrence_list,T fc, 0) .

sum _relation_certainties (Blackboard , Root,Dependents_list,0 ccurrence_list
Tec,0), [* certainty */

assert_relation_evidence (Blackboard,Root, D ependents_list,0 ccurrence_list
LTfc,Tec) .

total evidence

/* assert hypotheses based on relationship evidence */

assert_relation_evidence(Blackboard ,Root,Dependents_list,[],Tfc, Tec) .

assert_relation_evidence(Blackboard,Root,Dependents_list, [[Frame][Occurr
ence_list],Tfc,0 .0)entry_display(Frame,"relation”,0.0 Entry_display),
window (blackboard2,text(Entry _display)),

assert (blackboard(Blackboard, relation_hypothesis,Root, Frame,Dependents_I
ist,0.0)).1,

assert_relation_evidence (Blackboard,Root,Dependents_list,0 ccurrence_list
.Tfc.,0.0) .

assert_relation_evidence (Blackboard,Root,Dependents_list, [[Frame] 10 ccurr
ence_list], Tfc,Tec)

bagof ((Left,Right,.Comp) .R'*relation_evidence (Frame,Root,R ,Left,Right,Conp
.Dependents_list),Frame_occurrence_list),

find_relationship_certainty (Blackboard, Dependents_list,Frame_occurrence_
list,Pe_given_F),

Likelihood is (Pe_given_F*Tfc)/Tec,
entry_display(Frame,"relation"»Likelihood,Entry_display),

window (blackboard2,text(Entry _display)).

assert (blackboard (Blackboard,relation_hypothesis,Root, Frame,Dependents_I
ist.Likelihood)),!,

assert_relation_evidence (Blackboard, Root, D ependents_list,0 ccurrence_list
.Tfc,Tec).

/* ROUTINES USED BY SUM HYPOTHESIS Ks */
I* propagates effects of evidence on single nodes throughout a tree */
/* get the
neither confirmaed or disconfirmed L > 1 ->
L <1 -> hypothesis disconfirmed */

current degree of belief in a hypothesis: L = 1 -> hypothesis

hypothesis confirmed

get_current_hypothesis(Blackboard,Root,Frame,L):-
retract(blackboard(Blackboard,hypothesis,Root,Frame,L)).

get_current_hypothesis(Blackboard,Root,Frame,L):-
apriori(disorder,Root,Frame,L).

/* update the belief in a hypothesis given new impacted evidence */

update_hypotheses(Blackboard,Root,[]»Likelihood).

update_hypotheses(Blackboard,Root, [Frame|Singleton_list]»Likelihood) :-
get_current_hypothesis(Blackboard,Root,Frame,L),

NL is Likelihood*L,
assert(blackboard(Blackboard,hypothesis,Root,Frame,NL)),
update_hypotheses(Blackboard,Root,Singleton_list,Likelihood).

/* propagate effect of evidence to all singleton descendents */

combine_evidence(Blackboard,Root,[]).

corrbine_evidence (Blackboard, Root, [(Frame,L) [Fram e_list]) :-
singleton_descendents (disorder,Root,Frame,Singleton_list),
update_hypotheses (Blackboard,Root,Singleton_list,L) ,
corrbine_evidence (Blackboard,Root,Frame_list)

/* ROUTINES USED BY RANK HYPOTHESIS KS */

/* find normalization factor for leaf nodes of tree */

normalize_likelihoods([],0.0 ,N F):-t fail.

normalize_likelihoods([].NF,NF).

normalize_likelihoods([(_.L)[Hypothesis_list],NF_so_far,NF):-
New_NF_so_far is NF_so_far + L,
normalize_likelihoods(H ypothesis_list,New _NF_so_far,NF).

/* find the rank order of a diagnosis of strength L */
get_rank(Blackboard,Root,P,C ,Rank)

clause (blackboard/s,blackboard (Blackboard, sub_diagnosis, Root,Disorder, L)
.C), P=<L,

NC is C+l,

get_rank(Blackboard,Root,P ,NC ,Rank).

get_rank (Blackboard,Root,P,C,Bank) :-
Rank is C-I.

/* assert leaf node diagnoses */

set_diagnosis(Blackboard ,Root,NF, []).

set_diagnosis(Blackboard, Root,NF,[(Disorder,L) [Hypothesis_list]):-
P is LINF,

get_rank(Blackboard,Root,P,1,Rank),
assert((blackboard(Blackboard,sub_diagnosis,Root,Disorder,P)) ,Rank),

entry _display(Disorder,P,"" Entry _display),
window (blackboard! text(Entry_display)),
set_diagnosis (Blackboard,Root,NF Hypothesis_list) .

/* A diagnosis is confirmed if its probaility is >= initial value */
confirmed_diagnosis(Blackboard,Root,Disorder):-
blackboard(Blackboard,sub_diagnosis.Root,Disorder,L),
once(apriori(disorder,Root,Disorder, A)),

L>=A.

/* Compound diagnosis is confirmed if all is singletons are confirmed */

confirmed_compound_diagnosis(Blackboard,Root,[])
confirmed_compound_diagnosis(Blackboard,Root, [Node|Singleton_list])

confirmed_diagnosis(Blackboard,Root,Node),
confirmed_compound_diagnosis(Blackboard,Root,Singleton_list).

/* Compounding the diagnosis: breadth first search of tree looking for
nodes whose singleton descendents are all confirmed as diagnoses
Because the search starts from the root, it is ensured that the maximum

compounding occurs. Once a compound diagnosis has been found, there is

no need to search further down that branch */

conpound_diagnosis(Blackboard,Root,[],[]).

I* swap lists */
compound_diagnosis(Blackboard,Root,[],Next_search_list):-
compound_diagnosis(B lackboard,Root,Next_search_list,[]).

294

/* compound diagnosis found */

conpound_diagnosis (Blackboard,Root, (Node [Search_list] ,New _search_list)
singleton_descendents (disorder,Root,Node,Singleton_list),
confirmed_cortpound_diagnosis (Blackboard,Root,Singleton_list),

sum _conpound_evidence(Root,Singleton_list,0,P),
get_rank(Blackboard,Root,P, 1 ,Rank),
assert ((blackboard(Blackboard,sub_diagnosis,Root,Node,P)) ,Rank), !,

corrpound_diagnosis (B lackboard,Root,Search_list,New _search_list)
/* add descendents to next list */
compound_diagnosis(Blackboard,Root, [Node|Search_list],Next_search_list)

- disorder(Root,Node,Descendents),
append (Descendents, Next_search_list,New _
corrpound_diagnosis (B lackboard,Root,Search_list,New _

next_search_list) , !,
next_search_list) .

/* no descendents */
compound_diagnosis (Blackboard,Root, [Node|Search_list] ,Next_search_list)
- cortpound_diagnosis (Blackboard,Root,Search_list,Next_search_list)

/* summing probabilities for a compound diagnosis */
sum _compound_evidence(Root, [].P ,P).

sum _corrpound_evidence (Root, [Diagnosis [L ist),P_so_far,P)
retract(blackboard(Blackboard,sub_diagnosis,Root,Diagnosis,L)),
New_P_so_far is P_so_far + L, !,

sum _corrpound_evidence (Root,L ist,New_P_so_far,P) .

/* ROUTINES USED BY TRANSFER DATA KS */

/* remove disorders from m anifestations and current data or raw _data
level */

retract_current_disorders(Blackboard):-
retract(blackboard(Blackboard,manifestations,_.,Disorder)),
retractall(current_data(history D isorder,"present")), fail

retract_current_disorders(Blackboard).

/* assert disorders as current data */

assert_current_disorder(D isorder,L):-
L>=0.95,
assert(current_data(history D isorder,"present”)) .

assert_current_disorder(D isorder,L).

/* transfer diagnoses from sub_diagnosis level to current data and

manifestations */

transfer_diagnosis_data(Blackboard,Condition_list)
retract_current_disorders(B lackboard),
transfer_data(Blackboard,Condition_list).

treinsfer_data(Blackboard, [])

transfer_data(Blackboard.[(Root,Disorder,L) [List])
assert_current_disorder(D isorder,L),

assert (blackboard(Blackboard,manifestations,Root,Disorder)),
transfer_data(Blackboard,List).

/* ROUTINES USED BY WRITE DISEASE DIAGNOSIS KS */

write_disease_diagnosis(Blackboard,[]).

write_disease_diagnosis(Blackboard,[(Root,Disease)|L ist])
entry _display(Root,D isease,”" Entry_display),

window (blackboardl,text(Entry _display)),
asserta(blackboard(Blackboard,diagnosis,Root,Disease)).
write_disease_diagnosis(Blackboard,List).

/* ROUTINES USED BY PREDICT DISORDER KS */

/* assert all disorders predicted by a list of diseases */
assert_disorder_hypotheses(Blackboard,[])
assert_disorder_hypotheses(Blackboard,[(Root,Disease)[Diagnosis_list])
bagof(Super_disease,descendent(disease,Root,Super_disease,Disease),D isea
se_list),

find _predicted _disorders(B lackboard,D isease,[D isease|D isease_list]),
assert_disorder_hypotheses(Blackboard,Diagnosis_list) .

/* assert all disorders predicted by a disease */

find _predicted_disorders(Blackboard,D isease,[])
find_predicted_disorders(B lackboard,D isease,[D |D isease_list])

frame_history (D, ,Disorder,"present",Probability),

once(entry_display (D isease,Disorder,”" Entry_display)).
once(window (blackboard2,text(Entry_display))),

once(asserta(blackboard(B lackboard,prediction,D isease,D isorder))), fail.
find_predicted_disorders(B lackboard,D isease,[D |D isease_list])
find_predicted_disorders(Blackboard,D isease,D isease_list).

/* ROUTINES USED BY CRITIQUE DIAGNOSIS KS */

/* find the type of critigue needed */

type_of_critique (Blackboard, [[»expected) :-!

type_of_critique (Blackboard, [Disorder M anifestation_list] »consistent)

blackboard(Blackboard,prediction,D isease,D isorder),!.

type_of_critique (Blackboard,[Disorder|M anifestation _
type_of_critique(Blackboard,M anifestation_list,Type)

list]. Type)

/* assert the critique */
assert_critique (B lackboard ,Root,[],Type).
assert_critique(Blackboard,Root,[(Disease,Disorder)|List],Type)
assert (blackboard(Blackboard,critigue,Root,D isease,D isorder,Type)),
entry _display (D isease,Disorder,Type,Entry_display),

window (blackboards,text(Entry_display)),
assert_critique(Blackboard,Root,L ist,Type).

/* Form the list of critiques */

form _critique_list(Root,M anifestation_list,[].[].Type).

form _critique_list(Root,M anifestation _list,[(D isease,D isorder)IPredictio
n_list],[(Disease,Disorder) |[List]»consistent)

member(Disorder,M anifestation_list),

form _critique_list(Root,M anifestation _list,Prediction _list,List,consiste
nt) .

form _critique_list (Root,M anifestation_list, [(Disease,Disorder) IPredictio
n_list], [(Disease,Disorder) [List] expected)
descendent(disorder,Root,Root,Disorder),

form _critique_list(Root,M anifestation _list,Prediction _list,L ist,expected
).

orm _critique _list (Root,M anifestation _list, [_|Prediction_list], L ist, Type

form _critique_list (Root,M anifestation_list,Prediction _list,L ist,Type) .

295

/* das.ipt data input/output facitilies */
/* Predicates defined in this file:

entry _box/5
define_input_window/3
change_stream /2

string _input/l
get_rest_of_string/3
in_string/l

enter_string/4
convert_value/2
check_string/1

check _list/l

in_nurriber/l

enter_data/4
get_slot_type/2
enter_attribute/2
update_data/3
update_data/2
value_display/2
get_value/2

get_units/2
create_data_display/2
get_attribute/3
create_slot_display/3

draw _backdrop/0
remove_backdrop/0
set_master_menu/0
remove_master_menu/0
display _m aster/0
master_action/1
set_data_time/0
get_data_time/2
personal_data/0
define_personal_data_window /0
display _name/0
display_age/0

display _sex/0

display _occupation/0

draw _personal_data_window /0
toggle_sex/2
personal_data_command_loop/0
personal_command/3
refine_diagnosis_input/0
define_refining _backdrops/0
draw _refining_backdrop/0
reveal_display/0
remove_refining_windows/0
define_syrrptom_window/0
slot_display/2
display_slots/l

draw _syrrptom _window/0
define_variable_window /0
display_variables/0

draw _variable_window /0
refine_diagnosis_cormand_loop/0
refine_diagnosis_action/3
input_lab_data/0
define_lab_windows/0
remove_lab_windows/0

draw _lab_window /0
lab_data_corr»nand_loop/0
lab_data_action/3
select_patient/0
define_dbase_windows/0
remove_dbase_windows/0
draw _dbase_head/0
write_display/2
dbase_display/0

draw _dbase_window /0

draw _dbase_foot/1
dbase_command_loop/0
select_identity /1
add_patient/1
delete_patient/1
dbase_command/2
display_selected _patient/2
patient_selection/1
load_patient/0
set_current_diseases/0
create_archive_data/0
archive_patient/1
set_patient/0
set_personal_data/l
remove_personal_data/0
remove_curxrent_data/0
archive_database/0
view_diagno3is/1
define_diagno3is_windows/0
close_diagnosis_windows/0
write_diagnoses/|

display _diagnoses/l

draw _diagnosis_backdrop/l
view _diagnosis_command_loop/l
view _diagnosis_action/3
patientjdiseases/0
display _current_diseases/0
define_disease_foot/0
draw _disease_foot/l
define_disease_window /0
remove_disease_window /0
display _diseases/0

draw _disease_window /0
disease_command_loop/0
add_diseasej2
check_diseases/2
disease_display_corrmand/2
disease_selection/2
define_selection_window /0
define_selection_command_window/0
close_selection_windows/0
draw _selection_header/0
draw _selection_window /1
form _selection_list/2
display _selection _list/l
selection_command_loop/2

selection_action/3

/*

1* DATA INPUT ROUTINE

/* enter string in a box */

entry _box (Y .X .L,Instructions,Entry)

fedit(Y X ,L.Instructions,” " ,nn,red on cyan,Input),

truncate_string (Input,Entry).

/* routines to enter string */

define_input_window (Y,X,L) :-

create_stream (input,readwrite byte, window (1,L bright

open(inputreadw rite),

red

screen(input,create(Y,X .input,0,0,0,none,None,1,L,hidden)),

window (input,cursor_home),
screen(inputunhide).

change_stream (01d_stream ,New
see(New _stream).

change_stream (01d_stream ,New _stream)
see(01d_stream).

/* routine to input string from current stream

string _input(String)
geto (C),
get_rest_of_string(C.,"",String).

get_rest_of_string(13,String.String).

get_rest_of_string (C,S.String)
in_string (C),

Sl is_string S & (C],

geto(cl),
get_rest_of_string(C1,S1,String).

get_rest_of_string (C.S.String)
geto(cl),
get_rest_of_string (C1,S,String).

in_string(C):-C>31,C<123

/* enter string of a specified length */

enter_string (Y ,X ,L ,Entry)
define_input_window (Y ,X L),

seeing (Stream) ,

change_stream (Stream ,input),
once(string_input(input)),
once(truncate_string (Input,Entry)),
see (Stream),!,

close(input),

delete_stream (input).

enter_string (Y ,X L,

/* convert nunber to real */

convert_value(Value,Value)
real(Value).

convert_value(Value,V):-
V is float(Value)

/* check that a string contains only digits

check_string (""):-1 fail.
check_string(String)
list(L ist,String),

check _list(List).

check _list((])

check _list((C|List])
in_nurz>er (C),
check _list(List).

in_number(C):-C>47,C<58. I* digit
in_number(45) I* -ve */
in_nurrber (46) . = dp */

I* enter 7 digit nurrber */

enter_data(Y ,X,L,Value)
enter_string (Y .X ,L Entry),
check_string (Entry),

V is value(Entry,ir),
convert_value(V.,Value).

enter_data(Y X .,L.none).

/* enter a fraite attribute */

get_slot_type (Facet, symptom) :-
symptom (Facet, _) .

get_slot_type(Facet,history)
history (Facet,_) .

enter_attribute(Slot,Facet)
get_attribute(Slot,Facet,A ttribute),
Slot_archives=.
call(Slot_archive),

296

*/

1%

[Slot,Facet, A ttribute_list],

_stream)/*

reverts

change

*/

and dp

current

*/

on cyan)),

stream

on backtracking

*/

*/

next_element (A ttribute,New _attribute, A ttribute _list), get_attribute(Slot,Facet, "unknown").
update_data (Slot,Facet,New _attribute)
create_slot_display (Facet,Attribute,D isplay)
fill_out(Facet,Facet_display,23),
/* check input values and update database */ fill_out(A ttribute, A ttribute_display,15),
Display is_string Facet_display & Attribute_display & “\n\r
/* signs&syrrptoms or history */

update_data(Slot,Facet, "unknown"):-
retractall(current_data(Slot,Facet,_))

I gl
update_data(Slot,Facet,A ttribute):- I* BACKDROP ROUTINE 1
retractall(current_data(Slot,Facet,_)),
assert(current_data(Slot,Facet,A ttribute)) . draw _backdrcp:-
create_stream (backdrop,readw rite,byte, window (25,80, red on black)),
open (backdrop,readw rite),

/* variables */ screen (backdrop,create (0,0 ,backdrop,0,0,0,none,None, 25,80, revealed)),
create_stream (header, readw rite,byte, window (1,80,bright white on red)),

update_data(V ariable,none) open(header,readwrite),

retractall (current_data (variable.V ariable,)) . screen(header,create(0,0,header,0,0,0,none,None,1,80,hidden)),
window (header,cursor_address(0,0)),

update_data (Variable, Value) :- window (header,text(" ICU Data Analysis System V1.2 ")),

data_parameter (Variable, lower_lirait,none), screen(header,unhide).

W arning is_string “Lower lim it undefined",
warning_box(8.,30,W arning).
remove_backdrop:-

update_data(Variable,Value) close (header) ,
data_parameter (Variable, lower_limit,Lower_limit), delete_stream (header),
Value<Lower_lim it, /* check lower lim it */ close (backdrop),

W arning is_string “"Lower lim it " & string(Lower_limit,ops), delete_stream (backdrop).

warning_box(8,30,W arning).

data_parameter (Variable,upper_limit,none),
W arning is_string “Upper lim it undefined",
warning_box(8,30,W arning).

update_data(V ariable, Value) /*
I *

DEEFINE THE MASTER MENU

set_master_menu:-

update_data(V ariable, Value) create_stream (master,readw rite,byte,w indow (10,16 ,white on black)),
data_parameter (Variable,upper_limit,Upper_lim it), open(master,readw rite),

Value>Upper_lirait, /* check upper limit =/ screen(master,create(3,1,master,0,0,0,all,black on red,10,16,hidden)),
Warning is_string "Upper lim it " & string(Upper_limitops), retractall(menu_selection(m aster,_)),

warning_box(8.,30,W arning). assert(menu_selection(m aster,0)).

update_data(Variable,Value) remove_master_menu:-

retractall(current_data(variable,Variable,)), close (master),

asserta (current_data (variable.Variable, Value)) . delete_stream (m aster).

update_data (Variable, Value) .
display_m aster
set_master_menu,

/* repeat,
* once(menu_selection(m aster,Selection)),
I*o —-DATA DISPLAY ROUTINES- */ once(menu(master,"BGAS MASTER",
["Dialogue”-"® “-true-0-help, "Blackboard"-"@ "-true-1-help, “New
/* displaying values */ Patient"-"@ "-true-2-help, "Personal Data"-"@ “-true-3-help, "Lab Data"-
"Q“-true-4-help, "View Diagnosis"-"Q"“-true-5-help, “"Make Diagnosis"-"@
value _display (Value, " ") - true-6-help, “Set Diseases"-"Q “-true-7-help, “-true-8-help,
Value=unknown. "Quit'-"0"-true-9-help]»O ption,Selection)), once(screen(master,unhide)),
once(retract(menu_selection(m aster,Selection))),
value_display(Value,Display):- once(assert(menu_selection(master,0 ption))),
Value=< -10.0, once(master_action (O ption)),
Value> -100.0, Option=9, /* fails until Exit selected */
Display is_string string(Value,0ps). remove_master_menu.

value_display(Value,Display):-

Value< 0.0, master_action(0):-
Value> -10.0, dialogue
Display is_string * " & string(V alue,0ps).

master_action(1):-
value_display(Value,Display) display_blackboard.
Value>=0.0,
Value<10.0, master_action(2):-
Display is_string " " & string(V alue,ops). clear_blackboard(disorder) ,

clear_blackboard _display,
value_display(Value,Display):- select_patient.
Value>=10.0,
Value<100.0, master_action(3):-
Display is_string " " &string(Value,ops). personal_data.
value_display(Value,Display):- master_action (4):-
Value>=100.0, input_lab_data .
Value<1000.0,
Display is_string string(Value,0ps). master_action(5):-

view _diagnosis(disorder)
value_display(Value,") master_action (6)

make_diagnosis(disorder) ,
view _diagnosis(disorder).
/* displaying variables */
master_action(7):-
get_value(Variable,Value) :- patient_diseases.
current_data(variable,V ariable, Value) .
master_action(9):-
get_value(Variable,unknown). current_data (demogrAjhic, "identity". 1d),
Display is_string “Archiving " & Id,
decision_box(3,55,Display,Result),
get_units(V ariable,Units):- archive_patient(Result).
data_parameter (V ariable,units,U nits)
master_action(Selection). /* catches failures */

*

get_units(V ariable,"")

create_data_display(V ariable,D ata_display):- -TIME OF DATA ENTRY -

get_value(Variable,Value),

get_units(Variable,Units), /* The time is set when variable data is input */
valuejdisplay (Value,Value_display) .

fill_out(V ariable,Variable_display,23), /* set the time of data input */

fill_out(U nits,Units_display.7),

Data_display is_string Variable_display & Value_display & & setjdata_time:-

Units_display & "\n\r * retractall(current_data_time/2),
date(D,M.Y),

Date=D-M-Y,

/* displaying slots */ time (Hour,Min,Sec),
Time=Hour-Min,
get_attribute(Slot,Facet,A ttribute):- assert(current_data_time(Date, Time))

current_data(Slot,Facet,A ttribute).

297

/* get the time of data input */

get_data_time (Date, Time)
current_data_time (Date, Time) .

get_data_tirre (Date, Time) :-
date (D, M,Y),

Date=D-M-Y,

time (Hour,Min, Sec),
Time=Hour-Min.

I* INPUT OF PERSONAL DATA

/* routines to display personal data */

personal_data:-
define_personal_data_window,
draw jpersonal_data_window,
personal_data_command_loop,
close (personal),
delete_stream (personal).

personal_data:-
close (personal),
delete_stream (personal).

define_personal_data_window :-
create_stream (personal,readw rite,byte,window (6,39,red on cyan)),
open(personal,readw rite) ,
screen(personal,create(3.,22,personal,0,0,0,all,red on
cyan.,6.,39 . hidden)).

display _nam 2
current_data(dem ographic,"identity”,id),
personal_data (Id,name,Name),
fill_out(Name,Display,20),

window (personal,attribute(bright red on cyan)),
window (personal,cursor_address(2,7)),

window (personal,text(D isplay))

display _age:-
current_data (variable, "age”, Age_no) ,

Age is_string string(Age_no.,ops),

fill_out(A ge,Display.3),

window (personal.attribute(bright red on cyan)),
window (personal,cursor_address(2,31)) ,

window (personal,text(D isplay)).

display _sex:-
current_data(history.,"sex",Sex),
fill_out(Sex,Display,6),

window (personal,attribute(bright red on cyan)),
window (personal,cursor_address(4,31)),

window (personal,text(D isplay)).

display_occupation:-
currentjdata(history,"occupation”,0 ccupation),
fill_out(O ccupation,D isplay,15),

window (personal,attribute(bright red on cyan)),
window (personal,cursor_address(4.,12)) .

window (personal,text(D isplay)).

draw _personal_data_window :-
current_data (dem ographic,"identity", 1d),
window (personal,attribute(red on cyan)),
window (personal,cursor_address(0,1)),
window (personal,text(*Personal Data
fill_out(ld.1d_display,6),

window (personal,text(ld_display)).
window (personal,cursor_address(2.,1)),

Patient Id ")),

window (personal,text("Name Age")).
window (personal,cursor_address(4.,1)),
window (personal,text(*Occupation sex")).

display_name,
display_age,
display_occupation,
display _sex,
screen(personal,unhide).

/* routines to edit personal data */

toggle_sex("male”,"female") .
toggle_sex("female","male").

personal_data_command_loop:-

retractall(cursor_location(personal,_,_)) .
assert(cursor_location(personal,3,22)),
repeat,

once(cursor_location(personal,SY ,$X)),

once (locator(SY ,SX,Y ,X,3,22,8,61)),
once(retract(cursor_location(personal, _,_))).
once(assert(cursor_location(personal,Y ,X))),
once(personal_command(Y X Result)),
Result=exit.

personal_command(Y X ,name):-
Y=5,

X>22,

X <48,

enter_string(5.29,20,Name),
current_data(dem ographic,"identity”,1d),
retractall(personal_data(ld.,name,_)),
assert(personal_data(ld,name.,Name)),
display _name.

personal_command(Y X age):-
Y=5,

X>47,

X <55,
enter_data(5,53,3,Entry),
update_data("age" ,Entry),

display _age.

personal_conmand(Y ,X,occupation)
v=7,

X>22,

X <48,

enter_attribute(history ,"occupation®),
display_occupation.

personal_command(Y .X sex)
Y=7,

X>47,

X<58,

retract(current_data(history "sex",Sex)),
toggle_sex(Sex ,New_sex),
assert(current_data(history "sex" ,New _sex)).
display _sex.

personal_corrmand(Y X exit) .

*
I * -

-INPUT FOR REFINING DIAGNOSIS-

/* main loop for input of information */

refine_diagnosis_input:-
define_refining_backdrops,
draw_refin ing_backdrop,
draw_symptom_window,
draw_variable_window,
reveal_display,
refine_diagnosis_command_loop,

remove_refining_windows.

/* backdrops */

define_refining_backdrops:-
create_stream (refine_backdrop.readw rite,byte,window (24,80, black on
black)),

open(refine_backdrop,readw rite),
screen(refine_backdrop,create(1,0,refine_backdrop,0,0,0,none,None,24,80,
hidden)),

create_stream (syrrptom _backdrop,readw rite,byte, window (21,39 ,black on
red)), open(synptom _backdrop,readwrite),

screen(synptom _backdrop,create(2.,0,symptom _backdrop,0,0,0,none,None, 21,3
9.hidden)),

create_stream (variable_backdrop,readw rite,byte, window(21,39,black on
red)),

open (variable_backdrop,readw rite),

screen (variable_backdrop,create (2,41, variable_backdrop,0,0,0, none,None,2
1.39.hidden)).

draw _refining_backdrop:-
window (refine_backdrop,attribute(black on red)),
window (refine_backdrop.cursor_address(23,0)),
window (refine_backdrop,text("

DIAGNOSIS "))

REFINE

/* window handling */

revealjdisplay
screen(refine_backdrop,unhide),
screen(synptom _backdrop,unhide),
screen(symptom ,unhide),
screen(variable_backdrop,unhide),
screen(variable,unhide).

remove_refining_windows:-
close(refine_backdrop),
close(symptom _backdrop),
close(variable_backdrop),
close(symptom),

close(variable),

delete_stream (refine_backdrop),
delete_stream (symptom _backdrop) ,
delete_stream (variable_backdrop),
delete_stream (symptom),
delete_stream (variable).

/* display signs.,symoptoms,history */
/* define window */

define_synptom _window :-
create_stream (synptom ,readw rite,byte, window (80, 40, red on cyan)),
open(symoptom .readw rite),

screen(synptom ,create(3,0,symptom.,0.,0,0,none,None,19,39,hidden))

/* display a slot in the window */
slot_display(history,"disorder").
slot_display(Slot,Facet)
get_attribute(Slot,Facet,Attribute),
create_slot_display(Facet,A ttribute,D isplay),
window (symptom ,text(Display)).

/* display all slots */

display _slots(Slot)
once(Archive=..[Slot,Facet,List]),
call(Archive),
once(slot_display(Slot,Facet)),

fail

display_slots (Slot) .

/* draw the signs/symptom /history window */

298

draw _syrrptom _window:-
define_synptom_window,

window (synptom _backdrop,cursor_address (0.0)),
window (synptom _backdrop.text(" SIGNS SYMPTOMS
window (syrrptom _backdrop, cursor_address (20,0)) .

HISTORY "))
window (synptom _backdrcp,text ("\24

\25")), window (syrtptom,cursor_address (0,1)),

display_slots (synptom),

display _slots(history).

/* display data variables */

/* define window */
define_variable_window :-
create_stream (variable, readw rite,byte,window (80,40, red
open (variable, readw rite) ,

screen(variable,create(3,41,variable,0,0.,0,none,None,19,39,hidden))

on cyan)),

/* display all variables */

display _variables :-

variable (Variable) ,

once (create_data_display (Variable, Display)),
once(window (variable text(Display))),

fail

display _variables.

draw _variable_window :-
define_variable_window,

window (variable_backdrop,cursor_address(0,0)),
window (variable_backdrop,text(" DATA VARIABLES")),
window (variable_backdrop,cursor_address(20,0)),
window (variable_backdrcp, text ("\24

\25")), window (variable,cursor_address(0,1)),
display _variables.

/* command loop for input of data */
refine_diagnosis_command_loop:-
retractall(cursor_location(refine,_,_)),
assert(cursor_location(refine,24,4)),
repeat,

once (cursor_location(refine,SY ,SX)),

once (locator (SY,SX,Y,X,3,0.,24,79)) ,

once (retractall (cursor_location (refine,_,_))).
once (assert (cursor_location (refine, Y ,X))) .
once (refine_diagnosis_action (Y.X,A ction)),

Action=exit.

refine_diagnosis_action(22,0,c o n tin u e) /* window scrolls */
scroll_window _up(synptom).

refine_diagnosis_action(22,38.continue):-

scroll_window _down(symptom).

refine_diagnosis_action (22,41 continue)

scroll_window _up(variable).

refine_diagnosis_action(22,79,continue):-

scroll_window _down(variable).

refine_diagnosis_action(Y X ,continue) /* enter synptom */
X <39,

v<22,

screen (synptom,info (_._,syrrptom,0Y, _._._._)). I*get scroll info*/
WY is Y+OY-3,

get_facet_entry(synptom , W Y Facet), /* find facet */
Facet \=

get_slot_type(Facet,Slot),

enter_attribute(Slot,Facet), /* enter attribute */
window (synptom ,cursor_address(W Y .1)) , /* position cursor */
slot_display(Slot,Facet). /* update display */
refine_diagnosis_action(Y,X ,continue):- /* enter variable */

X>40,

Y<22,

screen (variable,info (_,_,variable,OY ,_,_,_)). I* scroll info */
WY is Y+0Y-3,

get_facet_entry(variable,W Y,V ariable), /* find facet */
Variable \=

enter_data(Y 65,7, Entry),

update_data(Variable Entry) .

créate_data_display(V ariable,Data_display)

window (variable,cursor_address(W Y 1)), /* position cursor */
window (variable,text(D ata_display)). /* update display */
refine_diagnosis_action(Y X ,exit):-

Y=24.

refine_diagnosis_action (Y,X,continue) /* catch failures */

/*
I * - --INPUT OF LABORATORY DATA-

/* main of data */

loop for

input

input_lab_data:-
define_lab_windows,
draw _lab_window,
set_data_time,
lab_data_command_locp,
remove_lab windows.

/* define the windows */

define_lab_windows:-
create_stream (variable_backdrop,readw rite,byte, window (22, 40,black
red)),

open (variable_backdrop,readw rite),

on

screen (variable_backdrop,create (2,20, variable_backdrop,0,0,0, Ir,black on
red.,22,40,hidden)),

create_stream (variable, readw rite,byte, window (80, 40,red on cyan)),

open (variable,readw rite),

screen (variable,create (3,20,variable,0,0,0,none,None,20,40,hidden)) .
remove_lab_windows: -

close(variable),

delete_stream (variable),

close (variable_backdrop) .

delete_stream (variable_backdrop).

/* display lab data variables */

draw _lab_window :-

window (variable_backdrop,cursor_address (0,0)),

window (variable backdrop,text (" LABORATORY DATA VALUE UNITS"),
window (variable_backdrop,cursor_address(21,0)),

window (variable_backdrop,text ("\24 EXIT

\25%)),

window (variable, cursor_address (0,1)),

display _variables,

screen(variable_backdrop,unhide) ,

screen(variable,unhide).

/* comnand loop for data input */

lab_data_comrnand_loop :-

retractall(cursor_location(lab_data,_,_)),
assert(cursor_location(labdata,1,1)),

repeat,

once(cursor_location(lab_data,SY ,SX)),

once (locator (SY,SX,Y.X,3,20,23,59)),
once(retractall(cursor_location(lab_data,_,_))).
once(assert(cursor_location(lab_data.Y,X))),
once(lab_data_action(Y X ,Action)),

Action=exit.

lab_data_action (23,X ,exit):-

X>37,

X<42.

lab_data_action(23,20,continue):-

scroll_window _up (variable)

lab_data_action (23,59, continue):-

scroll_window _down(variable).
lab_data_action (Y ,X,continue)I/*enter variable */
v<23,

screen (variable,info variable,oOY).I*get scroll info*/
WY is Y+0Y-3,

once(get_facet_entry(variable,W Y, Variable)), /* find variable */
Variable \=

enter_data(Y ,44,7 Entry),

updatejdata(V ariable Entry),

create_data_display(V ariable,D ata_display),

window (variable,cursor_address(W Y ,1)), /* position cursor */
window (variable,text(D ata_display)). /* update display */

lab_data_action (Y X .continue).

/*

I

ATIENT DATABASE HANDLING

select_patient:-
define_dbase_windows,
draw _dbase_head,

draw _dbase_window,
dbase_command_loop,
remow dbase windows.
define_dbase_windows:-

create_stream (dbase,readw rite,byte,window (80,29.red on cyan)),
open(dbase.readw rite),
screen(dbase.,create(5,22,dbase,0,0,0,Irb,red

on cysm,19,29 ,hidden)),

create_stream (dbase_head, readw rite,byte, window (2,29, red on cyan)),
open (dbase_head, readw rite),

screen (dbase_head,create (3,22 ,dbase_head,0,0,0,Irt,red on
cyan.,2,29,hidden)),

create_stream (dbase_foot,readw rite,byte,window (1,29, white on red)).

open(dbase_foot,readw rite),
screen(dbase_foot,create(1,22,dbase_foot,0,0,0,none,None,1,29,hidden))

remove_dbase_windows:-
close(dbase_head),
delete_stream (dbasehead),
close(dbase),
delete_stream (dbase),
close(dbase_foot),
delete_stream (dbase_foot).

draw _dbase_head:-
window (dbase_head,cursor_address(0,1)),
window (dbasehead text("Patient
window (dbasehead text("\r\n

Name 1d no.

"))

1196119611961196119611961196119611961196119611961196\1196\196\196\1196\196

\196\196119611961196\1196\1961196\1196"))

write_display(Name, Id):-
fill_out(Name,Name_display,21),
window (dbase,text(Name_display)),
fill_out (1d,1d_display,6),

window (dbase,text(ld_display)),
window (dbase,text("\n\r ")).

299

dbase_display:-
once(window (dbase.clear)),

once(window (dbase,cursor_address(0,1))),
personal_data (Id,name,Name) ,

once (write_display (Name, 1d)),

fail

dbase_display.

draw _dbase_window :-

number_of_clauses (personal_data/3,personal_data (_,name,).,N),
((N<19,Drop is N+1); (Drop is 19)),

retractall(window _drop(dbase,)),

assert(window _drop(dbase,Drop)),
screen(dbase.change(5,22,dbase,0,0,0,Irb,red on cyan,Drop,29,hidden)),
dba3e_display,

scroll_to_foot(dbase),

screen(dbase head,unhide),

screen(dbase,unhide).

/* routines for dbase commands */

draw _dbase_foot(Drop):-
Y is Drop+4,

screen(dbase_foot,change(Y ,22,dbase_foot,0,0.,0,none,None,1,29,hidden)),
window (dbase_foot,cursor address(0,0)),

window (dbase_foot,text("\24 Add Delete Select Exit \25")),
screen(dbase_foot,unhide).

dbase_command loop:-

retractall(cursor_location(dbase foot, ,)),
assert(cursor_location(dbase foot,0,22)),
repeat,

once(window _drop(dbase,Drop)).
once (CY is Drop+4),
once (draw _dbase_foot(Drop)),

once(cursor_location(dbase_foot,_, SX)),
once(locator(CY ,SX,Y ,X,CY,22,CY,50)),
once(retract(cursor_location(dbase_foot,_,_))),

once(assert(cursor_location(dbase foot,0,X))).
once (dbase_command (X,R esult)),
Result=exit.

select_identity (1d)

repeat(X),

ldx is_string "PT" & string(X ,0ps),
not personal data(ldx, .,),
ld=1dx.

add_patient (Name)
select_identity (1d),
assert(personal_data(ld,name.,Name)),
assert(personal_data(ld,age,25)),
assert(personal_data(ld,sex,"female")),
assert(personal_data(ld,occupation.,"unknown”))

d e | e t e _ p at i e n t (1 d) /*delete current patient */

retract(current_data(dem ographic,"identity”,1d)),
display _selected _patient(""

retractall(personal_data(ld,_

delete__patient (Id)
retractall(personal_data(ld,_,_)).

dbase command(X ,scroll up)
x=22,
scroll_window _up(dbase).

dbase command(X,scroll down)
X=50,
scroll_window _down(dbase).

dbase command(X,add):-
X>23,

x<27,

entry _box(3,56,20,"Enter new patient” Patient),
add_patient(Patient),

draw _dbase_window .

dbase command(X delete)
X>28,

X<35,
entry_box(3,58,6,"1d",1dentity),
delete_patient(ldentity),

draw _dbase_window.

dbase command(X select)
X>36,

X<43,

get_window _entry(dbase,Entry),
patient_selection (Entry).

dbase_command(X,exit)
X>44,

X <49,

set_patient.

dbase_command (X,continue) .

/* routines to set the current patient */

display_selected_patient(Name,ld)
window (header,cursor_address(0,41)),
window (header text("Patient : ")),
fill_out(Name,Name display,22),
window (header,text(Name display)),
fill_out(ld,1d_display 6),

window (header,text(ld_display)).

patient_selection(Entry):-
Id_display is_string substring(Entry,21,6), /* get patient identity */
truncate_string(1d_display.id),

personal_data(ld.name,Name),

retractall(new _patient/l),

assert(new _patient(ld)),

display _selected_patient (Name, Id)

/* load a patient data file */

load_patient:- I* archive file exists */
retractall(current_data/3),

new _patient(ld),

Filename is_string string(ld) & ".ARC",

exists_file(Filename),

reconsult(Filename),

set_current_diseases,

set_personal_data(ld).

I o a d _ p a t i e n t [*no archive file */
retractall(current_data/3),

new _patient(ld),

set_personal_data(ld).

set_current_diseases
archive_data_time(D ate,Time),

archive_data(D ate,Time, disease. Root,D isease),
assert(current data(disease ,Root,Disease)),
fail

set_current_diseases
remove_disease_window,
display_current_diseases.

/* archive patient data to file */

create_archive_data:-
once(remove_personal_data),

once(get_data_time (Date,Time)),

retract(current_data(D ata_type,Facet,A ttribute)),
asserta(archive_data(D ate,Time,Data_type Facet,Attribute)), fail.

create_archive data:-
get_data_time(Date Time),
retractall(archive_data_tim e/2),
assert(archive_data_time(Date,Time)).

create_archive data.

a r c¢c h i v e _ p a t i e n t (o k) /* save current data */
current_data(dem ographic,"identity”,1d),

create archive data,

(delete_file("CURRENT.ARC")itrue),

create ("CURRENT.ARC"),

create_stream (archive,readwrite,ascii,file("CURRENT.ARC")),
open(archive,readw rite),

state(output,_,archive),

write_clauses(archive_data/5),

write_clauses(archive_data_time/2),

close(archive),

delete_3tream (archive),

Filename is_string Id & ".ARC", /* if archive successful ... */
(delete_file(Filenam e)itrue), /* .overwrite old data */
rename_file("CURRENT.ARC" Filename).

archive_patient(Result). /* dont save new data */

/* set the current patient */

set_patient:- /* new patient same as old one */
current_data(dem ographic,"identity”,1d),
new _patient(ld).

set_patient:- /* old patient must be removed */
current_data(dem ographic,"identity”, 1d),

remove_personal_data,

Display is_string “Archiving " & Id,

decision_box(3,55,D isplay,Result),

archive_patient(Result),

remove_current data,

load_patient.

s e t _ p a t i e n t /* no patient previously */
load_patient.

set_patient /* catch failures */

/* set current data from personal info */

set_personal_data(ld)
personal_data(ld, name,Name),
personal_data(ld.age,Age),

personal_data(ld,sex.Sex),

personal_data (Id,occupation,Occupation) ,
assert(current_data(dem ographic,"identity”,1d)),
assert(current_data(variable,"age",Age)),
assert(current_data(history,"sex",Sex)),
assert(current_data(history,"occupation”»O ccupation)).

/* remove personal info from current data */

remove_personal_data:-
retract(current_data(dem ographic,"identity”,1d)),
retract(current_data(variable,"age”, Age)),
retract(current_data(history,"sex",Sex)),
retract(current_data(history,"occupation”,0 ccupation)),
retract(personal_data(ld,age,_)),
retract(personal_data(ld,sex,_)).

300

retract(personal_data(ld,occupation,_)),
assert(personal_data(ld,age,Age)),
assert(personal_data(ld,sex,Sex)),
assert(personal_data(ld,occupéation,Occupéation))

remove_personal_data.

/* remove current data */

remove_current_data:-
retractall(current_data/3) ,
retractall(current_data_tim e/2).

/* archive the patient database */

archive_database :-

(delete_file ("PATIENTS.TMP")itrue),
create("PATIENTS.TMP"),
create_stream (archive,readw rite,ascii,file("PATIENTS.TM P")),
open(archive,readw rite),
state(output,_,archive),
write_clauses(personal_data/3),
close(archive),

delete_stream (archive),

(delete_file ("PATIENTS .DAT") itrue) , I*
rename_file ("PATIENTS.TMP""PATIENTS.DAT").

overwrite old data.. e *
/* ..if archive successful*/

I 4

I* - —-DISPLAY THE DIAGNOSIS RESULTS-

view _diagnosis(Panel)
define_diagnosis_windows,

draw _diagnosis_backdrop(Panel) ,
displayjdiagnoses(Panel),

view _diagnosis_command_loop(Panel),
close_diagnosis_windows.

define_diagnosis_windows:-

create_stream (diagnosis_backdrop,readw rite,byte,window (21,36,black on
red)),

open(diagnosis_backdrop,readw rite) ,
screen(diagnosis_backdrop,create(2,26,diagnosis_backdrop,0,0,0,Ir,black
on red,21,36,hidden)),

create_stream (view _diagnosis,readw rite,byte,window (80,36,red on cyan)),
diagnosis,readw rite),

screen(view _diagnosis,create(3,26,view _diagnosis,0,0,0,none,None,19,36,h
idden)).

open(view _

close_diagnosis_windows
close(diagnosis_backdrop),
close(view _diagnosis),
delete_stream (diagnosis_backdrop),
delete_stream (view _diagnosis) .

write_diagnoses([])
window (view _diagnosis,cursor_down)

write_diagnoses([(Diagnosis,Probability)|Diagnosis_list])
value_display(Probability,P _display),
fill_out(Diagnosis,D _display,22),

is_string “\r\n " & D _display & P_display,
window (view _diagnosis,text(Display)).,
write_diagnoses (D iagnosis_list) .

Display

display_diagnoses(Panel)

Root_archive=..[Panel,Root],

call(Root_archive),

once (bagof ((Disorder,Probability) .diagnosis_exists (Panel,Root,Disorder,p
robability),D iagnosis_list)),

once(write_diagnoses(Diagnosis_list)),

fail

display_diagnoses(Panel)
screen(diagnosis_backdrop,unhide),
screen(view _diagnosis,unhide).

draw _diagnosis_backdrop(Panel)
window (diagnosis_backdrop,cursor_address(0.1)),

window (diagnosis_backdrop,text("DISORDER BELIEF")),
window (diagnosis_backdrop,cursor_address(20,0)),
window (diagnosisjoackdrop.text(*\24 Refine Diagnosis Exit

\25))

view _diagnosis_command_loop (Panel) :-
retractall(cursor_location(view ,_,_)),
assert(cursor_location(view ,24,26)) ,
repeat,

once(cursor_location(view ,SY ,$X)),
once(locator(SY ,SX,Y,X,22,26,22,61)),
once(retractall(cursor_location(view ,_,_))),
once(assert(cursor_location(view ,24,X))),
once(view _diagnosis_action(X ,Panel,Action)),
Action=exit.

view _diagnosis_action(26,Panel,continue)

scroll_window _up(view _diagnosis).

view _diagnosis_action(61,Panel,continue)
scroll_window _down(view _diagnosis).

view _diagnosis_action(X ,Panel,continue)
X>29,

X <46,

refine_diagnosis_input,

make_diagnosis (disorder),

window (view _diagnosis,clear),

display _diagnoses(Panel).

view _diagnosis_action(X .Panel.exit)
X>53,
X<58.

/*

Ixo

~INPUT PATIENT DISEASE-

patient_diseases:-
define_disease_window,
draw _disease_window
define_disease_foot,
disease_conmand_loop.

/* initial set up of disease display */

display _current_diseases:-

number_of_clauses (current_data/3,current_data (disease,_,_) ,N),
N>0,

define_disease_window,

draw_disease_window.

display _current_diseases.

/* display the cotmtand line */

define_disease_foot:-

create_stream (disease_foot, readw rite,byte, window (I,22,white on red)),
open (disease_foot,readw rite),

)Sreen (disease_foot,create (15,1,disease_foot, 0,0, 0,none,None, 1,22, hidden

draw _disease_foot(Drop)

Y is Drop+15,

screen (disease_foot,change (Y,l,disease_foot, 0,0,0,none,None, 1,22, hidden)
). window (disease_foot,cursor_address (0,0)),

window (disease_foot,text(" \24 Add Del Exit \25 ")),
screen(disease_foot,unhide).

/* define the window for disease display */

define_disease_window:-
stream (disease_display.A ,B,D,S) .

define_disease_window :-

create_stream (disease_display,readw rite,byte,window (80,22 ,white on
black)),

open (disease_display,readw rite),

screen (disease_display,create (16, 1,disease_display, 0,0,0,all,black on
red.8.22,hidden)),

create_stream (disease_header,readw rite.byte,window (1,22,black on red)),
open(disease_header,readw rite),
screen(disease_header,create(15,l,disease_header,0,0,0,none,black on
red,1.22,hidden)), window (disease_header,text(" CURRENT DISEASES
\205120512051205")).

/* remove the window for disease display */

remove_disease_window:-
stream (disease_display.A,B.,D.S),
close(disease_display),
delete_stream (disease_display),
close (disease_header),
delete_stream (disease_header)

remove_disease_window.

/* displaying the current diseases */

display_diseases

once(window (disease_display.clear)),

once(window (disease_display,cursor_address(0,1))),
current_data(disease ,Root»D isease),

once(write_window _entry(disease_display,D isease)),
fail.

display _diseases.

/* draw the window for current diseases */

draw _disease_window :-
nurrtoer_of_clauses (current_data/3, current_data (disease,_,_) ,N),
((N<8,Drop is N+I); (Drop is 8)),

retractall (window _drop (disease_display,_)),

assert (window _drop (disease_display.Drop)).

screen (disease_display, change (16,1,disease_display, 0,0, 0,all,black on
red,Drop,22.hidden)),

display_diseases,

scroll_to_foot (disease_display),
screen(disease_display,unhide),
screen(disease_header,pull_up),

screen(disease_header,unhide).

/* routines for display disease commands */

disease_command_loop

retractall(cursor_location(disease_foot,_,_)),
assert(cursor_location(disease_foot,0,18)),
repeat,

once(window _drop(disease_display,Drop)),

once(CY is Drop+15),

once(draw _disease_foot(Drop)),
once(cursor_location(disease_foot,_,SX)),
once(locator(CY,SX,Y . X,CY.,2,CY.21)),
once(retract(cursor_location(disease_foot,_,_))),
once(assert(cursor_location(disease_foot,0,X))),
once(disease_display_com mand(X ,Result)),
Result=exit.

/* adding a new disease */

301

addjdisease(Root, "EXIT") .

add_disease(Root,D isease):-
checkjdiseases(Root,D isease).

add_disease(Root,Disease)
assert(currentjiata(disease ,Root,Disease)),
assert(current_data(history,D isease,"present"))

/* check the input disease */
check _diseases(R oot,D isease)/* fails if ok */
current_data(disease,Root,D),

related _to(disease ,Root,D ,Disease),!,
warning_box(8,30,"CANNOT ADD THIS").

check_diseases (R o ot , D isease)/* fails if ok */

current_data(disease.Root,Disease),!,
warning_box(8,30,"CANNOT ADD THIS").

disease_display_command(X ,scroll_up) :-
X=2,
scroll_window _up(disease_display).

disease_display_coraroand (X ,scroll_down)
x=21,
scroll_window _down(disease_display).

disease_display _comnand(X ,add)
X>4,

X<8,

disease_selection(Root,D isease),
add_disease(Root,D isease),

draw _disease_window .

disease_display _command(X .delete)
X>9,

X<13,
entry_box(16,26.,24,"Delete
retractall(current_data(disease,Root, D isease)),
retractall(current_data(history,D isease,_)),
draw _disease_window .

disease".D isease),

disease_display _command(X exit) :-

X>14,
X<19,

window _drop(disease_display,1), /* If no current diseases */
remove_disease_window,

close(disease_foot),

delete_streara(disease_foot).

disease_display_command(X ,exit) :-

X>14,

X<19,

close(disease_foot),

delete_stream (disease_foot).

disease_display_corrfnand (X,continue) .

1* i
/* DISEASE SELECTION ROUTINES */

/* input of current disease */

disease_selection(Root, Disease) :-

once(define_selection_window),

once (define_selection_command_window) ,

once(draw _selection_header),

once(draw _selection_window (roots)),
once(selection_command_loop(roots.Root)),

once(draw _selection_window (Root)),

once(selection_command_locp (Root,Disease)),

close_selectionwindows.
disease_selection(Root,"EXIT?")/* catches failures */

close_selection_windows,

warning_box(8,30,"Cannot add disease").

/* Define the selection window */
define_selection_window:-

create_stream (selection_background,readw rite,byte,window (22.55,white on
black)),

open(selection_background,readw rite),
screen(selection_background,create(2,25,selection_background,0,0,0 ,none.
None22,55 revealed)),

create_stream (selection,readw rite,byte,window (60,24, white
open(selection,readw rite),
screen(selection,create(1,1,selection,0,0,0,Irb,black

red,23,24,hidden))

on black)),

on

/* Define the command line */
define_selection_command_window:-

create_stream (selection_command, readw rite,byte, window (1,24, white
red)), open (selection_command, readw rite) ,

screen (selection_command, create (0,0, selection_command,0,0,0 none,None, 1,
24,hidden)),

window (selection_command,text ("\24

on

EXIT \25"))

/* Close selection windows */
close_selection_windows :-

close (selection_conmand) ,
delete_stream (selection_command) ,
close(selection_header),
delete_stream (selection_header),
close(selection),

delete_stream (selection),
close(selection_background),

delete_stream (selection_background).

/* Draw the header */
drawselection_header:-

create_stream (selection_header,readw rite,byte,window (1,24 ,w hite
red)), open(selection_header,readw rite),
screen(selection_header,create(3.,30,selection_header,0,0,0 Irt,black
red,1,24,hidden)),

window (selection_header,cursor_address(0,1)),

window (selection_header,text("INPUT DISEASE")),
screen(selection_header,unhide).

on

on

/* Draw the selection window */

draw _selection_window ("EX IT").

draw _selection_window (Selector):-
form _selection_list(Selector,L ist),
length(List,N),

((N<17,Drop N +1); (Drop 19)),
retractall(w indow _drop(selection,_)),
assert(window _drop(selection,Drop)),
screen(selection,chang

e (4.30,selection,0,0,0,lib,black
window (selection,clear),

window (selection,cursor_address(0.,1)),
display _selection_list(List),
screen(selection,unhide).

is is

on red.Drop.,24,hidden)),

/* Form the list for display */
form _selection_list(roots,L ist)

bagof(Root,disease(Root),List).

form _selection_list(Root,List):-
bagof(D ,descendent(disease,Root,Ro00t,D)»List).

/* Display the list of diseases */

display _selection_list([])

display _selection _list([EntrylList])
write_window _entry(selection,Entry),
display_selection_list(List).

I/* The loop for selecting a disease */

selection_command_loop("EXIT" "EXIT").

selection_command_loop (Root, Selection):-
window jdrop(selection,Drop),

BY Drop+3,

screen (selection_corrmand, change (BY, 30, selection_command, 0,0,0,none,None,
1.24.hidden)),
screen(selection_conmand,unhide),
retractall(cursor_location (selection,_,_
assert(cursor_location(selection,BY ,30)),
repeat,
once(cursor_location(selection,SY ,SX)),
once(locator(SY ,SX.Y X ,4,30,BY53)),
once (WY is Y-4),

once(W X X -30),

is

)

is

once(retractall(cursor_location(selection,_,_))).
once(assert(cursor_location(selection,Y ,X))),

once (selection_action(W Y W X ,Result)),

Result=exit,

screen (selection,info(_,_,s e l e c tion , O Y ,)» [*scroll info*/
AY is WY+OY, /* absolute Y pos */

window (selection,cursor_address(AY 1)),
window (selection,inquire_text(22,Entry)),
truncate_string (Entry . Selection).

selection_action(W Y W X ,scroll_up)
window _drop(selection,Drop),

WY is Drop-1,
WX=0,
scroll_window _up(selection).
selection_action(W Y ,W X ,scroll_down)
window _drop(selection,Drop),

WY is Drop-1,

WX=23,

scroll_window _down(selection).

selection_action (W Y W X ,exit)
window jdrop(selection,Drop),
WY is Drop-1,

WX>9,

WX<14.

selection_action (W Y W X ,exit):-
window jdrop(selection,Drop),

W Y <Drop-I.

selection_action(WY,WX,continue) .

302

/* das.dia dialogue control */
/* Predicates defined in this file:

dialogue/o
set_dialogue_context/l
store_datalo

restore_datalo
define_dialogue_window /0
define_query_window /0
prepare_for_output/0
enter_dialogue/l
getsentence/l

getrest/2

getletters/3

in_word/2

upcase/2

string_to_atoms/2

forra_atora/2

list_to_atc»ns/3
convert_string _list/2
capitalize/2
standardize_output/2
replace_synonym /2

synonym _combination/2
find_synonyra/2
display_query/2

display _dialogue_output/0
dialogue_text/1
capitalize_output/o
output_text/l
output_spaceless_text/l
output_list/2
output__patient_nam e/0
output_personal_pronoun/o
get_person/2
output_diagnoses/2
output_diagnosis_expression/l
create_diagnosis_list/2
find_diagnosed_roots/2
find_undiagnosed_roots/3
produce_diagnosis_output/4
generate_diagnosis_output/5
generate_diagnosis_output/2
output_critique/2
find_consistent_diagnoses/2
forrn_consistent_list/3
find_inconsistent_diagnoses/2
form _inconsistent_list/3
output_consistencies/2
output_inconsistencies/3
basic_command/3
information_request/7
supposition/s
explanation_request/d
explanation_request/s
irtpact_request/5
inpact_request/6
process_input/2

exit/o

misunderstood/0

control/l
output_diagnosis_explanation/2
output_specific_explanation/3
check_justification/4
counter_justification/2
output_justification_violation/2
produce_diagnosis_explanation/3
justification _introduction/2
justify _diagnosis/s
generate_justification_output/6
sum _evidence_effeet/7
get_evidence_weight/6
output_justification/7
output_relation_description/3
relevant_evidence/s
indicate_support_strength/1
output_evidence_inpact/3
output_evidence_im pact/4
evidence_impact/s
variable_inpact/4
relation_impact/4
total_relation_inpact/4
evidence_impact_introduction/2
generate_evidence_irrpact_output/1
inpact_description/2
make_supposition/3
make_supposition_diagnosis/3
pose_context_question/1
set_supposition/3
output_information/s
retrieve_current_data/4
variable _level_description/3

1* CCEPT USER INPUT
| *

I* kick off */

dialogue
define_dialogue_window,
define_query_window,

store_data,

prepare_for_output,
output_diagnoses(disorder,present),
assert(output(new _paragraph)),
output_critique(disorder,present),
display _dialogue_output,

repeat,

once(enter_dialogue(lnput)),
once(process_input(Input,Action_goal)),
once(display_query(input,Action_goal)),
once(call(Action_goal)),
once(display_dialogue_output),
Action_goal=exit,

restore_data,

close(dialogue),

delete_stream (dialogue),
close(query),
delete_stream (query).

dialogue
restore_data,

close (dialogue),
delete_stream (dialogue),
close(query),
delete_stream (query).

/* Setting the context for the dialogue

set_dialogue_context(Context)

retractall (dialogue__context/l),
assert(dialogue_context(Context)).

*/

/* Store the current data before a dialogue

store_data:-
once(retractall(stored_data/3)),
current_data(Type ,Entity,Value),
assert(stored_data(Type,Entity,Value)),
fail

store_data:-
set_dialogue_context (diagnosis (disorder)

/* Restore current data from stored data

restore_data:-
dialogue_context(diagnosis(disorder))

restore_data:-
once(retractall(current_data/3)),
retract(stored_data(Type,Entity, Value)),
assert(current_data(Type,Entity,Value)),
fail

restore_data:-

).

>/

set_dialogue_context(diagnosis(disorder)).

session

*/

/*

Ix o

/* define screen */

define_dialogue_window :-

--DIALOGUE SCREEN & 1/0 OPERATIONS-

create_3tream (dialogue,readw rite,byte,window (80,53 ,black on red)),

open(dialogue,readw rite),

screen(dialogue,create(3,26,dialogue,30,0,0 Irt,black on
red 16,53 ,revealed)), window (dialogue,clear),

window (dialogue,cursor_address(63.,0)).

define_query_window:-

create_stream (query,readw rite,byte,window (3,53, ,white on red)),

open(query,readw rite),

screen(query,create(19,26,query,0,0,0, Irb,black on

window (query,clear) .

/* prepare for dialogue output */

prepare_for_output
retractall(output/l),
assert(output(new _paragraph)),

red.3,53 revealed)),

screen(dialogue,change(3,26,dialogue,64,0,0,Irt,black on

red, 16,53 ,revealed)).

/* type in dialogue */

enter_dialogue(L ist)
window (query, clear),
seeing (Stream),
see(query),
getsentence (L ist),
see (Stream) ,
retractall(output/l)

/* construct a list of atoms from user input

getsentence(W ordlist)
geto (C),
getrest(C W ordlist)

getrest(L (W ordIW ordlist])
in_word (L, Lc),
getletters(L L etters,C),
list(L etters,S),
name(w.s),
replaoe_synonym (W W ord),
getrest(C W ordlist).

getrest (13, (1) .
getrest(L W ordlist)

getsentence (W ordlist).

getletters(L ,(Lc|Letters],La3t_letter)
in_word (L,Lc),

geto (NI),

getletters(N I,Letters,Last_letter).
getletters(13,[],13) .

getletters(L, (],L).

/* characters that can appear in a word

303

*/

*!

in_word(C,.C) 096, C<123. /* ab *
in_word(C,L) 064, C<91, L is C+32. /* A B *
in_word(C,C) 047, C<58. %01 */
in_word(39,39) . [P/
in_word(45, 45) . /*—
in_word(38,38) . I1* & %1
in_word(46,46) . I* must have dp
/* convert characters to upper case */

upcase (C,U) 096, C<123, U is C-32. /* ab 2 %]
upcase(C,C). /* everything else
/* some list utilities */

string _to_atom s(String A tom _list)

list(L ist,String),

list_to_atom s (List, Atom _list) .

form _atom (Input,Atom)
name(Atom lInput),
replace_synonym (Atom I, Atom).

form _atom (Input,Atom)

Atom is_string string(inputcps).

list_to_atom s([].String,
form _atom (String, Atom).

[Atom])

list_to_atoms ([32|List]»String, [Atom |Atom _list])
form _atom (String, Atom),

list_to_atom s(List,Atom _list).

list_to_atom s([C |List],String ,Atom _list)
in_word(C,L),

New _string is_string String & [L],

list_to_atom s(List,New _string A tom _list).

/* Convert list of strings to list of lists */
convert_string _list ([1,[]1)

convert_string _list ([String [String _list], [Atora_listIL ist])
string _to_atom s (String,Atom _list),
convert_string_list (String_list,List)

/* puts capital letter on string */
capitalize(Text,New _text)

S is_string substring(Text,0,1),
list([C].S),

upcase (C,U) .

New _text is_string [0] & delete(Text,0,1).

/* standardize the output */

standardize_output([], [])

standardize_output([Atom|Li3t], [New _atom |New _list])
replace_synonym (Atom ,New _atom) ,

standardize__output (List,New _list) .

/* Replace an atom by synonym */
replace_synonym (Atom ,New _atom)

synonym (New _atom, Atom).

replace_synonym (Atom Atom) .

/* find a combination of synonyms */

synonym _combination([],[])-
synonym _combination([Atom IList], [New _atom |New _list])

find_synonym (Atom ,New _atom),
synonym _combination(List,New _list) .

/* Replace an atom by synonym */

find_synonym (Atom ,New _atom)
synonym (Atom ,New _atom).

find_synonym (Atom, Atom).

*/

*/

/*
I* —-DIALOGUE OUTPUT

the window */

the

/* display query in dialogue

display _query(Inputexit).
display _query(inputcontrol(_)).

display _query(Input,Result)
prepare_for_output,
assert(output(new _paragraph)),
assert(output(input)),
assert(output(query)),
assert(output(new _line)),
assert(output(new _paragraph)).
output */

/* display all

display _dialogue_output
retract (output (Text)),
dialogue_text (Text), !,
display _dialogue_output.

display _dialogue_output.

/* output text to dialogue window */
dialogue_text(new _paragraph) 1*
retract(output/l,output(new _sentence),1),
dialogue_text(new _paragraph).

dialogue_text(new _paragraph)
capitalize_output,
window (dialogue text("\r\n "))

dialogue_text(new _sentence) 1*
retract(output/l,output (new _sentence),1),
dialogue_text(new _sentence).

remove

dialogue_text(new _sentence)
capitalize_output,
window (dialogue,text(". ")).
dialogue_text(end_text)
window (dialogue.text(".\r\n")).

dialogue_text(new _line):-
window (dialogue.text("\r\in")).

dialogue_text(comma)
window (dialogue,text(",")).

dialogue_text(colon)
window (dialogue,text (

"))

dialogue_text(sem i_colon)
window (dialogue, text(":")).

dialogue_text(query)
window (dialogue,text("?2")).

dialogue_text(space)
window (dialogue,inquire_cursor_address(_,0))

dialogue_text(space)
window (dialogue, text(" ")).

dialogue_text(space(N)):-

repeat(X),
dialogue_text(space),
X is N-I

dialogue_text(list(Type,List))
output_list(Type,List).

dialogue _text(spaceless(List)):-
output_spaceless_text(List).

dialogue_text(List)
output_text(List).

/* capitalize output */

capitalize_output

retract (output/l, output ([First_atom [List]),1),
First_word is_string string (First_atom,ops),
capitalize (First_word, Text),
asserta(output([First_wordIList]))

capitalize_output

retract(output/i,

output (list (Type, [First_atom IList])), 1),
First_word is_string string (First_atom,ops) .
capitalize (First_word, Text),
asserta(output(list(Type,[First_wordIList])))

capitalize_output.

/* outputs a simple list of atoms with spaces

output_text([])

output_text([Atom IList])

Text is_string string(Atom ,ops),
dialogue_text(space),

window (dialogue,text(Text)),
output_text(List).

/* outputs a simple list of atoms without

output_spaceless_text([]).

output_spaceless_text ([AtomIList]) :-
Text is_string string(Atom ,0ps),
window (dialogue, text(Text)),
output_spaceless_text(List).

/* outputs a compound list of atoms */
output_list(Type,[Elem ent])

output_text(Element).

output_list(Type,[Elementl Element2])
output_text(Elementl),
output_text([TypelElement2])

output_list (Type, [Elem entiList])
output_text(Element),
dialogue_text(comma),

304

remove

any other

between

spaces */

each

atom

any new sentences

new sentences

*/

>/

output_ t (Type,List) .

/* generate output for patient */

output_patient_name :-
current_data(dem ographic.identity,id),
patient_data(ld,name,Name),

string _to_atom s(Narre, A tom _list),
assert(output(Atom _list)).

output_patient_name
assert(output([this,patient])).
/* generate he or she */
output_personal_pronoun
current_data(history.sex,"male"),

assert(output([he])).

output_personal_pronoun:-
assert(output([shel)) .

/* get plurality of list */
get_person ([A].2). I*

singular */

get_person(L,3). I* prlurat */

I* ki

I* DIAGNOSIS OUTPUT * |

/* output the diagnosis */

output_diagnoses(Blackboard, Tense)
find_diagnosed_roots(Blackboard,Diagnosed_list),
find_undiagnosed_roots(Blackboard,Undiagnosed_list,Diagnosed_list),
produce_diagnosis_output(Blackboard,Diagnosed_list,Tense,start),
generate_diagnosis_output(Undiagnosed_list,Tense),
assert(output(new _sentence)),

assert(output(new _paragraph)).

/* output list of diagnoses */
output_diagnosis_expression([(D isorder,P)])

string _to_atom s(D isorder,D isorder_output),
assert(output(D isorder_output)).
output_diagnosis_expression (D isorder_list)
create_diagnosis_list(D isorder_list,D isorder_output),
assert(output(list(or,Disorder_output))).

/* create a list of atomized diagnoses */

create_diagnosis_list([].[]).

create_diagnosis_list([(D isorder,P)[List], [Disorder_atom s|New _list])
string_to_atom s(D isorder,Disorder_atom s),
create_diagnosis_list(List,N ew _list).

/* find list of diagnosed/undiagnosed roots */
find_diagnosed_roots(Blackboard,Root_list):-
setof (Root, (D,P) Nliagnosis_exists (Blackboard,Ro0t,D.P) ,Root_list)

find_diagnosed _roots(Blackboard,(]).

find_undiagnosed_roots(Blackboard,Root_list,Diagnosed_list)
setof([Root],no_diagnosis_exists(Blackboard,Root,Diagnosed_list),Root_li
st)

find_undiagnosed_roots(Blackboard, [],Diagnosed_list).

produce_diagnosis_output(Blackboard,[],Tense,Context) .

produce_diagnosis_output(Blackboard,[Root|List], Tense,Context)
bagof((Disorder,P),diagnosis_exists(Blackboard,Root,Disorder, P),Diagnosi
s_list),

generate_diagnosis_output(Root,Diagnosis_list, Tense,Context,New _context)
. produce_diagnosis_output(Blackboard,List,Tense,New _context).

produce_diagnosis_output(Blackboard,[RootlList], Tense,Context)
generate_diagnosis_output(Root,[],Tense,Context,New _context) ,
produce_diagnosis_output(Blackboard,List,Tense New _context).

I* type 1 */

generate_diagnosis_output(Root,[(Disorder,P)_],Tense,start,1)
P>0.95,

assert(output([my,diagnosis,for])),

output_patient_name,

verb(be.Tense,2,V, []),

assert(output (V)),

output_diagnosis_expression ([(Disorder,P)]) .

generate_diagnosis_output(Root,[(Disorder,P)], Tense,Context, new)
P>0.95,

member(Context,[1,2,3]),

assert(output([with])),
output_diagnosis_expression([(Disorder,P)]).

generate_diagnosis_output(Root,[(Disorder,P)], Tense,Context,1)
P>0.95,

assert(output(new _sentence)),

output_personal_pronoun,

verb(have,Tense,2,V []),

assert(output(V)),
output_diagnosis_expression([(Disorder,P)]).

/* type 2 */

generate_diagnosis_output(Root,[(Disorder,P) |_].Tense,start,2)
P>0.7,

assert (output ([the, most, likely,diagnosis,for])),
output_patient_name,

verb (be.Tense,2,V, []),

assert (output (V)),

output_diagnosis_expression ([(Disorder,P)]) .

generate_diagnosis_output (Root, [(Disorder,P) |[_].Tense, l.new)
P>0.7,

assert (output ([and,probably])),

output_diagnosis_expression ([(Disorder,P)]) .

generate_diagnosis_output (Root, [(Disorder,P) |_].Tense, 2 new)
P>0.7,

assert(output(fand])),
output_diagnosis_expression([(Disorder,P)]).

generate_diagnosis_output(Root,[(Disorder,P)|_].Tense,Context,2)
P>0.7,

assert(output(new _sentence)).

output_personal_pronoun,

assert(output([probably])),

verb (have . Tense,2,V ,[]),

assert(output(V)),

output_diagnosis_expression([(Disorder,P)]).

/* type 3 */

generate_diagnosis_output(Root,[(D isorderl,P1), (Disorder2,P2) |_],Tense,s
tart, 3) :-

P1>0.35,

P2>0.35,

assert(output([my,diagnosis,for])),

output_patient_name,

verb(be,Tense,2,V ,[1),

assert (output(V)),

assert(output([either])),

output_diagnosis_expression([(D isorderl,P1), (Disorder2,p2)]).

generate_diagnosis_output(Root,[(D isorderl,P1), (Disorder2,P2) |_],Tense,C
ontext,new)

P1>0.35,

P2>0.35,

member(Context,[1,2,3]),

assert(output([and.either])),

output_diagnosis_expression([(D isorderl,P1), (Disorder2,p2)]).

generate_diagnosis_output(Root,[(D isorderl,P1), (Disorder2,P2)|_],Tense,C
ontext, 3)

P1>0.35,

P2>0.35,

assert(output(new _sentence)),

output_personal_pronoun,

verb(have,Tense 2,V ,[1),

assert(output(V)),

assert(output([either])),

output_diagnosis_expression([(D isorderl,P1), (Disorder2,p2)]).

I* Type 4 */

generate_diagnosis_output (Root, [(Disorder,P) |[D isorder_list], Tense, 3tart,
new)

P>0.35,

assert(output(new _sentence)),
output_patient_name,
assert(output([probably])),

verb (have,Tense, 2,V []),

assert(output(V)),
output_diagnosis_expression([(Disorder,P)]),
assert(output(comma)),

assert (output ([possibly])),
output_diagnosis_expression (D isorder_list) .

generate_diagnosis_output(Root,[(D isorder,P)[D isorder_list],Tense,Contex
tnew)

P>0.35,

assert(output(new _sentence)),
output_personal_pronoun,

assert (output ([probably])),

verb (have.Tense,2,V, [1),

assert(output(V)),
output_diagnosis_expression([(Disorder,P)]),
assert(output(comma)),
assert(output([possibly])),
output_diagnosis_expression(D isorder_list)

I* type 5 */
generate_diagnosis_output([],Tense).

generate_diagnosis_output(Root_list,Tense)
assert(output(new _sentence)),

assert(output([il)).

verb(be,Tense, 1,V, []),

assert(output(V)),
assert(output([unable,to,diagnose])),
assert(output(list(or,Root_list))),
assert(output([using.the,available, information])) .

I* i

1> CRITIQUE OUTPUT */

/* Main routine to output the critique */
output_critique(Blackboard, Tense):-

bagof(Disease R blackboard(Blackboard,diagnosis,R D isease),D isease_list)
. find_consistent_diagnoses(Blackboard,Consistent_diagnoses),
find_inconsistent_diagnoses(Blackboard, Inconsistent_diagnoses),
output_consistencies(Tense,Consistent_diagnoses) .

305

output_inconsistencies(Tense,Disease_list,Inconsistent_diagnoses).

output_critique(B lackboard . Tense).

/* Find the consistent diagnoses */

find_consistent_diagnoses(Blackboard,List):-
setof(D isease,(R,D)"blackboard (Blackboard,critique ,R,D isease,D ,consisten
t).Disease_list),

forra_consistent_list(Blackboard,D isease_list,List)

find_consistent_diagnoses(Blackboard, (])

form _consistent_list(Blackboard,[].[])

forra_consistent_list(Blackboard, (D isease|D isease_list],[(D isease,Disorde
r_list)|List]):-

bagof(Disorder,RAblackboard(Blackboard,critique, R,D isease,D isorder,consi
stent),D isorder_list) ,

forra_consistent_list(Blackboard,D isease_list,List).

/* Find the inconsistent diagnoses */
find _inconsistent_diagnoses(Blackboard,List):-

setof (Root, (Disease,Disorder) «'blackboard(Blackboard, critigue ,Root,D iseas
e.Disorder,expected) .Root_list),

form _inconsistent_list(Blackboard ,Root_list,List) .

find_inconsistent_diagnoses(Blackboard,[])

form _inconsistent_list(Blackboard,[], []) .

form _inconsistent_list (Blackboard, (Root|[R oot_list], ((Root,Disorder_list)
IList])

setof(Disorder,D iseaserblackboard(Blackboard,critique,Root,Disease,Disor
der,expected),D isorder_list),
forra_inconsistent_list(Blackboard,Root_list,List).

/* output for the consistent diagnoses */
output_consistencies(Tense, [])

output_consistencies(Tense,((D isease,D isorder_list)|List]):-
get_person(Disorder_list,P),

convert_string _list(D isorder_list,D isorders),
assert(output(list(and,D isorders))),
verb(be,Tense,P,V []),

assert(output(V)),
assert(output((consistent,with])),

string _to_atom s(D isease, D),
assert(output(D)),

assert(output(new _sentence)),
output_consistencies(Tense,List)

/* output for the inconsistent diagnoses */

output_inconsistencies(Tense,Disease_list,(]) .

output_inconsistencies(Tense,Disease_list,[(Root,Disorder_list)IList])
assert(output((my,diagnosis, for])),

string _to_atom s(Root,R),

assert(output(R)),

verb(be,Tense, 2,V []),

assert(output(V)),

assert (output((not,consistent,with])),
convert_string _list(D isease_list,D iseases),
assert(output(list(or,D iseases))),
assert(output(semi_colon)),

assert(output(("I" would,expect,to,see])),
convert_string _list(D isorder_list,D isorders),
assert(output(list(or,D isorders))),
assert(output(new _sentence)),
output_inconsistencies(Tense,Disease_list,List).

A 1

IDENTIFY ACTIONS FROM INPUT SENTENCES -—

/* basic commands */

basic_command(exit) — > verb(stop,present,1).

basic_corrmand(scroll_up) — > [scroll,up] .
basic_command(scroll_down) — > (scroll,down] .
basic_command(scroll_down) — > [scroll].

/* inform ation requests */

inform ation _request(value.diagnosis,Type.the,past) — >
[original,diagnosis].

information_request(value,diagnosis,Type,the,past) —> [diagnosis].
information_request(value N ,Type.the Tense) —>
interrogativejphrase(instantiate,Tense),noun_phrase(N Type).

inform ation_request(value,N,Type,P,Tense) — >
interrogative_phrase(instantiate,Tense)»possessive(P).noun(N,Type).
information_request(value,N Type,the Tense) —>
interrogative_phrase(instantiate,Tense), the,value,of].noun_phrase(N,Typ
e) .

information_request(value,N ,TypeP . Tense) — >

interrogative_phrase(instantiate,Tense), [the,value,0f]»possessive(P),nou
n_phrase(N ,Type).

information_request(level,N , Type,the Tense) —>
interrogative_phrase(instantiate, Tense), [the level,of],noun_phrase(N ,Typ
e) .

information_request(level,N ,Type,the Tense) —>

interrogative_phrase(instantiate,Tense), (the,level,of]»possessive(P),nou
n_phrase(N ,Type).

/* suppositions */

supposition(variable,N ,V) —>
supposition_phrase.noun_phrase(N ,variable)»verb(be, Tense,2).,nura(V).
supposition (variable,N,V) —>

supposition_phrase,noun_phrase (N,variable) »verb (be. Tense,2) ,num (V). [U],
{(data_parameter(N ,units,Units),string_to_atom s(Units,T),!,T=U)}.

supposition (Type,N,V) —>
supposition_phrase,noun_phrase (N, Type) »verb (be. Tense,2) ,noun (V,attribute
(Type,N)). supposition (variable,N,L) — >

supposition_phrase,nounjphrase (N,variable) ,verb (be.Tense, 2),adjective (L,
level).

/* explanation requests */

explanation_request(diagnosis,Blackboard) — >
interrogative(reason), (dialogue_context(diagnosis(Blackboard))).
explanation_request (diagnosis,Blackboard,Disorder) — >

interrogative (reason) ,noun_phrase (D isorder,disorder), (dialogue_context (d
jagnosis(Blackboard))}.
explanation_request(diagnosis,Blackboard,Disorder) — >
interrogative(reason), [did,you.diagnose].noun_phrase(D isorder,disorder),
{dialogue_context(diagnosis(Blackboard))}.
explanation_request(diagnosis,Blackboard,Disorder) — >
interrogative_phrase(reason,Tense).,noun_phrase(Disorder,disorder), [diagn
osed], {dialogue_context(diagnosis(Blackboard)))
explanation_request(non-diagnosis,Blackboard,Disorder) — >
interrogative(reason), (not],noun_phrase(Disorder,disorder), {dialogue_con
text(diagnosis(Blackboard))}.
explanation_request(non-diagnosis,Blackboard,Disorder) — >
interrogative (reason) , ['dicint', you,diagnose] ,noun_phrase (Disorder,diso
rder), {dialogue_context(diagnosis(Blackboard))}.
explanation_request(non-diagnosis,Blackboard,Disorder) — >
interrogative(reason),['wasn''t'] noun_phrase(Disorder,disorder), [diagno
sed], {dialogue_context(diagnosis(Blackboard))}.
explanation_request(non-diagnosis,Blackboard,Disorder) — >
interrogative_phrase(reason,Tense),noun_phrase(Disorder,disorder), [not,d
jagnosed], {dialogue_context(diagnosis(Blackboard)) }.

/* request for irtpact of evidence */

impact_request(Entity, Type.Tense) — >
interrogative(process)»verb(do,Tense,2),noun_phrase (Entity Type), [affect
.the diagnosis].

inpact_request(Entity, Type,Tense) — >
interrogative(prooess)»verb(do,Tense,2),noun_phrase(Entity, Type), [affect
.your,diagnosis].

inpact_request(Entity Type,Tense) — >
interrogative(instantiate).verb(be,Tense,2),noun_phrase (_,influence), [of
J.nounjphrase(Entity Type).

inpact_request(Entity, Type,Disorder,Tense) — >
interrogative(process),verb(do,Tense,2),noun_phrase(Entity,Type), [affect
].noun_phrase(Disorder,disorder)

inpact_request(Entity ,Type,Disorder,Tense) —>
interrogative(process),verb(do,Tense,2),noun_phrase(Entity,Type), [affect
.your,diagnosis,of],noun_phrase(D isorder,disorder).
impact_request(Entity, Type,Disorder,Tense) —>
interrogative(process),verb(do,Tense,2),noun_phrase(Entity, Type), [affect
.the.diagnosis,of],noun_phrase(Disorder,disorder).
impact_request(Entity, Type,Disorder,Tense) — >
interrogative(process),verb(be, Tense,2),noun_phrase(D isorder.disorder), [
affected,byl.noun_phrase(Entity, Type)

/* Process user input */

/* takes a users input sentence, parses it, and decides action goal */
process_input(input,exit):-

basic_command(exit, Input,[]).

process_input(lnput,control(scroll_down)):-
basic_command(scroll_down.Input,[])

process_input(input,control(scroll_up)):-
basic_command (scroll_up.Input, []) .

process_input (Input,output_diagnosis_explanation (Blackboard, indicate)) :-
explanation_request (diagnosis,Blackboard, Input, []), !

process_input (Input,output_specific_explanation (Blackboard,Disorder,indi
cate)):-
explanation_request (diagnosis,Blackboard,Disorder, Input, []), !.

process_input (Input,output_specific_explanation (Blackboard,Disorder,cont
ra-indicate)):-

explanation_request(non-diagnosis,Blackboard,Disorder,Input, []),!.

process_input(lnput,make_supposition(A ttribute,Entity, Value)):-
supposition (A ttribute Entity,Value,Input,[]),!

process_input(lnputooutput_evidence_inpact(Entity Type,Tense)):-
irrpact_request (Entity, Type, Tense, Input, []1),!

process_input(lnput,output_evidence_inpact (Entity, Type,Disorder, Tense)):
- inpact_request (Entity Type,Disorder, Tense, Input, []),!

process_input (Input,output_information (Information.Entity, Type, P, Tense))
i~ inform ation_request(inform ation ,Entity, Type,P Tense,Input,[]).!.

process_input(input,misunderstood).

/*

I* BASIC ACTIONS >/
I* finish dialogue */

exiti-rétractail(dialogue_context/l).

/* Didn't understand the query */

306

misunderstood:-
assert(output([i,"don’t",understand])),
assert(output(end_text)) .

/* control functions */

control(scroll_down)

repeat(X),
scroll_window _down(dialogue),
X=7.

control(scroll_up):-
repeat(X),

scroll_window _up (dialogue) .
X=7.

A "

EXPLANATION OUTPUT-
/* output an explanation for the diagnosis */

output_diagnosis_explanation(Blackboard Justification)
setof ((Root,Diagnosis) ,PAdiagnosisfexists (Blackboard,Root,Diagnosis,P) ,D
jagnosis_list),

produce_diagnosis_explanation(Blackboard Justification,Diagnosis_list),
assert(output(end_text)),

retractall (dialogue_context/l),
assert(dialogue_context(diagnosis(Blackboard))).

/* output an explanation for a specific diagnosis */

output_specific_explanation(Blackboard,Disorder,Justification):-
link(Root,_.,Disorder,_),

check_justification(Blackboard,Disorder Justification,Checked_justificat
ion),

produce_diagnosis_explanation (Blackboard,Checked_justification, [(Root,Di
sorder) 1) .

/* Check that the
*/

correct justification is being sought for a diagnosis

check _justification (Blackboard,Disorder, indicate,indicate)
diagnosis_exists(Blackboard, Root,Disorder,P).

check_justification(Blackboard,Disorder,contra-indicate,contra-
indicate) not diagnosis_exists(Blackboard,Root,Disorder,P)

check_justification(Blackboard,Disorder Justification,Counter_justificat
ion) :-

counter_justification(Justification,Counter_justification),
output_justification_violation(D isorder Justification)

/* Get the opposite justification */
counter_justification(indicate,contra-indicate)
counter_justification(contra-indicate,indicate).

/* Output warning of justification violation */
output_justification_violation (D isorder,contra-indicate):-
assert(output([i,did,diagnose,Disorder])),
assert(output(new _paragraph)).

output_justification_violation (D isorder,indicate):-
assert (output ([i, 'dicin"t' »diagnose,Disorder])).
assert(output(new _paragraph))

/* Produce the explanation for a list of diagnoses. For each diagnosis,
display an then output the supporting evidence of each
type */

introduction,

produce_diagnosis_explanation (Blackboard, Justification, (1) .

produce_diagnosis_explanation (Blackboard,Justification, ((Root,Diagnosis)
D iagnosis_list]):-

justification _introduction (D iagnosis Justification),

justify _diagnosis(Blackboard,Root,Diagnosis,variable Justification),
justify _diagnosis (Blackboard,Root,Diagnosis, syrrptom.Justification),
justify_diagnosis(Blackboard,Root,Diagnosis,history,Justification),
justify _diagnosis(Blackboard,Root,Diagnosis,relation,Justification),
produce_diagnosis_explanation(Blackboard,Justification,D iagnosis_list)

produce_diagnosis_explanation(Blackboard Justification,((Root,Diagnosis)
D iagnosis_list]):-

assert(output(new _paragraph)),

assert(output([my,belief,in])),

string_to_atom s (D iagnosis,Diagnosis_output),
assert(output(Diagnosis_output)),
assert(output([was,not,affected,by,any,evidence])),
produce_diagnosis_explanation(Blackboard,Justification,D iagnosis_list)

justification_introduction(D iagnosis, Justification)

relevant_evidence (Blackboard,Root, D iagnosis, Hypothesis_type,Evidence),
assert (output (new _paragraph)),

string _to_atom s (D iagnosis,Diagnosis_output),
assert(output(Diagnosis_output)),

assert(output([was])),

verb (Justification,past,2,V ,[1).

assert(output(Vv)),

assert(output([by])),

assert(output(colon)) .

/* Justify the diagnosis for a particular type of evidence */
justify _diagnosis(Blackboard,Root,Diagnosis,Evidence_type Justification)
i~ hypothesis_type (Evidence_type,Hypothesis_type),

setof (Evidence,relevant_evidence (Blackboard,Root,Diagnosis,Hypothesis_ty
pe.Evidence), Evidence_list),

generate_justification_output (Blackboard, Root,Diagnosis, Hypothesis_type,
Justification ,Evidence_list).

justify_diagnosis (Blackboard,Root,Diagnosis, Evidence_typie Justification)

enerate the ustification output or one t e o evidence *
I* 6 he j f p f yp f d /
generate_justification_output (Blackboard,Root,Node,Hypothesis_type, Justi

fication, []) .

generate_justification_output (Blackboard, Root.Node, Hypx)thesis_type,Justi
fication [Evidence|Evidence_list]):-
singleton_desoendents(disorder,Root,Node,Node_descendents),

sum _evidence_effeet(Blackboard,Root,Node_descendents,Hypotbesis_type, Evi
dence,0,Sum),

apriori(disorder,Root,Node, A),

W is sum/A,

output_justification (Blackboard, Root,Node, Hypothesis_type.Evidence,Ju3ti
fication W),

generate_justification_output (Blackboard, Root,Node Hypothesis_type,Justi
fication,Evidence_list).

/* Sum the weight of evidence for a node */

sum _evidence_effect (Blackboard,Root, [J,Hypothesis_type,Evidence,Sum Sum)

sum _evidence_effect (Blackboard,Root, [Node|List],Hypothesis_type,Evidence
.Sum _so_far,Sum):-

get_evidence_weight (Blackboard,Root,Hypothesis_type,Evidence,Node ,W),
apriori(disorder,Root,Node,A),

New_sum _so_far is Sura_so_far+(W *A),

sum _evidence_effeet (Blackboard,Root,L ist,Hypothesis_type,Evidence,New _su
m _so_far, sum) .

/* Get the weight of evidence for a node */

get_evidence_weight(Blackboard,Root,Hypothesis_type,Evidenoe,Leaf_node, W
)i

blackboard (Blackboard, Hypothesis_type,Root,Node Evidence, W),
singleton_descendents (disorder,Root,Node,Node_list),
member(Leaf_node,Node_list).

get_evidence_weight (Blackboard,Root,Hypothesis_type Evidenoe,Leaf_node, 1

0).

/* Produce the justification output for an item of evidence */
output_justification(Blackboard,Root,Node,Hypothesis_type,Evidence, indie

ate,W):- W<l

output_justification (Blackboard, Root»Node, Hypothesis_type.Evidence,contr
a-indicate,W) :- W>1

output_justification (Blackboard, Root,Node,variable_hypothesis,Evidence,J
W)

variable_level_description (Blackboard, Evidence, Level_description),
assert(output(new _line)),

assert(output(space(4))),

assert (output (Level_description)),

string _to_atom s(Evidence,A tora_list),

assert(output(Atom _list)).

output_justification(Blackboard,Root Node,relation_hypothesis Evidence,J
W)
output_relation_description (Root,Node,Evidence) .

output_justification (Blackboard,Root,Node,Hypothesis_type Evidence, J,W) :
- hypothesis_type(Evidence_type,Hypothesis_type),

current_data (Evidence_type,Evidence, A ttribute) ,

assert(output(new _line)),

assert(output(space(4))).

Output_string is_string A ttribute & " " & Evidence,
string _to_atom s(O utput_string A tom _list),
assert(output(A tom _list)),

indicate_support_strength(w) .

/* Output the description of a relationship */

output_relation_description(Root,Node,Dependents)
relation_evidence (Node,Root,R,L eft,Right,Cortp,Dependents),
assert(output(new _line)),

assert(output(space(4))).

assert(output(spaceless(Left))),

assert (output (spaceless ([Coirp|Right]))).

fail

output_relation_description(Root,Node,Dependents):-
relation_evidence (Conpound_node,Root,R,L eft,Right,Corrp,Dependents),
descendent (disorder.Root,Cortpound_node, Node) ,

assert(output(new _line)),

assert(output(space(4))),

assert(output(spaceless(Left))),

assert (output (spaceless ([Cortp|Right]))),

fail

output_relation_description (Root,Node,Dependents) .

/* Finding evidence for confirmation/disconfirm ation. Evidence is
relevant to a node if it affects any related node */
relevant_evidence (Blackboard, Root,Diagnosis, Hypothesis_type.Evidence) :-
blackboard (Blackboard, Hypothesis_type.Root, Diagnosis, Evidence,P) .

relevant_evidence (Blackboard, Root,Diagnosis, Hypothesis_type, Evidence) :-
blackboard (Blackboard, Hypothesis_type, Root»Node, Evidence,P),
related _to (disorder.Root,Diagnosis. Node) .

/* Indicate the strength of support of evidence */

307

indicate_support_strength (0.0)
assert (output ([" (", ruled,out,")

indicate_support_strength (W) .

I

EFFECT OF EVIDENCE

/* output the effect of a piece of evidence */
output_evidence_impact(Entity,Type,Tense)
dialogue_context (diagnosis (Blackboard)),
hypothesis_type (Type, Hypothesis_type),

bagof ((Frame,P),evidence_impact (Blackboard,Hypothesis_type,Fram e, Entity,
P) ,Evidence_list) , evidence_inpact_introduction (Entity, Tense),
generate_evidence_impact_output (Evidence_list) ,

assert(output(end _text)) .

output_evidence_impact (Entity, Type,Tense) /* if there is no impact */
verb(have,Tense, 2,V []),

assert(output((Entity])),

assert(output (V)),
assert(output([no,effect,on,my,diagnosis])),
assert(output(end_text)).

/* effect of evidence on specific diagnosis */
output_evidence_inpact (Entity, Type, D isorder, Tense)
dialogue_context (diagnosis (Blackboard)),

hypothesis_type (Type,Hypothesis_type) ,

evidence_irtpact (Blackboard,Hypothesis_type,Frame,Entity,P),
inpact_description(P,Description),

string _to_atom s (Frame,Frame_output) ,

assert (output ([observation,of,Entity])),

assert(output(D escription)),

assert(output([belief,in])),

assert(output(Frame_output)),

assert(output(end_text)).

I* when there is no impact */
output_evidence_im pact(Entity, Type,Disorder,Tense):-
verb(have,Tense,2,V ,[]).
assert(output([Entity])).
assert(output(V)),
assert(output([no.,effect,on,my.diagnosis,of])),
string _to_atom s(Frame,Frame_output),
assert(output(Frame_output)),
assert(output(end_text))

/* Get evidence impact */

evidence_inpact (Blackboard,variable_hypothesis,Frame,Variable,P)
variable_impact (Blackboard, Frame,V ariable, VP),

total_relation _irrpact (Blackboard,Frame,Variable, TRP), P is VP*TRP,
P V= 1.0.

evidence_impact (Blackboard,Hypothesis_type,Frame,Entity,P)
blackboard (Blackboard, Hypothesis_type, Root,Frame, Entity, P) .

/* Get impact of variable evidence (is 1 if no blackboard entry) */

variable_inpact (Blackboard, Frame,V ariable, VP)
blackboard(Blackboard,variable_hypothesis,Root,Frame,Variable,VP),!.

variable_inpact (Blackboard,Frame,V ariable, 1.0)

/* Get impact of variable as it figures in relationships */
relation_im pact(Blackboard,Frame,Variable ,RP)
blackboard(Blackboard,relation_hypothesis,Root,Frame,Dependents, RP),

member(Variable,Dependents).

total_relation_im pact(Blackboard, Frame,Variable, TRP)
bagof(RP,relation_inpact(Blackboard,Frame,Variable,RP).RP_list),
product_list(RP _list,1, TRP), !

total_relation_inpact (Blackboard, Frame,V ariable, 1) .

/* Generate the introduction */
evidence_inpact_introduction(Entity, Tense)

verb(be,Tense,2,V, []) .

assert(output([the effect,of»Entity,on,my,belief, in,possible,diagnoses])
), assert(output(V)),

assert(output([as, follows])),

assert(output(colon)) .

I* Generate the output from list of effects */

generate_evidence_impact_output([]).

generate_evidence_impact_output ([(Frame, W) L ist])
inpact_description(W ,Description),

string_to_atom s(Frame,Frame_output),
assert(output(new _paragraph)),
assert(output(Frame_output)),

assert (output (D escription)),
generate_evidence_impact_output(List).

/* Verbal interpretation of impact of evidence */

impact_description (0.0 [ruled,out]).

impact_description(W ,[increased])
W>1.0.

inpact_description (W, [decreased])
Wclo.

/*
| *

MAKING SUPPOSITIONS-—

I* Make a supposition */

make_supposition (Type, E ntity, Value) /* already supposed for entity */
dialogue_context (diagnosis (supposition)),
retract(dialogue_context(supposition(Entity,_))),
make_supposition(Type,Entity,Value).
make_supposition(Type,Entity,Value)/* not the first supposition */
dialogue_context(supposition(_,_)).

pose_context_question(Response),

Response=[yes],

make_supposition_diagnosis(Type,Entity.Value).
make_supposition(Type,Entity,Value)/* fresh supposition */
restore_data,

set_dialogue_context (diagnosis (supposition)),
copy_blackboard(disorder,supposition),

make_supposition_diagnosis (Type, Entity. Value) .

make_supposition (Typ>e,Entity, Value) /* couldn't do it */

assert(output([i,cannot,do,this])),
assert(output(end_text)).

/* Get the diagnosis with the input suppositions */

make_supposition_diagnosis (Type.Entity,Value)
set_supposition(Type,Entity,Value),
make_diagnosis(supposition),

prepare_for_output,

output_diagnoses (supposition,conditional) ,

assert (dialogue_context (supposition (Entity,Value)))

/* Pose question regarding the context of the supposition */

pose_context_question(Response):-
setof([Entity,is,Value],dialogue_context(supposition(Entity,Value)).,Supp

osition_list) ,

assert(output(new _sentence)),
assert(output([should,"1" still,assume])),
assert(output(list(and,Supposition_list))),

assert(output(query)),
assert(output(end_text)),
display_dialogue_output,
enter_dialogue (Response) , !.

/* setting suppositions for what if.... */

set_supposition (Typie,Entity, Value)

retractall (current_data (Type,Entity,_)),
assert (current_data (Typie,Entity, Value)) .

/*
I * -

-INFORMATION REQUESTS--

I* -1

information

output

output_information(value.diagnosis,Type,P . Tense)
set_dialogue_context(diagnosis(disorder)),
output_diagnoses(disorder,Tense).

output_information(value,Entity, Type,P Tense)
retrieve_current_data(Entity, Type,Value,Status),
verb(be,Tense,2,Verb,[]),

assert(output([P])),

assert(output([Entity])),

assert (output (Verb)),

assert(output(Value)),

assert(output(Status)),

assert(output(end_text)).

output_inform ation(level,Entity,variable P, Tense):-
dialogue_context(diagnosis(Blackboard)),
variable_level_description(Blackboard,Entity,Level_description),
verb(be,Tense,2 ,Verb,[]).

assert(output([P,Entity])),

assert(output(Verb)),

assert(output(Level_description)),

assert (output(end_text)).

output_information(level Entity, Type,P Tense)
assert(output([Entity])),
assert(output([is,not,a,variable])),

assert (output(end_text)).

/* getting the current value of data */

retrieve_current_data(V ariable,variable,[V alue,Units], [by,supposition]):
- dialogue_context(supposition(Variable,V)),
T value(V ,ir),

Value is_string string(V,ops),
data_parameter(V ariable,units,Units).

is

retrieve_current_data(V ariable,variable, [V alue],[by ,supposition])
dialogue_context(supposition(Variable,V)),
Value is_string string(V ,ops).

retrieve_current_data(V ariable,variable [V alue,Units], [by,Status]):-
dialogue_context(diagnosis(Blackboard)),

blackboard(Blackboard,raw _data,variable,V ariable,V ,Status),

Value is_string string(V ,0ops),

data_parameter(V ariable,units,Units).

retrieve_current_data(Entity, variable,f[unknow n],[])
variable (Entity) .

retrieve_current_data(Entity, Type.[Valuel,[by.supposition])
dialogue_context(supposition(Entity,Value)).

308

retrieve_current_data(Entity, Type, [Value], [by.Status])
dialogue_context (diagnosis (Blackboard)),
blackboard(Blackboard,raw _data,Type,Entity,Value,Status)

retrieve_current_data(Entity, Type,[unknow n],[])
Archive=.. [Type,Entity,_],
call (Archive)

/* getting the level of a variable */

/* returns level if P>0.95, “fairly low" or “fairly high" if P>0.5

otherwise usual */

variable_level_description(Blackboard,V ariable,Level_description)
blackboard(Blackboard,classified_data,V ariable,Level,P),

P>0.95,

Level_description=[Level].

variable level_description (Blackboard,Variable, Level_description) :
blackboard (Blackboard,classified_data.Variable, Level,P),

P>0.5,

merrfaer (Level, [low ,high]),

Level_description= [quite,Level].

variable_level_description (Blackboard,V ariable, [normal])
blackboard (Blackboard,classified_data.Variable,_,_) .

variable_level_description(Blackboard,Variable, [not,classified])
data_parameter(V ariable,standard_deviation,none).

variable_level_description(Blackboard,V ariable [unknow n]).

