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Abstract

Buoyancy driven flows in enclosures, due to temperature 

gradients, have been studied since the eighteenth century for both 

scientific and practical reasons alike. Thus numerous analytical, 

numerical and experimental studies of two-dimensional rectangular 

cavities have been undertaken. A simple generic problem has been 

studied in order to make progress in understanding the physical 

nature of these motions. In such cavity flows, three parameters 

are found to be important, a Rayleigh number R based on the 

height of the cavity and the temperature difference across the end 

walls, the Prandtl number cr of the fluid and the aspect ratio 

(length/height).

Thermal convection in a shallow laterally heated cavity with 

conducting boundaries is considered in Chapter 2. The companion 

problem for adiabatic boundaries is studied in Chapter 3. 

Chapters 4-7 are concerned with the boundary-layer structure that 

emerges near the ends of the cavity as the Rayleigh number 

increases. On the horizontal walls two stages of development are 

identified, a horizontal boundary layer where the flow is 

independent of the temperature field and a longer scale on which 

buoyancy becomes significant. The horizontal boundary layer is 

considered in Chapters 4 and 5 and the horizontal buoyancy layer 

is studied in Chapters 6 and 7.
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CHAPTER 1

Introduction

Convective motions driven by temperature gradients not 

aligned with the gravitational field were first studied in 

connection with large-scale geophysical disturbances (Hadley 

(1735); Jeffreys (1925); Defant (1961); Stern (1975)). The 

lateral extent of the flow is a key factor in many modern 

applications including certain crystal growing techniques (Hurle 

(1966); Hurle et al (1974); Gill (1974)), cooling systems for 

nuclear reactors (Boyack and Kearney (1972)), dispersion of 

pollutants in river estuaries (Cormack et al (1974a)), and in 

solar energy collectors (Bejan and Rossie (1981)).

Due to the wide range of applications, a simple generic 

problem has been studied in order to make progress in 

understanding the physical nature of these motions. Numerous 

analytical, numerical and experimental studies of two dimensional 

rectangular cavities have been undertaken where the flow is driven 

by heating from the side. Typically the sidewalls are held at 

different constant temperatures. Reviews of the work have been 

reported by Catton (1978) and Ostrach (1972).

In two-dimensional cavity flows, three parameters are 

important, a Rayleigh number R based on the height of the cavity 

and the temperature difference across the end walls, the Prandtl 

number cr of the fluid and the aspect ratio L (length/height) .

Cavity flows driven by lateral heating have been 

investigated experimentally by Rossby (1965), Imberger (1974), 

Ostrach et al (1980), Bejan et al (1981), Simpkins and Dudderar 

(1981) and Simpkins and Chen (1986). In these flows driven by

1



horizontal temperature gradients the fluid near the hot wall 

becomes less dense causing it to rise and flow across the upper 

half of the cavity to the top of the cold wall. There it cools 

and descends to the bottom of the wall, and it then completes the 

circuit along the bottom half of the cavity. For the simplest 

thermal boundary conditions, the movement of fluid around the 

cavity is achieved in such a way that there is an odd symmetry 

about the centre (Gill 1966). Numerical studies of this motion 

have been discussed, for example, by Quon (1972) , Cormack et al 

(1974b), Shiralkar and Tien (1981) and Kuo et al (1986).

Much of the analytical work on these flows is based on 

Gill's (1966) paper, where it was first shown that for high 

Rayleigh numbers and finite aspect ratios, boundary layers on the 

end walls give rise to a stratified core region, in accordance 

with earlier experimental studies in tall cavities (Eckert and 

Carlson (1961), Elder (1965)). Gill derived an approximate

solution to the boundary layer equations using a modified Oseen 

method with the mass flux in layers adjacent to the horizontal 

surfaces vanishingly small. This assumption known as the 

'mass-flux hypothesis' was questioned by Quon (1972, 1977).

Modifications to the core flow structure when the mass-flux 

hypothesis is relaxed have been discussed by Blythe and Simpkins 

(1977). Recent numerical calculations (Winters (1983), Haldenwang 

and Labrosse (1986), Gaskell and Wright (1987)) suggested that the 

mass flux hypothesis may be incorrect for a Newtonion fluid, 

although consistent asymptotic structures have been found for 

porous media (Blythe, Daniels and Simpkins 1981, 1982).

Experiments by Bejan et al (1981) for relatively shallow cavities 

revealed that in the boundary layer regime R »  1, intrusion

jets adjacent to the horizontal boundaries penetrated the core



from the trailing edges of the end walls (the bottom of the cold 

wall, the top of the hot wall) where there were also 'sharp 

temperature gradients. The central region of the core, sandwiched 

between these intrusion jets, was found to be almost stagnant. A 

later experiment by Simpkins and Chen (1986) confirmed Bejan's 

result and thus an alternative structure to the mass-flux 

hypothesis was suggested, with all the fluid entrained in the 

vertical boundary layer being expelled into jets on the horizontal 

surfaces of the cavity, leaving an almost stagnant core.

For a shallow cavity and Rayleigh numbers R << L flow 

throughout the cavity consists of a Hadley cell driven by the 

constant horizontal temperature gradient set up between the end 

walls (Cormack et al 1974a). Non-linear convective effects first 

become significant at the ends of the cavity where the flow is 

turned when R^ = R/L = 0(1) . For small a in this limit the

Hadley cell is susceptible to a variety of instabilities (Hart 

1972). For Rayleigh numbers greater than some critical value 

R1 = Rlc(cr) the parallel core flow is destroyed and replaced by

stationary multiple cells (Daniels et al 1987). This stationary 

transverse mode of instability forms an integral part of the 

steady motion in the cavity, appearing as an imperfect bifurcation 

of the nonlinear flow in the end regions. The ensuing motion is 

difficult to treat analytically because the nonlinear effects 

become important throughout the cavity for R^ > Rlc(cr). Daniels

et al (1987) showed that this type of behaviour occurs for 

cr * 0.12 for a cavity with insulated horizontal walls. For 

cavities with conducting horizontal walls this behaviour is 

relevant for cr < 0.27 and is discussed in Chapter 2. For large



Prandtl numbers the question remains as to what form the basic 

steady motion takes as R1~^ oo. The main purpose here is to find

the form of the end-zone solution near the cold wall as R^—^ 00•

An integral constraint has important consequences for the flow 

structure, involving an unusually large constant contribution

- 1  7/5  . .

0(L R1 ) to the local temperature field, in order to maintain

the necessary heat balance. This in turn leads to the suggestion, 

alluded to earlier, of a structure rather different from the 

'mass-flux hypothesis' structure, with all the fluid entrained by 

vertical boundary layers expelled into wall jets on the horizontal 

surfaces of the cavity.

The plan of the thesis is as follows. Chapter 2 

investigates the structure of the flow in a shallow cavity driven 

by lateral heating which has conducting boundaries. The range of 

Prandtl numbers and Rayleigh numbers for which multicellular 

convection occurs is determined, as is the lateral extent of the 

end zones for general Prandtl numbers, a , and Rayleigh numbers,

Chapter 3 describes the corresponding flow structure when 

the horizontal boundaries are insulated. The structure of the 

end-zone as R1 —> oo is considered in detail, in particular a

vertical boundary layer on the end wall. The susceptibility of 

this vertical boundary layer to separate from the end wall is 

discussed suggesting a possible way in which the isotherms and 

streamlines in the vertical boundary layer are carried around into 

a horizontal boundary layer. A complete asymptotic description of 

the corner is not attempted due to its likely complexity.
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Chapter 4 formulates the problem for the horizontal boundary- 

layer, or wall jet, where the horizontal coordinate x is 

comparable with the cavity height. The solution for small x, 

where the flow has to adjust to the new temperature condition on 

the insulated horizontal surface, is described. The large x 

solution is also found, extending the work of Glauert (1956) to 

include the temperature field.

Chapter 5 contains the full numerical solution of the 

x = 0(1) region. The numerical scheme is based on the asymptotic 

structures described in Chapter 4, incorporating the work of Smith 

(1974), but extending it to include temperature.

As x increases the flow enters a new regime when

x = O ^ 275) and the buoyancy term, absent to a first

approximation in the x = 0(1) region , reappears in the vorticity

equation. In Chapter 6 asymptotic solutions are found for small 

x3 and large x^, where x^ is the horizontal boundary layer

coordinate for this region. Buoyancy couples the vorticity and 

heat equations and the jet structure in the x = 0(1) region 

develops into a boundary layer with a forcing velocity at the 

outer edge of the layer. The problem is now dependent on two 

parameters, the Prandtl number cr and the effective forcing 

velocity e, a consequence of the recirculating inviscid zone 

above the horizontal boundary layers. It is shown that buoyancy 

produce^an adverse pressure gradient whose effect becomes apparent 

downstream as the inertial and viscous terms weaken, and reverse 

flow is predicted to occur for certain ranges of cr and e.
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Chapter 7 contains a numerical investigation of the boundary 

layer analysed in Chapter 6. It is shown that for only a 

restricted range of e is a straightforward development 

downstream possible. For low values of e, a singularity is seen 

to develop in the boundary layer leading to the breakdown of the 

numerical scheme. The implication for the overall structure of 

the flow in the cavity is discussed in the final section.



CHAPTER 2

Thermal convection in a shallow laterally heated 

cavity with conducting boundaries

2.1 Introduction

This chapter investigates the structure of the flow in a two 

dimensional rectangular cavity driven by lateral heating. The end 

walls are maintained at fixed but different temperatures which 

generate steady two dimensional motions within the cavity. The 

horizontal boundaries are assumed to be conducting. The 

companion problem for insulated boundaries has already been 

discussed by Daniels et al (1987).

The aspect ratio L is assumed to be large so that the 

cavity is shallow while the Rayleigh number R based on height is 

0 (L) . In this range nonlinear effects become significant in the 

end zones. For R << L the flow is conduction - dominated 

everywhere with a parallel two-way flow generated throughout most 

of the cavity by a linear temperature field set up between the 

vertical end walls. The local solution near the vertical walls 

satifies the full nonlinear Boussinesq equations when R^ = 0(1)

and involves eigensolutions that generally decay away into the 

core region; these eigensolutions are involved in turning the flow 

in the end region, but one is associated with a stationary 

transverse mode of instability (Hart (1972), (1983a)) which can

present itself at low Prandtl numbers. The parallel core flow is 

then destroyed by this spatial oscillation, and as the Rayleigh 

number increases the instability is forced into the system as a 

smooth transition emanating from the ends of the cavity. This 

chapter determines the overall flow structure in the cavity and 

the range of Prandtl numbers and Rayleigh numbers for which this
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imperfect bifurcation occurs. It also determines the lateral 

extent of the end zones for general Prandtl numbers and Rayleigh 

numbers. A complete numerical solution of the nonlinear end zone 

problem has not been attempted.

2.2 Formulation of the problem

The flow domain is a rectangular cavity of height h and 

length l . The end walls are maintained at fixed but different 

temperatures which generate steady two dimensional motions within 

the cavity. The governing equations for the flow, taking buoyancy 

into consideration, are the Navier-Stokes equations,

a*au* -1 è* + )) fù* + \
dx* Je* r 1 £lkX i z / (2.2 •1)

3?
-_L
f*

i f  4 V / ¿ V
( Jx*2 (2.2 .2)

the heat equation,

ifJi* + W*àf = */ £ £  +
¿X* ài* ( a**2 a2*2 > (2.2,■3)

and the continuity equation

k k k
where (x , z ) are Cartesian co-ordinates, x in the direction 

along the horizontal boundaries and z* in the direction up the

end walls with the origin at the bottom of the cold wall

(x* = 0) .
*

u and
*

w are the velocity components in the

directions
*

X and *
z respectively

*
and T is the temperature

k
with T =

*
To on the cold wall; p* is the pressure,

k
p is the

density, v is the kinematic viscosity, < is the thermal 

diffusivity and g is the acceleration due to gravity (see figure 

2.1). It is assumed that
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(2.2.5)f * =  f . O -  K T - T * > )

of thermal expansion. In line with the Oberbeck-Boussinesq 

approximation the variation of density with temperature is assumed 

to only affect the buoyancy term in (2.2.2).

Re-scaling the variables as follows 

_* * —

. * *
where p is the density at T = T and /3 is the coefficiento o

U*- k/£ , T= T0 + T AT \ 2 h, ¡>Jr Pa 92* + t
K k k*

wke.ce. 1^*+ AT* is +Ke. of +Ke KoT
equations (2.2.1)-(2.2.4) become

èo
¿x  ___

CT R T

à x  ¿>%

ii JJ 4 w i r  _ à zT

*  ¿ i?  =  
à ï

- 5 J .  +  <r /
<35 l

'  ^ 3  ^ ¿ 5

vJ e)w * +  o - /' £ ?  + « 3 ^

5 1 <35 ', J x 2 r

+  r_

(2.2.6)

àx. ¿2 àx7" à z.7

(2.2.7)

( 2 . 2 . 8 )

(2.2.9)

( 2 . 2 . 10 )

By eliminating the pressure from (2.2.7) and (2.2.8) and by 

introducing a stream function ip defined by

u. * ^  , w/ * — d T

equations (2.2.7)-(2.2.10) may be reduced to

v * ? -  R i r  .  J .  J X £ !£ i £ )

where V2 in the Laplacian operator.

The non-dimensional parameters are the Prandtl number

CT = V 
K

( 2 . 2 . 11)

(2.2.12)

(2.2.13)

(2.2.14)

9



and the Rayleigh number

I? _ ^a_AT_j\3
(2.2.15)

The rigid walls are impermeable and at constant temperature so 

that

ip- 4Ï : T  =  <3 art x"— O
¿X (2.2.16)

and

Lpr r O  f T =  / OA X- L

c>5C

where

(2.2.17)

L  - l  /  h (2.2.18)

is the cavity aspect ratio. The horizontal walls are rigid and 

conducting, so that

5 t ÜF * 0  , J* —  OA ¿ - 0 , 1 .
1 S i  L

(2.2.19)

Gill (1966) noted that the governing equations and boundary

conditions possess the centrosymmetry properties

Q l  x, 2 ; L, R, t r ) - 9  (l*-5Ey 1 -Z; L, R , < r )  t 

T(x, i  ; L, R, * )  * 1 " T  (L-£, \ - i 3 l, R, rj ,
(2.2.20)

which allows half the flow domain to be considered.

This chapter is concerned with the limit L-* oo such that

R / l  - o ( i )
(2.2.21)

for which the flow contains strong nonlinear effects in end regions 

near the vertical walls.
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2.3 Core region

Away from the ends of the cavity appropriate independent 

variables are

~ X / *- / i ' i  (2.3.1)

Expanding formally the stream function and the temperature,

?(£,*>(!,,L,or)s «Ì(i,Z ;|2,,0-) + L',Ì ( t i ; E , ^ )  + 0 ( c 2 )

T ( x , 2 j ¡?l t L,<r)s To L % ,<r) -f 0  ( L'z  J
(2.3.2)

and substituting into (2.2.13) gives at 0(1),

~  g , d o  = o

J * '»  à*> (2.3.3)

à^Ta - o  . 

d z l
(2.3.4)

The use of Gill's centrosymmetry relations and the boundary

conditions (2.2.17) gives

(2.3.5)

At 0 (L-1 ) using the expressions found for Tq  and ijjo

i ! j  -  &  ill-z ) ( l - 2 z )  
12 (2.3.6)

* %  , z d .

a « '*  ^
(2.3.7)

Using the same conditions as above gives

y . o ,  t * * )
1 1 1 '  120 4 ?  72 720 ) ■ (2.3.8)

Further terms associated with inverse powers of L in (2 .3.2) are

zero so that

V -  e , F ( i )  ,  T *
(2.3.9)
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to within corrections which are exponentially small as L

2
(see Section 2.4) and where F(z) = ~ ( l ~ z ) 2 and

£  _  £

120
- JL •

T2Ù
(2.3.10)

The results (2.3.9) are only valid if a consistent solution can be 

found in end-regions near each vertical wall. Regions in (R^cr)

parameter space for which parallel core structures exist are 

determined in later sections.

2.4 End Region

At each end of the cavity is an approximately square region 

in which the flow is turned. The flow has a structure near x = 0 

defined by

fix,I / fc,, i, * ) * 4Yx,ij £,,«■)+•••

; P,, L, <r) = L1 Tl*,*,' ^,,or)+‘ -- ( *
where

y .  - *  ,  *  t g  .

\J) and T satisfy (2.2.12) and (2.2.13)

replacing (̂ , T, x, z , R). Boundary 

region are

V * g -  -  - = o

V . 4H = O , T* X  M 2 = O, I .
¿2

(2.4.2)

with (0, T, x, z, Rx) 

conditions in this end

(2.4.3)

(2.4.4)

The end region solution matches with the core solution 

\\> and T have the following limiting behaviours

f  ^ R, F(z) ■+ 0(& )

T  ^  ■+ 0(e, j

given that

(2.4.5)

(2.4.6)

12



as x —*oo, where Re(a) > 0 .  A full numerical solution of this 

nonlinear problem is not attempted but some of its main properties 

will be discussed.

(2.4.7)

The decaying parts of the stream function and temperature in 

(2.4.5) and (2.4.6) have the forms 

!?, , r )  ex)> >*) x) ,

& { * ' ,  R, ¿ft ,<r)x ) ,

respectively, where 0, 0 and a are determined by the sixth 

order boundary value problem

i/> 'U  i s f  +  + ( f 'V - f

&■" +  ~ <t>‘ * - F‘&)
(2.4.8)

(2.4.9)

with

O  - d - (t) - O OA Zr-O.  1.
W ^  ' (2.4.10)

The decomposition (2.4.7) follows from the fact that the decaying 

parts of \Jj and T satisfy a pair of linear equations whose 

coefficients depend only on z, implying that the dependence on x 

is of exponential form.

The forms in (2.4.7) will be generated by the conditions 

(2.4.3) so that the end region will have a solution consistent 

with the core region solution only if a triply infinite set of 

eigenvalues a with Re(a)>Q exists. If the eigenvalue a(Rlf a )

corresponds to the eigenfunctions 0(z; R-L, cr) and 0(z; R1, cr) ,

the boundary value problem implies that - a ( R 1 , O') corresponds to

0( 1-z; R1# cr) and -0(1*. R1# a ) . Also if a is complex then

. *
the complex conjugate a (R^, cr) corresponds to 0*(z; Ri; cr)

13



and 9 (z; R , cr) . Attention can therefore be restricted to the 

first quadrant of the a plane.

The roots can be counted by reference to the structure at 

R1 = 0, which is not dependent on the Prandtl number, and which 

has a triply infinite set of eigenvalues with Re(a) > 0 .  At

R1 = 0, (2.4.8) becomes

with 0 = 0 ' =  0 on z = 0 , l  and (2.4.9) becomes 

&  ~ &  (2.4.12)

with 9 = 0  on z = 0, 1.

Equations (2.4.11) and (2.4.12) indicate that there are real 

eigenvalues defined by trivial solutions of (2.4.11), that is, 

0 = 0  for all a, and from (2.4.12)

** " , O -  S,A T̂T;2 , d = I ... (2.4.13)

Complex eigenvalues are found from the non-trivial solutions of 

(2.4.11) and occur in two non-combining even and odd groups

SUV*2 - * i O D S ¿2 •+ (rfotfh*-|) 2sV\*2- (2.4.14)

where a is the solution of 

Sid2«: - oc1~ -  O  . (2.4.15)

The even eigenfunctions correspond to the solutions of 

sin a + a  =  0 , tabulated by Robbins and Smith (1948)

<*= *212* + 2-2S07i, 10.713+ U o X l l j  .. . (2.4.16)

14



and the odd ones to the solutions of sin a -  a = 0, tabulated by 

Hillman and Salzer (1943)

*= MT77+ ,\y\to+3.ZS2ll, ...
(2.4.17)

2.5 Numerical results

A fourth order Runge-Kutta scheme with Newton iteration was 

used to solve the eigenvalue problem numerically. Solutions were 

calculated for fixed cr by incrementing R1 using the value of

a at the previous R^ as an initial estimate. By use of this

method the roots could be traced from the known values at R = o.

Figures 2.2 and 2.3 show the first few branches of the real 

and complex eigenvalues for infinite Prandtl number; each branch 

maintains a positive real part for all values of R1# which

indicates that the end-region solution matches in a consistent 

manner to the core region solution. The decay of the real 

eigenvalues as R — j? oo indicates the expansion of the end region

into the core at large R^.

Figure 2.4 shows the first few branches of the real 

eigenvalues at various finite Prandtl numbers; for cr = 1 there

is little change from the infinite Prandtl number case and for 

cr = 0.1 the decay of the eigenvalues as R^ » is still

apparent.

Figure 2.5 shows the first complex branch at Prandtl numbers

of 0.1 and 1.0. For the cr = 0.1 branch the real part of a

becomes zero at a critical value of R, = R, and the root1 lc

bifurcates into two imaginary branches for R^ > Rlc. This type

15



of bifurcation occurs for cr s crc =* 0.27 with Re (a) zero for 

R,> -Spatial oscillations from the end zone then enter the

core and Rlc(cr) maY be identified with the critical Rayleigh

number for the transverse mode of stationary instability of the 

parallel core flow, first examined by Hart (1972). Figure 2.6 

shows the critical Grashof number

(2.5.1)

as a function of cr.

2.6 Asymptotic results for large R^

(i) Decaying roots

The real branches in figures 2.2 and 2.4 have the asymptotic

form

* ̂  o¿o/l?| CVS P| oO , (2.6.1)

where aQ is the eigenvalue defined by the boundary value problem

(2.6.2)

(2.6.3)

with

<j -  (j> = f r = O  = û; I. (2.6.4)

Numerical solutions calculated by a Runge-Kutta scheme are 

shown in figure 2.7. Real solutions exist for all Prandtl 

numbers, and the leading branches approach the limiting values

»4= '« 52, 11052,301H «s (2 6 5)
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found by taking the right hand side of (2.6.2) equal to zero. 

Wholly imaginary roots exist for cr < 0.24.

(ii) Finite roots

Numerical calculations suggest that asymptotic solutions 

exist in which a remains finite as R^—* 00 and purely imaginary

solutions may correspond to the upper branches of the neutral 

curves in figure 2.5. For such solutions

^  0  (?) ' 0  ~  $■(*) as 0Û , (2.6.6)

where a is real. Substitution into (2.4.9) gives

B * $ I F (2.6.7)

and therefore (2.4.8) yields

A local solution of (2.4.8) and (2.4.9) consistent with 

(2.4.10), close to the lower surface of the cavity, requires that

Oft*) , &= 0(2'') <*S 2 -^ 0

1 4 a* 1 /2
where A = j {1 + ( 1 +  —̂ ) }. It is also required that

at z = 1. From (2.6.8) it can be shown that

K + |Z- z  1 ^   ̂ as U - H  0

(2.6.9)

0 =  0

( 2 . 6 . 10 )

where K+ are arbritary constants, and

Ü ~ (  \ -  f o r / 5  ) (2 .6 .11)

It may be argued that for cr < 5/14 the stronger of the two 

singularities must be avoided i.e. K_ = 0. If the reverse were

true then a solution subject to (2.6.9) would have to be

17



constructed in z < ^ with K_ * 0 and the symmetry of (2.6.8)

implies a similar behaviour would occur in z > — . The structure 

near z = j  is then a critical layer defined by

z= t  ■* ( f , 5 )  Z

m ,«) ( ® (r )

( 2 . 6 . 1 2 )

(2.6.13)

where it is assumed that </> = 0(1). Substitution back into

(2.4.8) and (2.4.9) gives

5?£>s-$ -24tzfl+<r)J —  Z 2 ̂  ~ - O , (2.6.14)

which is independent of a. The solution of (2.6.14) must satisfy

$ (i) as Jzl-? °° • (2.6.15)

Daniels, Blythe and Simpkins (1987) considered a similar problem 

to (2.6.14) and (2.6.15) and were able to show that non-zero 

solutions would not generally exist, contradicting the original 

assertion and suggesting that the outer solution must satisfy

(2.6.16)

Figure 2.8 shows the numerical solution of (2.6.8) subject to 

(2.6.9) and (2.6.16). To distinguish between the two singular 

forms in (2.6.10), the solution is rewritten as

<P -- l (2.6.17)

where

1  -  k - i  , 3

-2 (
f + j  r <

- f

7 (i

(2.6.18)

(2.6.19)
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The boundary conditions derived from (2.6.9) and (2.6.16) are

The numerical solution was computed from C = 0 to £ = 2 ~ 7 

using an additional initial condition f' = 1 at £ = 0; 

iterative adjustment of a enabled a solution to be found for any 

Prandtl number 0 < a  < 5/14. The influence of the central 

singularity can be seen by replacing (2.6.16) by

The resulting upper branch of figure 2.8 is obtained by use of the 

conditions

The form of the solution for a, on the lower branch of 

figure 2.8, can be found analytically for small Prandtl number, 

where

The boundary conditions on <pQ obtained from (2.6.9) and (2.6.16) 

are

- r
( 2 . 6 . 20 )

O . ( 2 . 6 . 2 1 )

/ ( 2 . 6 . 22 )

oL ^  (S' oL̂  <k% <5*—> O . (2.6.23)

The corresponding eigenfunction is

(2.6.24)

and substitution into (2.6.8) gives at leading order

(2.6.25)

(2.2.26)
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and

K+ U -  i I QS ¡2- ¿1 O

giving, without loss of generality, 

I
F.

At order a

f 7 , " + < t  -

and the boundary conditions on are

0i 0 ( i  ioge2 ) ciS 2 - ^ 0

and

<0 ^  I * ’ akfclS'zl I If" * 1 - ^ 0 .

Writing

= F JH(z),

(2.6.29) reduces to

4 [ F -

and use of (2.6.30) and (2.6.31) gives

•(4 c -L lo, Z*p-i)----  4. corisFa/fF .
IO 0 i - * ) 7

At order a  

'2 7»« -1 “ I
F V / ' ^ ' - F ' ^ X - F ' 3̂  o

and the boundary conditions on 02 are

3 O f «  O

(2.6.27)

(2.6.28)

(2.6.29)

(2.6.30)

(2.6.31)

(2.6.32)

(2.3.33)

(2.6.34)

(2.6.35)

(2.6.36)
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(2.6.37)
U 4 I  I «s /z-il o  .

A consistent solution of (2.6.35) exists only if

j fe ( F'2- q ’tt) Jz - o  ,

0

which gives

5 . -- j r f i n  -  4 - 3 W  .

This result compares well with the numerical solution, as shown in 

table 2.1 and figure 2.8.

2.7 Discussion

Convective motions driven by a horizontal temperature 

gradient in a shallow cavity with conducting walls have been 

analysed for the limit L—^ 00 with R = R/L = 0(1), over a range

of Rayleigh numbers R1 and Prandtl numbers cr.

The numerical solution to the relevant eigenvalue problem 

indicates the existence of a critical Prandtl number cr * 0.27

below which the parallel core flow is destroyed by multiple eddies 

which are forced into the core if the Grashof number Gr = R /cr

is greater than the critical value Gr (cr) shown in figure 2.6.c

As cr~*0 the results show that Grc approaches a value of about

8 x 103 consistent with, but a little higher than, the critical 

Grashof number of 7980 for cr < 0.02 found by Hart (1972).

Figure 2.6 shows that the results also compare well with the work 

done by Kuo, Korpela, Chait and Marcus (1986) whose stability 

analysis was based on the use of Chebychev polynomials and

and
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collocation. The insulating boundaries case was studied by

Daniels, Blythe and Simpkins (1987) and their results for the

critical Grashof number as a function of Prandtl number are also

included in figure 2.6. The Gr curves for the insulating andc

conducting boundaries approach the same limit as ct — ?  o, 

consistent with Hart's (1972) arguments that the critical Grashof 

number should be the same because the thermal contributions become 

negligible in this limit.

At general Prandtl number, the decay of the end zone 

solution is reduced as the Rayleigh number is increased, causing 

the structure set out in Sections 2.3 and 2.4 to break down. 

Figure 2.7 identifies the e - folding decay length

X ^ o£ (2.7.1)

associated with this process, with aQ =* i.8 x 103 for cr £ 0.2.
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TABLE 2.1

Numerical solution of (2.6.19), (2.6.20) for small a

a a a / a

0.20 0.98708 4.93542

0.15 0.71227 4.74846

0.10 0.46044 4.60443

0.05 0.22447 4.48946

0.01 0.04413 4.41296

Asymptotic a / a = 4.39545
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Figure 2.1 Flow domain of Problem.
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Figure 2.2 First three branches of the real eigenvalue
a for infinite Prandtl number.



First three branches a, b, c of the complex 
eigenvalue a for infinite Prandtl number, 
-------  real p a r t , ------  imaginary part.



Figure 2.4 First three branches of the real eigenvalue
a for a = 0 . 1 , ------ and a = 1, ------

1



Figure 2.5 Complex eigenvalues a for finite Prandtl
number, ------ , Real part, ------ , Imaginary
part; (a) cr - 0.1, (b) <r = 1.0.



LOG 10
5,

Figure 2.6 Comparison of critical GrashoJP numbers.
a) Daniels et al (1987), b) Present Work, 
c) Kuo et al (1986), d) Hart (1972).

\
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Figure 2.7 Eigenvalues aQ as a function of Prandtl number, 

------ , Real p a r t , ----- , Imaginary part.

X 1 0 4



Figure 2.8 Eigenvalues <x for 0 < a < 5/14.



CHAPTER 3

Thermal convection in a shallow laterally heated 

cavity with adiabatic boundaries

3.1 Introduction

In this chapter the structure of the flow in a shallow 

laterally heated cavity with adiabatic horizontal surfaces is 

considered. As mentioned in Chapter 1 the problem was studied by 

Daniels et al (1987) and in Section 3.2 the main results for 

Rayleigh numbers R 1 = R/L = 0(1) are reviewed. The overall

structure is similar to that described in detail in Chapter 2 for 

the case of conducting boundaries.

Section 3.3 describes the structure of the flow in the 

end-zone at the cold wall as “/ discussed by Daniels et al

(1987<t);it details the relevant scalings for a vertical boundary 

layer adjacent to the end wall and sets out the resulting boundary 

layer equations. A similarity solution is found numerically in 

Section 3.4 and compared with previous results obtained by Ostrach 

(1952) and Kuiken (1968). Section 3.5 shows that the vertical 

boundary layer is susceptible to separation of the type described 

by Smith and Duck (1977) suggesting a possible way in which the 

isotherms and streamlines in the vertical boundary layer are 

carried around the lower corner into a horizontal boundary layer. 

A complete asymptotic description of the corner is likely to be 

extremely complicated and is not attempted. Finally, Section 3.6 

gives a summary of the overall end-zone structure for R^ >> 1

proposed by Daniels et al (1987a.) and this forms the basi^ for a 

study of the horizontal boundary layer structure in Chapters 4-7.
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3.2 Formulation and the solution for = R/L = 0(1)

The governing equation for the flow, from Chapter 2 are

f +  j- x  y )

<3Z

t = ^ y)
afx, l )

The boundary conditions on the rigid walls are

(p - ^  : T  =  O  ©A £  - O  
T d i

f a - O , T" ~ I ori x - L
¿ 5 -

(u -  ^  ¿ T  -  o  ^  2 - 0 , 1 .

¿ 2  ¿ 2

(3.2.1)

(3.2.2)

(3.2.3)

(3.2.4)

(3.2.5)

The boundary conditions and governing equations are consistent 

with Gill's (1966) centrosymmetry relations

ÏYx, Ï )  -  V  (L-X/ l-i)

T l x ,  z )  -  i -  f  ( L -  Si , 1-2 )
which allow one half of the flow domain to be considered.

(3.2.6)

For L »  1, and

i? = R/ l  =
I

Daniels et al (1987) outlined the formal 

structure. The core region where

= X l*~ / 2 = 2

(3.2.7)

asymptotic flow

(3.2.8)

is dominated by lateral conduction associated with a Hadley 

circulation so that

T r \ + L"' -t o ( c x) (3.2.9)
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and

v «  (?, 5 i - i  c '  c,(/?, r Y?) + 0 ^ ) (3.2.10)

as L oo, with

f A z ) =  ; Z ? - J - ^ 4  • 
/2tD 4^ 7^  I44£> (3.2.11)

Cl^R l' is a constant contribution determined by matching with

solutions near the end walls.

Near the cold wall, the solution adjusts to the boundary

conditions on the wall in an approximately square zone where

x = x, z = z are 0(1). Here,

t * l-'t (*,*)+..., < ? • m , ? ) + ■ ■ ■ (3.2.12)

Substitution into (3.2.1) and (3 .2 .2 ) giveS

tAf-. ft, £f +  X  J i f f , * )
¿X.  d ( x , ? )

(3.2.13)

and

\7z r =  m t , vi
(3.2.14)

6 ( x , 2 )

respectively.

It is also noted that the pressure field in the end zone may

be expanded as

f = -t—  •
(3.2.15)

where

U c)u w  ¿ U  = - d"
<3x <3̂  <3 x (3.2.16)

+  IV d w  = - i f  + S-iAw/ t s - ^ T

d x  ¿>2
(3.2.17)
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From (3.2.3) and (3.2.5) the equations are to be solved

subject to

4* = i f  = 1 =- 0 04 X =  O
ÒX

J J  . è T
= O O A  ï  S. 0 ,  |

Ò 2 à i

and to match with the core solution

T ^  X •+ C. -h F, F, (a-)

F'I ( z )

as X  —y> o o .

The core temperature is determined to 0(L 1) 

matching requirement

through

(3.

The value of c can only be determined by solving the end 

problem (3.2.13)-(3.2.21).

In order to be consistent with the parallel core flow 

end zone solution must have the form

fi) + $ ( i  ) i O’ ) f> , <r) x ̂  (3 # :

T - X + C - t  R , f +  (3.:

as x —p  oo where Re (a) > 0. Substitution into (3.2.13)

(3.2.14) yields the sixth-order boundary value problem for < 

and a :

2^ " ' t T'içV - t - V t  (3.:

( F . v - r « - )

!. 18) 

!. 19)

! .2 0 )

!. 21 )

the

.22)

zone

the

.23)

.24)

and 

, 0

.25)

.26)
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with (j ■* (jt> - Or - O  6A 2=0 , 1 . (3.2.27)

Daniels et al (1987) solved the above eigenvalue problem 

using a fourth-order Runge-Kutta scheme and Newton iteration. 

When = 0 (1) the vorticity and energy equations uncouple and

the non-trivial solutions of the reduced system for <p are

associated with the same complex eigenvalues as in the conducting 

case (see Chapter 2). Studies of the complex solution branch for 

various values of cr show that as in the conducting case

Re (a) = 0  at finite R^ > R if cr is sufficiently low, and

beyond this bifurcation point spatial oscillations penetrate the 

core from the end zones. Figure 2-& shows a graph of the critical 

Grashof number Grc = Rlc/cr as a function of cr. The limiting

value of Gr “ 7950 at cr = 0 is consistent with Gr - 7880c c

found by Hart (1972) and Gr * 8000 found in Chapter 2 for the
C

conducting boundaries case. As cr 0 the limiting values of

Grc for the insulating and conducting boundaries cases are

believed to be the same as thermal effects become negligible in 

this limit (Hart (1972)). Similar results for the transverse 

modes of stationary instability have been found by Hart (1983a). 

For cr > cr * 0.12 it appears that the parallel core flow could

exist for all R 1 when the horizontal boundaries are insulated.

Altering the horizontal boundary condition from adiabatic to 

conducting has the effect of increasing to approximately

0.27.

Numerical studies for flows in shallow cavities have been 

described by Hart (1983b), who solved the end zone problem
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numerically for low values of cr, and by Drummond and Korpela

(198?), who solved the Oberbeck-Boussinesq equations using a finite

difference technique and the Du Fort-Frankel method, again with 

attention focussed on small cr. Their examples of the flow field 

near Grc illustrate the emergence of multicellular flow.

Solutions of the end zone problem involving higher cr have not

previously been considered in any detail, although currently a

numerical investigation is under way to calculate the parameter c 

for a whole range of cr and R 1 (Daniels and Wang (1990)).

3.3 The end zone structure for R 1 »  1

At general R ^  integration of the energy equation (3.2 ./->•)

using (3 .2 .1̂ ) gives an expression for the horizontal heat transfer 

balance

where Q.̂  is a constant.

If we assume the parallel flow structure (cr > cr ) and use
c

the form (3.2.10) and (3.2.21) as x —?<», Q can be evaluated as

The convective term \Jj —  is the major contribution to the

left hand side of (3.3.1) at large x when R 1 »  1. At the wall

. dT(\p = 0 ) the conduction term dominates requiring that locally

(3.3.1)

(3.3.2)

where

(3.3.3)
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(3.3.4)Tc 0 (x C  ) •
In the vertical boundary layer a balance between conduction and 

convection in the energy equation, and a balance between viscosity 

and buoyancy in the vorticity equation requires that

x t )= 0(l) , Y-0( 7 , T x * )  (3.3.5,

which together with (3.3.4) implies the following scalings for the 

layer:

, 2 - 2  , T -  e * T ,  ( z - ? « y  (3.3.6,

Other possible scalings appear to lead to contradictions. The

scalings (3.3.6) differ from the 0(RX) scalings for T and

that might have been expected from the forms (3.2.20) and

(3.2.21 ), a consequence of which is that the order R1?/S

temperature field outside the vertical boundary layer must be 

constant, with

*+ • - ' (3.3.7)

The governing equations and boundary conditions in the vertical

boundary layer are therefore

= ¿T. i f  'is j h j -  i

d x ?  c)x, <r L cDx, J
and

A  = «XT.,

«V <Xx,,z)
with

¿ 3
dXj

- P  C

*;■ * •  t  - o

as X*-*

OA O  .

(3.3.9)

(3.3.10)

(3.3.11)
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A solution to (3.3.8 )-(3.3.11) is the similarity form

t ; = m ^  '  ^ M 3A

where 7)

1/4c x,o 1
1 / 4

(1-Ï)
as discussed by Squire, see Goldstein

(1938). Here

f 4 i' ( 3A ‘  ̂f ) ” 3 -H =• o
3 " + % i 5 ‘ = o

with

f = f '1, j  c O [*\ -  ° )  j  J ~> I , f  Ô  ̂ .
The boundary conditions at 7) = 0 follow from the end wall

conditions (3.3.11), and the conditions at ij = «> from (3.3.10) 

which is based on the assumption that there is no vertical 

external flow of magnitude R ^ 5. By integrating (3.3.14) using

(3.3.15) an expression for g can be found:

3 = J„1 J<? f M\ ^
J0“  »»h £~J/* J .H  ^

The wall heat transfer can be approximated to within 

formula

1 :  37 o ) -- i  i  ?-434 + A . m  ¿ x+

(3.3.16) 

by the

(3.3.17)

for all values of a (Ostrach (1952)), and agrees with a 

numerical solution outlined in Section 3.4 (see table 3.2 below). 

The heat transferred through the cold wall from the vertical 

boundary layer

C  £  S , m  j * (3.3.18)
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is the dominant contribution to the left hand side of the integral 

constraint (3.3.1) at x = 0. Using (3.3.12)

c j *  /  • %  Qo (3.3.19)

so that co

At the base of the vertical boundary layer the wall heat transfer 

has been converted to a convective transfer

which is carried with the isotherms and streamlines around the 

lower corner into a horizontal boundary layer (see Section 3.6). 

This conversion to a horizontal transfer

near the base of the cavity accomplishes the transfer of 

(negative) heat energy, via a horizontal boundary layer structure, 

into the main outer part of the end zone where x = 0(1^). The

integration on the left hand side of (3.3.22) is taken across the 

horizontal boundary layer region to be discussed in Section 3.6.

3.4 Solution of the vertical boundary layer equations

To solve the problem (3.3.13)-(3.3.15) we obtain a system of 

first order differential equations for discretization by setting

(3.3.21)

(3.3.22)

(3.4.1)

Substitution into (3.3.13) and (3.3.14) yields

(3.4.3)

(3.4.2)
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The three first order equations in (3.4.1) are approximated by

r  = 8 -  BL, £T =>1-7)*
' J—  ' J'i J"' (3.4.4)8,.,= 

J 1

where
”j = ’

v_
0 l

S
' i

+  J-

kj
S~

and +  J- ( A E \ -  a =  O  .
Zj. J *s

(3.4.5)

(3.4.6)

The equations are centred on 1rij_1/2* The centred averages taken 

for the nonlinear terms are

/ 8  = J f Sj + A i c i  (3.4.7)

The boundary conditions, from (3.3.15) are

A0 = °  / ~ ° /  ^ > r Q  ) D ^ 1 / - 0  (3.4.8)

for N sufficiently large. From (3.4.5) and (3.4.6) we obtain

^ < 6- -- 0  (3.4.9)

and

^  ^ 4;Ej -t 4j-, Ej.,^ - c (3.4.10)

respectively.

A Newton iteration scheme is used to solve the problem and 

details are given in Appendix 1. In the computations the 

meshwidth h was 0 . 0 1  or 0 . 0 2 and the tolerance for which the 

Newton increments were deemed sufficiently small was set to 

0.0001. The effect of the size of h on the values of f and g 

(A and D) is presented in table 3.1.
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Graphs of f, f' and g against 77 which show that for 

larger cr there is a wider and stronger jet but a thinner thermal 

boundary layer are shown in figures 3.1, 3.2 and 3.3 respectively 

for Prandtl numbers of 0.028 (mercury), 0.1, 0.72 (air),

8.1 (water) and 17.2 (ethylalcohol) . The main properties of the 

solution are summarised in table 3.2.

The system (3.3.13)-(3.3.15) has been previously considered 

by Ostrach (1952) and Kuiken (1968), the latter for large a  

only. Figure 3.4 shows that the present solution and Kuiken's 

temperature solution for a  = 2 are in good agreement. However 

there is some disagreement with the velocity solution (figure 3 .5 ) 

and the present solution is more in line with Ostrach's work at 

this Prandtl number. This is due to the Prandtl number being too 

low for the validity of Kuiken's asymptotic solution, a fact which 

is further confirmed in figure 3.6 for cr = 10 where the two 

solutions are virtually indistinguishable from each other.

3.5 Separation of the vertical boundary layer

In this section the separation of the wall jet in the 

vertical boundary layer on the end wall is investigated. This 

problem was considered by Smith and Duck (1977) who showed that 

separation was possible within a double-deck structure which in 

the present context is of vertical extent z = 0 (R^”18/35) . The

double-deck consists of a main deck of width x = 0(R1’3/S) which

spans the vertical boundary layer and a viscous sublayer of width 

x = 0(R^^/35). The double-deck itself is located close to the

lower corner of the cavity at z = z where z << 1 .
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In the main deck the velocity and temperature profiles at 

the base of the vertical boundary layer -w = O i R ^ 5),

7/5
T = 0(R1 ) remain unchanged to leading order but contain

corrections of relative order R-6735; there are corresponding

perturbations of order
33/35

R 1 and R 1
72/35 to the horizontal

velocity and pressure fields u and P respectively.

Corresponding solutions for w, T, u and P in the viscous
34/3S *3/3* *7/35 73/55

sublayer are of order J?, , K, ) curd R, respectively.

Continuity of pressure across the boundary layer leads to a 

relationship between the inviscid displacement of the main deck 

and the pressure field in the lower deck which is sufficient to 

allow a numerical computation of the lower deck solution, first 

carried out by Smith and Duck (1977). A solution exists in which 

the pressure increases as z decreases and leads to separation of 

the flow from the wall within the lower deck, with a slowly 

moving upward flow close to the wall. Because of the short length 

scale of the interaction, buoyancy effects are of minor 

significance and the temperature field does not influence the 

leading order velocity field in the double deck. The flow during 

interaction is therefore precisely that calculated by Smith and 

Duck (1977), incorporating the order of magnitude arguments of 

Smith (1976).

Smith and Duck argued that during the interaction, the fluid 

near to the wall forms a sublayer caused by the induced pressure 

gradient, whilst the majority of the boundary layer behaves in an 

inviscid manner. Upstream of the separation point the sublayer 

pressure rises slightly, causing a decrease in the skin friction, 

leading to the expansion of the sublayer. The resulting movement

43



of the fluid in the inviscid region induces a pressure fall across 

the jet, but as the pressure at the edge of the jet remains 

unchanged, the transverse pressure gradient reinforces the 

pressure rise at the wall and so the process is mutually 

reinforcing. If the arguments put forward by Smith & Duck (1977) 

are valid in the present context, the separation (followed by an 

eddy of reversed flow) is most likely to occur within the double

deck at a distance zo = o(Rl'9/3S) from the corner. The

isotherms and streamlines are swept around the corner into a

horizontal boundary layer to be discussed in Section 3.6.

3 . 6  Outer structure and horizontal layers

The core solution and the governing equations in the end 

zone of the cavity suggest a main outer horizontal length scale 

for the end zone where x = 0(R1). Therefore w e  define

and expect that

T , K ,  <3>(X,e) ,

1, ~  1?,-=-^ <3'6 '2) 

where c(R1, cr) is defined in(j,3.7) and from (3 .2 .1 3 ) and

(3*2.14-) 9 and ¥ satisfy the horizontal boundary layer

equations _  __ _

m  + 1  r w  an- -  £ ¥  7
¿ ¿ i f ¿ X  (3.6

j*» " <jfx,e r  (3-6

These must be solved subject to the full horizontal conditions

J  « jZ =
Ò 2

Ò  OA &  -  O  /  I
(3.6.5)
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and the required outer behaviour

g) ̂  X + F] (?) /  ̂ fi fe) aS X ** •
Here any constant contribution to 0 is considered part of 

c(R1, cr) and the solution must satisfy the integral property

f  f  ^  di -  Q . U  x ) .
J© ¿2

As X —* 0 the governing equations (3.6.3) and (3.6.4) are 

first modified within a region where horizontal diffusion becomes 

significant. Here x, z are appropriate local variables and
v A

T  ̂  / O') ■+ (X f ?)
(3.6.8)

(3.6.9)

giving the inviscid convection - dominated system

o ,  < J ( r X i ) + ^ J ©  =  o .

<3(>f 2-1 ?) ^ x

Adjacent to the end wall it must be anticipated that 

which case the inviscid zone must accommodate a 

flow in which

(3.6.10)

$ = 0 in

re-circulating

<§= $ ( § )

C7‘ f  « ^  $ ' ( $ ) +  » i f )  <3'6'
where G and W are continuous single-valued functions of

This in turn implies that there is no net contribution to 

the heat transfer (3.6.7) in the main body of the outer zone, 

0 < z < 1, as X —=>0. Instead, the net heat transfer at X = 0

implied by (3.6.7) must be supplied by a region where vertical 

diffusion is retained in (3.6.3) and (3.6.4). Such a balance, 

together with the vorticity equation and the requirement from 

(3.6.7) that 0i ^  i implies scalings z va x 1/2, i Vs X1/2,
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testing the validity of the horizontal boundary layer structure at 

the base of the cavity. Although this is important in determining 

the consistency of the model overall, within the context of 

thermal boundary layer theory the problems are of significant 

interest in their own right.
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TABLE 3.1

Effect of meshwidth on values of f ( 7) ) and g(V), O' = 0.72 .

T1 (a) (b) (c)

0.12 (f) 0.006055 0.006052 0.006041
(g) 0.046482 0.046482 0.006480

0.48 0.083929 0.083919 0.083878
0.185433 0.185430 0.185419

1.0 0.291876 0.291860 0.291794
0.379155 0.379148 0.379122

2.0 0.739069 0.739057 0.739009
0.683159 0.683152 0.683120

4.0 1.205203 1.205209 1.205234
0.944906 0.944905 0.944903

8.0 1.321254 1.321208 1.321293
0.998911 0.998919 0.998911

a) h = 0.01 b) h = 0.02 c) h = 0.04
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TABLE 3.2

Comparison of wall heat transfers

dtl number cr T (computed)

0.028 0.226

0.1 0.289

0.72 0.387

8.1 0.461

17.2 0.478

7 (from 3.3.17) K/^Ccomputed)

0.226 9.7319

0.290 3.41633

0.387 0.6116

0.462 0.0645

0.474 0.0313

49



Figure 3.1 Graph of f against 7) for cr = 0.028(a),
0.1(b), 0.72(c), 8.1(d), 17.2(e).

eta'



Figure 3.2 Graph of f' against tj for cr = 0.028(a),
0.1(b), 0.72(c), 8.1(d), 17.2(e).

X 1 0 -1

eta *



Figure 3.3 Graph of g against tj for <r = 0.028(a),
0.1(b), 0.72(c), 8.1(d), 17.2(e).

X 1 0 -1

eta-



Figure 3.4 Comparison of present solution (a) and Kiuke*» 
solution (b) for temperature at a  = 2 .

X1CT1

eta -



Figure 3.5 Comparison of present solution (a), Ostrach 
solution (b) and Kuiker. solution (c) for 
velocity at cr = 2.

X 1 0 “ 1

eta -



Figure 3.6 Comparison of present solution (a) with Kuike» 
solution (b) for velocity at a = 1 0 .

X 1 0 -1

eta'



Figure 3.7 Proposed overall structure for end-zone.
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CHAPTER 4

The horizontal boundary layer x = 0(1): 

asymptotic solution

4.1 Introduction

As described in Chapter 3, the isotherms and streamlines in 

the vertical boundary layer on the end wall are turned around the 

lower corner into a horizontal boundary layer. This chapter deals 

with the horizontal boundary layer for x = 0(1). In Section 4.2 

the horizontal boundary layer equation and boundary conditions are 

derived together with two integral constraints which are a feature 

of the flow. The solution for small x (where the flow has to 

adjust fcolhtnew boundary condition for the temperature on the 

insulated horizontal wall) is considered in Section 4.3. The

fourth section outlines the form the flow assumes as x __  ̂ «>,

extending the work of Glauert (1956) to include the temperature 

field.

4.2 Formulation

The solution in the vertical boundary layer 

following scalings for the horizontal boundary layer

T'vR’ fcc.T* , V -  l?,vV  c , f "  f?/2,V  h»- , 
2 -  Zi ((?,-}•«)

The horizontal velocity is 0(R1) in the inviscid

the horizontal boundary layer, whilst it is 0(R1675)

suggests the

(4.2.1)

region above 

within it,

so that the layer has a jet-like structure with zero external flow

3p2and pressure gradient. Since, from (3.2.17), j —  = 0, the pressure
12

p2 is constant everywhere, and from Q  . 2  . l b ) ,  ( J . 2 .  ¡j-) we obtain

¿ I t  _ ¿ r , =  ^

d x à ï i c)x ¿ 2 ^ Ô Z *  (4.2.2)
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and

¿3 . ¿5 ¿5 -- _l  4S
¿ X  ^  £>%* (4.2.3)

respectively.

These are to be solved subject to

. JWÌ _ ä h

2 I k  '  2 k  '
af\ =- Û

(4.2.4)

- >  o, T > 1 a s  3?̂  — ? ̂ . (4.2.5)

with initial profiles

V  t -  - ■f ( *2 1 °A i  = 0. (4.2.6)

Note that the temperature c q at the edge of the horizontal

boundary layer has been scaled out of the problem through the 

transformations (4.2.1).

The initial conditions (4.2.6) at x = 0 are taken to be the 

solution to the vertical boundary layer equations solved in

spend implicitly on cr a singleChapter 3. Since these

calculation of the velocity

possible, even though the

temperature, allowing the f

dauert (1956) showed

boundary conditions (4.2.4)

involving the velocity

U 2 *  — 2 ,
¿22

<£> -, 
C **■ 1?= J U 2 [ j Uj

J o ■'i -1

— co o sr̂ĉ/vf" #

(4.2.7)

(4.2.8)
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This constraint was interpreted physically by Glauert as the flux 

of exterior momentum flux being constant along the boundary layer.

By rewriting (4.2.3) as

i r  if i s i  r  &  v  _  i  J t  i

Ùül 1 2 J L z ^  J (4.2.9)

and integrating with respect to z from 0 to co, making use of

or

.4) , (4.2.5),

r 0&
f V K  J
l dz,

r tf ^
X '2 d t
The values

iles at x =

= constant.

(4.2.10)

(4.2.11)

The values of P and Q are determined from the initial 

and in particular, Q = Q0/c05/V  where Qq

is the constant defined by (3.3.3). Integration using the 

functions f and g determined in Section 3.4 and based on 

Simpson's rule give the results for P and Q shown in table 

4.1.

4.3 Solution for small x

At x = 0, the start of the horizontal boundary layer, the 

stream function and temperature are solutions of the vertical 

boundary layer equations(3.3.13)-(3.3.15) where the temperature is

The boundary condition on the

2

zero on the (cold) end wall

3T
horizontal wall however is

3z. = 0. A two -region solution is

therefore generated consisting of an outer region where the 

solution coincides with the vertical boundary layer solution to a 

leading approximation and of an inner region, near the wall where 

this solution is adjusted to take account of the new boundary
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condition.

(i) Outer Region

The stream function and the temperature are expanded as 

follows

V, = + = s x - ? o

x ^ 3 fo) +• as

(4.3.1)

(4.3.2)

where the 2/3x terms are a consequence of matching with the

inner region solution (see section (ii) below). Substitution into

(4.2.2) and (4.2.3) gives at 0(x"1/3)

à z x

M L _  41, =

¿ i ?

O (4.3.3)

and

d£x

Til -  % ,  JJl. =  

¿ 2 *

o
(4.3.4)

respectively. Hence,

¿2 , 71. -
<SZj

J J u > (4.3.5)

where C2 is a constant.

The profiles T2q and cr|/>20 are the solutions g (Z2) and

f <*2> to the vertical boundary layer equations the forms of which

for small values of the argument are given by

f M - - i  /)* -* i n  t _L
12 0  er /) ■+• •• «b /j O (4.3.7)

3 ^ * y 1
- x  -t x  r.

I t 1 1
-t- - • <3 5  ̂ O , (4.3.8)

where K and r are the known constants already given in table

3.2 for various prandtl numbers. Therefore
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«r,- h  à î  +

C i x /  ^ •]+••• <'s %-»'

(4.3.9)

and

T , -  r ^ -  ¡ i ' < ^ x 4 - . . . 3

C i X  ̂ £  /  -X  ? /+ . . . J  ■+- os îj-?<3.

(ii) Inner Region

Following the structure of the outer region, we expand the

(4.3.10)

stream function and temperature as

4i (* 1*1 ) - x 3{u(<!») + &• (»!»)+ —

T2 ( * i i x )  - X / 3 T2 e [ ^  +  X^T,, (jJf ...

where

%  z A  -
^ 3

o»S X  - 9  C>

c{5 X  -9 O

(4.3.11)

(4.3.12)

(4.3.13)

As tj2— •? » the inner region solution must match with the outer

region solution as Z2-?°. Therefore

fa. (%)H *S
V ~ 7

f* (1*) ~ -+ 2 Ci n
(T ^2

'E m  6j i )  ^ y i>
» 5 £>t

t~ 2 l ^
i»-*

(4.3.14) 

o&
(4.3.15)

(4.3.16)

(4.3.17)

Substituting (4.3.11) and (4.3.13) into (4.2.2) we obtain at

0 (x-1/3)

I 2

Y3 f . o -  - £
III

10 (4.3.18)

with wall conditions
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124>= f20 = °  <*+ V r ° (4.3.19)

and at 0(1)

fa. h >  ~  f *  fa> ‘ %  f« fie. = ft,

with wall conditions

(4.3.20)

f*l = = Û  ^  - Ô  . (4.3.21)

The solution of (4.3.18) subject to (4.3.19) and (4, 

simply

.3.14) is

7
^

o
II

(4.3.22)

so that the leading order velocity field is unchanged across the 

inner region. Hence (4.3.20) becomes

f. - ^  1 . 4 ; ) • f . " (4.3.23)

If we let

/l2 = ( 2- ? )  ^  ' ^ (4.3.24)

then (4.3.23) becomes

i f ’ . /  . y  **. f - # ’’• 
h  h t  ~  h .  à  f2l = h , (4.3.25)

which is to be solved subject to
A A ;

'  Til = û  'k - °

"p _ / A3 A A ^

t o  *  6  % +  * 1 *  as ^  ^  •
(4.3.26)

The above system was solved numerically using a fourth order
A

Runge-Kutta scheme and the value of c2 was found to be -1.427.

Results for f^g and f2  ̂ are presented in figures 4.1 

for various Prandtl numbers.

and 4.2
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The existence of the required solution can be

confirmed analytically be setting

L  ■ %  i.R) (4.3.27)

so that (4.3.22) becomes

l  * 2  * )  I a 3 a

1  1  “ 2 -  3  'll -  ' l l  U2 (4.3.28)

A)
Writing ” pi (4.3.29)

i'w . /•? < aj 10' L  7  ^
%  h  Y  l u  3 v ) h  " A  r 0 (4.3.30)

and then letting ^  = 1 ^  ^ a )  ^  A* j (4.3.31)

gives !

V i - U  n i s*  1 * 1  =  0

/

(4.3.32)

which may be rewritten as
A l|
1/ j / * * / A »•
i = J - - - i f )  -

X- *  7 /* — £
^  V  J  3  +  t f

(4.3.33)

Integration of (4.3. 33) gives

^ ^ i | |* A 3 "1
// : - M i  «/> H ,  7

(4.3.34)

A

where a2 is a constant.

A second integration gives

? •  \ i ( A r ' [ - & « ■ ] ' «

where b2 is a constant.

(4.3.35)

Thus from (3.3. 31)

¡2

(4.3.36)
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(4.3.37)where i(%) •
A

%

l 1

l
r

and hence using (4.3.29) and integrating (4.3.36)

'll
(4.3.38)

Thus from (4.3.27) we finally get

^ A A

h i  - - a2 %J a ( j ‘ *  i) *  { f/J + <£ V (4.3.39)

Comparison with (4.3.26) gives

l  =
J - ^

/ *2 " • (4.3.40)

Defining

kM
>

(•

(4.3.41)

we have
AA A

h ; % )  4  1 ^ (4.3.42)

and since fil ~ V h  ~ O  a t  ' ] 2 ~  O (4.3.43)

«2 ;
1

J2 ( o ) (4.3.44)

and

y\
r  r

f;Vo)

S
jF fej • (4.3.45)

Thus
A

L  ■
’ - X i f J )  r  £  -  J. 

t/o) A / « J  ^
(4.3.46)

Substituting (4.3.11)-(4.3.13) into (4.2.3) we find that at

0(X1/3)

J. i 1 T
J h o  L i o %  /¿d L i o  ~ ^  Z x o (4.3.47)
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and at 0(1)

y s & M  +  i  £X *  - %  L  rj-  £ ,  r j  ,  -5-

Recalling (4.3.22), equation (4.3.47) becomes

2j ‘ [  %-Xo -  I ? r j ]  -- r j '

and(^.3.48) is now

L [ 2K % (2Tlt - ^ tm ) i  <ri/Jr 20- 1 r2;Jj; z X .

The boundary conditions at the wall from (4.2.4) are 

l
7*20 " 7*zi ~ O  c4~ -  O .

(4.3.48)

(4.3.49)

(4.3.50)

(4.3.51)

If we let

-/j

% - i 24) % > r 20 « y j/ J

then (4.3.49) becomes

%  z l c  - 7,1 r j  - T J J

which is to be solved subject to

(4.3.52)

(4.3.53)

T i c  = O  «/• c

z  2_o n <*s
i r *  *° •

(4.3.54)

The systems for r2Q and r21 were solved numerically

V2 behaviour ofusing a fourth order Runge-Kutta scheme. The 

z 21 as v 2 -* ° >  was eliminated in the solution by solving twice 

and subtracting out the quadratic behaviour. Results for t 2Q 

and x21 are presented in figures 4.3 and 4.4 for several Prandtl

numbers.
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The existence of the required solution for can be'20

confirmed analytically by setting

Tz* * li ^  (i2)‘

Substitution into (4.3.53) gives

% *1 Z “ (2 + % )  *2 

which on integration gives

^  * zL. «* f> (~s iJ)

where i>2 is a constant.

A second integration produces

II

12
A l +  ^2

where d2 is a constant.

Hence from (4.3.55)

T z o  =
U

i ) J jx +

and consequently, after integration by parts

^20 Â  -  4 / .  I  l 3 %) Jl- 
%

Using the boundary conditions

U - 0  z ‘0 - >  / *

(4

(4

( 4

( 4

(4

( 4

(4

given by (4.3.51) and (4.3.16), the result (4.3.5<)) becomes
00

■20

1 f  j ^  a  i n  I '
(4.

.3.55)

.3.56)

3.57)

3.58)

3.59)

3.60)

3.61)

3.62)
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In summary, leading and second order terms in both inner and 

outer expansions of the solution as x — 9 0 have been determined.

Knowledge of the constant c2 completes the outer solution

(4.3.5) which involves order x corrections to both the

velocity and temperature fields. The leading order velocity 

field is unchanged across the inner region but the wall 

temperature has been shown to increase like x with

Tz(x,o) ~  h  as X-* o  . (4.3.63)

The skin friction decreases sharply, with

J ^  21  +  X ' * h t ( o )  as r - > 0  (4.3.64)

while at the edge of the jet

%  *  F  f W  4  O ( X ^ )  as O . (4.3.65)

4.4 Solution for large x

The momentum problem was first studied by Glauert (l956) and 

following his method we solve using a similarity variable

t  s 1  A
J2 4 iV4 (4.4.1)

with

(4.4.2)

as suggested by the integral constraint (4.2.8).

Substitution into (4.2.2) gives

$2 + 4l 41 + 2^^ =  O  ( 4 . 4 . 3 )

which is to be solved subject to the boundary conditions derived 

from (4.2.4) and (4.2.5)
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Subsitution of (4.4.2) and (4.4.12) with (4.4.14) into the 

integral constraint (4.2.11) gives

I r-i

Gj r " 3 $ a  JG <*“ <^2 (4.4.21)

Substituting p2 = 1 - , equation (4.4.21) becomes

Q r - © .  kTjS- j 0‘ ¡ > f  (4.4.22)

or

Q = -0 K, cr E M l T i i l  
0 2  r(cr + 5/3)

This fixes 0 in solution (4.4.20) o ' '

(4.4.23)

(4.4.24)

Graphs oj* an<* 02^0oK2 against K2^2 are Presented in

figures 4.7 and 4.8 respectively.

To find higher order terms in the stream function and 

temperature solutions it is noted that an 'origin shift'

may be applied, where

■f I 2«.

without changing the equations (4.4.3) and (4.4.15) for <p and

• Thus (4.4.23) and (4.4.24) are also exact solutions to the

boundary layer equations. Expanding (4.4.23) and (4.4.24) by a 

Taylor expansion

+  ( 4 . 4 . J 6 )

, d2 = constant , (4.4.25)
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$>
 N

provides the likely form of the solutions as x - 9

x - 1 + -  •

00.

(4.4.27)

results may be recovered by formally writing

TJ - (fj + X (5J  + '"

and substituting into (4.2.2) and (4.2.3). Then

<&’'+ 2 < £ -i = o

and

+ »  a ; - 3 ^ 2^ :  +  <&, 0 ,; =  a  

= 0  o

so that we may write 021 = $2 

and it is easily confirmed that

< L  -• ( A - 3  *,<#»■ )

where d2 is an arbitrary constant equivalent to that 

in (4.4.23).

From the equations and boundary conditions 

temperature

^ 2* -+ 8iix -f =■ O  j ^ 2l/oJ-0^ O

and

1 & Û  + 5  < & ô « +  4'z i &-x , -  3  4 i 7 B l  -+0,, =  Ü  j

¿ ( 0)  -  O  , ( a )  - O

The above

(4.4.28)

(4.4.29)

(4.4.30)

(4.4.31)

(4.4.32)

(4.4.33) 

appearing

for the

(4.4.34)

(4.4.35)
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so that we may write 9 (4.4.36)21 0 2

and it is easily verified that

&21 = ' i d ,  ( » 2 + 3 4 % '  )
(4.4.37)

confirming the form for the temperature in (4.4.27).

AuJb-
Thus in this/section we have shown that for large x the

jet takes on the Glauert similarity form with the velocity 

• ““1/2
decreasing to order x . The temperature rises to its constant 

external value across the entire layer to within a correction of

order x-1/4
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TABLE 4.1

Values of P and

er co

0.72 6.05 X  10-5

8.1 5.26 X  10-5

17.2 5.11 X  10-5

for various <X

P Q

0.648698 0.717354

0.004291 0.075912

0.000928 0.036692
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Figure 4.1 Graph of f2Q against v2 for Prandtl numbers

a) 0.028, b) 0.1, c) 0.72, d) 8.1, e) 17.2.

X101



for Prandtl numbers a) 0.028Figure 4.2 Graph of f21

and e) 17.2.

X102



Figure 4.3 Graph of r20 against tj2 for Prandtl numbers

a) 0.028, c) 0.72 and e) 17.2.



Figure 4.4 Graph of t 21 against ti2 for Prandtl numbers

d) 8.1 and e) 17.2.

>4

T
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Figure 4.5 Graph of
V K2 against K,C2S2 '

CD &
^2

X 1 0 - 1



Figure 4.6 Graph of *^2^§K2

X10-1
5.

"sj
VO

against
2S2*



K2Ç2 for Prandtl 

c) 0.72 and d) 8.1.

xio~1

Figure 4.7 Graph of e2/0o a9ainst

numbers a)0.028, b) 0.1,



Figure 4.8 Graph of ö2^0oK2 a9ainst K2^2 ^or Prant*tl
numbers a) 0.028, b) 0.1, c) 0.72 and d) 8.1.
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CHAPTER 5

The horizontal boundary layer x = 0(1): 

numerical solution

5.1 Introduction

This chapter contains a numerical study of the horizontal 

boundary layer where x = 0(1). The solution is in two parts. In 

Section 5.2 the solution is found for the region 0 < x < 1 using 

a two-region method developed by Smith (1974) but extending it to 

incorporate the temperature field. The scheme is based on the 

small x structure outlined in Chapter 4. The solution for 

x > 1 is based on the large x structure outlined in Chapter 4 

and is discussed in Section 5.3. The numerical results are 

summarised and compared with the analytical work of Chapter 4 in 

Section 5.4.

5.2 Solution for 0 < x < 1

Following the structure for small x discussed in Section

4.3 of Chapter 4 we consider a two-region solution, similar to 

that discussed by Smith (l974) consisting, first, of an inner

Z2region near the wall where tj2 = ■ = 0(1) and the stream
x 1

function and temperature are written in the form

\  = 2̂ Tl ff*

where ^  r .

(5.2.1)

(5.2.2)

(5.2.3)

Secondly, in the outer region where z2 is order one the stream

function and temperature are written in the form
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(5.2.4)

1= . (5.2.5)

The governing equations are the horizontal boundary layer 

equations (4.2.2) and (4.2.3) with the boundary conditions (4.2.4) 

and (4.2.5).

(i) Region I (inner region)

Substitution of (5.2.1)-(5.2.3) into (4.2.2)

gives

l^ J ~ "5 ‘ 3£ ' 3 ' ' l y  'Wx ¿y

and

i  jit, = i + i *  r̂ i* ^  ^

respectively.

jives

G  3 U - J  3 3  L 7. J<ul ¿ V - l

and (4.2.3)

(5.2.6)

(5.2.7)

We obtain a system of first order differential equations for 

discretization by setting

A rr, A  .A ^  tn A —  A  Aft--*)1 5-- Ja C-- iP T) = T £ z JP
1' * / u  -r- / "T >» ^  'J ic -T>

JV <*l»
which when substituted into (5.2.6) and (5.2.7) yield

l2 +  3 ^ c - i  b 1 - v  h b j J  -|
¿0, *3 3 ^  ¿L J

(5.2.8)

*1*

and

I Je

(5.2.9)

(5.2.10)1 1 ?  + ia! -xBe  « f » C b Ji  -  e J  

3 -J 3 Ju
The three first order equations in (5.2.8) are approximated by

V a  ^ ^  J CJ -* ' -ft., J E ^  4 - !)., (5.2.11)
" 11 2i -
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and equations (5.2.9) and (5.2.10) may be written

where in region I there is a regular network in (£2 , 

coordinates

f a  A a; 'kj* (5.

The wall is denoted by j = 0 (tj =0). The outer edge tj = tj
 ̂ 2 00

if h . = h V i. n = 0 
J °

denotes the initial station e2 - o

^2n-i/2 “ ^2n - -2 ̂  • Equations (5.2.11) are centred

(£ n# ^ j_1/2)# Whilst (5.2.12) and (5.2.13) are centred 

(£ n - 1/2 ' 71 n-i/2  ̂• The centred averages are defined thus

2.13)

V

2.14)

= Jh 

and 

on

on

!. 15)

! . 16)

. 17)

. 18) 

.19)

2.12)
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(ii) Region II (outer region)

Substitution of (5.2.4) and (5.2.5) into (4.2.2) and (4.2.3)

gives

J 3i2 . 1
A

r . J i (5.2.20)
A ? <̂ x -
and

A

n  s <r r ¿ i ¿ 5  -. < a 2 JJ, -
L 0£* ■M, ■ H  _ (5.2.21)

respectively.

As before we obtain a system of first order equations for 

discretization by setting

A  /)
il) ~ 1Cr T  _ ir. ~r- T  1/ - 11

(5.2.22)

Substitution into (5.2.20) and (5.2.21) yields
Aa

A

Jf ,

A  vAI-- Jj
A  A  A

1 Ts,  K* J_J
d2t

and

-l It «  _ f JF I
f. t a J

J_ J J  ;  1  / >  Jj _  p j f  1

(T di, 3 g  [^ 1 , K J

(5.2.23)

(5.2.24)

respectively.

The three first order equations in (5.2.22) are approximated by
A -  A  A »  - A a  A .  A .  A

a  a c A. r. a a  C *

V  , t h  = ^  .
U n fife

Equations (5.2.23) and (5.2.24) may be written as 

a n-fc. jlA'ii

~ it-1 _ J _

H *  '3^
and

A A «* r

Mi

M  I M  a „ /

* i u l >  — )'

/ p A-‘
F *-r

(5.2.25)

(5.2.26)

(5.2.27)
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II. The outer edge of region II is given by the maximum value of

k = K or Z = K H + v Ç0n if H. = H V k. m 2 m cô 2fi k

(iii) Matching between I and II

k = 0 corresponds to z2 = , the lower boundary of region

The values of ip2 ,
dip.

d Z ,

d Z ip,

d Z, T 2 a n d

ST,

Sz.
must be

equated at the boundary (t)_ = 7) and z_ = 7} £ ) , which givesZ oo 2 oo „ n
rA « a A r *  < o  *  ‘ 2

/A

-A A

J M A ft n

. r U  ^  , J C '
(k = 0 in II = j = J in I),

2A 
*  A

I  A -A

o " ¿ -J  >

for n 2 0 (5.2.28)

(5.2.29)

If a match is achieved for n and n - 1, then it is equivalent 

to a match at n - 1/ 2 and Z_ = 17 Ç
2 00 s2n-i/2

(iv) Boundary and Initial conditions

For region I the wall conditions are, using (4.2.4)

a h ~ £ AA0 = 0 , 60 -- o, E, = o (5.2.30)

The initial profiles at £ 2 = 0 are' usin<? (4.3.22) and (4.3.49) 

with (4.3.51),

K  * I (5.2.31)
For region II, the initial profiles at £ 2 = 0 are

2.32)
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where f and g are the vertical boundary layer functions 

determined numerically in Chapter 3.

The conditions at the outer edge are, using (4.2.5)

A A A * ,

‘t i c
= O  , T  = | . (5.2.33)

(V) Solution procedure

The solution of the parabolic system is computed by stepping 

downstream in the £2 direction from the initial profiles at

*n-l An-1
£2 = 0. When , Gk , ... are updated for the next step,

allowance must be made for the increase in height at the k = 0

point. If we choose a uniform A = and let h. = H, V I,kn J j k \J'

then updating is simply that the new F. is the old F“ ^. The

velocity field is independent of the temperature field and is 

computed first at each downstream step using a Newton iteration. 

Full details of the computational procedure are given in Appendix 

2.

Once the temperature solution was found, the integral 

constraints P and Q  were computed using Simpsons rule^ to

monitor the scheme.

In most of the computations the meshwidths used were

h = 0.1, An = 0.02 and the tolerance for which the increments

were deemed sufficiently small was 0.0001. J was taken to be 50

and Km to be 250. The effect of hj and A on the solutions n

a'*2
and T2 can be seen in tables 5.1 and 5.2 and on the

integral constraints in table 5.3. Graphs of
dl/J:

3i~.
and
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cr = 0.7 2 (figures 5.3 and 5.4), a = 8.1 (figures 5.5 and 5.6) and

a = 17.2 (figures 5.7 and 5.8) at £2 stations of 0.2, 0.4, 0.6,

0.8 and 1.0. Although cr does not appear explicitly in the 

momentum equation the initial profiles depend on a , giving rise 

to a different velocity field for each Prandtl number. The 

results show that as cr increases the width z2 of the jet

increases but the width of the thermal boundary layer decreases. 

As £2 increases the width of the jet increases and its maximum

velocity decreases. The integral constraints were confirmed as

constant to a reasonable level of accuracy for all £2 (table

5.4) .

against z2 were produced for a = 0.1 (figures 5.1 and 5.2),

5.3 Solution for x > 1

Following the large x prediction (Chapter 4, Section 4.4) 

in which the stream function and temperature have the form

2.1/4 -1/4,
^2 ^  X ^2 ' T2 ̂  1 + X 82 (Ç2̂  as “ where £2 = — — ,

4x

we use the variables

V  ^  - t - ‘.IV,
in the numerical scheme for x > 1 and take

t - U t t ’*), V -  I-

(5.3.1)

(5.3.2)

The overall mesh has the structure shown in figure 5.9. 

Substitution of (5.3.1) and (5.3.2) into (4.2.2) and (4.2.3) gives

+2pifl + iU M  H  -  &  H ]  (5 3 3,

àï * 'î,1 V  4 ^
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(5.3.4)

and

x fp. -i [<% M + 4 ¿4 ] +1 ?, t  -M. 3̂ 
? ^ ' i  3* ^   ̂ \  *i

A  M  1
J% V

respectively.

We obtain a system of first order differential equations for 

discretization by setting

i* ̂  , B ’ (5.3.5)

4 %

(5.3.6)

which when substituted into (5.3.3) and (5.3.4) give

£  +  ± L  A C  •+ 282] * i f  B JB -  <M c ]

 ̂ ?  df2
and

i JI  + l i .  LM] * l t d L(ffl]
4 ^  H  <*i ^

respectively. The three first order differential equations in

(5.3.7)

(5.3.5) are approximated by

hJ S K7
Equations (5.3.6) and (5.3.7) may be written as

-j ~ CJ-1 +  z C * C  +  Z B  J  j . =
k ' ^

(5.3.8)

A a  a .

—  A ■ Vx / _A *7
(5.3.9)

and

coordinates where P = £ , + A , 7] . = 7] . „ +s„n s„n-l n' ' i ' n-l 1

1 ^ j < J. The wall is denoted by t)2 = 0 : j = 0. The outer

5 - K S p
J t, J z.

(5.3.10)
•

network in <e2 ‘ V2 )

V - i + hJ
; n i l ,

: j = 0. The outer
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if hj = h V . . 
1

n = 0

1
1 and i Ç .

2n_1/2 2n 2 n

denotes the 

Equation

(5.3.8) is centred at (C V _ and equations (5.3.9) and
2 2

(5.3.10) are centred on (| , rj ). The centred averages

are defined as

u- n  â; I - , c . * r c + c 3
r  = i t  ( § ; ) %  (s;,f + î ê; t  +

 ̂ - i  C s; 5; + £  5;. + *r 5;-' + â;: s;:;J 
ai -- i  c*rcA+ + s r r  + ç: C ]

¿ f i= i t c > c - f  j , s n  C T -  if?;* r J  •

(5.3.11)

(5.3.12)

(5.3.13)

(5.3.14)

(5.3.15)

The boundary conditions at the wall are, from (4.2.4)

rh
a > o , e ; = o , f ; = o  <5 -3 -16»

while the conditions at the outer edge are, from (4 .2 .5) ,
—  A—  A

S j  ~ O , 1)̂ . —  O  , (5.3.17)

The initial profiles for this region are found from the

solution of Section 5. 3 at = 1:

,3
>'
 

u 
0 « 0

J F,”J J
s2

K/w

b;  - « / , O J V 5 +  ' Sj < ICh

c :  - , <5 i j < 3 ) *r. ^ ' < j  < Kyvt (5.3.18)

11 & - 0 Sji 1 ; /-

; - 2 * .  j + i o < •
Again the solution for the velocity field at step n is computed 

using a Newton iteration. Full details of the computational 

procedure are given in Appendix 3. The integral constraints P
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and Q were computed at each step using Simpson's rule. In most 

of the computations the meshwidths used were h = 0.1, A = 0.04 

and the tolerance for which the Newton increments were considered 

small enough was 0.0001. The value of J was taken as 300. The 

effect of h on the solution can be seen in tables 5.5 and 5.6 

and on the integral constraints in table 5.7.

a
d(P 2

Graphs for the velocity --- and the temperature 0 were

3^2

produced for cr = 0.1 (figures 5.10, 5.11) , cr = 0.72 (figures

5.12, 5.13), cr = 8.1 (figures 5.14, 5.15) and cr = 17.2 (figures 

5.16, 5.17) at |2 stations of 1.2, 1.6, 2.0, 2.4 and 2.8. The

results show that the profiles approach a limiting form as 

expected as £ o o .  in Section 5.4 these results are compared

with the large x asymptotic results of Chapter 4, Section 4.4. 

The integral constraints P and Q remained constant to a good 

level of accuracy for all f2 as expected (see table 5.8).

5.4 Summary and comparisons with analytical results

A graph describing how the results depend on x is 

presented in figure 5.18 for the case of air (cr = 0.72) ; it shows

d2ip
the skin friction ---- (x,0), the stream function at the edge of

a*2

the jet ^2 (x,o o )  , which gives the entrainment of velocity into

the jet, and the wall temperature. As the wall temperature rises 

from 0 to 1, the isotherms from the vertical boundary layer 

attach to the lower wall of the cavity. The initial development 

of the jet is consistent with the small x predictions and as x 

increases its strength decreases and width increases. The skin 

friction falls and the stream function at the edge of the jet
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• 1/4 . .
rises proportional to x , consistent with the large x 

prediction.

Tables 5.9 - 5.11 contain quantitive information from the 

computations. We have already seen that the numerical results 

confirm that the integral constraints P and Q are constant at 

any x value. Table 5.9 shows the values of P and Q for 

a  = 0.72 along the whole boundary layer. As x <» the stream 

function and temperature profiles should approach the forms 

discussed in Chapter 4, Section 4. In particular, the computed 

values of ^2 “̂'^2^ and 02^O,^2^ may be compared with the

values of K2 and 9 q  obtained from the integral constraints

(4.4.11) and (4.4.22). This is done in table 5.10. The velocity 

and temperature profiles of the analytical work for large x and 

of the numerical scheme at Ç = 4.8 are compared in table 5.11

and the agreement is excellent.

Finally we discuss the results in the context of the overall 

flow in the end-zone of the cavity. At large x the external 

velocity from the recirculating inviscid region above the

horizontal boundary layer and the effect of buoyancy come back 

into play and this leads to the breakdown of the jet structure. 

It is easily shown that this occurs when X  = 0(R12/5): firstly,

the flow speed in the jet U. = 0(R16/̂ ~ 1/2) becomes comparable

with the external inviscid flow speed 0(R1). Secondly the

viscous and inertial terms in the jet 0 (R^^-1174) become

comparable with the buoyancy term 0 (R^275̂ -574) in the

governing equation (3.2.19). This new regime is discussed 

analytically in Chapter 6 with a full numerical study presented in 

Chapter 7.
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TABLE 5.1

Effect of meshwidth on values of
dip
g^ ~ (cr = 0.72)

^ 2 e2 = 0 . 2 * 2 « 0 . 6 ^2 = 1

1 a) 0.6111 0.3024 0.1058

b) 0.6114 0.3020 0.1053

4 0.1568 0.3227 0.3325

0.1568 0.3233 0.3318

7 0.0109 0.0484 0.2503

0.0109 0.0483 0.2509

1 0 0.0006 0.0055 0.0976

0.0006 0.0054 0.0978

a) h = 0 .1 , A = 0.02 b) h = 0.2, A = 0.04
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TABLE 5.2

E f f e c t  o f  m e s h w id th  on v a l u e s  o f  (cr = 0 .7 2 )

* 2 ST
i

NJ

II O • ÍO * 2 = 0 . 6 ^ 2 » 1

1 a) 0.3549 0.3843 0.5385

b) 0.3550 0.3845 0.5390

4 0.9383

0.9383

0.8037

0.8036

0.6116

0.6117

7 0.9957

0.9957

0.9652

0.9653

0.7819

0.7817

1 0 0.9995 0.9932 0.9054

0.9995 0.9932 0.9054



TABLE 5.3

E f f e c t  o f  m e s h w id th  on c o n s t a n t s  P ,  Q (cr =

^2 (a) (b)

0 . 2 P 0.6490 0.6337

Q 0.7171 0.7112

0.4 0.6489 0.6314

0.7172 0.6995

0 . 6 0.6488 0.6339

0.7171 0.6949

0 . 8 0.6487 0.6317

0.7170 0.6978

1 . 0 0.6485 0.6279

0.7170 0.7036

a) h = 0 .1 , A = 0.02 b) h = 0 .2 , i

0 .7 2 )

0.04
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TABLE 5.4

The integral constraints P and Q at various *

s2

0 . 2 P

Q

<J =  0.1

39.631 

3.85798

a = 0.72

0.6490J 

0.71711

a  = 8.1

4.29247 (-3) 

7.58925(-2)

0.4 39.630 

3.85824

0.64890

0.71716

4.29188(-3) 

7.59031(-2)

0 . 6 39.628 

3.85797

0.64886

0.71713

4.29094(—3) 

7.59086(-2)

0.8 39.620

3.85485

0.64869

0.71705

4.28994(-3) 

7.59121(-2)

1 . 0 39.608

3.84640

0.64852

0.71698

4.28275(-3) 

7.59147(-2)

stations

cr = 17.2

9.28222(-4) 

3.6688 (-2)

9.28059(-2) 

3.6695 (-2)

9.27832 (-4) 

3.6699 (-2)

9.27565(-4) 

3.6702 (-2)

9.24959(-4) 

3.6713 (-2)
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d
 i

TABLE 5.5

dc¡>
Effect of meshwidth on values of — - (cr = 0.72)

^ 2 ë2 - 1 . 2 ^2 = 1

2 a) 0.2460 0.2802

b) 0.2456 0.2798

6 0.2872

0.2875

0.2636

0.2639

1 0 0.0648

0.0649

0.0452

0.0454

14 0.0097

0.0097

0.0055

0.0055

a) h = 0 .1 , A = 0.04 b) h = 0.2, A = 0.04

l2 =  2.0

0.2910

0.2906

0.2550

0.2554

0.0403

0.0404

0.0046 

0.0046
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TABLE 5.6

Effect of meshwidth on values of
A
e2 (0- = 0.72)

^ 2 = 1 . 2 l2 - 1 . 6 ^2 = 2

2 a) 0.4511 0.4502 0.4512

b) 0.4506 0.4497 0.4507

6 0.2490 0.2324 0.2260

0.2489 0.2323 0.2259

1 0 0.0833 0.0663 0.0582

0.0832 0.0662 0.0581

14 0.0278 0.0162 0.0127

0.0276 0.0161 0.0126

a) h = 0 .1 , A = 0.04 b) h = 0 .2 , A = 0.04
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TABLE 5 . 7

E f f e c t  o f  m es h w id th  on c o n s t r a i n t s  P and Q (cr = 0 . 7 2 )

a) b)

H* • ro P 0.6486 0.6481

Q 0.7170 0.7158

oCM 0.6487

0.7170

0.6485

0.7158

2 . 8 0.6488 0.6487

0.7170 0.7158

a) h = 0.1, A = 0.04 b) h = 0.2, A = 0.04
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TABLE 5 .8

The integral constraints P and Q at various stations

^2 cr = 0.72 o' = 8 .1 o' = 17.2

1 . 2 P 0.6486 4.282(-3) 9.182(-4)

Q 0.7170 7.592(-2) 3.670(-2)

1 . 6 0.6487 4.281(-3) 9.107(-4)

0.7170 7.592(-2) 3.670(-2)

2 .0 0.6487 4.281(—3) 9.056(-4)

0.7170 7.592(-2) 3.670(-2)

2.4 0.6487 4.280(-3) 9.015(-4)

0.7170 7.592(-2) 3.670(-2)

2 . 8 0.6488 4.280(-3) 8.982(-4)

0.7170 7.592(-2) 3.670(-2)
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TABLE 5 . 9

The values of P and Q along the boundary layer l * * 0 - 7 2 )

X p Q

0 0.6510 0.7174

( 0 .2  ) 3 0.6490 0.7171

( 0 . 6 ) 3 0.6489 0.7171

1 0.6485 0.7170

( 1 • 2 )  4 0.6486 0.7170

( 2  • 0) 4 0.6487 0.7170

00•
CM 0.6488 0.7170
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TABLE 5 .1 0

Comparison of K and 0o values

cr a ) b)

0.72
K 2 2.2575 2.2571

- e o 0.4734 0.4749

8 .1 0.6430 0.6432

0.5438 0.5632

a) Values obtained
a

from (p ̂ (“' ?2 } and &2 (0 ' ^2 * at ?2 =
b) Values of K and 0O obtained from integral constraints
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TABLE 5.11

30 wv

Comparison of velocity — - (t)2, £2) and temperature

dTI2

profiles at £ = 4.8 [a  = 0.72)

°2 < V  ?2 >

~ *
V2 Numerical Scheme Analysis

0.00 Velocity 0.000 0 . 0 0 0

Temperature 0.473 0.475

1.61 0.247 0.248

0.464 0.466

3.38 0.397 0.399

0.398 0.399

6.48 0.207 0.207

0.187 0.186

* interpolated values
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dip2
Figure 5.1 Graph of against z f o r  a = 0.1.
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for a 0.1.

2 0 _

15.

10 .

%
5.
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0

Figure 5.2 Graph of T2 against z2

temperature temperature t e m p é r a t u r e  t e m p e r a t u r e  t e m p e r a t u r e

x i = 0 . 4x i = 0 . 2 x l = 0 . 6 x i = 0 . Q x 1 — 1 . 0
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9*2
Figure 5.3 Graph of against z2 for a = 0.72.
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Figure 5.4 Graph of T2 against z2 for a 0.1.

temperature temperature temperature temperature

2C>

15_

1 0 .

5_

0 .

0 1

temperature

x i = 0 . 2 x i = 0 .A x i = 0 . 6 x i = 0 . 8 x i  = l . 0
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Figure 5.5 Graph of against for a 8 . 1 .

xi=0.2 X i =0.4 x i =0.6 xi=0.Q x i = l .0
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2 0 _

15_

1 0 .

2.

5_

0 ..

0

Figure 5.6 Graph of T2 against z2 for <r - 8.1.

t e m p e r a t u r e  t e m p e r a t u r e  t e m p e r a t u r e  t e m p e r a t u r e  t e m p e r a t u r e

x i = 1 0 __x i = 0 . . 2 x i = 0 .A x i = 0 . 6 x i = 0 . 8
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Figure 5.7 Graph of for cr 17.2.against z2
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Figure 5.8 Graph of T2 against z f o r  a = 17.2.
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Figure 5.9 Mesh structure.



Figure 5.10 Graph of
dip,
A

37).
against v2 for a = 0.1.
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f o r  er 0 .1 .
A A

Figure 5.11 Graph of d 2 against i\2

X101 X101 X101 X101 X101

X i = 1 .-2 x i  = l  . 6 x i = 2 . 0 x i = 2 . 4 X i = 2 . 0
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Figure 5.12 Graph of for a 0.72.
d*2 A

against t)2
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for er 0.72.
A A

Figure 5.13 Graph of & 2 against t)2

X101 X101 X101 X101 X101
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d<P 2

3t}„
Figure 5.14 Graph of ——  against t? for a = 8.1.

X101 X10 X10 X10 X10
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Figure 5.15 Graph of

X101 X101

x  i  = 1 . 2 x  i  = l . 6

®
 >

2 against t)2 for cr = 8.1.

X101 X101 X101

t e m p e r a t u r e  t e m p e r a t u r e  t e m p e r a t u r e

x i = 2 . 0 x i = 2 .4 x i = 2 . 0



119

Figure 5.16 Graph of against t ) for a = 17.2

37I2
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Figure 5.17 Graph of e2 against t)2 for cr = 17.2.
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CHAPTER 6

The horizontal buoyancy layer x = 0(R12/5): 

asymptotic solution

6 .1 Introduction

As x increases the flow enters a new regime where

2 / 5
x/R^ = 0 (1 ) and the buoyancy term reappears in the vorticity

equation . This chapter deals with analytical aspects of this 

horizontal 'buoyancy' layer. In Section 6.2 the governing 

equations and boundary conditions are derived. A solution for

2 / 5  .
small x/R 1 is formulated and found numerically in Section

6.3. An asymptotic form of the solution for large x/R^ 75 is

discussed in Section 6.4. The results are summarised in Section 

6.5.

6.2 Formulation

The réintroduction of the buoyancy term into the vorticity

• 2 / 5
equation occurs when x = 0(R1 ). This leads to the following

scalings for a new horizontal boundary layer

f'- % , T- +n(5 p '*/ '0  2 3 IW
C0 U

X- C  c j * r;-i/io _ \/t /\
Co .

Substitution into (3.2.19) and (3.2.20) gives

. i  + â  <>3 _ A  ¿3
dïj G  èXs <333 ¿¿J

and ^

< K  *-/)%)%- ¿t, hj \

d i y  à * ,  ¿ i y  ^ * 3  I

( 6 . 2 . 1 )

( 6 . 2 . 2 )

(6.2.3)
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respectively, which are to be solved subject to 
a  . a

j  *3 "  °
Lj) - r ¿J3 - O

3 J* 
^ 3 J*.

and

A
T,->o , 3
J

3

(6.2.4)

(6.2.5)

The second condition in (6.2.5) arises from the fact that in the

boundary layer the velocity term
dip

W
I S 0(R1). The

recirculating inviscid zone above the horizontal boundary layers 

also has 0 (1*̂ ) velocities suggesting that on the scale

2 / 5  •
x = 0 (R^ ) there will now be a constant forcing velocity

= <jR ic o5 /12 u 3 ou'ter edge of the boundary layer.

In Chapter 4 the = 0 (1 ) horizontal boundary layer

admitted two integral constraints (4.2.0) and (4.2.11)

with P and Q 

constants

i = P* Q',b %

S3= P q 3'3

Z, -- P '1 ® " ' / 2  *.

constant. We may rescale in term of these two

((6 .2 .6)

giving

j %  s ±  ¿ 5  +  3  J3  _  J3

and

3  ; CT / ¿ 5  3  - ¿ 5  3  \
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to be solved subject to

t e ,

and T5 —> o £

where 

6  =

as z3~^ 00

(6.2.9)

(6 .2 .10)

( 6 . 2 . 11 )

The initial profile for ip is uniquely determined by

i  s a ' ( S ) ‘ A

= 1 as Xj-? 0
( 6 . 2 . 12 )

'O - ' -

and is independent of cr. However due to the re-introduction of

the buoyancy term, the integral on the left-hand side of (6 .2 .1 2 )

is not conserved for x3 > 0. The constraint 
U>

* ¿ X% ?  ¿h -  I
^ 0

uniquely determines the initial profile for

(6.2.13)

although the

latter is not independent of cr. Equation (6.2.13) is satisfied 

for all x3, from (6 .2.8 )-(6 .2.10). The initial form of the

solution is defined by

-»/4
T30 l̂ ) j 0 (6.2.14)

where = z3 /x3 3/4 and the functions
f 3 0 and T30 are

scaled forms of <p and 0 2 to be defined precisely in Section

6.3 below. The buoyancy layer problem defined by 

(6 .2.7) - (6.2.14) is dependent on just two parameters, e and cr.
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6.3 Solution for small x.

We expand the stream function and temperature as follows 

^  P / , 3/4- f> / , 5/4 p / v l/f
rr / a

(6.3.1)
^ f*4) + 2 j fA) +  JCj (7,) 4  ^  ■

TJ +2/* T„(13) 4 a f V 1s) + t • •

where /Ĵ  r 2 ^  -  O f *  ].

(6.3.2)

(6.3.3)

Here the leading terms are suggested by the Glauert form and the 

next terms are generated by e.

(i) Solutions f3Q/ r3Q

Substituting (6.3.1), (6.3.2) and (6.3.3) into (6.2.7) we

„ . -11/4.
get at °(x3 )

C -  i u
M

720 (6.3.4)

with boundary conditions

ft© = I30 r O  / /j3 = o j  0  , >̂ ** •

Equation (6.3.4) can be integrated to give

C *  it.c .  i C  -  °

(6.3.5)

(6.3.6)

and the solution to (6.3.6) satisfying the integral requirement

-- I
1  ^  i  r  c  j i. ]  *

obtained from (6.2.11) is the 'Glauert type' solution

fso" u»Key>e K 3 ~ l ^ O ) H (6.3.7)
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and

- 7 / 4
At ° ( X 3 ) in (6.2.8) we obtain

— ~ “J fio ̂30 — T* -/}0
<T i  *

as g i v e n  i n  ( 4 . 4 . 8 ) .

(6.3.8)

(6.3.9)

with boundary conditions

^ Z o  -  °  / 73 ; ^ 3 0  - i > O  / ^  ■

The solution is

r » :  ft, L i  -  t e i ( % } ) 3 J

as found in (4.4.20), and the integral constraint

30 "̂ -3o ^

obtained from (6 .2 .1 3 ) determines the value of ©30, as 

table 6.1.

(6.3.10)

(6.3.11) 

given in

(ii) Solutions f31, t

_ q / A
At 0 (X3 ) the function f ^ is found to satisfy

f 1'' . -3,P> f ' .  S_ />> P" 3_ P»» /> J r  P'"
131 " 4  T3o 73 I 4  f&l 4  -feo f3, 4,. {-io f3 ,

with boundary conditions

ft' - ft.’ = 0  / I s 1  a ; ft. .

Equation (6.3.11) can be integrated to give

(6.3.12)

(6.3.13)

( 6 . 3 . 1 4 )
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At 0 ( x 3 54) the function r is found to satisfy31

T T* - 4 Iso Ti, - i  f3; T* - 1  TJo‘ t, - JL t  T
1

3 1

with boundary conditions

L ji= O ;°

Since f30"-? K 3 as r,3~~^ “ if is expected that

fju ^  -*■ O f a ' * *  ',i)

Tj, ~  O  -r

We can rescale with e such that

/\

fc.

\

; ~^3I

to obtain
A II 1 _ 3 l  f "
3̂1 4 »3 » T io

^ ii

*3. = <T / i ?  £ 1 .
I 4  L3. Tlo

i  u :

1 V, 1 30

iC f , :

i^ o L - iL is .  )

c

(<

(É

(€

(6

(6

(6

to be solved subject to

c ?* * >
r3| ' T 31 = TTai =  O  ,

a  £ )
"Cj , ^ 0  , fJ( -» i

and from (6.3.1?)

a It - 

where

A
é  « 31

t.,

13

V

- O

oO

*-A
%  +  ^31 j -

(6

( 6 .

5.3.15)

5.3.16)

5.3.17) 

¡.3.18)

.3.19)

.3.20)

.3.21)

.3.22)

.3.23)
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(iii) Solutions f3 2 / t 32

At 0 (x3 7/4) f32 is found to satisfy

32

U «  - X P ' 
A T3i 4 ; S

** i i  C
-x r />'" 3 1 -  X C £ ■"
4- T3o 132 4. Î3I bi a- T72 T3o

with boundary conditions

f W -  fia a 0  / %  - ° ) h z  °  ' v*"* *  •

Equation (6.3.24) can be integrated to give

At 0 (x 3-3/4) t 32 is found to satisfy

with boundary conditions

s 1 3 = 0  ; X 32-> O  , .

As 7)3^  oo it is expected that

f _ / -(fM) \
vA ^ 3  ■+ ^32 -t O  ( e  J

^32 ^  O  -t o  ( e, ) ,

. 2
We can rescale with e such that

(6.3.24)

(6.3.25)

(6.3.26)

(6.3.27)

(6.3.28)

(6.3.29)

(6.3.30)

(6.3.31)

(6.3.32)
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T "L n a & -A 1

+ 4 K A
T j i - X

4

_  S ’

4

A

fi2
_  3 

4 t:
A

A, 1

~ 4

T VL-io r s i

b o  K  )

with

A 1 A )
fi2r L  -- * 0  , 13 = °  ;

A
T  -> > 0u 32 ' <3 , 13-** °“

and from (fc-ï-it)

Z  A
CI32 " é  d 32

where CK^ /«• ) .

(6.3.33)

(6.3.34)

(6.3.35)

(iv) Solutions f , t 33

At °(X3'5/4) f33 is found to satisfy

C*" -
133 ' i l ~ n  1j -̂3o ) t  i ü Q

(6.3.36)

with boundary conditions

0 1 n >
a 1 “ ' % - ° ; h .  0 , %

—9  <sà.

At 0(X3‘1/<
l) T33 is found to satisfy

r "5 la» "C33 + 4 ^ . ^ 2 - i l « T J. J. r ' r  
s» ^ h , W i

" i  ̂  #„ “ f  ft. - f a  t32 - l  r;0 f,î

with boundary conditions

(6.3.37)

(6.3.38)

r 3;
I3 ̂  °  j  ^ 3 3  °  ^ “? PC

(6.3.39)
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(6.3.40)

As T}3 —^ oo it is expected that 

f ì Z  ^  °* %  + ^3 + a 33 -+ O f  e * ̂  /|i )

r 'vL33 O

0t r
( e * ) .

We can rescale with 63 such that

¿3 = L - t è3 L A
- I 120 4

to obtain
A IV-

T3?o • i r i x *» ~ 'f % ~ ^ 3o ) +

j
4 f i " '  -•T 33d

S P" l  ‘ - I t ' "
4, T3o

A

■fsi.
_ 1 
4 j£  k  ,

£ «V

1"33.
j

= ?
£' £ " - 
Wo » 331

i f
4  ni ij2 • 4 T« f;

jr
4 C  &

- 7 r  ?  - £  £ - J p*u A Î £
4 «36 1 331 * h, hz 4+32 131 *331 «io ,>

x M3?o

and

e cr
f  ^336  "  - 4 - ^ 3 0 ^ 3 0 "  ^ r j3o f i 0 f ? 0 >)

f ’ - cr /' 1  p ’ t \ 4  3 4 i
A 1 A
£ X

L33| ( 4  W« 3?l 4  ‘31 ‘•Jï h 2 *•

- i f  (
¿1 UZ2I T3o - - ^ » 1

_ £  

4
f i3̂1 j32

with
A#■* f P £ ' «A . A  ,
nio r 13 2o 3̂3. f...

= X 33, - O

£  '
A 
P ' A A

1330 ; 3̂3, j X31« ; X.J, - t’ 0
' 13

£C

A
- i f
4  «33

A

¿*3 0 

A ,
3  f X  ' \
¿ i '331 u 3b J

(6.3.41)

(6.3.42)

(6.3.43)

(6.3.44)

(6.3.45)

(6.3.46)

' )

(6.3.47)

It may appear that there is no fourth boundary condition but
A A

the conditions on ^ 3 3 0 and ^3 3  ̂ as ^3 *"̂  00 are in effect two

boundary conditions in one as we must eliminate both tj3 and 7 :
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behaviours as ^3~ ? “• Also from (6 .3 .4 O)

A 3 A
^ 3 3 - <^S3o 6  ^35»

where
Aa

A

35t ~ ft3c ^  ' <.- 1 , 2

( 6 . 3 . 4 8 )

(v) Numerical Solution

The above systems were solved numerically using a fourth 

order Runge-Kutta scheme, marching from the origin.

For f3Q it was necessary to find the value of f" (0)

, 1/4 _
which gave f3(J = (40) « 2.52 as tj — * 00. a relation

^3 0
f3 0 (°) = 0 [ f 3 0 (°°) ] was assumed and the program run for two

different initial values of f"Q (0) which enabled the values of

X30 and u 3Q to be fixed. The true value of f30(°°) = (40)1/4

was then put in giving the required value of f"Q (0 ) so that when 

the program was run for the third time f30'-> 2.52 and f^ — > 0 

as t)3 —^ 00. A graph of f3Q against ri3 is presented in figure 

6.1. The solution for f3Q is independent of a .

The problem for t 3Q was solved by inserting the value of

t 3 Q (0) as 9 3 q from table 6.1. Figure 6.2 shows a graph of

r3Q against 7} for various values of cr.

To obtain the solution for f31 was necessary to find

A

the value of f3 1 (0) for which
h i * 1 as v 2 — i> “• As the

A

relationship between f3 1 (0 ) and
A

f 31 (“) is linear,

f3 1 (0 ) = A3 1 f31(°°) + M 3 1 and the program was run twice to fix
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A A

of f3 i (0 )• A graph of f31, which is independent of a , is given 

in figure 6.3.

A-31 and then f3 1 (oo) was set to 1 to give the true value

A

A similar method was used to find the value of x (0) for

which x. ^  0 as T73—^ oo as required. Figure 6.4 shows a graph

°f *31 against i)3 for various a . Solutions for
A

f 32 and

*32 were
A

found in the same way as those for f3 1 and
A

T31- The

graph of
A

f3 2 is shown in figure 6.5 and graphs of
A

T32 for

various <cr in figure 6 .6 .

For
A

f3 3 i (i = a similar method was adopted but it was

necessary to find values of both -P • (©) a/id 4or coKicK A•33t 33c '  —i > O
331

as

t)3 '-*co, the two initial conditions being needed in order to

eliminate 2 .  ̂
t)3 and tj3 behaviours in f33  ̂ as TI3 ---?  CD. The

solution f33o is dependent on cr due to the introduction of the

A

buoyancy term in (6.3.43) and graphs of f33Q for various a are

A

shown in figure 6.7. The solution for f 3 3 1 is independent of a  

(figure 6 .8 ).

A A

The problems for T330 and t 33i were solved in the same

A

way as those for t 3 1 and
A

T32-

A

Graphs of x330 and i3 3 1 for

various a are shown in f igures 6.9 and 6 .1 0 . The various
A A A

constants a32' a330'

A

a331 arising in the solutions are

displayed in table 6 .2 .
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(iv) Pressure

It is of interest to consider the pressure field associated 

with the above solutions. This is of the form

h
r j r ?

(6.3 .49)

to within a constant where, from eguations (3.2.16), (3.2.17) and

(6 .2 .1 ) p 3 satisfies

JV, d^j - £ $  : ■+ <fli

t i ; JXj 0X3 ¿3t± ò x 3 (6.3,. 50)

and

¿ h -  t 3
4

dZj 0“ (6.3..51)

From (6.3.51) and the fact that p 3 may be assumed to be zero at 

the edge of the layer we see that

We may expand p3 for small x3 as 

where from (6.3.52) and (6.3.2)

(6.3.53)

(6.3.54)

f-L3o«V l .
dx, ^  ( 2  J 15 *  I

The horizontal pressure gradient

-l/i r
V i 1 —  / n *T /

O  (6.3.55)

and since t 3Q < 0 for all v 3 this is adverse throughout the

layer. In particular the pressure gradient at the wall is given 

by

ÌH ~ -i? f
àx, 2 s~ JJ c

tjo <i °  . (6.3.56)
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(v) Summary

In this section we have found that the initial development 

of the buoyancy layer takes the form

V,-- X ^ U ^ \  ■+ L  ( ^ i \ *  L  ( ^ )  ■+

% [ L ^ l +  (6.3.57)

and

-r -»A , 1/4 «a / 3/4 , -a /
[3 r ^  +  X -3  G -̂3i Ha) "+ ^ +

Xj Ê iutu) *+ ‘ * aS * 1 “* O  . (6.3.58)

As shown in section (vi), the effect of buoyancy is to produce an

adverse pressure gradient across the layer. The inertial and 

. -2
viscous terms are 0 (x3 ) so that any effects of this adverse

gradient such as flow reversal within the boundary layer are not

expected to materialise until the flow has progressed some 

distance downstream. In addition, the effect of a non-zero

external flow e will be to delay or prohibit flow reversal

within the layer.

If we take the case of no external flow e = 0, equation

(6.3.57) reduces to

3̂ ' Xi kc/'h )+ X3 fsio^hW*- ctS7/4
(6.3.59)

and we can estimate the way in which the velocity field

Jf3 . ,,-*/*/ r  ' , 1 \
—  " x i  I Tso ■* *» tsa. -*■ —  )
¿2 * (6.3.60)

may develop downstream.
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is negative both close
A

As can be seen from figure 6.7, £ 3 3 0

to the wall and at the outer edge, with a positive part in the 

centre of the boundary layer. A graph of f^Q + x3 3/2f33Q, for

a = 0.72 and for increasing values of x3 is plotted against 2 3

in figure 6.11. It shows that reverse flow is possible, first 

appearing in the outer parts of the boundary layer with large 

negative values appearing later at the wall.

6.4 Solution for large x.

The presence of the buoyancy term together with the integral

constraint ( ¿ .2 .1 3 ) suggests scalings z ^  x 1/2, </*
3 ^  X3

1/2

-1/2
T,^x,, as x3 —}  00 and we solve using a similarity variableLJ 3

(6.4.1)

with

%  ** * 3  tfs l S 2)  j Tj ^  a S X 3-v> 06'3 (6.4.2)

Substitution of (6.4.2) and (6.4.1) into (6.2.7) and (6.2.8) gives

<  . -J. + t & )  - X (4 Q  )
2 <r

(6.4.3)

and

© 3" + i r  ( V i t i  +  û (6.4.4)

respectively. Appropriate boundary conditions from (6.2.9)

afe

= = <4 '-i> é  , © i -> O  , (6.4.5)
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Equation (6.4.3) may be integrated to give

K  - ± to - (6.4.6)

and equation (6.4.4) can be integrated twice to give
$

#3 - “ /S evf (  "i5" 3 ^  d < h  ) (6.4.7)

where is assumed positive and can be scaled out of the

equation for <p3 using the transformation 

i/S 1 . * x „ ~'/S $
r3 - (6.4.8)

This gives

(6.4.9)

with

A  A  1A  A  1 A  A  ) A  A

4  = O  , i3 = £> i 4  -» 6 , i 3 -» - (6.4.1 0 )

where

Ae 3
-z/S

r ? £ .

The integral constraint (6.2.1J) requires that 

*¡>0

f ^
Jo

and gives

f t

¿/S’ I  - I

(6.4.11)

(6.4.12)

(6.4.13)

where

1 =  (6.4.14)

Solutions of (6.4.9) were computed by specifying c<3 = 0"(O) and 

integrating outwards by a fourth-order Runge-Kutta scheme to
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obtain e = <p'̂ (°o) . Then e may be calculated retroactively from

(6.4.11) and (6.4.13) as

f t ) ' " * - (6.4.15)

Computations of e as a function of for cr = 0.1, 0.72, 8.1

and 17.2 are shown in figure 6.12. This shows that the external

flow speed e is restricted to the range e > e (<x) , and that forc

a given e in this range there are dual solutions for <p^. Some 

of these contain reverse flow near the wall. Profiles of © 3 and 

for a 3 = -0.5, 4.5, 0.4, 0.7, 1.1 and for cr = 0.72 are

shown in figures 6.13 and 6.14. Table 6.3 gives values of 

for various values of c<3. The pressure is as found from (6.3.52) 

using (6.4.f) and (6.4.2) 

b ^  -_L f d S j , *3-7 «0
‘ *■ J*,

(6.4.16)

and the horizontal pressure gradient is

Ji  -  d  13 ̂ 3 j * • (6.4.17)
docj 2 S’

Since © 3 < 0 this is adverse throughout the layer although it 

vanishes both on the wall and at the outer edge of the layer.

6 .5 Summary

In this chapter we have discussed a new regime where

2 / 5
x = 0(R1 ). Here, buoyancy becomes important and couples the

momentum and heat equations. In addition we see the development 

of the jet in the x = 0 (1 ) region into a boundary layer with a 

forcing velocity at the outer edge of the layer. The problem now
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depends on two parameters, the Prandtl number a and the 

effective forcing velocity e.

It has been seen that buoyancy produces an adverse pressure 

gradient whose effect may eventually become apparent downstream as 

the inertial and viscous terms weaken. The possibility of the 

emergence of reverse flow has been discussed and consequently we 

may expect that a full numerical solution based on marching in the 

x3 direction and to be discussed in Chapter 7, may break down for

some e and a . This idea is further confirmed by the large x3

study which suggests that for sufficiently low e there is no 

simple asymptotic form as x3 —» 00.
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TABLE 6.1

Values of % for various cr

O' e
30

0 . 1 -0.42714

0.72 -0.59430

8 . 1 -1.89486

17.2 -3.03025
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TABLE 6.2

Values of a31/

a330

a32' a330' a331

-6.91982 

14.93763 

-23.4 (cr

-0.01 (O'

a331 -138.6

0.72)

8 .1 )

140



TABLE 6 .3

Values of u 3 for various « 3 ( f c O J l )

a3 ^3

0 . 0 0.3817

0.5 0.4092

1 . 0 0.3910

1.5 0.3688

to • o 0.3493

2.5 0.3330

3.0 0.3193
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Figure 6.1 Graph of against v3*

X10“ 1

%
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Figure 6.2 Graph of r3Q against t?3 for Prandtl numbers

a) 0.1, b) 0.72, c) 8.1 and d) 17.2.
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a

Figure 6.3 Graph of against

X10-1
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Figure 6.4 Graph of t 31 against t) 3 for Prandtl numbers

a) 0.1, b) 0.72, c) 8.1 and d) 17.2.
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Figure 6.5 Graph of

**

JZ

X10
16_

-1

0

< <w against tj3*

%

T-------------- 1
A 5

X 1 0 1
3
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A

Figure 6 . 6  Graph of x^2 against t) 3 for Prandtl numbers

b) 0.72, c) 8.1, d) 17.2.

*
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t) 3 for Prandtl numbers
A

Figure 6.7 Graph of f3 30 against

a) 0.72 and b) 8.1.
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A

Figure 6 . 8  Graph of f3 31 against tj3.
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A

Figure 6.9 Graph of T 3 3 0 against tj3 for Prandtl numbers

a) 0.1 and b) 0.72.

%
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Figure 6.10 Graph of ^ 3 31 against tj3 for Prandtl numbers

b) 0.72, c) 8.1 and d) 17.2.

X 1 0 1

'¡J
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• 3 / 2
Figure 6.11 Graph of f^ 0 + x3 £ 3 3 0 against z f o r  

increasing x3 at <j = 0.72.
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Figure 6

1 -
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.13 <p2 Profiles for

cr = 0.72.

X10 - 1
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= -0.5, 4.5, 0.4, 0.7, 1.1 atFigure 6.14 <p'2 Profiles for

a  =  0 . 7 2 .



CHAPTER 7

The horizontal buoyancy layer x = OtR^75): 

numerical solution

7.1 Introduction

This chapter contains a numerical study of the horizontal

2 /5
boundary layer where x = 0(R1 ). In this region T3 and

are coupled in contrast to the the situation where x = 0 (1 )

where the stream function could be solved independently of the 

temperature. The numerical scheme is constructed to take account 

the different asymptotic structures for small and large values 

of x3 discussed in Chapter 6 . The scheme for x3 < 1 is

described in Section 7.2 and that for x3 > 1 in Section 7.3.

The numerical results are presented in Section 7.4. Section 7.5 

considers the implication of the results for the overall structure 

in the cavity.

7.2 Solution for 0 < x3 < 1

In order to accommodate the initial forms of the stream 

function and temperature i/j3 \A x3 1/4f3Q/ T3 \a  x 3~1/4t 30 we use

the variables

in the numerical scheme and take

(7.2.2)
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Substitution into the momentum and heat equations gives

i (jM  % p  + a  Ji  &  - n  f % 71V * ^ L-'i «Vi*  ̂ as J ( 7 . 2 . 3 )

and

i n . ,  - i  f3 &  - i  $ 4  +  M  r  .  J J j t f  1
(7.2.4)

with

A
«0r  a .

l>'"± * V
J1j

(7.2.5)

We obtain a system of first order differential equation5 for 

discretization by setting

4 - 1 B* Ja , c  JB e*^ ,f -
\  V  \  13 d i> ^

which when substituted into (7.2.3) and (7.2.4) give

(7.2.6)

and

±F
A • ' [ - i £ 8 -  i A F . l , , ( « • « ) ]

(7.2.7)

*13

respectively.

(7.2.8)

The four first order differential equations in

approximated by

S* = A*- A a 
V i V  /V- i

1

Ct
x
P

fl C  ■ VJ 2 J *»"«

•s k'
J k'

J

F  -
Vi ± J r

(7.2.9)

k ‘
3
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(7.2.10)

Equations (7.2.7) and (7.2.8) may be written as

S  " CJ-»

and

f - F *
J ______ j  - i

"T

% j v .  v - i C i J - i

(7.2.11)

respectively.

In this region there is a regular network in (£3, 773)

coordinates where C n = S n - 1  + An ' ĵ) = ^ - 1  + hj '* n “ 1'

1 < j < J. The wall is denoted by = 0 ; j = 0. The outer edge 

is at 7) = 7} = Jh if h . = h V. . n = 0  denotes the initial3 3°o I D

station at f, = 0 and £ = £ - 4 A , v .
3n-i/2 s3n 2 n' 33~ = 71 . - i h . .1/2 ' 3  2 3

Equationsf7.2,̂ ') are centred on (£ n , 77 ^ and equations

(7.2.10) and (7.2. If) are centred on n 1/2' 7) . ) . The3 D-1/2'

centred averages are defined as

- i  fa;il + ( b;j \  (s;'j% (s;;
(7.2.12)

( K i  - ? i  m ]  + u < t  - ( < ’ + 5 (7.2.13)

1 ?  f + tsi?)“ , * i R t f  t (be);;' j (7.2.14)

(AF);| - i  jMFj^ + (Af>;, 4  ( A F f  4 ( A f £  ] (7.2.15)

(7.2.16)

158



The wall conditions derived from (6.2.^) are

(7.2.17)

and the outer edge conditions derived from (6.2.10) are

% = ^  , Ejrr o . (7.2.18)

The initial profiles using the small x3 form discussed in 

Chapter 6 are

The solution is computed by stepping forward from the initial 

profile in the £3 direction, using Newton iteration at each

In most of the computations the meshwidths used were

h = 0.1, An = 0.02 with the outer boundary J set to 500. The

tolerance for which the Newton increments were considered small 

enough was 0.0001. The effect of h on the solution can be seen 

in tables 7.1, 7.2 and 7.3 and on the integral constraint in 

table 7.4. Solutions were found for a range of values of e and 

cr and are discussed in Section 7.4.

(7.2.19)

(7.2.20)

downstream step
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7.3 Solution for x3 > 1

Following the large x3 prediction (Chapter 6, Section 6.4) 

in which the stream function and temperature behave as 

ip3 ̂  x 31/2</>3, x 3'1/203 the numerical scheme for x3 > 1 is

based on the use of the variables 

£  Yi A  ,  I A

V  3 V  u l  %

with

(7.3.1)

(7.3.2)

Subsitution into the momentum and heat equations gives
,  . A  . A

\i,¿3 , 1 / i  ¿Jjf -  » ijh  \ .  i

+ J ? r  4  i j .  -  3  4 1
2 5i L ¿ ¡ ¿ I  <*£ d %  J

and
/N

z L k  %1*

with

+ . r J J z J -®4\]
b  Ji h

Ob

H  - 1 L B‘ H<y I a
%

(7.3.3)

(7.3.4)

(7.3.5)

We obtain a system of first order differential equations for 

discretization by setting

od

A: <f„ B.JJ , C . JJ J -  i-JJ  , hit
A £ 1 A * 1a

(7.3.6)

which when substituted into (7.3.3) and (7.3.4) give

ii ij - i  e - i f o  + i f  r
(7.3.7)
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and
, A

2

respectively.

-t f,( EJj - FJA \
13 < V

(7.3.8)

The four first order differential equations in (7.3.6) are 

approximated by

AR%A\iA p'>_S\v f a * Ea- e'
j-i i_5->, cj - t ' Ej-i' j j-‘ , j-i

A. A- A«a A~

(7.3.9)

•s
K'
J

Equations (7.3.7) and (7.3.8) may be written as
A ^> • ’4 N-Jj.

J 'Cj-< » "

(7.3.10)

and

rk;

respectively.

(7.3.11)

In this region there is a regular network in

coordinates
A A A A

where  ̂
)3 n “ ^3n-l + An' V  ■ v - 1 + hi / n i l ,

1 ^ j < j . The wall is denoted by 7) = 0; j = 0. The outer edge

is at i) = ri = Jh 
7”

if hj = h Vj. n = 0 denotes the initial

station at  ̂3 = 0 and
a r * a

1/2 - ”.j - 2hr3J * “ 3

Equations (7.3.c|) are centred on ( \ , T) . ) and equations
'3 3J“1/2

A
(7.3.10) and (7.3.11) are centred on ( 

centred averages are defined as

^ n - 1/2' 1,3 j-./2) • The
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7.4 Numerical Results

The range of e considered was from 0 to 10 and most 

results were obtained for cr = 0.72 (air) and 8.1 (water). As 

discussed in Chapter 6 the flow did break down at finite x3 for

some values of e and cr, although there appeared to be two types 

of breakdown, one in which reverse flow developed and another in 

which the solution terminated in a singularity.

Reverse-flow breakdown occurred for the case cr = 0.72, 

e = 0. As mentioned in Chapter 6 the reverse flow prediction for 

e = 0 suggested that negative velocities might first occur 

towards the edge of the boundary layer and this was indeed the 

case. Graphs of the scaled velocity (figure 7.1), scaled 

temperature (figure 7.2) and scaled pressure (figure 7.3) for

= 0.08, 0.16, 0.24 and 0.32 have been plotted.

A singularity breakdown was observed for higher values of 

e. The case investigated in detail was e = 1, cr = 0.72. Graphs 

of the scaled velocity (figure 7.4), scaled temperature (figure 

7.5) and scaled pressure (figure 7.6) show that the flow appeared 

to be developing in a regular manner. However this broke down 

quickly as the singularity was approached. Near to the 

singularity the skin friction increased rapidly (figure 7.7). 

Plots of the scaled velocity, scaled temperature and scaled 

pressure close to the breakdown point at = 0.5336 are 

presented in figures 7.8, 7.9 and 7.10 respectively.

For higher values of e the flow was able to develop all 

the way along the boundary layer as was expected from the large

x3 study of Chapter 6. For a = 0.72, e = 3.5 the flow broke

down in the manner described for cr = 0.72, e = 1 at a point
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between £3 = 1.78 and £3 = 1.80; the scaled graphs for this 

case for the velocity, temperature and pressure are shown in

a*,
figures 7.11 - 7.13. Graphs of the actual velocity

temperature T3 and pressure p3 plotted against z3 are shown

in figures 7.14 - 7.16. When the value of e was raised to 4 the 

flow was able to develop fully downstream. Results for this case 

are presented in figures 7.17 - 7.19 (scaled velocity, scaled

temperature and scaled pressure) and figures 7.20 - 7.22 (actual

velocity, temperature and pressure). The figures show that the 

solution has settled down to some final form.

The value of e for which the flow breaks down is dependent 

on a . This is demonstrated by the case of € = 3, a  = 8.1 for

which the flow is able to develop all the way along the boundary

layer, and for m II w ** a = 0.72 for which the flow breaks down.

Scaled graphs of the velocity, temperature and pressure for

C3 = 0.2, 0.4, 0.6, 0. 8 and 1.0 are presented in figures 7.23

7.25 and show well the change from the jet structure to the new 

structure of the flow driven by buoyancy and the forcing external 

velocity. Scaled graphs of the further development of the flow 

for this case are shown in figures 7.26 - 7.28 and again

demonstrate that the flow settles down to a final form. Graphs of 

the actual velocity, temperature and pressure are shown in figures 

7.29 - 7.31. The downstream development of the buoyancy layer for 

the case of air (cr = 0.72) is summarised in figures 7.32 - 7.35. 

Figure 7.32 shows the wall pressure plotted against £3 for

various e. The results confirm the small x3 and large x3

asymptotic results:
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- 4 ¡r j ^ o  ¿ b O  )

( Xi / 0J ^
oQ

- 1  
er

C &3 d *> )

(7.4.1)

(7.4.2)

The cases € = 4 and 10 that develop all the way along the 

boundary layer seem to approach their asymptotic values and even 

those cases which break down but for which e > ec actually

appear to be approaching their large x3 asymptotes prior to

termination. The cases e = 1 and 2 which were studied in 

detail close to the singularity see a rapid decrease in wall 

pressure near to the breakdown point and this is consistent with 

the skin friction rising sharply (see figure 7.33). The wall 

temperature (figure 7.34), however, is little affected by the 

rapid rise in skin friction and decrease in pressure.

Asymptotic forms for the skin friction and wall temperature 

at small and large values of x3 are:

*  *1 >l*[ fso W  ■+ fj, (*) ) (7.4.3)

^  (xit o) ^  x - l h , ( a) ) -9 O  J (7.4.4)

U i J 0) ^  x3",/z (o ) (x^-9 ‘A (7.4.5)

ixito\ ^  Xj ̂  & s  (o) (7.4.6)

a<id 4-Kese o se . lAcJudc.«! ia {iguffes 7-33 cu\d 7.3^ .
The,(displacement D3 (x3) is defined by the outer behaviour

(7.4.7)

and follows its asymptotes

D3 ^  x j f JOU ) = X *  K3
(x 0) (7.4.8)
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( x 3 -9 *o ) (7.4.9)P3 -N u  [ $ 3 - e W

well (see figure 7.35). Near to the singularity breakdown point 

it turns up sharply indicating that fluid is being brought back 

down into the boundary layer.

More comprehensive comparisons with the small

asymptotes have also been made. From the asymptotic study the 

velocity is

.) (7.4.10)

using the scaled function introduced in Chapter 6 and from the 

numerical study of Section 7.2 the velocity is

J3 S  _
^ 1 3

(7.4.11)

In tables 7.9 and 7.10 the values of

A

dV-
are compared with

3 / 2  . .
f2 o + x 3 f33o' whlch 1S the reduced form for e = 0, for the

cases <r — 0.72 and 8.1. Similarly, the asymptotic expression 

for the temperature is

V ( T*+ 3 é Tj, + è t 31
(7.4.12)

using the scaled functions introduced in Chapter 6 and from the 

numerical study of Section 7.2 the temperature is

- i fa  A

^3 ~ *3 %  •

In tables 7.11 and 7.12 the values of

(7.4.13) 

are compared with
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3/2  ̂

T30 + x3 T330' the reduced form for e = o, for the cases 

a = 0.72 and 8.1.

Tables 7.9 - 7.12 show good agreement between the numerical 

and asymptotic solutions. However this is not the case for larger 

values of e. We may write equation (7.4.10) as

¿2

where

(7.4.14)

1/4
and the next term in the expansion involves

(£32e)4 and Thus for equation (7.4.14) to be accurate to

within about 10-4 we require

(7.4.15)

or

?  6  * 7" Ô. IO curaci ^  0 . 3 2  ,
(7.4.16)

Table 7.13 shows the effect of these restrictions for different 

e. Confirmation of the trend of a smaller range of validity for 

higher e is shown in tables 7.14 - 7.16. For e = 10

conditions (7.4.16) require 5 0.1, so the expansion rapidly

breaks down near x3 = 0.

Results of the full computations for € = 10 are shown in 

figures 7.36 - 7.59 for cr = 0.72 and 8.1. The development of the 

velocity for a  = 0.72 along the horizontal boundary layer can be 

seen in figures 7.36, 7.37 (scaled form) and 7.38, 7.39 (actual 

form), the temperature in figures 7.40, 7.41 (scaled forms) and 

7.42, 7.43 (actual forms) and the pressure in figures 7.44, 7.45 

(scaled forms) and 7.46, 7.47 (actual forms). Corresponding 

results for the case cr = 8.1 are shown in figures 7.48 - 7.59.
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7.5 Discussion

In this section the implications of the present theory for 

the structure of the high Rayleigh number flow in the end zone of 

a shallow laterally heated cavity are considered. The basis of 

the theory is the model proposed in Chapter 3 in which a vertical

• - 3 / 5  .
boundary layer of width 0(R1 ) lies along the cold end wall.

At the base of this boundary layer the streamlines and isotherms 

are assumed to be carried around the corner into a horizontal

. - 3 / 5
boundary layer of width 0(R1 ) and length x = 0(1). In this

region buoyancy does not influence the flow to a first 

approximation and as a result the stream function and temperature 

fields uncouple giving a wall jet of the type first analysed by 

Glauert (1956). As x increases, and the jet diffuses, buoyancy

2 /5
reappears on the scale x = 0(R1 ) and the jet evolves into a

new boundary layer, partially driven by an external forcing 

velocity. This external velocity is associated with an inviscid 

recirculating zone above the horizontal boundary layers.

The horizontal boundary layers effect the transition to the 

main outer part of the end zone where x = OtR^. The results of

Chapter 7 suggest that for only a restricted range of e is a

straightforward development possible, and this range appears to be

even more restrictive than that suggested by the asymptotic

prediction e > e (a) .c

Further work is needed to describe the analytical form of 

the singularity that develops in the buoyancy layer at low values 

of e, and to find the actual value of e. The latter task is a 

particularly difficult one as it involves finding the 

recirculating flow in the main outer and inviscid zones above the 

horizontal boundary layers. These are formidible nonlinear
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problems involving, among other things, a solution of 

horizontal boundary-layer equations with substantial reverse

the

flow.
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TABLE 7.1

Effect of meshwidths on

\  ^3 - °*2

2 a) 0.6649

b) 0.6648

4 0.7184

0.7185

6 0.5470

0.5470

8 0.5097

0.5098

A

values of -- (cr = 0.72, e
3"n3

Ç3 - 0.6

4.1594 

4.1598

3.6130 

3.6132

3.6365 

3.6364

3.6009

3.6010

a) h = 0.1, A = 0.02 b) h = 0.2, A = 0.02

= 1 0 )

€ 3 = i.o

10.0613

10.0618

10.0243

10.0252

10.0184

10.0188

10.0127

10.0131
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TABLE 7 .2

Effect of meshwidths on
/V

values of Tj (a  = 0.72, e = 10)

Ç3 = 0.2 e3 = 0.6 = 1*

0 a) -0.4916 -0.2490 -0.1609

b) -0.4917 -0.2486 -0.1602

2 -0.4376 -0.0662 -0.0022

-0.4376 -0.0661 -0.0022

a) h = o • H > II O • o b) h = 0.2, A = 0.02

171



TABLE 7.3

Effect of meshwidths on values of o~p3 (£3 ,0) (cr = 0.72, e = 10)

*3 = 0.2

a) 1.8917

b) 1.8919

e3 = 0.6

0.4042

0.4028

C3 = 1.0

0.1676

0.1663

a) h = 0.1, A = 0.02 b) h = 0.2, A = 0.02
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TABLE 7.4

Effect of meshwidths on integral

e. h = 0.1, A =
3

0.2 1.001738

0.4 1.001434

0.6 1.001049

0.8 1.000578

1.0 0.999848

h = 0.2, A = 0.02

1.001668

1.000535

0.999143

0.997453

0.994754

Constraint(6.2-l3)(cr = 0.72, e = 10)
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TABLE 7.5

A

Effect of meshwidths on
a ?

values of ( a  = 0.72, 6 = 10)

a

*3

A

13 - 1'2 h  = 1*6 f3 - 2

1 a) 8.8343 8.7904 8.7669

b) 8.8087 8.7513 8.7224

2 10.0405 10.0316 10.0258

10.0410 10.0324 10.0266

3 10.0282 10.0224 10.0186

10.0282 10.0225 10.0187

a) h = 0.1, A = 0.02 b) h = 0.2, A = 0.02
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TABLE 7.6

Effect of meshwidths on
/V

values of Q (cr =  0.72, e = 10)

A

^3 33 - 1-2 ?3 » ^ ?3 =  2 - °

0 a) -0.1704 -0.1709 -0.1712

b) -0.1705 -0.1702 -0.1702

1 -0.0928 -0.0934 -0.0937

-0.0933 -0.0941 -0.0945

2 -0.0029 -0.0029 -0.0030

-0.0030 -0.0031 -0.0032

a) h = 0.1, A =  0.02 b) h =  0.2, A =  0.02
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TABLE 7.7

A A •
Effect of meshwidths on values of oTT($3,0) (5*r<5.72, &= lOl

?3 = 1*2 ^3 = ^ h  = 2-°

a ) 0.1820 0.1828 0.1833

b ) 0.1823 0.1831 0.1835

a) h = 0 .1, A = 0.02 b) h = 0.2, A = 0.02
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TABLE 7.8

Effect of meshwidths on integral constraint (£¿.¡3) (cr = 0.72, e = 10)

A
h  = 0.1, A = 0.02 h  = 0.2, A = 0.02

1.2 0.999701 0.997848

1.4 0.999637 0.997848

1.6 0.999576 0.997818

1.8 0.999516 0.997778

2.0 0.999457 0.997732
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TABLE 7.9

Comparison

solutions

of

for

a) numerical 

<x = 0.72, e

and b) 

= 0

small x3 asymptotic velocity

113

0.08 0.16

^3

0.24 0.32

1.0 a) 0.2197 0.2197 0.2189 0.2147

b) 0.2197 0.2196 0.2183 0.2119

2.0 0.4059 0.4058 0.4048 0.3992

0.4059 0.4058 0.4041 0.3992

4.0 0.4658 0.4658 0.4656 0.4645

0.4657 0.4656 0.4654 0.4645

o
•

00 0.0813 0.0813 0.0813 0.0813

0.0812 0.0813 0.0814 0.0821
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TABLE 7.10

Comparison of a) numerical and b) small x3 asymptotic 

solutions for cr = 8.1, e = 0

0.2

s3

0.4 0.6

1.0 a) 0.2197

b) 0.2197

0.2183

0.2176

0.1997

0.1958

4.0 0.4658

0.4657

0.4663

0.4663

0.4717

0.4731

16.0 0.0006

0.0006

0.0006

0.0006

0.0006

0.0006

velocity
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TABLE 7.11

Comparisont of a) numerical and b) small x asymptotic temperature

solutions for cr = 0.72 , e = 0

”3 ^3

0.08 0.16 0.24 0.32

0.0 a) -0.5942 -0.5941 -0.5943 -0.5949

b) -0.5943 -0.5943 -0.5943 -0.5954

1.0 -0.5902 -0.5902 -0.5903 -0.5911

-0.5904 -0.5904 -0.5906 -0.5916

• o -0.4086 -0.4086 -0.4093 -0.4131

-0.4086 -0.4087 -0.4098 -0.4151

8.0 -0.0955 -0.0955 -0.0963 -0.1005

-0.0455 -0.0956 -0.0966 -0.1016
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TABLE 7.12

Comparison of 

solutions for

0.0

1.0

4.0

a) numerical and b) small asymptotic temperature 

cr = 8 . 1 ,  e = 0

0.2

-1.8922

-1.8949

-1.7553

-1.7583

-0.0281

-0.0280

^3

0.4

-1.8928

-1.8958

-1.7572

-1.7610

-0.0287

-0.0289

0.6

-1.9006

-1.9052

-1.7808

-1.7894

-0.0379

-0.0376
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TABLE 7.13

Approximate r a n g e of for given e

€

0

1

3

10

0.32

0.32

0.18

0.10
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TABLE 7.14

Comparison of wall 

asymptotic solutions

temperatures 

for cr = 0.72,

for numerical 

e = 1

^3

*
Vjj/°)num

0.12 -0.5903 -0.5908

0.24 -0.5802 -0.5809

0.36 -0.5655 -0.5654

0.48 -0.5492 -0.5440

small Xj
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TABLE 7.15

Comparison of wall 

asymptotic solution

temperatures for 

for a = 8.1, e = 3

numerical

^3

A

^ • f c ^ l n u m

A

T3i^,o)asy

0.2 -1.8554 -1.8625

0.4 -1.7529 -1.7725

0.6 -1.5946 -1.7478

sma 11 Xj
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TABLE 7.16

Comparison of wall 

asymptotic solutions

^3 

0.2 

0.4

temperatures for 

for a = 0.72, e =

A

í í ^ i 0) num

-0.5070

-0.2719

numerical and small 

10

A
Ti/^Ojasy

-0.4349

-5.5956

X 3
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186

Figure 7.1 Graph of scaled velocity at £3 = 0.08, 0.16, 0.24

and 0.32 (€ = 0, cr = 0.72).



187

Figure 7.2 Graph of scaled temperature at £3 = 0.08, 0.16, 0.24

and 0.32 (e = 0, <r = 0.72).



188

Figure 7.3 Graph of scaled pressure at £ = 0.08, 0.16, 0.24

and 0.32 (e = 0, cr = 0.72).
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Figure 7.4 Graph of scaled velocity at £ 3 = 0.08, 0.16, 0.24

and 0.32 (e = 1 , a = 0.72).
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Figure 7.5 Graph of scaled temperature at £3

and 0.32 (€ = 1 , a = 0.72) .
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Figure 7.6 Graph of scaled pressure at

and 0.32 (e = 1, a = 0.72)
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F i g u r e  7.7 G r a p h  of 5Ca \<A shear Stress C 3 = 0.5331, 0.5332,

0.5333, 0.5334, 0.5335 (€ = 1, a = 0.72).

^-0.5331 05332 p o sili  y  0.5334-

0 1

^=0.5355



193

Figure 7.8 Graph of scaled velocity at £ 3 = 0.5331, 0.5332,

0.5333, 0.5334, 0.5335 (e = 1 , a = 0.72).
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Figure 7.9 Graph of scaled temperature at £ 3 - 0.5331, 0.5332,

0.5333, 0.5334, 0.5335 (€ = 1, cr = 0.72).





Figure 7.11 Graph of scaled velocity at £3 = 0.2, 0.4, 0.6, 0.8, 

1.0 (e = 3.50, a  = 0.72) .
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Figure 7.12 Graph of scaled temperature at £ 3 = 0.2, 0.4, 0.6,

0.8, 1.0 (€ = 3.50, a = 0.72).
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Figure 7.14 Graph of actual velocity at £ 3 = 0.2, 0.4, 0.6, 0.8,

1.0 (e » 3.50, a = 0.72).

£



Figure 7.15 Graph of actual temperature at £ 3 = 0.2, 0.4, 0.6,

0.8, 1.0 (€ = 3.50, cr = 0.72).
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Figure 7.17 Graph of scaled velocity at - 1.2, 1.4, 1.6, 1.8,

2.0 (€ = 4, <J = 0.72) .
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Figure 7.18 Graph of scaled temperature at ^ 3 =1.2, 1.4, 1.6,

1.8, 2.0 ( e = 4 ,  a = 0.72).
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Figure 7.19 Graph of scaled pressure at - 1.2, 1.4, 1.6, 1.8

2.0 (€ = 4, or = 0.72) .
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A
Figure 7.20 Graph of actual velocity at = 1.2, 1.4, 1.6, 1.8,

2.0 (e = 4, cr = 0.72) .
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= 1.2, 1.4, 1.6,
A

Figure 7.21 Graph of actual temperature at '̂3

1.8, 2.0 (e = 4, tr = 0.72) .





Figure 7.23 Graph of scaled velocity at = 0.2, 0.4, 0.6, 0.8,

1.0 (e = 3, cr = 8.1).
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211 A
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r\
Figure 7.26 Graph of scaled velocity at ^3 =

-1 5_

2.0 (€ = 3, <

5_

X = 8.1).
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A.

1.8, 2.0 (6 = 3, O' = 8.1) .

Figure 7.27 Graph of scaled temperature at = 1.2, 1.4, 1.6,
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Figure 7.29 Graph of actual velocity at = 1.2, 1.4, 1.6, 1.8,

2.0 (e = 3, <7 = 8.1).
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1.2, 1.4, 1.6,
A

Figure 7.30 Graph of actual temperature at =





\

Figure 7.32 Graph of Wall Pressure against for various

2)7
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Figure 7.34 Graph of Wall Temperature against £3 for various e.
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Figure 7.36 Graph of scaled velocity at

1.0 (e = 10.0, a = 0.72) .

0.2, 0.4, 0.6, 0.8,
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Figure 7.37 Graph of scaled velocity at = 1.2, 1.4, 1.6, 1.8,

2.0 (e = 10.0, a = 0.72) .
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Figure 7.38 Graph of actual velocity at £3 - 0 .2 , 0.4, 0.6, 0.8,

1.0 (e = 10.0, a = 0.72) .
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10„

8 _

6_

%
4_

2 _

0 __

-1

Figure 7.40 Graph of scaled temperature at £ 3 = 0.2, 0.4, 0.6;

0.8, 1.0 (e = 10.0, o- = 0.72).
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1.2, 1.4, 1.6,Figure 7.41 Graph of scaled temperature at ^ 3  “

1.8, 2.0 (e = 10.0, a = 0.72).
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Figure 7.42 Graph of actual temperature at £3

0.8, 1.0 (€ = 10.0, a = 0.72).

0.2, 0.4, 0.6,

-2
t3-3 -1 0
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Figure 7.43 = 1.2, 1.4, 1.6,Graph of actual temperature at 

1.8, 2.0 (€ = 10.0, a = 0.72).

-15
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Figure 7.44 Graph of scaled pressure at £3 - 0.2, 0.4, 0.6, 0.8

1.0 (e = 10.0, a = 0.72).
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Figure 7.45 Graph of scaled pressure at

2.0 (e = 10.0, cr = 0.72) .

1.2, 1.4, 1.6, 1.8,

5^

4_

5^

4_
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Figure 7.46 Graph of actual pressure at £ 3 = 0.2, 0.4, 0.6, 0.8,

1.0 (€ = 10.0, a = 0.72) .
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= 1.2, 1.4, 1.6, 1.8,Figure 7.47 Graph of actual pressure at

2.0 (e = 10.0, <T = 0.72) .
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Figure 7.49 Graph of scaled velocity at = 1.2, 1.4, 1.6, 1.8,

2.0 (e = 10.0, cr = 0.72) .
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Figure 7.50 Graph of actual velocity at £3 - 0.2, 0.4, 0.6, 0.8,

1 . 0  (€ = 1 0 .0 , o' = 8 .1 ) .

¿£3
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A
Figure 7.53 Graph of scaled temperature at ^ 3 = 1.2, 1.4, 1.6,

1 .8 , 2 . 0  (€ = 1 0 .0 , cr = 8 .1 ).
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\
Figure 7.54 Graph of actual temperature at £ 3

0 .8 , 1 . 0  (e = 1 0 .0 , a = 8 .1 ).

0 . 2 ,  0 . 4 ,  0 . 6 ,
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Figure 7.55 Graph of actual temperature at = 1.2, 1.4, 1.6,



Figure 7.56 Graph of scaled pressure at £ 3 = 0.2, 0.4, 0.6, 0.8,

1 . 0  (e = JO'O cr = 8 .1 ).
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Figure 7.57 Graph of scaled pressure at = 1.2, 1.4, 1.6, 1.8,

2 . 0  (e = 10.0, a = 8 .1).
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5̂

4.

3.

%
2_

1.

0 ____

- 2 0

Figure 7.58 Graph of actual velocity at £ 3 = 0.2, 0.4, 0.6, 0.8,

1 . 0  (e = 1 0 .0 , a = 8 .1 )•





APPENDIX 1

Numerical Scheme for the vertical boundary-layer equation

Letting A^ (r) B . 
1
(r) (r) (r) and E j (r)

rth approximation to the true solution, we write the 

approximation as A. (r+1)= A. SA. ̂

denote the 

(r+1)th

1 1 D 1 1

and so on, and then linearize by neglecting all the 

Substituting into (3.4.9) and (3.4.10) we find that

B_. (r+1) = B_.^ + SB.. ̂  ,

terms.

y<?
*  *>

+
J J-« *  ? r * z

—  M
>T s i f  -
J j -» —

where

<4 tw- ->w Jd . • R(rt , • oC/|
c d 4-< / i r  -¿1 bj i ft = " h .

% o' S<r 26-

a;;:, x?= , i r -

i<\

5 S  - <bi ■* ^

«<r
.(.A M
X) “ <b

5«-

’iKVT* C W  S
and

(A.l.l)

(A.1.2)

a t.'V\‘%  eW E M  + a,"'-'"' ■ -w  r Ma;:; + c  r . -  *0-i (A.1.3)

(ri
C* 3

J
I t
i »  k j a  *■ 

/  J
S

u*

E d - £ > -  +  5

3u. S
M t/l

ikj

5 J J
a "‘ £ M  3

(rl
i-i

(A.1.4)
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The boundary conditions from (3.4.8) are

¿A0 e *Ai , : *80 , v ^  * )-3)„ ; <TB* ■ ■ £* (A.1.5)

Incorporating the Newton iteration scheme into the recurrence 

relations (3.4.4) gives

<5 a;'- ¿ a "  - b O B ^ - *  3 - K 4

s o -  l " 1,

W - O  * C
where
l/A

K u s 
j »

J
X

, <d )
i j. * 1
J-i
(A

Im
1

trl

(rl

irl

if*

_tr(

i d  . (rl
Aj + A,.,
,frf (rl

*> ♦
VM  -JH

(A.1.6)

The linear system represented by (A.1.1) - (A.1.6) consists 

of 5 (N+l) equations, and these may be assembled into a single 

matrix equation

aix - bi
(A.1.7)

which has the structure.

1 0  0 0 

0 1 0  0

0 0 1 0

P

0

0

0

N
0 1 

0 0

<5 A -A
o

5Do
<5Bo
5Eo
<5Co

O

~Do
-Bo

0 0 0

X

•

*

5a n

5d n

ô b n

5en

V

1-d n
1 0  0 

«•
5c n "b n

■w „ ,
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where

-1 0
- h

0 0 1 0
- h

0 0

0 -1 0 0 0 1 0 0

0 0 -l 0 0 0 i 0
- h

0 0 e . 
3

0 b.
3

0 0 e . 
3

0

'j
A . 

3 5j
0

T3
A . 

3
a . 

3
0

k.
3 - 1/2

m .
j -1/2

L.
j -1/2

-R.
j -1/2

- s .3-1/2

There are N blocks of [P], forming a diagonal across a ^

To solve this matrix problem, the four elements a., y . ,  A.,
3 3 '  3 '

a.. in the bottom left corner and the three —=-h. elements in the 
3 * 3

top right corner in each block [P]j are reduced to zero by 

Gaussian elimination. This is made possible because each block 

may be treated separately. The three elements (all equal to one) 

on the diagonal at the top left corner of the matrix a.̂  are used

to reduce to zero the first three columns of [P] . The elements

beneath the diagonal can then be 'stripped off' enabling the 

increments to be read off in reverse order (N—^l). The matrices 

a^ and b^ are then recalculated and the procedure continued

until all the increments are sufficiently small.
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APPENDIX 2

Numerical scheme for the horizontal boundary-layer x < 1

For region I, equation (5.2.{2) may be written in the form

(A.2.1)

where
£ A-l

(A.2.2)

This is a nonlinear problem for the solution at step n and we

. . . * (r) A (r)therefore use a Newton iteration scheme by letting A ^ ' ' ,  ,

C . 
3
(r) denote the rth approximation to the true solution and write

the (r+l)th approximation as

a "* CA('* R£r4'* R i f ' r p (r‘ p ir*A A(rl r  Cr\A, = AJ+^  , Bj - 8-t«, , c i > Sc, . (A.2.3)

Ignoring all the S2 termsafter substitution into (A.2.1) gives 

^ Lif' r R (r' W *  r^ r \
CXJ JA) 4  bj S&J -t TCj -+

a,
J J-'

X U  A<rl y '  ,r. _ < ^l A,„

b3 °  ^  J ° S -  -  5r J  -f y  4

(A.2.4)

where
AC/» A(Mr » / » w i  i r »  f  f  a  k  A . « i  (<*N . _  -  .

4* V cj 4 Nir-i fa*)“

w f r  a  #  is<: +£ W v  £ )

i •'* W + £ l ri(X£-AZ)
J Cry I . J. ACC' L-
, 1 + 3 k' 3 a r 1 trl- a " ’ \

(A. 2.5)

(A. 2.6)
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Incorporating the Newton scheme into recurrence relations (5.2.11) 

gives

« T - s r0-1
A

and
*tr\sgJ - sê(rt

j  -i ¿ a  - h-i
where

A
ot . s J-i ( K+ K ! ) *  r , -

a  (A

A

h-t ‘ ±iVj ii C + C  ) +  r - I-'1
(A.2.7)

For Region II equation (5.2.26) may be written in the form

A _•

- £I*'»
(A.2.8)

where 

£ a-|
r  . i  - r "  - h  o T -  r r ^ ' i (A.2.9)

As in the inner region we use a Newton iteration scheme where we 

~ (r) A (r) A (r)
let FR V , Gr v , IR V denote the rth approximation to the true 

solution and write the (r+l)th approximation as

A (A
F. - r + 
k k

^  A M  ¿(r\  _ tCH
T t ' I k  * I k * s J 4 . (A.2.10)

Substitution into (A. 2.8) ignoring all S2 terms gives

\  iFk +

A r-tA

/ V  ̂ Tk *+
A  (rl V^r'
‘-’k ^Ik ■+

X  if* a ut

A  4

- w r T w  ft*" n"' 

^ k  5 J lt. ~ ^-i + ',.t

(A.2.11)
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Again the temperature problem is linear and we can immediately 

write for (A.2.23)

k  4  K *  Fi X ,+ r C +  ^
where
7f> “ <r Mb V r  * A'' 1

^ • « 4 * 1 ^ + V J

(A.2.25)

. i _ - <5"Wfc £ a-< “1 — i

^ J r ^ (A.2.26)

The outer region recurrence relation (5.2.25) for the temperature

gives

A ̂

\  " = i^ki ^ R +  U . (A.2.27)

The linear system represented by (A.2.18) - (A.2.27) with the 

boundary and matching conditions (5.2.28), (5.2.30), (5.2.33) 

consists of 2J + 2K + 4 equations and may be assembled into a 

single matrix equation

alX = bi (A.2.28)

which has the structure shown in figure A.2*2. The blocks 

comprising a^ may be treated separately from each other and are

first reduced to the form

(
*
0

*

*
*
*

0
* )

by Gaussian elimination (* represents a non-zero value). Then the 

same technique was used as in the velocity problem i.e. the bottom 

two rows were interchanged allowing a diagonal of elements to be 

'stripped off' and hence the problem to be solved.
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R tf‘ KJ
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lA
i r

ll r -j" '

vA

V *
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° r i

^ (r\
c j -

1 + h - Â ‘rt -)■ s  V * [  r :  •u  J-i

£  IA
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\A
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J
L' — 1*1
i- 'A ,., i I V ?  n  cf  J * 4 . ^  J 2V

(A.3.8) 

(A.3.9) 

(A.3.10) 

(A.3.11)

The recurrence relations (5.3.8) give

4  ‘ 4 - .  'v<5^-. J-~ ^ (A.3.12)

SB J ~ S BJ-, - i kj ( Scj •* J «-j.. ) - Pj.j

(A.3.13)

wkere,
va u\ i , / o M  o \ T/r‘ T ir'

¿ V  %  +  *,-,) + V . - A , (A. 3.14)

Vs /fl / . _
b | — fr\ x rrî  »7 M
P J 4  = l c j  *  c j- ) +  B,.,* ¿ j  , (A.3.15)

For the boundary condition we have from (5.3.16)

4 " ’= - C  - a : ri= - r (A.3.16)

and from (5.3.17)

— in j- (ri

(A.3.17)

The linear system represented by (A.3.2) - (A. 3.17) consists

of 3J + 3 equations which may be assembled into a single matrix

equation

ax = b (A.3.18)
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which has the structure

f- - “ *

o o 5 Ao -Ao
1 
* o I-* o

1

8 Bo -Bo
ÔCo

l X

5AJ

(o 1 o)
5BJ

0CJ -bj
mm •l mm v

where

This matrix problem was solved in a similar manner to the velocity 

problem of Section 5.2. The three elements at the top right and 

bottom left corners of [Pj ] were reduced to zero by Gaussian 

elimination. The bottom two rows of a were then interchanged 

allowing a diagonal of elements to be 'stripped off' and the 

increments to be found. The matrices a and b were then 

recalculated and the procedure continued until all the increments 

were sufficiently small.

The temperature problem is a 

immediately write equation (5.3.10) as

linear one and we can

+
- ç «
e  t  •

J J

->in

where
\A . .

O 'A1 s -Lir r * -
O' 1L j

£  /»-l

s r  ) - s  r  ( â;, + n  

s v *[-îa- ëC ' - îâ è);:]
4Ô*

•+

(A.3.19)

(A.3.20)
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(A.3.21)

\A J.—A

VA

<slj  “J. -h 4  ,

The recurrence relation (5.3.8) gives

(A.3.22) 

(A.3.23) 

(A.3.24)

(A.3.25)

The linear system represented by (A.3.19) - (A.3.25) together with 

the boundary conditions (5.3.16) and (5.3.17) consists of 2J + 4 

equations and may be assembled into a single matrix equation

a 1 x = b1 (A.3.26)

which has the structure

The matrix problem was solved in the same way aS the temperature 

problem in Section 5.2.
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APPENDIX 4

Numerical Scheme for the buoyancy layer x3 < 1

Equation (7.2.10) may be written in the form

~ ¿ V " *  V /  E'j-i ]

cacJ‘,3 - »

% ' C

where
i A*« a~I l * r _ 6 v^1 n A* i / .

^  ^ -  i Y  T U  +3v V ‘ e ; ' - i  3

- kj i l  0 *  ( 0 2  -s  s  L ( A t C  ]

+ Vi H -( c ;r + c  <; 3

(A.4.1)

(A.4.2)

(A.4.3)

while equation (7.2.11) may be written in the form

i C -  1 F->-' + » 4  C &«),*•♦ iBB^_ -f iAfJ0“ + ( A F V - . 3

? v ? v c ; ) +
^ « i - A "'I

J-*

where

t; ;  • -< r -  < - • « [ « , ■  ' » c * w r - « F ! r ; 3

This is a nonlinear problem so we therefore use a Newton

(r)

(A.4.4)

. (r) (r)
iteration scheme by letting A^' , C (r) d . (r) 

D ' D Ej

Fj
(r) denote the rth approximation to the true solution at step

n and writing the (r+l)th approximation as

A ' ^ A T ^ A r ,  0

(A.4.5)
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At the wall from (7.2.17) we have

lr\ ,Lr\ M -M

while at the outer edge from (7.2.1$) we have 

.tr> _ J r )  ^ z  ^ J r \ _ l r \

'30 J ' ' ̂

^(r\ _ M  Z n (rK (.r\ ~~(r
«Tl̂ r - - h j  t ^Sj- = € ^ ~  3j , d Ej- - - l y

(A.4.34)

(A.4.35)

The linear system represented by (A.4.1) - (A.4.4), 

(A.4.6) - (A.4.35) consists of 6J + 6 equations which may be 

assembled into a single matrix equation

Ax = B (A.4.36)

which has the structure

where
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[ Q j ]

\

m<r>

■ f ’

- r
L<r >
1

t "'1 + j-1/ 2 R ir ̂J-1/2
cn -1s . ♦ j -1/ 2

(r)
7 •j-l/2

The matrix problem was solved by reducing to zero the bottom left 

and top right corners of [P^] (15 elements) by Gaussian

elimination. NAG routine F01LBF which decomposes a general band 

matrix into triangular matrices using Gaussian elimination with 

partial pivoting and F04LDF which solves the resulting linear 

system were then used to solve for the Newton increments. The
A A

matrices A and B were then recalculated and the procedure 

continued until all the increments were sufficiently small.
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This has a similar structure to that obtained for the region

Ax = B. (A.5.35)

0 < X3 < 1

A A A A

although

A A A

the constants

A A A  A

A A A

a, a, b,

A

A A A A A A

b, c, c, d, d/ e ,

< <u

s, r, a , a ,  

system was

(3, n ,  

solved in

[l,  v ,  v ,  T 

the same way.

and R are different. The
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