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ABSTRACT

This thesis is the third in a series of studies on the 
Korteweg-de Vries equation (KdV) and its homologues, 
the objective being to understand its distinguished 
position when embedded in a class of similar equations.

Now the KdV is a partial differential equation which is 
well-known to have some remarkable mathematical 
properties. Furthermore, it also appears as a useful 
model in a great many physical situations. Thus, 
although it was originally obtained as an approximation 
in fluid dynamics, it was reinterpreted as a canonical 
field theory for weakly dispersive and weakly nonlinear 
systems. This reinterpretation led to the hypothesis 
that the properties of the KdV could be understood in 
terms of a balance between the competing effects of 
dispersion and nonlinearity. Alternatives to the KdV 
were proposed on the basis that their dispersive 
properties were physically and mathematically 
preferable to those of the KdV.

The first study, which was undertaken by Abbas, was to 
test the hypothesis described above that dispersion is 
a qseful criterion for constructing nonlinear 
equations. By introducing a general class of 
equations which Includes the KdV and all its proposed 
alternatives as special cases, he investigated in 
detail the predictions based on the dispersion relation 
and compared them with the actual properties of the 
equation, particularly in regard to the existence of 
solitary waves. He found little correlation and some 
contradictions and concluded that the idea of a balance 
between nonlinearity and dispersion is not a useful way 
of understanding these equations. This meant that 
other criteria must be developed to obtain this 
understanding.

The criteria we are looking for would have to account 
for the existence of families of solitary waves in the 
general class and, in the case of the KdV, for 
solitons. However, before doing this it was 
Important to establish the mathematical validity of the 
equations, l.e. well-posedness and existence of 
conservation laws. This was carried out by 
El-Sherblny in the second study of the series. By 
partitioning the set of equations into equivalence 
classes, he proved existence for most of the equations 
and well-posedness for some. He also showed that, 
with the exception of the KdV, all the equations have 
at least two and at most three conservation laws.
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At the time that this third study was started interest 
was focussed on the integrabllity of nonlinear 
evolution equations and, through the Palnlevé 
conjectures, this was reformulated in terms of the 
analytic structure of the solutions of these equations. 
It seemed natural, therefore, to look at the Abbas' 
class of equations from this point of view as the major 
objective. In addition, we critically examine the 
structure of the solitary waves themselves in order to 
answer the question of when a solitary wave is a 
soliton.

The first part of this thesis contains the introduction 
and relevant reviews of the inverse scattering method, 
integrability and the work of Abbas and El-Sherblny.

The second part of the thesis contains our main 
contributions and we begin by obtaining all the 
similarity reductions to ordinary differential 
equations for the general class of partial differential 
equations using one-parameter Lie groups. We derive 
the singularity structure of the general solutions of 
the similarity equations and use this analysis to 
Initiate a classification of third order nonlinear 
ordinary differential equations. Next we obtain the 
singularity structure of classes of general solutions 
of'the partial differential equations directly in terms 
of Laurent-type expansions. These results are 
compared with those obtained via symmetry groups and 
equations which are or are not Palnlevé-type 
identified. We also look for special cases of the 
general solution which may be restricted solitons. We 
do not find any, and, in the case of the regularised 
long wave equation, we prove that it does not have any. 
Finally, we develop a classification of the solitary 
waves of the general class and use this to develop 
necessary criteria for a solitary wave to be a 
soliton.

The thesis ends with a resumé and suggests avenues for 
continuing this investigation.
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CHAPTER ONE

INTRODUCTION

The concept o£ a solitary wave was first Introduced In 

1834 by Scott-Russell and his famous horseback obser-

vation. He was observing the motion of a boat drawn 

rapidly along a narrow channel by a pair of horses.

When the boat suddenly stopped, the mass of water which 

the boat had set In motion '... rolled forward with 

great velocity, assuming the form of a large solitary 

elevation, a rounded, smooth and well-defined heap of 

water, which continued Its course along the channel 

apparently without change of form or diminution of 

speeds ...'.

In 1895 Korteweg and deVries t191 constructed a 

nonlinear partial differential equation (PDE) for 

studying solitary waves on shallow water. This 

equation which was derived as an approximation from the 

equations of hydrodynamics. Includes both nonlinear and 

dispersive effects, but Ignores dissipation. It has 

the well-known form

ut + ux * uux * uxxx ' 0 <1-1)

A solitary wave Is a localized travelling wave and 

consequently can be obtained by assuming
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U(x, t) = f(7?) ( 1 . 2 )

where T) = x - (l+c)t represents the position In a 

coordinate system moving at a velocity (1+c) for 

which the wave appears stationary. The resulting 

ordinary differential equation (ODE) can then be solved 

to give the shape of the solitary wave, if such a 

solution exists. In the case of the Korteweg-deVrles 

equation (KdV) this ODE can be integrated exactly to 

give the solitary waves

u = 3c sech Yc
2 (x - (1+c)t) , C € D?

(1.3)

Since c is not negative, an Important property of the 

solitary waves of the KdV is that they are 

unidirectional with speeds ranging from 1 to oo.

Since the work of Korteweg and deVries the existence of 

solitary waves has been shown for several PDEs and some 

of these will be given in the next chapter.

A different kind of solitary wave occurs for the sine- 

Gordon equation (SGE)

*xx - *tt ■ 3ln,> a -4)
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where 0 e 10, 277]. For this equation, the solitary

waves correspond to a rotation In <p by 2n and have 

the forms

= 4tan c « R

(1.5)

These solutions exhibit some of the properties of 

classical particles and hence have potential 

applications In elementary particle theory (251.

In fact it was their Interest in how elementary 

particles would scatter upon collision which led 

Perring and Skyrme (241, in 1962, to Initiate computer 

experiments on the solitary waves of the SGE. These 

experiments Indicated that the solitary waves emerge 

from the collision having the same shapes and 

velocities with which they enter. This led Perring

and Skyrme to find analytical expressions describing 

collision events which, Interestingly, had been derived 

a decade earlier by Seeger, Donth and Kochendorfer 

(26) .

Soon after the work of Perring and Skyrme had appeared, 

Zabusky and Kruskal [311 published results of a 

completely Independent study of the application of the 

Kdv equation to the Investigation of plasma waves.

Once again, computer experiments Indicated that the
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solitary waves emerge from a collision having the same 

shapes and velocities with which they enter. Zabusky 

and Kruskal coined the term SOLITON to describe the 

solitary wave which exhibits this phenomenon. The 

question then arose as to whether there exist solitons 

which, asymptotically, are a superposition of an 

arbitrary number of solitary waves. The earlier 

evidence that the work of Perring and Skyrme provided 

seems to have gone unnoticed at this stage.

An analytic procedure for solving the initial value 

problem of the KdV equation for data which vanishes 

rapidly as |x| — *■ oo was discovered by Gardner, Green, 

Kruskal and Muira (GGKM) in 1967 [121. The initial Valu€. 

problem they considered was

ut - 6uux + uxxx - °' U '6a)

u(x, 0) = u (x) (1.6b)O

for x e (-oo, cd), t > 0. The existence of classical 

solutions for this class of data was proved by Bona and 

Smith in 1976 [61. The key step in developing the 

method came from an observation of Muira [221 that if 

v is a solution of the modified KdV equation (MKdV)

v*. - , r6v v. + v = 0
XXX

then

(1.7)
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u (1 .8)
2 A

= V + V

is a solution o£ the KdV equation (1.6). Now (1.8) 

is a Ricatti equation and can be linearized by the 

substitution v = Using this together with a

symmetry transformation of the KdV leads to the 

eigenvalue ODE

0XX " (u-M4> = 0 (1.9)

where \ is a constant, i.e. independent of time for 

each t, equation (1.9) is a time-independent 

Schrodinger equation with potential u(x, t), energy 

level \ and wave formation #(x, t).

The initial value problem (1.6a, b) was thus reduced to 

an inverse scattering problem i.e., computing u(x, t) 

from a knowledge of the scattering data comprising the 

discrete eigenvalues, normalised coefficients of the 

corresponding eigenfunctions and the reflection 

coefficients. The problem is then solved in terms of 

a linear integral equation.

Solving this linear integral equation was then 

equivalent to solving the initial-value problem. This 

was a significant addition to methods for solving 

nonlinear PDEs and became known as the Inverse 

scattering method. This method will be reviewed in

X
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much greater detail in the next chapter.

Although GGKM developed the inverse scattering method 

(ISM) for the KdV in 1967, exact solutions for solitons 

were not obtained from it or any other method until

1971. in the meantime, however, Lax (21) followed up 

the computer experiments of Zabusky and Kruskal and 

proved analytically the existence of two-soliton 

solutions of the KdV, thus confirming numerical 

predictions. Lax also generalized the GGKM method to 

a general class of nonlinear PDEs of the form

ufc = K[u) (1.10)

where K is a nonlinear operator. Using this 

approach Zakharov and Shabat (33) solved the nonlinear 

Schrodinger equation (NLS)

u. = i(u + 2u*u*) (1.11)t xx

*
where u is the complex conjugate of u, and thus 

showed that the inverse scattering method was not 

limited to the KdV hierarchy. Furthermore, they 

obtained exact N-soliton solutions.

The exact N-soliton solutions of the KdV equation using 

ISM were first obtained by Wadatl and Toda (29) in

1972. Following Zakharov and Shabat, Vadati extended

6



the ism to the MKdv and found the N-soliton solutions

[281. The extension to the SGE was made by Ablowltz, 

Kaup, Newell and Segur (AKNS) [21 who also provided a 

procedure for solving a number of other nonlinear PDEs.

The Inverse scattering method, which by now had become 

known as the Inverse scattering transform (1ST), Is not 

the only way of obtaining N-sollton solutions. Hlrota 

found exact N-sollton solutions to the KdV, MKdV and 

SGE [15-17) via a completely different approach In 

which he transformed the PDE Into homogenous bilinear 

forms of degree two. In the case of the KdV, the 

Hlrota solutions preceeded those of Wadati and Toda. 

More recently Bryan 18] put forward a much simpler 

algorithm for the SGE and then extended It to the other 

equations [9, 101.

We note that the existence of solltons In an 1ST 

solution corresponds to the presence of discrete 

eigenvalues In the scattering data. Therefore, an 

equation which reduces to linear Integral equations via 

1ST may not have sollton solutions (we give examples of 

this In the following chapter). Equations which have 

been shown to possess solltons and which can be solved 

by 1ST also have the property that they possess an 

Infinite number of local conservation laws.

These d e v e l o p m e n t s  have led workers In the field to

7



consider the concept of lntegrablllty for PDEs. For 

an n-dlmenslonal Hamiltonian system (ODEs) the 

definition of lntegrabl1lty Is provided by Llouvllle's 

theorem l.e. there must exist n-constants of the motion 

(first Integrals) which are In Involution. For PDEs, 

which are Infinite dimensional, there Is no theorem 

which corresponds to Llouvllle's. Thus, the 

existence of an Infinite number of conservation laws, 

the existence of an 1ST and the existence of sollton 

solutions are distinct properties. However, In every 

case equations with sollton solutions are found to 

possess an Infinite number of conservation laws and 

thus It Is generally supposed that these properties are 

complementary In the sense that either one Implies the 

other, but this has yet to be rigorously formulated and 

proved.

On the other hand by making certain assumptions It may 

be possible to represent an equation which has both 

solltons and an infinite number of conservation laws as 

an Infinite dimensional Hamiltonian system and hence 

imply that 1ST is equivalent to complete integrabllity. 

This was done by Zakharov and VadAttv [321, but the 

assumptions are specific to that equation.

A general scheme for obtaining solutions to nonlinear 

differential equations without first finding an 

associated scattering problem was first presented by

8



Zakharov and shabat 1341. This scheme was later used

by Lambert [20] to obtain exact solutions for the KdV 

equation which are not recoverable by the 1ST method. 

Using this approach Ablowltz, Ramani and Segur [3] 

developed a scheme for solving nonlinear PDEs via 

linear integral equations and this work will be 

reviewed in Chapter Three.

in 1977, Ablowltz and Segur [4] demonstrated a close 

connection between nonlinear PDEs which are soluble by 

1ST and Palnlev* transcendents. The Painlev6 

transcendents were first discovered by Painlev6 and his 

colleagues around the turn of the century [14], [18]. 

They showed that of all possible equations of the form

* F (z' af) - i1-12*

cl wwhere F is rational in z and ^  , and analytic in

z, only 50 canonical equations possess the property of 

having no movable singularities except poles in their 

general solutions. Furthermore, they showed that 44 

of these were soluble in terms of elementary and 

elliptic functions. The remaining six defined new 

transcendental functions which are the Painlev6 

transcendents. The first and the simplest of these 

is

9



P
I

Thus an ODE Is said to have the Painlev6 property or be 

of Painlev6 type if all movable singularities of the

conjectured that all the possible reductions (e.g.

transformations) of a completely integrable 

PDE will have the Painlevé property.

More recently Weiss, Tabor and Carnevale 1301 have 

formulated a 'Painlevé test' that can be applied 

directly to a PDE without any need for reductions.

These tests for integrability will be rev*e»̂ <J in 

Chapter Four and, as we shall see, although they are by 

no means unambiguous, they do seem to provide a

Tabor and Wood [131 and Tabor and Gibbon 1271 also 

shows an Interesting connection between the analysis of 

Weiss et al. and Hlrota's method.

Now it is accepted convention to say that a nonlinear 

PDE is integrable if it can be reduced to a linear 

system. As we have described above the 1ST is a 

method which linearises certain equations and so such 

equations can then be classified as integrable. 

Furthermore, it is found that every equation which has 

sollton solutions can be linearized by this method

general solution are poles [181 In [3] it was

valuable first test. The work of Gibbon, Radmore,

10



which implies that a necessary condition for the

existence of soliton solutions is that the equation is 

integrable. However, this definition of 

integrabllity is not constructive in the sense that 

there is no systematic procedure for finding the Lax 

operators for a given equation. Nor is there a 

general theorem which can be used to decide whether an 

equation has soliton solutions or not. Thus, the 

problem of Identifying integrable systems can be more 

simply stated as follows: when is a solitary wave a 

soliton? In this formulation of Integrabllity, the 

criteria for the identification of soliton solutions 

should be a priori theorems based on the structure of 

the equation and its family of solitary waves.

One way of implementing this idea is to analyse a 

general class of equations which form a neighbourhood 

of a soliton equation. The parameter of the 

equations in this neighbourhood, e.g., the shape of the 

solitary waves, may then provide indicators of 

necessary and sufficient conditions for the existence 

of soliton solutions.

This approach was first used by Abbas 111 when he 

considered a class of third order PDEs with quadratic 

nonlinearities defined by

11



u.+u +a uu +a uu,+a u +a u ,+a u , .+a u.. . = 0,t X 1 X 2 t 3 XXX 4 xxt 3 xtt «5 ttt '

(1.13)

where a^ e 1R. This class forms a neighbourhood of 

the KdV and it also contains another well-known 

equation, namely the regularized long wave equation 

(RLW).

"t * %  + UU* - UXKt ' ° •

The basis on which this class was constructed was that 

suggested by Broer (7) in 1964 and subsequently (1972) 

used by Benjamin et al. (5) in their construction of 

the RLW. Note that this equation was derived as an 

approximation to the equations of hydrodynamics by 

Peregrine (231. Broer's suggestion was that the 

essential properties of equations such as the KdV were 

a result of the interaction between dispersion and 

nonlinearity so that the equation can be analysed in 

terms of its linear and nonlinear parts. As a 

consequence, the introduction of these terms could be 

based on independent physical considerations. This 

point was clearly emphasised in the paper of Benjamin 

et al. who argued on the grounds of physically 

allowable dispersion relations what the RLW was a 

better model than the Kdv. Furthermore, at this time 

it was generally believed that the existence of stable

12



solitary waves was due to a balance between

nonlinearity and dispersion (see Scott et al. [251).

Abbas' work was concerned with testing this hypothesis 

on the general class of equations (1.13). Firstly, 

he found that the predicted properties of the solitary 

wave of the KdV i.e. on the basis of the dispersion 

relation, contradicted the actual properties.

Secondly, he obtained periodic and solitary wave 

solutions of the equations in (1.13) and classified 

them in terms of their dispersion relations. He 

showed that linearly stable solitary wave solutions 

with the KdV profile (sechz) exist for a variety of 

dispersion relations including a formally nondispersive 

subclass. This Indicated that the existence of 

stable solitary waves could not be interpreted as a 

balance between nonlinearity and dispersion. The 

general conclusion that Abbas drew from these results 

was that the dispersion relation was not a useful 

predictor of the properties of a nonlinear equation.

Before developing other criteria for understanding the 

existence of solitary waves and solltons in the class 

of equation (1.13), it was Important to establish the 

well-posedness of the class for reasonable data.

This was done by El-Sherblny [11] who showed that 

equations (1-13) formed four equivalence classes.

Using the method of characteristics he proved well-

13



posedness £or a subset of equations In these 

equivalance classes and for the remaining equations, 

where the method o£ characteristics falls, he proved 

well-posedness for some cases and established necessary 

existence theorems for most of the others. Note that 

the well-posedness of the KdV and RLW were proved 

earlier by Bona and Smith C61 and Benjamin et al. 151. 

Having established a well-defined neighbourhood of the 

KdV, El-Sherbiny then looked at the existence of 

conservation laws. Apart from the KdV with Its 

Infinite number of conservation laws, he showed that 

the rest of the class have at least two conservation 

laws, but not more than three. This established the 

uniqueness of the KdV In the class (1.13) on the basis 

of the number of conservation laws.

The next step was to look at other properties of the 

class. Now at that time considerable Interest had 

developed in the analytic structure of general 

solutions of nonlinear evolution equations as a result 

of the Palnlev6 conjectures [4, 30] which related this 

property to the integrability of the equations. 

Therefore It seemed appropriate to Investigate this 

aspect of the class of equations (1.13).

In this thesis we examine the analytic structure of the 

general solutions of the equations In (1.13) In order 

to establish further evidence of the uniqueness of the

14



Kdv in this class. Following this we return to our

original question of determining when a solitary wave 

is a sollton and look at the solitary waves in the 

class to establish criteria for identifying the KdV.

Our original contributions are as follows:

(1) Using symmetry reductions we obtain all the ODEs 

of similarity solutions for the equations in (1.13).

(2) We determine the analytic structure of general 

solutions of the equations obtained in (1) and hence 

initiate a classification of third order nonlinear 

ODEs.

(3) Using Laurent-type expansions we determine the 

analytic structure of the general solutions of the PDEs 

in (1.13).

(4) We compare the results obtained in (2) and (3) 

and use them to identify equations of Painevé type.

(5) We analyse the detailed structure of the solitary 

waves of the equations in (1.13) and establish criteria 

for a solitary wave to be a sollton.

The layout of this thesis is as follows: Together

with the introduction, the thesis consists of ten 

chapters and four appendices, the references for each

15



chapter being presented separately at the end of the 

thesis. The thesis falls naturally Into two parts. 

Following the Introduction, Chapters 2, 3, 4 and 5 

contain essentially known results. A part of Chapter 

3 contains an original contribution and the 

presentation, discussions and criticisms In all 

chapters are our own.

Our own contributions are presented In Chapters 6, 7, 8 

and 9 and In Chapter 10 we give our concluding remarks. 

A summary of chapters 2 to 9 Is as follows:

Chapter 2: We review the Inverse scattering method, 

solitons and conservation laws with particular 

reference to the KdV. We also discuss a connection 

between conservation laws and the Inverse scattering 

method.

Chapter 3: We define integrabllity for both ODEs and

PDEs and Implement this for a nontrivial Hamiltonian 

system of ODEs. In the case of PDEs we show how they 

can be Integrated via linear Integral equations 

obtaining a wider class of solutions than via 1ST. 

Finally, we discuss the Palnlev6 conjectures for PDEs.

16



chapter 4: An outline o£ the Lie-group method for

finding similarity transformations of PDEs is given and 

applied to the KdV. A review of the singularity 

structure of the solutions of ODEs Is then presented 

together with techniques for analysing their structure. 

Finally, a direct method of analysing the general 

solution of an Integrable PDE Is Introduced.

Chapter 5: We review the work of Abbas and El- 

Sherblny on the equations in (1.13).

Chapter 6: We obtain the one-parameter Lie groups of

local symmetries of the equations in (1.13). We 

refine the classification of the equations according to 

the infinitesimal generators of these groups and use 

them to obtain the corresponds^ similarity reductions 

to third order o d e s.

Chapter 7: We determine the analytic structure of the

solutions of the ODEs obtained in Chapter 6. Those 

that can be Integrated to become second order are 

classified using the Palnlevé list. The remainder, 

which are irreducible third order, we investigate using 

local power series expansions and classify as Painlevé 

type or not. We discuss our findings and suggest 

necessary conditions for the existence of non-analytic 

general solutions and the non-existence of logarithmic 

branch points. Finally, we initiate a classification

17



for third order nonlinear ODEs.

Chapter 8; We determine directly the analytic 

structure of general solutions of the PDEs in each of 

the four equivalence classes by using local Laurent- 

type expansions. The results are used to refine the 

classification of Chapter 7 in terms of the ODEs and to 

establish the theorem that the Kdv is the only equation 

in (1.13) of Painlev«& type. Next we look for special 

meromorphic solutions with a view to identifying 

equations which may have restricted N-sollton 

solutions. This led to a rigorous proof that the RLW 

has no soliton solutions.

Chapter 9: We analyse the detailed structure of the

solitary waves of the equations in (1.13) in terms of 

their width and amplitude parameters and reduce them to 

generic forms by using certain reasonable selection 

rules. Using these generic forms we establish 

necessary criteria for a solitary wave to be a soliton.
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CHAPTER TWO

INVERSE SCATTERING TRANSFORM, SOLITONS AND 

CONSERVATION LAWS

In this chapter we describe the development of the 1ST 

method for solving the Kdv equation. The method 

consists of transforming the equation to a linear 

Integral equation via a scattering problem defined by 

the time-independent Schròdlnger equation. We 

discuss the method as orglnally developed by Gardner, 

Greene, Kruskal and Mlura (GGKM) and then consider Its 

generalization by other authors. As an Illustration, 

the method Is used to obtain the N-sollton solutions of 

the KdV equation. Finally, we review results on 

conservation laws and show a relationship between the 

1ST method and the Infinite number of local 

conservation laws possessed by the equation.

2.1 The Inverse Scattering Method of GGKM 17 J 

Consider the solution u(x, t) of the Kdv equation

ut ~ 6uux + uxxx = °' x c(_00' °°)' t > 0,
(2.1.1)

u(x, 0) = g(x) (2.1.2)

and let u(x, t) be the potential In the Schròdlnger 

equation
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(u(x, t) - X]v = 0, (2.1.3)v

where t is considered to be a parameter.

The method consists of using the properties of the 

given function u(x, 0) to determine the initial 

eigenvalues and eigenfunctions of (2.1.3) and then 

using the resulting scattering data to compute u(x, t) 

from the Gelfand-Levltan-Marchenko equations.

For initial values u(x, 0) = g(x), to obtain the 

values of X for which there exist solutions v(x) 

that are bounded as | x | — ► oo, we require that the 

growth condition

CO

J | g (x) | (1 + | x | ) dx <oo (2.1.4)

-00

is to be satisfied (61.

The set of all eigenvalues X is called the spectrum 

corresponding to a given potential g(x). Computing 

the spectrum for t = 0 gives, in general, a finite 

number of discrete eigenvalues X = - K*(0) and a 

continuous part X = k2(0).

The behaviour of the eigenfunctions corresponding to 

the discrete eigenvalues x(t) = - K2(t) may be

XX
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assumed to be given by

v (K , n n' t)

-K (t )X
cn(t)e for x

~ K ( t ) x
cn(t)e for x

00

-  00

(2.1.5)

where c(t) are the normalized coefficients and 

(2.1.5) Is known to be true for t = 0.

For the continuous spectrum the asymptotic behaviour of 

the eigenvalues which correspond to Mt) = k2(t) may 

be assumed to be given by

vn(k, x; t)

-lkx , ... . . lkx ,e + b(k, t) e for x —♦ ao

a(k, t)e for x —♦ -oo

(2.1.6)

where a(k, t) are the transmission coefficients and 

b(k, t) the reflection coefficients (a and b occur 

when a wave sent in from -oo interacts with a 

potential and some Is reflected and the remainder 

transmitted). Equation (2.1.6) Is known to be true 

when t = 0 and a(k, 0), b(k, 0) can be computed 

from g(x). Further, a and b are related by the 

conservation law

la I* + M *  - i-

The spectrum of the Schrodinger equation, together with
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the coefficients cn(t), a(k, t) and b(k, t) are 

called the scattering data of the potential u(x, t). 

To obtain the scattering coefficients for any t > 0 

we impose on the eigenfunctions a specific evolution 

which keeps the spectrum time-invariant. These 

results are given by the following theorem.

Theorem 2.1 17], [11]

If u(x, t) evolves according to the KdV equation 

(2.1.1) with initial data satisfying (2.1.4), then 

u(x, 0) -f 0 as IxI -* oo and the following relations 

are satisfied

(1) X(t) = MO)

(ii) b(k, t) = b(k, 0)exp(8ikat)

(ill) c (t) = c (0)exp(4Kat) m m m

(iv) a(k, t) = a(k, 0)

where c (0), b(k, 0) and a(k, 0) are determined m
from the initial data g(x) □

The potential of the Schrödinger equation can now be 

recovered from the scattering data for any t > 0 by 

solving the inverse scattering problem. For this we 

use the Gelfand-Levitan-Marchenko Integral equation
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00

K(x,y;t) + B(x+y;t ) +
x
B(z+y;t)K(x,z;t)dz = 0

(2.1.7)

where

N

B(?,t) = J c*(t)e
n=l -oo

( 2 . 1 . 8 )

The solution of the Initial value problem for the KdV 

equation Is now obtained from the formula

where K(x, y; t) Is the solution of the Integral 

equation (2.1.7).

Thus the original problem of the nonlinear PDE 

(2.1.1-2) Is transformed and reduced, In this way, to 

the problem of solving a one-dimensional linear 

Integral equation. This linearization problem has 

been studied by many people Including [111, (161.

2.2 Lax'3 Development of Inverse Scattering.

Peter Lax (101 generalized this method to any evolution 

equation of the type

(2.1.9)

ufc = K ( u ) (2.2.1 )

where K Is a nonlinear operator. Lax's idea was

that If a PDE could be cast Into the form
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(B, LI BL LB (2.2.2)iL

where L and B are linear, differentiable 

operators on some Hilbert space of functions then the 

eigenvalues K of L would be Independent of time and 

Its eigenfunctions v would evolve according as

lvt = Bv. (2.2.3)

For the KdV equation the operators In the Lax 

representation are

L = - + u
dx

B -41 + 31

Then lVj. = Bv gives the time dependence of the 

spectral data as In Theorem 2.1.

Details of the work of Lax can be found In 161, 1101 

and [131.

Lax further stated that other choices of the operator 

L should lead to other classes of equations. This 

led the way to the Important breakthrough in the 

development of the method of Inverse scattering by 

Zakharov and Shabat 1181 In 1972. Using two 

component eigenfunctions these authors showed that one
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can find a pair o£ operators L and B satisfying the 

conditions of the Lax method such that the potentials 

u(x, t) are solutions of the nonlinear Schrodinger 

equation (NSE)

ut = i(uxx + 2u*u*)r (2.2.4)

*
where u denotes the complex conjugate of u. 

Solutions of this equation by the method of inverse 

scattering was the first demonstration that the method 

is not limited to the KdV family. Motivated by the 

work of Zakharov and Shabat, Wadati (141 solved the

modified KdV equation (1.7). Later, in 1973,
Ka>nP

Ablowltz, Kaup, Newell and Segur (a k n s) 111 solved the 

SGE and went on to generalize the method to Include all 

the above mentioned equations.

2.3 The Generalization of AKNS. 121

AKNS found that many equations can be solved by the two 

component scattering problem of Zakharov and Shabat

i.e. Lv = \v

where

r a * »

L a
« . 9 
U  1 9X J

and v =
Vl

and the coefficients q(x, t), r(x, t) are arbitrary.
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Choosing the time dependence of the eigenfunctions 

(vt, v̂ ) to be

ivt = Bv (2.3.3)

where

[ A(x, t; X) D(x, t; X) ■)
(2.3.4)

C(x, t; X) -A(x, t; X) J

the eigenvalues X are time invariant when

|| « qC - rD (2.3.5a)

|| + 2iXD = i|| - 2Aq (2.3.5b)

|| - 21XC = i|| + 2Ar (2.3.5c)

Equations (2.3.5) are obtained by cross differentiating 

(2.3.1) and (2.3.3). By various choices of the 

elements of B the conditions (2.3.5) generate a large 

class of evolution equations which are solvable by 

inverse scattering.

For example, take

A = 4Xa + 2qrX + irq^ - iqrx • 

Conditions (2.3.5) yield
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q. - 6rqq + q =0,
t X XXX

(2.3.6a)

r. - 6rqr + r = 0 .t M X XXX (2.3.6b)

When r = -1, (2.3.6) reduces to the KdV equation and 

the system o£ equations (2.3.1) reduces to the 

Schrodinger equation

0o4 scjwared •

v +[q(x, t) + X )v = 0 . (2.3.7)
*XX *

When r = ± q, we obtain the modified KdV equation

qt + 6qzqx + qxxx = 0  (2.3.8)

other well known PDEs such as the SGE and the NSE can 

be obtained by different choices of A (3).

In addition the following equations have been solved by 

1ST.

(1) Higher order KdV equation 112]

ut - T <uxxxx + 5ux + l0uux + 10“'>x (2-3'91

(2) The Bousslnesq Equation [191

(uxx + 6u* + u)xx " utt = 0 (2.3.10)

(3) The Derivative NSE (41
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(2.3.11)iut uXX

(4) The Kadomtsev-Petlashlll (KP) or 2D KdV Equation

2.4 The N-sollton solutions of the KdV Equation 

The solitary wave of any nonlinear evolution equation 

Is called a soliton If there exist solutions for this 

equation which approach a linear superposition of Its 

solitary waves as 111 — ► <x>. The Interaction between 

solitary waves for the KdV equation (2.1.1) was first 

observed numerically by Zabusky and Kruskal (17).

They showed that If two solitary waves are placed on 

the real line with the taller to the left of the 

shorter at t = 0 and are travelling to the right, 

then, after some time, they Interact and the taller
£■ /lOr4-e<~

overtakes the shorter and they both regain their 

original shapes and velocities as t —♦ oo. The only 

change Is that a phase shift occurs. Lax (10) 

discussed the same phenomena analytically and confirmed 

Zabusky and Kruskal's observations.

The exact solution for the case of multiple collisions 

of N-solitons with different amplitudes for the KdV 

equation was first found by Hirota (81. However,

151

(uXXX * 12uux + V x  * uyy - 0 (2.3.12)
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Hlrota's method, which we do not cover here, was

heuristic. Wadati and Toda 116] were the first to 

give the exact N-soliton solution of the KdV equation 

through the procedure suggested by GGKM.

N-sollton solutions for the modified KdV and other well 

known evolution equations may be found In many 

references Including 121, 1141 and 1181.

To obtain N-soliton solutions, it is required that the 

spectrum of the Initial profile is discrete and this is 

equivalent to the reflection coefficient in (2.1.8) 

being zero l.e. b(k, t) = 0. This reduces the 

Gelfand-Levltan-Marchenko equation (2.1.7) to

It follows from (2.4.1) that K(x, y) is necessarily 

of the form

N

K(x, y) + J c 
n=l

N oo

(2.4.1)

where cn = cn(t) = cn(0)exp( 4K^t)

N

K(x, y) I cn£n(x)exp(-Kny) (2.4.2)

n=l
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(Note: c have been introduced so that the f turnn n

out to be normalized eigenfunctions of the Schrôdinger 

equation.J

Substituting (2.4.2) into (2.4.1) enables us to factor 

out the y-dependence and equating the coefficients of 

exp(-Kny) to zero, we obtain the following N linear 

equations in f:

f (x) + n 1 cnc*£*(x)exp 
/=1

= c exp(-K x) n * nK +K, n i

n = 1, 2 f • • • r. . . . N (2.4.3)

These can be rewritten in the form

(I + c)f = E (2.4.4)

where I is the unit matrix of order N,

| exp
-(Kn+K/)X

(2.4.5)

is an N x N matrix and
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■ a ■ ■

c^expi-K^x)

f =

f2
and E =

c2exp(-K2x)

•

•

*N

•

•

cNexp(-Knx )

are column vectors.

A sufficient condition under which (2.4.4) has a unique 

solution is that C is positive definite. This 

follows since the quadratic form corresponding to C 

is

N

1

N

I c/cn exp 
1=1 K n +Kl

xnx/

COf N

J dz 1 cn ^P(-Knz)xn
X n= l

which is positive. Now,
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det C
f N I " 1

l ¿ 1  C" ]
exp

-2 i V n l x*• n=l J

x det [(Kn+K*)_1] > 0 (2.4.7)

so that det£(Kn + K̂ ) ‘J > 0 .

From (2.4.7) we can write C as det C = a exp(-^?x), 

where a and ft are positive. Then expanding along 

the nth column we have

N
A = detd + C) + J

n=l

[-(K +K.)x]
6n*+cnc/*Xi> S tT -- in * *nl

(2.4.8)

where Qn  ̂ Is the co-factor of the coefficient matrix 

I + C.

Using Cramer's rule to solve (2.4.4) gives 

N

£n ’ £ 1  c{ exp{-Knx)Qnt(2.4.9)
n=l

Replacing y by x In the expression of K(x, y) in

(2.4.2) and using (2.4.9), we have
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N

K(x, x) = - J cnfn exp(-Knx) 
n=l

N N

U  I cnci exp['(K< + K„]Q„<
n=l *=1

1 d A d . . 
A d* A = d* lnA (2.4.10)

Substituting (2.4.10) Into (2.1.9)

u(x, t) * -2 Jj K(x, x) = -2 — ■ InA
dx*

= -2 —  lnldet(I + C)1 
dx2

(2.4.11)

which Is a solution of the Kdv equation corresponding 

to a reflectionless potential.

If we now consider a single soliton solution, i.e.

N = 1, then

B(x, t) = c2(t)e~K(x+Y) (2.4.12a)

c(t> c( 0 )e4K3t (2.4.12b)

and we put K(x, y) = f(x)e (2.4.13)
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Substituting (2.4.12) and (2.4.13) into (2.1.7) gives

£(x)e‘*y + c*e-K(x+y) + | . o.

X

(2.4.14)

-c*(t)eKx Thus, £(x) = - y ’ —

1 +c*(t)ezKx2 K

It follows that

u(x, t) = 2K*sech2[K(4K2t-x) + 6] (2.4.15)

wh*ra 5 = j In ’

For a two sollton solution, i.e. N = 2, the procedure 

is the same where we now put

K(x, y) £i(x)e - \ y £a(x)e
■ V

(2.4.16)

and proceed as above. Then it is easy to show that as 

t — ► oo the two solutions approach a linear 

superposition and the solution asymptotically becomes
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u(x, t) = 2  K*sech*lK4(x-4K*t) - <5J

+ Kzsechz(K (x-4Kzt - 6Z 2 2 Z1} (2.4.17)

« CZ(0)
where <5̂ = j  In — —  i = 1, 2

Thus to summarize the work of this chapter so far,

solitons are obtained from the 1ST method as follows:

(1) set up an appropriate linear scattering 

eigenvalue problem in the space variable where 

the solution of the nonlinear evolution equation 

plays the role of the potential.

(2) Choose the time dependence of the eigenfunctions 

in such a way that the eigenvalues remain time 

invariant as the potential evolves according to 

the evolution equation.

(3) Solve the direct scattering problem at the 

Initial time and determine the time dependence of 

the scattering data.

(4) Considering discrete eigenvalues only, 

corresponding to the bound states, and knowing 

the time dependence of the other scattering data,
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reconstruct the potential l.e. the inverse 

scattering problem.

Clearly if the scattering problem does not have 

discrete eigenvalues then solitons do not exist.

For example, i£ we take r * +q and q real in

(2.3.1), we obtain the modified KdV equation

, 2
6q q, + qXXX 0 .

However, the eigenvalue problem posed by (2.3.1) 

becomes self-adjoint and hence all eigenvalues are 

real. in this case no solitons arise and the final 

state can be shown to decay algebraically in time 121.

Note: The choice r » -q corresponds to what is 

usually known as the modified KdV equation which does 

have solitons

i.e. qt + 6q*qx + q„xx = 0 .

A second example is given with the choice

A = “ cosh u r - - q - ux (2.4.18)

yielding the sinh-Gordon equation

u = sinh u (2.4.19)xy
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Again the eigenvalue problem posed by (2,3.1) is 

self-adjoint and hence all eigenvalues are real. Thus 

no solition solutions exist.

2.5 Conservation Laws 

Consider the evolution equation

ufc = K(u), X e (-oof oo), t > 0 .  (2.5.1)

When a functional Ilu] of a solution u(x, t) of

(2.5.1) satisfies

Ilu) = 0 (2.5.2)

then the functional I is said to be a constant of 

motion or an integral of (2.5.1). Usually constants 

of motion are derived from local conservation laws. 

These have the form

Dlu(x, t)l + ^  Flu(x, t)l = 0 (2.5.3)

where D and F are called the conserved density and 

conserved flux respectively and ICu1 Is defined by

oo

Ilu] = J D(u(x, t)]dx (2.5.4)

-CO

The existence of Ilu] depends on the convergence of 

this integral and F tending to zero as |x| -*■ co.
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It has been proved that the KdV equation til], the 

modified KdV equation 112] and the SGE [91 each have an 

Infinite number of Independent local conservation laws

9 D

9t
1 + 0 (2.5.5)

For the multlsoliton solutions (N = 1, 2, ...) these 

lead to an Infinite number of Independent constants of 

the motion. Although It has not been proved, It

appears that an Infinite number of Independent 

conservation laws Is necessary for the existence of an 

1ST. We will come back to this point later.

As examples of conservation laws and constants of the 

motion for solutions, we give the first three constants 

of motion and flux for the KdV, modified KdV and the 

SGE:

(1) The KdV Equation

ao

I = I u dx, F = 3u2 + u (2.5.6a)i J ' i xx
-co

oo 2

l* = J dx' Fz = 2u> + uuxx " r * 1
-00

(2.5.6b)
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I F_ = 3
7 u“+u*uxx-2uu*

- T uxuxxx * k <uxx>’

(2.5.6c)

Note: includes cf% and hence an infinite numbern x
of constants of the motion will only exist for 

Infinitely differentiable solutions whose derivatives 

all go to zero as jxj —* co .

(2) The Modified KdV Equation 

00

I, = | u dx, F4 = 2u + u.xx (2.5.7a)

-oo

00

[» s f r dx'
_ 3 *

- ? u * uuxx
1 2 
J ux

-CO

(2.5.7b)

I =3

00 .
r r * u 1X
J I " ’ n

O , 8u + u uXX
-00

- . u u
- 3 u V  - ^ u +x 2 xxx 4

(2.5.7c)
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(3) The slne-Gordon Equation

00 2 

f u
I± = dxf Ft = cos u ( 2 .5.8a >

-00

I
2 (2.5.8b)

I = 8
2 2 2 U U3 x xx

8 8-r- U U9 x xxx uXXX]dx.

ri <* 4 * 1= cosu Ik- u - K- « 1|9 x 3 xxj

(2.5.8c)

2.5.1 Relationship between the 1ST method and 

Conservation Laws.

In 1974, Konno, Sanukl and Ichikawa 191 used the 

scattering problem (2.3.1) devised by AKNS and proved 

the following theorem.

Theorem 2.2 191

The conservation laws of the KdV equation (2.1.1) can 

be obtained from the 1ST method □

Later Wadatl, Sanukl and Konno (151 extended this work 

to a general class of equations. Here, we give an 

outline of their method.
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introducing the variables

v* v*r = —  and r = —  
4 v a v1 2

(2 .5.1.1)

Equations (2.3.1) and (2.3.3) can then be written as

ar
9X- = - 2r>r + r - qrf (2.5.1.2a)

ar
—  = c - 2 at - Br* at i t (2.5.1.2b)

and

TFT = 2r>r* + q " rra
(2.5.1.3a)

w r  = B + 2Ar* - < (2.5.1.3b)

where we have put t) = -1A

Clearly, the systems (2.5.1.2) and (2.5.1.3) are not 

Independent. For the derivation o£ conservation laws 

from the Inverse method, the 'time* parts may be 

replaced by

It (qri) = lx (A + Bri) (2.5.1.4a)

If (rr«) = (_A + crV  (2.5.1.5a)

which can be verified from (2.3.1) and (2.3.3).

41



Corresponding to these expressions, the 'space* parts 

are written as

2r?(qri) = rq - (qrj2 - q^qr^/qj (2.5.1.4b)

2r?(rrz) = -rq + (rr^ )2 + r£(rra)/rj (2.5.1.5b)

We can now derive conservation laws from the modified 

Riccati form of inverse method equation (2.5.1.4) and 

(2.5.1.5). The same argument is possible for rr2*

Expand (2.5.,1.4b) in power series of i

0r, - [rq ~ qZr* - qt (qr4)q)xj/2i7 (2 .5.1 .6 )

qr, -
n

00

2
* 1

(2 .5.1.7)

Equating powers of (I/77) we obtain

n+i 2

n- 1

<I<s)an,o ‘ 2  £kfn-k - « » V » *
k=l

(2.5.1.8)

for which

f1

fz qrx
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(2.5.1.9)£ a ♦ V x (<>rx

We note that (2.5.1.4a) is the form of conservation law 

) * §£ (A + Bqryq) (2.5.1.10)

Therefore for a given nonlinear equation i.e. for a 

given A and B, we can write down conservation laws 

by using a recurrence formula (2 .5.1 .8 ) and equating 

the terms of the same powers of (I/17) in (2.5.1.5b).

2.6 Conclusion

In this chapter we have presented a review of the 

Inverse scattering transform methods. We have shown 

how N-soliton solutions are obtainedr via 1ST, for the 

Kdv equation and we have looked at conservation laws 

and their relationship to the 1ST method. Although it 

has not been proved, It Is believed that an infinite 

number of conservation laws is a necessary condition 

for the applicability of the 1ST method. As we shall 

see, the RLW equation has been shown to possess only 

three independent conservation laws and so far no 

inverse scattering method has been found for it. The 

conjecture above implies such a method of solution does 

not exist for this equation. This is true for many 

other equations, including many equations of the
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general class which we shall study later.

Given the difficulty of obtaining an associated 

scattering problem for an arbitrary PDE, the question 

arises as to whether there is any way of testing the 

PDE to see whether it is of 1ST class or not. Tests 

for integrablllty have been proposed, but, before 

reviewing them, we look at integrabi1 ity and an 

'extension' of the 1ST method in the following chapter.
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CHAPTER THREE

INTEGRABILITY AND TESTS FOR INTEGRABILITY

In this chapter we discuss the concept o£ integrablllty 

for nonlinear PDEs and review the work which led to the 

"Painleve Conjecture" of Ablowltz, Ramani and Segur 

(ARS) 11—41 - We start with the definition of 

integrability for odes and PDEs. In the case of ODEs, 

for Hamiltonian systems, we have Llouville's theorem as 

a test for integrability, whereas in the case of 

nonlinear PDEs we have 1ST. Furthermore, 1ST can be 

used to define some sort of Hamiltonian structure for 

nonlinear PDEs and in this sense ties up with the 

Llouville theorem. On the other hand it may be 

possible to map the linear integral equations of 

Gelfand-Levitan to a nonlinear PDE directly without the 

need for a scattering problem. In this case we will 

obtain a wider class of solutions than 1ST because 

there are no restrictions Imposed on the solutions by 

the scattering problem. It turns out that this can be 

done for a variety of PDEs and we demonstrate it for 

the KdV. However, we doubt that this method could be 

applied if one did not have prior knowledge of an 

associated scattering problem.

The main question, therefore, is how one can know, a 

priori, that a system of PDEs can be reduced to a
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linear integral equation. Attempts have been made in

this direction by analyzing the analytic structure of

the solution manifold. In particular, this has led to
*

two conjectures known as the Palnleve conjectures and 

we shall discuss these also.

3.1 integrablllty

We introduce the concept of integrablllty for 

differential equations in a constructive manner by 

means of the following definition.

Definition 3.1

Let ufc * K(u) be a system of ordinary or partial 

differential equations. The system is said to be 

integrable if it can be reduced to a linear system 

which can be represented as an Integral equation.

For example, if a nonlinear system of ODEs is reduced 

to the linear system

= A(t)x(t) (3.1.1)

then clearly this can be written in the equivalent 

Integral equation form

t
x(t) = x(0) + J A(s)x(s)dt (3.1.2)

o

where we maintain the requirement for differentiable 

solutions.
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Now we have seen, In the previous chapter, that the KdV 

and other systems can be reduced to the linear integral 

equation

oo

K(x, y) = F(x + y) + J K(x, z)N(x; z, y)dz
x y £ z

(3.1.3)

where N and F are given functions. This is a 

two-dimensional generalization of (3.1.2).

Thus our definition is a constructive one for both ODEs 

and PDEs.

The question then arises as to how we can implement 

this definition. In the case of Hamiltonian systems 

of ODEs this is a theorem, namely Liouville's theorem, 

which gives conditions which identify integrable 

systems. Such systems are described as completely 

integrable, whereas a PDE reducible to (3.1.3) is 

called integrable as (3.1.3) may only apply to part of 

the solution space. Before stating Llouvllle's 

theorem, we define some of the terms used in the 

theorem.

A Hamiltonian system is a system of first order PDE's 

of the form
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f l = 1, 2, . . ., ndXicnr~ aH dyi aH
ax.

(3.1.4)

where H Is a differentiable function of the 2n 

variables x^ and y^.

Consider the functions F(x^, y^, G(x^r y î * The

Poisson bracket of these two functions is defined as

lF(xt/ yt), G(xlf y v)\ V I^F 90 
1  *x. 9y
i = lU 1 1

9F 90 1

(3.1.5)

If (F, G1 = 0 then F and G are said to be in 

involution.

Now consider G = H. Then

n
[F, HI = l  |[W 9H 9F

1**1 ayt ayt
aH
axj

n

- I
i»l

faF dxi aF 
lax1 dt ay

dyi)

i dt J
= a£(xi' V  •

(3.1.6)

Thus (F, Hi = 0 implies that F iS a constant of the

motion.

Two functions F and G are independent over the 2n 

variables if gradF is nowhere parallel to gradG.
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A canonical transformation Is a transformation of the 

variables (x^ yj) + {% , t?1) with H ■* K such that

d?i _ 3K d7?l 9k 
dt * *71 ' dt ~ d?i * (3.1.7)

We are now ready to state Llouvllle's theorem.

Theorem 3.1 (Llouvllle's Theorem)

Suppose that the Hamiltonian system (3.1.4) has n 

Independent constants of the motion F^, 1 = 1 , 2 , , n 

which are In Involution. Then there exists a 

canonical transformation which determines a new set of 

variables conjugate to such that the

Hamiltonian K Is only a linear function of the t?̂ . 

Thus the equations of motion In the new variables take 

the simple form

di?1
dt

« i
0, jg— = constant

Note: If 7 ?  Is a constant of motion so is any 

function of 7 7^. Thus the choice of constants for the 

new variables Is modulo this property*

We Illustrate the above theorem with a non-trlvlal 

example.

Example

Consider the Hamiltonian
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1 (3.1.8)H = 7  <y; ♦ yj)

The equations of motion are 

dx dx
1

dt“ = yi' dt = y«

dyi 2 dy;
dt (x -x)a dt

(xi"x*)

(3.1,9a)

(3.1.9b)

and two constants of motion are given by

y + y = const.J t J 2

H = const

Taking the new r? variables as

7? = 4(y + Y ) = a  (const.)1 2 * 2 ± (3.1.10)

^  = + — - — i * « (const) o . i . i d
(X -x )* 2

their conjugate £ can now be obtained by solving the 

fundamental Poisson brackets

1? 1' * j 1 = °' l7V  1 = °-

lfi' V  ■ * *»•
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This gives

-

and

=

2 < W

(y»-yil<Xl“X2)
* ~ Ti " i

<y,-y2> + :— -
,xi-xz)

Then for the new variables:

K = ^  + 772

(3.1.12)

(3.1.13)

CöVisVtmU •

3TET * ' 2r>t " const- **. “1

d*2 _ aK 
dt &n

dT?i
at-

— s
'
2

1 = const. ’

ax aK
= 0' SF“

ti i

si

(3.1.14a)

0. (3.1.14b)

Solving for x^, , 1 = 1, 2 from (3.1.8) - (3.1.11)

\  " ** . / «(t _t-t ) + ■ /
l+4a*(t-t )* a____z_

/ /i+K (t-t2)2
4a
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= a + a (t-t )* Z 2 1 + 4«2 (t-t )2Z 2

/l+4a2 (t-t ) 
2 2

□

Note: Existence of these constants of the motion

enabled us to transform the original nonlinear 

equations of motion (3.1.9) to simple linear equations

(3.1.14).

As we have seen in the previous chapter, for certain 

nonlinear PDEs there exists a method, namely 1ST, which 

transforms them to a linear integral equation. 

Furthermore, all these equations have an infinite 

number of local conservation laws which, for those 

cases possessing soliton solutions, leads to a 

corresponding infinite set of constants of the motion. 

These results suggest that Llouville's theorem may be 

extended to these PDEs. in fact Zakharov and Faddeev 

£131 have shown how the KdV can be fitted into a 

Hamiltonian structure. However, this is done in the
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space of scattering data of the associated linear 

problem rather than in the phase space of the KdV 

field.

3.2 Direct maps between nonlinear PDEs and linear 

integral equations

The use of 1ST in the case of PDEs leads us to a 

restriction on the class of solutions available. This 

class could possibly be widened if the PDE can be 

mapped directly onto the linear Integral equation l.e. 

without the need for defining associated problems, 

one such method was introduced by Zakharov and Shabat 

[141 who showed, via Volterra operators, that solutions 

and explicit solutions in addition to those given by 

1ST could be obtained. Lambert 181 used this method 

to obtain solutions not recoverable by 1ST. Based on 

Zakharov and Shabat's work, ARS[21 developed a more 

direct method of mapping nonlinear PDEs to linear 

Integral equations. As part of our original 

contribution we show how the method can be used to 

obtain the Lambert solutions.

The ARS method leads to extra solutions because it 

requires only that the solutions decay rapidly enough 

as x -* ± co so that the integral operators are 

defined. In particular, it does not require any 

analytic properties of an associated scattering 

problem.
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The method Is described in the following steps:

(i) We start with the Gelfand-Levitan-Marchencko 

equation (3.1.3) and define N explicitly in terms of 

F. For instance

N(x; z, y) = F(z, y) (KdV)

00

N(x; z, y) = ± J F(zr s)F(s, y)ds (mKdVr sGE).

x

(il) In the method of 1ST F is controlled from the 

scattering data. However in this case we require 

only that F satisfies two linear PDEs.

i.e. L.F = 0  i » 1, 2 (3.2.1)

(ill) Now define an operator Ax by

Axf(y) -

CD
J f(z)N(x; z,y)dz y > z 
x

0 y < z

(3.2.2)

Then the linear integral equation (3.1.3) becomes

(I - AX)K = F (3.2.3)
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(iv) Applying Lj i » 1, 2 to this equation yields 

1^(1 - Ax)K - 0 (3.2.4)

and this is rewritten as

(I - Ax)(L1K) = (Lj, AxlK (3.2.5)

where IL^, Axl = L^Ax - Aj^ is the commutator of L^ 

and Ax» Now (3.1.3) and (3.2.1) are chosen such 

that

lLtf AxlK = (I - Ax)M1(K) i = 1, 2 (3.2.6)

where (K) is, in general, a nonlinear function of 

K.

(v) We assume that for N there is a function space 

on which (I - A ) is invertible and (I - A )_1 isiv X

continuous. (The proof that (I - A ) is InvertibleX

in some Lz space to which N belongs is given in 

121.) Moreover, it is assumed that the operators 

obtained by differentiating (3.2.4) with respect to x 

or y are also defined on this function space.

Then from (iv)

(I - Ax)CL1K - Mt(K)] = 0  i = 1, 2.
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But (I - A ^ ) is Invertible so K must satisfy the

nonlinear differential equations

LjK - Mj(K ) =0, 1 = 1, 2 (3.2.7)

Therefore, every solution of the linear integral 

equation (3.1.3) is also a solution of the nonlinear 

differential equations (3.2.7).

So far the method is general in that N and are

arbitrary. To recover a specific equation we have to 

make a definite choice of these operators. We now 

demonstrate the above on the KdV and construct a 

solution which cannot be obtained directly by 1ST.

The proof of the theorem that follows is in Appendix A.

Theorem 3.2

Choose N(x; z, y) = F(z, y) and let F(x, y; t) 

satisfy the PDEs

L F
i xx - Fyy = o (3.2.8a)

L F = F. + F +3F +z t xxx xxy 3F + Fxyy yyy = 0

(3.2.8b)

and for each t vanish rapidly as x -> ± oo. Then 

the solution K(x, y) of the linear integral equation

(3.1.3) is also a solution of the nonlinear PDEs
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(3.2.7) which for x = y gives

XXX + 6(Kx)Z = 0

so that q = 2 ^  K(x, x) is a solution of the KdV

0 □

3.2.1 Explicit solutions of the KdV equation 

The linear system (3.2.8) is homogenous with constant 

coefficients and we expect solutions under the form of 

a Fourier series or Integral.

Introducing characteristic coordinates u = x + y, 

v» = x -  y in (3.2.8) we have

We look for solutions which are independent of v i.e.

satisfy (3.2.1.1«0 for any y and hence we are looking 

for solutions of (3.2.1.1b)

Fuv 0 (3.2.1.1a)

(3.2.1.1b)

F(u, v; t) = Wu, t) . Such solutions automatically

l.e. wt + 8vuuu 0 (3.2.1.2)
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separating the variables in this equation, we can 

obtain solutions of the form

V>k(u, t) = exp(-8k3t)

A^expiku) + expf- fck cos^ ku + sk sin^| ku

where k is real or imaginary.

(3.2.1.3)

This allows, for a particular subset, solutions of the 

1ST type:

CO

w(u,t) = i J R(k)exp(-8ikat - iku)dk
-00

N

1 cn ex0'*nu ' «»n't’ cn > °‘
n=l

(3.2.1.4)

The solutions given by (3.2.1.3) are not new.

Lambert [8] obtained them via Volterra operators where 

the only slight difference from our solution was due to 

the PDE (3.2.1.2) in his case being

Vt 2Vuuu 0.

Following Lambert it can be shown that, if we look for 

a simple explicit solution of the KdV equation for
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negative k by considering the contribution of a 

single cosine term in (3.2.1.3)

l.e. F (x+y, t) = cos

c exp|̂ 8k"t + ^(x+y)jcos k(x+y)J, k > 0

(3.2.1.5)

then inserting (3.2.1.5) into the Gelfand-Levitan 

equation (3.1.3) leads, for x = y, to the solution

Kcos(x' x; t) = - d
dïï log A (x, t) cos

where Acos x̂  ̂ t) = 1 + ^  exp( 8k3t+kx)cos ( VTx + ”/3)

+ — exp(16kat+2kx) 
(16k)2

(3.2.1.6)

This gives the following solution of the KdV equation

qcos(x' tl - - 2 J H  1°9Acos(x't) (3.2.1.7)
ax

which canlbe obtained by the 1ST method.

These solutions were studied, in some detail, by 

Lambert and it was shown that they possess one pole of 

order two whose location varies with time.

59



The major problem with this direct approach seems to be

choosing the function N and the linear operators L4 

and Lz. For the KdV above, the MKdV, SGE and 

nonlinear Schródinger equations considered by ARS12), 

these functions are chosen with the benefit of 

hindsight from 1ST. It might be that for a given 

equation where the scattering problem is not known, 

choosing N, Lf, and L , is more difficult than finding 

the scattering problem. Thus although the direct 

method can be used to obtain solutions which cannot be 

obtained by the 1ST method, it has not been shown to 

work for equations where 1ST Is not already known to 

apply,

3.3 Test for Integrabl1ity - the Painlevé conjectures 

We have seen that for ODEs we have Liouville's theorem 

and for PDEs the 1ST for certain classes of equations. 

The difficulty for Liouville's approach is showing that 

there are n constants of the motion because one has 

to proceed by first finding them. The difficulty of 

1ST is finding the associated linear problem and, as we 

have discussed, the direct method relies on the 1ST. 

Thus for a given ODE or PDE the above methods are 

difficult to Implement. This led people to look for 

other ways of identifying integrable systems which do 

not depend either on constants of the motion or 

scattering problems.
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Recent work suggests that there is an intimate 

connection between the analytic structure of a system 

and its integrability. Ablowltz et. al C1-21 have 

pointed this out in the context of PDEs. They 

conjectured that every nonlinear ODE obtained by an 

exact reduction of a nonlinear PDE, soluble by 1ST, 

will have a solution structure which has at most 

movable poles.

The origin of this conjecture goes back to Sofya 

Kovalevsky's work in 1889 (71. Kovalevsky worked on 

the Euler-Poisson equations and she was able to 

identify the known integrable cases together with one 

new case by looking for those system parameter values 

for which the only movable singularities exhibited by 

the solution in the complex time plane were ordinary 

poles. While this work has been neglected for more 

than fifty years, the discovery sixteen years ago that 

the KdV equation could be integrated via spectral 

methods has generated an enormous amount of study in 

the area of completely integrable Hamiltonian systems.

In the last few years, Kovalevsky's approach has been 

used to predict integrable cases of a variety of 

systems such as Lorenz equations 19] and the 

Henon-Helles Hamiltonian 15]. More recent work has 

been undertaken by Van Moerbeke 1101 and Yoshlda [121. 

These works have led to the conjecture that if the
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solution structure of a given system of odes Is at most

movable poles, then integrabllity is implied. Ward 

[111 points out that the reverse does not hold since a 

single ODE of the form x' = f(x) is integrable by 

quadratures but does not, In general, have only movable 

pole structure. This requirement on the solution 

structure has become known, in current literature, as 

the "Painlevé Property" - after Painlevé's extensive 

study of classes of second order ODEs 161. Although 

on reflection it might have been called the "Kovalevsky 

Property".

3.4 Conclusion

In this chapter we have concentrated on integrability 

and have demonstrated how the available methods - 

Liouville's theorem for ODEs and iST/dlrect mapping of 

integral equations for PDEs - can be used to solve 

nonlinear differential equations. We highlighted the 

difficulties with applying these methods to a given 

equation and went on to discuss work on the connection 

between Hamiltonian systems, their analytic structure 

and integrability. We have noted that a conjecture 

Implying that the "Painlevé property" is sufficient but 

not necessary for integrability of ODEs has emerged.

A previous conjecture made by Ablowltz et al 11—43 for 

PDEs states that if a given PDE is 1ST soluble then all 

its ODE reductions will possess the "Painlevé
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Property". That is the "Painlev* Property"is at least 

a necessary condition for integrability of non linear 

PDEs.

in the next chapter we review the development of this 

conjecture and look at the methods which have been 

proposed to test the analytic structure of a given PDE.
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CHAPTER FOUR

THE ANALYTIC STRUCTURE OF THE SOLUTIONS 

OF INTEGRABLE PDES

In the previous chapter we Indicated how the work of 

Kovalevsky, Moerbeke, Yoshida and others showed how the 

analytic structure of solutions of Hamiltonian systems 

of ODEs can be used to determine whether they are 

completely Integrable. In this chapter we shall 

review attempts which have been made to extend these 

tests to decide on the lntegrabl1lty of nonlinear PDEs. 

There are two avenues (1) by looking at the meromorphlc 

structure of special solutions of the PDE known as 

similarity solutions and (11) by looking at the general 

solution of the PDE.

4.1 Similarity Transformations

The major application of similarity transformations Is 

the reduction of certain classes of nonlinear PDEs to 

ODEs. We give the following definition.

Definition 4.1

The term "similarity transformation" of a PDE Is a 

transformation of dependent and Independent variables 

occurring in the equation such that the number of 

Independent variables appearing In the transformed 

equation Is at least one less than in the original

64



equation. The transformed variables are referred to 

as similarity variables.

Before going into similarity transformations further, 

we give an example, due to Ablowitz and segur [21 which 

demonstrates a connection between the nonlinear 

modified KdV and the second Painlev6 transcendent.

The modified KdV equation

"t ‘ f" \  + * m  ! 1 (4-1>

has a similarity solution

i

u(x, t) = f(7?) where r? * x(3t) * (4.2)

The transformation takes (x, t, u(x,t)) to 

(t?, t, f (n)). The variables f(n) and 7? are the 

similarity variables and the modified KdV (4.1) is 

reduced to

d2f -,t8 x * — - = 2f + i?f
di?

(4.3)

which is the equation of the second Painlev6 

transcendent.

By seeking a purely self-similar solution to the 

Gelfand-Levltan Integral equation (3.1.3), Ablowitz
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and Segur proved that the connection between (4.1) and

(4.3) reduces (4.3) to the set of linear Integral 

equations

00

K4(x , y) - rA{. + j J Kz(x, s )A p^Jds = 0
x

00

k2(x , y) + | J Kt(x, n)A! (^jdr) = 0 (4.4)
x

for y > x, r real.

where f(x) « K^ix, x) and the Airy function Av. Is

given by rAl(z) ~ --- z
2Vrr

exp 2 2- - z a
oo .

The Important point Is that the Palnlevé transcendent 

defined by (4.3) Is known to be free from movable 

algebraic logarithmic and essential singularities. 

Later we shall list a number of Integrable PDEs which 

have been reduced to Palnlevé transcendents via 

similarity reductions.

It should be made clear that there Is no unique way of 

obtaining similarity transformations. The two most 

well known methods are (1) using Infinitesimal 

symmetries of the PDE and (11) using separation of the 

variables, although both have been shown to agree 

except In certain degenerate cases (31. Here we
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concentrate on the first approach.

4.1.1 Infinitesimal Transformations 

In this subsection we give a brief outline of the 

theory of Lie's one-parameter(e) group of 

transformations for invariance of a PDE with two 

independent variables [41, [5], [161, [181.

Consider a PDE with one dependent variable u and two 

independent variables x and t.

L[ul = L(xf tf U, U^, ^t ^xtf ^tt/ • • • )

(4.1.1.1)

We now make the following definition.

Definition 4.1.1

If x' = f(x, t, u; e ) , t' = g(x, t, u; s) and 

v = h(x, t, u; g ) are a sufficiently differentiable 

set of infinitesimal transformations which leave the 

PDE invariant, then this group of transformations 

parameterized by s is a Lie group and is the local 

symmetry group of the equation.

We seek f, g, h such that (4.1.1.1) has the

same form when the variables x, t, u are replaced by 

x', t ' , v respectively.
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i .e,

Mx-, f ,  v, W x, W t, vx,x>, vx-t., vt,t..... ) = 0

(4.1.1.2)

We look for infinitesimal transformations, i.e. e << 1, 

and assume that the functions f, g, h have the 

following expansions about e = 0 :

x' = x + ¿?X(x, t, u) + 0(æ2)

t' = t + ¿?T(X, t, U) + 0(e?)

v = u + «U(x, t, u ) + 0 ( æ2 ) (4.1.1.3)

The functions X, T and U are the Infinitesimal 

generators of the transformations for the variables x, 

t and u respectively and are determined by the 

condition that the equation is invariant. Thus, we 

substitute in (4.1.1.2) for x', t', v and the 

derivatives of v in terms of x, t and u and its 

derivatives and use the fact that u satisfies

(4.1.1.1) to obtain explicit expressions for X, T and

u.

We show below how the derivatives are computed. For 

example consider .

Writing (4.1.1.3) in differential form and using the

68



fact that du 

In <sr,

u dx + u,dt we obtain, to first order 
x t

dx' = (1 + sX + sX u )dx + «(X. + X u. )dt
A vl A VI L

dt' = ff(T + T u )dx + (1 + ffT. + sT u. )dtA U A L U V,

dv = (u + ffU + «U u )dx + x x u x

(Ut f * U t 4- ^ U u Ut )dt.

Since we are working to first order In e the first 

two equations can be inverted by means of the 

transformations dx' -* dx, dt' ■* dt, and c ■* -e 

giving

dx * (1 - s Xx - eXu ux)dx' - ^(Xfc + Xu ufc)dt'

dt = - «(Tx + Tu ux)dx' + (1 - «:Tfc - ffTu ufc)dt' .

The derivatives etc. are given by the

coefficients of the derivatives on the right hand side. 

They can now be used to obtain

W- ■ K  + * Ux * * uuux ) j j l 't (ut + * ut * * Uu ut)§R- ■

V , = U + ¿rtu + (U - X )U - T u . - X u  - T u  U. 1
X' X X U X X  x t  u x  u x t

(4.1.1.4)

In a similar manner the second derivative is
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V
X' X

u u .
U XX tU.-2T u .uJ + 0{eZ) (4.1.1.5)u x t x

Expressions for the time derivatives vfc,, vt't' etc*

can be obtained by making the transformations

x' «-* t' . X <-> T, x «-► t In the above equations for

v ' v x '  and 30 on*

we are now In a position to define what Is meant by 

similarity solutions.

Definition 4.1.2 (Similarity Solution)

Let X, T, U be the generators of an infinitesimal 

symmetry transformation of the PDE L(u(x, t)) = 0 

which maps it to L(v(x', t')) = 0.

Then a solution u = &(x, t) such that v = ©(x', t') 

is called a similarity solution.

Implementing the above definition In (4.1.1.3) leads to 

the functional equation

©(x + *X + 0 (£2), t + «T + 0(**))

= ©(x, t) +<pU(x , t, u) + 0(«2) (4.1.1.6)
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and expanding the left-hand side of (4.1.1.6) shows

that 9 also has to satisfy the first order 

quasilinear PDE

X(x, t, 9) T(x, t, 9)
æ
at U(x, t, 9)

(4.1.1.7)

which is the equation of an invariant surface for 9.

We now have the following theorem.

Theorem 4.1.1 [31

The general solution of (4.1.1.7) is

F(p, q) = 0 (4.1.1.8)

where F is an arbitrary, sufficiently differentiable 

function and p(x, t, ©) = a, q(x, t, 9) = b form 

independent solutions of the Lagrange system

dx _ dt du
x(x,t,e>) T(x,t,©) “ u(x,t,e) (4.1.1.9)

□

The method described above has been applied to obtain 

similarity solutions to many nonlinear PDEs as we shall 

discuss in section 4.5. Here we give the results for 

the Kdv equation.

Example 4.1.1

For the KdV equation

ut * uux + uxxx ■ 0 (4.1.1.10)
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Shen and Ames 1241 derived that

x(x, t, u) = ax + (it + y  

T(x, t, u) = 3at + 6

U(x, t, u) = -2au + ft (4.1.1.11)

where a, ft, y and 6 are arbitrary constants.

When a. = y - o , 6 = 1. We have X = (3t, T = 1,

U = ft and (4.1.1.9) leads to

p = x - j ftt* = constant = 77

q = e - pt = constant = £(77)

where £ is an arbitrary function. The similarity 

variables are 77 and £(77) and substituting into 

(4.1.1.10) reduces it, after one integration, to

2
— - + \ f” + ftr, = const. (4.1.1.12)
d77z Z

Thus £ is the first Palnlev6 transcendent.

Similarly when a = (3 = 0 we obtain the ODE
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Il

(4.1.1.3

where c = y/6.

This ODE gives travelling wave solutions which can be 

directly obtained by elliptic functions.

If we use the full four parameter group (4.1.1.11) the 

KdV reduces to the second Painlevé transcendent

i!i=2£* + r,£ (4.1.1.14)
di?2

We note that to obtain all the one-parameter reductions 

it is necessary to consider all possible values of the 

arbitrary constants «, ft, y and 6 which arise in 

the Infinitesimals till.

Lakshmanan and Kaliappan [18], Shen and Ames [24],

Fokas and Ablowltz 114] and Clarkson and McLeod [11] 

among many other authors have applied the method of 

one-parameter Lie groups of Infinitesimal 

transformations to several nonlinear PDEs.

Before concluding this section, we list a few Important 

points.

(i) Lie’s theory of one-parameter infinitesimal

d3f

dn8
+ f df

3^ - c df
cfn
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transformations is not a unique way of obtaining 

similarity variables [31, [41.

(ii) The similarity solutions obtained via 

one-parameter groups or separation of variables or some 

other method represent a special class of solutions for 

the original equation.

(iii) If we cannot obtain a similarity variable for a 

given equation it cannot be concluded that none exists. 

We can only conclude that there is no similarity 

variable under that class of transformations (31.

Having used similarity transformations to reduce a 

given nonlinear PDE to a set of ODEs, we need to be 

familiar with the theory of ODEs in order to obtain 

Information about the PDE.

4.2 Brief review of linear ODEs (Ince [171 Ch. XV). 

Consider the nth order ODE

dnw

dzn
Pt(2)

. n-i 
d W

dzn-1
P , (2) n-1

dw
dz Pfi ( 2 ) W

(4.2.1)

If zq is any point in the neighbourhood of which the 

n coefficients are analytic, the equation possesses a 

fundamental set of n solutions regular at zq . Any 

singularities of the solution are the singularities of
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the equation, i£ the locations o£ such singularities 

are independent of the n constants of integration, 

then these singularities are called fixed.

A general property of linear odes In the complex plane 

is that their solutions have only fixed singularities. 

However, this Is not necessarily the case for nonlinear 

odes to which we now turn.

4.3 Nonlinear ODEs and Movable Singularities 

Consider the following examples:

Example 4.3.1

d2 w _ 2w fdw'|2
. 2 2 . Id Z Jdz w -1 J

(4.3.1)

rewriting the equation

, 2d w
. 2 dz ■ (wit * ¿ r M

Integrating once

2k’<"2 - 1):

Az

w

J (q2-l)
dq + B

then w(z) = tanh(Az + B)
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Here A and B are the constants of integration: 

they also define the locations of the singularities 

i.e. Az + B * —  . These singularities are

called MOVABLE because their location depends on the 

constants of integration. Thus the singularities may 

be placed anywhere in the complex plane.

Example 4.3.2

rl u >
+ w(logw) = 0 (4.3.2)

is satisfied by w = exp

where A is an arbitrary constant. If z = A the 

solution has neither a finite nor an infinite limit. 

That is, at z = A there is a movable essential 

singularity.

Example 4.3.3 (Inee P. 317) 

For the equation

,2d w
dz

dwï2 2w-l
dzl 2 ,, • J w +1

the general solution is

(4.3.3)

w(z) = tan(ln(Az +B)}

where A and B are arbitrary constants. At
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z = -A/B, w tends to no limit (finite or infinite).

In fact, here we have both movable branch points and 

essential singularities.

We now make the following definitions.

Definition 4,3,1

Any singularity of a solution of an ODE that is not a 

pole is called a critical point.

Definition 4.3.2

An ODE is of PainlevS» type (or P-type) if the only 

movable singularities of its solutions in the finite 

complex plane are poles.

Such ODEs are said to possess the Painlev6 Property.

4.3.1 Palnlev6 type ODEs

In 1884 Fuchs showed that out of all first order 

equations of the form

where F is rational in w and analytic in z, the 

only equations without movable critical point are 

generalized Riccati equations:

(4.3.1.1)

n w >
^  = Pc(z) + P4(z)w + Pz(z)w (4.3.1.2)

The class of second order nonlinear ODEs
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F (af' w ' z) (4.3.1.3)
.2d w

dz

where F is rational in ^  and w and analytic in 

z, was examined by Painlev6 [17], who obtained the 

subset o£ equations free from movable critical points. 

He Introduced a parameter a into the equation such 

that for a = 0 the resulting equation could be seen, 

by inspection, to be with or without movable critical 

points. Using this method, Painlev6 obtained two 

necessary conditions

cl w(i) F must be a polynomial in ^  of degree £ 2 

of the form

F(w',w,z) = L (w, z) (w' )2+M (w, z ) (w' ) +N (w, z)

(Ince Ch. XIV) (4.3.1.4)

where L, M, N are rational in w, analytic in z. 

Furthermore, L is required to be either Identically 

zero or one of five specific forms which are listed in 

Ince.

(ii) If L s 0 then M must be linear in w and N 

a polynomial in w of degree £ 3.

If L & 0, then M and N must have the form
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M(w, z)
m( w, z )
D(wrz) ' N(w' z)

n ( w, z ) 
D(w,z)

where D(w, z) Is the least denominator of the partial 

fractions in L(w, z) and is a polynomial of w of 

degree d, 2 ^ d s 4, while m and n are 

polynomials In w of degree ^ d + 1 and < d + 3 

respectively.

Implementation of the necessary conditions (i) and (li) 

leads to 50 canonical equations with the property of 

having no movable critical points. Of these 

equations, It was shown that 44 were soluble In terms 

of elementary functions or elliptic functions. The 

remaining equations define six new transcendental 

functions - the Palnlevé transcendents Pj - PVI•

Since the 50 ODEs are of canonical type, It does not 

necessarily follow that a given second order ODE 

satisfies, directly, the necessary conditions. It 

may be possible to make the ODE one of the 50 by a 

transformation of variables. To demonstrate this we 

present the following example.

Example 4.3.4 

Consider the equation
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zm (w' + zw") = slnw, where m e  z+ U  CO}.

(4.3.1.5)

If m = 1 then ln(otz) = ± f--- — ---—  [22]
(/9-2cosw)

and the solution Is given in terms of elliptic 

functions.

If m * 1 then transforms the ODE to

dz
t  = 1

4>
1 d* + 1
Z dz _ . m+1

ZlZ
<*2-l) (4.3.1.6)

If m = 0 then (4.3.1.6) becomes Pjjj with a = 1, 

ft, <p, 6 = 0

If m > 1 we change the Independent variable to

1 -m2
V - -----  and obtain

(1-m)2

d V
d y2

1 fd^l2 1 d* 1 .a 
|d̂ J ~ y + 1) PIII

It is Important to note that extensive results for 

nonlinear ODEs are only available for first and second 

order equations. The main difficulty with 

determining whether equations of third and higher 

orders are of P-type is showing that the equation is 

free from movable essential singularities. Painlev6
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C171 showed by a separate analysis that the Palnlev£ 

transcendents are free from such singularities. The 

analysis, however, becomes very complicated when 

considering third and higher orders and this difficulty 

has prevented workers in the field from giving a 

classification of even third order nonlinear ODEs.

However, in the following section we review an 

algorithm which Is generally easier to apply than 

Palnlev^'s «-method and determine whether a given 

nonlinear ODE admits movable branch points. This 

algorithm can be applied to equations of all orders.

4.4 Singular Point Analysis

Given a nonlinear ODE, how do we determine whether it 

is of Painlev6 type? Since extensive results are 

available for first and second order equations, it is 

the nature of the singularities of the third and higher 

order equations that are of particular interest.

The algorithm we outline below, given by Ablowltz, 

Ramanl and segur 111 provides necessary conditions for 

an ODE to be of P-type. The algorithm is based on 

two assumptions.

(1) The nth order ODE has the form
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, n f

= Fir?, £', f ", ..., £n"‘) (4.4.1)
dT7n

where F is analytic in 77 and rational in its other 

arguments.

(ii) The dominant behaviour o£ the function In a 

sufficiently small neighbourhood of a movable 

singularity, if it exists, is algebraic

i.e. f (T7) ~ «(77 - 7?o )p (4.4.2)

Re(<») < 0 and »70 1» arbitrary.

We demonstrate how this algorithm is applied by means 

of an example.

Consider the ODE

Rearranging (4.4.3a) in a suitable form gives

0 9 " *  0 9 ’

Step 1: Leading term

It is clear that all solutions have the form £(77 - 77 )o
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where r,o is arbitrary. Find the dominant behaviour 

of the solution in the neighbourhood of a movable 

singularity of 17 = 1? . If n0 is a singular point, 

then this means that it is movable and we assume that 

in a neighbourhood of this point

CD

f(r?) 3 J b^in " 1?0 )P+:J 
j = 0

where a and p are constants to be determined. 

Substituting into (4.4.3b) it is seen that the dominant 

terms are the first and the third terms and these give

p = -1 and bQ = a Is arbitrary.

Hence, in a neighbourhood of t)q ,

00

f(r>) = «(i?-no) * + J a^ (17—r>o ) ̂ (4.4.4)
j = 0

where a = b etc. o 1

If p had been fractional, then the singularity would 

have been an algebraic branch point.

Step 2; Arbitrary constants

Now the general solution of (4.4.3a) has two arbitrary 

constants and these have already been determined in 

Step 1 as t?o and a. Consequently, in this problem
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the remaining coefficients a^, j = 1, 2, ... are 

determined In terms of a by recurrence relations. 

However, If In Step 1 not all arbitrary constants were 

determined, then we substitute

g(o) = «t 1 + fttT 1 + yt3 4, t = r) - t>o

where (3 and y are the required arbitrary constants, 

and three terms are included because the dominant 

nonllnearIt les are cubic. Balancing the equation for 

powers of t gives values for r and s which 

determines the positions In the series of all arbitrary 

constants not determined In Step 1.

Step 3: Coefficients

We substitute the whole series (4.4.4) with the 

arbitrary coefficients In their correct positions and 

check for consistency. If we cannot obtain 

consistency then the solution has movable branch 

points.

In this example the equation (4.4.3a) Is free from 

algebraic and logarithmic (movable) singularities. 

However, the algorithm tells us nothing about the 

existence of essential movable singularities. In fact 

we know that the general solution of (4.4.3a) Is not 

free from movable singularities and Is given by
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£(7?) = tan(ln(A7) + B) ) (4.4.7)

The difficulty of detecting essential singularities 

means that this algorithm is powerful for eliminating 

candidates for Palnlevé rather than discovering them.

4.5 Similarity solutions of Integrable PDEs 

Example 4.1.1 shows that the similarity reductions of 

the KdV equation, with one-parameter infinitesimals are 

all of Palnlevé type. The work of Ablowitz and Segur 

on the modified KdV equation had encouraged many 

workers to look for similarity solutions of other well 

known 1ST Integrable equations and It turns out that 

all the Integrable PDEs that we know have similarity 

solutions which are of Painlevé type. Furthermore, 

they all reduce to one of the Palnlevé transcendents. 

Below we give a table of 1ST equations together with 

their similarity variables and ODE reductions.
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Equation Invarlant Invariant form 
of sol3 (u)

Reduced
variable (rj) Form

t 1

KdV x(3t) 8 
±

£(i?)t 8 
1 PII

mKdV x(3t) 9 £ (r>) t 8 PII

SG xt f (7?) PIII

Boussinesq t/
X - 2 f ( v ) PI

N L S K ]  - bt
♦ « - » * £ ) PII

Dorlvat1ve 
MLS

X

x(2t) 2
p ( r > ) U q ( V ) d v

i PIV
( 2 t ) *

For more examples and for equations with higher special 

dimensions see reference 1181.

On the other hand, several PDEs which are thought not 

to be Integrable - either because they only have a 

finite number of conservation laws, or that numerical 

evidence shows that their solitary waves are not 

solitons - have been reduced to ODEs which are not free 

from movable critical points.

For example, consider the BBM equation
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U + U + uu 
t X X

0 (4.5.1)u
xxt

The following evidence suggests that the equation is 

not integrable.

(i) It has a family of solitary wave solutions

u(x, t) = 3c sech 1
7 /i+c (x - (l+c)t)

(4.5.2)

where c is a constant. However, numerical studies 

by Bona, Pritchard and Scott [71 have shown that the 

interaction of two solitary waves is inelastic and 

therefore not soliton-like.

(li) The equation has only three local conservation 

laws of polynomial type (Olver [211, Duzkln and 

Tsujishita (131).

„ + (u ♦ i u* - u ) - 0
v 'x

0

+ au uxt. 0 .

On the other hand, the KdV, modified KdV, SGB all have
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an Infinite number o£ conservation laws.

(Ill) The equation has general travelling wave 

solutions

u(x, t) => £(t?),

where v = x - (1 + c)t and £(0 ) satisfies

(1 + c)
dr)B

(4.5.3

Integrating twice gives

(1+c) fdfi2 _ c 
2 2

i!
6 + A£ + B, (4.5.4)

where A and B are constants, and since (4.5.4) 

be solved by elliptic functions, equation (4.5.3) 

P-type.

In addition to the self-similar travelling wave 

solution, the BBM also has the similarity solution

u(x, t) = t *y(x) -1

where y(x) satisfies

(4.5.5

can 

Is of

88



In the v i c i n i t y  o£ a pole, y(x) la g iven by

y(x) 3 ¿-x + 01n(x-xo ) + a}(x-xo ) + 0((x -xq ))

where A Is a constant. Therefore y(x) has a 

movable logarithmic branch point and hence (4.5.5) Is 

not P-type.

Other partial differential equations which are 

believed not to be Integrable also have similarity 

reductions to equations which are not of P-type. 

These Include:

Generalized Kdv u. + unu + u =0, n > 2
1/ A  A  A  A

(4.5.6)

KdV Burger's Equation u. - /j u u + vu = ĵ u
w X XXX XX

(4.5.7)

Fisher's Equation uxx - + u - un = 0 (4.5.8)

Phi-FourEquation u.. - u + u - us
w TI XX

(4.5.9)

See reference 118).

Ablowltz, Ramanl and Segur's work on the connection 

between 1ST soluble nonlinear PDEs and Palnlev£
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transcendents led them to make the following 

conjecture.

The Palnlevé Conjecture [11

Suppose a nonlinear PDE Is soluble by 1ST. Then all 

the solutions of every nonlinear ODE obtained by exact 

reductions (perhaps after a transformation of 

variables) are free from movable algebraic, logarithmic 

and essential singularities.

If true, this conjecture provides a powerful necessary 

condition for testing whether a given PDE Is soluble by 

1ST since it means that if there is a reduction which 

Is not P-type then the equation Is not soluble by 1ST. 

It does not claim to be a sufficient condition for 

integrablllty. A similar conjecture has been given 

by McLeod and Olver 1201. Although neither of these 

conjectures has been fully proved, both ARS [11 and 

McLeod and olver have given "partial proofs".

Despite the lack of complete proofs we have already 

presented some of the considerable evidence in support 

of the conjecture.

Recent work by Clarkson and McLeod [111 Indicates that 

the above conjecture may remain only a necessary 

condition. They proved that the only similarity 

solutions to the following equations:
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(Modified BBM) (4.5.10)u. = u + uu + u t X x xxt
and

utt uxx *xt + uxxtt (Symmetric RLW)

(4.5.11)

that can be obtained by the Lie group method are 

travelling wave solutions u(x, t) = f(x - ct), where 

c is a constant and £ is of P-type.

On the other hand, numerical studies by Makhankov (191, 

Seyler and Fenstermaker 123) and Bogolubsky 16) show 

that the interaction of the solitary waves of 

(4.5.10-11) are inelastic and therefore, they are 

probably not integrable.

Clarkson and McLeod assume that all the possible 

reductions of a given nonlinear PDE can be obtained via 

one-parameter groups whereas Ames (11 has pointed out 

that this may not be the case. Furthermore, Ward

(25) has remarked that since most nonlinear PDEs do not 

have local symmetries it follows that they cannot have 

similarity solutions obtained by the Lie group method. 

In these cases the question arises as to how we decide 

on lntegrability by 1ST.

4.6 Analytic Structure of the General Solution of 

Integrable PDEs.

Developing the work of Ablowitz, Ramani and Segur,
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Weiss 1261 and Weiss, Tabor and carnavale 1271 

conjectured that every solution of an integrable 

nonlinear PDE has a meromorphic structure. This they 

called the "Painlevé Property" and claimed that it was 

a sufficient, rather than a necessary, condition for 

integrabllity. We now give the definition of the 

"Painlevé Property".

Definition 4.6.1

Consider the PDE in the form

Uj. = K(u), (4.6.1)

where K is a nonlinear operator and u: Rn+1 IR is 

a solution determined by some initial data.

Consider now the complex extension (x̂ , ..., x^, t)

•> (z , ..., z , t ) so that now u: Cn+‘ C and* n

assume that u can be expanded in the form

where <p = #(z±, ... zn, t ) and

u. = u.(z , ... z , t ) are analytic functions of 3 3 * * n

If a > 0 then the singularities of u are determined

00

u (z
j = 0

(4.6.2)
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by the zeros o£ <ft. Thus we call

<£( zjf ..., t ) = o (4.6.3)

the singularity manifold of u.

The equation Is said to possess the Palnlevé Property 

if the equation Is at most meromorphlc on 4> = 0.

That Is, « is a non-negative integer.

The expansion (4.6.2) is motivated by Cauchy-Kovalevsky 

theorem 1121, (15) which requires that the manifold

(4.6.3) Is non-characteristic [151. It is also 

required that the number of arbitrary functions for a 

general solution Is equal to the order of the equation 

and the arbitrary functions Involve one less 

Independent variable than the number occurring In the 

equation [151.

The procedure for checking the property Is analagous to 

that for finding series solutions of ODEs 111. 

Substituting (4.6.2) Into the PDE determines a and 

defines recursion relations for u_j, j =* 0, 1, 2 ... . 

If a is a non-negative Integer and the expansion

(4.6.2) gives a general solution of the PDE then the 

PDE has the Palnlevé Property.

Weiss et alf Chudnovsky and Chudnovsky [81 and others,
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have demonstrated that several PDEs known to be 

Integrable have the Painlevé Property. These include 

the PDEs listed in Table 4.5.1 as well as equations 

with higher special dimensions such as the 

Kadamtsev-Petviashvile equation.

Furthermore, Clarkson and McLeod 111] have shown that 

equations (4.5.10-11), which were only reducible via 

one-parameter groups to travelling waves, do not 

possess the Painlevé Property. Since it is believed 

that these equations are not integrable, this suggests 

that the Painlevé Property may provide a "better test" 

than reduction to ODEs.

However, Ward [25] pointed out that the analysis 

Involved in determining the Painlevé Property is based 

on the assumption that the solution does not have 

essential singularities. Thus, it may be only 

detecting a subset o£ solutions of the PDE and not the 

general solution. This was later demonstrated by 

Clarkson [91, [10] when he showed that the equation

u* = 2uu* - (l+u2)uxx (4.6.4)

possesses the Painlevé Property but is known also to 

possess movable essential singularities. Thus, if we 

look for a travelling wave solution to (4.6.4) in the 

form
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u(x, t) = £(x - ct)

we find that i(r>), where r? = x - ct, satisfies

2c (1 + £*) (4.6.15)

This equation has the general solution (see Example 

4.3.3)

f(7?) = tan ln(A7? + b)j- ,

which shows that (4.6.4) has a class of solutions with 

movable essential singularities.

This example demonstrates that the method proposed for 

detecting the Painlev6 Property Is Inadequate in that 

It does not necessarily prove that the equation has the 

Palnlev6 Property. Thus It can only be used In the 

negative sense to eliminate equations if they turn out 

to have branch points, as In the case of ODEs. Thus, 

Clarkson and McLeod argue that as far as testing the 

analytic structure of a given PDE Is concerned we 

cannot say which approach Is better, l.e. testing the 

PDE directly or testing Its similarity solutions when 

they exist. However, we would state the position as 

follows.

(1) If a given PDE has a similarity reduction to a 

first or second order ODE belonging to the Painlev6
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classification, then we Immediately have the odes 

complete analytic structure including the existence of 

essential singularities which the direct method misses. 

In this instance the reduction method is better.

(11) If we do not know that a PDE has similarity 

reductions to ODEs of first or second order, l.e. we 

are unable to obtain any by the Lie method, then the 

direct method Is the best we can do.

4.7 Conclusion

Although the Palnlev6 conjectures of ARS and McLeod and 

Olver have not been proven, some important points about 

the proposed tests have emerged. We summarize them 

below.

(1) All the known 1ST soluble equations reduce 

to one or more Painlev6 transcendents 1181.

(2) The test for P-type ODEs via similarity 

reductions and the direct test as proposed 

by Weiss et al. are not Identical.

(3) Strong evidence exists that neither the 

Palnlev6 test via similarity reductions nor 

the direct test are sufficient tests for 

lntegrabl1lty although both may be 

necessary.
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(4) As we have just commented above, the

direct test of Weiss et al. is stronger 

unless there is a similarity reduction to a 

first or second order ODE.

To complete our review and to set our work in context, 

we consider the work of Abbas and El-Sherbiny on a 

general class of PDEs with quadratic nonlinearities 

which we shall study further in later chapters.
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CHAPTER FIVE

THE GENERAL CLASS OF EQUATIONS

In previous chapters we have noted the following 

Important points:

(I) There is no systematic way of obtaining the 

linear eigenvalue problem necessary for 1ST from the 

nonlinear PDE. It must be guessed.

(II) Although there are systematic ways of obtaining 

conservation laws, the methods are tedious and may not 

always work on arbitrary equations.

(III) The Painlev6 Conjecture, if true, is at most a 

necessary condition for 1ST and its strength Is not In 

lndentlfylng, but rather In eliminating equations which 

do not possess solitons. Thus, even if the solution 

structure Is at most poles, we are again faced with 

finding an associated eigenvalue problem.

(lv) If a nonlinear PDE Is soluble by 1ST and has 

solitary wave solutions, then the solitary waves are 

solitons.

Clearly, therefore, we are interested In knowing when a 

solitary travelling wave solution of a nonlinear PDE Is
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also a soliton. That Is, what properties does this 

wave and the equation have that guarantee the existence 

of sollton solutions. This study was Initiated by 

Abbas [1] and developed by El-Sherbiny {31.

Broer's hypothesis [21 that the KdV could be lntepreted 

as a field equation for a general field when properties 

could be thought of as arising from nonlinear and 

dispersive effects, had led to the belief that both 

dispersion and nonlinearity were necessary for 

evolution equations to have stable solitary waves.

Abbas set about to test this belief by analysing the 

effects of dispersion and nonlinearity separately for 

selected initial profiles which included the sech2 

solitary wave. Then, by comparing the predictions of 

this analysis with the properties of the solitary wave 

solutions of the complete KdV equation, he found 

several contradictions. Abbas then considered a 

general class of third order equations with quadratic 

nonlinearltles which Included the KdV equation. He 

showed that this class has solitary wave solutions for 

a variety of dispersion relations, including a subclass 

of formally nondispersive equations, clearly 

contradicting the belief that both nonlinearity and 

dispersion are necessary for solitary waves. Finally, 

Abbas began the classification of the general class in 

terms of solitary wave solutions.
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since dispersion Is not a useful criterion In 

understanding the properties of the KdV equation, the 

question arises as to whether It Is possible to develop 

other criteria for such understanding. El-Sherbiny 

took up this problem by asking whether the properties 

of the KdV are unique in this general class and whether 

this can be spotted from the equation and Its 

elementary properties. He started by considering the 

question of whether the embedding of the KdV In the 

general class Is reasonable. To do this he studied 

well-posedness, the existence of solitary waves and the 

existence of conservation laws. To establish 

well-posedness El-Sherblny partitioned the general 

class Into {our equivalence classes and managed to show 

well-posedness for three of them and existence for a 

fourth. He also found that while all the equations 

have at least two conservation laws, unless an equation 

is in the KdV class It has at most three conservation 

laws.

In the following chapters we shall extend the work of 

Abbas and El-Sherblny. This chapter gives a review 

of their results.

5.1 Broer's hypotheses and the KdV equation 

Broer 12} suggested that the KdV equation could be 

approached from the point of view of field theory where 

the properties of the field are obtained from nonlinear
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and dispersive effects corresponding to the terms uux 

and uxxx respectively. Since these terms appear 

additively In the equation, their interaction could be 

observed only In the space of solutions. Hence the 

general scheme proposed by Broer was to write the field 

equation as a structural perturbation

ufc + ux + N(u) + D(u) = 0 (5.1.1)

of the basic unidirectional linear nondisperslve 

equation

ufc + u^ = 0 (5.1.2)

In this perturbation N and D are the nonlinear and 

dispersive components respectively. This 

Interpretation of the KdV equation led to the belief 

that Its properties could be understood In terms of a 

balance between the nonlinear and dispersive effects, 

see Scott et al. C61.

Abbas ill set out to test this hypothesis by analysing, 

separately, the effects of dispersion and nonlinearity 

on selected Initial profiles. He considered the 

equations

u. + u + u  =0, (5.1.3)t X XXX '
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u + u + Auu = 0,
t X X

(5,1.4)

with the initial profiles

g(x) = sechzbx; g(x) = exp(-azxz); g(x) = (l+\zxz)_1

His analysis indicated that the sechz profile was the 

least dispersive of these three, while the nonlinear 

analysis did not distinguish between the profiles. 

Abbas proceeded to compare the properties of the 

solitary waves of the KdV with the predictions of its 

component parts. To vary the amounts of dispersion 

and nonlinearity, independently, the KdV was considered 

as

Ut + Ux + Auux + Buxxx = 0 (5.1.5)

so that the solitary waves are

ug(x, t) = jp sechz | | / ^ x  - (l+c)t)J

(c > 0)

(5.1.6)

This comparison showed some contradictions of the Broer 

hypotheses. The solution Indicates that solitary 

waves exist for all A, B, c > 0, subject to the 

constraints of unidirectionality, whereas the
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assumptions o£ a perturbation would Imply that solitary 

waves will only exist If A, B and c are small. 

Furthermore, we see that for fixed c the amplitude 

and width are proportional to 1/A and Vb 

respectively, meaning that small amplitude, long 

wavelength regime Is reached only for large values of 

A and B. Since (5.1.2) Is a zero-order 

approximation for propagation of waves of small 

amplitude and long wavelength, this property Is 

contrary to the assumptions. This demonstrates that 

the Broer hypothesis Is not a useful way of 

understanding the KdV.

5.2 The General Class of Equations

To further test the general belief that the existence 

of solitary waves is due to a balance between 

nonlinearity and dispersion and that the KdV does not 

simply define a special case, Abbas considered a 

general class of third order equations with quadratic 

nonlinearity

where a^e R (i = 1, 2, ..., 6). This contains the 

KdV and some proposed alternatives such as the 

regularized long wave equation

l.e. u.+u +a uu +a uu.+a t x 1 x 2 t

(5.2.1)

u. + u + uuw X X
uxxt 0 (5.2.2)
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and the Joseph and Egri equation (J.E.) 15)

ut + ux " uut + uxtt = 0 (5.2.3)

Abbas showed that solitary waves with sech2 profiles 

exist for a wide variety of dispersion relations. 

However, he also showed the existence of a formally 

nondlspersive subclass of the general class which has 

stable solitary waves

1 .e. ut+ux+aiuux+azuut+a.uxxx+a.uxxt

where a = a < 0.
3 4

(5.2.4)

The solitary waves of (5.2.4) are given by

u (x, t) = -— ,3t v 7— r sech2 ----—  (x-(l+c)t)s 3,-a^l+c) 2VTj-|-

(5.2.5)

and thus have a fixed width, l.e. independent of the 

speed c.

The existence of this formally nondlspersive subclass 

clearly contradicts the belief that the formation and 

properties of solitary waves can be understood in terms 

of a balance between nonlinearity and dispersion.

Abbas concluded that dispersion is not necessary for 

the existence of solitary waves ill.
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The inability o£ the dispersion terms to provide a 

criterion for understanding the properties of the KdV, 

leads to the question as to whether it is possible to 

develop other criteria for such understanding. 

El-Sherblny took up this question and we will consider 

his work in section 5.5.

We now take a closer look at the solitary wave 

solutions of (5.2.1).

5.3 Solitary waves of the general class 

Solitary waves are special instances of travelling 

waves, i.e. self-similar solutions, which are obtained 

by transforming the evolution equation (5.2.1) to the 

frame of reference in which the waves appear stationary 

(rest frame). Using the transformation

x —* x - (H-c)t, t — *■ t and u(x, t) — ► v(x)

(5.3.1a)

(5.2.1) reduces to the O.D.E.

(*/' "  + aw' - v' = o (5.3.1b)

where the primes denote x-derivatlves and

«c = a -a (1+c), pc = a -a (l+c)+a (l+c)2-a (l+c)B
1 2  3 A Si <3

Integrating equation (5.3.1) gives

105



dZv
dxa

c* z
7V - V + A = 0, (5.3.2)

where A Is a real constant o£ integration.

Multiplying (5.3.2) by

ft r<3 v"iz otv3 vz
2 IdxJ 6 2

v' and 

+ Av + B

Integrating again gives 

= 0, (5.3.3)

where B is the second integration constant. 

Equation (5.3.3) can be rewritten in the form:

3ft
CT

6Av
a (5.3.4)

If we now make the substitutions

x -► ? V — ► w V,

equation (5.3.4) reduces to the form

(5.3.5)

where gz = (^|j(l-2A«), gg 

We note also that a and ft

( 2+6<xA+6ot2B) •

have the same sign.

The general solution of (5.3.5) is the Weiestrassian 

elliptic function q(?) which can be written in terms 

of one of its Jacobian counterparts as follows (41
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(5.3.6)q(Ç) - r4

where en is

with modules

+ (ra - rz)cn2(\if; k) 

the Jacobian elliptic cosine amplitude

1 s

and r , rz and rg are the roots of the equation

4r3 - g2r - gg = 0 . (5.3.7)

Then it can be shown that for k2 = 1 the solution

(5.3.6) reduces to solitary wave form (1), (3)

ug(x,t) (l+c)t)

(5.3.8)

Some of the consequences of the above analysis, due to 

Abbas, may be given in the following theorem:

Theorem 5,1

(i) The equation (5.2.1), with possible constraints 

on the parameters to keep the solutions real, has 

periodic waves which are Weierstrassian elliptic 

functions.

(il) The necessary condition for the existence of 

real solitary waves is that ft > 0 and these waves 

necessarily satisfy the boundary conditions
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U ' ' -- a 0 aS |x| — ► oo .
dy.

(ill) The solitary waves all have the sech1 2 profile □

Abbas also began a classification of the equations

(5.2.1) in terms of their solitary waves by considering 

the properties of the width parameter ft

i.e. ftc = a_ - a (1+c) + a (1+c)2 - a (l+c)B
3 A 3 O

(5.3.9)

and assuming that the amplitudes were positive with 

c > 0.

He classified the existence of solitary waves as 

follows:

(i) a = 0  a * 0, ftc = a - a (1+c) + a (1+c)2
<5 S3 9  A 3

(5.3.10)

(ii) a = 0 = a , f?c = a - a (1+c) (5.3.11)

Case (1) further gives rise to two subcases i.e. a^ < 0 

and a >0. The results of this classification are 

as follows:

(1) a * 0. ftc = t(r) = a - a r + a x2 (r “ (1+c) > 1)3 9 4 3
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(a) as < 0. A family of solitary waves exists If 

the maximum of i(y) is positive. There are two 

possible graphs as Indicated in Figures 1(a) and 1(b).

In the first case, Fig. 1(a), the speeds lie in the 

open Interval (y , r2), and In the second case, 

Fig. 1(b), they lie in (1, r2)•

(b) ag > 0. A family of solitary waves always

exists, but there may be a gap In the allowed range of 

speeds. Consider the graphs of f(^).

If the minimum is positive as In Fig. 1(c) then
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solitary waves exist for all speeds.

If the minimum is negative as in Figures 1(d) and 1(e) 

then excluded speeds are those in the closed intervals 

ly , y 1 (including the case y = y_) and II, y 1.

The results for c < 0 follow from the above by 

reversing the direction of the j"-axis and 

Interchanging the interpretation of the figures.

(ii) ag = 0: Existence and speeds of the solitary 

wave is summarized in the Figure 2 below:

Fig. 2
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This classification was completed by El-Sherbiny 131 

when he considered the case a *0. The types of 

roots of (5.3.9) are obtained according to the 

properties of the discriminant A of the cubic (5.3.9) 

1 .e .,

A = 1
108a (4a a3-18a a a a +27azaz+4a3a -azaz)

S S  8 4 9 < S  8 0  4 0 4  9

(5.3.11)

By considering the cases A = 0, A > 0 and A < 0 and 

the graphs of (5.3.9) In the same manner as Abbas, 

El-Sherblny completed the classification of the general 

class (5.2.1) (31.

The above classification shows that for quadratic 

nonlinearities and third order dispersive terms, 

solitary waves, where they exist, have the sech2 form. 

Furthermore, there Is a variety of equations which have 

the same nonlinear but different dispersion terms. A 

major result of Abbas’s work Is that the linear part of 

the equation Is an unreliable Indicator of the 

properties of the full nonlinear equation.

Other extensions of Abbas's results on the general 

class necessary to understand the special properties of 

the KdV were completed by El-Sherblny. His starting 

point was to show that the class of equations (5.2.1) 

could In fact be considered as homologues of the KdV.

Ill



Thus, he studied the well-posedness of the class.

5.4 Well-Posedness of the general class 

Consider the Initial value problem which corresponds to 

the general class (5.2.1) where u, ufc and ufct are 

given on an arbitrary space-time curve x = x(s), 

t = t(s), where s Is the parameter. This Initial 

value problem Is said to be well-posed If It has a 

unique solution which depends continuously on the 

Initial data.

For the Initial value problem for the general equation

u.+u +a uu +a uu. + t x 1 X 2 t a u  +a u .+a u .. + 
a XXX * xxt 3 xtt a*uttt = 0

(5.4.1a)

u(x, 0) « f(x), ut(x, 0) = g(x), utt(x, 0) = h(x)

(5.4.1b)

El-Sherbiny proved the following theorem.

Theorem 5.2 [3]

The Initial value problem (5.4.1) for the general class 

of equations with non-characteristic data can be 

reduced to the non-characteristic Initial value problem 

for a first order system of seml-linear PDEs given by

Ut + AUx + c = 0 (5.4.2)
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U(x, 0) = H(X)

where the U, C and A are

UT = Iu u, u u, , u , u u. . , u . . u ^u
|_ t X tt xt XX ttt xtt xxt xxxj

(5.4.3a)

cT = [■uf u t f u xt-uttt 0 0 m  0 0 °]

Wlth m * + aiUt ,Ut - (1 + azU)Utt + 4a.UUXt] '

a * 0.

and

0 0

0(4 x 4 )
0 0

0(4 x 4)

0 0

0 0 0 -1 0 0 0 0 0 0

0 0

---
1

o
 
II

o
!

-1 0 0 0 0 0

0 0
a s/a a */a

<5 <5 a a/a
<5

0

0 0 - 1
0 0 0

0(4 x 4) 0 0 0 -1 0 0

0 0 0 0 -1 0

(5.4.3c)

When a^ = 0, A becomes singular and so El-Sherblny 

studied well-posedness for two separate classes l.e. 

the nonsingular class (a * 0) and the singular class
<5

(a = 0 ) .O
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For the nonsingular class, well-posedness was obtained 

via the traditional method of characteristics. That 

is, by finding the characteristics of the system in

(5.4.2) and showing that it is equivalent to a system 

of ODEs in which differentiation is along a 

characteristic direction. These equations can be 

Integrated to give the solution of the system, provided 

the data is not specified on a characteristic.

Now the characteristics of the system (5.4.2), 

corresponding to the general class, are given by the 

roots of the cubic

a - a X + a X z - a X 3 =0. (5.4.4)
8 4  CS <J

where x = ^  .

The method of characteristics fails when either A is 

singular or the data are characteristic. In these 

cases El-Sherbiny was able to reduce the general class 

to four equivalence classes as defined by the following 

theorem.

Theorem 5.3

Consider the initial value problem corresponding to the 

general class of equations

u.+u +a uu +a uu.+a u +a u .+a u ,.+a u,., = 0 t X i X 2 t 3 XXX * xxt 5 xtt «3 ttt

(5.4.5)
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are given on awhere the Initial data u, and u 

characteristic line x = mt m * 0. Then this 

problem reduces to the four equivalence classes KdV, 

RLW, W and W _ defined as follows:
“4 33

KdV: v. + v + c vv + c vv, + c v t x i x  2 t a xxx = 0

RLW: v. + v + d vv + d vv. + d v . t x I X  2 t * xxt = 0

w~ : vt + vx * J'.vvx + ^ vvt * »V'xxt + V'xtt = 0

W : v. + v + <5 vv + 6 vv. + 6 v + 6 v . . = 0 
»a t X I X  2 t a XXX * Xtt

(5.4.6)

and the c o r r e s p o n d i n g  c h a r a c t e r i s t i c  data u, û . and 

Uj.£ reduce to v, v̂ . and v ^  or\ t = 0 o

To Investigate well-posedness of the singular class, 

El-Sherblny considered well-posedness of each of the 

four classes In (5.4.6). Using known theory on the 

well-posedness of the KdV and RLW equations, he was 

able to show well-posedness for a variety of cases 

Including the RLW class with a uû _ term. However,

he had limited success with the classes W and W ,

where he gave restricted existence proofs, and was 

unable to obtain results for the KdV class when the 

uUj. term was included.
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5.5 conservation Laws o£ the general class

The third part of El-Sherbiny's contribution was to 

examine the conservation law property of the general 

class (5.2.1). The first two conservation laws of 

this class were obtained via elementary operations and 

it was shown that if (a^a^ satisfy the cubic 

equation

aa 0

(5.5.1)

then the corresponding subset of equations would have a 

third conservation law. By applying (5.5.1), the 

problem was reduced to the four equivalence classes of 

Theorem 5.3, but with uû . terms removed. These 

classes were then studied separately.

According to the nature of the roots of the cubic

(5.5.1) El-Sherbiny obtained the following results:

(1) If (at/az) is a triple root then we have the 

KdV, which has an infinite number of conservation laws.

(ii) if (a±/az) is a double root, then we have the 

RLW which has only three conservation laws.

(iii) If (a4/az) is one three real roots we 

obtain the class W .
54
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(lv) If (a4/a2) is the only real root we obtain the 

class W .
33

In cases (iii) and (iv) the existence and number of 

conservation laws is given in the following theorem:

Theorem 5.4

Each of the equations

u. + u + buu + b u  . + b u . , t x I X  4 xxt 3 xtt

and

0

(5.5.2)

u. + U. + b uu
1 X

b u
8 XXX

b u , . 3 xtt

has only three conservation laws.

0

(5.5.3)

5.6 Conclusion

In this chapter we reviewed the work of Abbas and 

El-Sherblny on the general class of equations (5.2.1). 

This class was considered as forming a neighbourhood of 

the KdV. Abbas showed that the idea of a balance 

between the nonlinear and dispersion terms does not 

provide an understanding of why solitary waves occur. 

This contradiction of Broer's hypothesis meant that 

other criteria for such understanding was necessary.

El-Sherbiny considered the well-posedness and the 

number of conservation laws of the general class.
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Both his and Abbas's work show that the Kdv has a

number of exceptional properties which are not shared 

by any of its alternatives. The KdV has an Infinite 

number of conservation laws, can be solved by 1ST and 

possesses solltons. Abbas and El-Sherbiny's work 

suggests that none of the alternatives possesses any of 

these properties.

In the following chapters we continue the study of the 

general class by investigating the analytic structure 

of solutions, both special and general, of (5.2.1).

In this context we pursue the question of why the Kdv 

is a unique equation in the class. in particular we 

review and apply criteria based on the analytic 

structure of solutions l.e. the Palnlev* conjectures.
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CHAPTER BIX

THE SIMILARITY REDUCTIONS OF THE 

GENERAL CLASS OF EQUATIONS

In this chapter we begin our study o£ the general class 

o£ equations first defined by Abbas 111. That Is

u.+u +a uu +a uu.+a u +a u .+a u ..+a u.. t x 1 x 2 t a XXX * xxt 9 xtt a ttt

where a^(l = 1, 2, . .., 6) are real numbers and 

u(x, t) is a real scalar field for all (x, t) «= 1RZ. 

Our work, which has been motivated by similarity 

solutions and the Painlev6 conjecture will be to 

investigate the analytic structure of this class.

The work of Abbas 111 and El-Sherbiny [41 shows that 

this Is a reasonable class to consider since It can be 

viewed as forming a neighbourhood of the Kdv equation. 

We have seen that the KdV appears to be unique in 

admitting 1ST solutions, solitons and possessing an 

infinite number of local conservation laws. It Is 

also known that the similarity reductions of the Kdv 

are Painlev6 type. In this chapter we obtain the 

similarity reductions of the general class of 

equations, the solution structure of which will be 

considered in the following chapter. The technique 

we have reviewed In chapter four of Lie's one-parameter 

(&) group of transformations 12] will be used. Our

119



approach will be to spilt the class Into three 

subclasses In accordance with Cauchy's problem and to 

obtain the symmetry groups for each subclass 

separately. Then, using these, we proceed to obtain 

their similarity reductions.

6.1 Subclasses of the general class 

The general class of equations

u.+u +a uu +a uu.+a u +a u .+a u ..+a u. .. = 0
t X 1 X Z t 3 XXX * XXt 3 xtt «5 ttt

(6 .1.1)

splits with respect to Cauchy's problem Into three 

distinctive subclasses.

(I) The class W (a * 0) for which (6.1.1) Is
o  <5

third order In t and three bits of data u, u^ and 

ufct are given at t = 0.

(II) The class W (a = 0, a * 0) for which (6.1.1)51 G 5

Is second order In t and two bits of data u and û. 

are given at t = 0.

(III) The class W (a = 0 = a , a * 0) for which
49  <5 9  4

(6.1.1) Is first order in t and only u Is given at 

t = 0.
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6.2 The local symmetry group o£ the class w
------------------------------------------- --------  ■ ■ • i

The equation of this class Is (6.1.1) and the 

one-parameter («0 group of infinitesimal 

transformations in (x, t, u) are given by

x' = x + ¿?X(x, t, u) + 0(« ) (6

t' = t + «T(x, t, u) + 0(*f ) (6

v = u + sU(xf t, u) + 0(e) (6

Then following the work in chapter four

v , = u + .Ux + 0(^z) x' x (6

Vt, = Ut + i:Ut + 0(«:2) (6

v , , , = u + *UXXX + 0(ffz) (6X' X' X' XXX

V , - f  ■ “xxt * *uXXt * °«*,> <6

V f  f  - uxtt + *uXtt * °<**> <6

V t ' f  = ut t t  * *uttt  + <)(í:2, (6

where the functions Ux, Uxxx, Uxxt, Uxtt

Utfct are determined from equations (6.2.1a-c)

2.1a)

2.1b)

2.1c)

2.2a)

2.2b)

2.2c)

2.2d)

2.2e)

2.2f)

and

as
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U* * Ux * (uu - V ux -  V t  -  V x  -  Tu ux ut

(6.2.3)

u t  -  ut  + <% -  Tt , u t  '  Xt ux -  V t  -  V x ut

(6.2.4)

,,xxx ,,xxt ,,xtt , . . , ..with U , U , U and U given In Appendix B.

Equation (6.1.1) Is Invariant under the transformations 

(6.2.1-2) If

V  +V  +W  +W  +aa V  x'  x'  +a* V  x ' t '  +as V t ' t '

+aaVt't't'
(6.2.5)

= 0

Substituting (6.2.1-2) into (6.1.1) gives, to first 

order In e ,

(1+a u)ux+(1+a u)Ufc+a u u+a u.u+a uxxx+a uxxt
4 2 1 X 2 U 3 41

+a Uxtt+a ut4t = 03 a

(6 .2 .6 )

which Is the Invariance equation. The Infinitesimals 

X(x, t, u), T(x, t, u) and U(x, t, u) are 

determined by equating the coefficients of the 

derivatives of u and terms free from derivatives of 

u to zero.

122



Equating to zero the coefficients of u u , u u
t ttt X XXX

and ut utt 9*ves

T = X = 0, U = 0  u u ' uu (6.2.7)

Now writing out (6.2.5) in full we have

(u.+ u +a uu +a uu.+a u +a u .+a u +a u...)U
t X * X a t a XXX *  XXt » Xtt <* ttt U

+ (l+a,u) [ v V x ' V t ]  + V xUta,utU+(a.+a.u i

[Ut“TtUt~XtUx]+aa[U + (3U -X )u -T Ux. 
X X X  X X U  X X X  X X X X  t

uxxt]+(3U -3X )u -3X u -3T u .-3T
XU XX X X  X X X X  XX xt X

+a |U . + ( 2U . -X , ) u + (U -T xJu^+tU ^-2X )u
xxt xtu xxt X XXU xxt t ut xt XX

+ (2uxu-xxx-2Txt > Uxt-Txx"tt-Xtuxxx- < 2xxtTt )u* x f 2Txuxtt] 

ta,[uxtt+12uxtu-Txtt> V  <uttu-xxtt,ux+ <Uux-2Txt >ut 

f<2utu"Ttt'2Xxt,uxt"Xttuxx"Txuttt“(2Tt+Xx)uxtt"2xtuxxt]

ta« luttt+ < 3Uttu-Tt t t ,ut-x tttux + <3utu-3Tt t '“tt

3 T t u t t t  3 X t t u x t _3 X tuxtt] (6 .2 .8 )
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Using the PDE (6.1.1) to eliminate uttt
1 . e .,

u
ttt - - ¡r < V ux+a,uV aIuV a,uxxx+a.uxxttiV 1xtt>

in (6.2.8) and equating the coefficients of third order 

to zero gives

V x : i r Tx " ¡r xt ' 3xx + 3Tt - 0 <6-2-9)d a

[ a a 1 ag; - 3 s; J Tx - 2 î; xt + 2Tfc - 2Xx = 0

(6.2.10)

uxtt: ( £  - 2 £  ) Tx - 3 Ï- xt + Tt3 - Xx - 0

(6 .2.11)

From (6.2.11) and (6.2.9) we obtain

(6.2.12)

and (6.2.10) and (6.2.9) give

(6.2.13)

Then if A = 4a a3-18a a a a +27aza2+4a3a -a2a2*0
8 9  8 4 9 0  8 0  « 0 4 9

(6.2.14)
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0equations (6.2.12) and (6.2.13) lead to X = T =
t x

1. e . X = X(x), T = T ( t ) . Now from (6.2.9-11)

Xx = Tfc, and it follows that Xxx = Ttt = Xxt " Ttx=
0. Hence, X := ax + ft, T * at + y where a, (3 and

r are arbitrary constants.

Returning to equation (6.2.8) and equating the 

coefficients of uxx* and uxt to zero we obtain

3a U + a U . = 0 a ux * ut (6.2.15)

a u  + 3a U . * 0 » ux «ut (6.2.16)

a u  + a U . = 0 
4  ux « ut (6.2.17)

Now there are four possibilities all of which lead to

U =» U . = 0ux ut (6.2.18)

These are: 

( 1 )

(11)

(ill)

(iv)

a a * 9a a , a2 * 3a a , za
4 3 8 <Sf 3 4

a a = 9a a , a2 ft 3a a , 2a
4

a2 * 3a a , a a * 9a a , Za
4

a2 = 3a a , a a
4 a s' 4 3

* 9a a , 
a «'

Za
3
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All other possibilities do not satisfy the condition

A = o.
*

To determine U from the Invariance equation we equate 

the coefficients of ux and ufc to zero to obtain

ux: 2(l+atu)Xx + a^  = 0 (6.2.19a)

u.: 2(1+a u)X + a U = 0 (6.2.19b)

We consider the following two cases: (1) â  * az,

(11) a = a * 0.
i 2

(I) When either â  or az Is zero In (6.2.19) we 

are led to X̂  = 0 which gives the generator U = 0.

When neither â  nor az Is zero then we have

U * - (1 + a u) = - —  (1 + a u)
cl 1 a  2
1 2

and we are forced to a = 0. Hence we obtain the 

same generator U = 0.

(II) When a « a * 0 then clearly U = - —  (1+a u). ̂ 2 9 11

We now state our result in the following theorem: 

Theorem 6.1

If A * 0 then the generators of the local symmetry
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group of the equation W (a ? 0) are as follows:<3 G

(a) a4 a2: X = ft, T = y, U = 0.

(b) â  = az ** 0: X = ax + ft, T = at + y,

U = - (1 + a u)d 1-i

where «, ft, y <a R □

When a * a , the general class W can always be 

reduced to a class In which one of the nonlinear terms 

Is eliminated. We give the theorem below, the proof 

of which Is In Appendix C.

Theorem 6.2

When a * a , the general class of equations W 
*  2

reduces to the general class of equations

vr +v+bvv+bvv_ tb v + b  v ,+b v „ + b  v„, = 0

(6 .2.20)

where b^(1 = 1, 2, ..., 6) are constants with either

b or b zero, a 
1 2

Corollary If a = a then b = b and neither can
'" ~ X- 2 X Z

be eliminated. □

Note that in the above we have assumed that a , a 

and a^ are nonzero. It Is easy, however, to show

127



are those given In theorem 6.1 for all ag, â , a3 

This can be demonstrated by putting In required values 

of ag, a4, a3 in (6.2.8) and proceeding as above. 

Clearly, the restrictions on the dispersive 

coefficients will change for different choices.

To complete this section on the class W It Is
0

necessary to consider the case A = 0 where A was 

defined In (6.2.14).

The following theorem, due to El-sherbiny, simplifies 

our analysis.

Theorem 6.3

If A = 0, then the class W can be reduced to the
0

following subclasses via an equivalence relation:

v. + v + c vv + c vv. + c v = 0  KdV class
t X I X  * t 8 X X X

vt * * vx * d,vvx * V vt ♦ d.vxxt = 0 RLW class °

Note: The equivalence relation Is as follows: two

equations are said to be equivalent If they are 

connected by a non-singular linear transformation.

The local symmetry group of the KdV and RLW classes 

will be found later. This aside, we have now

that the g e n e r a t o r s  o£ the local s y m m e t r y  g r o u p  o£ w
0
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o b t ained the local s y m m e t r y  groups o£ the class w  ,

6.3 The local symmetry group of the class 

The equation of this class is

u.+u +a uu +a uu.+a u +a u .+a u . t X 1 X 2 t S X X X  * xxt 3 xtt = 0

(6.3.1)

and the following theorems (El-Sherblny 141) enable us 

to obtain the generators of the local symmetry groups 

of W from those of W .3 «3

Theorem 6.4

If A * 0 then the class Is equivalent to the<f

subclass of W3 defined by the condition

az 4a a. (i.e., a can always be eliminated by a
A 9 SI «3

nonsingular linear transformation), a

From this theorem it follows that the generators of 

this subclass of are also given by those stated

in theorem 6.1 as summarised in the following theorem.

Theorem 6.5

The local symmetry groups of the class of equations

(6.3.1) where a2 * 4a a are as follows:
A 9 3

(i) If a4 ^ a2/ then the equation is equivalent to 

one in which either â  or az = 0 and the generators
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are

X = p, T = Y, U = 0.

(ii) I£ at = a2f then neither of the nonlinear 

terms can be eliminated by an equivalence 

transformation as defined before and the generators are

On
X = c*X + ft, T = at + y , U = - -- (1 + a U)9 11

where a, (3, y e K a 

Theorem 6.6

If a* *= 4a a_ then W_ reduces to the same classes4 3 3 3

that reduces to when A ■ 0, i.e., those given in

theorem 6.3 above a

6.4 The local symmetry group of the class 

The equation of this class is

Ut + u + a uu +a uu. + a u i x z t a xxx + a u . = 0
4. X X t

(6.4.1)

Following the work on Ŵ , the invariance equation 

under one-parameter (s) infinitesmial transformations 

is

(1+a u)UX+(1+a u)Ufc+a u U+a u.U+a UXXX+a Uxxt i z î x z t a  « = 0

together with the conditions

(6.4.2)
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0 (6.4.3a)X = T = U u u uu

Furthermore, equating the coefficient of the derivative 

of uxtt k° zero gives

Tx - 0 (6.4.3b)

Using (6.4.3) and

u . = - —  |(l+a u)u +(l+a u)u.+a u xxt a 4 L I X z t a xxxj

gives the Invariance equation In the form 

1 * a.u)[«x+ < V Tt)ux]*(1+a.u)[ut+2xxut-xtux]ta.uxu

) u.U+a fu z t a |_ ï+a u.U+a |U +(3U -X )u +(3U -3X )u -3X- *• XXX XXU XXX X XU XX XX Xuxxx]

+ a |U .+(2U . -X .)u +U u.+(U, -2X .)u
xxt xtu xxt X XXU t tu xt XX

+ (2U -X ) u .-X. u 1 +a ( 2X .+T. )u xu xx xt t xxxj a xt t xxx = 0.

(6.4.4)

Furthermore, from the terms u , u and u . wexxxf XX xt
have

- a X - a X. + a T. * 0 a x  a t at (6.4.5)
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(6.4.6)a (3U -3X ) + a (U^ -2X .) = 0
3 xu XX 4 tu xt

a (2U -X ) = 0
4 XU XX

(6.4.7)

From (6.4.7) we obtain U = ^ X and substitutingxu 2 xx ’

in (6.4.6) gives - 75-aX + a U. - 2a X . » 0.’ 2 3 xx 4 tu 4 xt

Differentiating (6.4.5) with respect to x gives

3
a X  + a X . = 0 and hence a X . + a U. - 2a X ,

3 xx 4 xt 2 4 xt 4 tu 4 xt

■ » a"* «t» ' 2 xxt ■

Then U = i x  , U. = \ X . , a X  + a X . = 0xu 2 xx' tu 2 xt' 3 xx 4 xt

(6.4.8)

Using (6.4.8) reduces the invariance equation (6.4.4) 

to:

(1+a.“> [UX+< V Tt)UX] + (l+a2U) [ V 2V t - XtUx]+a.UXU

+a*utu+a,[uxxx+ 7  xxxxux]ta.[uxxt+ 7 Xxxxut] ■ 0

(6.4.9)

Equating coefficients of u and u, to zero;
A I#
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V  (1+a.u>(V V  - <lta,U)Xt + a,U + j a,Xxxx . 0

(6.4.10)

ut: 2(l+a2u)Xx ♦ a2U + | a„Xxxx ♦ 0 (6.4.11)

Differentiating (6.4.10-11) with respect to u and 

using Xu = T(j = 0 gives

a (X + T.) - a X. + a U = 0  (6.4.12)i x  t z t i u

and 2a X + a U = 0 (6.4.13)
2  X  2  U

From (6.4.13) U = - 2Xx}{. Thus, from (6.4.8) we 

deduce that

Uut = Uux = Xxt xx = 0 (6.4.14)

Now using (6.4.13) and (6.4.14) in (6.4.11) to 

eliminate the X term we obtain

r a U
____l___ = o

0u y 2(l+azu) u*

Integrating with respect to u gives 

a U = 2(l+a u)f(x, t) i.e. U = 2f(x, t). Since2 2 U

Uxu

II o II c
rr c then Uy = constant. Let

f (X,

0in-p then X = a and
X
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(6.4.15)a U = - 2a(1 + a u)
2  2

Equation (6.4.12) becomes a T. - a X. = a c*i t 2 t 1

(6.4.16)

Equation (6.4.5) becomes a T. - a X. = a «
a u * u »

(6.4.17)

a a
Now if ~  * —- (a * 0) then X. = 0 and T. = a and51 cl 2 t t

2  4

(6.4.10) gives

a U = - 2a(l + a u) (6.4.18)1 2

There are two cases to consider: (i) a± * a2r

( ii) a = az.

(i) When a = 0. a * 0 and a * a * 0, from

(6.4.15) and (6.4.18) we see that « = 0 and so the 

generators are X = ft, T = y, U = 0.

(ii) When a = a  i.e. a. * a we have the1 2  3 4

generators X = cxx + ft, T = at + y ,

U = - —  (1 + a u) . a 11

To consider the case a = 0. a * 0 we refer back to
2 ' t

equations (6.4.10-13). From (6.4.11) it is easy to
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show t-hat- X =
X

0. Then from (6.4.12) U = -T .
u t

But Uux = Uut - Txt " Ttt = 0 so Tj. = «.

Substituting this value into (6.4.5) we obtain

We now state our result in the following theorem.

Theorem 6.7 

a a
If —- * —  (a * 0) then the generators of the local9 a 2

2  <4

symmetry group of the equation W^3 are as follows:

(a) a ¡¿a * 0 * 0  or a = 0, a * 0 :  X = ft.

t « r, u = o.

(b) â  = az * 0: X = cxx + (3, T * at + r,

U =~ —  (1 + a u)3 11

a
If â  = 0, â  * 0: X = at + ft, T = at + y,

-
r a ia— a u - —  - 1a i ai 1 4V. «i

.

when —  = r— = tt and neither a nor a Is zero a a k 1 2
2  4

then we have the following lemma:
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Lemma 6.1

The class of equations

u. + u„ + a uu„ + ka uu, + a u  + k a u  . = 0, t X I X  i t  3 XXX a xxt r

(k * 0, 1)

are equivalent to a class of RLW equations

( k - D a ^ x  + uT + ka4UuT + ka8uXXT = 0 a.

Proof. Make the non-singular linear transformation

X = x - t, T = t/kag to obtain result.

To obtain all the local symmetry groups for the general 

class, It remains to study the RLW and the KdV classes.

6.5 The local symmetry group of the RLW class 

The equation of this class Is

u, + u + a uu
t X I X

+ a uu, + a u , = 0z t 4 xxt (6.5.1)

The Invariance equation under one-parameter (s) 

infinitesimal transformations Is

(1+a^u)Ux + (l+azu)U + a u U + a u. U + a Uxxt = 0
i  X  2 t 4

(6.5.2)

136



As in the previous derivations we obtain

t = o = t , u x' xu = 0 = xt' u = 0 = u .uu ut
(6.5.3)

2Uxu - X
XX

= 0 (6.5.4)

(l+atu)(Xx+Tt) + a^U - 0 (6.5.5)

2Xx(l+azu) + azU + a^Uxxu = 0 (6.5.6)

We now look at the following cases: (i) at = 0,

a * 2 0, (ii) a4 * 0, a2 = o, (iii) a * 0,

a * 2 0.

(i) When a = 0, a ^ 0 1 2 we obtain, from (6.5.4) that

Xx + Tt - 0, l.e. Xxx - Ttt = 0 and from (6.5.4)

Uxu = 0. Since X = X(x), T = T (t) it follows that

T = at + y and X = -ax + ft- Then from (6.5.6)

U = - —  (1+a u).
2

(ii) When â  ^ 0, az = 0 we obtain from (6.5.4) and

(6.5.6) that 2UXU = xxx and 2XX - - a ^  

respectively. Then Xx = 0 and X = ft. Also

differentiating (6.5.5) with respect to u first and 

then with respect to t we see that = 0  i.e.,

T = at + y- The n  from (6.5.5) U = - (1+a u).
3  1
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(iii) I £ a4 * 0, a2 * 0 then (6.5.5) gives

a U
X + T. = - --x t 1+a u 

i

which implies that

(6.5.7)

a U = (1+a u)£(x, t)i i (6.5.8)

Thus from (6.5.3) = £fc(x, = 0 30 that £ is a

function of x only. Returning to (6.5.8),

Xx + Tj. = - f (x) and since X = X(x) and T = T(t) 

we must have T = at + y.

Now from (6.5.4) we have 2Uxu = -f'(x) and 

substituting into (6.5.8) leads to f'(x) = 0 and 

U = 0. Letting f(x) = 6  we have X = -(<5+a)
A  A  U X

and a^U = (l+a4u)6 implying that Uu = 6. Thus

a U
from (6.5.7) we have that 2X =» - T = -2 («5+«) and

X X T ofc U
2

also by differentiating with respect to u, that 

X^ = - j uu = - 2 • This gives <5 = -2« and

consequently, X = c*x + ft, U = - —  (1+a u) =d i.1

- ^  (1+a u). We note that these generators are3 2
2

obtained when a = a since if a * a then1 2  1 2

« = 0 and X = ft, T = r and U = 0.

We summarize our result by the following theorem:
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T h e o r e m  6.8

The generators of the local symmetry group of the RLW 

class of equations are as follows:

(a) â  = 0, az * 0: X = -ax+/?, T = at+j',

U = - p- (1+a u)a *
2

(b) a * 0, a = 0: X = ft, T = at+r, U = - (1+a u)i. 2 a ±i

(c) * az * 0 : X = ft, T = r, U = 0

(d) â  = az * 0 : X = a x + ( 3 ,  T = at+r,

u = - (1+a u) da 11

6.6 The local symmetry group of the KdV class 

The equation of this class is

ut + ux + a.uux + azuut +a,uxxx ■ 0 <6.6.1)

The invariance equation under one-parameter (s) 

infinitesimal transformations is

(1+a u)Ux + (1+a u)Ut + a u U + a u^U + a UXXX = 01 2 1 X 2 t 8

(6 .6 .2 )

leading to the results:

u = Tx = X U = Uuu 0 (6.6.3)
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(6.6.4)U = X 
XU XX

2(1+a u)X - (1+a u)X. + a u + 2ajc „
* *» “ t x 9 XXX

(6.6.4) 

= 0

(6.6.5)

(1+a u)(3X -T.) + a U = 0
2 X t 2

(6.6.6)

(1+a u)U + (1+a u)U. + a U = 0
i X 2 t 3 XXX

(6.6.7)

From (6.6.3) we have that X = X(x, t) and T = T(t).

For the KdV class of equations we consider the 

following two cases: (1) â  arbitrary, az * 0.

(11) af * 0, az = 0.

(1) This case Includes (a) at =0, a2 ^

(b) â  = az, (c) a4 ^ a2 ^ Differentiating

(6.6.5) with respect to u first and then 

to x we obtain

with respect

2a X - a X . + a U  = 0
1 XX 2 Xt 1 UX

(6.6.8)

Differentiating (6.6.6) with respect to u 

then with respect to x we obtain

first and

Uux - -3Xxx (6.6.9)
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Then from (6.6.4) and (6,6.9) U 0 and

(6.6.8) gives Xxfc = 0.

= X 
ux xx

Differentiating (6.6.6) with respect to u gives

Uu = -(3Xx - Tfc) and differentiating (6.6.6) with

respect to x gives u = 0. From (6.6.7) U. = 0.x t#

Differentiating (6.6.6) with respect to t gives 

T"(t) = 0. Therefore T is a linear function of t 

and X is a linear function of (x, t).

Thus 3Xx - Tfc = constant = -a say, and substituting 

in (6.6.6) gives U = (l+a u). Letting T = fit + y3 2
2

gives X = j (/?-a)x + 6t + e and substituting this

1 aiinto (6.6.5) gives 6 = T —  (cx+2/3). Furthermore,
j 3Z

The Invariance equation (6.6.2) requires that we have 

the consistency condition (a^-az)(ot-/3) =0. We 

summarize our first result by the following theorem:

Theorem 6.9

If (a^-a^ (a-/?) =0, az * 0 then the generators of 

the local symmetry group of the KdV class of equations 

are as follows:

1 1 a
X(x, t) = | (ft - oOx + ^ ^  (« + 2/3)t + e

2

T(t) = ftt + r
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U(x, t, u) = —  (1 + a u )a
3  2

2

where a, ft, y, s e IR □

Clearly, if â  * az then the generators of the local 

symmetry group become

a
X(t) = —  at + e , T(t) = at + y,

3
2

U(x, t, u) = —  (1+a u)a a 2
2

Note that this includes the case with the single

nonlinear term a uu. .2 t

If a± = az then we obtain the generators in theorem 

a
6.9 with -i- = 1 .

3 Z

(11) For a4 * 0, az = 0 we have the results:

Uxu - Xxx (6.6.10)

2(1 + a u)X - X. + a U + 2a X = 0  (6.6.11)i x t i a xxx

3Xx - Tt = 0  (6.6.12)

(1 + atu)Ux + Ufc + a,Uxxx = 0  (6.6.13)

together with (6.6.3). Then from (6.6.12) X = 0
X X
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and so u 0.
xu

and differentiating 

a U = X.1 x xt *

From (6.6.11) we obtain U
u

(6.6.11) with respect to x

= -2X
x

gives

From the same equation we can show that U^u = -2Xxj. 

But (6.6.13) gives (1 + atu)Ux + Ufc = 0 which upon 

differentiating with respect to u gives

au + U . = -X . = 0. From (6.6.12) T"(t) - 0.i x ut xt

Therefore, T is a linear function of t and X is a

linear function of (x, t) . If T = fit + r then from

(6.6.12) Xx = | ft and X = j ftx + <5t + £ so that

9 1f l+a u i .
from (6.6.11) U =

" ! - r -  \p r3 1l a* J  a*

Thus we have the following theorem:

Theorem 6.10

The generators of the local symmetry group of the KdV 

class of equations

u, + u + auu + a u  = 0  t X l x  a xxx

are as follows:

X(x, t) = y fix + 6t + £
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T ( t ) = ßt + r

where (3, y, ô, s e R o

The Infinitesimals obtained for the classes of 

equations we have considered can now be used to obtain 

similarity solutions. Before doing this we summarize 

our results in the following section.

6.7 Generators of Infinitesimal Transformations for

the general class: a complete classification 

We present our results in Table 6.1. For simplicity 

we have introduced the following notation:

A = 4a a3 - 18a a a a + 27azaz + 4a3a - azaz 
<s a s  9 4 9 0 a a  a  a « s

a a
A * 2  A A  1  9A = a -4a a. A = —  - —  s * a s' 4 a a2 4

We have also the following equivalence classes:

(1) (a) W (a * 0), A * 0 --► Class A
Ö <5 Ö

(b) W (a * 0), A
o  <5 o

y  Class C (RLW) 

^  Class D (KdV)
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( 2 )

(3)

(4)

(5) 

We

(a) W(a = 0,a J*0), £ *B <1 S S

(b) W(a = 0, a * 0), A =
3  <5 5  3

(a> w„ (a„ * 0 - V  \  " °>'

(b) »4J(aa * 0 = a,< a. * 0),

RLW(atf = as = ag = Of â

KdV(a = a = a =0, a
<5 3 4 9

now present our table.

Class A

0 s
N.

Class C

Class D

A^ * 0 — *■ Class B

A^ = 0 — ► Class C.

* 0) — » Class C.

* 0) —* Class D,
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Note that D = A for a = 0 and D = A for
8 2

a = -2ft.

6.8 The similarity reductions of the general class 

In this section we obtain the similarity reductions of 

the classes listed In Table 6.1. This will be done 

In a systematic manner starting with the first set of 

equations in the Table and finishing with the KdV 

classes.

Similarity reductions are obtained by solving the 

characteristic equations

dx _ dt _ du 
X(x,t,u) T(x,t,u) U(x,t,u)

Then for the first set of equations In Table 6.1 we 

Integrate the ODEs

. .. - a du
= i_____ / c a i \

cxx+̂ 3 at+r 2a(l+atu) lo.o.x;

for the cases a = 0 and a = a .1 2

Case Al a = 0. In this case solving the 

characteristic equations is easy and we obtain the 

similarity variables

u(x, t) * f(77) (6.8.2a)

where t? = x - (l+c)t and (1+c) = ft/r (6.8.2b)
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and f ( 77 ) satisfies the ODE

- cf' + [ai - az(l+c)]££'

[a - a
3 4(1+c) + a (1+c)2 - a (1+c)3 3  <3

j £ "  ' =

(6.8.3)

where

Note that this reduction is also obtained for the 

classes Bl, B2, Cl and Dl (cx = 0) with the 

appropriate a_j ( j = 1, ..., 4).

Case A2 at = az. In this case we show how theorem

4.1.1 is applied to solve (6.8.1).

Solving

gives

dx
cxx+f? 

In (cxx+/?)

dt
ext+7"

= ln(at+7')

which leads to r? = (otx+f?) («t+r)

.. a du
Solving -T --- = - -T— ----cxt+T'- 2o<(l+aiu)

gives 21n(cxt+r) = - lnd+a^ujk

which leads to k = ( 1+a^u ) (ext+ĵ )2 .
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From theorem 4.1.1 the general solution is given by

F(k, T?) = F |\l+a4u) (o.t+̂ )a, («x+^Hot+r)
1

which may be written In the form

( 1+a^u) (at+r) = f ̂ («x+f?) (<*t±r)
1

so that
■ - U

(<*t+r) zf(u)
- ] •

Hence in this case the similarity variables are

u ( x' ' r  [i L
(«t+r) 2f ( T? ) (6.8.4a)

where tj = (ax+f?) (cxt+̂ ) (6.8.4b)

and £(77) satisfies the ODE:

«Z(a -a 7 7+a i?z-a r?3)!''' + 4«z(-a +2a i?-3a 7?z)f''
3  4  5  <5 A 55 <5

+ 6az(2a -6a 7 ) ) f + ( 1 —ar? ) f f# - 2£z - 24ctza f = 0
3 <s <s

(6.8.5)

From Table 6.1 we see that this reduction is also 

obtained for the classes B4, C4 and D3 (« = -2(3) with 

the appropriate a^(j = 1, ..., 4).
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(1) For y = 0 we obtain the similarity variables

u(x, t) - [(at+ft) £(x) - 1 (6.8.8a)

where 7? = x (6.8.8b)

and f(x) satisfies the ODE

a « f "  - £ £' + f = 0 (6.8.9)

(ii) For r * 0 we obtain the result of case B3 where

a = 03

Case Dl In this case we obtain the similarity 

var iables

- H
u(x, t) = —  («t + r)f(rj) - 1 (6.8.11a)

where

v = x - —  t
f(a /a )r-\' 1 2

C* In (ott+r)

(6.8.11b)

and f(r?) satisfies the ODE:

a £'' ' +3 1  -  —  a
z
f' -

2
ff' + cxf** = 0

(6.8.12)
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Clearly we can choose a± = 0 to obtain a reduction

for the KdV class with the nonlinear term a uu. .
2  t

Case D2 For this case we consider (1) ft = s  = 0, 

r  = 1/ (ii) ft, <5, y , &  all arbitrary.

(i) When ft = e  = 0, r  = 1 the similarity variables 

are

U(x, t) = —  [ £ (77) + <St] (6.8.13a)
a1

where

r? = x - j  tZ (6.8.13b)

and f (7 7 ) satisfies the ODE

a f' "  + ff' + f' + cf = 0 (6.8.14)a

We shall show in the following chapter that this ODE in 

fact reduces to the first Painlev6  transcendent.

(1 1 ) When ft, 6 ,  y , and s are arbitrary, the 

similarity variables are

* ■> m

u(x, t) = ~a1
1 £ - l
2 ft

9 , -2/3. , 
- j ft (ftt+Y) £ (r?)

where

(6.8.15a)
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1 7 = J  ^~3/3[2( f x  - 3 6 ( f 3 t + r ) + 6(0<s-r6)j (0 t+ r ) 3

(6.8.15b)

1

and f(p) can be shown to satisfy the ODE

3agf' ' ' + 3f f' -77f' - 2f = 0 (6.8.16)

We shall see in the following chapter that this ODE 

reduces to the second Painlev6 transcendent.

Case D3 in this case we obtain six different 

reductions. However three of them are special cases 

of equations already obtained and we take care of these 

first.

(i) a = f?=0.

(i i) « = -20.

(iii) a = 0 * 0.

(iv) « * 0 * 0 .  

variables are

u(x, t) = —
Cl

D3 -- > Al with a = a = a = 0.
4 5  <5

D3 --► A2 with a = a =a =0.
4 5 <5

D3 --► Dl.

In this case the similarity

[(0t + r ) a/i?f(77) - l] (6.8.17a)

where
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v = (ftt + r)(c* i?)/3̂ | W  - (ftt +r) - (r(<*+2ft) +3/9«)j

(6.8.17b)

and f (77) satisfies the ODE

aaf?3f ' "  + j  (<x-(i)T)t£' + o»f2 = 0 (6.8.18)

(v) a = 0, ( 3 * 0 . In this case the similarity 

variables are

u(x, t) = f (77) (6.8.19a)

where

7) = ftz'3(ftt+r) 3 [W+r) - ((ix+s-2r)

and f (77) satisfies the ODE

(6.8.19b)

3agf ' ' ' + T7f f' + T?f' = 0 (6 .8 .20)

(vi) « * 0, ft = 0. In this case the similarity 

variables are

u(x, t) =
k  p * -1 ]

where

(6.8.21a)

a

T> = (cxx - «t + 3r - <$)e3 r (6.8.21b)
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a n d  £ ( v , ) s a t i s f i e s  t h e  o d e

3aa«^f' "  + r>f f' + £“ = o. (6 .8 .22)

We have now completed the similarity reductions of our 

general class via one-parameter (&) Lie 

transformations. For easy access to our results we 

summarize the ODE reductions In the following table.
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Class of equations Similarity ODEs

A1,B1,B2,C1,D1(«=0) Kf "  ' - f' + Aff' = 0

Ac = a4 - a (1+c),

Kc=a -a (1+c)+a (l+c)z-a (l+c)a
3  4  5  (5

A2,B4,C4,D3(«=-2f5) fj£' ' ' +4m ' f' ' +6̂ ' ' f' +4m ' ' ' f
+ (1-T?)ff' -2£Z = 0

M(r?) = o»z (a -a 7 7+a rj2-a 7? )
3  4  5  <5

B3

C3 (a) 

C3(b)

« a kf' ' ' +« a f"+kf'+£-f£' = 0,4 4 '

k = r - ^  ft
4

«a f' ' + f - f f' = 0

B3 with a = 0

C2 o*zâ 7?f' ' ' +4ot2a^£' ' + f' +r?f f'
+ 2fz = 0

Dl a f"  ' +3 [■ - y-
+ of = 0

D2 (a) 

D2(b)

ag£" ' + f' + y + f f' = 0

3a f" ' - 2f - 7?f' + 3ff' = 03

D3 (a)

D 3 ( b )

a f ? 3 f ' "  + i  ( o t - / ? ) 7 7 f £ '  + o t f Z = 0 3 3

a * ft

3ag f' "  + r?f' + Tyff

Table 6.2
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6.9 Conclusion

In this chapter we have applied one-parameter (e) Lie 

group of transformations to obtain a complete 

classification of the local symmetry groups of the 

general glass of equations (6.1.1). This was done by 

splitting the general class into three distinct 

subclasses Ŵ , and W^3 according to Cauchy's 

problem and considering them separately. We first 

obtained the infinitesimals X, T and U and listed 

them in Table 6.1. Then using these we obtained the 

similarity reductions.

We noted that for any a^ a , a similarity reduction 

leads to the class of ODEs (6.8.3). In particular 

when a4 ^ a2 ^ 0' (6.8.3) is the only reduction 

possible, i.e. the self-similar or travelling wave 

solutions. Symmetries giving rise to additional 

reductions appear, firstly when â  = az and secondly 

when a = a =0.a 3

To obtain information about the analytic structure of 

the general class (6.1.1) we study the analytic 

structure of its ODE reduction i.e. the ODEs in Table 

6.2. This is the work of the following chapter.
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CHAPTER SEVEN

THE ANALYTIC STRUCTURE OF THE SIMILARITY SOLUTIONS 

OF THE GENERAL CLASS OF PDEs

In this chapter we begin our study of the analytic 

structure of the general class of equations

u.+u +a uu +a uu,+a u +a ut X 1 X z t 3 XXX 4. xxt+a u . . s xtt+a u, .. «3 ttt

(7.1)

0

by investigating the solution structure of the 

nonlinear ODEs obtained in the previous chapter i.e. 

the ODEs listed in Table 6.2. We first look at 

equations which are or can be reduced to second order. 

This is done because the solution structure of second 

order ODEs is easier to examine because of the 

existence of the Palnlevé classification. The 

remaining equations are studied via local analysis 

based on the Singular Point Analysis of Ablowitz,

Romani and Segur (21. This will involve some complex 

variable theory and a resumé of some complex variable 

definitions will be our starting point.

7.1 Resumé of complex variable definitions 

Definition 7.1

If G is an open set in C, a function f : G — ► <C is 

analytic if f is continuously differentiable on G 

(31.
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in fact every analytic function Is Infinitely 

differentiable and furthermore has a power series 

expansion about each point of Its domain.

Thus we make the following definition.

Definition 7.2

A function f: G — ► C is said to be analytic on G if 

for each zq <= G it has a power series expansion

oo

f(z)= S  b ( z - z ) n 
L  n o
n=0

which converges for all z e G.

Definition 7.3

Let f have an isolated singularity at z = t.q .

Then z is a pole of f if lim |f(z)| = oo .
z+zo

Definition 7.4

If f has a pole at z = z and m is the smallestO

positive integer such that f(z)(z-zo )m has a 

removable singularity at z = zq then f is said to 

have a pole of order m at z = z .O

159



Definition 7.5

If G is open and f is a function defined and 

analytic in G except for poles, then f is a 

meromorphic function on G. For example

f(z) = i- is analytic in € - (01 and hence 

meromorphic in C

f(z) = —  is analytic in € - inn: neZ) ands 1 nz

hence meromorphic in C.

We represent a meromorphic function in the usual manner 

by a Laurent series as defined in the following 

theorem.

Theorem 7.1

Let f: G — > € be meromorphic and have a pole of order

m at z e G. Then o

-1
f(z)= ^ br( z - z Q )r +g(z) (r<co)

r

where g(z) is analytic □

The first term in the expression on the right hand side

is called the principal part. The representation in

this theorem is local and has a disc of convergence

radius from z to the closest pole, 
o
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Non-Meromorphlc functions

Non-Meromorphic functions fall into two classes.

3/ 4, 2
(a) Those with branch points e.g. z , z lnz 

which may or may not be singular at z = 0.

(b) Functions as defined by Definition 7.4 but with 

m = 0 0 e.g. e1/z. These are called essentially 

singular functions.

We now state a theorem due to Picard.

Theorem 7.2

Suppose f is analytic except for an essential

s ingular ity at z = z .
0

Then in each neighbourhood

of z ,
0

£ takes every value in C, with one possible

exception, an infinite number of times.

our analysis of the nonlinear odes obtained in chapter 

Six will concentrate on locating their movable 

singularities and our approach is outlined below.

7.2 The analytic structure of the solutions of the 

ODEs.

In order to locate the existence of analytic and 

meromorphic solutions, we assume that the solution can 

be represented in a series with argument t = 7 7 - r?o
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f (t)

W

p <s [R (7.2.1)i . e . , - 4-P
tp I M r-

r = 0

where the b are constant coefficients with b * 0 .r o

(We have changed from using z to p for consistency 

with Chapter Six).

If the solution has a pole or a branch point at pq

and if p is fixed by the coefficients of the o

equation then we call this a fixed singularity. If 

p can be chosen arbitrarily then we call this a 

movable singularity. If a singularity is movable and 

is not a pole we call it a movable critical point.

In what follows equations which do not possess movable 

critical points we shall refer to as P-type.

Since the ODEs are, In general, third order a general

solution would have three arbitrary constants. We

look for solutions in which 1 7 is one of theseo

arbitrary constants and also when it is not. Thus, 

if f is the general solution, then the set of 

coefficients ibr} contains two or three arbitrary 

elements depending if p^ is arbitrary or not. Four 

cases may occur which are as follows:

(i) If p is a positive integer then f (7 7 ) is 

analytic almost everywhere.
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(ii) If p is positive, but non-integral, then f(p) 

has a singular branch point.

(iil) If p is a negative integer then f(p) is 

meromorphic almost everywhere.

(iv) If p is negative, but non-integral, then f (7?) 

has a singular branch point.

(Note: the term almost everywhere is used to exclude

fixed singularities.)

If the set ib^} does not contain two (or three) 

arbitrary elements then f (r?) is not the general 

solution. In this case if the general solution has a 

movable logarithmic singularity or a movable algebraic 

branch point then it can be recovered by supplementing 

the original series (7.2.1) with a series of the form

CD CD

^ gr(t)(lnt)r or ^ hr(t)(t°c)r, where gr(t) 
r=l r=l

and hf(t) are analytic functions.

However if f(7j) has an essential singularity then a 

series expansion cannot be used to detect it. Thus, 

this analysis is incomplete insofar as it does not 

detect the existence of solutions with movable 

essential singularities.

Now we know from the work of Painlev6 (reviewed in 

Chapter Four) that the general solution of a second
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order ode will be meromorphie i£ it can be transformed 

to one of 50 canonical equations which are either 

soluble by elliptic functions or define one of the six 

Painlevé transcendents. Thus, before applying the 

above method, we consider the third order ODEs, which 

can be directly Integrated together with the second 

order ODE given in Table 6.2.

in chapter five we considered the work of Abbas t11 and 

El-Sherbiny [4] on the third order class

Kf" ' - + Xff' =0. (7.2.2)

In particular we noted, in theorem 5.1, that this 

equation has solutions which are Welerstrassion 

elliptic functions. Furthermore, when K > 0 we 

obtain solitary wave solutions which all have the sech2 

profile. Therefore the solution structure of (7.2.2) 

is clearly meromorphic with poles of order two. We 

come back to this equation In the next chapter where we 

extend the work of Abbas and El-Sherblny on the 

solitary wave solutions.

There is one second order ODE in Table 6.2.:

C3: <xa f"  + f - ff' = 0 (7.2.3)
4

If we check this equation against the 50 canonical
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equations listed in ince 15] we see that none o£ the 50 

represents this equation. This leads us to the 

conclusion that (7.2.3) has solutions which possess 

movable algebraic, logarithmic or essential 

singularities. We come back to this equation later.

Also from Table 6.2 we are able to transform D2(a) and 

D2(b) into second order ODEs:

D2(a ) : a f" ' + f' + y  + ff' = 0 (7.2.4)

Make the transformation £ = - 1 - j and integrate 

once. This reduces the third order ODE to

a3

, Zd w 

dp2

zw , 0 
6“ + 3r7}

which is the first Painlev6 transcendent i.e. its 

solution is meromorphic.

D2(b): 3a £" ' - ' - 2f + 3ff' = 0 (7.2.5)3

Note that f = 7? is a solution.

For convenience we let ag = 1. Making the 

substitution
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where L(f) = r (r?) f "  ' + y (r))f'' + y (r>) £' + y (77) f
3  2  I O

N(£) = p(T)) £ £' + a t * ,

with rj(??) a polynomial of degree at most j, with 

non-zero constant term, p(rj) a polynomial of degree 

< 1 and a  constant.

7,2.1 Analytic Solutions 

Theorem 7.3 * * 3 * 5

The class of third order ODEs

«Z(a -a n+a r?Z-a r?3) f' ' ' +4«z( -a + 2a r?-3a r?z) f' '
3  4  5  d  4  5

+6«z(2a -6a r?)f'-24o<za f + (p  + p  r,) f f' + a f z = 0
5  <5 <5 1 2

(7.2.1.1)

has a formally analytic general solution □

Proof

CD

Assume that f(r?) = ^ b j (V  ~ r>0  ) ̂ (7.2.1.2)

j = 0

If we make the substitution t = 77-77 in the ODE weo

see that the form of the equation remains unchanged. 

Hence, without loss of generality, we may take h0 = 0 

and a = 1.

Then substituting the expansion into the ODE and 

equationg powers of 77 we obtain the following
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r e c u r r e n g e r e 1 a t i o n s

T7°: 6 a b - 8 a b + 12a b - 2 4a b + p b b + o-b2 = 033 42 51 <5 0 1 O 1 O

(7.2.1.3a)

T?1: 24a b - 30a b + 40a b - 60a b + p ( 2b b + bz)
3 4  4 3  5 2  < 5 1  1 0 2 1

+ p  b b + 26b b = 0
2 0 1 O 1

(7.2.1.3b)

7jn: a (n + 3 ) (n+2 ) (n+1 )b - a (n + 1 ) (n+2 ) (n + 4 )ba n + a -4 n + 2

+ a (n+1)(n+3)(n+4)b . - a (n+2)(n+3)(n + 4 ) b
5  n+i «s n

n n

+ p Y jb.b . + ob b + X ( jp +cy)b.b . = 0 
i L  j n+i-j o n  Z. 2 j n-j

j=l j=l

(7.2.1.3c)

The general solution of this equation will have three 

arbitrary constants, none of which is r? . We are,

therefore, free to choose three arbitrary constants.

If we choose b , b and b then b is determined
O 1  2  3

by (7.2.1.3a), b is determined by (7.2.1.3b) and 

so on. Therefore the expansion (7.2.1.2) is a formal 

solution of the ODE □

We mention that we have not been able to obtain any 

special classes of analytic solutions e.g. polynomials 

and while we have not proved it we do not believe that 

they exist.
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7 . 2 . 2  M e  r  o m o r  p h  i e  s  o  1  ut- i o n s

T h e o r e m  7 . 4

I f  a n y  o f  t h e  O D E s  ( 7 . 2 . 6 )  h a s  a  m e r o m o r p h i c  s o l u t i o n  

t h e n  i t  h a s  t h e  f o r m

9 ( 7 7 ) 7 7^  w h e r e  g ( i 7 ) I s  a n a l y t i c  a n d  p  =  - 2  o r  - 3  a  

P r o o f

0 0

A s s u m e  t h a t  £ ( r f - r / ^ )  =  ^   ) P  +  r  p  <e  (R

r  =  0

a n d  t h a t  t  =  t ) -  t )q  .  S u b s t i t u t i n g  i n  t h e  

d i f f e r e n t i a l  e q u a t i o n  ( 7 . 2 . 6 )  l e a d s  t o  t h e  f o l l o w i n g  

o b s e r v a t i o n s .

T h e r e  e x i s t s  o n e  l o w e s t  p o w e r  t e r m  i n  L ( f )  w h i c h  i s  

t p  3 .  I f  p  i s  p o s i t i v e  t h i s  t e r m  c a n n o t  b e  

b a l a n c e d  b y  a n y  t e r m  i n  N ( f )  s o  t h a t  p  m u s t  b e  

n e g a t i v e .   A s  a  c o n s e q u e n c e  t h e  t e r m  o f  l o w e s t  p o w e r  

i n  N ( f ) i s  e i t h e r  t z p  o r  t z p  1.

I f  p ( p )  *  0  t h e n ,  i n  g e n e r a l ,  2 p - l  =  p -  3 = i > p

=  - 2 .   I f  p ( v )  =  0  o r  r)  i s  c h o s e n  s u c h  t h a t
o

p ( r ? )  o c t  t h e n  2 p  =  p -  3 = > p  =  - 3 .   T h e r e f o r e  i f  

t h e  O D E  h a s  a  m e r o m o r p h i c  s o l u t i o n  i t  i s  o f  t h e  f o r m

oo

f ( r ? )  =  - - - - - -  y  b  (r?-r? ) r , ( p  =  2  o r  3 )
/  \ P  J-  °
<T,“ V  r =  0

( 7 . 2 . 2 . 1 )  □
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andCorollary 1 b -12y (r? )/p(t? ) when p = -2, 

b = 60y (rj )/o  when p = -3 o
0  3  0

Proof

This follows by equating the sum of the coefficients of 

the lowest powers to zero □

Corollary 2 If p (t>) * 0, with a non-zero constant 

term and & constant then p = -2 □

Proof If it were otherwise i.e. p = -3 and 

p (t}) * 0 then the coefficient of the lowest power is 

p(77)pb^ which upon equating to zero gives bQ = 0 and 

thus a solution of the form (7.2.2.1) does not exist □

Theorem 7.5

If any of the ODEs (7.2.6) has a meromorphic solution 

with p = -3 then this solution is not the general 

solution d

Proof

Suppose that the arbitrary constants of the general

solution of the ODE are 7? , b and b where
'o' r r

1 2

r . -  <5

0 < r < r . Then terms in t * 1 only occur in 1 2

f''' and f2, provided r < r + 3 and must' v 2 i

balance. Furthermore, since the term f2 is 

quadratic it is sufficient to substitute the two term
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to effect this balance.expression bot ° + b^t 

The coefficient of tr obtained in this way from 

these two sources is

12 0?" ( 7? ) b +?' ( t) ) (r-3) (r-4) ( r - 5 ) b3 O r 3 O X.

= b y  (r, ) (r + 1) (rz-13r + 60) = 0 .
X 3 o

The roots of this equation are not nonnegative distinct 

Integers. This implies that none of the coefficients 

b̂. are arbitrary □

Theorem 7.6

If any of the ODEs (7.2.6) has a general meromorphic 

solution with p = -2 , then the arbitrary constants 

are 7 7 , b and b □

Proof

The proof of this theorem is identical to the previous 

proof where here we are balancing the coefficients of

IT -3t . The coefficient in this case is given by

ya(T?o)br(r-2) (r-3) (r-4) + p( 7 7q ) {bQbr ( r-2 )-2bQbr }

= r  (h )b (r+1 )(r-4)(r-6 ) = 0 . a o r

Since br is arbitrary and r a * 0 it follows that 

r = 4 or r = 6 .
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The remaining coefficients of the series (7.2.2.1) may 

be obtained by substituting the series into the ODE and 

equating powers of ( t? - 7?o ) .

In our work we are concerned with finding the general 

non analytic solutions of the equations represented by

(7.2.6). In those cases where we are unable to obtain 

the general solution, i.e. p(p) = 0, we will give a 

particular solution. Thus, when we refer to

(7.2.2.1) we assume p = -2 unless we state 

otherwise.

Thus b and b can be specified arbitrarily □

We are now ready to look for general solutions of the 

ODEs represented by (7.2.6).

A2, B 4, C4, D3 (a = -2(3) :

P f'" + 4p' f' ' + 6p"f' + 4p' "  f + (l-n)ff' - 2fZ = 0

(7.2.2.2)

For this equation bo

-i t 2/ , 2 3\-1 2 a (a -a 7j +a r? -a 7 7 )
3  4  0  5  O <S O

1-77,

(7.2.2.3)

Check for consistency on the arbitrariness of b  ̂ and 

b .
—<5

We substitute the expansion with t = 7 7 - , 7 7  , i.e.
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f (t)
b b

= -§ + jA + b + b t + b tz + b t3 + b t 4 + 0(t4)
L 2  d 4  ”

(7.2.2.4)

into (7.2.2.2) to verify that the coefficients b , 

b , b and b are fixed and that b and b are
Z 3  3  4  <3

arbitrary. The required derivatives are:

2b b
f' = - — - -- - . . . + b + 2b t + 3b tz + 4b t3 + ...

, 3  , Z  3  4  3  <3

6b 2b
f" = — - + — - . . . + 2b + 6b t + 12b tZ +

. 4 . 3  4  3  «3

24b 6b
f ' ' ' = - ---- - — - + 6b + 2 4b t + . . .

, 3  , 4  3  <3

Collecting powers of t and equating coefficients to 

zero leads to the following results:

- 3 -24b «z [a -O ^3 a r? +a rj -a r>
4  0  3  0  <5

2bo(l-„o ) = 0,

which gives us

t -6«zb

b * 0 as obtained at (7.2.2.3).O

r> +a 77Z-a ni - 3b b (l-n ) = 0
4  0  3  0  <5 o j  O l  O

which gives b̂  = 0.

— 3  — 2
Similarly from the coefficients of t and t we 

obtain that b = b =0.
Z 3

173



        



Thus for b̂  to be arbitrary we require that A = 0, 

which implies that the coefficients of the quartic must 

all be zero. However, this cannot be achieved as the 

following lemma shows:

Lemma 7.1 The equations P = Q = R = S = T = 0  have 

no solution in the space of coefficients represented by 

class A2.

Proof

We recall that in the class A2, the coefficient a * 0<s

and A * 0. Writing a. = a ,/a , i = 3, 4, 5
1  1  <5

solving P = 0 for a gives 

a = -aZ + 8a - 12
4  3  3

and solving Q = 0 for ag and substituting for 

a qlves
4  -

3a = 5a3 - 48a2 + 156a - 168 .
3  3  3  3

Using these values, the expression for R gives 

R = 20a4 - 240a3 + 1080a2 - 2160a + 1620
3  3  3  3





If we try to add the algebraic term c t^^, p * q, 

q * ±1, p, q e Z to b , we can easily show that the
<5

coefficient of t remains unchanged i.e. equation

(7.2.2.5) is unchanged. Therefore the arbitrariness 

of b cannot be recovered. Thus we have the
4

following theorem.

Theorem 7.8

The general solution of (7.2.2.5) cannot have movable 

algebraic singularities □

Hence we must supplement (7.2.2.1) with logarithmic 

terms i.e., consider the truncated solution

oo co *

f(t) = t z J brtr +  ̂Zlnt J cr^r + 
r=0 r=6

(7.2.2.6)

Substituting (7.2.2.6) into the ODE the terms in 

t 3, ..., t° are unchanged and so bQ, b±, ... b̂  are

as above. However, the t term is now as follows:

0 . b + A. b
<5 A

+ 14« c (va t? +a rf -a r?
4 O 5  O <5 :) = o

(7.2.2.7)

This equation is satisfied with b̂  chosen arbitrarily 

and

4c S tt  S tu ti UaUf, T*U< awA
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A b

C «s  1 4 M n „ ) ( 7 . 2 . 2 . 8 )

w h e r e   =  a a  - a
L  3  4

r/ + a  ri  - a  r)
O  5  0   <5 3  • T h i s  r e s t o r e s

t h e  a r b i t r a r i n e s s  o f  b  a t  t h i s  p o i n t  a n d  t h e  f i r s t4

f e w  o f  t h e  s o l u t i o n s  a r e  g i v e n  b y  

b
f ( i ? )  =  - - - - — -  +  b  ( b ~ n  ) Z  +  b  ( 1 7-1 7 ) 3. , 2 4 0  5 0

(7?~ V

+  j b  + c  I n  ( 1 7 - 7 7  ) (r)-7) ) 4  +  o ( ( r ? - T 7  ) S 1 a s  1 7  -*■ 7 ?
I < S  < 5 O I 0  ©  J  O

( 7 . 2 . 2 . 9 )

T h u s  f  ( 7 7 ) m a y  h a v e  m o v a b l e  l o g a r i t h m i c  b r a n c h  p o i n t s .  

H o w e v e r ,  w e  h a v e  t o  c h e c k  f o r  c o n s i s t e n c y  o f  t h e  

a r b i t r a r i n e s s  o f  b ^  b y  g o i n g  f u r t h e r  d o w n  t h e  s e r i e s .  

B e c a u s e  o f  t h e  q u a d r a t i c  n o n l i n e a r i t y  w e  h a v e  t o  

i n c l u d e  a l l  p o w e r s  o f  ( l n t )  i n  t h e  e x p a n s i o n  i n  o r d e r  

t o  a c h i e v e  b a l a n c e .   I f  w e  s u b s t i t u t e  ( 7 . 2 . 2 . 6 ) i n t o  

t h e  e q u a t i o n s  w e  s e e  t h a t  t h e  l o w e s t  p o w e r  o f  t  a t  

w h i c h  t h e  [ I n ( b ~ b 0 ) ] 2  t e r m  a p p e a r s  i s  t e n  a n d  i s  

p r o d u c e d  b y  f f '  .  H i g h e r  p o w e r s  o f  l n ( i 7 - 7 7  ) e n t e r  

s u c c e s s i v e l y  a t  t tfr z ( r  ^  3 ) .   T h u s  t h e  g e n e r a l  

s o l u t i o n  w i l l  h a v e  t h e  f o l l o w i n g  f o r m .

CO

f ( T 7 )  =

( * - V ‘

+ 1 b r (7?- V r " 4
r  =  4

1 7 8



+ Krj (7> - V r"2} •

00 00

I  {ln(»)-»)0 )3 J

J = 1 r = 6.

(7.2.2.10)

Note that in terms of previous notation K = c ,ri r'
r > 6 and below we shall use K = d , ri 12.r 2 r

So far we have determined the coefficients b (r = 1,r '

. . ., 6) and c To obtain a solution whose terms

balance we need to qo as far as b , c and d .

This may also provide relationships between the

coefficients which may lead to other results. In

order to obtain these higher coefficients we make two

simplifications which do not affect the generality of

our work, i.e. we choose « = 1 and r> =0. Theno

(7.2.2.2) becomes

a f'" - 4a f" + 12a f' - 24f + (l-r?)ff' - 2f = 03 - 1 5

(7.2.2.11)

and in (7.2.2.10) b -12, b = b = b = 0, b
1 2  3  ' 4

( a ^
2 - 3 -̂j , arbitrary,

c = — (12az + az - 8a a + a a ) . a _ z 3 4 3 4  3 5! 3

Determination of the coefficient d This --------------------------------------------1 2

coefficient is determined by substituting (7.2.2.10)
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into (7.2.2.11) and equating the coefficient of 

t7(ln t)2, to zero. Contributions come from the 

f' ' ' and the ff' terms and the result is

-cz/150a .<3 3

Determination of the coefficients c. , 6 i j i 11 -------------------------------------------------- j +i l--------±-------

These are determined by equating the coefficients of
i — 4 z

t lnt to zeros beginning with t lnt. The results 

are as follows:

3 c
c = —  

7  a (a -a ) or4 3 c = k c ,  k = k ( a , a )7 7 7 7 3' 4

Ce {(a -a )(35a -21a ) 1 4 a 4 a or c
8

k ce <sr

k = k (a , a , a )
B B 3  4  3

c = k c , k = k ( a , a , a )
P  P  <3 P  P  3  4  3

c = k c , k = k (a ,a ,a ,b )
i O  l O  <3 '  l O  l O  3  4 '  3 '  4

c = k c , k  = k ( a , a , a , b )11 11 <5 11 11 3 4' 3' 4

c = k c , k = k (a ,a .a .b . b ) .1Z 1Z <3 1Z 1Z 3 4' 3 4 «3

Determination of the coefficients b., , j £ 6 

These are determined by equating the coefficients of
j ~4t to zero and it is straightforward to show that

they are consistently functions of b and b .
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The above results show that we have consistently 

extended the series to tlz and it is routine, but 

tedious to continue the evaluation o£ the series. As 

expected we find that the tia(lnt)3 comes in at b , 

tzz(lnt)‘* at b and so on.2 4r

We state out main result on the ODE (7.2.2.2) in the 

following theorem:

Theorem 7.9

The third order nonlinear ODE A2:

Mb) f "  ' + 4M (t?) f" + 6M ' (t?) £* +4m "  ' (b) f + ( 1-r?) ££' -2£Z

= 0

where Mb) = «Z(a -a b+a bZ-a rj3 ) has a formala •* 5 <s

general solution

oo co

£(b) = -J + 2 brtr 4 + 2 V t)(lnt)
r=4 j=l

j

(7.2.2.12)

00

where g^it) = ^ K_.rtr t = b_b and t) , b o o '  *
j = 6j

and b are arbitrary □
«5
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Subclasses o£ solutions

Since and are arbitrary we can look for

subclasses of solutions for specific choices of these

constants. Our results are given below:

( i ) If b4 = 0 and b is«3 arbitrary then K . =r j
for all r, j and hence

f (77)
b ® 

c r = 6
•

(ii) If b = 0 = b then4 <3 b =0, K . = 0 for r r j

all r, j and hence

b
f(n) =

o
9 *
t2 '

(ill) If b = 0 and b^ Is arbitrary then the 

solution given in theorem 7.9 is fundamentally 

unchanged.

We have carried out the above analysis on the remaining 

equations In Table 6.2 and the results are summarized 

below:

c 3 ( a ) : a a f " - f + £ f ' = 0  (7.2.2.13)
-------------------------------------4 ,----------------------------------------------------------------------

We have already noted that this equation is not of 

P-type. Furthermore, theorems 7.4 and 7.6 do not 

apply to this equation which, by a similar analysis,
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can be shown to possess a pole of order one In the

leading term. Also one arbitrary constant is r>0

and the other can be shown to be b . However wez

cannot satisfy the requirement that bz is arbitrary 

and we have to supplement the solution with logarithmic 

terms as before. Thus f(7?) has a movable critical 

point. The general solution is formalised in the 

theorem below:

Theorem 7.10

The equation (7.2.2.13) has a formal general solution

f ( T?)

00

5 »«*
zr-i

r =i

00

J g^(t)(lnt)̂

(7.2.2.14)

oo

where g.(t) = ) K. tzr *, t = rj - r? and
3 L  Dr ' o

r = 2  j

t?o and bz are arbitrary □

Corollary Equation C3(a) does not have any single-

valued meromorphic solutions □

We now look at the third-order equations in Table 6.2 

which are special cases of (7.2.6) but are not covered 

by theorem 7.9.
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C 3 ( b ) :  a  y e t  f ' ' ' +  a  c t  £ '  ' +  y  f '  + f - f f '  = 0
a <4

( y  i s  c o n s t a n t )  ( 7 . 2 . 2 . 1 5 )

T h e  s e r i e s  s o l u t i o n  h a s  b  =  1 2 a  c x y  w i t h  a r b i t r a r y0 - 4

c o n s t a n t s  a t  b  a n d  b  .  C h e c k i n g  f o r  c o n s i s t e n c y
4, < 5

o n  t h e  a r b i t r a r i n e s s  o f  b  a n d  b  w e  f i n d  t h a t4   a

i i
1 5 b  =  

2

a  «
4

2 5 F +  r , b  =  -3

a  ot
4

1 2  5  y
~  1 ,

H e n c e  b ^  c a n n o t  b e  c h o s e n  a r b i t r a r i l y  a n d  t h e  g e n e r a l  

s o l u t i o n  o f  ( 7 . 2 . 2 . 1 5 )  i s  n o t  r e p r e s e n t e d  b y  ( 7 . 2 . 2 . 1 ) .  

T o  r e i n s t a t e  t h e  a r b i t r a r i n e s s  o f  b ^  w e  s u p p l e m e n t  

t h e  s e r i e s  ( 7 . 2 . 2 . 1 )  w i t h  l o g a r i t h m i c  t e r m s .   T h e n  t h e  

f i r s t  f e w  t e r m s  o f  t h e  s o l u t i o n  h a v e  t h e  f o r m :

b   b
f ( n )  =  —  +   +  b  +  b  t  +  ( b  +  c  l n t ) t z  +  0 ( t 2 )

^ _ 2  t   2   3  4   4

( 7 . 2 . 2 . 1 6 )

T h u s  f ( r ? )  h a s  a  m o v a b l e  c r i t i c a l  p o i n t .

C o n s i s t e n c y  c a n  b e  s h o w n  f o r  t h e  h i g h e r  p o w e r s  b y  t h e  

m e t h o d  u s e d  p r e v i o u s l y  a n d  w e  f o r m a l i z e  t h e  r e s u l t  i n  

t h e  f o l l o w i n g  t h e o r e m :

1 8 4



Theorem 7.11

The equation (7.2.2.15) has a formal general solution

t)(lnt) j

(7.2.2.17)

bo bi
CD
V i_ ,r-z

00
r’—  + 

t2 tr + 2 V  *
r = 2

2 9
j=i

00

where 9j<t> = J t  b,
j = 4r

and b arbitrary a
<5 2

Corollary Equation C3(b) does not have any single-

valued meromorphic solutions □

C2: a a%f''' + 4a c*zf" + f' + rjff' + 2fz = 0
4  4

(7.2.2.18)

Let a^ = -1, a = 77q = 1. Then the equation becomes

r?f' "  + 4f' ' - f' - r?f f' - 2fZ = 0 .

The solution has a pole of order two and the arbitrary 

constants are once again b and b . Checking for 

consistency on the arbitrariness of b and b gives

b = 12, b = 0, b = -1, b = -2, O.b = -36b .
O 1 2  ' 3  ' 4 3
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Hence the general solution is not represented by

(7.2.2.1) and we have to supplement the solution with 

logarithmic terms. The general solution can now be 

obtained consistently and the result is stated in the 

theorem below:

Theorem 7.12

The equation (7.2.2.18) has a formal general solution

f (T7)

00

2
b t r

r- 2 J g_j (t) (lnt) 

j = l

(7.2.2.19)

oo
r i  £  —2

where g^(t) = ^ K^t ' t = 77 - r?o, r?o, b̂  and
j = 4r

b arbitrary □
<5 1

Corollary Equation C2 does not have any single-valued 

meromorphic solutions.

Dl: aaf"' + 1

Without any loss

This equation has

- r ) £' - (»■ - r*-)“ ' + “£l - 0 •

o  0, a * 0 ' 2 (7.2.2.20)

of generality we may take a = a = 1,

the interesting feature that the
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coefficients of the nonlinear ff' term may be chosen

to be zero. Thus we consider the two cases

(i) X = y a  /a and X * y a /a . Furthermore, in 1 2  1 2

both cases (i) and (ii) we have a = a and1 2

a4 * az and these will have to be studied separately.

( i) X = y a /a __________ 1 2

(a) ^ az: In this case equation (7.2.2.20)

reduces to the nonlinear ODE

a
f'" + kf' + fZ = 0, k = 1 - -i (7.2.2.21)a

We know from theorem 7.5 that the method we have been 

using is unable to obtain the general solution of this 

equation. However a formal particular solution is

b b ®
fir,) = —  + ^  + ) b t^r J (7.2.2.22),3 U 3T

r = 2

where b = 60 and none of the b are arbitrary, 
o zr

(b) at = az: In this case the equation (7.2.2.20) 

reduces to the nonlinear ODE

f "  ' + fZ = 0 (7.2.2.23)

Again we are unable to obtain a general solution for 

this equation but note that a particular solution is
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f(r?) =
60

This is meromorphic. However, we are also able to 

show that there is a solution which is essentially 

singular with two arbitrary constants and is given by:

f  ( h )
£0

t3

where is arbitrary and ct_̂, j > 1 are given in

terms of « .
o

( i i ) \ * ra / a1 2

(a) a y- a : In this case the equation (7.2.2.20) 1 2

becomes

£"' + kf' - mff' + fz = 0, k = 1 - ,a

m = \ - —  Y 
a
z

(7.2.2.24)

The solution has a pole o£ order two and arbitrary 

constants are b and b . Checking for consistency
4  <5

on the arbitrariness of b and b gives:
4  <3 ^

b - ±1 , b 
o m i

24 w k , 96--  b = — + ---
2 z m5m 25m

b —3 2m

1008 

12 5m
. 0.b = - -  [k + -1
4  4  3  2  Im L m J
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Thus if we assume that k = -4/mz then b may be4

chosen arbitrarily. We make this assumption and 

proceed to obtain

b3
4_
5m 6b4 + 346 1

187 5m3-*
and

o. b<s
2

2 5m2
i840b4 +

3359 ~[ 

12 5m5J

Thus both b and b cannot be chosen arbitrarily 

and as a consequence the general solution of (7.2.2.24) 

is not represented by the series (7.2.2.1). The 

general solution is given in the following theorems.

Theorem 7.13A

The equation (7.2.2.24) with k = -4m 2 has a formal 

general solution

b b 00 _ 00
f (i?) = -f + ^  + 5 brtr 2 + 1  g j (t) (lnt) 3 ,

r=2 j=l

(7.2.2.25)

00
V r —2where g.(t) = > K .t , r? , b and b arej ¿i rj ' o f 4 <s
r = 6.

arbitrary □

Corollary If b4 = ^^^^^ m 3 and b^ is arbitrary 

then the equation has the single-valued meromorphic 

solution
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£(i?)

oo

1 brt □

Theorem 7.13B

The equation (7.2.2.24) with k * -4m 2 has a formal 

general solution (7.2.2.17) □

(b) a = a : In this case O.b = -4/m3 and we are
1 Z 4

forced to supplement the solution with logarithmic 

terms to reinstate the arbitrariness of b . The
4

result is given in the following theorem.

Theorem 7.14

The equation (7.2.2.24) with â  = az has a formal 

general solution (7.2.2.17) a

D3(a): a ft3 f.' ' ' + i- (ot-(?)rjff' + of2 = 0,3 J

« * ft *  0, ot ^ -2ft (7.2.2.26)

Without loss of generality we may take a3 = 1 and 

r) = 1. The solution has a pole of order two and the 

arbitrary constants are b and b . Checking for
4  <5

consistency on the arbitrariness of b and b we
4  «5

obtain:

bo
-36 
a-ft ' bl

-72(cct-2(3) 

5 ( CA-ft) 2

-36(a+2/3) (13a-t-ll(3) 

2 5 (ot-(3) 3
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fb
3

-72 (a+2/3) 

15(<x-ft)*
(13aZ + 188cx/7 + 53/?Z)

O.b t (5«+/7) [ b b + b b ] 3 0 3 12

Now b b + b b
0  3  1 2

2592(q+2f?) (2a.+ft) (a±ft) 

(o-ft)*
and thus it

follows that if oc* -ft and « * -ft/2 and « * -ft/5 

then the general solution is of the form (7.2.2.17).

If a = -ft or a = -ft/2 or a = -̂ 3/5 then b̂  can 

be chosen as arbitrary and we have

b = kb +1, k * 1, k, 1 e \R - {0}3 <

b = mb + n, m * n, m, n <s IR - {0} .

But since b is arbitrary, b cannot be arbitrary 

and the general solution may be shown to be of the form

(7.2.2.25) .

We state our result in the following theorem:

Theorem 7.15

Consider the equation (7.2.2.26).

(i) When « * -ft, « * -ft/2, c* * -ft/5 the general 

solution is (7.2.2.17).
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(11) When a = -¡1 or a = -¡1/2 or a = -¡1/5 the 

general solution is (7.2.2.25) □

Corollary For the case of theorem 7.15(11), If we 

choose b = -n/m and leave b arbitrary then the
4  <5

equation has the single-valued meromorphic solution

D3(b): 3a f"  ' + T7 f' + 7?ff' = 0 (7.2.2.27)
3

Proceeding as before we obtain the following theorem: 

Theorem 7.16

The equation (7.2.2.27) has a formal general solution 

(7.2.2.17) □

We have now completed our analysis on the classes of 

ODEs, represented by (7.2.6) determining the similarity 

solutions of the general class of PDEs. We now 

collect our results and summarize them in the following 

table. The table is made up by referring first to 

the subclass of PDEs and then to the ODE giving the 

similarity solution. A table giving the ODEs 

themselves has been given earlier (Table 6.2). In the 

final column the notation is as follows:
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P = particular solution

SVH(n) = single-valued meromorphic solutions with pole 

order n.

MVM(n) = multiple-valued meromorphic solutions with 

pole order n which is also a logarithmic branch point.

G = general solution,

Note: By theorem 

analytic solutions 

singular solutions

7.3 all the equations 

which are not special 

given in the table.

also have 

cases of the
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Class of PDE ODE Reductions Analytic Structure
Equations

w<5 A1 G: SVM(2)

KdV D 2 ( a ) G: SVM(2 )

01
N
II O

D2 (b) G: SVM(2)

P: f =7 7 - 7 7 O

KdV Dl /a G : MVM(2)
<a2 * 0 ) P: SVM(2)

D1 /a 
1 2

P: SVM(3)

KdV
(a =a ) D3 ( a ) G: MVM(2)

P: SVM(2)

D3(b) G: MVM(2)

W (a =a ) A2 G : MVM(2)
P: SVAK2)

RLW(a4=0) C3 (a ) G : MVM(2)

C3(b) G: MVM(2)

RLW(ai=0) C2 G: MVM(2)

Table 7.1

These results lead to some Important observations on 

the general class of PDEs (7.1). However, before 

considering this we highlight the main results on the 

class of third order nonlinear ODEs (7.2.6).

(1) All the ODEs represented by (7.2.6) have 

solutions which are analytic functions.
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(2) Third order nonlinear ODEs of the form (7.2.6)

where p i v )  * 0 i.e., which have an ff' term, have a

second general solution which is either single-valued 

meromorphic or multiple-valued meromorphlc (via 

logarithmic branching). This conclusion applies to 

equation D2(a) which is not in the class (7.2.6).

(3) When the ff' term is absent from the ODE then 

we have not been able to obtain a second class of 

general solutions by the series solution.

(4) Only the ODEs Al, D2(a) and D2(b) have general 

solutions which are single-valued and meromorphic.

All the others have general solutions which are 

multiple-valued meromorphic maps with logarithm branch 

points. We note that these three equations do not 

contain any of the terms f'', fZ and r)ff' . We

believe that this is interesting because they may be 

individually responsible for the appearance of 

logarithmic branch points in C3(b), Dl and D3(b) 

respectively.

7.3 Concluding remarks on the similarity reductions 

We note that every PDE represented by W^ has 

subclasses of analytic and single-valued meromorphic 

solutions. The meromorphic solutions have second 

order poles although the KdV equation (â  = az) also 

has poles of order three and essential singularities.
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Also all the equations represented by w , except- for
O

the KdV(az=0) possess a subclass of logarithmic 

branch points. We present this important result in 

the following theorem:

Theorem 7.17

Consider the general class of PDEs

V V aiuV a zuV aauxxx+a4Uxxt+a=.uxtt+a.>uttt ' 0

(7.3.1)

with a^ e R j = 1, •••/ 6.

If, in addition to travelling wave solutions, there 

exist similarity solutions obtained by the Lie group 

method, then these solutions will be free from movable 

critical points if and only if a = a = a = a = 0 □
r  2  4  5 o

Corollary The following PDEs are not of P-type

V  V  »4.' W a,U 1 V Ut > +a,UXXX + a4UXXt+a=UXtt

+ a u. , . = 0, a. e [R.<s ttt 3

RLW: ut+ux+a1uux+a2uut+a*uxxt = 0 (ai=az) or

(a =0, a *0; a *0, a = 0) 1 ' 2 ' 1 2
aj «= (R.

KdV: V ' V a.uV azuut+aSuxxx > 0  (a, - 0) a^ e K □
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Thus, only the Kdv equation

u. + u + a uut X i X + a u = 03 XXX (7.3.2)

has similarity reductions, in addition to travelling 

waves, which are of Painlev£ type. In all other 

cases the critical points appear in the form of movable 

logarithmic branch points.

While we have obtained only analytic and meromorphlc 

solutions for the Kdv equation (7.3.2) we have not 

shown that these are the only solutions. The 

complete analytic stucture of a nonlinear PDE may not 

be represented by its ODE reductions alone. We have 

noted in Chapter Four that some PDEs may not have 

symmetries at all and, as we have shown in Chapter Six, 

many subclasses of the general class we are considering 

have a single ODE reduction Al. These Include the 

W and W classes when a * a , the W class
<5 5  1  Z 4 3

when a = 0 and the RLW class when a * a * 0. To 1 1 2

obtain further information about these equations we 

need to study them by a different method.

In the following chapter we study the general solutions 

of the general class of PDEs by examining their 

analytic structure directly. This direct approach 

will add to our knowledge of the analytic structure and 

may identify further equations which are not of P-type.
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CHAPTER EIGHT

ANALYTIC STRUCTURE OF SOLUTIONS OF THE 

GENERAL CLASS OF PDES.

In this chapter we continue our study of the analytic 

structure of the solutions of the general class of PDEs 

by extending the analysis from those of similarity 

solutions, i.e. based on reductions to ODEs, to general 

meromorphic solutions of the PDE itself. This set

of solutions should be wider than the similarity 

solutions discussed before and, in principle, will 

enable us to decide whether the analysis of the 

similarity solutions is sufficient to decide whether 

the PDE is of P-type or not. As we have seen earlier 

this property is conjectured to be connected with the 

existence of sollton solutions.

8.1 Meromorphic solutions of a PDE 

The method for finding meromorphic solutions was 

originally put forward by Weiss et al [4] and is 

referred to as the direct method. However, we found 

certain mathematical redundancies in their presentation 

arising from assumptions which they do not later use. 

These are as follows:

(i) we see no reason for introducing complex time and 

so we work with time as a real parameter;
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(ii) since the equations we deal with have only one

space variable then we see no reason for introducing 

coefficients which depend on z as well as t.

Our method for dealing with evolution equations in one 

space variable is based on the following assumptions:

(i) the equation and its solution can be analytically 

continued from K x R to € x R, i.e., (x, t) — ►

(z, t);

(il) for each t the solution is a function of a 

single complex variable z.

We assume that the solution u(z, t) has the form

u (z, t) = --------- , a e [R ,
(z+v'it) )“

(due to CVH^
where z(t) = - v'(t) is the orbit of an isolated 

singularity which is either a pole or an algebraic 

branch point. Then F(z, t) is analytic in some 

neighbourhood of this orbit and the radius of this 

neighbourhood will be determined by the positions of 

any other singularities of u(z, t). Therefore, for 

each t the solution has the expansion
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00

u(z, t) = (z - z(t))-a
5
j = 0

Cj (t)(z-z(t) )

(8.1.1)

about the singularity z(t). Since the method we are 

using Involves analytic expansions about points (z, t), 

the Cauchy-Kowalewsk1 existence theorem tells us 

that this is only possible if the orbit z(t) is not a 

characteristic of the PDE. We also assume that y>(t) 

has the smoothness required by the PDE.

The value of ot in (8.1.1) is determined by the 

dominant terms and the coefficients c^(t) are defined 

recursively where such a solution exists. If the 

solution does not exist, this will be shown by 

inconsistencies arising in the evaluation of the c^(t).

Note: (1) In cases where there is inconsistency the

series can be made to work if we supplement it by terms 

including powers of ln(z - z(t)) as in the previous 

chapter. We shall not demonstrate this in this

chapter.

(ii) If we get a consistent solution with a a 

positive integer then we may be able to conclude that 

the PDE satisfies the necessary condition to be P-type. 

However, the method falls to detect movable essential 

singularities and, thus, the fact that it works is not 

sufficient to deduce it is of P-type.
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we now proceed to analyse the general class o£ 

equations (7.1).

8.2 Meromorphic solutions of the general class 

We begin with a theorem on the value of a:

Theorem 8.1

If the general class (7.1) has general meromorphic 

solutions then its movable poles can only be second 

order, i.e. « = 2 □

Proof The result follows by substituting the 

expansion (8.1.1) into the PDE (7.1) and balancing 

dominant terms o

Corollary The general class (7.1) has no solutions 

with movable algebraic singularities.

The dominant term analysis also gives that

(a + a ?)c = -12(a + a ? + a f2 + a f3)
1 2  0  3  4  9  <5

(8 .2 .1 )

where £ = v'. The right hand side is non-zero since 

we have assumed that -v'(t) is not a characteristic of 

the equation. This is covered by the following 

theorem (Sherbiny [3]).
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Theorem 8.2

The characteristics of the general class (7.1) are 

defined by the cubic

a
a

a■€ 0 CD

Note 1: Equation (8.2.1) also Implies that 

a + a £ * 0 and defines c *0.
1 2  O

Note 2: In theorem 8.1 above we emphasised general

solutions because, as we have seen in the previous

chapter, there are particular solutions with movable

third order poles. The explanation for this Is as

follows: if a + a £ Is not a root of the cubic on1 2

the right hand side then one of its possible values Is 

zero. In this case c will have to be InfiniteO

which Indicates that the pole has higher order than 

two.

Returning to the series expansion (8.1.1) we see that

It Is a Laurent series about a pole of order two and In

order to substitute into (7.1) we need the derivatives

of u. These are given as follows: where
00

<t> = z - z(t), Ç = -z' (t) and J ^ .

0

u * Y cj(t)0j_z (8.2.2a)
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ux ' 1 U - 2 X V (8.2.2b)j-3

ut ■ ih + (3~i r c 3*.F'2 - 2?co^

(8.2.2c)

u v = T ( j-2) ( j-3) ( j-4)c,*>j_3 (8.2.2d)
X X X  L  J

uxxt - I [<3-2H3-3)U3-l)cJtl? +
- 24co<^'’j

( 8.2.2e )

“xtt - 1 <J-2>[cr  + (3-l)120i+lÇ+C;)+lï- +

jcj+zÇ2}0j"3 - 3(2ctÇZ - 4c;ç - 2cor  )<*>“■* - 24co? V 3]

( 8.2.2 f )

“t t t  -1 i c r  + ( j - i ) {3cj ; . ? + 3cw + w

+ 3jc'+aï2 4 33cj+, Ç f  + j ( 3+1 )Cj +8Ç2| ^ 3_z 

+ ^6ctÇÇ' - 6 cMf' - 2coÇ "  + 6c;(Ç')2
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- 6c;'?J<*> 3 + (18co?r + 18c;?2 - S c ^ 3)* *

-  24co? V s ( 8.2.2g)

j

Defining V^t) = £ cj-k(t)ck(t)
k = 0

then uZ = ^ *

and differentiating this expression with respect to x 

and t leads to

UUx = I I (j-4)Vĵ j_3 (8.2.2h)

aat ‘ il  [ o - 3> W  + - 2V * ~ ’
( 8.2.2 i )

Substituting (8.2.2.a-i) into (7.1) and equating 

powers of 0 gives the following recursion relations:

0 s: 2(a +a ?)V + 24(a +a ?)c + 24a c ?z
1 2 0  9 4 0  9 0

+ 24a c ?3 = 0<5 O

(8.2.3a)
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T- K  - j < w )vi - 6(aa+a*ç)ci + 6a.c;

- 3a l2c Ç -4c'Ç-2c Ç']5 1

+ a [18c ÇÇ'+18c'Çz-6c Ç3) = 00 O O 1 (8.2.3b)

4> 3: - 2(l+ç)co - (a4+aa?)V2 + ¿ V  + 2 a ^

2a (c' ' -2c'Ç-2c Ç' )
5  0  1  1

+ a (6c ÇÇ'-6c'Ç'-2c Ç" +6c'Ç -6c''Ç) = 00 1 O O 1 O

(8.2.3c)

and for any j £ 3,

* Î ~’ -  * < ? '■ } - .  + C j - 3 + ( 3 - 4 )  [ C j _ 2? + C j _ 2  + a i5C j - 2

+ 3a c'' Ç + 3a ĉ  Ç' +a c . 
0 j-2 <* j - 2  <s J

+ ( j - 3 )(j - 4 )

[a c'
L * j-*

+ 2a c\ Ç+a c. Ç'+3a c' Ç-1 
s j-i s j-* <s j-4

-| cl

+ 3a<scj_iÇÇ' I + 2“ Vj-i + ( j-2) ( j-3) ( j-4)

[a +a 3 *

(8.2.3d)
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F r o m  ( 8 . 2 . 3 d )  t h e  t e r m s  i n v o l v i n g  C j ( j  £  3 )  a r e  g i v e n  

b y

( j - 6  ) ( j - 4  ) ( j + 1 )  ( a  + a  f + a  f z + a  e 3 ) c .  =  F .
9   4   S   <J  ]   ]

( 8 . 2 . 4 )

w h e r e  F ^  -  F  ( c  ̂   ^ • • • r  , ?  / ? '  » • • • )  •

C o n s e q u e n t l y  t h e  l e f t - h a n d  s i d e  o f  ( 8 . 2 . 4 )  i s  z e r o  w h e n  

j =  4  o r  6  s o  t h a t  F  =  F  = 0 .

F r o m  ( 8 . 2 . 3 a ,  b ,  c )  t h e  f i r s t  f e w  r e c u r r e n c e  r e l a t i o n s  

a r e  a s  f o l l o w s :

c o
- i 2 l v a . ; t v Z t a . , n

a , + a 2 <
( 8 . 2 . 5 a )

1 2 c
c  = i t *

+  2 a  Ç  +  3 a  Ç
5   <5

5 c  ( a  + a  Ç  )O  1  z

1  +  W  f a . o a . t  ] ^ a 3 c ;

5 ( a  + a  Ç ) 1 2 ^

( 8 . 2 . 5 b )

c  =  -
c   a  ( c  c  ) '1  2  O  1
2 c   2 ( a  + a  Ç ) c

O   4  2   0

+  2 a  Ç  +  3 a  Ç
3   <5 I e; * f v 3 a/ ] c/

( a  + a  Ç  ) c1 2   O

2 0 6



K , c;f'+W ' )

and from (8.2.3d we obtain:

(IK)
a +a ? 1 2 ’

e \
i v 3v f c '
(ai+a2?)co

(8.2.5c)

c =3
a c <* ' ' ' +c ' - fc ?+c +a c ' ' + 3a (c' ? ) +a c ?' ' 1

O____________O I  1 1 3  1_______________<5 1 __________ <5 1 J

(a +a ? )c
1 2  O

+a f(c c )'+c c'I z[ O Z 1 1J
(a +a f)c

1 2  O

c c 1 2 ( 8.2.5d )

F = a (c c +c c ) +(ac'''+c')=0 (8.2.5e)
4  2  0  8  1  2  < 5 1  1

= -2ia c'''+c'+c f+c +a c''+3a (c'£) +a c ?
^ < 5 2  2  3  9  9  3  <5 3  <5 3 ^

+ 2 [a c'+2a c'f+a c ?' +3a c'?z+3a c
5 4  5 4  0 4  0 4  J

+ a f(c c )'+(cc )'+c c'l
Z ̂  0 4 1 3  Z 2 J

+ (a +a Jf) (c c +c
1 2 2 3

+a ?) (8.2.5f)
2

s 6 fa c'
l ■* 5

+ 2a c'?+a c £'+3a c'£ +3a c ??
3  5  5  5  5  <5 3  <5 3 0

+ a (c c )' + (c c )' + (c c )
2  I O  3  1 4  2  3 •]
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+ a c" ' +c' +2(c Z+c +a c" +3a (c'O+a c Z "  )\
^ < 5  3  3  4  4  9  4  <J 4  <J 4  J

+ (a +a Z )(2c c +2c c +c2) = 0 (8.2.5g)1 2  19 2 4 3  ^

Equations (8.2.5a-d) determine c , c , c in terms of 

? and its derivatives and hence allows us to compute 

F . Relation (8.2.5f) gives c in terms of c
*  3  4

etc. and since the previous equations do not define ĉ  

we assume that c^ is arbitrary. We can now compute 

c from (8.2.5f) and obtain F in terms of c and
3  3  4

Z and its derivatives from equation (8.2.5g). The 

next relation (j = 7) will determine c? in terms of 

c etc. and since c has not been defined above we<J <3

shall assume that c is an arbitrary function. The 

fact that c and c can be chosen arbitrarily is
4  «5 J

also a consequence of equation (8.2.4).

Working out F and F is extremely cumbersome in
4  <3

general and we have approached this problem in two 

ways. Firstly, we used the computer with the REDUCE 

package for symbolic manipulation - although with this 

package the algebra for equations Involving more than 

one linear term is very long and tedious. Secondly, 

we simplified the problem by using the classification 

theorem presented by El-Sherbiny and then computed by 

hand for each equivalence class. The classification 

theorem is as follows:
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Theorem 8.3

Given an equation from the general class (7.1) there 

exists a nonsingular real linear transformation (which 

may be the identity) which takes it into one of the 

following four equivalence classes:

Kdv class (a , a , a , 0, 0, 0)
1 2  3

RLW class (a . a,, 0, a . 0, 0)
1 2  4

W class (a , a , 0, a , a, 0)
1 2  4  7

W class (a , a , a , 0, a f 0) □

The reductions in the above theorem are obtained by 

considering the cubic

a + a ? + a ?2 + a ?3 = 0.
8  4  3  <J

El-Sherbiny showed that when this cubic has three equal 

roots the general class reduces to the KdV class; when 

it has two equal and one distinct root it reduces to 

the RLW class; when it has three distinct roots it 

reduces to the W class and when it has one real and
3 4

two complex conjugate roots it reduces to the Ws3 

class.
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8.2.1 Results via the REDUCE package

For this analysis we wrote the program given In 

Appendix D. In the case when a^ + az£ is a 

triple root of -12(a +a £+a £z+a £3) i.e. the KdV
3  4  5  <S

equation, we showed that F = 0 and F s 0. When
4  O

we assumed that a + a £ is a double root. i.e. the1 2

RLW equation, we had both F s? 0 and F 0.
4  0

However, we did not proceed further since the version 

of REDUCE we were using was unable to cope, easily, 

with equations with more than one linear third order 

term.

8.2.2 Results with equivalence classes

Before we embark on these calculations we would like to 

clarify the role played by the constraints F^ a 0,

F^ a 0 regarding the arbitrariness of z(t), c^(t)

and c (t). The constraint F = 0 is a condition
«3 A

on £ = z(t) which does not contain c and c . If« a

this condition is identically satisfied then £ is an 

arbitrary function, whilst, if it is not, then it is an 

ODE defining £ in which case the pole orbits are 

fixed by the constraint. The condition F^ a 0 

includes both £ and ĉ . If it is identically 

satisfied then c^ is arbitrary and £ is not 

restricted by this condition. If it is not 

identically satisfied then it gives an ODE for cA

where the coefficients are functions of £. We note

that there is no restriction on c and therefore ca o
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can be chosen freely In every case.

We now consider the condition = 0. Substituting 

(8.2.5£) Into (8.2.5g) gives us that

F = A + Be + Cc ' + DC ' ' = 0, t e R+
<3 4 4 4 '

(8.2.2.1)

where A, B, C, D are functions of c , c , c , c 

and their derivatives. If c^ Is arbitrary It is 

clear that c ', c '' are Independent of c and 

hence (8.2.2.1) Is satisfied If and only If A = B = C 

= D = 0 for all t. This gives us four differential 

equations for £. In addition, equation (8.2.5e) 

gives a fifth, l.e. F^ a 0. We now look at each 

equivalence class.

(1) KdV class: (â , az, ag, 0, 0, 0), (ag * 0)

24a*a
For this class D = --------  . Thus, D = 0 if and

<\ + V >
only if az = 0. Hence, the only equations in this 

class which may have general meromorphic solutions are 

the elements of the subclass (a , 0, a , 0, 0, 0).
1 3

To verify whether this Is the case or not we go back to 

equation (8.2 .(§)) and put a = a = a = a = 0. This
Z 4 9 0

gives the following results:
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c = -12a /a , c = -(l+Ç)/a c = c = c =0, o 3 1 ' z ’ l i a s '

F = 0 = F .
4  <J

Thus for this class we have the following theorem: 

Theorem 8.4

The only equations in the KdV class which have 

meromorphic solutions in which z(t), c (t) and c (t)
A <5

are arbitrary functions are those with coefficients 

(a , 0, ag, 0, 0, 0). Consequently, for each t, the 

corresponding ODE has three arbitrary constants.

Hence this meromorphic solution is a general solution 

of the PDE a

Corollary. The PDEs (a , 0, ag, 0, 0, 0) are P-type 

modulo the existence of essential singularities o

Turning to the cases where az * 0 we note that the 

conditions F s 0 and F = 0 lead to very 

complicated differential equations. For example, for 

the case (0, -1, 1, 0, 0, 0)

'

144 1 f? - i l  - 13Ç" , 24(Ç ' )Z
. ç l v l

*>

5
ç2 [A ç8 Ç* . J •

(8.2.2.2)
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we do not feel that this case is sufficiently 

interesting to pursue any further.

(2) RLW class: (a , a , 0, a , 0, 0). (a * 0)
1 2  4 Ar

2a (a -a Ç)(a -5a Ç)
In this case D = -------------------

?(a±+a2?)2

Hence, D = 0 if and only if Ç = at/az or 

Ç = a4/5az. Thus, the RLW class has no general 

meromorphlc solution.

However, we have the following theorem for special 

cases :

Theorem 8.5

If a and a are non-zero then the RLW class has 1 2

meromorphic solutions in which c and c are 

arbitrary, but Ç = at/a2 or a4/5a2, i.e. the poles 

of the solution move with one of two constant speeds d

Note : This seems to imply that these solutions would

have at most two poles (modulo periodicity).

The Interesting equations in this class are those with 

az = 0, which correspond to the RLW itself. In this 

case the differential equation = 0 can be solved
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A /
1 « 108 2

STS' a*

2a a
C = , D

(note Ç'/Ç = «).

2a
4

t '

B = 0,

For to be identically zero it is necessary for A

to be identically zero and this is only possible by 

choosing « = 0. Note that this choice also makes 

C = 0 so that

F = 2a e ^c "  .a 4 4

If we now choose c^(t) to be at most linear in t 

then F^ s 0 and we have the following theorem:

Theorem 8.7 * 12

The meromorphic solutions of the RLW class 

(a , a , 0, a , 0, 0) are given by1 2  4

00

U(z, t) = (z - Z ( t ) ) 2 ^ Cj (t ) (z-z(t ) )■*

j=o

when z(t) = 6t + e, 6, e <e C, c^(t) is linear in t 

and ctf(t) is arbitrary □
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(3) W and W classes. (a * 0)
______________54_________________53_____________________________ 5__________

In these cases it Is easily shown that for any allowed 

choices of coefficients D = 0 for at most a few 

constant values of ?. Hence these classes of 

equations have no general meromorphlc solutions.

They do, however, have special meromorphlc solutions 

when £ = constant and c^(t) Is an arbitrary linear 

function l.e. the result obtained for the RLW class.

We state our result for these classes In the following 

theorem:

Theorem 8.8

The meromorphic solutions of the Wg class (a , az, ag, 

â , ag, 0) are given by

00

u(z, t) = (z - z(t)) 2 J c^(t)(z - z(t))-*

j = 0

where z(t) = <5t + e, 6, s <e C, c (t) Is linear In 

t and ctf(t) is arbitrary a

Corollary. For all the equivalence classes, = 0,

F = 0 If ? = constant and c is linear. This
<J 4

accounts for the existence of solitary waves In all 

classes □
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Furthermore, we recall from chapter seven that the only 

similarity reductions for the classes W and W in
34 53

the cases when a = 0 or a = 0 were travelling 

waves. Thus, we were unable to conclude whether 

these equations are P-type. Here we have shown that 

all meromporphic solutions must have Ç = constant and 

consequently the general solution cannot be 

meromorphic. We therefore conclude that these 

equations are not P-type.

The classification Is now complete and the results lead 

us to the following uniqueness theorem:

Theorem 8.9

The only elements of the general class of equations

V V ^ uV ^ uV a3Uzzz+a4Uzzt+asUztt+a*Uttt = 0

(8.2.2.5)

for which the Laurent expansion

CO

u (z, t) = J c^t) (z-z(t) j~2 (8.2.2.6)

j = 0

where z e €, t e K and z(t) Is an arbitrary 

function, Is a general solution are the equations 

defined by (â , 0, ag, 0, 0, 0) d
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8.3 Conclusion

One o£ the conjectures about evolution equations that 

has generated considerable Interest are the so-called 

Painlev6 conjectures. We have already discussed 

these in Chapter Four but we repeat some of that 

discussion here In the setting of this chapter. A 

general definition that a PDE Is of Palnlev6 or P-type 

Is that all the movable singularities of general 

solutions should be poles and that these solutions 

should be single-valued. There are two Palnlev6 

conjectures. The first assumes that all the relevant 

properties of the general solution are contained In the 

special similarity solutions and so the conjecture Is 

made on reduced ODEs rather than the original PDE.

The second conjecture states that the similarity 

solutions are not sufficient to cover all general 

solutions of the PDE and that It Is necessary to check 

the PDE Itself.

In this chapter we have verified this fact (l.e. the 

Insufficiency of the similarity solutions) for subsets 

of the general class whose ODE reductions were of 

P-type. Specifically, we found that the only 

similarity reductions of the subclasses Al, Bl and Cl 

(see Table 6.1) were the solitary waves and 

consequently that they were of P-type. However, the 

analysis of the present chapter has shown that the

218



general solution o£ the FDEs in these subclasses are

multivalued In the sense that the pole positions are 

also logarithmic branch points. Thus it is clear 

that the equations considered either have similarity 

solutions which cannot be reached by the Lie-group 

approach or else that the first Painlevé conjecture is 

inadequate. If the latter is true then the 

similarity solutions do not capture all the properties 

of the general solutions. Our conclusion about 

meromorphic solutions is that it is only the KdV 

equations, i.e. (â , 0, ag, 0, 0, 0), which have 

movable poles, in its general solution, which are not 

also logarithmic branch points. Thus the KdV is the

only equation in the general class which is P-type 

(modulo essential singularities) as a PDE. The 

implication of this, according to the Painlevé 

conjecture, is that this is the only equation which can 

be solved by the inverse scattering method and also the 

only one which could have sollton solutions. For the 

rest of the class we have also looked at special 

solutions which do not have the full freedom of the 

general solution, with a view to identifying equations 

which may have restricted N-soliton solutions, e.g.

N ^ K with fixed speed ratios. We do this because 

we have not come across any information in the 

literature which requires that an equation which has 

N-soliton solutions has to have them for every integer
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N, although all known soliton equations have this 

property.

Now clearly the soliton solutions, if they exist, of 

any equation are special meromorphlc solutions and 

consequently the pole motions of these solitons will be 

revealed through the function v>(t) which satisfies 

the differential equation = 0. Earlier work on 

the KdV pole motions til for 2-soliton solutions 

indicated that the poles exchanged their asymptotic 

speeds and that the pole orbits were continuous from 

t = -oo to t = +oo. Consequently a necessary 

condition for an equation to have a 2-soliton solution 

is that the pole-orbits w(t) should be non-linear 

functions of t.

The only equation which could be solved explicitly for 

y/(t), i.e. all possible pole motions, was the RLW 

equation i.e. (a . 0, 0, a . 0, 0). For this
1 4

equation we found that w(t) was a linear function. 

This enables us to conclude that if the pole picture of 

the KdV is representative of soliton solutions for this 

class of equations then the RLW has no soliton 

solutions at all. We note that previous 

justifications of this result were based on numerical 

proofs but our proof is analytical and, we believe, 

rigorous. t 2].
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However, the methods o£ finding the singularity 

structure of general solutions do not tell us when a 

solitary wave is a soliton. Furthermore, there is no 

theorem which links Painlevé property with the 

existence of soliton solutions except, perhaps, the 

necessary conditions we just mentioned on the 

pole-orbits. Thus the question of when a solitary 

wave is a soliton is a more direct one and one that we 

feel is connected to the structure of the solitary wave 

itself. To explore this idea it is necessary to look 

more closely at the properties of the solitary waves to 

see if they provide sufficient information to deduce 

whether they can be combined into soliton solutions or 

not. This approach is also novel inasmuch as it 

takes the focus off the PDE and onto the construction 

of functions which asymptotically are linear 

combinations of the solitary waves. In the next 

chapter we make a preliminary attempt at establishing a 

classification of the solitary waves of the general 

class as a preparation for implementing this procedure.
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CHAPTER NINE

COMPARATIVE ANALYSIS OF THE SOLITARY WAVES OF THE 

GENERAL CLASS OF PDES

It i3 well-known that one of the significant properties 

of Integrable equations is that, In general, they have 

sollton solutions. In previous chapters we have 

looked at ways of identifying such equations by using 

the differential equation Itself either as a PDE or as 

a reduced ODE. On the other hand, the basic question 

that we asked at the beginning of this thesis, i.e., 

"when is a solitary wave a soliton?", can be looked at 

as a problem in the combination of functions as 

follows: Given past and future asymptotic states, i.e.

t = -oo and t = +oo, as linear combinations of 

solitary waves is it possible to construct a function 

which connects the two states In a smooth way? If 

this can be done then this function will be a 

multisoliton solution. Clearly this approach is a

priori independent of the differential equation and 

appears to be difficult to Implement. However, a 

start can be made by examining the properties of the 

functional form of the solitary waves to see If we can 

establish necessary criteria for the solitary wave to 

be a sollton. If this method is successful then it 

is more straightforward than the previous analytic
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structure analysis and Is easier to apply in those 

cases when the functional form of the solitary wave is 

known. This is the case for the general class and it 

is this aspect that we concentrate on in this chapter. 

More specifically, since we know the Kdv has sollton 

solutions, whereas the RLW has not (see chapter 8.) we 

analyse the properties of profiles of solitary waves of 

the general class and compare them with those of the 

KdV and RLW.

9.1 The general solitary wave

We recall from Chapter Five that the solitary waves of 

the general class (7.1) are given by

u(x, t) = ^ sechz 1 / r
2 y ft (x-(l+c)t) (9.1.1a)

a -a (1+c)
where a = ---------  andc

a -a (l+c)+a (l+c)2-a (1+c)3 
ft = ---------- Z------- ------  (9.1.1b)

The amplitude is given by A(c) = 3/« and we define 

the width w(c) to be the width at half-height, i.e.,

w = 2p where sechZ[r?/2V(7] = j . Hence

w(c) = SVft where p = x - (l+c)t and <5 = 41n(l+-/2).
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We feel that the width and the amplitude are 

significant parameters of the solitary wave and hence 

our first classification should be In terms of them.

We note that the amplitude as a function of c Is 

determined by the values of the coefficients of the 

nonlinear terms in the PDE l.e. a , a .

Furthermore, the requirement of positive amplitudes 

means that the range of speeds is also restricted by 

these coefficients. On the other hand, the width Is 

entirely a function of the linear coefficients a , a , 

a , a and the requirement that the width Is a real 

function of c may Introduce further constraints on 

the allowed values of the speeds.

Before we classify the generic forms In terms of these 

parameters we detail the special cases of the Kdv and 

RLW.

9.2 The Kdv and RLW solitary waves 

The data for the KdV: (â , 0, ag, 0, 0, 0) and 

RLW: (â , 0, 0, â , 0, 0), where a , ag, (-â )

are as follows:

the

\R
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Range o£ A(c) 
speeds_______

W(c) A(W)

Fig 1: Graphs 1, 2

If the amplitude and width parameters are significant 

then the two graphs given above would lead us to make 

the following predictions for the RLW:

(1) The small-amplitude large-width solitary waves 

would act more like solitons than the large-amplitude, 

small-width solitary waves (see [1], [2] for 

verification of this prediction).
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(ii) We would expect the range o£ amplitudes over 

which the solitary waves are sollton-llke to Increase 

as |â | decreases.

Note: Sollton-llke means that If two solitary waves

are made to collide numerically, then the solitary 

waves would emerge with a tail that Is extremely small, 

l.e., the Interaction would be almost elastic.

9.3 Amplitude-speed relationship

Since the KdV and the RLW are both unidirectional we 

restrict our considerations to subclasses of the 

general class which have this property by setting 

c = 1 + c > 0. The requirement that the amplitude

be positive leads to the following classification of 

the speed ranges In terms of a±, az where c e («, (3) 

is Indicated by (<x, fl) :

a =i 0 : (1, oo)________
0

(0, 1) , az

a = 
z 0 : (0 , 1 ) ____

0
(1, °°>, a

i
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function of c. This eliminates the case a = a .
1 2

(il) We require the equation to be in a neighbourhood 

of the Kdv or RLW which eliminates the sectors a < a;i) i
a.

5 0 and O ^ a  < a .1 2

(ill) We require the range of speeds to be either

unbounded above or have the upper bound a±/az- The

latter is chosen since it becomes large as a — ► 0.

This eliminates the sector a < 0 < a . The1 2

amplitude-speed curves for the allowed sectors are 

sketched below:

Fig. 3
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9.4 Width-speed relationship

We showed earlier that the width-speed relationship Is 

given by w(c) = S-/ft where 6 and ft have been 

defined. We know from the previous chapter, Theorem 

8.3, that the general class of equations (7.1) may be 

reduced to four equivalence classes. We now look at 

each class In turn and obtain the ranges of speeds for 

which the width Is real.

(a) KdV class: (a , az, ag, 0, 0, 0)

w(c) = ôYâ /c 
a

(0 , 1 ) (1, oo)> a
a

(b) RLW class: (a , a , 0, a , 0, 0)
i Z 4

w(c) =
-a (1+c)

4

(1, 00) (0, 1|

(c) W class: (a , a , 0, a , a , 0)
5 4  t' z' ' 4 ' S r

w(c) = 6
-a (l+c)+a (1+c) a -a (1+c)

4  3  4  3 < o

The ranges of speeds are displayed in the
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(a , a )-plane below:

Fig. 4 a = a /a
4 3  4  3

The width-speed curves for those sectors which obey the 

restrictions (11) and (111) of 9.3 with (a , a )i' 2
replaced by (a . a ) are sketched below:4 3

Fig 5

230



(d) W class: (a , a , a , 0, a , 0 )
S 3  l f 2  3 f ' s

w(c) = 6
a +a (l+c)‘

3  s

The ranges of speeds are displayed In the 

(a , a )-plane below:3 S3

The width-speed curves for those sectors which obey the

restrictions (ii) and (iii) of 9.3 with (a , az) 

replaced by (a , a ) are sketched below:
3  3
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Fig. 7

9,5 Amplitude-width relationship

We now combine the results of the last two sections to 

obtain generic forms in each class and plot their 

amplitude-width relationships.

(a) KdV class: (a , a , a , 0. 0, 0). a > 0___________________1 2  3 ' 3____

a <52 ( 3+a A)
In this case w2 = ""(~a"-a")a—  (9.5.1)

and the amplitude-width curves for the various sectors 

are sketched below:
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G = Graph. w = 6VaV ' v 1'

(b) RLW class: (a , az• 0, â , 0, 0), a^ < 0

|a |6Z(3+a A)
Here we have w = ---;----- r-r---- (9.5.2)(a -a )A

The amplitude-width curves for the various sectors are 

sketched below:
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w = 6y\a I/(a -1)
1 4  1 1 2

(c) W class: (a , a , 0, a , a , 0)
______________3 4 __________________________ 1 _____ z '  7 4  r nr ____

For this class of equations the range of speeds given 

in Fig. 2 are further restricted because of the 

additional requirement on the coefficients (a , a ).A 9

The range of speeds in this case are given by the 

intersection of the ranges in Fig. 2 and Fig. 4. We

note that for each sector in Fig. 2 there are three 

corresponding sectors in Fig. 4.
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The amplitude-width function is given by

w = 6
(a^A+ 3 ) (a a -a a )A+3(a -a )|

1 5  2  4  5  4  1

a -a )A(3+a A)

(9.5.3)

and the amplitude-width curves are sketched for the 

following sectors.

aL

a,

In the following graphs: w / a (a a -a )
1 2  S  1 2  4

a -1-----1 2

A
o

3 ( a . 5 ~ 1 )

a ( a -a
2  1 2  4 5

)
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In (a, , a1_)-sector (i) we have the following graphs:

a?

<*•*

G\1 i+/l-Ons'>a»i qiij. h -/»-*** 1.

In (af , a^-sector (ii) we have the following graphs:



   



For this class the range of speeds are given by the 

intersection of the ranges in Fig. 2 and Fig. 6.

Again for each sector in Fig. 2 there are three 

corresponding sectors in Fig. 6.

The amplitude-width function is given by

(d) w class: (a , a , a , 0, a , 0)
3 3  1 Z 3 3

zw
a (a A+3)z+a (a A+3)23 2 9  1

(a -a )A(2+a~aT ± z z
(9.5.4)

and the amplitude-width curves are sketched for the 

following sectors:

a, .a, ■a,

In the following graphs w = 6
a +a a

3  3  1 2_  —  , 
1 2

A = 3(b33-1)
o a -a b1 2 35
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In (a,, a^-sector (i) we have the following graphs:

1 + / 611* f+ yi+ojs7< CUJ.

In (a,, a g )-sector (ii) we have the following graphs:
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C£0

£3i

In (a, , a^-sector (iii) we have the following graphs:

£33. l ■+ \f\ + £ 33 I + >/T+0j7> a«r

£33

m

o

616

0
24O



Finally we give the amplitude-width curves for the W 

and W classes when a = 0. Note that in these
3 3  Z

cases a > 0. 
i

W class: (a , 0, 0, a , a , 0)
3 4 __________________ l '  ' ' 4 '  3 '

The amplitude-width function is obtained by putting 

az = 0 in (9.5.3) and the amplitude-width curves are 

sketched below. Note that

o



The amplitude-width function is obtained by putting 

az = 0 in (9.5.4) and the amplitude-width curves are 

sketched below:

Note that

W class: (a , 0, a , 0, a )
53___________ __  1 3  5
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9,6 Classification of solitary waves

Before we comment on the data given In the graphs above 

we first classify them into generic types. We

concentrate on the width-amplitude graphs since, as we 

have mentioned before, we think that these are 

significant parameters. In drawing these graphs we 

laid down certain selection criteria which are 

specified on Page 227, 228. using these criteria we end 

up with a total of 42 graphs which form 12 generic 

equivalence classes. Representatives of these 

equivalance classes are Gl, G2, G4, G5, G7, G8, G14, 

G15, G17, G18, G22 and G37. We now further refine 

the class of admissible solutions by imposing the 

following two conditions. Firstly, we reject all 

double-valued graphs i.e. those equations which have 

solitary waves with two different amplitudes for the 

same width. This is done because we do not 

understand the significance of this property and we 

have left it to be investigated later. Secondly, we 

require that there must be a graph in the limits 

a —*■ 0 and a — > 0. Using these criteria 

eliminates 8 generic types: G14, G17, G22 and G5, G8, 

G15, G18, G37 respectively. The limits of the 

remaining graphs are either KdV or RLW-like. We note 

that we eventually end up with the KdV since the RLW 

graph tends to that of the KdV as |â | gets smaller. 

We could not have imposed this condition earlier
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because we were dealing separately with the 

amplitude-speed and the width-speed graphs. The 

remaining 4 generic types represent 18 of the original 

42 equations. We summarize this in the following 

table.

KdV RLW W W
5 4  5 3

____ G1 G12 G27

U 1
c
--- — . > £

'(f

W A

G3 G2, G6 G10, Gl3 G23, G25

o

1k
G4 Gil, G16 

G38
G26, G30 

G41

u
c

> A5
'
1 1 V i

1 »A

G7

( * A>

Table 9.1
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We now introduce the quantity Aw* 2 which seems to have 

some significance. The value for the equivalence 

classes of the general equation is as follows:

S a

K d v :  < v ^ r r  ( 3+ k | a )

RLW :
*2 |aJ
-----—  (3+a A)(a -a) l1 2

W :
5 4

(a A+3)|(a a -a a )A+3(a -a )
1  | A 5  2  4  5  4

(a -a ) ( 3+a A) 1 2  2

w
5 3

a (a A+3)Z+a (a A+3)2
3  2 ______________ 5 __  1

(a -a )(3+a A)1 2  2

9.7 Summary of structural properties of admissible 

equations

The graphical analysis of the solitary waves presented 

in the previous sections and the criteria used for 

selecting admissible forms leads to the following 

observations of changes in the allowed graphs as 

functions of the parameters a and a . These
2  5

correspond to perturbations of the nonlinear and linear 

terms respectively of the KdV and RLW.

(1) Global restriction: a >0, a >0. a < 0----------------------- i ' a  4
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(2) KDV and RLW classes (a =0):5

az < 0: puts an upper bound on the amplitude which 

leads to a singular limit.

az > 0: speeds bounded above introduces (KdV) or 

changes (RLW) lower bound on width.

(3) W and W classes (a * 0)
5 4  5 3  5

(a) Speeds bounded above for any value of az.

(b) a <0: a <0: amplitude bounded above with a 2* 2

singular limit

az > 0: three types of graphs occur 

which, as a increases, 

appear in the order singular, 

KdV, RLW.

(c) a > 0 :
5

a < 0: z

a > 0 :

no allowed graphs

RLW type only, i.e. lower bound

on width.

Implication: W and Wg3 are not distinguished by

their graphs.

(d) Two special cases occur under (b) when 

a = a and a = b Both those conditions
1 2  4 5  1 2  3 5

lead to the KdV graph Gl. However, in these cases
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AwZ * constant, and so the quantity AwZ distinguishes 

them from the KdV itself.

(4) If we consider equations in which a + a > 0
3 3

or la 1 + a > 0 then, for small wavenumbers k 

(l.e. the approximation used In deriving the KdV and 

the RLW tl], the linear dispersion relation Is given by

w( k ) = k [ v l a.J-a5lk3

which Is In fact the dispersion relation of the KdV.

Thus, the linear dispersion relation does not

distinguish between these equations. On the other
2

hand the function Aw does, which reinforces the 

significance of this quantity in the classification.

We conclude with the following theorem:

Theorem 9■1

In the class of admissible PDEs the KDV is unique in 

having a family of solitary waves with the properties

(a) speed unbounded above,
2

(b) Aw = constant for 0 < A < co a
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CHAPTER TEN

CONCLUDING REMARKS

This thesis is the third in a series of studies on a 

comparative analysis of the Korteweg-deVries equation 

and its homoloques. The general discussion is 

centred on a class of third-order semi-linear equations 

with quadratic nonlinearities of which the KdV and RLW 

are members. All the equations considered have 

stable solitary wave solutions. However, it is 

well-known that the KdV has a number of exceptional 

properties which do not appear to be shared by 

equations such as the RLW which have been proposed as 

alternative models. This raises the question as to 

whether the KdV is a unique equation in this class and 

whether we can develop criteria for understanding this 

uniqueness.

In the first study, Abbas looked at the class from the 

point of view prevailing at the time that the existence 

of solitary waves was due to a balance between 

nonlinearity and dispersion which, in special cases 

like the KdV, would also produce solitons. He found 

that, for a fixed nonlinearity, stable solitary waves 

exist for a wide variety of dispersion relations 

including formally nondisperslve equations. Thus, he 

concluded that the idea of balance beween nonlinearity
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and dispersion is not a useful one for explaining the

appearance of solitary waves and hence, by implication, 

for understanding the existence of solitons.

Since the physical hypothesis of dispersion is not a 

valid indicator of properties of the nonlinear 

equation, the discussion shifts to a consideration of 

the specific properties of this class of equations.

This required a much more rigorous mathematical 

approach to these equations and, in particular, to the 

question of their validity as genuine evolution 

equations. The foundations for this were established 

in the second study of the series in which El-Sherbiny 

Investigated the well-posedness of the general class of 

equations and also the existence of conservation laws. 

The result of this work showed that the equations split 

quite naturally into four equivalence classes and 

theorems relating to well-posedness were produced for 

each. Conservation laws were derived for these 

equations and it was established that, with the 

exception of the KdV which has an infinite number, all 

the equations have at least two and at most three 

conservation laws. Furthermore, El-Sherblny also 

showed that the characteristic equation of the KdV has 

a triple root, i.e., although the PDE is of third 

order, it has only one characteristic Instead of three. 

As a consequence, El-Sherbiny concluded that the 

existence of an infinite number of conservation laws is
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r e l a t e d  t o  t h e  o c c u r r e n c e  o f  d e g e n e r a t e  c h a r a c t e r -

i s t i c s .   O n c e  a g a i n ,  t h e s e  f a c t s  d e m o n s t r a t e d  

u n i q u e n e s s  o f  t h e  K d V  i n  t h e  c l a s s .

I n  t h i s  t h e s i s  w e  h a v e  c o n t i n u e d  t h e  s t u d y  o f  t h i s  

c l a s s  o f  e q u a t i o n s  b y  l o o k i n g  a t  t h e  a n a l y t i c  s t r u c t u r e  

o f  t h e i r  s o l u t i o n s .   S p e c i f i c a l l y ,  w e  h a v e  c o n s i d e r e d  

t h e  s i m i l a r i t y  s o l u t i o n s  o f  r e d u c e d  O D E s  a s  w e l l  a s  

g e n e r a l  s o l u t i o n s  o f  t h e  P D E  i t s e l f .   W e  h a v e  a l s o  

e x t e n d e d  t h e  w o r k  o n  t h e  s o l i t a r y  w a v e s ,  i n i t i a t e d  b y  

A b b a s  a n d  c o m p l e t e d  b y  E l - S h e r b i n y ,  t o  a  m o r e  g e n e r a l  

a n d ,  w e  f e e l ,  a  m o r e  u s e f u l  c l a s s i f i c a t i o n .

U s i n g  o n e - p a r a m e t e r  L i e  g r o u p s  w e  o b t a i n e d  a l l  t h e  

c o r r e s p o n d i n g  l o c a l  s y m m e t r i e s  o f  t h e  e q u a t i o n s  a n d  

c l a s s i f i e d  t h e m  i n  t e r m s  o f  t h e  I n f i n i t e s i m a l  

g e n e r a t o r s  o f  t h e i r  g r o u p s .   T h e s e  g e n e r a t o r s  w e r e  

t h e n  u s e d  t o  r e d u c e  t h e  P D E s  t o  t h e  c o r r e s p o n d i n g  

s i m i l a r i t y  O D E s .   T h e  t o t a l  n u m b e r  o f  t h i r d  o r d e r  

O D E s  o b t a i n e d  w a s  1 0  o f  w h i c h  6  w e r e  i r r e d u c l b l y  t h i r d  

o r d e r  a n d  t h e  r e s t  w e r e  o r  c o u l d  b e  I n t e g r a t e d  t o  

s e c o n d  o r d e r .   W e  a l s o  p r o v e d  t h a t  i f  a ^  *  *  0

t h e n  t h e  o n l y  r e d u c t i o n  i s  t o  a n  O D E  w i t h  s e l f - s i m i l a r  

s o l u t i o n s ,  i . e .  t r a v e l l i n g  w a v e s .

T h e  a n a l y t i c  s t r u c t u r e s  o f  t h e  s o l u t i o n s  o f  t h e  s e c o n d  

o r d e r  e q u a t i o n s  w e r e  o b t a i n e d  f r o m  t h e  e x i s t i n g  

P a l n l e v d  c l a s s i f i c a t i o n ,  w h i l e  t h o s e  o f  t h e  t h i r d
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order were studied using singular point- analysis. We 

first showed that all the ODEs have a class of analytic 

general solutions. In those cases in which the 

nonlinear from ff' is present there was a second 

class of general solutions which are meromorphic, but 

could be either single-valued or multiple-valued. Of 

these general solutions, only the travelling waves and 

the solutions of all reductions of the KdV equation 

Itself are meromorphic as well as being single-valued. 

All the other equations have solutions which are 

multiple-valued meromorphic maps with logarithmic 

branch points. We also noted that solutions which 

were free from branch points come from equations in 

which ff' was the only nonlinear term and were in 

addition free from f'' term. These properties 

enabled us to initiate a classification of third order 

nonlinear ODEs.

The poles in the meromorphic solutions were found, in 

general, to be of order two. However, the general 

KdV equation with nonlinearities atu(ux + ufc) also 

has solutions with a pole of order three and essential 

singularities. The KdV equation is thus unique in 

that class in that all its similarity ODEs have single-

valued meromorphic solutions i.e., are Painlev6-type. 

However, for many other equations in the class there 

was only one reduced ODE, i.e. the self-similar ODE 

with travelling wave solutions. Hence, on the basis
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o£ this test, we must either conclude that the PDE Is 

of PainlevG type or, what is more likely, that the 

one-parameter Lie groups do not give the symmetries of 

these equations, l.e. they may have other similarity 

reductions.

We next looked directly at the PDEs themselves and 

showed that the only class of equations which possessed 

meromorphic general solutions is the KdV. All the 

others had logarithmic branch point singularities in 

their expansions. We verified that the similarity 

ODEs obtained above are not sufficient to cover all 

general solutions of the corresponding PDE. This was 

done by showing that the subclass of PDEs which only 

had one reduction, i.e. to self-similar ODEs had 

general solutions which included logarithmic branch 

points. Consequently, they are not of Palnlev6 type 

and hence the only equation which is of this type both 

in terms of the ODEs as well as the PDEs is the KdV 

(modulo essential singularities).

Since soliton solutions where they exist are special 

single-valued meromorphic functions, we then tried to 

Identify equations with restricted sollton solutions, 

l.e. as special cases of the general solution. We 

did not find any and, In particular In the case of the 

RLW, we were able to prove rigorously, using arguments 

based on pole motions, that It does not have any
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solitoli s o l u t i o n s .

Since there are no theorems linking the analytic 

structure o£ general solutions to the existence of 

solltons we decided that another approach to this 

question was needed. Our idea is to analyse directly 

the functional form of the solitary wave to establish 

criteria for it to be a soliton. We conjectured that 

the width and the amplitude are significant parameters 

for solitary waves and classified them graphically 

using the KdV and RLW as standards, since the KdV has 

soliton solutions and we have established that the RLW 

has not. By Imposing reasonable selection rules we 

were able to reduce the width-amplitude graphs to 4 

generic forms and we introduced the quantity Awz as 

being a significant functional of the solitary wave.

The importance of this functional lies in the fact that 

firstly, it is a constant for the family of solitary 

waves of the KdV and, secondly, we were able to use it 

to distinguish between the KdV and another equation 

which could not be distinguished by the linear 

dispersion relation. This functional may explain the 

existence of soliton solutions in at least the KdV 

family of equations (i.e. same dispersion relation), 

although we have yet to check it on higher order 

nonlinear terms, e.g. the MKdV with uzux. If it is 

a useful functional then it is more straightforward and 

easier to apply than the analytic structure analysis.
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We come now to the question of future research. This 

thesis has further established the uniqueness of the 

KdV In the class considered. However, while we have 

shown that every equation in the class, apart from the 

KdV, is not of Painlev«§> type, we have not been able to 

prove that the KdV Is. This Is because of the 

difficulty of showing whether the general solution of a 

PDE has movable essential singularities or not. This 

restriction has prevented our analysis of the analytic 

structure from being complete and Is therefore still an 

open question. Our method of proving that the RLW 

does not have soliton solutions does not easily extend 

to the other equations In the class. Nevertheless, 

we feel that It Is a good method and has potential for 

development to more general situations. Finally, our 

preliminary analysis on the width-amplitude behaviour 

of the solitary waves produced some Interesting results 

and warrants further development. In particular, we 

believe that the functional Awz Is In effect a 

"nonlinear dispersion" relation, for the equation which 

is significant In explaining the existence of solitons. 

The next stage In understanding this functional would 

be to conduct a series of numerical experiments on the 

Interaction of solitary waves In regions where Awz is 

very slowly varying.
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we are now working on these developments as well as

trying to attain the objectives set out in this thesis.
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APPENDIX A

In this appendix we present a proof of Theorem 3.2. 

Before doing so, following ARS[2], we establish results 

which we shall need for the proof.

Shifting the origin, we rewrite (3.1.3) as

00

K(x,y) = F(x,y) + J K(x,x+z)F(x+z,y)dz (A.l)
o

00
an rNow --- K(x,x+z)F(x+z,y)dz =
ax J

00

J jy4 K(x/x + z)JF(x + z>y)dz + n = 1, 2, 3
(A.2a)

with 'P = -K(x,x)F(x,y) (A.2b)

J^K(x , x)F(x , y) j  - F ( x , y )  [a4K ( x , x + z ) ] z=0
(A.2c)

-P = - -—3 -2ax
J^K(x, x)F(x , y) J  -  ^F ( x , y ) a tK ( x , x + z ) J z=0

F ( x, y) (atK(x,x+z) )Z = Q

(A.2d)

where a and a are used to denote derivatives with 1 z

respect to the first and second argument, respectively.



similarly, integrating by parts we have

CD

J K(x,x+z)^F(x+z,y)dz =

CD

(-l)n J ja^K(x, x+z)jF(x+z,y)dz + n
o

1, 2, 3.

(A.3a)

with = - K (x, x)F(x, y) (A.3b)

*2 = - K(x,x)|^ F(x,y) + ^ aK(x,x+z)jz=oF(x,y)

(A.3c)

*a = - K<x,x)^ F(x,y) + |02K(x ,x+z )1 =q|^ F(x,y) 
3x *- -*

- ^ 2K(x ,x+z )jz=oF(x,y) (A.3d)

Note that K(x,x) = (<? K(x,x+z)+<? K(x,x+z) )dx i 2 z=o

Then we obtain

» - * = ° (A.4a)

= - 2F(x,y)^- K(x,x) (A.4b)
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*a* - a ' *. ‘ - 3STf (x '}’,3J k(x'x)

- 3F(x,y) [(^+ai«a)K(x,x+z)] (A.4c) 
L J z=o

We now present the proof.

Lemma. (I - A ) is invertible. d
X

Proof. See Ref. 2.

Proof of Theorem.

We first 

Thus,

construct L̂ K by operating on (A.l) by L .

L Ki

CD

= L4F + (a* - a*) J K(x,x+z)F(z+x,y)dz
O

=

CD 00

J F(z+x,y)a^K(x,x+z)dz + 4^ - J K(x,x+z)F^^dz 
o o

from (A.2a) and L^F = 0.

Using F , , = F , from L F = 0, (A.3a) and (A.4b) ̂ x+z,x+z yy' i '

gives



L Ki (<?. d )K =
y

CO

J F ( z + x, y) ( 9 *  - d*)K(x,x+z)dz - 2F(x,y)^ K(x,x)

O

(A.5)

Using (3.2.2) the first term on the right hand side can 

be written as

V * x  " *y>K<x'y>

and using (3.2.3) the second term on the right hand 

side becomes

2(1 - Ax )K(x,y)|^ K (x,x),

Hence from (A.5) we obtain

(I-Ax) j( )K(x,y) + 2[^K(x,x)]K(x,y) j = 0

(A.6)

and from the lemma on the lnvertibility of (I - Ax) it 

follows that

L±K - M4(K) b (<?* - **)K(x,y)

+ 2[f- K(x,x)lK(x,y) = 0  (A.7)
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03

= | (<k + £K)Fdz + * - *2 a a (A.IOc)

Iz is given by

oo 00

I = 2d 
2

29 I KFdz - 3 [ K32
x y J J 1

a Fdz 
2

00

= 3 | -
9 K)F dz + 2d (¥ - $ )

2 y y 2 2

oo

i= - 3 q (x) | KFydz + 30y(*a ~ *,)

3q(x)£ (K(x,y) - F(x,y)) + 39 (V -9 )
Y y 2 z

(A.11)

00

fwhere we have put J KF = K - F and q(x) = 2^1 K (x, x) ] .

Finally for Ig we have

00 oo

J KFdz - 3 J* K*I = 3 d 9 KFdz - 3 a x y #ZFdz
2

00 00

' J2d | KF dz + 3 I K<? F dz
yy J ‘ yy

o

00 00

¡ i v2 | (d K ) Fyydz + 3*yy + 3 J (a2K)Fyydz - 3$iyy
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where Q = (? -i +3? (XV -f ) + 3qF 
a a y 2 2 y

+ [3lKx,x«tKxtz,x«>F - 3(V W rx1 n
<Lt ~~ m

Substituting for Vg - $g, VP - $2 and using (A. 7) we 

find

Q = 3q(x)K(x,x)F(x,y) - 3q(x)Fy(x,y)

00

= -3q(x)K ĵ x,y) + 3q(x) J ^K(x,x+z)jF(x+z,y)dz

Then h (a +a y x y 3q(a + a ) M x y >
00

(d+d2)aK + 3qd2K)Fdz + 3q J (tfJOF
o

(a+a )aK + 3q(a+a )K Fdz 
* 2 ^ 1 2  1

Hence (I - A )[a + (a +6 )3 +3q(a +a jk * 0x t» x y x y ̂
(A.12)

On y = x using q(x) = 2^- K(x,x) after taking a 

derivative of (A.12) we have the Kdv equation
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qt + 6« x + q̂xxx

hence result □



Appendix B

The calculation of the terms ux , U1 , ux x , u1*, ux x x , 
„ttt^ yxxt an(j „xtt

V  f
We have already calculated the functions U , U and 

U . Here the remaining functions are simply given

with a note that the procedure Is entirely mechanical,

Uct = Utt + (2Utu - Ttt)ut - Xttux 1 (Uuu - 2Ttu)UX

2X. u.u - T uf — X uZu + (U 
tu t X UU t UU t X u 2Tt)utt

- 2xt uxt

- 3T u.u. . - X u..u - 2X u . u. (B.l)u t tt u tt x u xt t

xxx = + (3U - X )u - T u.
XX X  X X U  X X X  X xxx t

+ (3U - 3X )uz + (U - 3X )u3 - X u4
X U U  X X U  X U U U  X U U  X U U U  X

4- (3U - 3X )u + (3u - 9X )u u
XU XX X X  UU UX X XX

6X u2u - 3X uz - 4X u u + (u - 3X )u UU X XX U X  U X xxx u x' xxx

3T u u, - 3T u . - 3T u u, - 3T u.u
X X U  X t XX xt X U U  X t XU t XX

T u u. - 3T u u.u - 3T u u . - 6T u u •.
U U U  X t UU X t XX U XX xt UX X xt
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- 3T u  ̂ - 3T u“u , - 3T u u , - T u*U
X x x t  UU X xt U X x x t  U t X X X

(B.2)

uttt - uttt + (3uttu - Tttt)ut - xtttux

+ ( 3U. - 3T. . ) uf + (U - 3T. ) uf - T uftuu ttu t uuu tuu t uuu t

+ (3utu - 3Ttt)utt * (3uuu - 9Tut,ututt - 6Tuuututt

- 3Tuutt - 4W t t  + ,uu - 3Tt)uttt - 3xttuutux

- 3xttutx - 3xtuuutu - 3xtuuxutt - Xuuuutux

- 3xuuutuxutt - 3xuuttutx - 6xututuxt - 3xtuxtt

3X u. u , - 3X . u . . - X u u. . .
UU t xt uut xtt U X ttt

(B.3)

xxtU = U . + ( 2U , - X . )u + (U - T .lu,.xxt xtu xxt X xxu xxt t

+ (U . - 2X . )u + (2U - X - 2T , )u u,'uut xtu X ' X U U  X X U  Xtu' X t

T uf - X . U 3 + (U - 2X 
X X U  t uut X U U U  X U U Tuut)uxut

Z 3  Z Z2T u u. - X u u. - T u u.
X U U  X t U U U  X t U U U  X t
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+ (U . - 2X , )u + (2U - X - 2T . )u . ut Xt XX XU XX xt xt

T u.. - 3X , u u + (U - 2X - T . )u.uXX tt ut X XX UU XU ut t XX

4T u , u , + ( 2U - 4X - 2T. )u u ,XU t xt UU XU t u ’ X xt

2T u u. . - 3X u u. u - T u uf - 3X uZu ,
XU X tt UU X t XX UX XX t UU X xt

4T u u, u . - T u2u. . - 3X u u . - 2T u 2 .
UU X t xt UU X tt u XX xt u xt

V x x utt - V x x x  + (uu - 2xx - V uxxt

2T u . . - X u. u - 3X u u . - 2T u. u .X xtt U t XXX U X xxt u t xxt

2Tuuxuxtf

(B.4)

uttX ■ uttx + ,2uxtu - Tttx,ut + (uttu - xttx,ux

+ (U - 2T . )uf + ( 2U,_ - T.. - 2X . )u u.uux xtu t tuu ttu xtu X t

X. . u2 - T uf + (U - 2T. - X )ufuttu X uux t uuu tuu UUX t X

„ z a z z2X u. u - T u. u - X u. u
XUU t X UUU t X UUU t X *

* <uux - 2Txt)utt + l2utu - Ttt - 2xxt)uxt
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X U - 3T U U + (U - 2T - X )U U
tt XX UX t tt UU tu UX X tt

4xtuuxuxt + (2uuu - 4Ttu - 2xxu>utuxt

2X, u. u - 3T u. u u. , - X u, .utu t X X  uu t X tt uu tt X
3T u, u . uu t xt

4Xuuutuxuxt - Xuuutuxx - 3Tuuttuxt 2V x t

Xuuttuxx Txuttt + <uu 2Tt Xx)uttx 2xtutxx

Tuuxuttt 3Tuututtx 2xuuxuttx " 2Xuututxx’

(B.5)
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Appendix C

In this appendix we present the proof of Theorem 6.1 

which says that when â  * az the general class

(6.1.1) may be reduced to another general class such 

that one of the nonlinear terms can be eliminated.

Proof

Consider the nonsingular linear transformation

x V
x nt 
1-n 1-n ' t ?

x
1-m

mt
1-m (Cl)

and u(x, t) --► v (t?7 £) where n * m * 1.

Applying the transformation to (6.1.1) reduces It to 

(6.2.20) with

a -na a -ma a -a n+a n2-a n3
. 1 2 .  1 2 .  3 4 3  <3t) < w t)  ̂ » D ■“i 1-n 2 1-m r 3 M  .3( 1-n)

b =
3a -(m+2n)a +n(n+2m)a -3mn a

3  A  3  «3

(1-n)2(1-m)

b =
3

3a -(2m+n)a +m(2n+m)a -3nm a
3 ________________ 4 __________________ 3 ___________ «3

(1-n)(1-m)2

bo =

2  3a -a m+a m -a m
3  4  3  <3

(1-m)

Now since a * a * 0, we may choose m = —
1 2  d

2 SS



Then b = 0. 
2

a
Similarly if we choose n = —  we obtain b = 0 aa i2
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Appendix D

/« Tii i s p r  c g r a m  ca I cul at es t h e fun c t ion s uj ( t i j=l y a n 6
"/ rj f tl e Laurerit ser x 0 S e x p a n nij 1 on i t ■ l . l ) usi ng th e
fu e x p r (v■ssi on s U - ' l / S C L - ) I f t h e P a n 1 e v e test
% i s tc 1 b 0 sat i s f i ed t iien i. t j. s r e q u i r ed t hat t h e
7a c omp<r■ tab i 1 i ty c e n d i t  ion s at j ~ 4 and 6 ar 0  ;. dent i c a l l y
/ n at :i. ?. ■ f 1 E d Th i s p r o q r am h a s  b e e n us ed to s hotj that on 1 y
"/ the Kd U equ.a t i on sat i s f i es t h 0 t e s t i e w h e n

U = (a 1+ a  j:: (•' > * ’2\

dep en d  ( f,t ) <$

U s nr..1.2* (a 2 +a 4 *  f -l a 5 * f * * 2 + a 6 * f 3) / (al +a 2 * f )

"/ 5et <:er :i.vat :i. ve s o f  f

1 e t d f < f , t > f
le t d r < f p ,t ) = fpp*
1 t d f ' fpp , t )::n: fpp P$
1 et d f ( fppp ft :>= f P P P P $
le t d f ( fpp PP tt > = f p p p p p $
V

"/. c a 1 c u .1 a t e f i r s t , s e c o n d a. n d t h i r d d e r i v a t i v e s o f u 
»/

u. p :: d f < u , t > $

u p p : - d f Cu p ,t } $

'•'•PPP = d f (u p p , t >$

u 1 ; ~ (1 2 * u p * C a 4 + 2 * a 5 * f + 3 * a & * f * * 2 ) / (5* <: u N C a 1 + a 2 *  f > >
12*f| 5 * (a 5 + 3 * a 6 * f )) / C 5* (a .1 + a 2 *  f ) ) + C 2 * a 2 * u p ) / ( 5 * Ca 1+ a 2 * f ))

u 1 p s = d f (u 1. , t > $ 
u l p p  ; d f Culp , t > $ 
u 1 p p p ; = d f C u 1 p p , t 3 f>

c a ] cul at e u2 and i t s  d er ivat iV 0  0

pl : C (a { u 1 p ) •! (a 2 * u p * u 1) ) / (2 *u* (a 1 -i-a.2*f > > $

ql ” ( (a 4 + 2 * a 3 %f -i-3*a G *  f* *  2 ') * u 1 f: )  / (u * ( a 1+a 2 *f ) ) s
r 1 - ( C a 5+3-x a G * f > * u 1 * f p >7 (u * < a l+a 2 * f ) } .(1+ f :>/ < a 1 + a 2 * f ) 3 ’$
1 1 s ( ( (a 5 + 3 * a G * f ) *■u p p ) + 3 * a 6 * u p * f p + a 6 * u * fp P ) /

u* (a 1 +a2 ¥: f ) ) $
u2 (-u 1 * * 2 ) / C2 * u > 1 pl 4 - ql -i r 1 •- t 1 $

p2 ■ - (a 6 *Upp P > / (u. (. a 1 + a2 * f ) up / C u * ( a l i a 2* f > ) $
q:7 (u .1.* f+U 1 +a 5 * u l p p + 3 * a 6 * u l p p *f + 3 * a 6 * u 1p *f p + a S * u 1* fpp :> /

(u* C a 1+ a 2 «■ f 3 3 %
Y 2 » a 2 * ( U * u 2p + u p * u 2 + u  1 * u 1 p ) / ( L * ( a 1+ a 2 * f )> i
u.2 r, ■■■■ f:i!,;! . q2 4 r 2 - < Ll 1 *u 2) /uT
u3 p; := d f <u3, t > $

/„ c h ec: k whet her t h e c omp at i b i 3. i ty c o n d  i t i o n at 4 i s
7 i d en t ic a 1.1.y s at is f i ed i e whet he r c o m p  1=0
v/ n
K :: a 2 # u * u 3 [1 + U P V: U 3 +u 1 *u 2p «U 1 p K ix 2 ) $
L: :::n ( a G u i p p ri 1- u 1 p ) $
c o m p l : ~ K + !....$
%
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N o n e e d t o c h e c k f o r c o m p a t a b i 1 i t y a t j~"6 if c o i n p l O O
y
If c o m p ì  N E Q  0 t h e n  quit;
y

d e p e n d  ( u 4 , t > 
d e p e n d (u G , t )$ 
u 2 p p ;= d f (u 2 p , t )f> 
u 2 p p p  ; d f ( u 2 p p  f t ) % 
u.3pp : = d f ( u3 p  , t ') $ 
u 3 p p p  :: - d f (u3pp , t ) %
1 et u 4 p = d  f ( u 4 , t ) f>
1 et u 4 p p ” d f < u4 p  , t $ 
y
u 5 ; = -• < a 6 * u 2 p p p + u 2 p + u 3 * f+ u 3 + a 5 * u 3 p p + 3  * a 6 * u 3 p p * f +

3 * a 6 * u 3 p * f p + a 6 * u 3 * f p p +2 * < a 4 * u 4 p + 2  # a 5 * u 4 f *  f + 
a 5 * u 4 * f p +3 * a G * u 4 p * f * * 2 + 3  * a G * u 4 * f * f p ) + a 2 * ( u 4 * u p 
+ u 4 p *  u + u 3 * u 1 p + u 3 p * u 1 i • u 2 * u 2 p ) + ( a 1 + a 2 * f ) * ( u 2 * u. 3+ 
u4*u1)>/<(a1+a2*f)*u+6* Ca3+a4*f+a5*f # # 2+a6*f**3 >)$ 

u5 p  ::::: d f ( u 5 , t ) $

X c a l c u l a t e  t h e  e x p r e s s i o n  at ,j~& For c o m p a t a b i l i t y  it is 
% r e q u i r  e d t h a t 0 * u 6 0

p 3 : “ ( 2 * u * (. a 1 + a 2 * f > + 2 4 * ( a 3 + a 4 * f+ a 5 * f * * 2 + a 6 * f * * 3 >  % 
q3:= <a6*u3p p p+u 3p+2 * Cu4 *f+u4+a5*u4p p+3*a G*u4pp*f +

3 * a G * u 4 p * f p +a G * u 4 * f p p ) ) it
r 3 ; ::= 6 * ( a 4 * u 5 p -i- 2 * a 5 * u 5 p * f + a 5 * u 5 * f p + 3 * a G * u 5 p * f * * 2+ 

3*a6*u5*f*-fp:>$
1 3 : = a 2 * ( u 5 * u p + u 5 p * u + u 4 * u 1 p + u 4 p *  u 1 + u 3 * u 2 p •+• u 3 p * u 2 ) %
y
p 3 * u 6 : ~  r 3 + t3 - q3 + < a l + a 2 * f ) * < 2 * u l * u 5 + 2 * u 2 * u 4 + u 3 * * 2 ) $  
qui t ;

2 1 2 .
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