

City, University of London Institutional Repository

Citation: Nejad-Sattary, M. (1990). An extended data flow diagram notation for

specification of real-time systems. (Unpublished Doctoral thesis, City, University of London)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/28541/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

An Extended Data Flow Diagram Notation
for Specification of Real-Time Systems

B Y

Mohammad Nejad-Sattary

Department of Computer Science,
City University.

March 1990.

This thesis is submitted as part of the
requirements for the degree of Doctor
of Philosophy.

» t»

To my parents whose love, support and guidance
have been my greatest encouragement throughout
my education.

Contents

List of Figures vii

Acknowledgements ix

Declaration ix

Abstract x

1 Introduction 1

1.1 Overview... 1

1.2 Scope of This T h e s is ... 3

1.2.1 What Is Specification?... 4

1.2.2 What Is a Real-Time System ?...................................... 4

1.2.3 The Specification A p p roa ch .. 5

1.3 Plan of The T h e s is .. 7

1.4 G lossary... 8

2 Background 9

2.1 Overview... 9

2.2 Data Flow D iagram s... 9

2.3 Extended Data Flow Diagrams .. 11

2.4 The Transformation Schem a.. 12

2.4.1 N otation... 12

2.4.2 Deriving a Specification .. 14

2.5 Hatley and Pirbhai’s N otation .. 17

2.5.1 N otation... 17

2.5.2 Deriving a Specification .. 19

l

CONTENTS

2.6 Why Introduce Another Notation? .. 23

3 The New Notation 27

3.1 Introduction... 27

3.2 Symbols Of The Notation .. 28

3.2.1 Data Flow D iagram s.. 28

3.2.2 Event Flow Diagrams.. 29

3.2.3 Subsystem Control Diagrams 30

3.3 A Worked E xam ple.. 31

3.3.1 The Petrol Station: System R equirem ents.................. 31

3.3.2 The Petrol Station: Specification 32

3.4 Diagram Rules ... 46

3.5 Summary .. 47

4 Notational Issues 49

4.1 Overview.. 49

4.2 Atomic Processes.. 49

4.3 Timing Requirements... 50

4.4 A Graphical L anguage.. 51

4.4.1 Language S y n ta x ... 51

4.4.2 Language S em an tics .. 52

4.5 Animation and P rototyp in g .. 56

4.6 Specification Q u a lity ... 58

4.6.1 B ackground.. 58

4.6.2 Well Formed Diagram s... 59

4.6.3 Concluding R em arks.. 62

4.7 Design And Implementation.. 63

4.7.1 System Interactions.. 64

4.7.2 Process Groupings .. 64

4.7.3 Error H an d lin g .. 65

4.7.4 Host S erv ices ... 65

4.7.5 Process Firing and Enablement/Disablement of Sub-
systems ... 66

4.7.6 A General Design Hueristic ... 66

CONTENTS

4.7.7 Concluding Remark... 66

4.8 Methodology .. 67

4.9 C onclusions... 70

5 Related Work 71

5.1 Introduction... 71

5.2 Petri N e t s .. 71

5.2.1 Basic C on cep ts .. 71

5.2.2 Analysing a Petri Net ... 72

5.2.3 Modelling with Petri N e t s ... 73

5.3 M A S C O T .. 75

5.3.1 Basic C on cep ts .. 75

5.3.2 Deriving a MASCOT Design.. 77

5.3.3 Concluding R em arks.. 79

5.4 Jackson System Development ... 81

5.4.1 Basic Concepts and Design D eriva tion 81

5.4.2 Concluding R em arks.. 85

5.5 Communicating Sequential P rocesses.. 87

5.5.1 Basic C on cep ts .. 87

5.5.2 Concluding R em arks.. 90

5.6 C onclusions... 92

5.6.1 System A sp ects .. 93

5.6.2 Overall Capabilities.. 95

5.6.3 Concluding Remark... 96

6 Conclusions 97

6.1 Overview... 97

6.2 Features Of The Notation ... 98

6.2.1 C larity.. 98

6.2.2 Ambiguity And Incom pleteness................................... 99

6.2.3 Ease Of Specifying Concurrency.......................................101

6.2.4 Other F eatures..102

6.3 Future D irections... 102

6.3.1 Specification—»Design—► Implementation........................... 102

iii

IV CONTENTS

6.3.2 Quality Of Specifications... 103

6.3.3 Automated T o o ls .. 104

6.4 Concluding Remark... 105

References 107

A Exam ple Specifications 119

A.l Overview.. 119

A.2 The Bottling S y stem ..119

A.2.1 Specification D iagram s..121

A.3 The Cruise Control System... 127

A.3.1 Specification D iagram s..128

A.4 The Home Heating System .. 133

A.4.1 Specification D iagram s..135

A.5 The Patient Monitoring S y stem ...140

A.5.1 Specification D iagram s..142

A .6 The Autoteller S y stem ...149

A.6.1 Specification D iagram s..151

A.7 The Defect Inspection S ystem .. 159
A.7.1 Specification D iagram s..160

A. 8 The Vending Machine ...163

A. 8.1 Specification D iagram s..164

B Design A nd Im plem entation 167

B. l Overview...167

B.2 Specification of The petrol Station ...168

B. 2.1 The Data D ictionary...173

B.2.2 The Event Dictionary..175

B. 2.3 Minispecifications of Atomic P rocesses 176

B. 3 Implementation C o d e .. 180

C Diagram Syntax Rules 221

C. l Overview.. 221

C.2 An Abstract Syntax..................................... 221

C. 2.1 Rules For The Context Diagram................................... 222

C.2.2 Rules For Hierarchy Levels..224

C.3 An Alternative S y n ta x ... 229

CONTENTS v

List of Figures

2.1 The Symbols of Data Flow D iagram s...................................... 10

2.2 Data Flows of The Transformation Schem a............................. 12

2.3 The Control Symbols of The Transformation Schema 13

2.4 An Example Context S ch e m a ... 15

2.5 An Example S ch em a ... 16

2.6 Example State Transition D ia g ra m .. 17

2.7 Data Flows of Hatley and Pirbhai’s Notation.......................... 18

2.8 The Control Symbols of Hatley and Pirbhai’s notation . . . 18

2.9 An Example Data Context Diagram.. 19

2.10 The Control Context Diagram for The DCD of figure 2.9 . . 20

2.11 An Example D F D ... 20

2.12 The CFD for the DFD of figure 2.11 21

2.13 CSPEC of figure 2 .1 2 ... 22

2.14 The Activation Table for the STD of figure 2 .1 3 22

3.1 Data Flows ... 28

3.2 Other DFD S y m b o ls ... 29

3.3 Event Flow Diagram S ym b ols ... 30

3.4 Subsystem Control Diagram Sym bols...................................... 31

3.5 Petrol Station System: Context Digram................................... 33

3.6 Petrol Station System (D F D /E F D).. 35

3.7 Duplication of Identical Store Instances................................... 36

3.8 Merged Events ... 38

3.9 A Choice of Output Events .. 38

3.10 Petrol Station System (SCD) ... 39

3.11 A Start Subsystem .. 41

vii

LIST OF FIGURESviii

3.12 .0 Monitor Pump Operation (D F D /E F D)................................ 43

3.13 .0 Monitor Pump Operation (S C D) .. 44

3.14 .1 Maintain Stock (Above) and .2 Change Prices (Below) . . 45

4.1 Mapping The Event Flows of EFD’s to Petri (Sub)nets . . . 54

4.2 Conflict Between ti, t? and t3 ... 55

4.3 An Example Petri Net Mapping for Two Processes 56

4.4 Petri Subnet for Subsystem Enablement/Disablement 57

4.5 D-structure definition... 59

4.6 Basic Structured EFD con stru cts ... 60

5.1 An example petri net... 72

5.2 A marked petri net... 73

5.3 The marking resulting from firing t i ... 73

5.4 MASCOT ACP Diagram Sym bols... 76

5.5 Example of a MASCOT 3 subsystem A C P 77

5.6 ACP Diagram of a Complex A ct iv ity 79

5.7 ACP Diagram of a Composite I D A .. 80

5.8 Example Process Structure Diagram 82

5.9 Example System Specification D iagram 84

5.10 The Pictorial Representation of V M C T 88

5.11 A Connection D iagram .. 89

5.12 The Connection Diagram for (P || Q) 90

A CKNO WLED GEMENTS IX

Acknowledgements
There are a number of people I would like to thank for their help during
my research. Thanks are due to Mr. Philip Winterbottom for his many
useful suggestions during the implementation exercise. I would also like to
thank Dr. Lee McCluskey for his help during the development of diagram
syntax and semantics. Thanks are also due to Mr. Darren Whobrey for his
kind review of the first draft, and to Mr. Paul Anderson for his many useful
suggestions for typesetting this thesis. I am greatly indebted to Messrs
David Bolton and David Till for their numerous suggestions and helpful
remarks during the course of my research. My final and greatest thanks go
to my supervisor, Professor Peter Osmon, without whose initial direction
and continuous support, this research would not have been possible.

Declaration
I grant powers of discretion to the University Librarian to allow this thesis
to be copied, in whole or in part, without further reference to me. This
permission covers only single copies made for study purposes, subject to
normal conditions of acknowledgement.

X ABSTRACT

ABSTR ACT

The rapid demand for industrial automation has resulted in the develop-
ment of very large systems. The development costs for such systems have
highlighted the importance of a staged methodical approach to system de-
velopment. One of the starting stages is the derivation and expression of
system specification. Because it takes place very early in the development
cycle, the techniques used to aid in deriving a specification should not only
help system developers in recognising and resolving system requirements
errors, they should also help in presenting those requirements clearly.

This thesis is concerned with the specification of a specific class of systems:
real-time systems. After elaborating on what the terms “specification” and
“real-time system” mean in the context of the thesis, it is proposed that the
communication power of the notation used for specification plays a central
role. General diagrammatic representation of engineering plans are then
identified as one of the most desirable and communicable forms of such
plans. A popular notation, used in the specification of data processing
systems, is then briefly discussed, in order to identify its limitations for
real-time system specification. Despite those limitations, its popularity is a
strong incentive for extending the notation instead of inventing a new one.
Two of the currently used extensions to this notation are then presented,
and their main shortcomings are highlighted.

An alternative extension is then proposed, which attempts to overcome
these shortcomings. It does so by separating the data and control inter-
faces of a system into complementary diagrams. Because real-time system
behaviour is control dominated, the notation concentrates on this partic-
ular system feature by breaking it down into two categories: control over
groups of system components, i.e. the conditions under which each group is
enabled and disabled to perform its overall task, and control over individ-
ual system components, i.e. the condition under which each component is
activated to carry out its (sub)task. The notation’s constructs allow both
types of control to be specified, without hindering the specifier, and in a
fashion which highlights both low level concurrency (among individual com-
ponents) and high level concurrency (among component groups). Special
attention is also paid to the importance of synchronisation and temporal
events by providing notational means for specifying both. These extensions
are illustrated through a specification exercise before discussing issues re-
lated to the notation. Some comparisons are then made with four other
approaches to system specification, before highlighting the more novel fea-
tures of the notation and outlining possible future extensions to the work
presented here.

Chapter 1

Introduction

1.1 Overview

The system life cycle from the conception of the system’s purpose to its
eventual implementation and maintenance has been the subject of much
research. This is a direct result of the increasing demand for system capa-
bilities by users and the consequent growth in system size and complexity.
This rapid expansion has meant that the traditional informal interactions
between users, analysts and implementors are no longer sufficient to ensure
user satisfaction with the system on its delivery. The imbalance between
maintenance and development costs [LL87] and the resulting user dissatis-
faction, for many systems currently operating in industry, provides ample
evidence for the case against such informal approaches, and has prompted
system developers to rethink their approach to system development.

The system development community has, therefore, looked into the more es-
tablished engineering disciplines to find better techniques. These disciplines
have long standing planning mechanisms for deriving a physical design from
customer requirements. This usually involves expressing customer require-
ments in some form, which is communicable between the engineers and
customers, and which can be validated by the engineers before any actual
physical implementation. The obvious advantage of this approach is the
engineers’ confidence in their design prior to actual construction. Following
in those footsteps, system developers have developed a variety of develop-
ment methods, which attempt to alleviate many of the problems associated
with their existing development approaches, by providing notational aids
for drawing plans of proposed systems in much the same way as traditional
engineers do.

Moreover, the steps taken from the decision to create a new system to its
actual implementation have been divided into a sequence of stages. This is
aimed at further aiding the development process by separating different con-
cerns into these stages. The resulting life cycle phases differ slightly amongst

1

2 CHAPTER 1. INTRODUCTION

developers, but they approximately fit into the following model [RPTU84],
often referred to as the waterfall model.

• requirement statement: the envisaged system’s requirements are ex-
plored and stated.

• specification of requirements: a precise specification of system require-
ments is stated.

• design: the mechanisms through which the specified system behaviour
is to be achieved, in a specific operational environment, are derived.

• implementation: the design is realised.

• testing: the implemented system is tested to ensure correct operation.

• maintenance: the system is modified as a result of the discovery of
errors, omissions and consequently modified requirements.

Once a decision has been made to build a new system, its development be-
gins by a statement of user requirements and expectations. This is normally
in natural language and includes many user concerns including organisa-
tional issues, performance constraints, budget limitations, contractual de-
tail, and possible restrictions on the implementation environment. The spec-
ification stage is concerned with stating these requirements more precisely
by discovering and eliminating the errors in the requirements document,
and arriving at an implementation independent statement of system re-
quirements, to which implementation dependent constraints are appended.
The resulting specification is passed onto the design stage, where restric-
tions imposed by a particular implementation environment are taken into
account. The design is then passed to the implementation stage. Testing
is intended to discover and remove any errors present in the implemented
system. During the remainder of a system’s useful life further discovery of
errors and modified user requirements may prompt additional changes to
it. These are included in the maintenance stage.

The outcome from the activities of each stage is documented and carried to
the next, which in turn processes it and passes the resulting document to
its next stage. Two additional activities which take place throughout the
life cycle are verification, i.e. checking that the outcome of each stage is
compatible with its input, and validation, i.e. checking that the contents of
the document are compatible with user requirements.

The overall aim is to arrive at a system implementation which has the min-
imum number of specification, design, and operational errors, and behaves
as expected by its users, thereby resulting in low maintenance costs. The
path taken from the requirements specification to the final implementation
should itself be resilient against errors, while providing a cost effective route.

1.2. SCOPE OF THIS THESIS 3

Research literature suggests that errors detected in the earlier stages of the
life cycle will result in substantial savings in manpower, time and their as-
sociated cost to the delivered system [RJ77]. It is, therefore, of paramount
importance to detect errors as early as possible, in order to stop them from
propagating to the later stages of development [DR79, WFP83]. Further-
more, since evolutionary changes in the user requirements are inevitable
with all but the most trivial of systems, the outcome of each stage should
also be modifiable. The structuring of specifications, designs and implemen-
tations is a major tool in minimising this aspect of the maintenance.

In order to provide quality products, which are resilient against changes in
system requirements, and to minimise design flaws due to human error, more
and more system designers are turning away from ad hoc in house methods,
and are adopting specific proven methods suitable for each stage of the
system life cycle. One such set of methods is aimed at the specification stage.
By applying a chosen method to the specification of a system, analysts
not only reduce the possibility of human introduced errors into the design,
they also benefit from other advantages, such as proven techniques like
hierarchical design, provided for them by the method. Hence the risk of the
presence of errors in a system specification is reduced, resulting in easier
and cheaper maintenance of the resulting system.

This realisation has lead the industrial and academic communities to explore
various approaches for expressing system requirements. Many methods and
notations have emerged. Each one has its roots in a particular discipline,
ranging from mathematically based rigorous notations such as CSP [Hoa78,
Hoa85] and CCS [Mil89], through object oriented approaches [B0086, Mey88,
SM88, PCW85, Bat87], finite state machine based approaches [HLN+88,
Zav85a, Alf85], logic based approaches [PFAB86, Mai86. CFG+85, BEF+86],
and functional decomposition approaches [DeM78, You89, WM86, HP88],
to control modelling [Pet81]. Each of these approaches is aimed at a par-
ticular set of stages within the system life cycle. Some attempt to cover
the the whole life cycle by combining a methodology with notational tools,
while others provide a notation and leave its use to the discretion of system
developers.

1.2 Scope of This Thesis

This thesis introduces a new notation for the specification of real-time sys-
tems. The terms “specification” and “real-time system” are both currently
used in many fields of computer science. Usages have different interpreta-
tions according to the context. Before elaborating further on the scope of
this thesis, the implied meanings of these terms are outlined.

4 CHAPTER 1. INTRODUCTION

1.2.1 What Is Specification?

The specification stage of the system life cycle is concerned with deriving the
operational characteristics of a system from a requirements document. This
is a non-trivial task because of the potential complexity of the system’s op-
erations. In addition, the stated requirements are often vague, and because
they are stated in natural language, many ambiguities and inconsistences
are hidden within the document. In some cases users may even be unsure
of exactly what they require, which results in the additional problem of in-
completeness in the requirements document. System development is partly
concerned with discovering the problem as well as the solution [Som89].

The analysts’ aim during the specification stage of the system life cycle is
to detail the system behaviour independently of real-world concerns such
as particular implementation factors. That is to say, they should only be
concerned with what the system is to do, and not how its functions are
achieved. Moreover, the analysts have to discover errors and ambiguities in
the requirements document and resolve them while deriving a system spec-
ification. This description of system behaviour has been targeted by many
authors as one of the most vital activities in system development. It has
been referred to as system specification, the logical system model [DeM78],
and system essence [MP84] in the literature.

To help analysts in achieving this goal, a perfect operating environment
(world) is assumed. In such an (imaginary) environment the implementa-
tion technology enforces no bounds or restrictions on system operations.
This allows the analysts to concentrate solely on the problem, without con-
cern about the limitations which a particular solution to that problem may
have to cater for. These matters are delegated to the later stages of sys-
tem design and implementation. Non-functional system requirements, such
as reliability and performance, are therefore stated along with the system
specification, so that the designers and implementors can take them into
account in the latter stages of the system development process.

1.2.2 What Is a Real-Time System?

The term “real-time system” has been defined by a number of authors
in the literature [A1181, AZ87, HP88, WM86, ONR87, Sta88]. Systems
which satisfy these definitions fall into a number of categories, but they
have a number distinctive features in common. Rather than giving a rigid
definition for real-time systems, the distinguishing characteristics of the
class of systems which behave in a real-time manner can be identified.

As implied by the term, a real-time system is expected to interact with its
environment within certain timing constraints. The latter include response
time constraints, i.e. given a set of inputs the system must produce a set

1.2. SCOPE OF THIS THESIS 5

of outputs within a time slot, as well as time scheduled operations such as
regularly executed tasks, and activities carried out at specific points relative
to a (conceptual) clock.

Moreover, real-time systems have the property that past and present events,
both external and internal, change their behaviour pattern [HP88]. These
changes are more fundamental than producing a different output value from
a set of input values. They often require a change in the system behaviour
which may include stopping and/or starting a subset of the system’s op-
erations. In other words, a real-time system reacts to events to affect the
environment in which it is operating. In order to do so successfully, it must
be responsive to changes in its environment.

Therefore, a real-time system is one whose behaviour is determined by the
condition of its internal and external states1, and whose responses to these
conditions must occur within predetermined timing limits. This definition
embraces a large number of systems with differing characteristics, which
may be composed of both hardware and software components. It does not
include on-line systems, which are also referred to as real-time systems in
some of the current literature. These are interactive data processing systems
that require fast response times. Our definition of the term “real-time” is
targeted at systems, such as process control systems, which are usually part
of large operational environments and whose temporal response to events
is often a critical factor in the overall behaviour of the whole operational
system. Such systems are often referred to as “embedded systems” in the
system development literature [Zav82].

1.2.3 The Specification Approach

Having established the type of system targeted for specification, the ap-
proach taken in deriving such specifications is now discussed. Although the
nature of a system is a major factor in determining the way in which its
behaviour is described [Col84], a number of common criteria can be used
when judging the suitability of a particular method. In particular, the ve-
hicle (notation) used by the method to convey the information gathered is
one of the most important factors when choosing a specification method.

The first and most obvious criterion is that the notation has the capability
to describe all aspects of the subject matter. A method and its associated
notation may be very well suited for specification of one class of system,
but less usable for specification of others.

Tn computer science the term state is often used to refer to the values stored within
a program at any moment in time. It is also used in the literature to imply the whole
operational status of an executing system at any point in time, including both the in-
ternal stored values and the current control conditions. The latter interpretation is used
throughout this text.

6 CHAPTER 1. INTRODUCTION

Second, and perhaps the most important criterion of all, is the communi-
cation power of the notation used [Koo85, Was80]. Specification is only
one stage in the system life cycle. The majority of systems, except the
most trivial, usually engage different groups of people at different stages.
These groups include system users, analysts, designers and implementors.
Although these groups may not be disjoint, i.e. some people may belong to
more than one group, it is necessary for the product of each stage in the
life cycle to be an effective communication medium for the following stage.
A notation’s usefulness in this sense is what we mean by communication
power.

A number of approaches have been applied to system specification rang-
ing from unstructured natural language to rigorous mathematical notations
such as CSP. Natural language is a highly communicable notation, but may
contain or introduce undetected errors. Mathematically based notations, on
the other hand, result in specifications which have proven properties such
as consistency, but they cannot be used as effective communicable media
between technical and non-technical people, since the latter may be unwill-
ing to accept a notation which requires mathematical knowledge [BEF+86].
A specification notation is needed which is both precise and capable of pro-
viding an effective communication medium between the groups involved in
system development.

Diagrammatic presentation of information is one of the most convenient
and effective forms of communication between people [LS87, MM85], and
between people and machines [Cha89]. Plans and maps have been used in
the conventional engineering fields, such as civil and mechanical engineer-
ing, for a long time. The well established conventions for drawing such plans
and their universal use by the engineering community shows that well de-
fined diagrams can provide the best tools for conveying information between
groups of people.

A further desirable property of a development strategy is its ability not only
to guide analysts in deriving complete and unambiguous specification, but
also to help in deriving it. It has been suggested that the human brain
is only capable of concentrating on a small amount of information at any
one time [Mil56]. Many advocates of system development strategies have
therefore recommended a hierarchical approach [DeM78, Har87, EFRV86,
Bat87]. This can help not only when deriving the specification, but it also
provides analysts with a mechanism to present it in a comprehendable form
to other people involved in the development.

Data Flow Diagrams (DFD’s) have been in use in the data processing in-
dustry for a long time. They make up a substantial part of many method-
ologies including those used in information system’s specification and de-
sign [DeM78, PJ88, WPSK86, BOT85], knowledge-based design [LH87],
parallel processing [IOM+85, 1185, 1182], the design of a command inter-
preter [DS84], direct code generation [OWW85], object-oriented software

1.3. PLAN OF THE THESIS 7

design [Bai89, War89], and the development of real-time systems [WM86,
HP88, You89, Fra85, Gom84, MJAS85]. The simplicity and easy use of
DFD’s has made them popular for showing system data interfaces, and
many analysts are already familiar with them [Bai89]. This implies that
there is already a substantial investment in using and understanding such
diagrams by different groups of technical and non-technical people. The
communication power of diagrams in general, and the popularity of Data
Flow Diagrams in particular, imply that rather than inventing a new no-
tation for specification of real-time systems, the DFD notation should be
augmented to cater for such specifications.

1.3 Plan of The Thesis

The next chapter briefly describes Data Flow Diagrams and their use in
describing a system’s data interfaces. It goes on to outline why traditional
DFD’s are unsuitable for real-time system specification, implying that they
must be extended to provide a notation suitable for specifying such systems.
Two of the extensions, currently popular in industry, are then outlined
before describing their shortcomings. The chapter concludes by showing
the need for a new and better notation.

Chapter 3 concentrates on the new extended DFD notation. The symbols of
the new notation are presented first, and their is use demonstrated through
a worked example. The rules for forming these diagrams are then informally
outlined.

Chapter 4 discusses the issues relevant to the notation. The chapter begins
by outlining a set of objective criteria for selecting simple system processes.
The next section discusses how system timing requirements are stated in
a specification. The new notation is then claimed to be a language for
programming in the large. The syntax and semantics of this language are
then discussed. The usefulness of animating specifications is highlighted,
and how it can be achieved for specifications in the new notation is shown.
The next section discusses how specification quality may be judged. The
process of transforming a specification to a design and implementing it in
a particular environment is then illustrated through the experience gained
from implementing an example specification. Some methodology guidelines
are then given. The chapter ends by giving an overall conclusion.

Chapter 5 compares the notation with four currently popular notations,
each of which has a different approach to system specification/design. Each
section starts by briefly describing the particular notation and its use in
system specification, before drawing some conclusions by comparing it with
the new notation. The chapter ends by drawing some overall conclusions
about features of the four notations discussed as compared with the new
notation.

8 CHAPTER 1. INTROD UCTION

The concluding chapter outlines the importance of specification in the sys-
tem life cycle. It goes on to describe some of the more novel features of
the new notation. Extensions to the work presented in this thesis are then
discussed, before drawing an overall conclusion from the research.

The development of the notation was guided by a number of example specifi-
cations. Those, other than the one given in Chapter 3, are shown in the first
Appendix. Each exercise starts by giving the requirements for the example
system, before presenting the hierarchy of diagrams in its specification.

Appendix B gives the complete specification and implementation code for
an example system.
The final Appendix gives an abstract syntax for the notation. It also
presents an alternative textual equivalent for the diagrams of the notation.

1.4 Glossary

The implied meanings (in this thesis) of the terms “real-time system” and
“specification” were given above. There are a number of other terms, used in
this thesis, which have been used in the literature for a variety of purposes.
The short glossary below gives the implied meaning for each of those terms,
when used in the following text.

• System Development: This term refers to all the stages involved in
developing an operational system, starting from requirements capture
through to implementation and testing.

• User: A person who has an interest in the final product of the
system development process. This includes people who commission
the system development, as well as those who will interact with it
once it has been implemented.

• Requirements document: The requirements document is the
product of the development stage, immediately preceding specifica-
tion. It is a statement of what the users require the system to do.

• Analyst, Designer: These terms are used to refer to the people
who carry system specification and design, respectively.

• Host environment: The host environment for a system identi-
fies the physical entities that form part of the system implementation.
This includes hardware, software, mechanical devices and other mech-
anisms such as manual tasks performed by people.

Chapter 2

Background

2.1 Overview

In this chapter the background to the original work described in this thesis is
presented and discussed. DeMarco Data Flow Diagrams [DeM78] are briefly
presented first. The following section outlines their unsuitability for speci-
fying real-time systems. Two notations, currently used in industry, which
are the direct predecessors of the notation outlined in this thesis, are then
presented. These notations were put forward by Ward and Mellor [WM86]
and Hatley and Pirbhai [HP88]. Finally their shortcomings are discussed
to indicate the need for an improved notation for specification of real-time
systems.

2.2 Data Flow Diagrams

Data Flow Diagrams [DeM78, GS79] are used, as part of many existing
specification approaches, to show the data interfaces within a system and
between a system and the environment within which it operates. DFD’s
take a functional viewpoint of systems by decomposing a system into a
network of processes. Much of the successful use of DFD’s is due to their
ease of understanding and use in describing system data interfaces. This is
shown in a hierarchy of system processes starting with the topmost view of
a system, where it is viewed as a single process with data connections to its
environment.

Pictorially, a process is represented by a circular named (and numbered)
symbol and system environmental entities are shown by named rectangles.
The latter are referred to as sources, sinks, or terminators. Each connection
to the environment is called a data flow, which is represented on DFD’s by
a named directed arc connecting the system process to an environmental
entity. The direction of data exchange is shown by an arrow head at the

9

10 CHAPTER 2. BACKGROUND

receiving end of the data flow.

The diagram showing a system’s data interfaces to its environment is called
a Context Diagram. Using an incremental specification strategy the system
process on this diagram is expanded into a network of processes connected
by data flows. These processes can also communicate via stored data, i.e.
data that is occasionally updated but used many times by system processes.
Data stores are an abstraction of the data a system remembers, whereas data
flows are abstractions of direct (asynchronous) communications between
system processes. In other words, data flows represent a temporary buffer
for data, while data in stores represents the parts of system data which
linger until overwritten or deleted. Stored data is shown by a pair of parallel
lines on a DFD. The name of the data store is placed between the lines.
The symbols of (DeMarco) Data Flow Diagrams are shown in figure 2.1.
The construction of lower level DFD’s is governed by balancing rules, which
require the a DFD’s inherited data flows and data stores should be those
connected to its parent process and vice versa.

Figure 2.1: The Symbols of Data Flow Diagrams

The number of items (processes and stores) on each diagram is kept to a
guideline of seven (plus or minus two) in order to control the complexity
of each diagram. This will result in clearer diagrams that are easy to un-
derstand [Mil56]. The subdivision of (complex) processes is continued until
all the (leaf) processes are small enough to be described by a small piece
of text, typically no more than a page. Each such specification is called a
minispecification or a minispec for short. The diagram hierarchy is accom-
panied by a data dictionary, which holds the definitions of the data flows
and stores of the system. Each data flow entry shows the decomposition of
the data carried by the data flow. Each data store entry contains a similar
decomposition of a single record to be stored in the store as well as access
key identifiers.

The diagram hierarchy together with the minispecs of the leaf processes and
the data dictionary specify the complete flow of data through a system.

2.3. EXTENDED DATA FLOW DIAGRAMS 11

2.3 Extended Data Flow Diagrams

Data Flow Diagrams are quite adequate for specifying the behaviour of the
class of systems where the flow of control through the system is largely
determined by the arrival of data, i.e. where system process execution se-
quences are governed by the availability of data to operate on. This is
typical of data processing systems, for example. However, notations based
around Data Flow Diagrams lack the means to model systems that include
control via events other than those implicitly associated with the arrival of
data. In real-time systems, for example, many of the inputs to the system
are signals that indicate the occurrence of some event, e.g. a critical condi-
tion has occurred. These inputs do not pass any data to the system to be
processed. Frequently they indicate a change in system behaviour. That
is to say, real-time systems are event driven [WL85] and their specification
requires a clear definition of system stimuli [Bai89].

Distinguishing between data and event inputs to a system will help in un-
derstanding and describing the operational behaviour of a system. One way
to achieve this distinction is by using specific naming conventions for data
flows [TRH87]. This restricts the freedom of analysts when naming data
flows, and gives a dual purpose to the data flow label. It no longer only
identifies what the data flow carries; the type of information carried by the
flow is made explicit by its name. This is clearly undesirable.

Furthermore, many systems are made up of subsystems. These can read-
ily be identified as groups of closely related leaf processes, which share a
common control structure, in the DFD process hierarchy. In other words, a
subsystem is an abstraction of a group of processes which operate over iter-
ations of a stream of data or event tokens. Any such group of processes may
be active or inactive at a particular time during system operation [A1181].
This is typical of real-time systems. The ability to enable and disable parts
of a system, when certain events have occurred, is often a part of the oper-
ational requirements for that system. Early notations based on Data Flow
Diagrams are unsuitable for modelling subsystem control. Specifying a con-
trol structure at subsystem level is at the very best cumbersome, and the
very worst nearly impossible with early data flow diagram methodologies
and notations.

It is, therefore, clear that traditional Data Flow Diagrams cannot easily be
used for writing down elegant specifications for the class of systems whose
control structure is not simply governed by the availability of data, and
whose input events may cause some parts (subsystems) to be activated and
deactivated.

12 CHAPTER 2. BACKGROUND

2.4 The Transformation Schema

In order to make Data Flow Diagrams more suitable for the specification and
design of real-time systems, Ward and Mellor [WM86, War86] introduced
a number of notational extensions. They called the resulting notation the
transformation schema.

2.4.1 Notation

The basic DFD symbols are retained in the transformation schema. Pro-
cesses, renamed data transformations, keep their circular symbols, and data
flows are represented by arcs joining processes and data stores, which are
shown with parallel lines. The data flow notation is extended to enable
the representation of joining, merging, splitting and copying of data flows,
figure 2.2. The interpretation of a data flow is determined by its labelling.
Figure 2.2(a) shows how two pieces of data can be joined together, i.e. Z
= X + Y (where ’+ ’ is used to indicate combination of data tokens not the
sum of X and Y; this follows the convention used in DeMarco style data
dictionaries). Part (b) shows the merging of two data pieces: X can be
provided by either of the incoming data items. In part (c), a data item is
split into a number of parts, Z = X + Y. Part (d) shows how multiple copies
of the same data item can be sent to a number of data transformations.

(d) (e)

Figure 2.2: Data Flows of The Transformation Schema

The transformation schema also distinguishes between two types of data
flows: time-continuous and time-discrete data flows. Time-continuous data
flows represent inputs to systems that continually vary over time. Typical
examples are readings from the system environment such as temperature

2.4. THE TRANSFORMATION SCHEMA 13

and pressure. Such data are available to the system all the time, but their
values are only of interest at certain points during system operation. Unlike
time-continuous data flows, time-discrete data flows represent data that is
available to a system at certain points in time. This is roughly equivalent
to the notion of a transaction in the data processing terminology [WM86].
Time-continuous data flows are shown with a double arrow head in the
transformation schema, figure 2.2(e).

As well as slightly altering the data flow notation, the transformation schema
introduces a new set of symbols to represent the flow of control through a
system. Ward and Mellor [WM86] note that most real-time systems con-
tain some flows that have no content; they are simply signals that indicate
something has happened. These are the events that are exchanged between
system processes (transformations) and between the system and its envi-
ronment. Events are shown in the transformation schema by dotted arcs.
Ward and Mellor identify three types of events: flow-direct events are those
associated with the arrival of data (discussed below), flow-indirect events
are generated by the system transformations when a specific condition has
been satisfied, and temporal events signal the passage of time. There is
no notational distinction between the latter two; both are shown with the
dotted line symbol. Flow-direct events are not explicitly shown on the
transformation schema.

A transformation that accepts only event flows and time-continuous data
flows as inputs and produces only event flows as outputs is called a control
transformation, and is represented in the transformation schema by a dotted
circle. There is also an analogue of a data store called an event store. It
is used to remember the occurrence of event flows, and is represented by
parallel dotted lines. The control symbols of the transformation schema are
shown in figure 2.3.

/ \
,, / Control \

j 1

i Transformation
/

Event Flow \ /

Event
Store

Figure 2.3: The Control Symbols of The Transformation Schema

14 CHAPTER 2. BACKGROUND

2.4.2 Deriving a Specification

Ward and Mellor’s system model has two parts: the first part defines the
system interactions: the environmental model, and a second part which de-
scribes the required behaviour of the system: the behavioural model [WM86].
The environmental model can be divided into two parts: a description of the
boundary between the system and its environment, showing the interfaces
between the two parts, and a description of the events that occur in the en-
vironment to which the system must respond. The behavioural model also
consists of two parts: the transformation schema and the data schema. The
transformation schema denotes graphically the transformations that oper-
ate on flows that cross the system boundary and is the active portion of the
system that responds to environmental events. The data schema denotes
graphically the information that must be remembered by the system.

Specification of the system starts by deriving the environmental model. The
environmental terminators of data and events, i.e. data and event sources
and sinks, are first identified. These are the entities the system interacts
with. The data and events exchanged between the system and each of
these entities are then determined. The nature of each data flow exchanged
between the system and its environment is examined to determine whether it
is a time-continuous or a time-discrete data flow. A system’s environmental
interface is shown in a context schema. In a similar way to a DFD context
diagram, a context schema represents environmental entities by rectangular
boxes, and a black box view of the system shows it as a single process with
data and event connections to its environment, figure 2.4 [WM86].

Once the system interface to its environment is defined, its internal be-
haviour is derived. The behavioural model specifies a system’s required
behaviour in a hierarchical set of schema. This is derived by using an incre-
mental strategy to expand data transformations into sub-networks of data
and control transformations, starting with the data transformation of the
whole system on the context schema. An example schema is shown in fig-
ure 2.5 [WM86]. As with DeMarco DFD’s, this expansion continues until
the data transformations are small enough to be specified in text.

The two types of control in a system are specified as follows. Implicit
control carried by discrete data flows is not explicitly modelled in the trans-
formation schema. Instead, every data transformation at the leaves of the
transformation hierarchy tree is restricted to one discrete input data flow.
If a data transformation requires the data carried by more than one discrete
data flow, the data must first be joined together in one data flow and then
input to the data transformation.

Control over groups of transformations is specified by using control trans-
formations. A control transformation can enable/disable or trigger a data
transformation. While a data transformation is enabled, its children can re-
spond to and transform data input to it. When disabled, inputs are ignored

2.4. THE TRANSFORMATION SCHEMA 15

Figure 2.4: An Example Context Schema

until the data transformation is re-enabled.

A data transformation that does not have an active input, i.e. one with
only data store and/or continuous data flow connections, must be explicitly
triggered. Such a trigger is generated by the control transformation(s) at
the same level as the data transformation. That is, control is localised to
the control transformations within a schema: data transformations may
exercise control external to the schema by producing output event flows,
but only control transformations may prompt transformations internal to
the schema.

Control transformations, unlike data transformations, cannot be expanded
into a further sub-network, but like leaf data transformations, their oper-
ation must be specified. The operation of each control transformation is
described by using a finite automaton model. Each state of such a finite
state machine represents part of the system state. The input and output
event flows of a control transformation are the input events and output ac-
tions of its finite state machine model. The occurrence of an event may
cause either a change of state or the production of output or both. A
change of state reflects the behaviour change by the system. This may im-
ply enabling/disabling or triggering system processes, which is shown by
corresponding output event flows from the control transformation.

Pictorially, a FSM can be represented by a state transition diagram. To

16 CHAPTER 2. BACKGROUND

avoid confusion between STD’s and schema, state transition diagrams use
rectangles and straight lines (instead of the traditional circles and arcs),
respectively, for states and transitions. Transitions are labelled with the
event that causes the state change and the transformation output. These
are placed above and below a horizontal line in the transition label. Fig-
ure 2.6 [WM86] shows the state transition diagram for the control transfor-
mation of figure 2.5.

Operation of a control transformation can equivalently be specified by using
a state transition table to show the state change and an action table to show
the output of the transformation for each state change. This alternative
representation is particularly useful for control transformations with large
state transition diagrams.

Coordination of data transformations is the responsibility of the control
transformation of a schema. This is achieved by the exchange of events
between data and control transformations. Control transformations may
exchange events for synchronisation as well as enablement and disablement.
By using a levelled set of schemas with control transformations a hierarchy
of control can be specified for a system.

The notation put forward by Ward and Mellor [WM86] has several addi-
tional features. The data schema, mentioned above, uses an entity rela-
tionship model to specify the layout of the stored information for a system.

2.5. HATLEY AND PIRBHAI’S NOTATION 17

Logic Aquisition
Complete or Stop

Disable "Control Aquisition"
Enable "Display Logic States'

"Record Trigger Word'
"Display Trigger Word"

Trigger "Clear Trigger Word"
Enable "Display Trigger Word"
Enable "Record Trigger Word"
Enable "Display Logic States"

Manual
Enable "Control Aquisition"
Disable "Display Logic States"

■Record Trigger Word"
"Display Trigger Word"

AQUIRING-MANUAL

Logic Aquisition
Complete

Enable "Control Aquisition"
Disable "Display Logic States'

"Record Trigger Word"
"Display Trigger Word"

IDLE

Stop

Disable
"Control
Aquisition"
Enable
"Display Logic
States
"Record Trigger
Word"

"Display Trigger
“Word

Auto

Enable
"Control
Aquisition"
Disable
"Display Logic
States’7
"Record Trigger
Word"

;Display Trigger

AQUIRING-AUTO

Timer Up
Enable "Control Aquisition"
Disable "Display Logic States"

"Record Trigger Word"
"Display Trigger Word"

WAITING-AUTO

Stop

Figure 2.6: Example State Transition Diagram

Data flows and stores can be defined, in a manner similar to those in De-
Marco DFD’s, in a data dictionary. Once a complete specification has been
derived, the schema can be executed using a technique based on the execu-
tion of petri nets: tokens are placed on data and event flows to represent
the arrival of data and events and the progress of the system is observed by
continuous execution of ready transformations. The methodology also offers
a comprehensive set of guidelines to assist in going from a set of specification
diagrams to a physical design.

2.5 Hatley and Pirbhai’s Notation

Like Ward and Mellor, Hatley and Pirbhai [HP88] recognised the deficien-
cies of DeMarco Data Flow Diagrams when specifying real-time systems.
Starting with Data Flow Diagrams, they introduced their own extensions
to create a DFD style notation which is more suitable for this purpose.

2.5.1 Notation

Hatley and Pirbhai also retain the DFD symbols for processes, data flows
and data stores. Their data flow notation has many more varieties than
Ward and Mellor’s, figure 2.7, but there are no semantic differences. The
interpretation of each data flow is again determined by the way it is labelled.

Unlike Ward and Mellor, Hatley and Pirbhai’s notation does not add the

18 CHAPTER 2. BACKGROUND

x

“Z" splits into or merges from All ot "X" flows along the branch,
Its components, "X" and "Y", Y ,iows alnc*9 the lower branch,

and is replicated on the upper branch.
"X" is replicated on

both branches.

"X" flows from left to right. "X" flows both ways
on the arc.

"X", "Y", and ”Z" flow "X" flows right to left,
separately on the arc. ”Y" flows from left to right.

Figure 2.7: Data Flows of Hatley and Pirbhai’s Notation

control flow view to the Data Flow Diagrams. Instead, a diagram accom-
panying the DFD shows the flow of control. These diagrams are named
Control Flow Diagrams (CFD’s). A CFD will contain a shadow of every
process on its DFD counterpart. Control flows show the flow of control sig-
nals down through the system process hierarchy. These are shown by dashed
arcs. Control flows, unlike event flows of the transformation schema, can
carry composite values, which allow (composite) control flows to take any
of the data flow types shown in figure 2.7. As a result the data dictionary,
renamed the requirements dictionary by Hatley and Pirbhai, also contains
control flow definitions.

Hatley and Pirbhai, like Ward and Mellor, use a finite automaton model to
represent control at any level of granularity. Such automata are represented
by a short bar on CFD’s. The input alphabet (events) of an automaton are
the control flows entering the bar symbol. Some of its outputs (actions) are
shown as emerging control flows and others are shown in tables, see below.
The control flow symbols of Hatley and Pirbhai’s notation are shown in
figure 2.8.

Control Flow

Figure 2.8: The Control Symbols of Hatley and Pirbhai’s notation

Stores may also be placed on CFD’s. These represent the recording of a
control flow. A store may contain either data or control or both, so there

2.5. HATLEY AND PIRBHAI’S NOTATION 19

is no special symbol for a control store. It is shown with a pair of parallel
lines. Store definitions in the requirements dictionary contain a description
of what each store holds. Unlike DeMarco DFD’s, a store is only shown on
a single DFD/CFD (on DeMarco DFD’s and in the transformation schema
a store is shown wherever it is referenced). Flows going from stores to lower
level processes are labelled instead with the store name.

2.5.2 Deriving a Specification

Hatley and Pirbhai divide the design process into two parts: the require-
ment modelling stage, which derives from user requirements an implementa-
tion independent specification of the system; and the architecture modelling
stage, which maps the specification onto a design restricted by real world
constraints and implemented on specific hardware.

The system requirements are captured through an integrated model that
views a system from two aspects: the information processing (functional)
behaviour, and its control (state) behaviour [HP88]. These are called the
process and control models and are shown on DFD’s and CFD’s, respectively.

Figure 2.9: An Example Data Context Diagram

Hatley and Pirbhai start by deriving the system interface to its environment.
This is shown on a pair of diagrams. The Data Context Diagram shows the
data exchanged between the system and the entities in its environment,
figure 2.9, and the Control Context Diagram shows the control interface,
figure 2.10 [HP88].
Note that in order to reduce cluttering of diagrams, Hatley and Pirbhai
allow multiple symbols to be drawn for some entities. All items with the
same name represent the same entity, e.g. “Customer” in the DCD and
CCD of figures 2.9 and 2.10. Other repeated symbols are stores, short bars
and flows.

The requirement specification continues by incremental expansion of each
process into sub-networks of processes until each process reaches the size of a
primitive process, i.e. one whose operation can be described by a small piece

20 CHAPTER 2. BACKGROUND

Figure 2.10: The Control Context Diagram for The DCD of figure 2.9

of text. This text is called the process specification (PSPEC). At every level,
the process model is first derived and shown on a DFD, figure 2.11 [HP88].

The naming, numbering and balancing rules of DeMarco Data Flow Dia-
grams are followed and aid the easy comprehension of Hatley and Pirbhai
DFD’s. Once the process model has been specified, the control model is
derived and shown on a CFD. A CFD is formed by first shadowing every
process and store. These retain the same symbols as those on the DFD,
figure 2.12 [HP88].

A process on the CFD does not represent processing of control flows entering
it, nor is it activated or deactivated by those control flows. Control flow
diagrams are only used to show the routing of control signals in the system
(they share the naming and numbering of those on the corresponding DFD).

2.5. HATLEY AND PIRBHAI’S NOTATION 21

Figure 2.12: The CFD for the DFD of figure 2.11

Like Ward and Mellor, Hatley and Pirbhai do not explicitly show control
carried by data, but unlike them, they do not insist on having only one
discrete (active) data flow input to a process. The triggering effect of data
on a process may be deduced from its PSPEC.

Control local to a level is described using a finite automaton. Pictorially
this is shown by a short bar on a CFD. Although the diagram of figure 2.12
has several of these, they all represent the same finite state machine. The
operation of such a finite state machine is given in an associated control
specification (CSPEC).

Hatley and Pirbhai divide finite state machines into two categories: com-
binational machines, where the machine output is dependent only on its
inputs, and sequential machines, where the machine output depends not
only on the current inputs to the machine, but also on the history of past
inputs. The operations of these are specified by decision tables and state
transitions diagrams, respectively. Decision tables list the machine output
for each of its inputs. STD’s are similar to those used in the transformation
schema. When a FSM is too complex to be easily specified by a STD, it
may be specified by a state transition table or a state transition matrix. The
automaton in figure 2.12 is a sequential machine, whose STD is shown in
figure 2.13.

The finite state (sequential) machines in Hatley and Pirbhai’s notation dif-
fer in two ways from those in the transformation schema. First, the enabling
events, from the automaton to processes, are not shown by using control
flows (in the transformation schema, enabling signals are shown by con-

2 2 CHAPTER 2. BACKGROUND

PRODUCT
DISPENCED
ACCEPT
NEW
COIN

COIN RETURN
REQUEST

RETURN PAYMENT

Figure 2.13: CSPEC of figure 2.12

necting an event arc from a control transformation to a process). They are
shown, either on the STD in a similar fashion to those shown on transfor-
mation schema STD’s, or in activation tables. Activation tables are used to
reduce STD cluttering, e.g. figure 2.14 shows the activation table for the
STD of figure 2.13. An activation table is part of the CSPEC for a FSM.

Process
Activated

Control
Action

Dispense
Change

Dispense
Product

Get
Valid

Selection

Accept Customer
Request 0 0 1
Return
Payment 1 0 0
Accept
New Coin 0 0 0
Dispense
Product 1 1 0

Figure 2.14: The Activation Table for the STD of figure 2.13

Second, and more important, in the transformation schema a transforma-
tion stays active until either a further (output) event from its controlling
transformation deactivates it or its parent is deactivated, whereas activated
processes in Hatley and Pirbhai’s diagrams stay active only until the next
transition. That is, if a process is to be active over two consecutive states,
it must be activated prior to entering both states and, hence, processes do
not need explicit deactivations. Once activated a process, i.e. its primitive
children, can respond to data items until the process is deactivated by the

2.6. WHY INTRODUCE ANOTHER NOTATION? 23

next transition.

Hatley and Pirbhai encourage the use of combinational machines to reduce
specification complexity. They also point out that in cases where a se-
quential machine must be used to specify a controlling mechanism, using
combinational machines to generate input for the sequential machine from
the input control flows and to generate output to processes and the envi-
ronment from the sequential machine’s output, will help in reducing the
complexity of sequential machines.

Hatley and Pirbhai’s notation also includes a number of other techniques.
Critical system timing is defined by them to be the timing observable from
outside the system, i.e. the timing between an input set and getting the
corresponding outputs (internal timing is considered a design issue). This is
specified in timing specification tables. Time (both relative and absolute) is
also available to PSPEC’s and CSPEC’s. The architecture model provides
a guide for going from the specification to a particular implementation.

2.6 Why Introduce Another Notation?

The purpose in deriving a specification for a system is to be able to write
down the complete and unambiguous operational requirements for that sys-
tem. The derived product must be useful for communication between the
groups of people involved in the development of a system, i.e. the users,
analysts, designers and implementors. In order to be useful, the specifica-
tion notation must not only convey the system’s operation concisely, but it
must also result in diagrams that can be easily followed so that the required
behaviour of the system can be understood. In order to achieve this, the
notation must present clearly the data and control interfaces of the system
processes, with each other and with the system environment.

The data interfaces of the system have already been the subject of much re-
search and the successful use of Data Flow Diagrams in the data processing
industry is evidence for the fact that, to present the data interfaces within a
system, the notation must show the data exchanged by the system processes
and the data stored by the system. These are abstracted in data flows and
data stores in Data Flow Diagrams. Both of the above notations follow the
established conventions of data interfaces in Data Flow Diagrams.

The motivation for creating a new notation stems from the fact that data
flow diagrams are unsuitable for modelling the control structure within a
system. To present a concise and easy to follow specification of the con-
trol structure of a system, it is necessary to be able to specify two kinds of
control: control of groups of processes and control of individual (leaf) pro-
cesses. The notation must, therefore, be able to show clearly the subdivision
of a system into process groups (subsystems), how each such subsystem is

24 CHAPTER 2. BACKGROUND

enabled and disabled, and how each individual process is triggered for op-
eration.

Two notations based on DFD’s have been outlined above, but neither quite
reaches the goals outlined here. Although there are notational differences
between them [WK87, BJKW88], they have a common approach to spec-
ifying control over groups of processes: they both use a finite automaton
model for this purpose. A finite automaton can only be in one state at any
time, i.e. it is inherently a sequential machine (the term “finite automaton”
is used here to refer to sequential machines such as those based on the Mealy
and Moore models [TB73, Gil62, HU79]).

There are several disadvantages to this kind of notation. First, a sequential
model of control may force some unnecessary sequential behaviour into a
system specification. Concurrent computations are not expressed naturally
by an FSM [CDK85, Har87, HLN+88]. The sequentiality inherent in an
automaton model means that events can only be treated one at a time. A
number of concurrent events may, as a result, have to be serialised in order
to model them in an FSM. Such a serialised response may not be a part
of the required system behaviour, and may only be included because the
specification technique is incapable of modelling the concurrent events.

Second, finite automata notations are susceptible to combinatorial explosion
in the number of states [Har87, Mir89]. For example, the behaviour of some
(sub)systems may require a change of the system state after the occurrence
of a number of events. If these events can occur in an arbitrary order, the
number of states between the initial and final (system) states of a finite
state machine representation will quickly increase so as to require at best
an unreadable, and at worst an unmanageable, diagram.

Third, the only way to specify concurrent behaviour in any part of the
system is to have multiple processes enabled in some states. These are
specified on transition action labels of STD’s and process activation tables
in the above notations. Neither the number of processes enabled, nor the
behaviour change caused by an event at a hierarchy level, can be read di-
rectly from Ward and Mellor Schema or Hatley and Pirbhai Control Flow
Diagrams. In the transformation schema this information is given in the
state transition diagram or table, but the number of enabled processes in
a state cannot be realised just by looking at the current state of the sys-
tem. It is necessary to look at previous states to see which processes were
already enabled prior to entering the new state. The subsystem control
picture is even hazier in Hatley and Pirbhai’s notation. Such information is
divided between the CFD, which separates the data driven processes from
the others, and the CSPEC, which gives the enabling information for the
latter. A process activation table gives the list of active processes in each
state (processes not controlled by the CSPEC are permanently enabled).
Therefore, it is not easy to deduce how each group of processes is enabled
and disabled in either notation.

2.6. WHY INTROD UCE ANOTHER NOTATION? 25

Although a variety of extensions to finite state machines, which allevi-
ate some of the above problems, have been proposed for use in specifying
telephone switching systems [CDK85, Zav85a, CCI84, RS82, McF82], the
design of reactive systems [Har87, HLN+88, Har88, HPSS87], the design
of weapon systems [Alf77, Alf85], general software specification and de-
sign [Wil77, Den77, Hol87, Sal76, Tay80], and specification of communica-
tion protocols [BZ83], these extensions cannot easily be used in conjunction
with Data Flow Diagrams.

Furthermore, it is not immediately apparent from the diagrams, produced
using either of the notations above, when a leaf process fires, i.e. when it
is activated to perform its task. This can only be deduced after looking
at a number of diagrams and text descriptions. This information can be
found more easily in the transformation schema because it restricts each
data driven process to a single active data input. Once enabled, such a
process is driven by its single active input. Processes with no active inputs
are triggered by control transformations. The triggering agent for each leaf
process has to be extracted from its PSPEC, or from activations tables in
Hatley and Pirbhai’s specifications. A diagram, such as a schema or a CFD,
which is intended to show the flow of control through the system, should
show clearly when, and by what agent, each leaf process fires, without any
need to consult other diagrams or text.

There are other less important drawbacks to these notations. Since all the
control at any particular schema must go through the control transforma-
tions of that schema, the resulting diagrams can get very cluttered with
event exchanges between control and data transformations. The decision
to remove redundancy in diagrams has lead Hatley and Pirbhai to aban-
don the convention of showing a data store at every level it is referenced.
A data flow inherited from a store is instead labelled with the data store
name. Since data flows from stores cannot provide active input, i.e. they
cannot trigger the receiving process, this convention may introduce a little
(unintentional) ambiguity into the diagrams. An inherited store flow will
look like an active flow, especially several levels below where the store is
placed, since it is likely the diagram reader has forgotten where this flow
is from. This problem may be worsened since triggering information is not
included on any of the diagrams produced according to Hatley and Pirbhai’s
notation.

Therefore, it is clear that a specification notation suitable for use in deriving
specifications for the class of systems which include concurrency, and whose
control structure is dependent on events as well as data, should not be
based on finite automata. A notation should also enable the reader to
grasp the system control structure by means of a simple walk through the
diagram hierarchy. The reader needs to be able to see how each subsystem
is enabled/disabled and how each leaf process is fired for execution. To
achieve this, a notation must show both the data and control interfaces of a

26 CHAPTER 2. BACKGROUND

system concisely and in a way that is easy to follow. A new notation which
satisfies these requirements, and attempts to overcome the shortcomings of
the two notations outlined in this chapter, is introduced in the next chapter.

Chapter 3

The New Notation

3.1 Introduction

The previous chapter outlined the need for an extended Data Flow Diagram
based notation which overcomes the deficiencies of two of the best known
notations currently used in industry. The intention of the work presented
here is to provide a notation which clearly shows [NS089, NSO90]:

• all stored data,

• all data interfaces to processes,

• the division into subsystems which may be enabled and disabled sep-
arately,

• the conditions for enablement and disablement of each subsystem,

• all processes down to the level of leaf (or atomic) processes, and

• the order in which processes are required to fire.

To these ends the flows of data and events through the system are separated
into two diagrams. At each hierarchy level, a Data Flow Diagram shows
the data interfaces of the processes at that level. The corresponding Event
Flow Diagram (EFD) shows not only the event interfaces of processes, but
specially the firing agent for each leaf process. A third special diagram,
named Subsystem Control Diagram (SCD), is used to show enabling and
disabling of processes (subsystems) at levels where such high level control
is part of the operational requirements of the specified system. Minispecs
describe the operations of processes at the leaves of the system process tree,
and an event dictionary is included, to hold information on the events in
the specification, along with the data dictionary.

27

28 CHAPTER 3. THE NEW NOTATION

In the following sections each of these diagrams is considered in more detail.
The first sections give a brief description of the symbols used in each of the
three diagrams. The sections that follow give a worked example in order to
demonstrate the use of these symbols. The final section outlines an informal
set of rules for drawing the diagrams in the new notation.

3.2 Symbols Of The Notation

The symbols for DFD’s, EFD’s and SCD’s are described in the following
sections.

3.2.1 Data Flow Diagrams

The DFD’s in the proposed notation follow the conventions of traditional
Data Flow Diagrams with some minor extensions. The first of these is an
extension to data flows similar to the data flow extensions of Ward and
Mellor [WM86]. The new data flow constructs show data divisions, merges,
and copies. These are shown in figure 3.1.

"Z" splits into or merges from
its components, "X" and "Y"

Figure 3.1: Data Flows

The interpretation of each data flow is determined by its labelling, as indi-
cated by the annotations on the diagram.

A more significant extension is the distinction between atomic and higher
level process symbols. Experience has shown that it is quite cumbersome to
identify atomic processes if they have the same pictorial representation as
other processes. This is particularly the case for systems with large specifi-
cations. In such specifications, it is difficult to identify atomic processes, i.e.
those whose operations are not described by a (lower level) network of pro-
cesses and stores, without looking further down the hierarchy of diagrams.

In order to make the diagram hierarchy instantly comprehensible, atomic
processes are shown with a double circle symbol. These are the processes
that have an associated minispec. The symbols for processes are shown
along with the remaining symbols of our DFD’s in figure 3.2. DeMarco style
DFD symbols for environmental entities the system interacts with, called

"X" flows from left to right.

X

“X" flows both ways "X" is copies to or merged
on the arc. from the branches.

3.2. SYMBOLS OF THE NOTATION 29

sources and sinks, and symbols for data repositories, called data stores, are
retained.

Current
Stock

data
store

Figure 3.2: Other DFD Symbols

Data Flow Diagrams in this notation show the data interfaces of system
processes. These include the data exchanged between processes, the data
exchanged between processes and their environment, and stored data inter-
faces .

Change)
Prices i

[7 Print j]
\V Report J

Pump

source/sink— C/
process Atomic

process

3.2.2 Event Flow Diagrams

There are two reasons for showing data and event flow on separate diagrams.
The first is clarity. Including event flow information on DFD’s can result
in cluttered diagrams, which are difficult to read and comprehend. One of
the major incentives for using diagrammatic specification techniques is the
effective communication of the specifications to others. Adding event flow
information to DFD’s degrades their clarity, and hence defeats one of their
original purposes.

Second, the ability to look at the two (data and event) types of process
interface is an invaluable analysis tool. By separating the two, they can be
studied in isolation or side by side.

For these reasons, process event interfaces are shown on Event Flow Dia-
grams. The symbols used on EFD’s are shown in figure 3.3.

Dashed arcs are used to represent the flow of events into or out of processes.
These are abstractions of inputs to processes that, unlike inputs carried on
data flows, have no content. An event usually indicates the occurrence
of some happening within or outside the system. These include events
resulting from external and internal data conditions.

Processes, on EFD’s, are represented by dashed circles. They show the
event interfaces of system processes. Event stores can also appear on EFD’s.
These contain control state information. Research has shown that the oc-
currence of some events may need to be recorded in order for a system’s
processes to be able to react to them at a later stage of system operation.
These are recorded in event stores, in the form of boolean flags or integer
counts.

30 CHAPTER 3. THE NEW NOTATION

i ^
I Change i

Prices /

process

Event Flows

Report / /
\'N, , / /

Atomic
process

Pump

source/sink

Pump
Idle

Event
Store

Figure 3.3: Event Flow Diagram Symbols

Like data flows, event flows can also be merged or copied, but the inter-
pretation of such flows is different. Since an event is a singular entity and
cannot be split into parts; there is no equivalent for a split data flow in the
event flow notation. A merged event indicates an or of the events merged,
and the branches of a copied event flow can be renamed (relabelled) to suit
the purpose of the event.

The remaining event flow construct of figure 3.3, the vertical bar, is used
to represent synchronisation of a number of events. Synchronisation of
independent activities is an important part of real-time systems operation,
which is why synchronisation is given a distinct symbol in this notation: a
straight solid line.

Event Flow Diagrams show the event interfaces of system processes. This
includes stored events, the events exchanged between the system processes
and between those processes and the system environment. In particular,
they show the firing event for each atomic process on the diagram.

3.2.3 Subsystem Control Diagrams

Two types of control were identified in the previous chapter: control over
groups of processes and control over individual atomic processes. The EFD
shows only the control or sequencing of atomic processes. The other type
of control, which is concerned with streams of data and events (i.e. the
enabling/disabling of process groups (subsystems)) is shown on Subsystem
Control Diagrams (SCD). A DFD/EFD process is shown by a roundangle
(a rectangle with rounded corners) on the corresponding SCD. Events are
again shown with dashed symbols but, to distinguish between an EFD and
SCD, only straight lines are used. Enabling transitions enter the subsys-
tem symbol from the left and those disabling it emerge from its right hand
side. There are three types of enablement/disablement: Enable/Halt, En-

3.3. A WORKED EXAMPLE 31

able/Finish, and Resume/Suspend (These are discussed in more detail be-
low). The end of each transition connected to a subsystem roundangle is an-
notated by a letter in a circle to indicate the type of enablement/disablement
imposed on the subsystem. SCD symbols are shown on figure 3.4.

f 1 >
Maintain

, Stock ,

© ®
Enable/Halt

© ©
Enable/Finish

© ©
Resume/suspend

Subsystem Transitions Enablement/Disablemet Types

Figure 3.4: Subsystem Control Diagram Symbols

Subsystem Control Diagrams are used to show control over groups of system
processes. They show how each process group is enabled and disabled.

3.3 A Worked Example

In order to show how the above symbols are used to form each of the dia-
grams and what role the diagrams play in a hierarchical specification of a
system, a worked example is given in the sections below. Although the ex-
ample is small in size, it includes most features of the notation, which is why
it was chosen from the set of example specifications given in Appendix A.

3.3.1 The Petrol Station: System Requirements

The following describes the day to day operation of a petrol station. The
petrol station is equipped with a number of pumps. Each pump, once
enabled, is able to deliver petrol at several grades. Each grade of petrol is
stored in a separate tank on site. An attendant is responsible for looking
after the smooth operation of the station. He has a console in front of him
which displays information about the pumps and tanks. Each pump is also
equipped with a display which, during delivery, shows the selected grade,
the price of that grade per litre, the amount of petrol delivered so far, and
the cost of the delivered petrol.

To get petrol, a customer drives up to a pump and presses a grade selection
button. A bell sounds on the attendant’s console and a light corresponding
to the pump is lit. The attendant enables the pump by pressing the button
for the pump. Delivery of petrol is then delegated to the pump. It will

32 CHAPTER 3. THE NEW NOTATION

commence when the customer presses the delivery lever. The pump display
is constantly updated during delivery.

When the customer has acquired sufficient fuel, (s)he replaces the delivery
nozzle. The pump will again warn the attendant with the bell and light. It
also sends the details of the transaction to the system. Once the customer
has paid for the petrol, the attendant presses the pump button again. If
a second customer is waiting for service, the pump is also enabled by that
button press. In order to keep paper costs to a minimum, it is company
policy to issue receipts to customers only on request.

The console displays the completed transactions for every pump. If the
stock level for any grade falls below a threshold value, the attendant is
warned by a light on his console.

Deliveries are made both on a regular basis and on demand. When a delivery
tanker arrives, the attendant presses a delivery button on the console. The
ongoing deliveries are completed, but no further pump enablement is allowed
until the delivery is complete. Once complete, the details of the delivery
are entered via the console.

When the price of any petrol grade changes a supervisor will visit the station
to alter that grade’s price. For security reasons, the supervisor must first
enter a preset code before (s)he is allowed to make the changes. Once the
code is validated, the supervisor is instructed to commence entering the
price changes. The details of price changes are forwarded to the pumps
which change grade prices accordingly.

Finally, sales and stock reports are produced on demand by either the at-
tendant or a company supervisor. A computer system is to be installed in
the petrol station to help with its day to day operation.

3.3.2 The Petrol Station: Specification

The System Environment

The presentation of a derived specification in the notation described in this
thesis follows in the footsteps of its predecessors by using an incremental
approach which employs a hierarchical set of diagrams to reveal increasing
levels of processing detail for a system. It starts by showing the system
interface with its environment. Like other levels of the diagram hierarchy,
this is divided into two views: the data interface and the event interface.
These are shown on the context diagram, figure 3.5.

The context diagram is the only place where system data and event ex-
changes with the environment are shown directly. For this reason, rect-
angular symbols representing environmental entities appear only on this
diagram. The data and events exchanged between the system and these

3.3. A WORKED EXAMPLE 33

Figure 3.5: Petrol Station System: Context Digram

34 CHAPTER 3. THE NEW NOTATION

entities are abstracted by data and event flows on the context diagram.

To avoid cluttering the diagram, instances of identical environmental enti-
ties are overlaid on top of each other, e.g. there are three pumps in this
specification. The data and event flows connecting the system bubble to the
rectangles representing such environmental entities are, by inference, also
duplicated. Where such duplication cannot be inferred from the diagram,
a number may be placed on the flow to indicate its multiplicity. This will
further help in keeping the diagram less cluttered with unnecessary detail.
For example, the data flow “Transaction Display” and the event flow “Bell”
have three instances each.

Only one other feature of figure 3.5 remains to be explained: the event flows
labelled with parenthesised names. Ward and Mellor [WM86] identified two
types of data input to a system: time-continuous and time-discrete data.
The former are input data whose value varies over time, e.g. inputs from
temperature or pressure transducers; the latter are data that are available
at discrete points in time. The two types of data are also distinguished
here. These are called latched data, i.e. input data whose value is updated
from time to time and can be inspected when required-e.g. temperature or
pressure - and active data, which is accompanied by an implied event, and is
processed on arrival. This distinction is quite important when determining
the firing agent, explained below, for an atomic process.

Output data flows may also be active, i.e. carry implicit events, indicating
that the output data should be processed by the receiving agent when it
occurs. Output data flows which do not carry implicit events are latched for
the recipient. Since the mechanisms through which this latching is achieved
depend on the capabilities of the devices used in the final implementation,
they are left to the system design stage. In figure 3.5, the “Receipt” is
processed by the “Receipt Printer” as soon as it is output, whereas “Trans-
action Display” is to be latched by the console display unit.

The implicit event carried by a piece of active data is abstracted by an event
flow labelled with the parenthesised name of the corresponding data flow.

The First Division

On the next diagram level, the first division of the system into processes is
shown. These are the major subsystems that make up the overall operation
of the whole system. For the example system considered here, these are sub-
systems for monitoring the operation of each pump, effecting price changes,
maintaining station stock, and printing reports, as shown in figure 3.6.

Note that the overlaying technique for instances of identical entities is again
used here to avoid diagram cluttering; there are three instances of the pro-
cess “Monitor Pump Operation” , one for each pump. The same convention
is followed for repetition of stores. Figure 3.7, which is part of the Bottling

3.3. A WORKED EXAMPLE 35

(Receipt) \ Light / /jr
L&ht \ On / / Be„

\ Off \ /

S e rv ic e
Request

R ece ip t
Request

(Transaction
Details)

\ 4^-—r—
V 0 '\XN
/ \ \ \

' 'J M o n ito r
] „ Punp jl!

— i O p e ra tio n /

Take
Stock \

(Code) (Price /
Changes) /

/
\

V 2 V
I Change)

Prices) v Prices ¡ s '
v y

(New Code
V e r i f i e d

.1

; Ma in ta in)
\ Stock

Stock T
Delivery

Complete
(Stock

Delivery)

/ ' (Report)y

!{/ Print ¡»-------- —
Report j j (Report

__ y Request)

Figure 3.6: Petrol Station System (DFD/EFD)

36 CHAPTER 3. THE NEW NOTATION

System exercise in Appendix A, illustrates this. Again, the flows entering
and emerging from repeated entities are, by inference, duplicated. Note
that, when processing elements, both those inside and outside the system,
are connected together in this way, there must be a one to one correspon-
dence between the connected nodes, i.e. there must be the same number
connected to either end(s) of the flow(s). In the petrol station exercise,
for example, there are three pumps and three “Monitor Pump Operation”
processes. In contrast, this one to one relationship does not apply to re-
peated stores. A number of processes may write to the same store, e.g. the
pump monitoring processes all write to “Transaction History” ; and a single
process may read from any number of (repeated or otherwise) stores. In
the Bottling System, for example, “Monitor Area” reads from all the stores
shown on figure 3.7, see Appendix A.

Figure 3.7: Duplication of Identical Store Instances

The data interfaces of the processes are shown by the DFD part of the
diagram of figure 3.6. It shows the data exchanged between those processes,
the data stored by the system which is shared by those processes, as well
as the data exchanged by those processes and their environment. The DFD
follows the DeMarco balancing rules, i.e. all the data flows coming into
and going out of the diagram must also appear on its parent, the context
diagram in this case. A similar style of numbering processes is also used to
make it easier for specification readers to follow larger specifications, and to
enable the analyst to identify a process by a unique digit string. This string
can be used when labeling the diagrammatic expansion of that process or
in its minispec, e.g. see figure 3.12.

The EFD part of the diagram shows the event interfaces of the processes
which appear on the DFD. There are several points to note. First, every
process on the DFD is shadowed on the corresponding EFD. These EFD
processes do not represent new processes; they show a different aspect of
the same processes as those on the DFD. They share the names and numbers
of the shadowed DFD processes. The dashed circular symbol re-emphasises
the purpose of EFD’s: to show the event interfaces of processes.

3.3. A WORKED EXAMPLE 37

Second, any atomic process on the diagram, must have a minispec speci-
fying the algorithm for transforming its inputs to its outputs. The latter
include both data and event outputs. For example, “Print Report” outputs
“Report” in response to “Report Request” .

Third, note that an atomic process may output either data or events or both.
Examples appear in the diagrams below. This implies that a process may
be used for generating events which result from internal system conditions
such as those caused by data comparisons. In notations that use FSM’s for
control specification [WM86, HP88], this role is delegated to a collaboration
between finite state machines and processes. In those notations, a process
signals the FSM of the occurrence of an event. The FSM may generate a
corresponding event upon changing state as a result of the first event. In
the notation presented here, an atomic process may pass an event directly
to another instead of going through a third party.

Fourth, as pointed out above, implicit events carried by input data flows are
shown with an event flow labelled with the parenthesised name of the data
flow. “Report Request” and “Stock Delivery” are examples of such events.
Note that the lower arm of the latter event has been relabelled. Relabelling
event flows can be useful in portraying the purpose of the event carried by
the event flow. In this example, since entering the data for a stock delivery
indicates the end of stock delivery, the corresponding event flow has been
relabelled to reflect this fact.

Fifth, note that the only atomic process on figure 3.6, “Print Report” , has
a single event flow entering it. This is a syntactic rule for EFD atomic
processes. The discussion in the previous chapter identifies the indication
of when an atomic process is activated as a useful feature of a specification
notation. This is why the notation presented here enforces this syntactic
rule. Once a process has been identified as an atomic process with an
associated minispec, the point at which it starts must be identified. This is
abstracted by the single event flow input to the process: the process starts
execution when the event occurs.

If a process requires a number of events to occur, e.g. it needs several
pieces of data before it can start, then these events must be synchronised to
form the firing event for the process, e.g. the subprocess “Update Transac-
tion Display” of the process “Monitor Pump Operation” is fired when the
two events “Transaction Complete” and “Delivery Complete” have both
occurred, see figure 3.12. When any one of a number of events can indi-
vidually fire an atomic process, they are merged together. For example, in
figure 3.8, which is part of the Autoteller System exercise in Appendix A,
“Request Service Selection” can be fired by any of the four merged events
which make up its event flow input.

Sixth, an atomic process may output an event on completion. Such an event
may be used subsequently to fire other system processes, enable/disable pro-

38 CHAPTER 3. THE NEW NOTATION

\ D ispensing
\ Finished

Request \
Selection

Request /
Satisfied /

/ Deposit
I Accepted

/ / • 1 \\
J i Request \ \
11 Se rv ice ||
' /» S e le c t io n / /
\\N\

Figure 3.8: Merged Events

cesses, and/or signal to environmental entities. It may be copied to several
destinations. When more than one event flow emerges from an atomic pro-
cess, a choice is implied between those output events, i.e. the process may
output one of these events upon completion of its task. Instances of these
cases appear in the example specifications given in Appendix A, e.g. the
process “Monitor Ph Limit” in the Bottling System exercise is shown in
figure 3.9: on termination it may output either “Ph Out Of Range” or
“Restart” .

Q N\\,/ •0 \
Restart

! M on i to r \ r
Ì Ph i!
\ L im i t JT
V y Ph Out

Of Range

Figure 3.9: A Choice of Output Events

The balancing rules are slightly modified for EFD’s. Although all events
entering and emerging from the parent bubble must appear on its lower
network expansion (EFD or SCD), some events output by processes on
this network may not appear on the parent diagram. These are the events
used on the Subsystem Control Diagram to enable and/or disable process
groups, e.g. the two events “Restart” and “Ph Out Of Range” in the Bot-
tling System exercise are used to enable and disable subsystems on the first
Subsystem Control Diagram for the system (see Appendix A). They are not
passed onto the parent diagram. Note that an event may be connected to
the processes on the EFD, the subsystems on the SCD, or both. In the
example given here, both “Stock Delivery Complete” and “Take Stock” are

3.3. A WORKED EXAMPLE 39

On

-<D

.0
Monitor
Pump .

/Operation jP

Off

•<D
.2

Change
Prices ® - ------------ -•v

/

f .1 i
------------- (El Maintain 0) -----------------------
Stock v Stock J ya|<e stock

\ Delivery Complete

(E)
/

“ ^ 0 - Print ^
— (ÊX Report X H>

J I/

Figure 3.10: Petrol Station System (SCD)

connected to both the EFD and SCD, discussed next. All other events are
connected to EFD processes.

A Subsystem Control Diagram is used to specify control over groups of
processes at any level of granularity in the process specification. This im-
plies a rule of aggregation, with nesting of subsystems to specify elaborate
system control structures. The example here includes one level of nesting,
figures 3.10 and 3.13. The SCD for this level of the example system is shown
on figure 3.10.

Arcs entering and emerging from nodes on DFD’s and EFD’s indicate input
to and output from those nodes. The events entering and emerging from
SCD subsystems are not inputs to or outputs from those processes. These
events are like the transitions on state transition diagrams of FSM’s. The
difference is that in a SCD a number of processes may be enabled con-
currently, whereas in a STD only one state may be occupied at a time.
Transitions entering a subsystem from the left enable it. Those emerging
from its right hand side disable it. While enabled the child processes of
the subsystem respond to events. When disabled they ignore those events.
In other words, nested subsystems of a subsystem are disabled while their
parent is disabled and atomic process below a disabled subsystem ignore
firing events.

The annotated circles at the end of transitions on a SCD indicate the type of
enablement/disablement imposed on its subsystems. Three such types have
been identified. These are grouped into three pairs of enabling/disabling
events.

The first type is identified by the letters E and H in the corresponding
circles. The letter E indicates that the subsystem starts in its initial state,

40 CHAPTER 3. THE NEW NOTATION

i.e. all its atomic processes are enabled to react to firing events and its
(nested) subsystems can react to enabling/disabling events. The disabling
event, marked with the letter H, indicates that the subsystem is disabled
upon the occurrence of the event, and any ongoing work is immediately
halted. For example, all the first level subsystems of the petrol station are
enabled when the system is turned on. Turning the system off will result
in halting all system activity.

The letters E and F identify the second enablement/disablement type. The
letter E has the same interpretation as in a E/H pair. The difference be-
tween this and the first type is in the way the subsystem is disabled. The
letter F indicates that the subsystem is to finish any ongoing work before
stopping. In other words, all unprocessed (data and event) tokens in the
subsystem are dealt with before the subsystem halts, awaiting further en-
ablement. If a stock delivery commences in the middle of a report in the
petrol station system, for example, the report request is completely satis-
fied before the report printer is halted. New events are, however, ignored by
a subsystem’s processes while it is completing unfinished work during this
transition period. Further report requests are, for example, ignored while
the current report is completed by the report printer before halting.

The third type of enablement/disablement is indicated by using the letters
R and S. These are used when a subsystem is to resume from its suspended
state. The letter R annotates the enabling event to indicate that the sub-
system is to restart from its suspended state, and the letter S annotates
the disabling event to indicate the requirement to save a subsystem’s state,
so that it can return to that state when re-enabled. On system startup a
resumption event acts in the same way as an E-type enablement. Unlike the
other two types of enablement, where an enabling/disabling transition may
be connected to a subsystem without its corresponding disabling/enabling
transition (e.g. see Appendix A examples), a subsystem required to re-
sume after a particular event must have a corresponding suspension con-
dition indicated by a S type disablement. The Bottling System exercise
of Appendix B includes examples of this type of enablement/disablement,
figure 3.11.

A Subsystem Control Diagram is only shown at those levels of the sys-
tem’s process hierarchy where stream control occurs, i.e. while enabled a
subsystem processes a succession of data and event tokens input to it to
produce a series of data and event outputs. At levels where no SCD is
shown, processes can be thought of as being permanently enabled while
their parents are. It is plausible to have a Subsystem Control Diagram
at every level of the system process hierarchy, but most of these will be
unnecessary as they will only show every process on them enabled all the
time. Systems specifications without any SCD’s indicate that the specified
system’s (atomic) actions are controlled entirely by data/event inputs, and
that there is no enablement/disablement control imposed over any of its

3.3. A WORKED EXAMPLE 41

process groups (subsystems).

In addition, the processes on a SCD may not be one to one with those on
the DFD/EFD. Only processes that have enablement/disablement require-
ments are shown on the SCD. Processes not shown on the SCD for any
hierarchy level can again be assumed to be permanently enabled, e.g. see
the “Monitor Pump Operation” SCD on figure 3.13. For nested subsystems,
this (permanent) enablement applies only when the parent subsystems are
also enabled. While a subsystem is disabled, so are all its children, includ-
ing any subsystems. When a subsystem is (re)enabled, its child subsystems
can react to enabling and disabling events. Those which do not have any
control imposed on them, are enabled and disabled with their parent.

Furthermore, a subsystem may be initially enabled with its parent, but dis-
abled by subsequent events (while its parent is enabled). Such requirements
are indicated by following a convention similar to that used on state tran-
sition diagrams to show the starting state: an unlabelled vertical transition
enters the top of the subsystem symbol. Note that unlike STD’s, where
only a single state may be indicated as the starting state, any number of
subsystems may be start subsystems, i.e. enabled with their parent. For
instance, one of the Bottling System’s SCD’s indicates this requirement for
the “Maintain Vat” subsystem, figure 3.11.

\ Restart
\

r . o a
~(R' Maintain ^S)

W Vat r

Ph Out Of /
Range /

Figure 3.11: A Start Subsystem

The example SCD of figure 3.10 indicates that the whole system is enabled
by the “On” event and disabled by the “Off” event. In addition, the report
printer is disabled during stock deliveries. The latter starts by the “Take
Stock” event and ends with the “Stock Delivery Complete” event.

Note that a process group may be composed of a single process. For ex-
ample, “Print Report” makes up a degenerate subsystem which contains
a single process. This convention allows for enabling and disabling atomic
processes as well as groups of atomic processes.

The Remainder Of The Diagram Hierarchy

The levels below the first show the further subdivision of its composite
processes into networks of processes and stores. The most complex of the

42 CHAPTER 3. THE NEW NOTATION

processes in the example system are the pump monitoring processes. The
intricate operation of each pump monitor is detailed in figure 3.12.

The most notable feature of this diagram is the clear indication of the control
intensive nature of this part of the system. Three of the processes on the
DFD have no data input or output. This indicates their role as pure event
processors, i.e. those that generate events from events. Also note, unlike
Hatley and Pirbhai [HP88] but like DeMarco style DFD’s, the notation here
shows data stores at every level they are used. Here, inherited stores are
shown using a single line, rather than the parallel pair, to make it easier to
recognise them.

The EFD shows some new features of the notation. Event stores are used to
remember the occurrence of events for later use by processes. For example,
“Pending Request” stores outstanding service requests, so that they can
be serviced when the pump button is pressed. Synchronisation is used to
generate the appropriate firing events for “Update transaction History” and
“Print Receipt” , and output events are copied and relabelled to show their
purpose.

The output events of “Check Pump Status” perhaps deserve clarification.
The multiplicity of output events indicates that the process selects an event
from a choice of three. These indicate that the pump should be started-
“Start Pump” , the customer has paid-“Transaction Complete” , or both-
“End Transact.” . According to the requirements specification, the last event
should occur when a subsequent customer requests service before a previ-
ous customer has paid for his/her transaction. Since an atomic process
is restricted to a single output event (at the conclusion of its task), the
branches of the middle event flow are merged with the (destinations) of the
other two event flows to indicate that both events may be output by the
process, resulting in the peculiar output event flow constructs of “Check
Pump Status” .

Another feature of this part of the petrol station system, which may not
be immediately apparent from its EFD, is the link between the sequences
of events that are generated by the system and its environment. The EFD
is well suited for showing a sequential string of executions of a number of
(atomic) processes in the cases when the firing events (except perhaps the
starting and ending events) are generated within the system. It can be
noted that an event is generated as a result of another when the first is the
input and the second is the output event of an atomic process. If the output
event is used to subsequently fire another process, the output event of that
process can be linked to the original input event.

When part of a sequence of actions lies outside the system, however, the cor-
respondence between the events involved is not immediately obvious from
the EFD. In figure 3.12, for example, “Service Request” causes the console
bell and light, which will eventually result in a button press from the sta-

3.3. A WORKED EXAMPLE 43

T ransact ion
D e t a i l s T ransac t ion

H i s t o ry T ransac t ion

Service / '
Request / / ,0

— "¡/Request ¡;
/' ' ' ' S e r v ic e ; ;/ A //

Bell

Start
Pump

/A '
/ / ' ? V \

i Start
it The l ì

i w Pump ------------
/

(Transaction
Details)

Light ,
Off

"yY J \\
Record

T ra nsa ct i on ¡j

Pending
Request

Enablex \

Pump
Button

Pressed /

XJEna PumB ‘ 7 ------- '
Transact. Transaction Delivery

/ / V ' Complete Complete y P \ i ¡nht"""V / Check \>_________ ------------------------------ v / \ *-¿3™
.--»It Pump j j / / \ un

\ \ Status H V " "

/ " V
Bell

__1__
Pump
Idle /7\:/ \

l (Update \\
! Transaction]__

L ight
Off

\ \ history J j yransactjon
Recorded

Receipt
Request /

X 4

(Receipt)

/ ' .5
Ü Print \\

"J Rece ipt H

Figure 3.12: .0 Monitor Pump Operation (DFD/EFD)

44 CHAPTER 3. THE NEW NOTATION

tion attendant. That may, in turn, result in a pump enablement, which will
prompt the pump into action. The pump will subsequently forward “Trans-
action Details” , which will cause a further bell and light on the console. The
light is eventually turned off when the attendant presses the pump button a
second time, and the sequence restarts. This sequence indicates a dialogue
between the system and its environment.

The identification of dialogues is an essential part of the analysis activities
during system specification. They can provide useful guides for grouping of
processes under subsystems and for design and implementation strategies
(see the notes under Methodology and on design and implementation in the
next chapter). This implies that a useful extension to the notation would
allow dialogues to be identifiable on EFD’s. EFD’s already have several
distinct symbols and convey a large amount of information. Adding extra
symbols or annotations to indicate dialogues may clutter them beyond a
comfortably understandable form. The event dictionary is a more suitable
place to indicate event dependencies of all types, including conversation
sequences. We suggest the Event Dictionary for the petrol station which
appears as part of its specification in Appendix B.

All the processes of figure 3.12 are atomic and so require no further expan-
sion into another diagram. The only process on this diagram that requires
subsystem control is the pump enabling process, “Start The Pump” . Like
the report printer, it must be disabled during stock deliveries. It also has
the same enablement/disablement type as the report printer: once “Start
The Pump” has been fired, it will not halt until it has enabled the pump,
even if it should become disabled. This is shown on the SCD for “Monitor
Pump Operation” , figure 3.13.

Stock
Delivery

\ Complete

Start
The

Pump

Take
Stock /

/

Figure 3.13: .0 Monitor Pump Operation (SCD)

Note that since “Start The Pump” is the only process requiring subsystem
control, it is the only process that appears on the corresponding SCD.

The detailed specifications of the other two processes of figure 3.6 are shown
on figure 3.14.

Note the use of the timing process “Clock” used by “Monitor Stock” . As
pointed out above every atomic process must have a single firing event.
Since “Monitor Stock” does not have any active data inputs (its only data

3.3. A WORKED EXAMPLE 45

/ . o Ny
¡ C lo c k)j

Tick

. 1
II M o n it o r ’
\\ S to c k ;

H R e c o rd
ll S to c k ;j
V, D e I i v e r y ¡i

(Stock \
Delivery) \

C ode Prices

(New
Prices)

(Code)
■\ C ode. 0 Verified
| Verify V
\ C ode !!

>
/ . 1

'.f A c c e p t
il P r i c e ¡I
\ C h a n g e s //
V J '

(Price
Changes)

Figure 3.14: .1 Maintain Stock (Above) and .2 Change Prices (Below)

46 CHAPTER 3. THE NEW NOTATION

inputs come from stores), a firing event must be provided by either the
process’s environment or a system process. In this case the process runs
on a regular basis to check stock levels. A timing process is, therefore,
provided to fire the process. Note that this approach is different to that
taken by many other notations, where time is either available to all system
processes or it is an environment derived quantity. The approach taken
here makes more explicit the temporal events to which a particular process
has to respond by considering time a system derived quantity, resulting in
clearer specifications which are easy to follow (see also the section on timing
requirements in the next chapter).

Other example specifications are given in Appendix A.

3.4 Diagram Rules

The example specification above illustrates how the symbols of the notation
are used to form DFD’s, EFD’s, and SCD’s. Many of the rules for drawing
each diagram were given mixed in the discussion. This section gives the full
set of rules for drawing these diagrams. A more formal discussion of these
rules is given in the following chapter.

A specification consists of a Context Diagram and a hierarchical set of
diagram levels. A Context Diagram consists of the Context Data Flow
Diagram and the Context Event Flow Diagram. It is labelled with “Context
Diagram” and the system process name.

A Context DFD consists of a (non-empty) set of system data sources and
sinks (terminators), which are connected to the system process by data
flows. A context data flow cannot connect either two terminators or a node
to itself. Conversely, every context data flow connects the system process
to a data terminator, and every data terminator is connected to the system
process. All the data flows of the Context DFD appear on its child diagram.
Every symbol on the Context DFD is named and all names are unique.

A Context EFD consists of a (non-empty) set of system event sources and
sinks (terminators), which are connected to the system process by event
flows. A context event flow cannot connect either two terminators or a
node to itself. Conversely, every context event flow connects the system
process to an event terminator, and every event terminator is connected
to the system process. All the event flows of the Context EFD appear on
its child. Every symbol on the Context EFD is named and all names are
unique.

Each diagram level consists of a Data Flow Diagram, an Event Flow Dia-
gram and an optional Subsystem Control Diagram. It is labelled with the
process name of its parent. There is one and only one diagram in the set of
diagram levels labelled with the system process name.

3.5. SUMMARY 47

A DFD consists of a (non-empty) set of processes and a set of data stores
connected together by a set of data flows. A data flow cannot directly
connect two data stores. Nor can it connect a node to itself. Every inherited
data store and its connections to the processes of a DFD are connected to
the DFD’s parent process. Similarly, every inherited data flow on a DFD is
connected to its parent process (which can be the Context Diagram). All
the DFD symbols are uniquely named.

An EFD consists of a (non-empty) set of processes and a set of event stores
connected together by a set of event flows. An event flow cannot directly
connect two event stores. Nor can it connect an event store to itself, but
it can connect an atomic process to itself (for self perpetuating timing pro-
cesses). Every atomic process on an EFD has one and only one active input
event flow. Every inherited event store and its connections to the processes
of a EFD are connected to the EFD’s parent process. Every inherited out-
put event flow on an EFD is connected either to its parent process (which
can be the Context Diagram), or to a subsystem on the corresponding SCD.
Every inherited input event flow on an EFD is connected to its parent pro-
cess (which can be the Context Diagram). Every synchronisation symbol on
an EFD must have only one output event and more than one input event.
All the EFD symbols are uniquely named.

The process sets of the DFD and EFD for a level are identical, and every
process must have at least one (data or event) input and one (data or
event) output flow. Every expandable process has an expansion in the set
of diagram levels, and every store and flow that is connected to that process
appears on its expansion.

A SCD consists of a set of subsystems (which are a subset of the processes
on the corresponding DFD/EFD). Each subsystem has a set of enabling
and disabling transitions connected to it. Each transition is labelled with
an event and an enablement/disablement type. A subsystem cannot be
enabled and disabled by the same event. Every transition on a SCD is
either connected to the SCD’s parent process, or is output from one of the
processes on the corresponding EFD.

3.5 Summary

This chapter introduced the symbols of the new notation and how each one
is used to form the three diagrams of the notation. The rules governing
the formation of these diagrams were also given. The following chapter
discusses a number of issues related to the notation.

Chapter 4

Notational Issues

4.1 Overview

The previous chapter introduced the symbols of the new notation and how
they are used to form the diagrams of the new notation. This chapter
deals with the many issues related to the new notation. Each section below
discusses one of these issues. An overall conclusion ends the chapter.

4.2 Atomic Processes

The term atomic has been used frequently in this text to refer to a process
which is a leaf of the system process hierarchy tree, i.e. a process whose
operation is not so complicated as to require further breaking up into a
subnetwork of processes and stores, but is described by a minispec. So far
no guidelines have been given which aid the analyst in identifying such a
process. This section elaborates further on our meaning of the term atomic.

Neither traditional DeMarco style DFD’s nor the direct predecessors of the
notation described here give any objective guidelines to help in deciding
when to stop expanding processes. The most widely accepted subjective
guide given by the designers of these notations and their accompanying
methodologies is that the specification of a leaf process should not exceed
half a page of A4 paper [LL87, DeM78].

This simple subjective guideline may result in the misuse of a notation and
hence in low quality specifications. Therefore, a set of objective guidelines
must be provided to help the analysts identify atomic processes. The first
of these is, we envisage, that each atomic process, once fired by its event
input, will run to complete its task. A further event is required to re-fire
the process for a subsequent execution. This implies that an atomic process
must receive all its active data at the start of its execution cycle: it cannot
receive data, other than what it reads from stores, during its execution.

49

50 CHAPTER 4. NOTATIONAL ISSUES

This restriction will help in clearly identifying what data is required before
a process can start, which in turn indicates when a process can be started.
Moreover, all outputs, except those to stores, from an atomic process occur
at the end of its execution. In other words, the (active) outputs of the
process are not available until the conclusion of its task. This makes clear
the sequencing that is implied by the exchange of data (or events) by atomic
processes. A similar approach is taken in [DT86], where traditional DFD’s
are executed.

Furthermore, an atomic process may output an event at the conclusion of
its task. The corresponding event flow may be copied to several destina-
tions, and relabelled to indicate its purposes. An atomic process may not,
however, output multiple (distinct) events during or at the completion of its
operation. The requirement to do so is a direct indication that the process
is too complex to be atomic and must be further divided into a subnetwork
of processes and stores. In other words, a simple definition of an atomic
process may be given as one whose operation starts upon the occurrence of a
single event and concludes by outputting a single event. It has no idea what
event started it and what will be fired or enabled by its output events. This
definition is similar to that of an atomic action used in the fault tolerance
literature [AL81], where the absence of interactions in taken as a criterion
for atomicity.

Second, atomic processes are functions. In other words, each execution of
an atomic process carries no internal data from past executions, i.e. atomic
processes are stateless. If an atomic process requires information to be
carried from one execution to the next, it must store such data in a data
store outside itself. This will result in clearer specification, because the
operation of each atomic process can be studied in isolation and without
having to discover its internal state.

The above criteria can be used as useful guidelines by an analyst when trying
to distinguish between atomic and composite processes. Clearer specifica-
tions will result because the analyst is now able to identify atomic processes
using objective rather than subjective or rule of thumb criteria from past
experience.

4.3 Timing Requirements

Any notation aimed at specifying reactive systems must cater for the specifi-
cation of the system timing requirements. The latter fall into two categories.
The first encompasses timings that are taken relative to a clock. Examples
include system activities that must take place at regular time intervals and
those that must be performed at particular points in time. The second type
of timing requirement includes system response times, i.e. the time taken
by the system to produce an output set from a given input set.

4.4. A GRAPHICAL LANGUAGE 51

The first type of timing occurs in a variety of systems and has been dealt
with in a variety of fashions by specification notations. The existence of
a conceptual clock and the availability of its current value to all system
processes has, for example, been used by Hatley and Pirbhai [HP88]. One of
the aims in producing a new specification notation was to produce one which
results in clear specifications. In achieving this aim, timing requirements
of this kind can best be specified by using special self perpetuating timing
processes such as the “Clock” process in stock maintenance subsystem in
the Petrol Station System. These processes provide firing events for those
atomic processes which must execute at regular or particular time slots.
When a number of processes run with the same regularity, the same timing
process can drive them, e.g. see the Bottle Filling example in Appendix A.
In contrast, if timing requirements of a group of processes differ, separate
timing processes can be used, e.g. see the Patient Monitoring System in
Appendix A.
The second type of timing is concerned with system response. Timing
constraints of this kind vary from those desirable for efficient system perfor-
mance to those critical for correct system operation. Since specification is
concerned with detailing what a system must do, not how it is to achieve it,
performance constraints can only be stated along with a specification. The
means of achieving them depend entirely on the system’s implementation
environment, and are the responsibility of system designers during system
design and implementation. To achieve them, system designers must be
aware of such requirements. They can be stated in a tabular format similar
to that used by Hatley and Pirbhai [HP88], and accompany the diagram
hierarchy with other non-functional requirements such as fault tolerance.

4.4 A Graphical Language

Derivation of a system specification in the new notation can be viewed as a
programming activity. The control constructs of EFD’s are very similar to
those used in (imperative) programming languages, e.g. sequence, selection,
and iteration. The grains of the program are, however, more coarse than the
statements of high level programming languages. The atomic process is the
smallest grain of the program in the notation. In other words, specification
is programming in the large. The syntax and semantics of the new notation,
which is the language of this activity, must therefore, be more formally
described.

4.4.1 Language Syntax

The rules for forming syntactically correct diagrams were given informally
at the end of the previous chapter. This section briefly outlines a formal

52 CHAPTER 4. NOTATIONAL ISSUES

approach to describing the language syntax.

The syntactic rules for the graphical language can be described by using sets
of tuples. This is a common approach for describing graphical notations.
Petri nets are, for example, often described in this way. This approach gives
an abstract syntax for the language which can form the basis for checking
the syntactic validity of a set of diagrams.

The sets alone are not sufficient to describe the language completely. Unlike
petri nets (described later), giving the set of components for a particular
diagram is not sufficient. There are additional rules that govern how dia-
grams can be formed. These relate to naming, numbering and balancing the
diagrams. For example, nodes on each diagram must be uniquely named,
processes must be uniquely numbered, and all inherited data flows on a
DFD must be connected to their parent process. These additional rules can
be formally stated by a set of logic predicates.

The set description and the additional rules are given in Appendix C. This
appendix also describes an alternative textual language for describing a set
of diagrams in the new notation. This language can be used as an alternative
(textual) interface for storing and analysing a specification. The syntactic
rules for forming the sentences of this language and an example specification
are also given in Appendix C.

4.4.2 Language Semantics

Since real-time systems are event driven, the interpretation of the control
parts of a specification are of the most interest to system developers. The
operational semantics of a given specification should, therefore, be formally
described.

The dynamic behaviour of a system is described by its state at any given
moment in time. This is the collective state of all its subsystems and atomic
processes at that moment. One way of describing this state is by using a
finite state machine based model, where each state of the machine is a com-
pound state composed of the collective state of the system components. As
pointed out in the Chapter 2, because of their inherent sequentiality, concur-
rent behaviour is not naturally expressed by FSM models. An alternative
model is required that lends itself more naturally to modelling concurrent
system behaviour.

Petri Nets, EFD’s and SCD’s

Petri nets have been used extensively for describing the concurrent be-
haviour of a variety of systems. They are described in detail in the following
chapter. This section describes the investigation which was undertaken to
evaluate the mapping of Event Flow Diagrams onto petri nets so that the

4.4. A GRAPHICAL LANGUAGE 53

established body of petri-net formal theory can be used as a semantics for
the control parts of specifications.

An atomic process can be represented by a transition in a petri net. Its
input and output events are represented by the input and output places of
this transition. A system event source is represented by a place that is not
the output place for any of the net’s transitions. Conversely, an event sink
is represented by a place that is not an input place for any of the net’s
transitions. The occurrence of an event is indicated by placing a token
in the place that represents it. Multiple connections between places and
transitions can be used when modelling the various event flows of EFD’s.
Figure 4.1 illustrates these mappings.

A transition in an ordinary petri net fires when there are sufficient tokens
in its input places. Upon firing it removes the enabling tokens and deposits
a token per connection into each of its output places. The only way to
represent a choice in such a network is to introduce a conflict between the
receiving transitions, figure 4.2. This does not reflect a true choice since
the execution path followed depends on which of the receiving transitions is
chosen for firing. Extended notations exist which allow the representation
of choice on petri net graphs [Pet81, Bae73]. In figure 4.1 choice is shown
by a ® symbol. Output disjuncts, representing the placement of takens in
a subset of a transition’s output places, is also shown using this symbol.

The transition representation of a process fires when its input place has a
token in it, i.e. when the firing event for the process occurs, but a process
can only respond to firing events if it is enabled. In other words, the control
picture contained in Subsystem Control Diagrams must be incorporated
into the petri net model. Dummy transitions and places are used to remove
firing tokens so that a transition cannot fire when the corresponding process
is disabled. For example, the petri net for two processes, PI and P2, which
are fired by unique events, El and E2, but enabled and disabled by common
events, E3 and E4, is shown in figure 4.3. Tokens representing new firing
events for a disabled atomic process must be absorbed, until it is re-enabled.

Subsystems can also have higher level control imposed on them. The en-
abling tokens for the processes in such subsystems must again be prevented
from firing the enabling transition until the subsystem is itself enabled.
The hierarchical control structure specified by a set of EFD’s/SCD ’s can
be derived by introducing dummy transitions and places for each SCD in
the hierarchy. For example, if the (higher level) process containing the pro-
cesses, PI and P2, of figure 4.3 is enabled and disabled by two events, E5
and E6, the subnet of figure 4.4 is added to the front of the petri net of
figure 4.3.

The initial marking of places in a derived net determines which parts of the
net are initially enabled to respond to external events. This marking can
be derived from Subsystem Control Diagrams (initially enabled subsystems

54 CHAPTER 4. NOTATIONAL ISSUES

o — \— o --- 1
Sequence

Figure 4.1: Mapping The Event Flows of EFD’s to Petri (Sub)nets

4.4. A GRAPHICAL LANGUAGE 55

Figure 4.2: Conflict Between ti, t2 and t3

include those enabled with their parent, i.e. those processes shown on the
DFD/EFD pair but not on the SCD, and those on the SCD which have
vertical unlabelled directed lines entering them).

Using the above mappings in an extended petri net model (which allows
input and output disjuncts for transitions) a petri net equivalent can be
derived for a set of specification diagrams. EFD’s are therefore a form of
petri net, but this flat petri net equivalent has a number of drawbacks.

It can be observed from the above two simple mappings that the resulting
petri net, for anything but the most trivial of systems, will be very large.
It may be possible to arrive at a more compact net for a system by using a
petri net variant which attempts to reduce the size of the net, e.g. coloured
petri nets [Jen81]. In addition, to lessen the sudden expansion of the net
in cases where nested control is prominent, an alternative approach can
be taken. Rather than using dummy transitions and places to construct a
net equivalent for a leveled set of EFD/SCD’s, a simpler net equivalent of
atomic processes can be constructed. This net can then be allowed to grow
and shrink as subsystems are enabled and disabled. However, the petri net
for very large systems may still result in a net which is a jumble of places,
transitions and arcs. Because of topological restrictions, the network of
circles and bars for such a net cannot be understood easily. The resulting
network can hence only be useful in its mathematical representation.

The worst drawback of a petri net model is the loss of information. Since
petri nets can only reflect the control view for a system effectively, the
data processing part of a system can not easily be represented by a petri
net model. Although a process can be represented by a transition, and its
firing is modelled by the firing of that transition, the actual operations on
the input which result in the output from that process cannot effectively be
modelled by a petri net. Since the data values moving around a system affect
its operational behaviour, they must play a part in the control flow view of
that system. This is reflected in the decision to show the implicit control
carried by data flows on EFD’s. The inability to show data processing

56 CHAPTER 4. NOTATIONAL ISSUES

Figure 4.3: An Example Petri Net Mapping for Two Processes

aspects of systems results in a loss of information when using a petri net
model for the control flow through that system. Significantly, many choices
as to which execution strand to follow through a system are made based
on the value of some piece of data. Since this type of choice cannot easily
be represented in the petri net model, the mechanisms by which the choice
is made are lost when going from a DFD/EFD/SCD view to a petri net
model.

Hence, the petri-net model itself is not as usable as EFD’s, but it is com-
forting to be able to rely on petri net semantics.

4.5 Animation and Prototyping

User participation throughout system development can contribute enor-
mously to the successful completion of that project. User involvement in
validating a specification is not only desirable in achieving a project’s ob-
jectives, it is also of great value to project managers in recognising the mile-
stones reached during specification, as well as determining the contractual
obligations fulfilled by reaching those milestones.

The ability to analyse various aspects of a partially or totally derived spec-
ification is, therefore, a great asset to analysts while developing a speci-
fication. One way to carry out such analysis is by simulating or animat-
ing the behaviour of a particular part of the system, before its full im-
plementation. This has been referred to by many authors as rapid pro-

4.5. ANIMATION AND PROTOTYPING 57

Figure 4.4: Petri Subnet for Subsystem Enablement/Disablement

totyping [BM85, KN88, FLL86]. Such animations can be used as part of
the demonstration to system users, in order to guarantee that the derived
specification conforms to their requirements. The alterations prompted at
this stage are, of course, much cheaper to organise than those to the fully
implemented system.

Since a system’s control flow is completely captured by the Event Flow and
Subsystem Control Diagrams in its specification, simulating the behaviour
of any system part is only a matter of isolating that part and analysing it
through animation. As shown above, a set of EFD/SCD’s can be mapped
onto a petri net equivalent. This net can then be used for a token like execu-
tion of (any part of) the specification. This can be achieved by first deriving
the initial marking of the net from Subsystem Control Diagrams and then
observing system behaviour while it responds to a series of interactive or
batched input events.

The drawback of using a petri net model is the loss of information. Since
petri nets can only reflect the control view for a system effectively, the
actual processing within each atomic process can not be easily represented
by a petri net model. Nevertheless, this equivalent model can be used to
study the dynamic behaviour of the system by providing stubs for atomic
processes and selecting execution strands by either prompting the user for
a choice (interactively), or picking one from a preselected list (in batched
mode).

During such animations transition firings are only useful if they are trans-
lated back to subsystem enablement/disablement and process firings for

58 CHAPTER 4. NOTATION AL ISSUES

presentation to the user. This can ideally be done as part of an automated
CASE tool (see also the section on CASE tool support in Chapter 6).

4.6 Specification Quality

It is desirable to have some criteria for judging the quality of specification
diagrams in the new notation. Since the representation of system control as-
pects is the major extension to the DFD notation, EFD’s should be subject
to such criteria. Similar criteria already exist for imperative programs, and
it was decided to attempt to derive similar ones for EFD’s. The following
sections describe the result of the investigation.

4.6.1 Background

This section gives a brief history of the theorem which defines a structured
program.

D-structures

A D-structure is a one-in one-out structure that can be recursively defined
as follows: a D-structure is either a basic action or it is constructed from
simpler D-structures each of which may be a sequence of D-structures, an
alternation structure, or an iteration structure. A basic action is one that
has one entry point and one exit point, where the steps between the entry
and exit points cannot cause a transfer of control. In an alternation struc-
ture control is transferred by taking one of a number of routes available from
the entry point to the exit point. The route taken depends on the value of a
condition and each route is a D-structure. In an iterative structure a single
route is repeatedly followed until a certain condition is satisfied. Again the
route is a D-structure.

D-structures can be represented diagrammatically as shown in figure 4.5.

Boehm and Jacopini’s Theorem

The theorem attributed to Boehm and Jacopini states that a solution to
any programming problem can be constructed by using D-structures [BJ66,
Coo67, BS72, LM81, Mil75, Har80]. In other words, for every programming
problem, there exists a solution which is entirely made up of D-structures.
Furthermore, for every program whose control structure is not made of
D-structures [Tse87a, Tse87b, Wil83], there exists an equivalent program
made up of D-structures. Such equivalent programs can be derived by
applying mechanical restructuring techniques [LM81]. A number of informal

4.6. SPECIFICATION QUALITY 59

Basic Actions

i

I
Figure 4.5: D-structure definition

and formal proofs for this theorem have been derived and presented in the
literature [LM81].

4.6.2 Well Formed Diagrams

According to the above theorem, structured programs can be constructed
from four constructs: basic actions, sequences of actions, alternative struc-
tures and iterative structures. A similar set of constructs may be identified
for EFD’s. The basic action in EFD’s is the “atomic process” . A sequence of
atomic processes is equivalent to a sequence of basic actions in D-structures.
Alternation and iteration structures can also be constructed from atomic
processes in EFD’s.

D-structures were developed to describe structured sequential programs.
There is no provision for concurrency. The basic set of constructs must,
therefore, be augmented in order to make it applicable to EFD’s by adding
a concurrency construct to the basic set. Note that since an atomic process
does not change the sequence of control by means other than using its output
event, each atomic process can be considered a one-in one-out structure in
a similar way to basic actions in D-structures.

Figure 4.6 shows the diagrammatic representation of the set of constructs
for structured EFD’s.

60 CHAPTER 4. NOTATION AL ISSUES

Alternation

Sequence

Atomic Process

//*
'(

/i/

fI
/ V >

/~\ /
Iteration / \

/ u
f

À\

il Vt

Figure 4.6: Basic Structured EFD constructs

4.6. SPECIFICATION QUALITY 61

In a similar way to the definition of structured programs (using only D-
structures), the new set of constructs can be used for definition of well-
formed diagrams. Processes on such diagrams will be restricted to having
a single input event flow and a single output event flow (multiple output
flows indicate a choice of execution threads). The elegance of Boehm and
Jacopini’s theorem results from it simplicity. This simplicity is due to the
recursive nature of the definition for a structured program. Imposing a
similar recursive definition on EFD’s produces several associated problems.

First, although atomic processes normally output an event, there are many
simple processes, such as those that clear a data store at the start of a
processing cycle, that do not output an event at the completion of their
task. The firing event for these processes is simply absorbed by the process
and plays no further part in the operation of the system. In structured
programs every strand of execution eventually emerges from its block: lines
are joined from the termination points of alternatives within the block. For
EFD’s to follow a similar convention, the EFD notation must be extended
to include earthed events emerging from such atomic processes.

Second, and most important, D-structures are defined recursively, which
implies that when checking a program to see if it is a D-structure or con-
verting one to be a D-structure, a top down stepwise strategy can be used.
The definition of well-formed diagrams cannot inherit this recursive nature
easily. This is because non-atomic processes usually have a number of input
and output event flows. To place a one-in one-out structure on intermediate
EFD processes will mean that only processes whose execution starts with a
single event and ends with the generation of a single event can be grouped
together. As a result of this, many processes which are grouped together for
other reasons, e.g. because they share common data, have to be placed in
unique groups. This will result in processes being brought up the hierarchy
levels closer to the Context Diagram.

On the other hand, a common feature of real-time systems is the domination
of control. In such systems the operations over a set of inputs starts with a
single event and ends with the resulting output(s). For systems that exhibit
this type of control domination, it may be reasonable to group processes
according to control (see also the discussion under Methodology).

Third, many threads of system execution will involve interactions between
the system and its environment. This implies that some events input to
the system from its operating environment may be as a result of an event
or data previously output to the environment. Since the diagram hierarchy
only details the interactions between system processes, such event relation-
ships cannot be derived from the diagrams. An analysis of a diagram hier-
archy to ensure it conforms to structuring rules will fail some diagrams if
such interactions are not included in the analysis. The basic need is to anal-
yse and decompose the environment to the same level as the system itself.
This forms the basis of the CORE viewpoint analysis approach [Mul84].

62 CHAPTER 4. NOTATIONAL ISSUES

However, expanding the system boundary to encompass the details of the
environmental interactions may result in large specification, parts of which
are not part of the internal workings of the system being specified.

Fourth, whereas any given program can either satisfy or fail the conditions
that prove it is a D-structure, a diagram that fails to satisfy the above for-
mation rules may still be a valid diagram. For example, if two events that
require synchronisation originate from distinct sources in the system’s en-
vironment, the resulting EFD will fail to satisfy the above requirements for
a well-formed diagram: it fails the concurrency structure. Such a synchro-
nisation may, however, be part of the system’s operational requirements.
Further examination of the event sources may reveal that the events origi-
nate from the same ultimate source. The specification boundary may also
have to be extended to include environmental processes to ensure a set of
specification diagrams conform to structuring rules.

4.6.3 Concluding Remarks

The above discussion indicates that there are difficulties in the application
of structuring theorems to event flow diagrams. The ability to judge a
derived specification and provide some measure of quality is, nonetheless,
an invaluable analysis (and management) asset.

The simplicity of Boehm and Jacopini’s theorem is a direct result of its
recursive definition. This recursive definition is possible because their con-
structs do not include a program’s interactions with its environment, i.e.
data exchange with the programs environment is not included as part of
the control flow model. Such exchanges are explicitly indicated in EFD’s
by showing the (implicit) events carried by the data exchanges between
system processes and between those processes and the system environment.
As pointed out above, a similar recursive definition for EFD’s may result in
difficulties when deriving and presenting system specifications.

Furthermore, a system execution thread may include some exchanges with
the environment. This means that a pair of events exchanged between
system and its environment may be part of the same dialogue sequence.
In order to establish such relationships between events, the system model
should include a more detailed description of the environment. In other
words, quality analysis must examine a closed world model of the system,
where a series of correlated events must be easily identifiable.

Therefore, it is possible to apply a structuring theorem to EFD’s, but since
it must deal with constructs that portray much more information than D-
structures, the rules should be relaxed. An automated aid can then incor-
porate these rules, and check derived specifications against them, so as to
give some measure of quality.

4.7. DESIGN AND IMPLEMENTATION 63

4.7 Design And Implementation

As pointed out by many practitioners of systems analysis and design, a
system specification should be devoid of any implementation bias [HS87].
In addition, the analyst should not have to be concerned with complications
such as errors due to a system’s operating environment. For these reasons,
a perfect operational environment is assumed for a system while deriving
its specification. This will ensure that the resulting specification does not
have to deal with the complexities of the system’s environment, and will
give a pure description of that system’s operational behaviour.

Once the specification has been derived, it must pass through a design stage,
which will impose most of the restrictions due to the system’s environment.
In addition, it must deal with many other issues such as the system’s inter-
actions with the agents in its environment, e.g. people, and software organ-
isation for the target hardware, i.e. the specification is enhanced by adding
the processing required to deal with implementation specific concerns. The
outcome of the design stage will pave the way for the implementation of
the proposed system. In other words, specification states what the system
operations are and design states how they can be achieved in a particular
host environment.

Although the nature of many of the tasks that make up the design stage
depend largely on the particular system under design, the characteristics of
its operating environment, and the specifics of the proposed host hardware,
there are some general points that can be applied while going from a system
specification to its design. These result in enhancements to the derived
specification, which cater for the real-world issues the system must deal
with.

To investigate the applicability of these guidelines, an implementation of one
of the specification exercises was undertaken. The Petrol Station example
not only covers many of the new notation’s features, it also includes op-
erational concerns such as endangering data integrity by allowing multiple
access to stored data. Hence this example was selected for the implementa-
tion exercise. The host environment chosen was the Sun workstation family
and the external entities such as printers and pumps were simulated by
(UNIX) processes.

Before commencing with the design and implementation, the specification
was completed by adding the minispecs and the dictionaries to it. The
complete specification is given in Appendix B. This Appendix also includes
the final implementation code. The implementation exercise highlights a
number of useful general guidelines for deriving a design by considering
the system specification and the environment within which it must operate.
These are outlined below.

64 CHAPTER 4. NOTATIONAL ISSUES

4.7.1 System Interactions

The introduction identified the interactions of the system with its envi-
ronment as one of the issues that the design stage should address. The
specification stage does not distinguish between the agents the system com-
municates with, but since the system must interface with its human users
in a radically different way from the way it interacts with other agents in
its operating environment, the user interface is usually of particular interest
during design. The interactions of the system with its environment will,
therefore, require specific software to be designed in addition to the soft-
ware already specified. In the Petrol Station exercise, for example, an entire
module is dedicated to the user interface. The user interface can be designed
in an implementation free manner, so that it can be used along with the
specification for implementation on a particular target environment.

Mechanisms for system interactions with entities in the system environment
other than its users are, of course, entirely dependent on the host system
and the exact specifics of the operation of those entities. In the exercise
presented here, for example, the operating system facility of pipes has been
used to effect communication between (pump and monitoring) processes.

4.7.2 Process Groupings

The division of the software into modules may be based on a number of
criteria. The subsystem divisions in the specification may have already
provided a natural grouping of atomic processes into software modules. The
atomic processes grouped under a common subsystem can be the routines
collected together in a software module. This is true of the Petrol Station
example.

In an environment which allows highly concurrent implementations, mini-
mum interfaces between modules allows the inherent concurrency in a sys-
tem to be usefully exploited, resulting in efficient systems. If the interface
across concurrent tasks is small, the tasks can proceed independently and
at their own speed, with minimum interaction with other tasks. In the
implementation of the Petrol Station, for example, the pseudo concurrency
of (UNIX) processes is used to carry the concurrency in the specification
through to the implementation. The interfaces among the groups are imple-
mented through pipes, whose asynchronous nature allows more concurrency
than would be possible if synchronous communication is used.

As well as grouping processes together, process groups may be broken up
to give a better implementation. Different reasons may compel designers to
make such a decision. Maximising the concurrency in the implementation is
again an important factor here. As well as the high level concurrency present
amongst subsystems, there is often local concurrency between atomic pro-

4.7. DESIGN AND IMPLEMENTATION 65

cesses within a group. In some cases it may be desirable to separate these
processes in the implementation. The stock maintenance subsystem, for
example, has been divided into two parts. The first part is incorporated
into one the main system (UNIX) process modules, while the monitoring
part is placed in a process of its own.

4.7.3 Error Handling

Error checking and handling are part of the additions to the software during
the design stage. In an imperfect world, system users are fallible. Possible
errors must be trapped and the system must be able to recover from them.
This is a major part of the system enhancements during the design stage.

Errors may result from a number of sources. Communication between the
system and the agents in the environment can seldom be guaranteed to be
error free. It is necessary to ensure the validity of system inputs for correct
system operation. If such validations are of critical importance, then this
may make up a substantial part of the final design.

Like other strategies, error detection and recovery mechanisms depend largely
on the system environment. This is particularly true of errors in inputs from
peripheral devices connected to the system, but errors present in the input
from its users may be predicted in many instances. The example in Ap-
pendix B includes error traps and recoveries for all user inputs in its design.

4.7.4 Host Services

The assumption of a perfect system operating environment implies that data
integrity is guaranteed by system processes. In reality, software designers
must be able to provide such a guarantee through correct system implemen-
tation. The services offered by the host environment may provide the ideal
solution to many of the problems due to the imperfect system environment.
File locking mechanisms have, for example, been used in the example here
to ensure exclusive store access to processes, which guarantees the integrity
of the data in those stores.

Designers may be able to satisfy many other system requirements by using
services offered by the host environment. The use of pipes for communica-
tion amongst processes, for example, provides the ideal mechanism for the
exchanges between the system processes in the petrol station implementa-
tion. Another example of a host service used in the implementation of the
Petrol Station is the use of the operating system timing facility “sleep” .
The call to this routine performs the task of the “Clock” process, eliminat-
ing the need to write a special purpose timing routine. Using host services
may alleviate the task of designing and implementing many of the functions
required by the system.

6 6 CHAPTER 4. NOTATIONAL ISSUES

4.7.5 Process Firing and Enablement/Disablement
of Subsystems

The execution sequence of atomic processes, which may be implemented as
target language routines, is clearly indicated by the firing agents for those
processes. By noting the firing event for an atomic process, a call may be
placed to the corresponding routine when the conditions satisfying the event
are met.

The enabling and disabling conditions for each subsystem are clearly spec-
ified on its Subsystem Control Diagram. The mechanisms through which
these are implemented depend on the complexity of the system and its
control structure. It was found for the example system that many such en-
ablements and disablements can be effected through the use of semaphore
like flags which act as switches to allow/disallow operation of subsystems.

4.7.6 A General Design Hueristic

The dynamic behaviour of a system specification can be viewed in a num-
ber of ways. The first considers each part of the system to operate over
one set of inputs: once a set of inputs enters that part of the system, no
other inputs are admitted until the corresponding set of outputs have been
produced. A second view may consider system parts as pipelines: once a set
of inputs has passed through one processing stage another input set can be
admitted into the pipeline, i.e. processing of inputs is overlapped in time.
The Petrol Station System exhibits both types behaviour. Only one set of
prices are changed at a time, whereas a pump monitor may overlap serv-
ing two customers (a new customer can receive petrol while the previous
transaction is paid for).

Yet another view may consider inputs to cause instances of the program to
be made available; a second set of inputs uses a second set of copies, i.e.
each set of inputs initiates a process in the same way as operating systems
creating copies of programs to operate on each set of inputs. The choice of
which view is taken is determined by the design methodology used.

4.7.7 Concluding Remark

There are many factors that may influence the design and implementation
of a system. As pointed out in the introduction, these are mainly deter-
mined by the constraints of the environment within which the system must
operate. The guidelines above are the result of a relatively small imple-
mentation exercise. To formulate a general set of guidelines a more com-
prehensive study of the applicable techniques must be carried out (see also
Chapter 6). Apart from the factors pointed out above, the design and im-

4.8. METHODOLOGY 67

plementation decisions for a system may be affected by many other factors.
These include reliability, safety, maintainability, testability, cost, available
technology, performance, growth, and expansion capability. The degree of
importance of these factors varies depending on the nature of the system
under design.

4.8 Methodology

Many advocates of system specification and design notations have recog-
nised the importance of accompanying a notation with a methodology. The
latter would not only provide techniques for deriving a specification, it would
also define techniques for validating that specification. It is not enough to
provide the tools for specifying a system’s operational behaviour; a strategy
must be provided for deriving that specification. Without such a strategy
a specification notation can be misused or incorrectly used, resulting in low
quality or even incorrect specifications, in the same way as programming
languages can be used to write bad programs if structured programming
techniques such as stepwise refinement are not followed.

However, the nature of every system is unique, and different systems lend
themselves to different specification derivation approaches [WHF82], As
pointed out by Levy [Lev86], “while the general principles and objectives
of a software development method may be the same for most projects, the
embodyment of the method will probably vary with the characteristics of the
specific product being developed” . This implies that a rigid methodology
will be a hindrance rather than an aid to the analyst. The methodology must
be flexible enough to allow the analyst to select the appropriate derivation
strategy for the particular system being specified.

Although a specification, derived using structured analysis, is presented in a
top down manner, it is rarely derived in that way [CCW89]. The incremental
presentation of detail will greatly ease the task of reading specifications, but
it is not necessarily the best way to approach their derivation. Bottom up
strategies can, on the other hand, overwhelm the analyst' when specifying
large systems. A middle out strategy can, therefore, provide the best results.
The point at which analysis commences is largely dependent on the system
to be specified, but some guidelines may be provided for the analyst.

Even when a top down strategy is not employed in deriving a specification,
the most useful point to start analysis is the system context, i.e. its interac-
tions with its environment. Many methodologies aimed at the early stages
of the system life cycle identify this activity as one the most important. The
viewpoint analysis of CORE [Mul84, Som89] and the entity/action step of
JSD [Sut88, Jac83] are, for example, specifically aimed at deriving a model
for the system environment. Interactions with the environment include
both data and events exchanged between the system and the agents in its

6 8 CHAPTER 4. NOTATIONAL ISSUES

environment. Once the data have been identified, they can be further sub-
divided into two groups: active and latched. Every piece of data exchanged
between the system and its environment falls into one of these categories.
Identifying the type of all system data exchanges will help the analyst in
later stages of the analysis, especially when determining the firing agents
for atomic processes (as only active data can provide the firing event for
such processes).

Once all events, including implicit events carried by the data, have been
identified, the system responses to each event may be examined. For exam-
ple, in the Petrol Station exercise when the event “Take Stock” occurs, the
system must respond by disabling the printing of any further reports and
the commencement of any further transactions. Ward and Mellor [WM86]
place great emphasis on identifying events and the system responses to each
event. Identification of these responses will again aid in the later stages of
the analysis (when determining subsystem and atomic process behaviour).

Event-response analysis plays a more dominant part in deriving the spec-
ification of real-time systems when compared with specification derivation
for other types of systems. This is directly due to the control intensive
nature of real-time systems. Consideration of responses to events can also
guide the analyst in identifying subsystems. A subsystem can be viewed as
a processing unit that, while enabled, continuously processes a stream of
events. The latter includes internal and external events, some of which may
be implicit in the arrival of data.

Once the analysis moves within the system internals, there is already a body
of well established guidelines [DeM78, WM86, HP88, MP84] to provide help
in deciding how to divide a process’s task into a subnetwork. The most im-
portant of these are keeping process interfaces to a minimum and grouping
closely related data in data stores. The former will result in diagrams that
are not only clear and easy to follow, but will also help in the later stages
of design and implementation. The less the communication among system
processes, the more the concurrency in the system can be exploited. Since
the data used and stored by many real-time systems is of a simple nature,
the second guideline is perhaps less applicable to these systems than to data
processing systems.

Other factors can be used to guide the derivation of system specifications.
An overall examination of system requirements often leads to clear iden-
tification of many system subtasks. These are parts of the system whose
operation should clearly be separately described. A typical example of this
is instances of identical subsystems. For example, in the Petrol Station
example, the parts of the system dealing with each pump’s operation are
delegated to a subsystem. Further examples of systems with identical sub-
systems can be seen in the Patient Monitoring System and the Bottling
System of Appendix A. Another case of separation of system activities into
distinct subsystems occurs when one subsystem controls other parts of the

4.8. METHODOLOGY 69

system by reacting to the system environment. For example, in the Bottling
System of Appendix A, the pH monitor suspends and restarts other parts
of the system according to the current pH of a liquid.

In many systems, the first subdivision of the system can be derived by the
clear identification of subsystems in the requirements document. In such
cases as the Autoteller System example of Appendix A, there are clear
subtasks for the system in achieving its overall goal. This feature can be
identified more easily for systems whose overall activity is sequential, al-
though many simple tasks may be performed in parallel. For instance, the
Autoteller system “validates the customer’s card” , “requests a service selec-
tion” , and “performs the selected service” in strict sequence. Although such
a feature may not be immediately identifiable for a system exhibiting highly
concurrent behaviour, subsystems can still be identified by a clear subdivi-
sion of the system activities into subtasks. Using criteria such as grouping
processes which take part in a dialogue sequence between the system and
its environment, the system subtasks can be identified.

Furthermore, guidelines given here for atomic process identifications will
help the analyst in deciding when to stop expanding a process, at which
point the firing agent for that process must be identified. This may be
found in the events inherited by the process’s network from its parent, or
an event generated by one its neighbouring processes.

The above guidelines coupled with the experience gained through repeated
application of the notation can provide an invaluable aid to the analyst dur-
ing system specification. Many of the techniques outlined here are based on
a functional decomposition strategy. There is currently a strong tendency
in the system development industry towards this approach. In particular,
notations based on Data Flow Diagrams have almost always been used to
arrive at functionally based system specifications. The section on specifica-
tion quality above demonstrates that this may not always be the appropriate
strategy to follow for the class of systems we are considering here. A con-
trol decomposition method may be more appropriate. Once all input events
have been been identified, they can be followed inside the system to identify
the internal system actions they may cause.

The above strategies are the result of the experiences gained through ap-
plying the new notation to a number of case studies. The outcome of this
exercise is given in the sample specifications of Appendix A. A more detailed
study of the techniques appropriate for the derivation of real-time system
specification is required to arrive at a solid methodology that results in
specifications whose quality can be judged.

70 CHAPTER 4. NOTATIONAL ISSUES

4.9 Conclusions

A new extension to Data Flow Diagrams was presented which aims to re-
move the limitations and disadvantages of current DFD extensions used in
real-time system specification. The new notation defines more precisely the
semantics of processes used on the diagrams. DeMarco DFD processes do
not have a precise definition: each process somehow transforms its inputs
to its outputs. However, processes at the leaves of the system process hi-
erarchy in this notation are identified by using objective criteria and the
condition for starting each one is clearly shown by the single event flow en-
tering the process. Each atomic process starts when its firing event occurs,
and produces its outputs at the conclusion of its task.

Moreover, high level concurrency can be described by the Subsystem Con-
trol Diagram in a fashion that is not restrictive. Any concurrency identified
within the system operational behaviour can be specified easily. The enable-
ment/disablement conditions for each subsystem are then indicated on the
SCD. This capability, plus the precise definition of the operational charac-
teristics of each atomic process, allows a system specification to be animated
in a token style execution model. Such an animation will be an invaluable
aid to analysts in determining whether the derived specification conforms
to user expectations.

Furthermore, the separation of the data and control views of a specification
allow separate analysis of these system aspects. A single view of any system
level can be composed by superimposing its EFD on its DFD.

Hence the new notation builds on the well established practices in the system
development industry by using experience of and familiarity with existing
notational conventions to allow easier derivation of system specifications,
which can be comfortably understood by the parties involved in the devel-
opment process, and whose operational characteristics can be studied before
proceeding to system design and implementation.

The following chapter presents four other approaches to system specifica-
tion/design and compares them to the new notation.

Chapter 5

Related Work

5.1 Introduction

In this chapter some of the relevant software specification/design notations
are discussed. There are a wide variety of notations currently in practice.
These include, amongst others, object oriented approaches [B0086, Mey88,
SM88, PCW85, PC86], formal mathematically based approaches [H0I88,
Bjo87, Hoa85, Mil89], specification languages [Zav85b, Zav82, ZS86], FOR-
EST [CFG+85, JKM86, FP86, BEF+86, Mai86, PFAB86], SARA [WE82,
Est78, EFRV86], STATECHARTS [Har87, HLN+88, Har88, HPSS87], and
SREM [Alf77, Alf85]. Since it is not practical to cover them all, and be-
cause many share the same underlying principles, a subset of these notations
has been chosen. These are currently popular in the specification and de-
sign of concurrent and real-time systems both in industry and in academic
institutions. The selection includes a control flow analysis notation (petri
nets), a functional hierarchical notation which incorporates information hid-
ing (MASCOT), an object oriented entity/action based notation (Jackson
System Development), and a formal algebraic language (Communicating
Sequential Processes). The first four sections below present an overview of
each of these notations. The final section discusses the suitability of each
notation for real-time system specification by comparing them through a
set of criteria.

5.2 Petri Nets

5.2.1 Basic Concepts

A petri net is a bipartite directed multigraph consisting of two types of
nodes: places and transitions. Algebraically, a petri net can be described
by a four-tuple C=(P,T,I,0): P is a set of places, T is a set of transitions, I

71

72 CHAPTER 5. RELATED WORK

is the input function and 0 is the output function. In a graphical notation,
places are represented by circles and transitions are represented by vertical
bars. Directed arcs connect places and transitions. An arc from a place to
a transition defines the place to be an input of the transition. An output
place is indicated by an arc from the transition to the place. Multiple
arcs may connect a place and a transition. An example petri net, adapted
from [Pet81], is shown in figure 5.1.

P2

P = {Pl,P2,P3,P4,Ps}
T — {ti ,t 2,t3,t4 }

I(fcl) = {p i} 0 (D) = {p2,P3,Ps}
I(t2) = {P2,P3,Ps} 0 (t 2) = {p5}
1^3) = {P3} 0 (t 3) = {p4}
I(t4) = {p4} 0 (D) = {P2,Ps }

Figure 5.1: An example petri net.

5.2.2 Analysing a Petri Net

Petri nets are primarily used to study the dynamic behaviour of a modelled
system. In order to do this, petri net markings are introduced into the
model. To mark a petri net tokens are assigned to places in the net. Tokens
can be thought of as residing in places. Figure 5.2 shows a marking of the
petri net in figure 5.1.

A transition can fire when it is enabled. A transition is enabled if each of its
input places has at least as many tokens as there are arcs from that place to
the transition (multiple arcs may connect a transition and a place). When
fired a transition removes its enabling tokens and places a token, per arc, in
its output places. In figure 5.2, D is the only enabled transition. Figure 5.3
shows the new marking after it has fired.

5.2. PETRI NETS 73

Figure 5.3: The marking resulting from firing W

The state of a petri net (and that of the system it models) is defined by
its marking. Firing a transition changes the marking and hence the state
of the petri net. The dynamic behaviour of a system can be investigated
by assigning an initial marking to its petri net model and observing its
state changes by continuous transition firings. Execution of a petri net
continues as long as there is at least one enabled transition. When there
are no enabled transitions, the execution halts. A petri net model can also
be statically analysed to discover system faults by reachability analysis, for
example [Pet81, Pet77, Rei82, Age79, Jen81, GH81].

5.2.3 Modelling with Petri Nets

To derive a model the petri net view of a system concentrates on two prim-
itive concepts: events and conditions. Events are actions that take place

74 CHAPTER 5. RELATED WORK

in the system. The occurrence of an event is controlled by the system
state which can be described as a set of conditions. For an event to occur
a number of (pre)conditions must hold. Its occurrence may cause other
(post)conditions to hold. On petri net graphs, pre and post conditions are
shown as markings and the occurrence of an event is represented by fir-
ing the appropriate transition. A system model is derived by identifying
the events, i.e. system actions, and the pre and post conditions for each
event [B085].

Petri nets were designed specifically for modelling systems with concurrent
interacting parts. Because of their general form petri nets have been used to
model a variety of systems [Pet81], including computer hardware and soft-
ware, interactions of subatomic particles, queuing theory, brain modelling
and many others.

The original form of the petri net model has proved to be too simple and
limited to model real systems [Pet81]. The first of these limitation results
from the flat nature of petri nets. Because of the potentially large number
of events in large systems, there is an enormous amount of detail to be
considered at once. The proven principle of incremental topdown design
cannot be applied easily when using such a model.

Furthermore, the flatness of petri nets will result in unmanageably large
nets whose graphs are a spaghetti of arcs between places and transitions.
Studying such a model so as to understand the behavioural aspects of a sys-
tem is a difficult task and can be nearly impossible for a non-trivial system.
A modelling technique that lends itself to a hierarchical design and presen-
tation strategy will make it easier for a reader to grasp a system’s behaviour
by giving him/her adequate detail at decreasing levels of granularity.

In addition, the firing rules for a transition dictate a conjunction of its
preconditions: all its preconditions must hold before a transition fires, i.e.
they are anded together. There are many systems whose operational re-
quirements may require an action to take place when just one of many
conditions holds, i.e. an or of the preconditions. Similarly, when a tran-
sition has completed its task, its requirements may dictate that it places
tokens in a subset of its output places. These cannot be modelled easily
with petri nets [Bae73].

Extensions have been proposed for petri nets to alleviate some of these prob-
lems [Pet81, BM85]. For example, a transition can be expanded to a further
petri net, which describes in more detail the steps involved in the transition’s
action. But the subnet must be started by the preconditions of its parent
transition and must end by generating its parent’s postconditions. As a
direct consequence the place/transition groupings are restricted, which will
result in restrictions during a topdown hierarchical design process. Many
other extensions such as inhibitor arcs [Pet81], disjunctive input/output
transitions with switches and token absorbers [Bae73], associating actions

5.3. MASCOT 75

with arcs connecting places and transitions [BM85], attaching an execu-
tion time table to each node in the network representing a process in a
system [CR83], and placing predicates on transition firing, have also been
proposed.

Another limitation of petri nets is that they are essentially aimed at mod-
elling the flow of control through a system. Processing and the flow of data
through the system and between the system and its environment cannot be
derived easily from a petri net model. A petri net model is, therefore, an
auxiliary tool which should be used within a more all-embracing technique
to completely specify a system’s operational characteristics [Pet81, B085].

Tse and Pong have proposed Formal Data Flow Diagrams (FDFD’s) to
create a notation that is both familiar and can be subjected to formal ver-
ification analysis [TP89] . This notation is based on traditional DeMarco
type Data Flow Diagrams. In order to apply formal analysis techniques to
FDFD’s, the relationship among input/output data flows of a task (process)
must be explicitly defined. This is done by placing and and or operators
between data flows on diagrams. An FDFD can be mapped directly onto
an extended petri net making it possible to apply many of the petri net
formal analysis techniques to FDFD’s. For the same reasons that DeMarco
type Data Flow Diagrams are inadequate for specifying the class of systems
we are considering (i.e. the inability to model events and the two levels of
control), FDFD’s are also not adequate.

5.3 MASCOT

5.3.1 Basic Concepts

MASCOT [Sim82, Bat87, Jac84, Dib82, Irv84] is an acronym for Modular
Approach to Software Construction, Operation and Test. It is a machine
and language independent approach to software design and implementa-
tion which has at its heart a particular form of software structure based
on independent parallel processes, known as Activities, whose sole means
of communication is through Intercommunication Data Areas (IDA’s). It
aims to represent, directly, the system’s concurrent functions and the data
flows between them. Its origins lie in work at the Royal Radar and Signals
Establishment during the late 60’s and early 70’s. As a result MASCOT is
primarily aimed at real-time embedded areas, where the software is complex
and highly interactive [Bat87].

On MASCOT 3 ACP (Activity, Channel, Pool) diagrams, activities are
represented by circles. Two special types of IDA were identified early in
MASCOT. A channel is used to represents producer/consumer type com-
munication in a similar fashion to data flows on Data Flow Diagrams. Data
is written to the channel by the producer. The consumer removes the data

76 CHAPTER 5. RELATED WORK

from the channel by reading from it, i.e. reads from a channel are destruc-
tive. The producer and consumer are connected to opposite sides of the
symbol to emphasise the nature of their communication. A pool represents
a repository for data. Its role is similar to data stores of Data Flow Di-
agrams. Static data, which may be updated occasionally, is stored in a
pool. Activities connected to a pool can read data from/write data to it,
i.e. in pools writes are destructive. IDA’s that do not fit either of the two
specially identified classes of IDA (channels and pools) are shown on ACP
diagrams with a rectangular symbol. Activities are connected to channels
and pools by directed arcs, called paths, which show the direction of data
flow. An environmental entity, known as a device or server in MASCOT, is
represented on an ACP by a hatched rectangle. Figure 5.4 shows the basic
components used in a MASCOT 3 ACP diagram.

Figure 5.4: MASCOT ACP Diagram Symbols

The clear separation of active and non-active components in MASCOT is
a direct result of the MASCOT designers’ intention to provide a design
method which caters for large scale concurrency. Activities and MASCOT
subsystems, explained below, on an ACP diagram can be thought of as
running in parallel. In order that these asynchronously executing concur-
rent processes exchange information in a secure manner, MASCOT provides
mechanisms to effect mutual exclusion and cross-stimulation for use at the
points where data is transferred to or from common storage areas. These
mechanism are implemented through IDA Access Procedures. The data
stored in an IDA is private to it. An activity can access this data only
through calls to the IDA’s access procedures. In MASCOT 3, an IDA offers
a subset of its access procedures through each of its windows. An activity
must connect to an IDA window through a port. The window and the port
must be of the same type (see below). On ACP diagrams, windows and
ports are shown with a small filled in rectangles and a small filled in circles,
respectively. By using this window/port connection protocol restrictions
can be put on the type of access permitted to each activity connected to an

5.3. MASCOT 77

IDA.

5.3.2 Deriving a M ASCOT Design

The unit of construction during an MASCOT design is the subsystem. This
is merely a collection of activities which have been connected to their IDA’s
at the same time [Bat87]. In MASCOT 2 a design was conceived as a flat
data flow network with the subsystem as the basic construction unit. Be-
cause of the potentially large networks that may result from such a scheme,
and to incorporate the advantages of incremental design, a design can be
described in a hierarchical manner in MASCOT 3 [Bat87, Sim84], The sub-
system is still the basic unit of construction, but a subsystem may contain
lower level subsystems. A subsystem is represented by a roundangle on an
ACP diagram.

Figure 5.5: Example of a MASCOT 3 subsystem ACP

Software design using MASCOT can be divided into three stages: network
design, component design, and integration/testing [Bat87]. The first stage
consists of deriving a hierarchy of ACP diagrams. All the subsystems, ac-
tivities and IDA’s are identified and connected together on ACP diagrams.
Figure 5.5 shows an example ACP for a subsystem. A MASCOT 3 ACP
diagram contains more detail than just the connection of the components
present on it. The name of the component being designed is placed inside
the roundangle, “subsys_4” in figure 5.5. Ports and windows are named,
e.g. “pp” and “gw” . The type associated with a port/window pair anno-
tates the path connecting them, e.g. “put” and “send” . Each subsystem,

78 CHAPTER 5. RELATED WORK

activity and pool is not only labelled with a unique name, it also has the
name of the template, explained below, describing its behaviour placed in-
side it. For example, the operation of activity “a l” is described by template
“a_temp_l” .

A special case of a subsystem, called a system, shows the external devices
connected to the system as well the initial division of the system into sub-
systems, activities and IDA’s. This subsystem does not offer any port or
window connections, i.e. it is closed. Connections to the environment are
represented by device servers (described below). These reside within the
system (and nested subsystems) symbols. The subsystems in the system
are then expanded into their own ACP networks. After subdividing the
software system into its constituent activities and IDA’s, those components
whose implementation may be too complex can be further subdivided. A
complex activity may be broken down into smaller components. Its ACP
diagram shows the execution of its components which communicate via a
procedural interface. In figure 5.6 the activity “a l” has been'broken down
into four procedures: “main” , “subl” , “sub2” and “sub3” . Their relation-
ships are represented by lines bearing hollow arrow marks, known as links.
Links represent procedure calls, e.g. “main” calls the other three proce-
dures.

An IDA may also be composite, i.e. an IDA can be broken down into a
connected network of IDA’s. In figure 5.7 “cida” has been broken down
into three component IDA’s. They are connected together by window/port
pairs. Using composite IDA’s data can be completely hidden away from
outside the IDA; only internal IDA access is allowed to such data. In this
example, the data in the IDA “ex” is private to “cida” . Complex activities
and IDA’s are shown with thick borders on ACP diagrams.

During component design, each component on every ACP diagram is de-
signed in more detail. A template is used to describe the module for each
component subsystem, activity and IDA. Other textual support, such as
data type definitions, is provided to enable the complete description of a
MASCOT design in text. The design of each component is carried out in
minute detail. For example, a subsystem template will include the types of
all the windows and ports it offers to its environment, the template types
for the channels, pools and activities that are contained within it, and the
connections amongst them; and the types of all paths are identified to deter-
mine the type of access allowed through a port/window pair. All the design
data for a MASCOT machine is maintained in a database, so that identi-
cal software components can use the same template definition. Using this
information many checks, such as checking compatibility of a port/window
pair, can be performed on the designed software.

The final stage, integration and testing, consists of creating executable soft-
ware for a specific hardware configuration from the designed components in
the database. The definitions of the software components in the database

5.3. MASCOT 79

fp—•

Figure 5.6: ACP Diagram of a Complex Activity

are mapped onto the implementation language constructs to be integrated
with supporting software to run on the implementation hardware. This
support is provided by the Context Software which provides a run time
environment for the application to run in. This includes primitives for
synchronisation of activities, device handling, scheduling of activities, allo-
cating activities to processors in a multi-processor environment, monitoring
software preformance and error handling. Context software primitives may
be applied to activities and subsystems to start, stop, suspend or resume
them. The software can then be tested to ensure that it conforms to its
requirements. By using facilities provided by the context software perfor-
mance can also be measured.

5.3.3 Concluding Remarks

MASCOT is aimed at deriving a design for a software system to run on
a specific hardware configuration. Although the network design stage can
be language independent, the component design stage may tend to be bi-
ased towards a specific target language (CORAL 66 was mainly used for
MASCOT 2 designs [Fou84], but because of its parallel programming capa-

80 CHAPTER 5. RELATED WORK

Figure 5.7: ACP Diagram of a Composite IDA

bilities, ADA is the recommended implementation language for MASCOT
3). Although many languages have been tried in MASCOT designs, the
concentration on the main two languages, CORAL and ADA, may intro-
duce a bias in the way tasks are divided between activities and how IDA’s
are chosen to store data. However, it should be noted that MASCOT’s
aim is to derive a design, and as such its outcome is expected to be more
implementation biased than a specification approach.

The flow of control through a MASCOT machine is distributed among sev-
eral parts of the software. Explicit synchronisation of activities is achieved
by primitives that operate on special objects, called control queues. Since
synchronisation takes place only in respect of access to IDA’s and servers,
described below, each control queue is conceptually part of the structure
of an IDA or a server [Bat87]. Using the MASCOT JOIN, LEAVE, STIM,
WAIT, and WAITFOR primitives, activities can join control queues to wait
for service and leave them to be served [SJ79]. For example, when an activ-
ity requires access to the data in an IDA, it joins the queue for that IDA.
An activity at the head of the queue is said to own the queue, and can use
the LEAVE primitive to leave the queue for service. Cross-stimulation is
effected by using the STIM, WAIT and WAITFOR primitives.

Other parts of the control flow in a MASCOT design are handled by the
context software. Initialising, suspending, resuming and terminating of ac-
tivities is delegated to the run time support environment in MASCOT.
When a MASCOT system has been built, each of its components is said to
be unestablished. Before any constituent activity can be executed it must
first be established, i.e. all relevant initialisation code must be executed
first. Once an activity has been established it can be started, suspended,
resumed and terminated. These operations are part of the context software
that deal with scheduling and execution control.

MASCOT is based on data flow. An activity is designed to execute when

5.4. JACKSON SYSTEM DEVELOPMENT 81

data is ready at its input channel. In order to achieve real-time behaviour
an activity may receive an event. Events are also exchanged via chan-
nels. MASCOT, therefore, does not distinguish between the two types of
exchange. The ordering of activity executions is, hence, achieved by the
exchange of data and events via channels. Such orderings cannot be de-
rived from any part of the MASCOT network diagrams. In many systems,
particularly those with a real-time nature, the order of activity executions
and the conditions under which subsystems are enabled and disabled form
a vital part of the requirements document. It is, therefore, important to be
able to derive these easily from the specification.

MASCOT, therefore, differs mainly from our approach in its design spe-
cific characteristics. Whereas our aim is to derive a specification of a sys-
tem, MASCOT is aimed at deriving the final design for it. The provision
of special processes, called servers, to handle the environmental interac-
tions of MASCOT designs is a clear indication of MASCOT bias towards
hardware specific design. Requirements specification techniques such as
CORE [Mul84, KNPW88, KN88] have been recommended for use in the
early stages of a MASCOT design [Bat87, SJF88] so that the MASCOT
user can derive the system requirements before proceeding with a design.

The role of diagram hierarchy in our notation is to allow a reader to com-
fortably derive the flow of data and control through the specified system.
Such information cannot be derived easily from a set of MASCOT network
diagrams. MASCOT uses the principle of information hiding by forcing
all data accesses by activities to go through IDA access procedures. Al-
though this will ensure data integrity as well as safe synchronisation among
concurrent activities competing for access to the same data, the diagram
readability is somewhat impared. Some processing may also be hidden. In
composite IDA’s, for example, an access procedure may cause data private
to the IDA to be updated through a call to the internal access procedures
of that IDA, e.g. the data in “ex” in figure 5.7 may be updated by either
“ip” or “op” .

Although MASCOT provides a rigorous technique for deriving a design for a
software system, which will aid designers in deriving safe designs for highly
concurrent systems, it does not meet the objectives of our notation (to show
clearly the flow of data and control through a specified system).

5.4 Jackson System Development

5.4.1 Basic Concepts and Design Derivation

Jackson System Development (JSD) [Jac83, San89, Sut88] is a system de-
sign approach which has its roots in a program design methodology, Jack-
son Structured Programming (JSP) [Jac75, Cam82, Cam83]. Unlike other

82 CHAPTER 5. RELATED WORK

methodologies, JSD is not based on a hierarchical functional decomposition
strategy. Instead, emphasis is placed on first modelling the system’s envi-
ronment; and only then going on to consider the full details of the tasks
which the system is to perform.

The JSD design method is subdivided into three stages: modelling stage,
network stage and implementation stage. JSD starts to define the subject
matter by describing the real world of the system in terms of entities and
the actions they perform or suffer. In other words, a conceptual boundary
is drawn around the aspects of the real world which are closely linked with
the operation of the system. An entity is an object of interest in the system
which will undergo or cause change during the system’s activity [Sut88].
An action is an event which happens to an entity. Jackson [Jac83] suggests
that entities and actions can be derived by listing the nouns and the verbs,
respectively, of the requirement document for a system. Strategies are then
introduced to shorten these lists, e.g. aliases for entities are eliminated.

Once all entities and the actions for every entity have been identified, each
entity is considered in turn and its actions are arranged in time ordering. A
Process Structure Diagram (PSD) is used to show the relationship between
each entity and the time ordering of the actions it performs or suffers. PSD’s
allow the expression of the three classical constructs of structured program-
ming: sequence, selection and iteration. Figure 5.8, adapted from [Jac83],
shows an example of a PSD.

Figure 5.8: Example Process Structure Diagram

Process structure diagrams are tree shaped. Each node is a named rectan-
gular box, which may be an entity, an action, or a name for a collection of

5.4. JACKSON SYSTEM DEVELOPMENT 83

actions. Sequence is indicated by left to right ordering, e.g. the customer
INVESTs before he TERMINATES his account according to figure 5.8. Se-
lection and iteration are shown by a circle and an asterisk, respectively,
placed in the top right corner of a rectangle. For example, “INV-TERM
BODY” is composed of zero or more “MOVEMENTS” , each of which is is
either a “PAY IN” or a “WITHDRAW” . The root of each tree is an entity;
the actions that happen to it are at the leaves of the tree. PSD’s can be
converted to structure text which will, in addition, include elements such
as executable operations and conditional tests that do not fit easily into a
PSD. For example, the structure text for the structure diagram of figure 5.8
is:

CUSTOMER seq
read C;
INVEST; read C;
INV-TERM BODY itr while(PAY-IN or WITHDRAW)

MOVEMENT alt(PAY-IN)
PAY-IN; read C;

MOVEMENT alt(WITHDRAW)
WITHDRAW; read C;

MOVEMENT end
INV-TERM BODY end
TERMINATE;

CUSTOMER end

The capital letter words are the entity described or its actions and the bold
typeface is used to show the constructs, e.g. sequence (seq), of the struc-
ture diagram. Other elements shown in the structure text are termination
conditions for the loop and the points at which the process reads from its
data stream C, see below.

In the network stage, the description of reality, in terms of entities and ac-
tions, is realised in a process model and connections between the model and
the real world. A set of processes is specified which model the real world
entities and their behaviour. The skeleton for the behaviour of each entity
has already been derived in the previous step in the form of a process struc-
ture diagram (or structure text). The only remaining aspect to be specified
for each entity is the way it communicates with other system entities and
the system environment.

Processes can connect together in two ways. In data stream connection, one
process writes a sequential data stream; the other process reads this stream.
In state vector connection, one process directly inspects the state vector,
i.e. the internal local variables, of the other process. System Specification
Diagrams (SSD’s) are used to show process connections, figure 5.9 [Sut88].

Data stream connection is shown by a circular symbol connected to the
producer and consumer by lines, with an arrow head at the consumer

84 CHAPTER 5. RELATED WORK

Figure 5.9: Example System Specification Diagram

end. Events (an event in JSD is the point in time when something hap-
pens [Sut88]) are passed from the producer to the consumer down the data
stream. Actions respond to events. These events are communicated to the
system as data messages and are referred to in JSD as attributes of the
action. Entities also have attributes. These are internal data which record
what stage the entity is at in its life history, i.e. the state of the entity.
Read and write statements are added to the structure text for each process
to indicate places at which (data stream) communication occurs.

State vector connections are shown by a diamond symbol. The direction of
data transfer is again shown with an arrow head at the receiving process.
Data stream connections represent producer/consumer type connections,
whereas a state vector connection is used when data is read on demand.
A special operation, Get SV, is used in structure text to indicate when a
reader inspects a state vector.

Communication with the system environment is modelled by using both
types of connection in JSD. Data stream connection resembles that of a
discrete data flow; and state vector connection is like data reads from ex-
ternally stored data or continuous data flows.

Once all the real world entities have been modelled, other processes (which
are required to complete the operational requirements of the system) are
added to the model. Jackson [Jac83] uses the term function for these pro-
cesses to separate them from those that model real world entities. Enti-
ties represent groups of time ordered actions which describe a significantly
long life history of something within the system, whereas functions are a
set of actions which take place in a short space of time to accomplish a
task [Sut88]. These functions fall into two categories: embedded and im-
posed functions [Sut88j. Elementary operations may be added to existing
model processes. These are the embedded functions. Larger changes, such
as functions to produce system outputs, impose new processes on the model.

5.4. JACKSON SYSTEM DEVELOPMENT 85

A change in the system’s operational requirements may also prompt the ad-
dition of new processes into the model. For example, the “Overdraft report”
function in figure 5.9 is an output function which generates an overdraft re-
port when the account goes overdrawn. Other function classes include those
responsible for input validation and user interface.

The final stage in JSD is concerned with converting the derived specification
into an executable program. During this stage, the developer considers
what hardware and software should be provided for the system, and applies
the techniques of transformation and scheduling along with techniques of
database definition to allow the system to be efficiently and conveniently
run.

5.4.2 Concluding Remarks

JSD views a system as a set of concurrently running processes which com-
municate with each other by messages [Sut88]. All the model processes can,
in effect, be considered to run in parallel. Since each PSD is dedicated to
modelling one process, this concurrency is not apparent from within any
single PSD. It is the collection of PSD’s that represent the concurrency in
the system.

A process can execute as long as it has data available to operate on. When
no data is available, a process is blocked. The execution of ready pro-
cesses, i.e. those with available input data, is controlled by the schedul-
ing mechanisms built into the system through system processes and the
dedicated scheduler. JSD aims, therefore, to model only low level concur-
rency amongst model processes. Concurrency of groups of processes is not
modelled explicitly.

Hence, there is no notion of a “subsystem” in JSD and control of a group
of processes can only be effected through mechanisms distributed amongst
model processes and the scheduler. No single diagram (or text) specification
can be consulted for a description of subsystem control at any level of gran-
ularity. If part of a system is to be disabled because of an error condition,
for example, the disablement must be reflected in the PSD for every process
in the group of processes belonging to that part of the system. One of the
primary aims of the notation we have introduced is to enable an analyst to
specify high level (subsystem) concurrency among groups of processes (by
using Subsystem Control Diagrams). The specification of subsystem control
is encouraged by our notation, whereas it may be left to the later stages of
JSD. JSD, however, places (early) importance on the order of atomic ac-
tions. This information is portrayed in process structure diagrams for every
model process.

The inability of JSD to model high level concurrency explicitly may be
due to its designers’ decision to abandon a top down (incremental) design

8 6 CHAPTER 5. RELATED WORK

strategy. JSD advocates design by composition [Cam86] rather than design
by decomposition. In the latter high level processes are exploded to reveal
further detail, i.e. a specification is gradually decomposed from a black
box view of the system to its atomic functions. In JSD, small increments
are precisely defined before being combined together to make up the whole
system.
In addition, since JSD modelling starts at a very low level, potentially huge
amount of detail have to be derived in the entity action step from a re-
quirements document for a large system. Sutcliffe [Sut88] notes that one of
the dominant difficulties in introducing JSD is the problem of not knowing
where to start looking for entities. Sommerville [Som89] also points out
this difficulty. For a large system the number of possible entities, and the
actions performed by each one, can easily overwhelm the analyst with de-
tail. Even experienced JSD users, who may be able to derive the entities
and actions for such systems, may be faced with large and unmanageable
communication models for these systems. Such models may result in huge
cluttered SSD’s if many system processes exchange information with each
other. Godwin et al [GGS89] note that JSD is problem size sensitive and
that for a large application the network diagrams can become extremely dif-
ficult to handle. In practice, it may be necessary to subdivide such systems
into a number of parts before applying JSD to each part of the design.

Static (stored) data is not explicitly modelled in JSD. Such data is held in
the state vectors of processes. It is only during the implementation stage
of JSD that storage considerations for state vectors are taken into account.
Storing data in process state vectors may also mean that a collection of data
items which logically belong together (like those represented by data stores
in DFD’s) may be spread among several processes. As a result a process that
requires access to a number of data items will require several state vector
connections. In addition, if a data item is in demand by several processes,
the process storing that item will have many state vector connections. Both
of these may result in cluttered SSD’s. Furthermore, since a state vector
connection is read-only, the only process capable of updating a particular
data item is the one storing it. Other processes have to achieve updates
through messages passed to the process holding the data item.

JSD provides a methodology which can lead a developer directly to a design.
The last step of JSD provides good guidelines for the developer to convert
a JSD specification derived in the earlier stages to a physical design. The
approach taken by JSD does not, however, reach the goals that we have
set for our notation. This is because it is not immediately clear from JSD
diagrams what information flows between processes, or what the interfaces
are to stored data items. Nor is it possible to see the flow of control through
many parts the system. The flow of control at levels higher than the pro-
cess level is a key feature of many systems, and its clear presentation is
vital for the correct specification and implementation of such systems. This

5.5. COMMUNICATING SEQUENTIAL PROCESSES 87

information is spread amongst several processes, including the scheduler, in
JSD designs. Furthermore, hierarchical presentation of information is the
computer scientist’s main weapon for dealing with the problem of scale in
complexity and detail. JSD does not follow a hierarchical strategy, which
makes it a cumbersome methodology when specifying and designing large
systems. However, It should be noted that JSD follows an object oriented
approach. Such an approach cannot be expected to reach many of the goals
set for a functional decomposition strategy.

5.5 Communicating Sequential Processes

5.5.1 Basic Concepts

Communicating Sequential Processes is an algebraic notation that can be
used to specify, design and implement computer software systems [BHR84,
Hoa85]. CSP recognises that input and output are primitives of program-
ming and parallel composition of communicating sequential processes is a
fundamental program structuring method [Hoa78]. In CSP, a process is
an object whose behaviour can be described in terms of the limited set of
events it can engage in. This set is named the alphabet of a process, and
is denoted by the greek letter a. A prefix notation can be used to describe
the behaviour of a process. For example, (x— >P), pronounced x then P,
defines a process which accepts the event x and then behaves exactly as de-
scribed by P. A vending machine [Hoa85] that accepts coins and dispenses
chocolates can be described as follows.

aVMS = {coin, choc}
VMS = (coin— >(choc— »■VMS))

This process has two events in its alphabet and is defined by a recursive
formula which indicates that the process continuously accepts coins and de-
livers chocolates. However, the operation of many processes involves taking
alternative routes of behaviour. Processes whose behaviour can be influ-
enced by their environment are described by using the choice operator, |.
For example, the process (x— >P | y— >Q) can initially engage in either of
the distinct events x or y. After the first event has occurred, the process
behaves like P or Q depending on whether the event was x or y, respectively.
A process which accepts a coin and delivers either a chocolate or a toffee
can be defined as follows.

aVMCT = {coin, choc, toffee}
VMCT = (coin— »(choc— »VMCT | toffee— >VMCT))

88 CHAPTER 5. RELATED WORK

Figure 5.10: The Pictorial Representation of VMCT

The behaviour of a process can be represented pictorially as shown in fig-
ure 5.10.
These diagrams follow the traditional notation of state machines. Circles
represent process states, and the arrows linking these states represent the
transitions. Each transition is labelled with the event name that causes
the state change. The root of the tree, usually drawn at the top of the
diagram, is the starting state. Terminating states, if any, are usually drawn
on bottom of the diagram.

The behaviour of a process over a period of time can also be described by
a trace of that process. This is a finite sequence of symbols recording the
events in which the process has engaged up to some moment in time. Traces
are shown using angeled brackets in CSP. For example, both of the following
are traces of VMS.

<coin, choc> <coin, choc, coin, choc>

Complex processes can be constructed by combining simpler processes in
parallel. When processes are combined in this way, they will often need to
interact. Such interactions are regarded as events that require the partici-
pation of all combined processes. If the alphabets of the combined processes
are the same, each event that actually occurs must be a possible event in
the independent behaviour of each process separately, i.e. for an event to
occur all processes are required to participate. In the case of the vending
machine, a chocolate can only be extracted if the customer wants it and
only when the vending machine is prepared to give it. Processes formed by
the concurrent combination of smaller processes are defined by using the
parallel operator, ||, e.g.

(CUST || VMS)
aCUST = {coin, choc}

CUST = (coin— »•(choc— >CUST))

If the alphabets of the combined processes are different, the participation
of all processes is only required for common events. Processes combined to-
gether by the parallel operator can be represented pictorially in a connection

5.5. COMMUNICATING SEQUENTIAL PROCESSES 89

diagram. Each process is pictured by a named rectangular box from which
emerge a number of lines each labelled with an event from its alphabet,
figure 5.11 [Hoa85]. The lines for common events are joined together.

aP = {a, b, c} aQ = {b, c, d}

Figure 5.11: A Connection Diagram

Processes can be combined in other ways by using other CSP operators.
The general choice operator, □, is used to define a process whose behaviour
is determined by the first event that occurs. The process (c— >P □ d— >Q)
will behave like process P if the first event c. If the first event is d, then
the behaviour of the combined process is like that of Q after that event.
If P and Q share a common first action, Hoare [Hoa85] indicates that the
choice between which one is taken is nondetrministic. Processes can also be
interleaved by using the interleaving operator |||. The interleaving operator
is used when processes are joined together to operate concurrently but are
not required to synchronise on common events. In this case each action of
the combined process is the action of exactly one process. When a com-
mon event occurs, the choice between which process performs that action
is nondeterministic. For example, a vending machine that will accept up
to two coins before dispensing up to two chocolates is defined by (VMS ||
VMS). Processes can also be combined in sequence. This is indicated by
using the sequence operator, The process (P;Q) defines a process which
first behaves like P and upon successful termination of P its behaviour is
like that of Q.

In addition to using the above interactions, two processes can exchange
information by using the CSP communication primitives. A communication
is an event that is described by the pair c.v, where c is the channel on
which the communication takes place and v is the value of the message
which passes. The process (c!v— <-P) output the value v on channel c and
then behaves like P. Similarly, the process (c?v----*P) inputs any value v
communicable on channel c and then behaves like P. For example, a process
which reads a value from channel “in” and outputs that value to channel
“out” is defined by

COPY = (in?x— >(out!x— »•COPY))

The possible values communicated along a channel are denoted by ac(P),
where c is the channel name and P is the process that engages in the commu-

90 CHAPTER 5. RELATED WORK

nication event c.v. On a connection diagram for a process, the channels are
drawn as arrows in the appropriate direction, and labelled with the name
of the channel. When the processes P and Q in figure 5.12 are combined
together, (P || Q), the value read on channel left is first doubled and then
incremented by one before being output to right.

P = (left?x— ► (m id!(xx2)— >-P))
Q = (mid?y— +(right!(y+l)— >Q))

Figure 5.12: The Connection Diagram for (P || Q)

Two processes connected in this way are called a pipe in CSP, and are shown
with a special symbol, P Q. Of course, a process may have more than
one input and one output channel, but a channel may connect only two
processes, and the communication is unidirectional. Communication along
such channels is synchronous. That is, there is no buffering between the
two processes: the communication event requires the participation of both
processes.

Finally, in a similar way as conventional programming languages, CSP pro-
vides as part of its notational syntax statements to declare variables, assign
to those variables and conditional statements branching on the value of
variables. CSP also provides a wide range of operators. Operators, other
than those described above, are provided in CSP for specifying special com-
binations of processes, e.g. when a process, P, is dedicated to serving the
need’s of another process, Q, the combination of these processes is shown
by using the subordination operator, P / / Q. Other classes of operators
include those that operate on process traces and process alphabets. CSP
also provides definitions for useful sets, relations and operators that can be
used when studying the behaviour of processes. These can be used along
with operators to form a specification for the behaviour of a process.

5.5.2 Concluding Remarks

CSP provides an extensive notation in a formal programming language
which can be used to specify and design a wide variety of systems. The
most obvious application of CSP is to the specification, design and imple-
mentation of computer systems which continuously act and interact with
their environment [Hoa85]. Since CSP is a programming notation, it only

5.5. COMMUNICATING SEQUENTIAL PROCESSES 91

provides the means of specifying systems without an accompanying method
for doing so. System specification and design methodologies are usually
inclined towards a particular strategy such as top down or object oriented
design. The flexibility of CSP, on the other hand, allows its user to follow
a method of his/her choice. CSP is very well suited to bottom up design:
small processes can easily be defined by identifying system actors and their
actions (alphabets), and then combined by using any of the many CSP
operators to define more complex processes. It is also possible to follow
a top down hierarchical design strategy using CSP: complex processes can
be decomposed into a network of simpler processes by using the process
combination operators.

Nondeterminism is one the underlying principles of CSP. A CSP system de-
scription may include processes whose behaviour is nondeterministic for a
particular set of events. The general choice operator, for example, specifies
the behaviour of a process as a choice determined by the first event. If the
constituent parts of the complex process share a common first event, the
choice is nondeterministic. Nonderterminism also exists in other parts of
CSP specifications. Hoare [Hoa85] indicates that the choice of which execu-
tion branch is taken is left to the implementor, so that the most convenient
implementation can be chosen. This implies that some decisions about the
precise way a system reacts to an event may be deferred to a late stage of
the design, which in turn may cause inconsistences in the specification to
filter through to the final stages of system implementation.

Using CSP, the activating (firing) agent for a process can be explicitly de-
fined. Every atomic process in our notation has an identified firing event.
Such an event can play a similar role in a CSP process definition by making
it the initial event of that process. The portrayal of higher level subsys-
tem control is a little more complex. A subsystem can first be formed by
grouping the processes within it. The starting conditions for the combined
process and its constituent processes must then be formed to conform to the
control requirements for that subsystem. In addition, it may be necessary to
include extra actions in the definition of the constituent processes to specify
deactivations of those processes when a particular event occurs. It may also
be necessary to place restrictions on the behaviour of these processes by
using CSP behaviour specifications.

Static data can be represented in two ways in CSP. It can either be repre-
sented as shared data or as a process. Hoare [Hoa85] discourages the use
of shared variables because of the possible violation of data integrity by
concurrently interacting processes. Stored data can also be represented as
a process, where the data is private to a guardian process and other pro-
cesses read and write to the data by using channel communication with that
process. This representation model follows in the footsteps of data repre-
sentation in object oriented languages and methodologies. In the case of a
data item in demand, the resulting process that represents it may require

92 CHAPTER 5. RELATED WORK

several channel connections to other processes. A data flow type connec-
tion can be represented in CSP by using a single item buffer process which
engages in synchronous communication with the producer and consumer in
turn.

The formal nature of CSP allows the precise specification of a system with
mathematical rigor. The resulting specification can be subjected to proofs
to investigate many properties, such as the absence of deadlock and live-
lock, of the specified system. Although CSP can prove to be a very useful
notation in this respect, it provides a poor communication medium between
technical and non-technical people. The proofs derived using CSP cannot be
easily used (in their mathematical form) to show users without a substantial
mathematical background that a specification satisfies their requirements.
Diagrammatic notations have proved to be more useful than algebraic ones
for this purpose. CSP does provide limited pictorial representation of pro-
cesses and their behaviour in state transition and connection diagrams, but
these representations are only used as an aid to understanding; they are
not intended to be used for practical transformations and manipulation of
large-scale processes [Hoa78].

The above discussion shows that a specification in our notation can be con-
verted to one in CSP, but this may involve some fine tuning of the resulting
specification to ensure that it conforms to user requirements. There are
two major points to note when doing so. First, communication in CSP
is synchronous, i.e. both partners take part in the communication. The
communication model in our diagrams is asynchronous: data and events
are delivered when ready. This implies that a CSP equivalent for a data
flow is a single buffer process which (synchronously) receives a piece of data
from the producer and sends it to the consumer. Second, CSP processes are
permitted to communicate during their operation. This is not allowed for
atomic processes. The equivalent CSP processes must hence be restricted
to those which do not exchange data in the middle of their operation.

Therefore, it may be possible to carry out checks on a derived specification
by converting it to CSP and then using CSP proof techniques to prove
the satisfaction of system requirements. Since CSP may not be suitable
for communicating the specification to a user, the diagrams may have to be
used. Any resulting modifications to the specification must then be reflected
in the CSP specification in order to recheck the system properties.

5.6 Conclusions

A number of criteria can be identified for comparing notations to assess
their suitability and expressive power for specification of real-time systems.
A broad selection of these criteria are given in the following sections and
the ability of each notation to satisfy each criterion is briefly discussed. It

5.6. CONCLUSIONS 93

is not claimed here that the list given below is complete, but it provides a
base for broad comparison of the notations outlined in this chapter.

The comparison criteria can be subdivided into two groups. The first as-
sesses the capability of a notation for describing certain aspects of systems,
and the second examines the overall suitability of notations for describing
systems. There are areas where these categories overlap.

5.6.1 System Aspects

There are a number of system aspects that are of interest when specifying
the operational behaviour of a system. Each of these is discussed in turn
below.

Activities: The overall operation of a system is accomplished by the collab-
oration of a number of simple activities. These activities are often taken to
form the base elements that must be considered [GGS89]. All the notations
discussed in this chapter have a representation for a simple activity. In petri
nets, an activity is represented by a transition. The firing of that transition
represents the execution of the activity. In MASCOT each simple task is
represented by a MASCOT activity, and the scheduling of that activity rep-
resents the execution of the task it represents. Activities are modelled by
processes and functions in JSD. In CSP a process can be used to represent
a simple task. In the new notation, atomic processes are the base elements
within a specification, but the subjective criteria used in identifying an
atomic process gives analysts additional help when deriving specifications.

Data Interfaces: There are two types of data interface between system activ-
ities: transient data, and static (stored) data. Transient data is exchanged
by system activities during system operation. Any system specification no-
tation must be able to represent such exchanges of data. Data exchange be-
tween system activities can be represented by marking input/output places
of transitions in petri nets, but this representation cannot easily show what
data is exchanged. MASCOT provides elaborate data exchange specifica-
tion through the use of IDA’s, where each IDA treats each collection of data
as an object and provides access to it via procedures. JSD uses data streams
for this purpose. In CSP such exchanges are represented as communication
via named channels. Data flows represent transient data exchanges in the
new notation. The name of a data flow identifies the type of the data ex-
change, while the composition of each exchange is given in a data dictionary
entry.

Unlike transient data, static data is not represented well in all notations.
Since petri nets are essentially a notation for modelling the control sequences
in a system, static data cannot easily be represented in a petri net graph.
MASCOT IDA’s are used to model stored data. Again, the data is an
object and access is provided via a procedural interface. In JSD, the only

94 CHAPTER 5. RELATED WORK

way of representing stored data is by using internal variables of processes,
i.e. in state vectors. The decisions about what part of system data is to be
stored is left to the later stages of JSD. As discussed in the section on CSP,
static data can be represented by a process. This representation follows
the principles of object oriented programming by providing access to data
only through the process that owns the data. Stored data is represented
explicitly by data store symbols on the Data Flow Diagrams of the new
notation.

Control Interfaces: The control interfaces of a system fall into two cate-
gories: control of individual activities and control of a group of activities.
The firing of a transition in petri nets represents the execution of an activ-
ity. Control of activities is, hence, effected by placement of tokens in input
places of transitions. In MASCOT control sequences are planned using syn-
chronisation via IDA’s. In JSD, control sequences of individual activities
are covered by the later (scheduling) stages of a design. The firing of an
activity is modelled in CSP by having its activating event as the first event
it can engage in. The flat nature of petri nets makes them unsuitable and
difficult to use in modelling control over a group of activities. This inher-
ent flatness means that only one level of concurrency, that amongst simple
activities, can be modelled in a petri net. Although MASCOT incorporates
subsystems in its design hierarchy, it does not provide specification tools
for showing control over a subsystem explicitly. Such control is achieved by
using the primitives that operate on control queues. Since JSD does not
follow a hierarchical design strategy, there is no notion of activity groups
and the control of subsystems is not easily representable in JSD. Subsystem
control can be represented in CSP by using process groupings. Because of
the control intensive nature of real-time systems, the ability to specify both
categories of system control interface is an invaluable analysis aid. The
firing event for each atomic process on the Event Flow Diagrams and the
enabling/disabling transitions on the Subsystem Control Diagrams of the
new notation cater for specifying both the control over individual activities
and the control over activity groups.

System State: Once a system has been specified, its dynamic behaviour can
be analysed by examining its state at various points in its operation. It
is, therefore, important to be able to derive this state information easily.
Petri nets are executed by placing tokens in places, i.e. marking the net,
and firing enabled transitions. The state of the system at any given point
in time is described by the marking of its petri net model. Since much of
the MASCOT control flow is achieved by data/event exchange via IDA’s
and operations on control queues, there is no explicit feature of MASCOT
activities and subsystems that can be examined to derive state information.
The same is almost true of JSD, but the state of an entity can be derived by
looking at the values of its internal variables, i.e. its state vector. The state
of the whole system is the collection of its entities’ states. In CSP system

5.6. CONCLUSIONS 95

state is portrayed by the trace of a system at any given point in time.
The approach taken for specifying subsystem control in the new notation
means that, like petri nets and unlike finite state model based notations,
the dynamic state of a system is not localised within a single state. It is
distributed amongst its processes. Hence system state can only be derived
by collecting subsystem and atomic process states.

5.6.2 Overall Capabilities

Godwin et al [GGS89] identify a number of significant factors that can
be considered when assessing the overall capabilities of a specification ap-
proach. Among these are: analysis power, communication power, and size
sensitivity.

Analysis Power: When using a specification notation, one of the purposes
may be to produce an understanding of the system being described. In
other words, the notation must be capable of pointing out ambiguities and
errors in user requirements, and provide techniques to ensure the derived
system conforms to those requirements. All the notations described in this
chapter claim to guide the analyst in discovering such errors. The mathe-
matical base of petri nets and CSP makes them more suitable for rigorous
analysis of specifications (as the existing literature indicates). The clarity of
specifications in the new notation and its features which help in discovering
requirements errors (see also Chapter 6) point to the capabilities of the new
notation for providing help during analysis.

Communication Power: The description of a system presented in any no-
tation can be used for communication between the various groups, e.g. an-
alysts, implementors and users, involved with the system development. Di-
agrammatic notations have proved to be the most useful for this purpose.
Because of its strong mathematical base CSP is least useful of the above
notations for communication between technical and non-technical groups.
The flat natures of petri net graphs and JSD SSD’s result in large diagrams
that are difficult to digest at once. This may become a major factor in
presenting information about large systems when one of these techniques is
used. MASCOT uses both a hierarchical and a diagrammatic approach, so
it is easier to use it as a communication vehicle between groups of people
than the other notations, but the lack of diagrammatic control flow repre-
sentation reduces the extent of the detail MASCOT network diagrams can
portray. The clear representation of all system aspects on the diagrams of
the new notation greatly enhance its communication power.

Size Sensitivity: A notation should be able to cope with the specification of
systems of varying size. The size of the system becomes a very significant
factor when designing large systems. If a notation provides a systematic
approach to the division of the problem, it has a better chance of providing

96 CHAPTER 5. RELATED WORK

a satisfactory result when deriving a system specification. A large problem
cannot be tackled at once, which implies that an incremental approach is
required for such systems. Hierarchical design has proved most effective in
breaking a problem down. The only notation that advocates a hierarchical
design among the above notations is MASCOT (CSP does not encourage
any strategy for deriving a specification, even though it can be done hierar-
chically). Specifications in petri nets and JSD are flat, and as pointed out
in the earlier sections above, may cause difficulties when deriving a large
specification. The new notation follows in the footsteps of its predecessors
by adopting a hierarchical presentation strategy. It is, therefore, not as
sensitive to the system size as those with a flat approach to specification.

5.6.3 Concluding Remark

In order to specify a real-time system, the flow of data and control must
both be completely described in the specification. The aim of the notation
we have introduced is to show clearly all stored data, all data interfaces to
processes, the division into subsystems which may be enabled and disabled
separately, the conditions for enablement and disablement of each subsys-
tem, all processes down to the level of atomic processes, and the order in
which processes are required to fire. It can be deduced from the above dis-
cussion that each of the above notations covers some of these aspects, but
none of them covers them all.

Chapter 6

Conclusions

6.1 Overview

Specification has been identified as one of the most important stages of the
system life cycle. It is the stepping stone into the process of system design
and implementation. Hence, any errors propagated from a specification to
the later stages of a system’s life cycle will have disastrous results, ranging
from minor alterations to modules and subsystems to complete redesigns of
major parts of that system. It is, therefore, essential for analysts to have
a toolkit of notational aids which enables them to present complete and
unambiguous specifications which ideally have no errors.

This thesis has attempted to provide a notation for the specification of real-
time systems, which aims to achieve these goals. The introduction chapter
identified the characteristics of such systems and what the outcome of the
specification should be. It also outlined the need for a notation that: is
easy to use when deriving such specifications, can be used effectively as
a communication medium between the various groups of people involved
in system development, and can guide its users in deriving complete and
unambiguous specifications.

Data Flow Diagrams are identified as an effective tool for the specification of
data processing systems in the background chapter, which also outlined why
they are unsuitable for the specification of real-time systems. Two extended
DFD notations, designed for use in real-time system specification, were
then presented in order to establish some of their shortcomings. The next
chapter introduces the use of a new notation through a worked example,
outlining the various symbols of the notation and their use in constructing
the diagrams that describe the operational behaviour of a system. The
following chapter discusses many of the issues relevant to the new notation.
Finally, the chapter on related work drew some comparisons with other
specification techniques through discussing four particular notations.

97

98 CHAPTER 6. CONCLUSIONS

This chapter begins by discussing some of the more novel features of the
new notation. Possible extensions to the notation and future directions for
research are then discussed. The chapter concludes by drawing an overall
conclusion from the research work described in this thesis.

6.2 Features Of The Notation

Data Flow Diagram based notations aimed at the specification of real-time
systems, in use in industry at present, are deficient and imprecise as well as
clumsy in various respects. Taking two of the best known of these notations
as a starting point, a new notation has been devised which is both more
precise and more comfortable to use. We believe the notation presented
here has a number of advantages over its predecessors. The more important
of these are discussed below.

6.2.1 Clarity

The new notation results in clearer specifications for a number of reasons.
The first of these is the way control over process groups (subsystems) is
specified. The approach taken here to describe the operational character-
istics of subsystems is radically different from that taken by similar nota-
tions. The most popular notations, currently used in industry, use finite
state modelling for specifying system behaviour in response to events. This
inherently sequential model inhibits clearly showing the concurrency among
parts (subsystems) of a system. This is a direct result of centralising the
(sub)system state in a single state of the finite state model. In any such
state many system parts may be responding to system inputs. Identifying
these parts usually involves not only studying the FSM model, but it can
also include looking at additional documentation such as activation tables.
In short, when each part of the system is active, and which parts may be
operating concurrently, cannot easily be deduced from a finite state model
based notations.

Subsystem Control Diagrams, on the other hand, show both of these fea-
tures clearly. Abandoning the centralised state feature of the finite state
model, an SCD specifies the enabling and disabling conditions for each
individual subsystem. Subsystems are no longer lumped together into par-
ticular groupings, each of which is enabled/disabled upon the occurrence of
an event. Furthermore, this separation promotes a clear understanding of
which subsystems may be acting concurrently. This is immediately appar-
ent from an SCD by looking at the overall effect of each event appearing
on the diagram. Nested subsystems provide the means of specifying more
elaborate control requirements.

6.2. FEATURES OF THE NOTATION 99

The concept of an atomic process (a leaf process of a diagram hierarchy)
has been defined clearly by giving a number of objective guidelines for iden-
tifying such a process. These guidelines identify an atomic processes as a
function whose operation starts with a single event, and whose outputs are
not produced until the termination of its task. Objective identification of
atomic processes should help analysts in deriving clearer specifications.

Moreover, the activating agent for every atomic process is uniquely identified
in a specification presented in this notation. This is abstracted by the single
event flow entering each atomic process. Predecessors of this notation do
not have a specific indication of how each of the processes at the leaves of the
system process hierarchy is activated to carry out its task. This information
may be hidden away in either finite state models or process specifications,
whereas each atomic process on an Event Flow Diagram has one and only
one input event flow, which identifies its firing agent clearly.

The clear presentation of high level concurrency in SCD’s has been empha-
sised as one of the features of the new notation. Low level concurrency
among atomic level process is also shown clearly. This is a direct result
of showing the firing agents for all atomic processes on their corresponding
EFD. Local concurrency, such as that among a number of atomic processes
started by the same event, can be identified readily by inspecting the ap-
propriate EFD.

6.2.2 Ambiguity And Incompleteness

The process of deriving a specification from the users’ requirements for a
system is not a mechanical one. The requirements document is often incom-
plete and may include ambiguities [TI77]. It may be incomplete in the sense
that the system’s required behaviour under some circumstances may have
been omitted from the requirements document, whereas ambiguity is the re-
sult of an opposite error: more than one behaviour may have been indicated
under the same conditions or the required behaviour may not be precisely
described. The derivation of a system’s specification may, therefore, involve
many interactions between its users and its analysts.

Before such interactions can take place, the analysts must first identify
the ambiguities and incompleteness problems contained in the requirements
document. A specification notation should not only guide the analysts
in deriving complete and unambiguous specifications, it should also help
them in discovering ambiguity and incompleteness problems contained in
requirements documents.

The combination of the Event Flow Diagram and the Subsystem Control
Diagram specifies completely and unambiguously the control structure of a
system. Such control falls into two categories: high and low level control.
High level control over groups of processes is specified using the SC'D. As

100 CHAPTER 6. CONCLUSIONS

pointed out in the discussion above, the latter identifies these groups clearly
and how each one is enabled and disabled by (internal or external) events.
Low level control, i.e. control over individual atomic processes, is specified
on the EFD by the single input event flow restriction of each atomic process.
Again, the controlling conditions are shown clearly.

In addition, application of the firing rule may prompt the analysts to dis-
cover ambiguities and incompleteness problems in system requirements.
Once a process has been identified as a leaf process in the system process
hierarchy, the analysts must identify its firing event. This may be provided
by one of several sources: an implicit event carried by (external or inter-
nal) data, an environmental event, an event generated by a system process,
or an event resulting from the synchronisation of a number of (internal or
external) events.
If none of the data flows input to an atomic process can be used to fire that
process, i.e. they are all latched or stored data inputs, and it cannot be fired
by any of the events present in the process’s environment, the analysts will
have to consult the users of the system to determine when that part of the
system operates. For example, the analysts may discover that the process
may need a temporal, i.e. time generated, event. In this way incompleteness
can be discovered and resolved by the analysts.

Ambiguity can also be discovered as a result of applying the firing rule.
If an atomic process can be fired by a number of events, the combining
relationship between these events must be indicated on the EFD. Each event
may be sufficient to fire the process, in which case a merged event flow is
used to form the input event of the process. Conversely, the occurrence
of all those events may be required before the process can start, e.g. a
number of data pieces must arrive for the process to operate on them. In
such cases the events are synchronised to form the process’s input event.
Other combinations are possible, and can be specified using the event flow
constructs. Examples of these are shown in the specification examples of
Appendix A. An ambiguity query may result if the relationship between
the events that form an atomic process’s firing event is not clear from the
requirements document. The users of the system will have to be consulted
again to resolve such an ambiguity.

The SCD can provide help in discovering ambiguity and incompleteness in
a similar fashion. When high level control is associated with a hierarchy
level, i.e. that level has an SCD as well as the DFD/EFD pair, enabling and
disabling events must be identified for each subsystem. A subsystem may
be enabled/disabled by one or more events, or it may be left out of the SCD
indicating that it is enabled and disabled with its parent(s). In identifying
the enabling and disabling conditions for each subsystem, incompleteness
may show up as unspecified subsystem behaviour under some conditions and
ambiguity may be the result of unclear indication of subsystem behaviour
under certain circumstances.

6.2. FEATURES OF THE NOTATION 101

The above discussion indicates that the Event Flow Diagram and the Sub-
system Control Diagram can effectively help analysts in discovering incom-
pleteness and ambiguity in user requirements both at the coarse grain sub-
system level and the finer grain atomic process level.

6.2.3 Ease Of Specifying Concurrency

The discussion above points out that both high and low level concurrency
can be shown clearly on Subsystem Control and Event Flow Diagrams. A
further feature of the notation worth noting is the ease of specifying both
types of concurrency.

Due to the restriction of having only one state occupied at any time, a fi-
nite state model is inherently sequential. Any concurrency present amongst
subsystems can only be represented by multiple subsystem enablement in
any state. Consider a situation in which a number of subsystems are en-
abled/ disabled by a number of unique events. If these events can occur in
an arbitrary order, the number of states in a finite state model increases at
an alarming rate. This proliferation of states requires careful consideration
by the analysts, when writing down the specification, in order to ensure that
the correct number of subsystems are enabled/disabled in each state. In a
case where the number of subsystems and events is more than a handful,
the control specification can become unmanageable at best and unreadable
at worst.

Furthermore, in a finite state model, the operation of a finite state machine
can become more complex as it may also be responsible for triggering atomic
processes. This further complicates the control operation of that machine,
increasing the difficulties in deriving the specification, and hence increasing
the possibility of erroneous specification. The separate control issue of firing
atomic processes is not included in the coarse grain control structure given
on the SCD: it is considered separately and presented on the FFD. As
pointed out above, local concurrency is represented clearly and easily by
the firing sequences of atomic processes.

Discarding the finite state model for specifying control at higher levels
eliminates the sequentiality such models can impose on the analysts. In
deriving an SCD, each subsystem is considered in isolation, and its enable-
ment/disablement requirements in response to events are specified. This
separation greatly aids the analysts in writing down specifications for sub-
system levels. Moreover, the finer grain control in atomic process firings
is not mixed in with the more coarse grain control of subsystems. This
provides further help in deriving concurrent system behaviour. In fact, the
ease of specifying such concurrency may encourage the analysts to look for
and include concurrency in the system specification.

102 CHAPTER 6. CONCLUSIONS

6.2.4 Other Features

Combinatorial explosion of states in a finite state machine can also occur in
other situations. Consider, for example, a situation in which a number of
events must be synchronised to form the firing event for an atomic process.
If those events can occur in any order, a proliferation of states, similar to
that outlined above, can take place. This proliferation can be controlled
to a certain extent, if the analysts serialise the events, i.e. if they consider
only a subset of the orderings in which the events can occur. The first case
can result in yet another case of an unmanageable specification, yet the
second enforces requirements on system behaviour which are not part of
those outlined by system users.

The synchronisation symbol of the EFD enforces no particular ordering on
the events synchronised. It synchronises those events to generate a com-
pound event. In other words, no assumptions are made about what order
the events may occur in and how their synchronisation is achieved. The
mechanics of synchronisation depend largely on the host environment for a
system. This implies that they are design issues, and are hence left to the
later stages of system development.

A further feature of the new notation is its objective criteria for selecting
atomic processes. Chapter 4 discusses these criteria and the advantages of
applying them when deriving a specification. The criteria can further aid
in deriving and presenting clear and unambiguous specifications.

6.3 Future Directions

The research work described in this thesis may be enhanced by further
research to extend that work. Some of the major enhancements possible in
future research are outlined in the sections below.

6.3.1 Specification—»Design—»Implementation

Once a specification has been derived for a system, it is passed on to the
next stages of the system life cycle: design and implementation. The first of
these tightens up some of the relaxations about a perfect system operating
environment and adds enhancements such as the processing required for
the system to communicate with its environment. Unlike the specification
stage, the full implications of the host environment such as its limitations
and the variety of errors that may occur during operation for the system
are taken into account during design. The outcome of this stage paves the
way for a full implementation of the system in a specific host environment.

Chapter 4 briefly touched on the subject of deriving the design and imple-

6.3. FUTURE DIRECTIONS 103

mentation of a system from its specification by discussing the experiences
gained through implementing one of the example specifications. Further
research is required in this area to derive some general guidelines, more
concrete than those given in Chapter 4, which can be used when deriving a
design and implementation from a specification given in the new notation.

The two direct predecessors of the notation both advocate using their no-
tations to carry a specification into the later stages. (Specific notations,
e.g. Hatley and Pirbhai’s Architectural Model [HP88], are devised for this
purpose. These use many of the symbols used in the preceding specifica-
tion notation). The design of a system can, however, be affected radically
by the choice of its host environment. As pointed out by Kalinsky and
Ready [KR89], a system specification may require major reorganisation of
system functions as a result of the host environment choice. This is a direct
result of the different concerns during specification and design stages. While
the analysts’ task is to produce a complete and unambiguous description of
the system’s operational behaviour, the designers are concerned with fitting
those requirements into the rigid and restricted host environment selected
for the system. Therefore, the process of deriving a design from a spec-
ification is not just padding the latter with more processes. Because of
real-world constraints, it can involve reorganisation and reconstruction of
some system parts. Hence, a specification notation may not be sufficient
or even appropriate for this task. Although the system processing division
derived in the specification can be left unaltered in the implementation,
further research is required to investigate the possible alterations and en-
hancements to a specification when deriving a design for implementation in
a specific host environment.

6.3.2 Quality Of Specifications

Applying a programming language to a problem can yield several solutions.
All such solutions may satisfy the problem’s specification, i.e. all the pro-
grams may perform in a similar manner when they are executing. In order
to judge one solution against another, some criteria must be provided. One
method of comparing similar solutions to a problem is by assessing the
quality of each solution. Such qualitative criteria already exist for pro-
grams. A program can be checked for structuredness by using structuring
theorems [BJ66, BS72, Coo67]. Using these criteria, programs can be qual-
itatively categorised.

A specification notation can, in a fashion similar to a programming lan-
guage, result in different specifications for the same system. For a number
of reasons, e.g. user concern, analyst performance measurement, or as part
of project management, it is desirable to be able to judge the quality of a
specification, so that it can be assessed. Qualitative criteria are, therefore,
required for specifications presented in the new notation. Chapter 4 briefly

104 CHAPTER 6. CONCLUSIONS

described one attempt to attach structuring criteria, similar to those used
for programs, to the control parts of a specification. The problems with
such an approach were also outlined.

It is not possible to evaluate the effectiveness of the new notation without
any measurement for the quality of derived specifications. As part of future
enhancements to the approach taken here for real-time system specification,
quality criteria should be derived, so that specifications can be assessed.

6.3.3 Automated Tools

The activities during the specification stage of a system’s life cycle can
prompt numerous alterations to its specification document. Modifying parts
of a graphical notation can prove more cumbersome than making changes to
a textual description. Perhaps this has been one of the major obstacles to
persuading systems analysts to use such notations. The decreasing cost of
computer hardware, specially for graphic workstations, and their increasing
processor power has lead to a large number of Computer Aided Software
Engineering (CASE) tools, which support the various approaches to system
design [Was87]. As well as providing editing facilities for the diagrams of
a notation, a CASE tool can provide many invaluable aids, such as syntax
checks, to analysts [TCL89].

A CASE tool based on the new notation can not only alleviate many of
the mechanical tasks, such as interactive syntax checking of diagrams and
deriving event flows for implicit events carried by data, it can also include
facilities for analysing those diagrams. From an analysis point of view, it
is useful to be able to examine separately different aspects of parts of the
system. A CASE tool can provide the ideal means of doing so. DFD’s,
EFD’s and SCD’s can be viewed separately as well as together; an EFD
can be superimposed on its corresponding DFD to show all aspects of the
processes on the same diagram; regrouping of processes can be performed
automatically to study different system configurations. Many more useful
capabilities can be given to a such a CASE tool. Perhaps the most use-
ful of these is the ability to observe a token like execution, similar to that
of the transformation schema [War86, WM86], and based on the petri net
equivalent (described in the Chapter 4) of a specification, in interactive
or batch type modes. By providing stubs for atomic processes, for exam-
ple, an animation [KN88] of a system’s control structure may be studied.
Such an animation will only be concerned with some behavioural aspects of
the system, providing much more rapid prototyping than that provided by
executable specifications [Zav82].

Despite their relatively recent invention, CASE tools have already proved
their usefulness as an analysis/design tool in an industrial environment.
The currently expanding market in CASE products bears evidence to this

6.4. CONCLUDING REMARK 105

fact. Hence, a CASE tool based on the new notation will, no doubt, prove
an invaluable aid to future users of the notation.

6.4 Concluding Remark

The importance of a comprehensive study of system requirements and their
presentation in a form understandable by the parties involved with the sys-
tem development process, before commencing a full system implementation,
is being increasingly realised by system users and analysts. The increasing
use of CASE tools and notations in real-time system development projects is
a direct consequence of this realisation. The currently active research efforts
investigating methodologies and their associated notations aimed at the var-
ious stages of the system life cycle point to the fact that such notations are
still in their infancy. As they become more mature, their acceptance in
industry will become more widespread. It is hoped that the work presented
in this thesis makes a step towards achieving this result.

References

[Age79] T. Agerwala. Putting Petri Nets to Work. Computer, 12(12):85—
94, Dec. 1979.

[AL81] T. Anderson and T.A. Lee. Fault Tolerance: Principles and
Practice. Prentice-Hall International, 1981.

[Alf77] M.W. Alford. A Requirements Methodology for Real-Time Pro-
cessing Requirements. IEEE transactions on Software Engi-
neering, SE-3(l):60-9, 1977.

[Alf85] M. Alford. SREM at The Age of Eight: The Distributed Design
System. Computer, 18(4):36—46, April 1985. SREM SREP R-
Net RSL REVS SYSREM DDL Requirements-Specification.

[A1181] S.T. Allworth. Introduction to Real-Time Software Design.
McMillan, 1981.

[AZ87] S.T. Allworth and R.N. Zobel. Introduction to Real-Time Soft-
ware Design, 2nd Edition. MacMillan, London, 1987.

[Bae73] J.L Baer. Modelling for Parallel Computation: A Case Study.
In Proceedings of The Sigamore Computer Conference on Paral-
lel Processing, pages 13-22, Syracuse University, August 1973.

[Bai89] S.C. Bailin. An Object-Oriented Requirements Specification
Method. Communications of The ACM , 32(5):608-623, May
1989.

[Bat87] G. Bate. The Official Handbook of MASCOT. Defence research
Information Centre, Glasgow, UK, June 1987.

[BEF+86] J.P. Booth, L.R.B. Elton, A.C.W. Finkeistein, S.M.D. Glenis-
ter, S.J. Goldsack, D. Jordan, R.D. Tavendale, and W.J. Quirk.
Development of a Strategy for Technology Transfer In Relation
to The FOREST Project. Alvey Initiative FOREST Report
R ll, Department of Computing, Imperial College, UK. 1986.

107

108 REFERENCES

[BHR84] S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A Theory of
Communicating Sequential Processes. Journal of The ACM ,
31 (3):561—599, July 1984.

[BJ66] C. Boehm and G. Jacopini. Flow Diagrams, Turing Machines
and Languages with Only Two Formation Rules. Communica-
tions of The ACM , 9(5):366—371, May 1966.

[BJKW88] W. Bruyn, R. Jensen, D. Keskar, and P. Ward. ESML: An
Extended System Modelling Language Based on The Data

[Bjo87]

Flow Diagram. ACM SIGSOFT Software Engineering Notes,
13(1):58—67, Jan. 1988.

D. Bjorner. On The Use of Formal Methods in Software De-
velopment. In Proceedings of The 9th International Conference
on Software Engineering, pages 17-29, Monterey, Cal., March
1987. IEEE Computer Society Press.

[BM85] G. Bruno and M. Marchetto. Rapid Prototyping of Control
Systems Using High Level Petri Nets. In Proceedings of The
8th International Software Engineering Conference, pages 230—
235, London, Sept. 1985. IEEE.

[B085] N.D. Birrell and M.A. Ould. A Practical Handbook for Software
Development. Cambridge University Press, 1985.

[B0086] G. Booch. Object-Oriented Development. IEEE Transactions
on Software Engineering, SE-12(2):211-221, Feb. 1986.

[BOT85] D. Bolton, P. Osmon, and P. Thompson. A Data Flow Method-
ology for System Development. In Proceedings of The Third
International Workshop on Software Specifications and Design,
pages 22-24, London, 26-27 August 1985. IEEE Computer So-
ciety Press.

[BS72] J. Bruno and K. Steiglitz. The Expression of Algorithms by
Charts. Journal of The ACM , 19(3):517—525, July 1972.

[BZ83] D. Brand and P. Zafiropulo. On Communicating Finite State
Machines. Journal of The Association for Computing Machin-
ery, 30(2):323-42, April 1983.

[Cam82] J.R. Cameron. Two Pairs of Examples in The Jackson Ap-
proach to System Development. In Proceedings of The 15th
Hawaii International Conference on System Sciences, Jan.
1982.

REFERENCES 109

[Cam83]

[Cam86]

[CCI84]

[CCW89]

[CDK85]

[CFG+85]

[Cha89]

[Col84]

[Coo67]

[CR83]

[DeM78]

[Den77]

J.R. Cameron. JSD and JSP: The Jackson Approach to Soft-
ware Development. IEEE Computer Society Press, Los Angeles,
1983.

J.R. Cameron. An Overview of JSD. IEEE Transactions on
Software Engineering, SE-12(2):222-240, Feb. 1986.

CCITT. Recommendations Z100-104: Functional Specification
and Description Language (ADL), 1984.

J.R. Cameron, A. Campbell, and P.T. Ward. Comparative
Methods Work and The Future of CASE. In Proceedings of
The CASE Workshop at Imperial College, July 1989.

M. Chandrasekhar an, B. Dasarathy, and Z. Kishimoto.
Requirements-Based Testing of Real-Time System: Modeling
for Testability. Computer, 18(4):71—80, April 1985.

R. J. Cunningham, A. Finkeistein, S. Goldsack, T. Maibaum,
and C. Potts. Formal Requirements Specification-The FOREST
Project. In Proceedings of The Third International Workshop
on Software Specification and Design, London, UK, August 26-
27, 1985. IEEE Computer Society Press.

S. K. Chang. Principles of Pictorial Information Systems De-
sign. Prentice-Hall International, 1989.

M.A. Colter. A Comparative Examination of System Analy-
sis Techniques. Management Information Systems, 8(1) :51—66,
March 1984.

D. C. Cooper. Boehm and Jacopini’s Reduction of Flow Charts.
Letter to the Editor, Communications of The ACM , 10(8):463
and 473, Aug. 1967.

J.F. Coolahan and N. Roussopoulos. Timing Requirements
for Time Driven Systems Using Augmented Petri Nets. IEEE
Transactions on Software Engineering, SE-9:603-616, Sept.
1983.

T. DeMarco. Structured Analysis and System Specification.
Yourdon Press, New Jersey, 1978.

E. Denert. Specification and Design of Dialogue Systems with
State Diagrams. In Proceedings of The International Comput-
ing Symposium, pages 417-24, Munich, Germany, April 1977.
North-Holland.

110 REFERENCES

[Dib82]

[DG82]

[DR79]

[DS84]

[DT86]

[EFRV86]

[Est78]

[FLL86]

[Fou84]

[FP86]

[Fra85]

V.A. Downes and S.J. Goldsack. Programming Embedded Sys-
tems with ADA. Prentice-Hall International, 1982.

R. Dibble. Software Design and Development Using MAS-
COT. In AGARD Conference Proceedings: Software for Avion-
ics, number 330, pages 19/1-15, The Hague-Kijkduin, Nether-
lands, 6-10 Sept. 1982.

A.M. Davis and T.G. Rauscher. Formal Techniques and Auto-
matic Processing to Ensure Correctness in Requirements Spec-
ifications. In Proceedings of The Conference on Specifications
of Reliable Software, pages 15-35, 1979.

T. DeMarco and A. Soceneantu. SYNCRO: A Dataflow Com-
mand Shell for The Lilith/Modula Computer. In Proceedings of
The Seventh International Conference on Software Engineering,
pages 207-213, 1984.

T. Docker and G. Tate. Executable Data Flow Diagrams. In
P.J. Brown and D.J. Barnes, editors, Proceedings of The BCS-
IEE Software Engineering Conference, Southampton, England,
Sept. 1986.

G. Estrin, R.S. Fenchel, R.R. Razouk, and M.K. Vernon.
SARA: Modeling, Analysis and Simulation for Design of Con-
current Systems. IEEE Transactions on Software Engineering,
SE-12(2):293-311, Feb. 1986.

G. Estrin. A Methodology for The Design of Digital Systems
- Supported by SARA at The age of one. Proceedings of The
National Computer Conference, pages 313-24, 1978.

D.J. Flynn, P.J. Layzell, and P. Loucopoulos. Assisting The
Analyst-The Aims and Approaches of The Analyst Assist
Project. In D. Barnes P. Brown, editor, Software Engineering
86, pages 19-26. Peter Peregrinus, 1986.

R. Foulkes. A User’s Experience with MASCOT. In IEE Col-
loquium Digest No. 113, 14i/l Dec. 1984.

A. Finkelstein and C. Potts. Structured common sense:
The elicitation and formalization of system requirements. In
D. Barnes P. Brown, editor, Software Engineering 86, pages
236-250. Peter Peregrinus, 1986.

B. Fraley. Design of Real-Time systems. In Proceedings of
The Third International Workshop on Software Specifications
and Design, pages 57-59, London, 26-27 August 1985. IEEE
Computer Society Press.

REFERENCES 111

[GGS89]

[GH81]

[Gil62]

[Gom84]

[GS79]

[Har80]

[Har87]

[Har88]

[HLN+88]

[Hoa78]

[Hoa85]

[Hol87]

[H0I88]

[HP88]

A.N. Godwin, M.B. Gore, and D.W. Salt. A Comparison of
JSD and DFD as Descriptive Tools. The Computer Journal,
32(3) :202—211, June 1989.

H. J. Genrich and K. Hautenbach. System Modeling with High-
Level Petri Nets. Theoretical Computer Science, 13:109-136,
1981.

A. Gill. Introduction to The Theory of Finite State Machines.
McGraw-Hill, New York, 1962.

H. Gomaa. A Software Design Method for Real-Time Systems.
Communications of The ACM , 27(9):938-49, Sept. 1984.

C. Gane and T. Sarson. Structured Systems Analysis: Tools
and Techniques. Prentice-Hall International, 1979.

D. Harel. On Folk Theorems. Communications of The ACM ,
23(7):379-389, July 1980.

D. Harel. Statecharts: A Visual Formalism for Complex Sys-
tems. Science of Programming, 8:231-274, 1987.

D. Harel. On Visual Formalisms. Communications of ACM ,
31(4), April 1988.

D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi,
R. Sherman, and A. Shtui-Trauing. STATEMATE: A Work-
ing Environment for The Development of Complex Reactive
Systems. In Proceedings of The 10th International Conference
on Software Engineering, April 1988.

C.A.R. Hoare. Communicating Sequential Processes. Commu-
nications of The ACM , 21(8):666-677, Aug. 1978.

C. A.R. Hoare. Communicating Sequential Processes. Prentice-
Hall International, London, 1985.

M. Holcombe. Formal Methods in The Specification of The
Human-Machine Interface. International CIS Journal, pages
24-34, July 1987.

M. Holcombe. X-Machines as a Basis for Dynamic System
Specification. Software Engineering Journal, 3(2):69-76, March
1988.

D. J. Hatley and I.A. Pirbhai. Strategies for Real-Time System
Specification. Dorset House Publishing, New York, 1988.

112 REFERENCES

[HPSS87] D. Harel, A. Pnueli, J.P. Schmidt, and R. Sherman. On The
Formal Semantics of Statecharts. In Proceedings of The 2nd
IEEE Symposium on Logic in Computer Science, pages 54-64,
1987.

[HS87] A. Hecht and A. Simmons. The automation of Structured Anal-
ysis and Structured Design. In Proceedings of The Sixth In-
ternational Phoenix Conference on Computers and Communi-
cations, pages 267-71, Scottsdale, AZ, 1987. IEEE Computer
Society Press.

[HU79] J.E. Hopcroft and J.D. Ullman. Introduction to Automata The-
ory, Languages and Computation. Addison-Wesley, 1979.

[1182] R.G. Babb II. Data-Driven Implementation of Data Flow Dia-
grams. In Proceedings of The 6th Conference on Software En-
gineering, pages 309-318, Tokyo, Japan, Sept. 1982.

[1185] R.G. Babb II. Programming with The HEP Large-Grain Data
Flow Techniques. Parallel MIMD Computation: HEP Super-
computer and its Application, 1985.

[IOM+85] R.G. Babb II, K. Orr, A. Mili, S. Gearhart, and N. Martin. Pro-
ceedings of The Workshop On Models and Languages for Soft-
ware Specification and Design. Computer, 18(3):103—8, March
1985.

[Irv84] K.W. Irvin. The MASCOT Environment. In Application Devel-
opment Tools: State of The Art Report, pages 41-9. Pergamon
Infotec Ltd., 1984.

[Jac75] M.A. Jackson. Principles of Program Design. Academic Press,
London, 1975.

[Jac83] M.A. Jackson. System Development. Prentice-Hall Int., N.J.,
1983.

[Jac84] K. Jackson. Introduction: Basic MASCOT Principles. In IEE
Colloquium Digest No. 113, 14i/l Dec. 1984.

[Jen81] K. Jensen. Coloured Petri Nets and The Invariant-Method.
Theoretical Computer Science, 14:317-336, 1981.

[JKM86] P. Jeremaes, S. Khosla, and T.S.E. Maibaum. A Modal (Ac-
tion) Logic for Requirements Specification. In D. Barnes P.
Brown, editor, Software Engineering 86, pages 269-294. Peter
Peregrinus, 1986.

REFERENCES 113

[KN88]

[KNPW88]

[Koo85]

[KR89]

[Lev86]

[LH87]

[LL87]

[LM81]

[LS87]

[Mai86]

[mas86]

[McF82]

J. Kramer and K. Ng. Animation of Requirements Specifica-
tions. Software-Practice and Experience, 18(8):749—774, August
1988.

J. Kramer, K. Ng, C. Potts, and K. Whitehead. Tool Sup-
port for Requirements Analysis. Software Engineering Journal,
3(3):86-96, May 1988.

C. J. Koomen. From Specification Towards Implementation.
Methodologies for Computer System Design, pages 105-121,
1985.

D. Kalinsky and J. Ready. Distinctions Between Requirements
Specification And Design of Real-Time Systems. In Proceed-
ings of The Second Int. Conference On Software Engineering
for Real-Time Systems, pages 26-30, The Royal Agricultural
College, Cirencester, UK, 18-20 Sept. 89.

L. S. Levy. A Metaprogramming Method And Its Economic
Justification. IEEE Transactions on Software Engineering, SE-
12(2):272—277, Feb. 1986.

M. D. Lubars and M.T. Harandi. Knowledge-Based Software
Design Using Design Schemas. In Proceedings of The 9th Inter-
national Conference on Software Engineering, pages 253-262,
Monterey, Cal., March 1987. IEEE Computer Society Press.

P.J. Layzell and P. Loucopoulos. Systems Analysis and Develop-
ment, 2nd Edition. Chartwell-Bratt Studentlitteratur, Sweden,
1987.

H. Ledgard and M. Marcotty. The Programming Landscape.
Science Research Associates Inc., Chicago, 1981.

J.H. Larkin and H.A. Simon. Why a Diagram is (Sometimes)
Worth Ten Thousand Words. Cognative Science, 11:65-99,
1987.

T.S.E. Maibaum. A Logic for Formal Requirements Specifica-
tion of Real-Time Embedded Systems. Alvey Initiative FOR-
EST Report R3, Department of Computing, Imperial College,
London, UK, 1986.

MASCOT Design Support Environment, Problem 2: Bank Au-
totellor Network, May 1986.

W.S. McFadyen. A Cohesive Methodology for The Development
of Large Real-Time Systems. Journal of Telecommunications
Networks (US A), 1 (3) :265—80, Fall 1982.

114 REFERENCES

[Mil56]

[Mil75]

[Mil89]

[Mir89]

[MJAS85]

[MM85]

[MP84]

[Mul84]

[NSO90]

[NS089]

[Mey88]

[ONR87]

B. Meyer. Object-Oriented Software Construction. Prentice Hall
International, 1988.

G. A. Miller. The Magical Number Seven Plus or Minus Two:
Some Limits on our Capacity for Processing Information. Psy-
chological Review, 63:81-97, 1956.

H. D. Mills. The New Math of Computer Programming. Com-
munications of The ACM , 18(1):43—48, Jan. 1975.

R. Milner. Communication and Concurrency. Prentice-Hall
International, 1989.

E.L. Miranda. Specifying Control Transformations Through
Petri Nets. ACM SIGSOFT Software Engineering Notes,
14(2):45-48, April 1989.

T.J. McCabe, F.C. Joh Jr., K. Adams, and A.M. Sturgill.
Structured Real-Time Analysis and Design. In Proceedings of
COMPS AC-85, pages 40-52. IEEE, Oct. 1985.

J. Martin and C. McClure. Diagramming Techniques for Ana-
lysts and Programmers. Prentice-Hall International, 1985.

S. M. McMenamin and J.F. Palmer. Essential Systems Analysis.
Yourdon Press, New Jersey, 1984.

G. Mullery. Requirements Overview Acquisition-Environment.
Advanced Courses On Distributed Systems-Methods and Tools
for Specification, April 1984.

M. Nejad-Sattary and P.E. Osmon. A Notation For Real-Time
System Specification. In Proceedings of The UKIT 1990 Con-
ference, University of Southampton, UK, 19-22 March 1990. An
earlier version of this paper was presented at the Workshop On
Real-Time Systems: Theory and Practice, University of York,
Uk, 28-29 Sept. 89.

M. Nejad-Sattary and P.E. Osmon. On A Notation For Real-
Time System Specification. In Proceedings of The Second
International Conference On Software Engineering for Real-
Time Systems, pages 31-35, The Royal Agricultural College,
Cirencester, UK, 18-20 Sept. 89.

R.A. Orr, M.T. Norris, and C.D.V. Rouch. Complexity Control
and Analysis of Real-Time Software Systems. British Telecom
Technology Journal, 5(2): 12—17, April 1987.

REFERENCES 115

[OWW85]

[PC86]

[PCW85]

[Pet77]

[Pet81]

[PFAB86]

[PJ88]

[Rei82]

[RJ77]

[RPTU84]

[RS82]

[Sal76]

C. Olson, W. Webb, and R Wieland. Code Generation from
Data Flow Diagrams. In Proceedings of The Third Interna-
tional Workshop on Software Specifications and Design, pages
172-176, London, 26-27 August 1985. IEEE Computer Society
Press.

D. Parnas and P.C. Clements. A Rational Design Process: How
and Why to Fake It. IEEE Transactions on Software Engineer-
ing, SE-12(2):251-57, Feb. 1986.

D. Parnas, P.C. Clements, and D.M. Weiss. The Modular Struc-
ture of Complex Systems. IEEE Transactions on Software En-
gineering, SE-11 (3):259—66, March 1985.

J.L. Peterson. Petri Nets. Computing Surveys, 9(3):223—252,
Sept. 1977.

J. L. Peterson. Petri Net Theory and Modeling of Systems.
Prentice-Hall, 1981.

C. Potts, A. Finkeistein, M. Aslett, and J. Booth. Structured
Common Sense: A Requirement Elicitation and Formalization
Method for Modal Action Logic. Alvey Initiative FOREST Re-
port R2, Department of Computing, Imperial College, London,
UK, 1986.

M. Page-Jones. The Practical Guide to Structured Systems De-
sign, 2nd Edition. Prentice-Hall International, 1988.

W. Reisig. Petri Nets: An Introduction. In W. Brauer G.
Rozenberg A. Salomaa, editor, EATCS Monographs on Theo-
retical Computer Science. Springer-Verlag, 1982.

D. T. Ross and K.E. Schoman Jr. Structured Analysis for Re-
quirements Definition. IEEE Transactions on Software Engi-
neering, SE-3(1):6-15, Jan. 1977.

C.V. Ramamoorthy, A. Prakash, W.T. Tsai, and Y. Usuda.
Software Engineering: Problems and Prospects. Computer,
pages 191-209, Oct. 1984.

A. Rockstrom and R. Saracco. SDL-CCITT Specification and
Description Language. IEEE Transactions on Communications,
COM-30(6):1310-1317, June 1982.

K. G. Salter. A Methodology for Decomposing System Require-
ments into Data Processing Requirements. In Proceedings of
The Second International Conference on Software Engineering,
pages 91-101, New York, 1976. IEEE Computer Society Press.

[Sim82]

[Sim84]

[SJ79]

[SJF88]

[SM88]

[SMC74]

[Som89]

[Sta88]

[Sut88]

[Tay80]

[TB73]

[TCL89]

116

[San89]

[TI77]

B. Sanden. An Entity-Life Modelling Approach to The De-
sign of Concurrent Software. Communications of The ACM,
32(3):330-343, March 1989.

H.R. Simpson. MASCOT Developments to Improve Software
Structure and Integrity. In AGARD Conference Proceedings:
Software for Avionics, number 330, pages 5/1-14, The Hague-
Kijkduin, Netherlands, 6-10 Sept. 1982.

H.R. Simpson. MASCOT 3. In IEE Colloquium Digest No. 113,
14i/l Dec. 1984.

H.R. Simpson and K.L. Jackson. Process Synchronisation in
MASCOT. The Computer Journal, 22(4):332-345, 1979.

H. R. Simpson, K. Jackson, and R. Foulkes. IEE Colloquium on
Real Time Computing: The Future with MASCOT, Oct. 1988.

S. Shlaer and S.J. Mellor. Object-Oriented Systems Analysis:
Modelling The World in Data. Yourdon Press, 1988.

W.P Stevens, G.F. Myers, and L.C. Constantine. Structured
Design. IBM Systems Journal, 13(2), 1974.

I. Sommerville. Software Engineering, 3rd Edition. Addison
Wesley, 1989.

J. A. Stankovic. Misconceptions About Real-Time Computing:
A Serious Problem for Next-Generation Systems. Computer,
21 (10): 10— 19, Oct. 1988.

A. Sutcliffe. Jackson System Development. Prentice Hall Inter-
national, London, 1988.

B. Taylor. A Method for Expressing The Functional Require-
ments of Real-Time Systems. In Proceedings of Real-Time Pro-
gramming, pages 111-120, Liebnitz, Austria, 1980. IFAC.

B.A. Trakhtenbrot and Y.M. Brazdin. Finite Automata: Be-
haviour and Synthesis. North-Holland, 1973.

K. P. Tan, T.S. Chua, and P.T. Lee. AUTO-DFD: An Intelligent
Data Flow Processor. The Computer Journal, 32(3):194-201,
June 1989.

D. Teichroew and E.A. Hershey III. PSL/PSA: A Computer
Aided Technique for Structured Documentation and Analysis of
Information Processing Systems. IEEE Transactions on Soft-
ware Engineering, SE-3(l):41-48, Jan. 1977.

REFERENCES

REFERENCES 117

[TP89]

[TRH87]

[Tse87a]

[Tse87b]

[War86]

[War89]

[Was80]

[Was87]

[WE82]

[WFP83]

[WHF82]

[Whi]

T.H. Tse and L. Pong. Towards a Formai Foundation for De-
Marco Data Flow Diagrams. The Computer Journal, 32(1): 1—
12, Feb. 1989.

W.R. Terry, H. Rao, and D.K. Handal. Computer-Aided
Methodology for Development of Real-Time Control Systems
for Synchronised Manufacturing. In Proceedings of The 9th
Annual Conference on Computers and Industrial Engineering,
pages 124-28, Atlanta, GA, 1987.

T.H. Tse. The Identifications of Program Unstructuredness: a
Formal Approach. The Computer Journal, 30(6):507—511, 1987.

T.H. Tse. Towards a Single Criterion for Identifying Program
Unstructuredness. The Computer Journal, 30(4):378-380, 1987.

P.T. Ward. The Transaction Schema: An Extension of The
Data Flow Diagram to Represent Control and Timing. IEEE
Transactions on Software Engineering, SE-12(2):198-210, Feb.
1986.

P.T. Ward. How to Integrate Object Orientation with Struc-
tured Analysis and Design. IEEE Software, pages 74-82, March
1989.

A.I. Wasserman. Information System Design Methodology.
Journal of The American Society for Information Science, Jan.
1980.

A.I. Wasserman. CASE Environments: The Next Five Years.
In Proceedings of CASE ’87, Cambridge, MA, May 1987.

J.W. Winchester and G. Estrin. Requirements Definition and
its Interface to The SARA Design Methodology for Computer-
Based Systems. In Proceedings of The National Computing
Conference, pages 369-79, Arlington, Va., 1982. AFIPS Press.

A.I. Wasserman, P. Freeman, and M. Porcella. Characteristics
of Software Development Methodologies. In T.W. Olle H.G.
Sol J. Tully, editor, Proceedings of CRIS II Conference: Infor-
mation Systems Design Methodologies: Feature Analysis, pages
37-57, York, UK, 1983. North-Holland.

A.T. Wood-Harper and G. Fitzgerald. A Taxonomy of Cur-
rent Approaches to Systems Analysis. The Computer Journal,
25(1) : 12—16, 1982.

S. White. Panel Problem: Software Controller for an Oil. Hot
Water Home Heating System.

118 REFERENCES

[Wil77] E.J. Wilkens. Finite State Techniques in Software Engineering.
In Proceedings of COMPSAC ’77, pages 691-697, Nov. 1977.

[Wil83] M.H. Williams. Flowchart Schemata and The Problem of
Nomenclature. The Computer Journal, 26(3):270-276, 1983.

[WK87] P.T. Ward and D.A. Keskar. A Comparison of The
Ward/Mellor And Boeing/Hatley Real-Time Methods, in Pro-
ceedings of The Twelfth Structure Methods Conference, pages
356-366, Chicago, August 1987.

[WL85] S.M. White and J.Z. Lavi. Embedded Computer System Re-
quirements Workshop. Computer, 18(4):67—70, April 1985.

[WM86] P.T. Ward and S.J. Mellor. Structured Development for Real-
Time Systems, volume 1, 2, & 3. Yourdon Press, New Jersey,
1986.

[WPSK86] A.I. Wasserman, P.A. Pircher, D.T. Shewmake, and M.L. Ker-
sten. Developing Interactive Information Systems with User
Software Engineering Methodology. IEEE Transactions on
Software Engineering, SE-12(2):326-345, Feb. 1986.

[You89] E. Yourdon. Modern Structured Analysis. Prentice-Hall Inter-
national, NJ, 1989.

[Zav82] P. Zave. An Operational Approach to Requirements Specifica-
tion for Embedded Systems. IEEE Transactions on Software
Engineering, SE-8(3):250-69, 1982.

[Zav85a] P. Zave. A Distributed Alternative to Finite State Machine
Specifications. ACM Transactions on Programming Languages
and Systems, 7(1):10—36, 1985.

[Zav85b] P. Zave. The Operational Versus The Conventional Approach
to Software Development. Communications of The ACM,
27(2):104—118, Feb. 1985.

[ZS86] P. Zave and W. Schell. Salient Features of an Executable Spec-
ification Language and its Environment. IEEE Transactions on
Software Engineering, SE-12(2):312-25, Feb. 1986.

Appendix A

Example Specifications

A .l Overview

The petrol station exercise has been used for illustrating many aspects of
the notation presented in this thesis. The notation was subjected to many
other trial specifications. This Appendix presents the solutions to those
exercises. Many of the exercises have been used in system design workshops
to study the capabilities of a variety of specification approaches. Some of
these studies have been used as a comparison basis for methodologies [Whi,
HP88].

Each of the sections below starts by giving a textual specification of the
example system’s requirements. Many features of these requirements are
typical of those usually produced by system users. They contain verbose
descriptions, which contain duplications and implementation detail.

The diagrams of the specification for each system follows its textual require-
ments.

A .2 The Bottling System

This system consists of a number of bottle-filling 1 lines fed by a single vat
containing a liquid to be bottled. Because of the single vat, the composition
of the liquid being placed in the bottles is identical for all lines at a given
time. However, the bottle size may differ from line to line. For example, at
7:30 one bottling line might be filling one-litre bottles and another might
be filling five-litre bottles, but both lines would be using liquid maintained
at the constant pH, say 6.52.

The tasks of the control system are to control the level and the pH of the
liquid in the vat, to manage the movement and filling of bottles on vari-

lrrhis exercise was adapted from the bottle-filling example in [WM86].

119

120 APPENDIX A. EXAMPLE SPECIFICATIONS

ous lines, and to exchange information with human operators working the
individual lines and with an area supervisor monitoring the entire system.

The vat level control is accomplished by monitoring the level with a sensor
and adjusting a liquid input valve accordingly. The requirement for control-
ling pH arrises because the liquid to be bottled reacts with its surroundings,
causing the pH to “creep” over time. A constant pH is maintained by intro-
ducing, through a control valve, small quantities of a chemical that reverses
the pH “creep” . The addition rate of the pH-changing chemical depends
both on the current pH in the vat (measured by a pH sensor) and on the
rate of flow of liquid through the tank (measured by the liquid input valve
control).

Bottles to be filled on a particular line are drawn one by one from a supply
of bottles, as follows:

• A bottle is released from a gate and drops down onto a scale platform,
at the same time depressing a bottle contact sensor.

• The bottle-filling valve is opened, and a measured amount of liquid
is let into the bottle. (The scale platform measures the weight of the
bottle plus it contents, and is used to determine when the bottle is
full and to shut off the valve.)

• The filled bottle is labeled to show the actual pH when filled, and the
nominal pH. The line operator caps and removes the filled bottle, and
signals the system that the bottle has been removed. Removing the
bottle releases the bottle contact sensor, removes the weight on the
scale and allows the next bottle to be released from the gate.

The line operators can signal the system to start and stop individual lines,
and the supervisor can signal the system to enable or disable overall oper-
ation of the set of lines. For a line to start operation from stopped status,
both the area enable and the fine start signal are necessary; in addition,
the bottle contact must be off and the scale platform reading must be less
than 0.1 gram. The line operators are given displays of the line status and
are able to change bottle size for the line. The area supervisor is given a
display of the current status of the system pH and vat levels and statuses
of individual lines, and is able to change the pH of the bottled liquid by
entering a new pH to be maintained.

If, during operation of the system, the pH goes out of limits (>0.3 from
the setpoint) all control actions are suspended. The vat pH is then sta-
bilised manually. When the pH is back within limits, the system restarts
automatically.

A.2. THE BOTTLING SYSTEM 121

A .2.1 Specification Diagrams
C o n t a c t
S t a t u s

New
B o t t l e

S i z e

B o t t l i n g
L i n e

----- r r —

R e l e a s e
A B o t t l e

(Bottle
Filling V a lve

Setting)

Va t

S ize)

/ / ' Line
/ / O n

L i n e
O p e r a t o r

\

(Lab el
Data)

/ /\ / /
— V ^

/ v "
/ O p e r a t e ___

,_i Bottling ¡¡IT.
-A L ine L

N K

L i n e
O f f

B o t t l e
R e m o v e d

(N e w P h
\ T h re sh o ld)

\
E n a b l e N\

A r e a \

D i s a b l e

A r e a
~— S u p e r v i s o r

W — A r e alive / (Ph V a lv e
Setting) / Setting)

The Bottling System: Context Diagram

122 APPENDIX A. EXAMPLE SPECIFICATIONS

(Ph Valve
Setting)

(New Ph
Threshold) /

-'-----x. T ick/M \
¡C lo c k ; / -" " ' j X

, f - \
I I M onitor
l\ Area H

Restart^,'

Enable Line

Release
A B o tt le

B o t t le
Removed

Filling Valve
Setting)

Operate Bottling Line (D FD /EFD)

A.2. THE BOTTLING SYSTEM 123

\ Restart

, Enable
\ Area

Ph Out Of
Range

Disable
Area

I

Enable
Line

-< a

.4
Check
Line

Enablement

- ® Operate

- d j Line

d>

/

/

— t ~ 7

/ /
/
/
/ Line

Off

Operate Bottling Line (SCD)

124 APPENDIX A. EXAMPLE SPECIFICATIONS

(Input
V a l v e
Setting)

/T.. 0 V"! A d j u s t V,
I V a t

Level /,/

T i c k /

(Ph V a lv e
Setting)

/ T 2 x
/'/ Adjust \\
il . ^ ¡JN', Level y i

(N e w P h
T h re s h o ld)

'<7 .1

/ ' C h a n g e P h ’¡’i
\ \ T h r e s h o l d / /\\
V ^

.0 Maintain Vat

A.2. THE BOTTLING SYSTEM 125

New
B o t t le

S ize

(New
Bottle
Size)

/ ' 2 " \
; C rea te \
I Label ,
\ Data i.

Ns*

(Label Data)

¡ ¡ ' Report ^
Line i!

V\ S ta tus lb-

Line
On

B o t t le
Removed

C rea te ;
Label ;

(Bottle
Filling Valve

Setting)

Fill
B o t t le

Tick

Release
A B o tt le

.5 Operate Line

126 APPENDIX A. EXAMPLE SPECIFICATIONS

Contact
On

Contact
Off

-<D Fi||ing JD-
l Clock r

Contact
Off

Contact
On

.0
_------ ygS Release m)

Bottle M

5.3 Fill Bottle

A.3. THE CRUISE CONTROL SYSTEM 127

A .3 The Cruise Control System

A cruise control system2 relieves the car driver of the responsibility for
maintaining speed by taking over the closed loop control. It operates only
when the engine is running, and automatically sets to its “off” status when
the engine is started. When the driver turns the system on, the speed
at which the car is travelling at that instant is maintained. The system
monitors the car’s speed by sensing the rate at which the wheels are turning
and maintains desired speed by maintaining and controlling the throttle
position. The monitoring is accomplished by a sensor that produces a signal
proportional to the throttle’s position. The control is exercised by changing
the degree of openness of a valve, which in turn operates a suction apparatus
that draws on a chain to open the throttle. The throttle closes itself when
not being actively controlled. After the system has been turned on, the
driver may tell it to “start increasing speed” , which causes the system to
start increasing speed at a fixed rate. When the driver tells the system to
“stop increasing speed” , it will maintain the speed reached at that point.

Of course, the driver may turn the system off at any time. In addition, the
driver can override the system so as to increase speed simply by depressing
the accelerator pedal. This causes the chain controlling the throttle to go
slack. During the period of greater speed, the system continues to attempt
to maintain the speed previously set, and the system will return the car to
the previous speed when the driver releases the pedal. If the system is on
and senses that the brake pedal has been pressed, it will cease maintaining
speed but will not turn off. The driver may subsequently tell the system to
resume speed (provided it hasn’t been turned off in the interim), whereupon
it will return at a fixed rate to the speed it was maintaining before braking
and resume maintaining that speed.

The speedometers in many cars are inaccurate, and so this system incorpo-
rates its own speedometer. However, the speedometer must be calibrated
when installed on a particular car. Since cars have tyres of various sizes, the
mileage equivalent of one wheel rotation can vary. The system thus accepts
“start measured mile” and “stop measure mile” instructions, and resets its
conversion factors to correspond to the number of wheel rotations sensed
within the time period of the measured mile. This can only be done when
the cruise control is “off” .

2This example was used in the July 1985 STARS Methodology Conference in Colorado
as a basis for comparing several different development methods [HP88]. The version given
here was adapted from that given in [WM86].

128 APPENDIX A. EXAMPLE SPECIFICATIONS

A .3.1 Specification Diagrams

Cruise Control System: Context Diagram

A.3. THE CRUISE CONTROL SYSTEM 129

N e w
T h r o t t l e
P o s i t i o n

C r u i s e
O f f

(N e w
Th ro ttle
Position)

R o t a t i o n
P u l s e

S t a r t / " '¿ " 'N
M i l e ' v

1 M e a s u r e]
„ A S p e e d k

E n d
M i l e

V

''' 1' ' V
O p e r a t e V -

A u t o m a t i c |
Cruising

R e s u m e

B r a k e

S t a rt
S p e e d

I n c r e a s e

Cruise /
O n V

S t o p
S p e e d

I n c r e a s e

Cruising
v ________ y

Cruise Control System

130 APPENDIX A. EXAMPLE SPECIFICATIONS
Speed

Start Rotation
Count

Rotation
Pulse

(Accumulateli
,\ Rotations : i

((§ £ • ?)) Show
V ° clV Speed

' Report Vi
i Speed ¡ I

Start
Mile 3

Record \ \
Start 1]

Rotation ! !
s Count J J / / •4 N\ \

/'/' Set \\
ii Conversion Ì ¡
\ \ Factor / /

End
Mile

0 Measure Speed

A.3. THE CRUISE CONTROL SYSTEM 131

['^ C ru is e ---------
\ C lo c k i ' C h e c k \"

v <> — S p e e d V A
// M a i n t a i n \\
I; C r u i s i n g jj

\ \V S p e e d a
\ ___

C ru is e
On

Stop
Speed

In c r e a s e

/ f u¡1 S e t
; i C r u is in g |)

S p e e d //
/ ^ \
(/ i n c r e a s e ¡]
\\ S p e e d ¡J
\ Z _ ~ J

(New
Throttle
Position)

.1 Operate Automatic Cruising (D FD /EFD)

132 APPENDIX A. EXAMPLE SPECIFICATIONS

Resume
\ Colise
\ On

\ Stop
\ S p eed
\ Increase
\

Start
S p eed

Increase /

/

_/Ps Maintain -t j \ ___
Cruisinn <2/Cruising i

---------------- -{ E j^ S p e e d J ® >-

Start
S peed

\ Increase

2

Stop
S p eed ,

Increase /

(E J Increase
S p eed / h)

Cruise
Off Brake

E Y
C ojise

E l C lock

.0
Set

Cojising
^SpeedTH)

.1 Operate Automatic Cruising (SCD)

A.4. THE HOME HEATING SYSTEM 133

A .4 The Home Heating System

A computer system is to interact with a home heating system, which is
equipped with a temperature sensing device and a furnace, to moderate the
temperature of a house3.

Heating System Overview

A temperature sensing device compares the difference between the temper-
ature th, sensed in the house, and the reference temperature tr, which is
the desired temperature. The difference between these two, the error tem-
perature, is measured and sent to the controller. The controller signals the
furnace; the furnace produces heat, which is introduced to the house at rate
Qt; the house loses heat at the rate Q0. If insufficient heat is supplied to
the house, the temperature falls. If the amount of heat going into the house
exceeds that flowing out by natural means, the temperature of the house
rises. The purpose of the feedback mechanism is to keep the difference, tr,
between the reference temperature and the temperature of the house, within
the desired limits if possible. A high outdoor temperature with the resul-
tant heat flow into the house is possible, but no air conditioner is present
in the current system.

Temperature Control Device

The computer system interacts with a temperature sensing device to con-
trol the desired temperature of the house. A master switch can be set at
“HEAT” or “OFF” . With a “HEAT” setting, the furnace will operate as in
the description. With an “OFF” setting, the furnace will not operate. The
homeowner is also allowed to select a desired temperature setting.

For purposes of comfort and furnace efficiency, the total change of temper-
ature allowed will be 4 degrees. If a room temperature of 70 degrees is
desired, the furnace must operate so that the temperature never falls below
68 degrees or rises above 72 degrees (unless the outside temperature is above
72 degrees).

Note that if the comfort interval (bandwidth) is too small, the frequency
with which the furnace oscillates between ON and OFF will be too rapid to
be efficient. If the bandwidth is too great, the house will sometimes be too
cold, and sometimes too warm.
The temperature sensing device does not have great precision and accuracy.
It will detect temperature variations of the order of magnitude of 1 degree.
It also has a time lag of 1 minute.

The furnace Subsystem

3This example was used to compare several different real-time requirements methods
at the 1986 COMPSAC Conference [HP88]. The version given here is adapted from that
given in [Whi],

134 APPENDIX A. EXAMPLE SPECIFICATIONS

The oil furnace, which is used to heat the house, has a motor which drives
a fan to supply combustion air, and also drives a fuel pump.

When the house gets too cold, the motor is activated. When the motor
reaches normal operating speed, the ignition is activated and the oil valve
is opened. The fuel is ignited at this time and the furnace begins to heat
the water, which circulates through the house. A fuel flow indicator and an
optical combustion sensor signal the controller if abnormalities occur.

The furnace is alternately activated and deactivated by the controller to
maintain the temperature within the required limits. When the furnace is
deactivated, first the oil valve is closed and, 5 seconds later (to allow for the
valve lag time), the motor and ignition are deactivated. There is a three
second lag time before the motor stops.

Controller

The inputs to the controller are:

• Heating system master switch setting which can be “OFF” or “HEAT” .

• Error between the house temperature and temperature setting (tr-t^).

• Motor RPM.

• Combustion status.

• Fuel flow status.

The outputs from the controller are:

• Valve signal which is a discrete signaling the valve to open or close.

• Motor signal which is a discrete signaling the motor to start or stop.

• Signals to indicate abnormal status for combustion and fuel flow.

When the master switch is on and the outside temperature permits, the
house temperature must be maintained within 2 degrees of the desired tem-
perature. Furnace input controls shall be generated in a manner compatible
with furnace operations described above. The minimum time for furnace
restart after prior ON interval is 5 minutes. Furnace turn-off shall be initi-
ated within 5 seconds after either the master switch is turned off, fuel flow
rate falls below adequate levels, or the optical detector indicates the absence
of combustion.

To minimise the extent of house temperature over-shoots and under-shoots
beyond the desired limits, the timing of furnace signals initiating or ter-
minating calls for heat shall be based on the rate of temperature change
during the corresponding interval. The controller shall send signals to a
status indicator device when abnormal conditions exist - inadequate fuel
flow or lack of combustion.

A.4. THE HOME HEATING SYSTEM 135

A .4.1 Specification Diagrams

Control Heating System: Context Diagram

136 APPENDIX A. EXAMPLE SPECIFICATIONS

M otor
O ff

Furnace
Deactvated

//" (Abonormality)
V

¡f C h e c k For ¡\
\ \ Abnormality
\\ J
V y /

t
! D e a c t iv a t e —
\ Furnace
\ ! /K

Close
V a lve

/ I g n i t i o n \
O ff

1C lock T ic k

Too
Hot O f f

M otor
On

/
j /

f ' r \
¡7 Check Vl
H Temperature /]—

V '

r rX
; A c t i v a t e p
\ Furnace /

Open
V a lv e

Ignition
On

Too
Cold

Control Heating System (D FD /EFD)

A. 4. THE HOME HEATING SYSTEM 137

Heat
Too Cold

Too Hot

~o NS>-
-(E)| Check For g)--

AbnormalityJ g)__

/ (Abnormality) /

/ Off
~ r

Furnace
Deactivated

Deactivate (h)
E] Furnace

.1
Check

Temperature JH)--

-■(E) Activate w
^ F u m a ce jg)-

Control Heating System (SCD)

138 APPENDIX A. EXAMPLE SPECIFICATIONS

(Abnormality)

O ff

/T o o
I Hot

'(S to p l ' *li
'^urnace/-close \\

V a lv e

W a it
F or

V a lv e
Lag

Tim e

D e la y
Done

Ignition
Off

f Furnace !
I Deactivated /

2 " \
» / T u rn \ 'r
11 F u rn a c e))
V\ Off .//

//' . 3 'NN
V/ \\
!• D e lay V;
\ '> R e s ta r t / ;

M o to r
O ff

3 Deactivate Furnace

A.4. THE HOME HEATING SYSTEM 139

Furnace
S ta tu s

Too
Cold

S t a r t V,
>.\ Motor a

Motor
. On

.1 v.
¡1 Motor -------

S ta tu s I) X
W Clock / L

\ /CheckV^
\

I

¡1 Check Y

;l Motor ¡1
\\ Status !;

RPM
Reached

Open
Valve

Ignition
On

Motor
On

RPM
Reached

Check _
-(Ê) Motor f i) -

S ta tu s)^

.4 Activate Furnace

140 APPENDIX A. EXAMPLE SPECIFICATIONS

A .5 The Patient Monitoring System

A hospital has a cardiac surgery unit where open heart operations are per-
formed on patients using the techniques of profound hypothermia4. After
such a procedure there is considerable danger to the patient as his/her body
readjusts to normal temperature control. In particular, post-operative pa-
tients have a large excess of body fluid. During the period of adjustment
it is essential that the patient’s body functions and vital signs be carefully
monitored and, where possible, adjustments be made in time to preserve
life.

The hospital is to install in its post-operative intensive care unit an on-line
computer system which is used to monitor patients’ life functions, such as
blood pressure and heart rate, record data concerning the patients in the
database, and raise an alarm when any of the monitored parameters lies
outside acceptable critical limits.

The intensive care unit has a number of beds. Each bed is equipped with
a visual display computer terminal (VDU) and a set of monitoring sensors
that can be attached to the patient. There is also a central monitoring
station where a VDU is provided for use by hospital staff. The system is
controlled by a single processor with disc storage and a magnetic tape unit.

All interactions with the system are by hospital doctors and nurses and
there are no special purpose computer staff employed, except for on-call
maintenance engineers. The system is thus embedded within the normal
functioning of the cardiac unit and has the real-time response problems of
interacting with automatic monitors.

When a new patient is admitted to the unit a member of the medical staff
is responsible for activating the monitoring system and initialising the pa-
tient’s data. The first step is to prompt a beside VDU. This causes the
system to respond with instructions which are followed by the hospital staff.
Initially, the system prompts on the VDU for input data such as the pa-
tient’s identity, the initial values of parameters that are not sensed directly
and the acceptable upper and lower limits that are to be monitored on each
parameter. After this phase, the sensors are connected by a nurse or doc-
tor, the system responding after each connection to indicate either that the
function is correct or that the sensor should be adjusted.

Once a patient has been successfully connected to the system, on-line mon-
itoring of patient’s vital signs begins, and data inputs and enquiries about
the patient are accepted by the system. On-line monitoring continues until
the patient is disconnected.

The monitoring data on patients is collected in two ways. Firstly, the sensors

4This example has been used to illustrate many programming concepts. It first ap-
peared in [SMC74], The version given here is adapted from the one in [DG82].

A. 5. THE PATIENT MONITORING SYSTEM 141

attached to each patient detect values such as blood pressure and temper-
ature. These are polled at regular intervals and their readings recorded.
Secondly, the VDU by each patient’s bed is used for manual input of data
by hospital staff. This data relates mainly to fluid inputs and outputs. From
the measures given, the system calculates the fluid balance for the patient.
Manual input can also be used to replace expected data from a failed sen-
sor, an essential safety requirement. The upper section of the VDU screen
is used to display the latest monitored readings. The system raises an alarm
either when no reading is obtained, due to faults in the apparatus, or when
readings show that the patient’s vital signs have moved beyond acceptable
limits.

If the values detected by the system fall outside the limits set for a particular
patient, then the system will activate a light over the patient’s bed and a
buzzer and light in a central monitoring booth. Information on the nature
of the particular emergency will be displayed on the bedside VDU. These
alarms will continue to function until a member of the medical staff types a
code at the patient’s VDU. During the alarm the system will still continue
to record the patient’s data for subsequent analysis.
In addition to the on-line monitoring, the system supports other functions.
Hospital staff can use a bedside VDU to request that the system produce
analysis of the historical data held on a patient. This can be displayed in a
graphical form either on a VDU or using a hard copy printer. A doctor can
note the drugs that a patient is to receive, and this information can be used
to prompt the nursing staff who administer the drugs. Doctors can also alter
the acceptable limits for the factors associated with a patient. There is one
central VDU that is located at the nurse’s monitoring station. This can be
used to obtain information on any patient. The system also stores historical
data on each patient which is used to produce regular report summaries.

When a patient ends his stay in the unit, either by being discharged back
to the ward or by dying, a member of hospital staff will disconnect his
sensors and type any final data into the system using the bedside VDU.
The patient’s data will remain on-line for a further 48 hours, after which
time it is archived onto tape and responsibility for it passed to the hospital’s
central data processing unit.

142 APPENDIX A. EXAMPLE SPECIFICATIONS

A .5.1 Specification Diagrams

Bedside Terminal

(B t u g s \ (R q p o r t \ (b l e w !
\ Intake) \ Request) \ Limits) (Alarm

'x , \ '(final \ (Mànual \ Code)
\ \DaKQ \ Inpyt) \ '

(Initial
Values And

Limits) \ \ \

/
/ Prompt /

/ / Check
Sensor

II Bedside
1| L ig h t

V s v \ \ \

\\\i—IV v
/

/
Bed Light

On

V
\

Bed Light~' ——
Off

y d
\ 'r . ,

N/ P a t ie n t V'
I M o n ito r in g f

— ___\ System j

/ y

M agnetic

(Archived U n it
Data)

(PatientInfo
" ' ' x Request)

/
(Requested ^

Report)

—* ■ ■ / --------
/ (Regular . ,

r i n t e r r Reports) (Warning)

o C e n t r a l
—A Console

P a t ie n t M o n i t o r i n g S y s t e m : C o n t e x t D ia g r a m

A. 5. THE PATIENT MONITORING SYSTEM 143

" S y;ai u®s Connection Requested Report
Drug Prompt Display

Vital Signs Display

Initial Display
Report Display

(Initial Values
— And Limits)

(New Limits)''-.

(Final Data)

. (Drugs In take)""''.

(Requested Report)

Bed Light
On

\V
. 0 \4\

.. (Report Request) M o n ito r m
' ------ --------------------------A Bed j j !

A .

Bed Light
^ (Warning)

(Alarm C o d e) / ' '

(Archived
Data)

(Manual
Input),,--'' Prompt \

Check
Sensor Patient

Discharged
/ " -2 \
A rch ive

Old
Records

(Regular
Reports) Produce \

i R egu la r |
\ R eports /

(Patient
Into

Request)

-1
/'/ M o n ito r \ \
it Console ¡I
¿ '.R e q u e s ts //

\ Prompt
Patient /

Discharged /

P a t ie n t M o n i t o r i n g S y s t e m

144 APPENDIX A. EXAMPLE SPECIFICATIONS

Initial Display

(Initial
Values And

Limits)

(Manual
Input)

(New
Limits)

— W Admit
\ P a t ie n t V

\

Prompt

Check \
Sensor)

Alarm
Status---T----^

\
; Monitor \
i Vital L

- - — . Signs i

X . X

(Alarm
Code)

\
\

Discharge Vl
V> P a t ie n t : !V A

(Final
Data)

Patient
Discharged

(Report
Request)

//' 3 Vv
/.'Generate Vi

/
<

\\ Report /A-..

(Warning) V ".;
X '

(Requested
Report)

(Drugs
Intake) / '

Monitor
Drug

Admin
X x

.0 M o n i t o r B e d

A.5. THE PATIENT MONITORING SYSTEM 145

(Initial
Values And

Limits) ft■y .1
,/ Record
I, Initial

Values

/

;'/ Request \\
I; Initial)|
% Data j j

\

.0.0 Admit Patient

146 APPENDIX A. EXAMPLE SPECIFICATIONS

(Manual
Input)

f 1
"7; Record y.

II M anual])Vnpuy

(New

(Alarm
Code)

' ' j f ■ 3
(¡ 'Cance l __
l\\ A larm n

V yV \
Alarm -

S t a t u s

Check
Sensed

/ / ' ' . 4 \ V a lu e s
(i S en sor ¡j___
Vv T im e r ,T \

x .

i f Check >\
Ü V i t a l "

(Warning)

0 .1 M o n i t o r V i t a l S ig n s

A.5. THE PATIENT MONITORING SYSTEM 147

Drugs
Intake

Drug
Prompt

D is p la y

(Drugs
Intake)

. 0
H Record 7,
it Drugs j)
\\ Intake j j

! (Prompt \ \
I 1, Drug ¡1
\ \ Admin j j

Check
Drug

I n t a k e

. 2 '\N
¡1 Drug
VV T im er a

Prompt

3 N\
I I R eset v,
it Drugs jj
\ \ Record J J

.0 .2 M o n i t o r D r u g A d m in i s t r a t i o n

148
Archived

Data

APPENDIX A. EXAMPLE SPECIFICATIONS

Records

(Archived
Data)

/ 0 x\\ Check
I I A rch ive T ra n s ie n t
V, Timer n Records

. 1
[f A rch ive |
i \R ecords I I

----- r

NJ

.2 Archive Old Data

. o
/¡ 'Report 'jV__ .
Vv Timer i j

Compose N
Report

(Regular
Reports)

/ 1 \
H Produce ¡>
\\ Report i l

.3 Produce Regular Reports

A. 6. THE A UTOTELLER SYSTEM 149

A .6 The Autoteller System

A bank is to equip its branches with a network of autotellers5. Each machine
is to provide the following services:

• Dispense cash,

• Provide balance enquiry,

• Receive deposits, and

• Accept statement and cheque book request.

Each autoteller is equipped with a card reader, a keypad, a small screen, a
printer, a deposit drawer, and a recording system. It operates as follows.
When a customer inserts a card, the card reader decrypts the customer’s
identity from the magnetic tape strip on the card. If the wrong type of card
is inserted or the card is inserted the wrong way, the card reader is capable
of recognising this mistake. It ejects the card. Once a valid card has been
inserted correctly, the card reader extracts the customer identity from the
decrypted data. The card is then validated by consulting an area database,
which is connected to the autoteller by telephone lines. The data returned
by that database may indicate that the card is unrecognised, or has been
reported missing or stolen. Unrecognised cards are rejected. Missing and
stolen cards are transferred by the autoteller to an internal hopper. If the
card status is OK, the customer is prompted for his personal ID number.

The personal ID is also checked with the area database for verification. The
customer is allowed a number of retries for entering his personal ID number.
If an invalid personal ID is entered on all retries, the card is again held by
the autoteller, and transferred to its internal hopper. On successful entry
of the personal ID number, the customer is presented with the choice of
services offered by the autoteller.

If cash withdrawal is requested, then the customer is asked for the desired
amount. Each customer is allocated a weekly limit. The amount requested
is checked by enquiring the customer’s limit from the area database. If the
customer has already exceeded his/her limit, no cash is dispensed. If (s)he
is allowed further withdrawals, which are smaller than the current choice, an
amount re-entry is requested. When the requested amount does not violate
the customer’s limit, cash is dispensed along with a receipt.

To deposit money, the customer takes a numbered envelope from the drawer,
and after sealing and replacing it in the drawer, enters the envelope number
as well as the deposit details via the keypad. A balance enquiry causes the

5This specification exercise is adapted from a MASCOT exercise set at the Computer
Science Department of Stirling University [mas86].

150 APPENDIX A. EXAMPLE SPECIFICATIONS

autoteller to forward a request to the area database, whose reply is printed
on a slip.
All cash withdrawals are recorded locally for security reasons. They are also
forwarded to the area database to allow calculation of weekly limits. The
local database also stores deposit details for later manual handling by local
staff. Statements and cheque book requests are also recorded locally and
manually processed.

The customer is guided for input by various screen displays and should
be allowed multiple choices from the services menu. (S)he terminates ser-
vice selection by pressing an end key on the keypad. His/her card is then
returned to him/her.

A.6. THE AUTOTELLER SYSTEM 151

A .6.1 Specification Diagrams

Deposit
Drawer

Open \
Drawer \

Close
Drawer

(Personal Id) \ /
Keypad

— //

/

y

(Card Status
Request)

(Limit
' \ Validation

\ Request)

x " - l Deposit Details)' f A u t o t e 11 e r V '
\ -------- _ A System

\ (Service SelecTieR)^,.* ^

(Requested Amount) / / y - - ,

(Balance Request)"---

(Customer Balance)"

(Card Status)

Area
Database

(Customer Id)
/.r,

/// /

V /Eject C a r d (W i t h d r a w a l \ Amount)
/ /LDeposit; Detalb) \

j Record)/ \ \ (Balance
/ \ \ Details)

V \

(Customer Limit)

(Dispensed

Cardn (Ç^uesti
Details) \

Cash
Dispenser

DataBase ------ . P r i n t e r

Autoteller System: Context Diagram

APPENDIX A. EXAMPLE SPECIFICATIONS

(Personal Id) (Card Status
Request) ^

(Customer Id) 'Retain
Card

*N E je c t

- A
y Card

i V a lid a te ; ___
\ Card T

/ 1 v

(Card Status)
Card

V a lid a te d

D ispense /
Money /

—------- ! S e le c t j
" '".A S e rv ic e :

/ y /
/ //
/ /

(Service
Selection)

Request
S a t is f ie d

\ Balance
\ Enquiry

(Request
, Details)

■ (Withdrawal
Details)

(Dispensed
Amount)

/ /
A ccept /

D e p o s it /

\
\

/ (CustomerX i
/ Requests) \ \ , 'j

y-. 4 .
/ ' •2 \ y i s p e n s i n g

' F in is h e d
____ / D ispense ;

Cash //
■A

- A /
/D e p o s i t

/ Accepted

/Balance
Details)

'''(L im it
Validation
Request)

\

/■ .3
/ \

R eceive '
\ D e p o s its /

\ (Customer
/(Requested Limi,)
‘ Amount)

(Deposit
- _Details)
•-n A v (Deposit

\ Record)

Open n C lo s e 'x
Drawer \ Drawer '*

; Receive j
\ Requests j '
\ /" "(B a la n c e

------ X Request)

(Customer
Balance)

A u t o t e l le r S y s t e m

A.6. THE A UTOTELLER SYSTEM 153

Id

Current
Customer

Card
V a l id a te d

(Personal Id)

T V a l id a t e V___
; Personal |
\ Id /
\ A—

----- ^ Status Ok

Retain
Card

' (Customer Id) / / ' l ■1 'À\/ / Request','
Card

'A S ta tu s j

\

(Card
Status

Request)

\
\

E jec t
Card

? ! V a l id a t e Y<
1 1 Card 1 1
\ \ S ta tus / A "

(Card Status)

.0 Validate Card

154 APPENDIX A. EXAMPLE SPECIFICATIONS

-, Status OK

'.0
// Reset Y|
;i R e t r ie s ¡;_____
\ \ Count / / Validate

Id

■f \
_ v / Request Vv

" ;l Personal ;>
w I d //

(Customer Id)

(Personal Id)

Card
Validated

,7 Check 'A___________
¡I Personal

Id -A Retain
\ / / \ Card

\ Retry
\ Pld

0.0 Validate Personal Id

A. 6. THE A UTOTELLER SYSTEM 155

Services
Selected

\

Dispensing
Finished

Card
Validated

Request \
Selection

-0 % _----- ----
l i Reset \ \

¡1 Services j| /
\ \ Selected// /
Vs //y

Request /
Satisfied /

/ Deposit
/ Accepted

/ r— ss // ■ 1 A
J I Request \ \
I j Service lj
'.'.Selection/
\ \
'V y/

Eject f

Card !

(Customer
Requests)

■/ . 2 y
/ / Accept \V
!j Service i l
\ ' .Selection / 1

%
(Service

Selection) / •/ Accept \
Deposit '

Dispense
Money

Balance
Enquiry

1 Select Service

156 APPENDIX A. EXAMPLE SPECIFICATIONS

\ Retry Cash
/ Request

/ ' . 0
!; Request \\
i t Amount 1) \\ Entry //

(Customer
Limit)

(Requested
Amount)

.2 ''xx
/ Check \\
(Custom er i j
A L im it ,v

(Amount To
Dispense)

Limit
Overrun

Dispense
Money

•1 X\

(Limit
Validation
Request)

Request \ \
(t Customer l|
\ \ L im it j j

__

\ \ x ' Cash

Dispensing
Finished

(i Dispense Y\ Dispensed
i t Cash & : I (Withdrawal
\ \ R e c e ip t / / Details)
V

(Dispensed \
Amount) \

2 Dispense Cash

A.6. THE A UTOTELLER SYSTEM 157

Deposit
D isplay

Current
Customer

Open
Drawer

Accept
Deposit

/ / ' ■ 0
A / Request \\

i i Deposit I j
U D e ta ils // (Deposit

Details)

S ' .1
(Deposit

vN Record)
i'l Accept \v---------
>l Deposit))
\ \ D e ta ils H,y'V

Close
Drawer

Deposit
Accepted

.3 Receive Deposits

158 APPENDIX A. EXAMPLE SPECIFICATIONS

Request
Customer D eta ils

(Customer
Requests)

- , - » " VT7 o -------1 \\

NX s ;

(Request
Details)

Record Y>,
((Requests ¡1

JJ

Balance
Enquiry

(Balance
Request)

/ / ■ 1 \ \
'll Request \\
i| Customer jj
' \ Balance //
\\ //

— ¿ y

Request
S a tis fie d

(Balance
Details)

(Customer
Balance)

/s
11 P rin t y>
|l Customer ||
'A Balance J j

A Receive Requests

A. 7. THE DEFECT INSPECTION SYSTEM 159

A .7 The Defect Inspection System

The purpose of the defect inspection system6 is to chop rolls of metal foil
into sheets and sort the sheets into two bins according to a preselected
product standard. Those that meet the standard go into one bin. Those
that do not go into another.

The system is run by a supervisor and a number of operators. The supervi-
sor is responsible for the overall running of the system, including selecting
product standards, configuring each of the production surfaces, and select-
ing sheet sizes.

The production surfaces are monitored by operators. They can start and
stop production surfaces. They are also responsible for wheeling out full
bins and replacing them with empty ones.

Each configuration surface is equipped with a scanner, a chopper, and two
air jets. Any configuration of this equipment is workable, so long as both air
jets follow the chopper. The supervisor tells the system which configuration
has been set on each surface.

The scanner operates by reading the amount of light reflected from the
foil. A large percentage of the reflected light for the squares scanned by
the scanner must be between certain values, as defined by the product
standard, for the foil to be deemed “good” , otherwise the sheet must be
rejected as “bad” . Irregularities in the foil will tend to produce values
outside the specified range. The scanner returns data for each of the squares
by organising what it “sees” into lanes that run perpendicular to the foil’s
travelling direction. Data is produced for each square in the lane, preceded
by the lane numbers.

A chopper for each surface can be commanded to drop, thus cutting the foil
into sheets. The chopper raises itself automatically once it has chopped the
foil. The chopper must be controlled to chop the foil into sheets of constant
size for a particular run. The foil may be chopped before it is scanned.

There are two air jets: one pushes the foil to the left, the other to the right.
By custom good foil is thrown to the right.

The foil is moved along the production surface by a conveyor belt system
that can be started and stopped by the operator (to start or stop the sur-
face is, in fact, to start or stop the conveyor system). A shaft encoder is
connected to the drive roll in the belt system. Each quarter of revolution of
the drive roll will produce a pulse from the shaft encoder. The resolution
of the system is sufficient to be able to cut sheets to lengths measured in
units of shaft encoder pulses.

6This exercise was adapted from the Defect Inspection System in [WM86].

160 APPENDIX A. EXAMPLE SPECIFICATIONS

A .7.1 Specification Diagrams

Defect Inspection System: Context Diagram

A. 7. THE DEFECT INSPECTION SYSTEM 161

Drop
R o t a t io n (

P u lse

7 Chop
! F o i l
\ Into ¡¡¡t
\ \ S h e e ts / /

(Scanned
Values)

A c t i v a t e
G ood Jet

A ' C o n t r o l \\\
I, S heet ill

Q u a l i t y

A c t i v a t e
Bad Je t

S t a r t
C onveyor

5 >
Reset \\ Pulse) 1

„ C o u n t ,'/

,7 ■2"\
Set \\

Sheet !|
.Size //

(New Sheet
Size)

/ f ■3 ' ' N\ \f f

¡1 S e t U n e ¡1
¡7 Set
|i P ro d u c t

\ \ Configuration i! \ ‘\ S ta n d a rd

/ W

------ (Product
(Configuration) Standard)

Defect Inspection System (D FD /EFD)

162 APPENDIX A. EXAMPLE SPECIFICATIONS

Defect Inspection System (SCD)

Scanned
Values

C o n f ig u ra t io n s

(Scanned
Values)

R o ta t io n
Pulse

A c t iv a te
Good Jet

A c t iv a te
Bad Jet

.1 Control Sheet Quality

A.8. THE VENDING MACHINE 163

A .8 The Vending Machine

A vending machine7 offers two kinds of product: chocolate and toffee. When
the customer inserts coins, each coin is first validated. The customer then
makes a choice, and provided (s)he has inserted sufficient coins, his/her
choice is dispensed. The machine will return change if necessary.

Unrecognised coins are rejected. When the change dispenser runs out of
change, the customer is notified. Similarly, the machine will notify lack of
stock. Lights on the display panel indicate lack of product and change.
Large coins are rejected when no change is available. All coins are ejected
when a product is not available. Finally, a customer may request his/her
money back without making a choice. A maintenance operator regularly
visits the machine to refill it with products and change, and to empty the
previous payments.

7This exercise is adapted from one of the examples in [Hoa85]

164 APPENDIX A. EXAMPLE SPECIFICATIONS

A .8.1 Specification Diagrams

Vend Sweets: Context Diagram

A.8. THE VENDING MACHINE 165

// Accept
;! P r ic e I
\ C hanged

(New
Stock)

(Choice)

(New
Change)

Retain
coins

y ' 1 \
I M a in ta in

— St ock

(Product)

(Change)

(coin) Retain
Coins

-<E) Eject £ } -
M Coins r

Vend Sweets

166 APPENDIX A. EXAMPLE SPECIFICATIONS

New
Stock

New
Change

H e ld
Coins

Price
T able

(New
Stock)

• 0
Accept \\

New ;j
Stock a
4___

(New
Change)

f f .1
Accept

New j)
\\x Change ¡j

(Choice) /

//
-.-«a-. (Product)
o % . _______

Y_. \H Dispense
\\ Product ,7v y

/y \

\ Retain
\ coins

/ 3 \it _. >\
Jj Dispense
W Change jjV y

(Change)

.1 Maintain Stock

Appendix B

Design And Implementation

B .l Overview

Chapter 4 included a discussion of the transition from a specification to de-
sign and implementation based on the experiences gained by implementing
the Petrol Station example. The full specification and the implementation
code for that system are given in this Appendix. The specification diagrams
are repeated here for easy reference.

167

168 APPENDIX B. DESIGN AND IMPLEMENTATION

B .2 Specification of The petrol Station

Petrol Station System: Context Diagram

B.2. SPECIFICATION OF THE PETROL STATION 169

(Receipt) \ Light / ,

0 n / /BellOft \ / /
!

S erv ice
Request

R eceip t
Request

(Transaction
Details)

M onitor \tj
, Pump ¡11

— 1 O pera t io n i f

Take ,
Stock \

(Code) (Price /
Changes) /

/
S'

(New
Prices)

I Change
’> Prices
V /

Code
V e r i f i e d

i Maintain
l Stock

Stock "
Delivery

Complete
(Stock

Delivery)

(Report)

f .3
i ! P r in t y»—
\'vs Report j j (Report

___ . S Request)

Petrol Station System (D FD /EFD)

170 APPENDIX B. DESIGN AND IMPLEMENTATION

On

-{g
.0

Monitor
Pump

^Operation
f e -

ott

Change \ f i) _
^ Prices F

Stock
Delivery Complete

Take Stock

......
— Report JJ i> -

Petrol Station System(SCD)

Stock
Delivery

\ Complete\

■a,
Start
The

Pump
© -

Take
Stock ////////_____ f

.0 Monitor Pump Operation(SCD)

B.2. SPECIFICATION OF THE PETROL STATION 171

T ransact ion
H ¡story

T ransact ion
Detai ls T ransact ion

Last
T ransact ion

Service
Request / T . o 'V

■"'1! Request V.
v,Service ::A\ //

Pending
Request

Bell

Start
Pump

(T ransaction
Details)

Pump
Button

Pressed

Pump
Idle

Light
Off.- y

y .1 'N;
Check
Pump

Status

Enable
Pump

' End
Transact. Transaction Delivery

—\ Complété

y / J
¡(Record

T ransact ion

\
Complete y f \

/ I s

! Bell

Light
. On

(Receipt)

Light
Off

i(Update
¡1 Transaction ____
\ \ His,ory Jj Transaction

,/S Recorded

Receipt
Request /

1

/ i» ---' î ' /
¡ f -5 \(I P r in t V.

-û Receipt Ü

.0 Monitor Pump Operation (D FD /EFD)

172 APPENDIX B. DESIGN AND IMPLEMENTATION

,5 =--ix
(-o Y " " -
(C lo c k]j

Tick

/ f'. 1
’ Monitor Ù
■, Stock I I

f 2 \
i ! Record \

il Stock il

AD el ¡very i t\ \ /)

Code

Maintain Stock
New

(Stock
Delivery)

(Code)

(New
Prices)

Code
V e r i f i e d

(ir
\ Code i l

1
• 1

Accept V
I; Pr i ce ¡|
'^ C h a n g e s /

(Price
Changes)

2 Change Prices

B.2. SPECIFICATION OF THE PETROL STATION 173

B.2.1 The Data Dictionary

This section includes the data dictionary for the Petrol Station System. The
entries follow the conventions of DeMarco style data dictionaries [DeM78].

Data Flows
Amount Delivered = Number

Code = String

Decimal Number - *

Full Report = Transaction Report + Stock Report

Full Report Request = Decimal Number

Grade Price = Number

Grade Stock = Number

Litres Delivered = Number

New Prices = {Petrol Grade + New Price}

Number = *

Petrol Grade = String

Price Changes = {Petrol Grade + New Price}

Price Paid = Number

Price To Pay = Number

Pump Id = Decimal Number

Receipt = Petrol Grade -f Grade Price + Litres Delivered + Total Paid

Report Request = [Transaction Report Request | Stock Report Request | Full
Report Request]

Report = [Transaction Report | Stock Report | Full Report]

Service Request Display = Pump Id + Bell

Signal = *

Stock Delivery = {Petrol Grade + Amount Delivered}

Stock Display = {Petrol Grade + Grade Price + Grade Stock + (Warning)}

Stock Report = {Petrol Grade + Grade Price + Grade Stock}

Stock Report Request = Decimal Number

String - *

Total Paid = Number

Transaction Details = Pump Id + Petrol Grade + Litres Delivered

Transaction Display = Pump Id + Petrol Grade + Litres Delivered + Price To
Pay

Transaction Report = { Pump Id + Petrol Grade + Litres Delivered + Price
Paid}

174 APPENDIX B. DESIGN AND IMPLEMENTATION

Transaction Report Request = Decimal Number

Warning = Signal
Data Stores
Current Stock = Petrol Grade + Grade Price + Grade Stock
Current Transaction = Pump Id + Petrol Grade + litres Delivered + Price To
Pay
Last Transaction = Pump Id + Petrol Grade -f litres Delivered + Price To Pay
Supervisor’s Code = String # supervisor’s security code #
Threshold = Number # Threshold for stock warning #
Transaction History = Pump Id + Petrol Grade + Litres Delivered + Price Paid

B.2. SPECIFICATION OF THE PETROL STATION 175

B.2.2 The Event Dictionary

This section gives the event dictionary for the Petrol Station System. The only
dialogue sequence in the example system has been indicated by using the ‘S’
symbol followed by a number, i.e. $1 is the first event in the dialogue sequence
and $2 is the second.

Event Flows
Bell

Code Verified

Delivery Complete

Enable Pump

End Transact.

Light Off

Light On

Off

On

Pump Button Pressed

Receipt Request

Service Request

Start Pump

Stock Delivery Complete

Take Stock

Tick

Transaction Complete

(Transaction Details)

Transaction Recorded

Event Stores
Pending Request

Pump Idle

Sound the console bell

Code validation notification

Pump petrol delivery completion, $5

Enable a pump, $3

End delivery and enable pump

Turn off a pump’s lights

Turn on a pump’s lights

System shutdown event

System powerup event

A pump button is pressed, $1 and $5#

Receipt is requested for a pump

Service is requested by a pump

Start a a petrol delivery, $2

Alias for arrival of ’’Stock Delivery” #

Attendant signals arrival of delivery tanker

Clock Tick #

End a petrol delivery, $6 #

Pump sends transaction details, $4 #

Transaction database updated, $7

Flag to indicate pending service requests

Pump status flag

176 APPENDIX B. DESIGN AND IMPLEMENTATION

B.2.3 Minispecifications of Atomic Processes

The following section gives the minispecs for the atomic processes of the Petrol
Station System. The description of each atomic process is given in a pseudo code
style, and is meant to be self explanatory. The description starts with the name
of the process. Its digit string identifier, together with its firing event, follow in a
C style comment (enclosed in /* and */). The body of the minispec is enclosed
in a pair of braces; so are collections of statements within the body. The names
of data flows, event flows, and fields of data stores and data flows are enclosed
in speech marks. Local storage variables are given names in capital letters, and
output to data flows is indicated by the > ” symbol. The ‘+ ’ symbol has been
used to indicate both the addition of two numbers and the addition of a field to
a record. The context should make the interpretation clear.

Accept Price Changes
/* .2.1: starts when "New Prices" has arrived and "code Verified" */

{
For every record in "New Prices"

{
Get corresponding record from "Current Stock";
"Grade Price" = "New Price";
Put record to "Current Stock";

>
"New Prices" -> "Price Changes"

>

Check Pump Status
/* .0.1: fired by "Pump Button Pressed" */

{
If ("Pump Idle") then

{
"Start Pump";
Reset "Pump Idle";

}
Else

{
If ("Pending Request") then

{
"End Transact." ;
Reset "Pending Request";

>
Else

{
"Transaction Complete";
Set "Pump Idle";

}
>

B.2. SPECIFICATION OF THE PETROL STATION 177

>

Clock
/* .1.0: self perpetuating process */

{
Every ten seconds "Tick";

>

Start The Pump
/* .0.2: fired by "Start Pump" */

I
"Enable Pump" and "Light Off";

>

Monitor Stock
/* .1.1: fired by clock "Tick" */
{

For every record in "Current Stock"

{
IfO'Grade Stock" < "Threshold")

SD = record + "Warning";
Else

SD = record;
SD -> "Stock Display";

>
>

Print Receipt
/* .0.5: fired by "Transaction Recorded" and "Receipt Request" */

{
Get "Last Transaction" record;
record -> "Receipt";

>

Print Report
/* .3: starts when "Report Request" arrives */

I
Case "Report Request" of

"Transaction Report Request" : Tr_Report;
"Stock Report Request" : St_Report;
"Full Report" : Tr.Report; St.Report;

>
}
Tr.Report
/* Sub-procedure of .3 */

{
For every record in "Transaction History"

178 APPENDIX B. DESIGN AND IMPLEMENTATION

record -> "Report";

>
St_Report
/* Sub-procedure of .3 */

-c

>

For Every record in "Current Stock"
record -> "Report";

Record Stock Delivery
/* .1.2: starts when "Stock Delivery" arrives */

{
For every record in "Stock Delivery"

{
Get corresponding record from "Current Stock";
"Grade Stock" = "Grade Stock" + "Amount Delivered";
Put record to "Current Stock";

>
>

Record Transaction
/* .0.3: starts when "Transaction Details" arrives */

{
Get grade record from "Current Stock";
"Grade Stock" = "Grade Stock" - "Litres Delivered";
Put record to "Current Stock";
PP = "Grade Price" * "Litres Delivered";
TD = "Transaction Details" + PP;
TD -> "Transaction Display";
Put TD to "Current Transaction";
"Delivery Complete" and "Bell" and "Light Off";

>

Request Service
/* .0.0: fired by "Service Request" */

{
"Light On" and "Bell";
Set "Pending Request";

}

Update Transaction History
/* .0.4: fired by "Transaction Complete" and "Delivery Complete" */

{
Get record from "Current Transaction";
Add record to "Transaction History";
Put record in "Last Transaction";
"Transaction Complete" and "Light Off";

>

B.2. SPECIFICATION OF THE PETROL STATION 179

Verify Code
/* .2.0: starts when "Code" arrives */

{
Get "Supervisor’s Code";
If("Code" = "Supervisor’s Code")

"Code Verified";

>

180 APPENDIX B. DESIGN AND IMPLEMENTATION

B.3 Implementation Code

This section gives the full implementation code for the Petrol Station Sys-
tem. Where appropriate references to the diagrams and the minispecs have
been given.
Makefile

CFLAGS = -0

CFILES = pump.c \
mon_pump.c \
mon_stk.c \
main.c\
display.c \
report.c \
pce_chge.c \
rec_stk_del.c \
mise.c

□FILES = pump.o \
mon_pump.o \
mon_stk.o \
main.o\
display.o \
report.o \
pce_chge.o \
rec_stk_del.o \
mise.o

XFILES = pssim\
pump \
mon_pump

HFILES = pump.h \
files.h \
display.h

all: pssim pump mon_pump mon_stk

pssim: main.o display.o report.o pce_chge.o rec_stk_del.o \
misc.o $(HFILES)
cc -0 -o pssim main.o display.o report.o pce_chge.o \

rec_stk_del.o misc.o -leurses -ltermcap

pump : pump.c pump.h
cc -0 -o pump pump. c

mon_pump: mon_pump.c $(HFILES)
cc -0 -o mon_pump mon_pump.c

mon_stk: mon_stk.c $(HFILES)
cc -0 -o mon_stk mon_stk.c

B. 3. IMPLEMENTATION CODE 181

pce_chge.o : $(HFILES)

rec_stk_del.o : $(HFILES)

main.o : $(HFILES)

display.o : pump.h display.h

report.o : pump.h files.h

clean:
rm -f $(0FILES) $(XFILES)

182 APPENDIX B. DESIGN AND IMPLEMENTATION

/* pump.h: header file for pump constant definitions */

»define YES 1
»define NO 0

»define PTM_PIPE M/tmp/mns/ptm"
»define PTP_PIPE "/tmp/mns/ptp"
»define MAX_PIP_NAM 12

/* pump to mon. pipe */
/* price change to pump */
/* max. length of pipe name */

»define IDLEN 2
»define GDLEN 2
»define HAXPRICELEN 6
»define MAXSTOCKLEN 8
»define LTLEN 5
/* max. message length from

/* length of pump id number */
/* length of grade id */
/* max. length of grade price */
/* max. length of on grade stock */
/* max. length of litres delivered */
pump to monitor */

»define PTM.LEN
»define MAX_PLEN
»define MAXGDESTR

IDLEN+GDLEN+LTLEN
7 /* max. length of price to pay */
10 /* max. length of grade name */

/* maximum length of a price change message */
»define PCECHGLEN NGRADES*(GDLEN+MAXPRICELEN)

/* max. length of current stock */
»define MAX.CSTK NGRADES*(GDLEN+MAXPRICELEN+MAXST0CKLEN+1)

/* max. length of transaction history record */
»define MAX.THRLEN IDLEN+GDLEN+LTLEN+MAX_PLEN

»define NGRADES 3 /*
»define NPUMPS 3 /*
»define MAX.PUMPS 9 /*
»define MAX.PIDLEN 2 /*

number of available grades */
default number of pumps */
maximum number of pumps (1-9) */
maximum pump id (no) length */

B. 3. IMPLEMENTATION CODE 183

/* display.h: header file for display definitions */

#define MTD_PIPE "/tmp/mns/mtd"

#define □N 1
#define OFF 0

#define BEEP 007
#define ERASE 008

#define TRANS 0 /* transaction details */
#define RECPT 1 /* receipt */
#define LIGHT 2 /* pump light */
#define WARN 3 /* stock warning */
#define BELL 4 /* console bell */
#define CLRTR 5 /* clear last transaction display */
#define ACTVE 6 /* pump status */

typedef struct w {
int disp_type;
char buffer[1020] ;

> disp_prot;

184 APPENDIX B. DESIGN AND IMPLEMENTATION

/* files.h: header file for store names * /

#define CURRENT_STOCK "/tmp/mns/curr_stock" /* current stock */
#define TRANS_HIST "/tmp/mns/trans_hist" /* trans, hist */

B.3. IMPLEMENTATION CODE 185

/* main.c: main module. Forks all processes, sets up communication pipes, and monitors
the keyboard and display pipe */

#include
#include
#include
#include
»include
»include
»include
»include
»include
»include
»include
»include

<sys/time,h>
<sys/types.h>
<sys/stat.h>
<sys/file.h>
<icntl.h>
<unistd.h>
<curses.h>
<signal.h>
<string.h>
"pump.h"
"display.h"
"files.h"

»define forever for(;;)

»define set_bit(bit, number)
»define isset_bit(bit, number)

static void get_choice(),
terminate(),
crt_pump_proc();

static int create_procs();

void get_gname(),
displayO ,
init_display(),
verify_code(),
record_stk_del() ;

number |= (1 « bit)
(number ft (1 « bit))

void main(argc, argv) int argc;
char *argv □ ;

{
int dpfd, pumps, nfds, rfds, i, smpid,

monitors[MAX.PUMPS],
pumpstats[MAX_PUMPS],
error = NO;

char command[70];

if(argc < 2) /* set the no of station pumps */
pumps = NPUMPS;

else
if((pumps = atoi(argv[l])) < 1 II pumps > 9)
{

printf("Illegal number of pumps\n", argv[0]);
printf("Reverting to default\n");
pumps = NPUMPS;

>
/* catch SIGTERM and clean up */
if(signal(SIGTERM, terminate) < 0)

perror("termination signal");

186 APPENDIX B. DESIGN AND IMPLEMENTATION

(vo id)sprinti(command,

system(command);

rm -i '/.s */.s? '/.s?", MTD.PIPE
, PTM.PIPE, PTP.PIPE);

if(access(CURRENT.STOCK, F_0K) < 0)
{

error = YES;
printf ("'/.s: current stock iile is missing'/.c\n", argv[0], BEEP);

ii(access(TRANS.HIST, F_0K) < 0)
{

>

error = YES;
printi ("’/.s : transaction history file is missing‘/,c\n", argv[0]

, BEEP);

if(error == YES)
exit(l);

/* create display pipe and open it */
if(mknod(MTD_PIPE, 0666 I S_IFIF0, 0) < 0)

perror("display pipe mknod");
if((dpfd = open(MTD_PIPE, 0_RDWR|0_NDELAY)) < 0)

perror("display pipe open");

if(setpgrp(0, getpidO) < 0) /* set process group */
perror("setgrp") ;

for(i=0; i<MAX_PUMPS; i++) /* initialise pump statuses */
pumpstats[i] = 0;

/* create processes */
smpid = create_procs(pumps, monitors);

init_display(pumps); /* initialise display */

forever
{

/* set appropriate fd bits */
rids = 0;
set_bit(0, rfds); /* include standard input */
set_bit(dpfd, rfds); /* include display pipe */

nfds = select(32, ftrfds, (int *)0, (int *)0,
(struct timeval *)0);

switch(nfds) /* select ready input */
i

case 1 : if(isset_bit(dpfd, rfds))
display(dpfd, pumps);

else
get_choice(pumps, monitors, pumpstats, smpid);

B. 3. IMPLEMENTATION CODE 187

break;

case 2 : get_choice(pumps, monitors, pumpstats, smpid);
display(dpfd, pumps);
break;

default

>
>

>

perror("select");
break ;

static void get_choice(pumps, monpids, pumpstats, smpid) int pumps,
monpids[],
pumpstats[],
smpid;

char ch;
static int last_pump = -i, /* last completed trans. */

delivery = NO;
int index, i;

ch = getch();
mvaddch(pumps+ll, 52, ch); /* print ch */
move(22, 40); /* clear precious warnings */
clrtoeolQ;
refreshO ;

if(ch >= ’1’ Jt& ch <= pumps+’O')
{

index = ch-’O’-l; /* work out pump’s table index */
pumpstats [index] *= 1; /* change pump status */
if(pumpstats[index] == 0) /* update last_pump */

last_pump = index;

kill(monpids[index], SIGUSR2); /* send button to monitor */
>
else

switch(ch)
{

case ’r’ :
case ’R’ : if(last_pump != -1) /* catch errors */

kill(monpids[last_pump], SIGFPE);
break;

case ’p’ :
case ’P’ : if(delivery == NO)

{
pr_report();
touchwin(stdscr);

>
else

mvaddstr(22, 40 , "No reports during delivery");

188 APPENDIX B. DESIGN AND IMPLEMENTATION

case 'd'
case ’D'

break;

: if(delivery == NO)
{

for(i=0; i < pumps; i++)
if(kill(monpids [i], SIGTERM) < 0)

perror("disablement kill");
delivery = YES;

}
mvaddstr(21, 40, "Pumps disabled");
break;

case ’s'
case ’S’ : if(delivery == YES)

{
record_stk_del();
/* inform stock monitor and pumps*/
if(kill(smpid, SIGUSR1) < 0)
perror("stock monitor kill");

for(i=0; i < pumps; i++)
if(kill(monpids[i], SIGTERM) < 0)

perror("enablement kill");
touchwin(stdscr);
/* clear stock warnings */
mvaddstr(pumps+6, 0, " ");
move(21, 40);
clrtoeol();
delivery = NO;

>
else
{

mvaddstr(22, 40, "Invalid choice");
addstr(": Pumps not disabled yet");

>
break;

case ’c’
case ’C’ : verify_code(pumps) ;

touchwin(stdscr);
break;

case ’q’
case ’Q’ : terminateO;

default : mvaddstr(22, 40, "Invalid choice");
break;

>

refreshO ;
>

/* refresh changes to the screen */

>

static int create_procs(pumps, monpids) int pumps, monpids[];

B.3. IMPLEMENTATION CODE 189

int i, pid;
char pip_name[MAX_PIP_NAM + MAX_PIDLEN + 1];

if ((pid = forkQ) < 0)
perror("stock monitor fork");

if(pid == 0)
{

execl("mon_stk", "mon_stk", 0);
perror("stock monitor exec");

}
else
{

for(i=l; i<=pumps; i++) /* create pump processes */

/* make up pump pipe name and create it */
(void)sprintf (pip_name, M'/,s'/,d", PTH_PIPE, i) ;
if(mknod(pip_name, 0666 I S_IFIF0, 0) < 0)

perrorC'pump pipe mknod");

/* make up price change pipe name and create it */
(void)sprintf(pip_name, "‘/.s'/.d" , PTP_PIPE, i) ;
if(mknod(pip_name, 0666 | S_IFIF0, 0) < 0)

perror("pump pipe mknod");

crt_pump_proc(i, monpids); /* create pump procs */
}

return(pid); /* return stock monitor’s pid */
>

>

static void crt_pump_proc(pid, monpids) int pid, monpidsD;
{

char ppid[15], pump_id[MAX_PIDLEN + 1];
int pump_pid, mon_pid;

(void) spr inti (pump_id, "'/,d" , pid); /* make up pump id no */

if((mon_pid = fork()) < 0) /* fork monitoring proc. */
perror("pump monitor fork");

if(mon_pid == 0)
{

if((pump_pid = fork()) < 0) /* fork pump process */
perror("pump fork");

if(pump_pid == 0)
{

(void)sprintf (ppid, ’"/.d", getppidO); /* get pump pid */
execlC'pump", "pump", pump_id, ppid, 0);
perror("pump execl");

}
else

190 APPENDIX B. DESIGN AND IMPLEMENTATION

{
(void)sprint! (ppid, ’"/.d", pump_pid) ; /* get pump pid */
execl("mon_pump", "mon_pumpM, pump_id, ppid, 0);
perror("pump monitor execl");

}
>
else

monpids[pid-1] = mon_pid; /♦ pids idexing from 0! */
}

static void terminateQ

/* clean up and end il interrupted */
endwinO; /* reset terminal attributes */

/* kill children processes */
if(setpgrp(0, 0) < 0) /* reset process group */

perror("setgrp");
if(killpg(getpid(), SIGKILL) < 0)

perror("killpg");

}

systemO'clear") ;
exit(0);

B. 3. IMPLEMENTATION CODE 191

/* display.c: display module. */

#include <curses.h>
»include "pump.h"
«include "display.h"

«define LINE "-----

static void disp_trans(),
disp_light(),
disp_recpt(),
disp_warn(),
disp_status(),
clr_trans();

void init_display(pumps) int pumps;
{

int i, pos;
char term[10], buttons[20], *cptr, *getenv();

cptr = getenv("TERM"); /* get terminal type */
(void)strcpy(term, cptr);
setterm(term); /* set terminal type */

initscrO ;

nonl();
cbreakQ ;
noechoO ;

clear();

/* initialise cureses */

/* set interative mode */

/* clear stdscr */

/* draw pump display screen */
addstr("Pump No Petrol Grade Litres Delivered

Light Active");
for(i=l; i<=pumps; i++)
{

mvaddch(i+l, 4, (i + '0'));
mvaddch(i+l, 76, ’N');

>
mvaddstr(++i, 0, LINE);

/* print reciept atnd warning screens */
mvaddstr(++i, 5, "Stock Warning Lights");
mvaddstr(++i, 4, "------------------- ");
mvaddstr(++i, 4, "diesel 4 star unleaded");
i=i+2; /* blcink lines */
mvaddstr(++i, 10, "Receipt");
mvaddstr(++i, 10, "------ ");
mvaddstr(++i, 5, "MNS Petroleum Ltd.");
mvaddstr(++i, 5, "Grade");
mvaddstr(++i, 5, "Price");
mvaddstr(++i, 5, "Litres");
mvaddstr(++i, 5, "Total");

Total

192 APPENDIX B. DESIGN AND IMPLEMENTATION

/* print menu */
pos = pumps + 3;
(void) spr inti (buttons, Pump Buttons'
mvaddstr(pos++, 40, buttons);

pumps);

mvaddstr(pos++, 40,
mvaddstr(pos++, 40,
mvaddstr(pos++, 40,
mvaddstr(pos++, 40,
mvaddstr(pos++, 40,
mvaddstr(pos++, 40,
mvaddstr(++pos, 40,

C. Price Changes");
D. Disable Pumps ior Delivery");
P. Request Report");
Q. Turn System Off");
R. Request Receipt");
S. Stock Delivery Details");

Selection: ");

refreshQ ; /* put stdscr on stdout */

void display(dpfd, pumps) int dpfd, pumps;
{

disp_prot ws;

if(read(dpfd, ftws, sizeof(disp_prot)) < sizeof(disp_prot))
perrorC'display pipe read");

switch(ws.disp_type)
{

case TRANS : disp_trans(ws.buffer) ;
break;

case RECPT : disp_recpt(ws.buffer, pumps);
break;

case LIGHT : disp_light(ws.buffer);
break;

case WARN : disp_warn(ws.buffer[0], pumps);
break;

case BELL : mvaddch(23, 40, BEEP);
break;

case CLRTR :: clr_trans(ws.buffer);
break;

case ACTVE :: disp_status(ws.buffer);
break;

default : printf("Display protocol error %d\n",
break;

ws.disp_type);

refreshO ;
}

/* show the changes on the screen ♦/

static void disp_trans(transaction) char ♦transaction;
{

int pid, grade;
char litres[LTLEN + 1],

cost [MAX_PLEN + 1],
gradestr[HAXGDESTR + 1];

/* split transaction into its parts ♦/

B.3. IMPLEMENTATION CODE 193

(void)sscanf(transaction, "'/,d '/.d '/.s '/.s", &pid, ftgrade, litres, cost);

get_gname(grade, gradestr);
mvaddstr(pid+1, 14, gradestr);
mvaddstr(pid+l, 36, litres); /* display litres delivered */
mvaddch(pid+l, 53, ’$');
mvaddstr(pid+1, 54, cost); /* display total to pay */

static void disp_light(string) char »string;
{

int pid, status;
char ch;

(void)sscanf (string, "‘/.d ’/.d", ftpid, ^status);
if(status == ON)

ch =
else

ch = ’ ';

mvaddch(pid+1, 67, ch);
}

static void disp_warn(grade, pumps)

{
int pos=4;

char grade;
int pumps ;

switch(grade)
{

’O’ : pos += 3;
break;

’1' : pos += 9;
break;

>2’ : pos += 17 ;
break;

>
mvaddch(pumps + 4 + 2 , pos, ’®’);

static void disp_recpt(receipt, pumps) char »receipt;
int pumps;

{
int pos, hpos, grade;
float gde_price, atof();
char price[MAXPRICELEN + 1],

litres[MAX_PLEN + 1],
cost[MAX_PLEN + 1],
gradestr[MAXPRICELEN + 1];

(void)sscanf(receipt, "*/.d ‘/.f '/.s", ftgrade, &gde_price, litres);

pos = pumps + 4 + 7 ; /» find correct line »/

194 APPENDIX B. DESIGN AND IMPLEMENTATION

get_gname(grade, gradestr); /* print grade */
hpos = 23 - strlen(gradestr);
mvaddstr(pos++, hpos, gradestr);

sprintf (price , .2f p" , gde_price); /* print price */
hpos = MAXPRICELEN - strlen(price);
mvaddstr(pos++, 17+hpos, price);

hpos = LTLEN - strlen(litres); /* print litres */
mvaddstr(pos++, 18+hpos, litres);

/* print total cost */
(void)sprintf(cost, .21", (gde_price * atof(litres) / 100.00));
hpos = MAX_PLEN - strlen(cost);
move(pos++, 14+hpos);
printw(" $’/,s", cost);

static void disp_status(string) char ^string;
i

int pid, status;
chax ch;

(void)sscani(string, "'/.d /id", ftpid, ftstatus);

if(status == YES)
ch = ’Y’;

else
ch = 'N’;

mvaddch(pid+l, 76, ch);
>

static void clr_trans(string) char »string;
{

int pid;

(void)sscanf (string, "*/.d" , ftpid) ;
mvaddstr(pid+1, 14, " ");
mvaddstr(pid+1, 36, " ");
mvaddstr(pid+1, 53, " ");

>

/* get pump id */
/* clear grade name */
/* clear litres */
/* clear total to pay */

B. 3. IMPLEMENTATION CODE 195

/* pce.chge.c: price change module. */

#include <sys/iile.h>
»include <fcntl.h>
#include <curses.h>
«include "pump.h"
»include "files.h"
«include "display.h"

»define SUPER.CODE "mohammad"
»define C0DE_LEN 8

void get_gname();

static void acc_pce_chage();

void verify_code(pumps) int pumps;
/* Diagram ref.: Verify Code, .2.0 */
{

int i;
char ch, code[C0DE_LEN];
WINDOW fpcescr;

/* create price change screen and initialise it */
pcescr = newwin(24, 80, 0, 0);
wclear(pcescr);
touchwin(pcescr);
wmove(pcescr, 0, 34);
waddstr(pcescr, "Price Change");
wrefresh(pcescr);

/* get code */
wmove(pcescr, 1, 0);
waddstr(pcescr, "Please enter code.");
wrefresh(pcescr);
for(i=0; (ch = getchO) != ’\r’;)

code[i++] = ch;
code[i] = ’\0';

if(strcmp(code, SUPER_C0DE) != 0) /* verify code */
I

wmove(pcescr, 3, 0);
waddstr(pcescr, "Invalid code! Type any key to continue.");
wrefresh(pcescr);
(void)getch();

>
else
{

wmove(pcescr, 1, 20);
waddstr(pcescr, "Code validated");
wrefresh(pcescr);
acc_pce_chage(pcescr, pumps);

>

196 APPENDIX B. DESIGN AND IMPLEMENTATION

static void acc_pce_chage(pcescr, pumps) WINDOW *pcescr;
int pumps;

/* Diagram ref.: Accept Price Changes, .2.1 */
{

int csfd, ppfd, i, j, grade, pos, line=2;
float oldprice, newprice, oldstock, atof();
char curr_stk[MAX_CSTK + 1],

new_cstk[MAX_CSTK + 1],
grade.records[NGRADES][GDLEN+MAXPRICELEN+MAXSTOCKLEN+1],
gradestr[MAXGDESTR + 1],
price[HAXPRICELEN + 1],
per[GDLEN + MAXPRICELEN + 1],
pip_name[MAX_PIP_NAM + 1],
pcechge[PCECHGLEN + 1],
ch, *cptr, *strnsp();

for(i=0; i<PCECHGLEN; i++)
pcechge[i] = '\0’;

if((csfd = open(CURRENT_STOCK, 0_RDWR)) < 0)
perror("current stock open");

if(flock(csfd, L0CK_EX) < 0) /* lock current stock */
perror("current stock flock");

if(read(csfd, curr_stk, MAX_CSTK) < 0) /* get records */
perror("current stock read");

for(cptr=curr_stk, i=0; i<NGRADES; i++) /* get grade records */
{

for(j=0; *cptr != '\n* *cptr != '\0'; j++)
grade_records[i][j] = *cptr++ ;

grade_records[i][j++] = *cptr++;
grade_records[i][j] = *\0’;

wmove(pcescr, line, 0);
waddstr(pcescr, "Please select grade: ");
for(i=0; i<NGRADES; i++)
{

get_gname(i, gradestr);
cptr = strnsp(gradestr);
wmove(pcescr, line++, 21);
wprintw(pcescr, "*/.d. 7,s", i+1, cptr);

>
wmove(pcescr, line++, 21);
waddstr(pcescr, "Q. quit");
wmove(pcescr, ++line, 0);
waddstr(pcescr, "Selection: ");
wrefresh(pcescr);

do
{

B. 3. IMPLEMENTATION CODE 197

ch = getchQ ;
wmove(pcescr, line, 11); /* display ch */
waddch(pcescr, ch);
wrefresh(pcescr);

if(ch > '0' && ch <= NGRADES+’O’)
{

grade = ch-’O’-l;

/* get new price */
wmove(pcescr, line+2, 0);
waddstr(pcescr, "Please enter new price: ");
wrefresh(pcescr);
for(pos=24, i=0; (ch = getchO) != ’\r’;)
{

if((ch>='0' && ch<='9’) II ch==’.' II ch==ERASE)
{

if(ch != ERASE)
{

waddch(pcescr, ch);
wrefresh(pcescr);
price [i++] = ch;
++pos;

}
else

if (i > 0)
{

waddch(pcescr, ch);
wrefresh(pcescr);
“ i;

— pos;
>

}
>
priceCi] = ’\0’;

if((newprice = atof(price)) <= 0.00 II newprice > 99.99)
{

wmove(pcescr, line+2, ++pos);
waddstr(pcescr, "Invalid price.");
waddstr(pcescr, "Type any key to continue");
wrefresh(pcescr);
(void)getchO ;

>
else
{

/* change old price */
(void)sscani (grade_records [grade] , "'/,*d '/,f */,f"

, ftoldprice, feoldstock);
(void) sprintf (grade_records [grade] , "'/.d '/,.2f ’/,.2f\n",

grade , newprice , oldstock);

/* add new price record to pump message */
(void) sprintf (per, "‘/,d */,.2f ", grade, newprice);

198 APPENDIX B. DESIGN AND IMPLEMENTATION

(void)strcat(pcechge, per);
>

wmove(pcescr, line+2, 0);
wclrtoeol(pcescr);
wrefresh(pcescr);

>
else

if(ch != ’q' && ch != 'Q')
{

wmove(pcescr, line+2, 0);
waddstr(pcescr, "Invalid choice");
wrefresh(pcescr);

>
} while(ch != ’q' && ch != ’Q');

delwin(pcescr); /* delete price change window */

for(i=0; i<MAX_CSTK; i++) /* clear new_cstk */
new_cstk[i] = ’\0’;

for(i=0; i<NGRADES; i++) /* copy new records */
strcat(new_cstk, grade_records[i]);

if((i = strlen(new_cstk)) < MAX_CSTK)
while(i < MAX_CSTK) /* pad new_cstk */

new_cstk[i++] = ’ ’;
new_cstk[i] = ’\0’;

if(lseek(csfd, (long)0, 0) < 0)
perror("current stock lseek");

if(write(csfd, new_cstk, MAX_CSTK) < 0) /* write new records */
perror("current stock write");

if(flock(csfd, L0CK_UN) < 0) /* unlock store */
perror("current stock flock");

if(close(csfd) < 0)
perror("current stock close");

if((i = strlen(pcechge)) < PCECHGLEN)
while(i < PCECHGLEN) /* pad pcechge */

pcechge[i++] = ’ ’;
pcechge[i] = ’\0’;

for(i=0; i<pumps; i++) /* send price changes to pump pipes */
{

(void)sprintf(pip_name, "*/,s'/.d", PTP_PIPE, i+1);
if((ppfd = open(pip_name, 0_RDWRI0_NDELAY)) < 0)

perror("pump price change pipe open");
if(write(ppfd, pcechge, PCECHGLEN) < 0)

perror("pump price change pipe write");
if(close(ppfd) < 0)

perror("pump price change pipe close");
>

B.3. IMPLEMENTATION CODE 199

}

200 APPENDIX B. DESIGN AND IMPLEMENTATION

/* report.c: report printing module */

»include <sys/file.h>
»include <fcntl.h>
»include <unistd.h>
»include <curses.h>
»include "files.h"
»include "pump.h"

static void trans_rep(),
stock_rep();

void get_gname();

void pr_report()
/* Diagram ref.: Print Report, .3 */

WINDOW *rep;
char ch;

rep = newwin(24, 80, 0, 0);
wclear(rep);
touchwin(rep);
wrefresh(rep);

waddstr(rep, "Please select report type: T. Transaction Report");
»move(rep, 1, 27);
waddstr(rep, "S. Stock Report");
wmove(rep, 2, 27);
waddstr(rep, "F. Full Report");
wmove(rep, 3, 27);
waddstr(rep, "Q. Quit");
wmove(rep, 4, 0);
waddstr(rep, "Selection: ");
wrefresh(rep);

do
{

ch = getchQ ;
wmove(rep, 4, 12);
waddch(rep, ch);
wrefresh(rep);

switch(ch)
{

case ’t’ : /* transaction report */
case ’T' : trans_rep(rep);

break;

case 's' : /* stock report */
case ’S' : stock_rep(rep);

break;

c a s e / * f u l l r e p o r t * /

B. 3. IMPLEMENTATION CODE 201

case ’F’ : trans_rep(rep);
wmove(rep, 22, 0);
waddstr(rep, "Type
wrefresh(rep);
(void)getchO ;
stock_rep(rep);
break;

case ’q’
case 'Q' : break;

default : wmove(rep, 6, 0);
waddstr(rep, "Invai
wrefresh(rep);
break ;

i(ch! = ’t ’ && ch ! = ’ T ’ ftft ch ! = ' s
ch!=’f' && ch!=’F

!= 'q' && ch != ’Q’) /* wait :

/* wait for char */

ch ! = ’Q ’) ;

wmove(rep, 22, 0);
waddstr(rep, "Type any key to continue");
wrefresh(rep);
(void)getch();

delwin(rep);

static void trans_rep(rep) WINDOW *rep;
/* Minispecs ref.: Sub-procedure of .3 */
{

int thfd, pid, grade, r, line = 2;
float litres, cost, tot_litres = 0.00, tot_cash = 0.00;
char trans_record[MAX_THRLEN + 1], gradestr[MAXGDESTR + 1];

/* lock transaction history */
if((thfd = open(TRANS_HIST, 0_RDWR)) < 0)

perror("transaction history open");
if(flock(thfd, L0CK_EX) < 0)

perror("transaction history flock");

/* clear window and print headers */
wclear(rep);
wmove(rep, 0, 31);
waddstr(rep, "TRANSACTION REPORT");
wmove(rep, 1, 10);
waddstr(rep, "Pump No Litres Delivered Petrol Grade Total");
wrefresh(rep);

while((r = read(thfd, trans_record, MAX_THRLEN)) != 0)
{

if(r < 0)

202 APPENDIX B. DESIGN AND IMPLEMENTATION

perrorO'transaction history read");

tot_litres += litres;
tot_cash += cost;

/* accumulate litres */
/* accumulate cash */

/* print report record */
wmove(rep, line++, 0);
wprintw(rep, ",/,14d'/,19.2f'/,20s $'/, .2f", pid, litres

, gradestr, cost);
wrefresh(rep);

ii(line == 21) /* screen full */

wmove(rep, 22, 0);
waddstr(rep, "Type any character to continue");
wrefresh(rep);
(void)getch();
line = 2;

/+ wait for char */

wmove(rep, 22, 0);
wclrtoeol(rep);
wrefresh(rep);

>
>

if(flock(thfd, LOCK.UN) < 0)
perrorC"transaction histroy flock");

if(close(thfd) < 0)
perror("transaction history close");

/* print totals */
wmove(rep, line++, 0);
wprintw(rep, '"/.Z3s'/.36s", "---- ", "----- ");
wmove(rep, line++, 0);
wprintw(rep, "'/,33.2f $'/,.2f", tot_litres

static void stock_rep(rep) WINDOW *rep;
/* Minispecs ref.: Sub-procedure of .3 */
{

int csfd, grade, i, j, line = 2;
float price, stock;
char grade_records[NGRADES][GDLEN+MAXPRICELEN+MAXSTOCKLEN + 1] ,

, tot_cash);

for(¡line < 23; line++)
{

/* delete left over lines */

wmove(rep, line, 0);
wclrtoeol(rep);

}
wrefresh(rep);

>

B.3. IMPLEMENTATION CODE 203

curr_stk[MAX_CSTK + 1],
gradestr[MAXGDESTR + 1],
♦cptr;

/* lock current stock and read its records */
if((csid = open(CURRENT_STOCK, 0_RDWR)) < 0)

perror("current stock open");
if(flock(csfd, LOCK.EX) < 0)

perror("current stock flock");
if(read(csfd, curr.stk, MAX.CSTK) < 0)

perror("current stock read");
if(flock(csfd, LOCK.UN) < 0)

perror("current stock flock");
if(close(csfd) < 0)

perror("current stock close");

/* clear window and print headers */
wclear(rep);
wmove(rep, 0, 34);
waddstr(rep, "STOCK REPORT");
wmove(rep, 1, 11);
waddstr(rep, "Petrol Grade Litres in stock Price/Litre");
wrefresh(rep);

for(cptr=curr_stk, i=0; i<NGRADES; i++) /* get grade records */
{

for(j=0; *cptr != *\n’ Jtk *cptr != '\0’; j++)
grade_records[i][j] = *cptr++ ;

grade_records[i][j++] = *cptr++;
grade_records[i][j] = ’\0';

(void)sscanf (grade.records[i] , "‘/,d */.f ’/.f", kgrade, Stprice
, Ststock) ;

get_gname(grade, gradestr);
wmove(rep, line++, 11);
wprintw(rep, "’/.lOs'/̂ l. 2f

wrefresh(rep);

'/, .2f p" , gradestr
, stock, price);

>
>

204 APPENDIX B. DESIGN AND IMPLEMENTATION

/* rec_stk_del.c: stock delivery module */

»include <sys/iile.h>
»include <fcntl.h>
»include <curses.h>
»include "pump.h"
»include "files.h"
»include "display.h"

void get_gname();

void record_stk_del()
/* Diagram ref.: Record Stock Delivery, .1.2 */

int csfd, i, j, grade, pos, line=2;
float oldprice, newstock, oldstock, atof();
char curr_stk[MAX_CSTK + 1],

new_cstk[MAX_CSTK + 1],
grade_records[NGRADES][GDLEN+MAXPRICELEN+MAXSTOCKLEN+1],
gradestr[MAXGDESTR + 1],
stock[MAXSTOCKLEN + 1],
ch, *cptr, *strnsp();

WINDOW *stkscr;

/* create stock delivery screen and initialise it */
stkscr = newwin(24, 80, 0, 0);
wclear(stkscr);
touchwin(stkscr);
wmove(stkscr, 0, 33);
waddstr(stkscr, "Stock Delivery");
wrefresh(stkscr);

if((csfd = open(CURRENT_ST0CK, 0_RDWR)) < 0)
perror("current stock open");

if(flock(csfd, L0CK_EX) < 0) /* lock current stock */
perror("current stock flock");

if(read(csfd, curr_stk, HAX_CSTK) < 0) /* get records */
perror("current stock read");

for(cptr=curr_stk, i=0; i<NGRADES; i++) /* get grade records */
{

for(j=0; *cptr != ’\n’ *cptr != '\0'; j++)
grade_records[i][j] = *cptr++ ;

grade_records[i][j++] = *cptr++;
grade_records [i][j] = ’\0';

}

wmove(stkscr, line, 0);
waddstr(stkscr, "Please select grade: ");
for(i=0 ; KNGRADES; i++)
{

get_gname(i, gradestr);

B. 3. IMPLEMENTATION CODE 205

cptr = strnsp(gradestr);
wmove(stkscr, line++, 21);
wprintw(stkscr, "'/,d. ’/.s", i+1, cptr);

>
wmove(stkscr, line++, 21);
waddstr(stkscr, "Q. quit");
wmove(stkscr, ++line, 0);
waddstr(stkscr, "Selection: ");
wreiresh(stkscr);

do
{

ch = getchO ;
wmove(stkscr, line, 11); /* display ch */
waddch(stkscr, ch);
wreiresh(stkscr);

ii(ch > ’0’ && ch <= NGRADES+'O’)
{

grade = ch-'O’-l;

/* get new stock */
wmove(stkscr, line+2, 0);
waddstr(stkscr, "Please enter litres delivered: ");
wrefresh(stkscr);
for(pos=31, i=0; (ch = getchO) != '\r’;)
{

if((ch>='0' ch<='9') II ch=='.’ II ch==ERASE)
{

if(ch != ERASE)
{

waddch(stkscr, ch);
wrefresh(stkscr);
stock[i++] = ch;
++pos;

>
else

if (i > 0)
{

waddch(stkscr, ch);
wrefresh(stkscr);
— i;
— pos;

>
>

>
stock [i] = ’\0’;

(void) sscanf (grade_records [grade] , "’/,*d */,f '/.f"
, ftoldprice , ftoldstock);

if((newstock = atof(stock)) <= 0.00
II newstock+oldstock > 9999.99)

I

206 APPENDIX B. DESIGN AND IMPLEMENTATION

wmove(stkscr, line+2, ++pos);
waddstr(stkscr, "Invalid delivery.");
waddstr(stkscr, "Type any key to continue");
wrefresh(stkscr);
(void)getchQ ;

>
else /* change stock */

(void)sprint!(grade_records [grade] , "*/.d '/,.2i '/..2!\n"
, grade, oldprice
, oldstock+newstock);

wmove(stkscr, line+2, 0);
wclrtoeol(stkscr);
wrefresh(stkscr);

>
else

if(ch != ' q’ && ch != ’q’)
{

«move(stkscr, line+2, 0);
waddstr(stkscr, "Invalid choice");
wrefresh(stkscr);

}
> while(ch != >q’ && ch != ’q’);

delwin(stkscr); /* delete stock change window */

for(i=0; i<MAX_CSTK; i++) /* clear new_cstk */
new_cstk[i] = ’\0’;

!or(i=0; i<NGRADES; i++) /* copy new records */
strcat(new_cstk, grade_records[i]);

i!((i = strlen(new_cstk)) < MAX_CSTK)
while(i < MAX_CSTK) /* pad new_cstk */

new_cstk[i++] = ' ’;
new_cstk[i] = ’\0’;

if(lseek(cs!d, (long)0, 0) < 0)
perror("current stock lseek");

if(write(csfd, new_cstk, MAX_CSTK) < 0) /* write new records */
perror("current stock write");

if(flock(csfd, L0CK_UN) < 0) /* unlock store */
perror("current stock flock");

if(close(csfd) < 0)
perror("current stock close");

}

B. 3. IMPLEMENTATION CODE 207

/* momstk.c: process to monitor stock levels, and warn the operartor when any of the
grades falls below a threshold value. * /

»include <sys/file.h>
»include <signal.h>
»include <fcntl.h>
»include <unistd.h>
»include "files.h"
»include "pump.h"
»include "display.h"

»define THRESHOLD 100.00
»define forever for(;;)

static void catch_del();

static int warned[NGRADES];

main()
/* Diagram ref.: Monitor Stock, .1.1 */
{

int csfd, dpfd, i, j;
float stock;
char grade.records[NGRADES][GDLEN+MAXPRICELEN+MAXSTOCKLEN + 1] ,

curr_stk[MAX_CSTK + 1],
*cptr;

disp_prot ds;

if(signal(SIGUSRl, catch_del) < 0) /* catch delivery signal */
perrorO'delivery catching signal");

if((dpfd = open(MTD_PIPE, 0_RDWR)) < 0) /* open display pipe */
perror("display pipe open");

for(i=0; i < NGRADES; i++) /* initialise warnings */
warned[i] = NO;

forever

/* lock current stock and read its records */
if((csfd = open(CURRENT_ST0CK, 0_RDWR)) < 0)

perror("current stock open");
if(flock(csfd, LOCK.EX) < 0)

perror("current stock flock");
if(read(csfd, curr_stk, MAX_CSTK) < 0)

perror("current stock read");
if(flock(csfd, L0CK.UN) < 0)

perror("current stock flock");
if(close(csfd) < 0)

perror("current stock close");

/* get grade records */
for(cptr=curr_stk, i=0; KNGRADES; i++)

208 APPENDIX B. DESIGN AND IMPLEMENTATION

for(j=0; *cptr != ’\n' ftft *cptr != ’\0'; j++)
grade_records[i][j] = *cptr++ ;

grade_records[i][j++] = *cptr++;
grade_records[i][j] = ’\0’;

(void)sscanf (grade_records [i] , "*/.*d V,*i ftstock);
if(stock < THRESHOLD)
{

/* warn once only */
if(warned[i] == HO)

I
ds.disp_type = WARN;
(void)sprintf (ds.buffer, "'/.d" , i);
if(write(dpfd, ftds, sizeof(disp_prot))

< sizeof(disp_prot))
perrorC'display pipe write");

warned[i] = YES;
>

>
>

/* Diagram ref.: Clock, .1.0 */
sleep(lO); /* every 10 seconds */

>
>

static void catch_del()
{

int i;

signal(SIGUSRl, catch_del);

for(i=0; i<NGRADES; i++) /* reset warnings */
warned[i] = NO;

>

B.3. IMPLEMENTATION CODE 209

/* mon.pump.c: process for monitoring pump operation. Receives the pump id and the
pid for the pump simulator process. * /

«include <sys/iile.h>
«include <signal.h>
«include <icntl.h>
«include <unistd.h>
«include <errno.h>
«include <string.h>
«include <curses.h>
«include "pump.h"
«include "files.h"
«include "display.h"

«define forever for(;;)

static int pend_req = NO, /*
pump_idle = YES, /*
del_comp = NO, /*
trans_rec = NO, /*
delivery = NO; /*

static int ppfd, /*
dpfd, /*
sig_num, /*
mask, /*
pumpidno, /*
pumppid; /*

static float gde_price; /*

event store for pending request */
event store for pump status */
sync, flag for delivery complete */
sync, flag for history updated */
flag for delivery disbalement */

file descriptor for pump pipe */
file descriptor for display pipe */
signal identifier */
singal mask */
pump identity number */
pid for pump process */

grade price for receipt printer */

/* current transaction and last transaction stores */
static char curr_trans[MAX_THRLEN + 1],

last_trans[MAX_THRLEN + 1];

static void catch_req(),
req_serv(),
catch_button(),
get_button(),
catch_receipt(),
pr_receipt(),
catch_delivery(),
get_delivery(),
check_pump_status(),
rec_trans(),
update_trcins_hist() ;

void main(argc, argv) int argc;
char *argvD ;

{
char pin[MAX_PIP_NAM + MAX.PIDLEN + 1];

if(arge < 3)

{

210 APPENDIX B. DESIGN AND IMPLEMENTATION

printf("'/,s: Too few arguments\n", argv[0]);
exit(l);

if(signal(SIGUSRl, catch_req) < 0) /* catch requests */
perror("request catching signal");

if(signal(SIGUSR2, catch_button) < 0) /* catch button presses */
perror("button catching signal");

if(signal(SIGFPE, catch_receipt) < 0) /* catch receipt request */
perror("receipt catching signal");

if(signal(SIGTERM, catch_delivery) < 0) /* catch deliveries */
perror("delivery catching signal");

/* set up signal mask */
mask = 0;
mask 1= sigmask(SIGUSRl);
mask 1= sigmask(SIGUSR2);
mask 1= sigmask(SIGFPE);
mask |= sigmask(SIGTERM);

pumpidno = atoi(argv[l]); /* get pump id no. */
pumppid = atoi(argv[2]); /* get pump simulator pid */

sprintf(pin, ’"/.s'/.s", PTM_PIPE, argv[l]); /* open pipe to pump */
if((ppfd = open(pin, 0_RDWR)) < 0)

perror("pump input pipe open");

if((dpfd = open(MTD_PIPE, 0_RDWR)) < 0) /* open disp. pipe */
perror("display pipe open");

forever
{

sigpause(O);
switch(sig_num)
{

case SIGUSR1

case SIGUSR2

case SIGFPE

case SIGTERM

}
>

}

/* wait for service request */

req_serv();
break;
get_button();
break ;
pr_receipt();
break;
get_delivery();
break;

static void check_pump_status()
/* Diagram ref.: Check Pump Status, .0.1 */
{

disp_prot ds;

(void)sigblock(mask);
if(pump_idle == YES)

/* mask signals */

B. 3. IMPLEMENTATION CODE 211

/* Diagram ref.: Start The pump, .0.2 */
if(kill(pumppid, SIGUSR1) < 0) /* start pump */

perrorO'enable pump kill");

/» turn pump light off */
ds.disp_type = LIGHT;
(void) sprint! (ds. buffer, "'/.d %d" , pumpidno, OFF);
if(write(dpfd, Ads, sizeof(disp.prot)) < sizeof(disp_prot))

perror("display pipe write");

/»change pump status */
ds.disp_type = ACTVE;
(void)sprintf(ds.buffer, "*/.d %d", pumpidno, YES);
if(write(dpfd, Ads, sizeof(disp_prot)) < sizeof(disp_prot))

perror("display pipe write");

pump_idle = NO;
pend_req = NO;
rec_trans();

>
else
{

update_trans_hist();

if(pend_req == YES AA delivery == NO)
{
/* Diagram ref.: Start The pump, .0.2 »/
if(kill(pumppid, SIGUSR1) < 0) /» start pump */

perrorC'enable pump kill");

/»turn pump light off */
ds.disp_type = LIGHT;
(void)sprintf(ds.buffer, "'/.d '/A", pumpidno, OFF);
if(write(dpfd, Ads, sizeof(disp_prot)) < sizeof(disp_prot))

perror("display pipe write");

/»change pump status »/
ds.disp_type = ACTVE;
(void)sprintf (ds . buf f er, "'/.d ’/.d", pumpidno, YES);
if(write(dpfd, Ads, sizeof(disp_prot)) < sizeof(disp_prot))

perror("display pipe write");

pend_req = NO;
rec_trans();

>
else
{
/»change pump status */
ds.disp_type = ACTVE;
(void) sprint! (ds .buff er , "'/,d ’/.d" , pumpidno, NO);
if(write(dpfd, Ads, sizeof(disp_prot)) < sizeof(disp_prot))

perror("display pipe write");

212 APPENDIX B. DESIGN AND IMPLEMENTATION

pump_idle = YES;

/* keep light on if pending request */
if(pend_req == YES)
{

/♦turn pump light on */
ds.disp_type = LIGHT;
(void)sprintf(ds.buffer, "*/,d %d", pumpidno, ON);
if(write(dpfd, ftds, sizeof(disp_prot)) < sizeof(disp_prot))

perror("display pipe write");
>

}
>

>

static void rec_trans()
/* Diagram ref.: Record Transaction, .0.3 */

char grade_records[NGRADES][GDLEN+MAXPRICELEN+MAXSTOCKLEN + 1],
curr_stk[MAX_CSTK + 1],
new_cstk[HAX_CSTK + 1],
total[MAX.PLEN + 1],
pumpid,
♦cptr;

int csfd, pet_gde, i, j;
float lit_del, oldstock;
disp_prot ds;

(void)sigblock(mask); /* mask signals */
/* clear curr_trans */
for(i=0; i<PTM_LEN+MAX_PLEN+l; i++)

curr_trans[i] = ’\0’;

while(read(ppfd, curr_trans, PTM_LEN) < 0) /* receive TD ♦/
{

if(ermo == EINTR) /* continue after interupt */
continue;

else
perrorC'pump pipe read");

>
ss-Ccmf (curr_ trans, "'/,c '/A '/.f", ftpumpid, ftpet_gde, k l i t_ d e l) ;

if((csfd = open(CURRENT_ST0CK, 0_RDWR)) < 0)
perror("current stock open");

if(flock(csfd, L0CK_EX) < 0) /♦ lock current stock */
perror("current stock flock");

while(read(csfd, curr_stk, MAX_CSTK) < 0) /* get store records */
I

if(ermo == EINTR) /* continue after interupt */
continue;

else
perror("current stock read");

>

B.3. IMPLEMENTATION CODE 213

for(cptr=curr_stk, i=0; KNGRADES; i++) /* get grade records */
{

for(j=0; *cptr != ’\n’ *cptr != ’\0'; j++)
grade_records[i][j] = *cptr++ ;

grade_records[i][j++] = *cptr++;
grade_records [i] [j] = '\0’;

>

(void)sscanf (grade_records [pet_gde] , "*/,*d */,f ’/.f " , ftgde_price
, ftoldstock) ;

(void)sprintf(grade_records[pet_gde], "’/.d */,. 2f '/,.2i\n", pet_gde
, gde_price , oldstock-lit_del);

ior(i=0; i<MAX_CSTK; i++) /* clear new_cstk */
new_cstk[i] = '\0’;

for(i=0; KNGRADES; i++) /* copy new records */
strcat(new_cstk, grade_records [i]);

if((i = strlen(new_cstk)) < MAX_CSTK)
while(i < MAX_CSTK) /* pad new_cstk */

new_cstk[i++] = ’
new_cstk[i] = ’\0’;

ii(lseek(csfd, (long)O, 0) < 0)
perror("current stock lseek");

if(write(csfd, new_cstk, MAX_CSTK) < 0) /* write new records */
perror("current stock write");

if(flock(csfd, L0CK_UN) < 0) /* unlock current stock */
perror("current stock flock");

if(close(csfd) < 0)
perror("current stock close");

/* concat. total to pay (in pounds) */
(void)sprintf(total, " %.2f", gde_price * lit_del / 100.00);
(void)strcat(curr_trans, total);

/* display current transaction */
ds.disp_type = TRANS;
(void)strcpy(ds.buffer, curr_trans);
if(write(dpfd, ftds, sizeof(disp_prot)) < sizeof(disp_prot))

perror("display pipe write");

/* turn pump light on */
ds.disp_type = LIGHT;
(void)sprintf(ds.buffer, "’/.d ’/.d", pumpidno, ON);
if(write(dpfd, &ds, sizeof(disp_prot)) < sizeof(disp_prot))

perror("display pipe write");

/* sound console bell */
ds.disp_type = BELL;

B.3. IMPLEMENTATION CODE 215

}

static void catch_req()
{

il(signal(SIGUSRl, catch_req) < 0)
perror("request catching signal");

sig_num = SIGUSR1;
>

static void req_serv()
/* Diagram ref. : Request Service, .0.0 */
{

disp_prot ds;

pend_req = YES;
if(pump_idle == YES)
{

/* turn pump light on */
ds.disp_type = LIGHT;
(void)sprintf (ds . buffer, "'/,d '/A", pumpidno, OR);
if(write(dpfd, ftds, sizeof(disp_prot)) < sizeof(disp_prot))

perror("display pipe write");

/* sound console bell */
ds.disp_type = BELL;
if(write(dpfd, ftds, sizeof(disp_prot)) < sizeof(disp_prot))

perror("display pipe write");
}

>

static void catch_button()
{

if(signal(SIGUSR2, catch_button) < 0)
perror("button catching signal");

sig_num = SIGUSR2;
>

static void get_button()
{

/* catch erronous button presses */
if((pump_idle == YES ftft pend_req == YES ftft delivery == NO)

II (pump_idle == NO ftft del_comp == YES))
check_pump_status();

>

static void catch_receipt()

if(signal(SIGFPE, catch_receipt) < 0)
perror("request catching signal");

sig_num = SIGFPE;
>

216 APPENDIX B. DESIGN AND IMPLEMENTATION

static void pr_receipt()
/* Diagram rei.: .0.5 */
{

disp_prot ds;
char grade,

litres[LTLEN + 1];

ii(trans_rec == YES) /* synchronise and catch errors */
{

trans_rec = NO; /* reset synchronisation flag */
(void)sscanf(last_trans, M,/,*d '/.c */,s '/,*s", ftgrade, litres);

/* print receipt */
ds.disp_type = RECPT;
(void)sprintf (ds. buffer, "*/.c '/..2f '/.s", grade, gde_price, litres);
if(write(dpfd, ids, sizeof(disp_prot)) < sizeof(disp_prot))

perror("display pipe write");
>

}

static void catch_delivery()
{

if(signal(SIGTERM, catch_delivery) < 0)
perror("delivery catching signal");

sig_num = SIGTERM;
>

static void get_delivery()
{

if(delivery == NO) /* set delivery flag on 1st interrupt */
delivery = YES;

else /* unset it on the second */
delivery = NO;

>

B. 3. IMPLEMENTATION CODE 217

/* pump.c: process to simulate a pump operation. Receives the pump id and the pid of
the pump monitoring process */

»include <fcntl.h>
»include <string.h>
»include <signal.h>
»include <errno.h>
»include "pump.h"

»define forever for(;;)

void catch_enb();

void mainfargc, argv) int argc;
char *argv □ ;

{
int i, send, pcge, litres, mpo_pid;
unsigned short randl[3], rand2[3];
long nrand48();
double erand48();
char pip_name[MAX_PIP_NAM + MAX.PIDLEN + 1],

pcechge[PCECHGLEK + 1],
out.buff[PTM_LEN + 1];

if(argc < 3)
{

printf ('"/,s : Too few arguments\n", argv[0]);
exit(1);

>

if(signal(SIGUSR1, catch_enb) < 0) /* catch enabling signal */
perrorC"enablement catching signal");

/* make up pipe to monitor name and open it */
(void)sprintf (pip_name, "*/,s'/,s", PTM_PIPE, argv[l]);
if((send = open(pip_name, 0_RDWR)) < 0)

perror("pump output pipe open");

/* make up pipe from price change and open it */
(void)sprintf (pip_name, "'/.s’/.s", PTP_PIPE, argv[l]);
if((pcge = open(pip_name, 0_RDWR|0_KDELAY)) < 0)

perror("price change pipe open");

for(i=0; i<3; i++) /* initialise seed for nrand48 */
randl[i] = rand2[i] = atoi(acrgv[l]); /* seed id for pump */

mpo_pid = atoi(argv[2]) /* get monitor process’s pid */
sleep((unsigned)5); /* wait for all procs to come to life */

forever
{

/* wait for customer */
sleep((unsigned) (nrand48(rcindl) '/, 30));

218 APPENDIX B. DESIGN AND IMPLEMENTATION

ii(kill(mpo_pid, SIGUSR1) < 0) /* request service */
perror("pump to monitor kill");

pause(); /* wait until service is granted */

litres = (int) (nrand48(rand2) '/, 100); /* max del. = 99 */
ii(litres < 2) /* min. delivery = 2 lit. */

litres = 2;

sleep(lO); /* wait for delivery */

/* make up transaction details and send it */
(void)sprintf (out_buff, "'/,s %d ’/,.2f", argv[l], litres '/. NGRADES

, (float)(litres + erand48(rand2)));

for(i=strlen(out_buff); i<PTM_LEN; i++)
out_buff[i] = ’ ’;

out_buff[i] = ’\0’;
if(write(send, out_buff, PTM_LEN) < 0) /* send TD */

perror("pump pipe write");

/* read price changes, if any */
if(read(pcge, pcechge, PCECHGLEN) < 0)

if(errno != EW0ULDBL0CK)
perror("pump price change pipe read");

}
}

static void catch_enb()
{

signal(SIGUSRl, catch_enb);
>

B. 3. IMPLEMENTATION CODE 219

/* misc.c: module holding miscellaneous functions */

#include <string.h>

void get_gname(grade, string) int grade;
char »string;

{
switch(grade)
{

case 0 : (void)strcpy(string, " diesel");
break;

case 1 : (void)strcpy(string, " 4 star");
break;

case 2 : (void)strcpy(string, "unleaded");
break;

default : print!("Grade string error\n");
break;

>

char *strnsp(string) char »string;
{

while(*string == ’ ’ || »string == ’\t' II »string
»»string;

== ’ \n’)

return(string);

Appendix C

Diagram Syntax Rules

C .l Overview

Chapter 4 briefly discussed the syntax for the diagrams of the proposed new
notation. The first section below gives an abstract syntax based on sets for
this notation. The following section gives a concrete syntax in the form of
a textual language for describing the diagrams. An example of a textual
description is also included.

C.2 An Abstract SvntaxV

The abstract syntax of a set of specification diagrams can be described using
sets. The set representation does not, however, include enough constraints
on legal specifications. A set of logic predicates complement the sets to
define a set of legal specification diagrams.

1. The diagram set of a specification, D S P E C , is a pair, consisting of the
Context Diagram, CD, and a set of diagram networks, N,

DSPEC = (CD, N)

2. A Context Diagram consists of the Context Data Flow Diagram and the
Context Event Flow Diagram,

CD = (CDFD, C E FD)

where
C D F D = (Sp, DT, C DF)

and
C E F D = (Sp ,ET,CEF)

221

222 APPENDIX C. DIAGRAM SYNTAX RULES

where Sp = The system process name,
DT = The set of data terminator names,
C D F = {C D : CD = { C D f s ,C D f d ,C D f l) }
where C D fs — The name of the context data flow’s source,

C D fd = The name of the context data flow’s destination, and
C D f l = The context data flow’s label,

ET — The set of event terminator names, and
C E F = { C F : C F = (C E f s , C E f d , C E f l)}
where C E f s = The name of the context event flow’s source,

C E fd — The name of the context event flow’s destination, and
C E f l = The context event flow’s label,

3. A diagram level, DL £ N, is a 4-tuple,

N = {DL : DL = {Ln, D F D , EFD, SCD)}

where Ln = The diagram level’s name,
D FD = (D P ,D S ,D F),
E F D = (E P , ES , SC, EF), and
SCD = {SS : SS = (Sn, ON, O F F)} .

where DP = The set of DFD process names,
DS = The set of data store names,
D F = { D : D = (D f s , D f d , D f l) } ,
where D f s = The name of the data flow’s source,

D fd = The name of the data flow’s destination, and
D f l — The data flow’s label,

E P — The set of EFD process names,
ES = The set of event store names,
SC = The set of synchronisation symbol names,
EF = { E : E = (Efs,Efd, Efl)},
where E f s = The name of the event flow’s source,

E fd = The name of the event flow’s destination, and
• E f l — The event flow’s label,

Sn — The subsystem name,
ON — The set of subsystem enablement event names, and
O F F = The set of subsystem disablement event names.

C.2.1 Rules For The Context Diagram

In the following predicates a sugared syntax is used, where
V d £ DF{...) stands for V d(d £ D F = > ...), and
3 n £ N{...) stands for 3 n{n £ N A ...).

C.2. AN ABSTRACT SYNTAX 223

4. There is one and only one diagram in the set of diagram network named
with the system process name,

B in G N(n.Ln = Sp)

where the n.Ln is used to denote the Ln member of the tuple n, and 3i
indicates there is one and only one.

5. There are some terminators which communicate with the system,

" (DT = cj>A ET = </>)

where f denotes the empty set, and indicates negation.

6. A context data flow cannot connect a node to itself,

Vd G C DF(d .CD fs ^ d.CDfd)

7. A context data flow cannot directly connect two data terminators,

Vd G C DF"(d.C D fs G DT A d.CDfd G DT)

8. Every context data flow connects the system process to a data terminator,

Vd G C DF((d.C D fs G DT A dC.Dfd = Sp)
V (dC.Dfs = Sp A d.CDfd G DT))

9. Every data terminator is connected to the system process,

V i G DT(3d G C DF(d.C D fs = t V d.CDfd = t))

10. All CDFD names are unique,
V i G DT Vd G CDFVd' G CDF{t / Sp A t ± d.CDfl

A d.CDfl ± Sp A d.CDfl ± d’ .CDfl)
)

11. There is only one diagram labelled with the system process name, and all
the data flows of the Context Diagram appear on the DFD of this diagram,

B in G N(n.Ln = Sp) A Vd G CDF(
(.d.CDfs G DT = »

B id ' G n.DFD.DF 3lP' G n.DFD.DP
(d ' = (Inherited, p' , d.CD / /))

)
A (d.CDfd G DT =>■

B jd ' G n.DFD.DF 3lP' G n.DFD.DP
(d1 = (p1, Inherited, d.CDfl))

)
)

224 APPENDIX C. DIAGRAM SYNTAX RULES

where n.DFD.DF and n.dfd.DP denote the data flows and the processes,
respectively, of the data flow diagram of network n; and the term Inherited
is used to denote the unconnected end of an inherited data flow.

12. A context event flow cannot connect a node to itself,

Ve € C EF(e.C E f s ± e .C E fd)

13. A context event flow cannot directly connect two event terminators,

Ve G C EF^(e.C E f s G ET A e .CEfd G ET)

14. Every context event flow connects the system process to a event termi-
nator,

Ve G CEF((e .C E f s G ET A e .CEfd = Sp)
V (e .C E fs = Sp A e .CEfd G ET))

15. Every event terminator is connected to the system process,

Vt G DT(3e G C E F (e .C E fs = t V e .CEfd = t))

16. All CEFD names are unique,
Vi e ET We e CEFWe' G CEF(t ^ Sp A t ± e .CE fl

A e .CE fl ^ Sp A e .CE fl ± e' .CEfl)
)

17. There is only one diagram labelled with the system process name, and
all the event flows of the Context Diagram appear on the EFD of this
diagram,

3 m G N(n.Ln = Sp) A Ve G C EF(
(e .C E fs g ET = »

3 i e ' G n.EFD .E F 3lP' G n.EFD.EP
(e' = (I nherited,p', e .CEfl))

)
A {e .CEfd <E ET ^

3 i e ' G n.DFD.DF 3 lP ' G n.EFD.EP
(e' = (p', Inherited, e .CEfl))

)
)

C.2.2 Rules For Hierarchy Levels

18. The name of a diagram, Ln, is the name of a (higher level) process
(which can be the system process),

Vn G N(3n' G N(Ln G n'.DFD.DP) V k = Sp)

C.2. AN ABSTRACT SYNTAX 225

19. The process sets of the D FD and E F D for a level are identical, and
non-empty,

Vn E N(n.DFD.DP = n.EFD.EP A n.DFD.DP / </>)

20. Every process must have at least one (data or event) input and one
(data or event) output,

Vp E DP(
(3d E DF(d.Dfd = p) V 3e E E F (e .E fd = p))
A (3d E DF(d .Dfs = p) V 3e E E F (e .E fs = p))

)
21. The subsystems on a SCD are a subset of the processes on the corre-
sponding D F D / E F D,

\/ss E SCD(ss.Sn E DP)

22. The set of processes on the D F D and E F D of a diagram level can be
further subdivided into atomic and expandable processes.

DP = AD P C EDP

ADP n E D P = <t>

E P = A E P U E E P

E D P D E E P = (f>

where ADP = The set of atomic data process names,
E D P = The set of expandable data process names,
A DP = The s£t of event atomic process names, and
E D P — The set of expandable event process names,

23. Every expandable process has an expansion in the set of diagram net-
works,

Vp E EDP(3\n E N(n.Ln — p))

24. Every atomic process has one and only one active input event flow,

Vp E A E P (3 ie E E F (e .E fd = p A e .Efs £ ES))

25. In a similar fashion to its processes, the data stores, event stores, data
flows, and event flows of a diagram level can each be divided into two sets,

DS = IDS U LDS

IDS n LDS = <f>

ES = IES U LES

226 APPENDIX C. DIAGRAM SYNTAX RULES

IES fl LES = <f>

D F = I D F U LDF

I D F fl LDF = <t>

E F = I E F U LEF

I EF H LEF = <f>

where IDS = The set of inherited data store names,
LDS = The set of local data store names,
IES = The set of inherited event store names,
LES = The set of local event store names,
I D F = The set of inherited data flows,
LDF = The set of local data flows,
I E F = The set of inherited event flows, and
LEF = The set of local event flows

26. A data flow cannot connect a node to itself,

Vd G DF(d .Dfs ± d.Dfd)

27. A data flow cannot directly connect two data stores,

Vd G DF~'(d.Dfs £ DS A d.Dfd G DS)

28. All DFD names are unique,
Vp e D P W s e DS Vd € DFVd' G DF(s / p A s ^ d.Dfl

A d.Dfl ± p A d.Dfl ± d'.Dfl)
)

29. Every data store and its connections to an expandable process appear
on the D F D of that process’s expansion,

Vs G DS Vd G D F Vp G EDP{
((d.Dfs = s A d.Dfd = p) =$>•

3m G N 3p' G n.DFD.DP 3 ^ ' G n.DFD.DF
(s G n.DFD.IDS A d '.D /s = s A d'.Dfd = p')

)
A ((d.Dfs — p A d.Dfd = s) = >

3m G Ar 3p' G n.DFD.DP 3xd' G n.DFD.DF
(s G n.DFD.IDS A d'.T>/s = p' A d '.D /d = s)

)
)

30. Conversely, every Inherited data store and its connections to the pro-
cesses of a D F D are connected to the D F D 's parent process,

Vs G IDS Vd G DF(
(d.Dfs = s = * 3m € N 3ip G n.DFD.DP 3d! G n.DFD.DF

C.2. AN ABSTRACT SYNTAX 227

(p — Ln A s 6 n.DFD.DS A d'.Dfs = 5)
)
A (d.Dfd = 6 = > 3m £ iV 3ip € n.DFD.DP 3d! £ n.DFD.DF

(p — Ln A 5 £ n.DFD.DS A d'.Z) fd — 5)
)

)
31. Every data flow that is connected to an expandiable process appears
on the D F D of that process’s expansion,

\/d £ DF Vp £ ££>/>(
d.Dfs = p = * 3in £ JV 3p' £ n.DFD.DP 3d! £ n.DFD.DF

(n.Ln = p A d! — (p1, Inherited, d.Dfl))
A d.Dfd = p ==> 3m £ iV 3p' £ n.DFD.DP 3d' £ n.DFD.DF

(n.Ln = p A d' = (Inherited, p', d.Dfl))
)

32. Conversely, every Inherited data flow on a D F D is connected to its
parent process (which can be the Context Diagram),

Vd £ 7DF(
d.Dfs = Inherited = >

(3xn £ iV 3p £ n.DFD.DP 3 ^ ' £ n.DFD.DF
(p — Ln A d! .Dfd = p A d'.D FI = d.Dfl)

V 3d' £ CD.CDFD.CDF(d' .Dfd = Sp A d'.Dfl = d.Dfl)
)

A d.Dfd = Inherited =$■
(3m £ TV 3p £ n.DFD.DP 3xd' £ n.DFD.DF

(p — Ln A d'.Dfs = p A d'.DFl = d.Dfl)
V 3d' £ C D.CDFD.CDF(d' .Dfs = Sp A d'.Dfl - d.Dfl)
)
)

33. An event flow map connect an atomic process to itself. Hence the first
data flow rule does not apply to event flows. It must be modified for event
flows: an event flow cannot connect an expandable process or a event store
to itself,

Ve £ E F Vp £ EEP^(e .E fs = pA e .Efd = p)
Ve £ E F Vs £ ES~'(e.E f s = s A e.E fd — s)

34. All EFD names are unique,
Vp £ E P Vs £ ES Ve £ EFVe' £ EF(s / pA s / e .Efl

A e.E / / / p A e .Efl 7̂ e'.Efl)
)

35. Every event store and its connections to an expandable process appear
on the E F D of that process’s expansion,

Vs e ES Wee E F Vp £ EEP(
((e .Efs = s A e .Efd = p) =$■

228 APPENDIX C. DIAGRAM SYNTAX RULES

3m EN 3p' E n.EFD.EP 3xe' G n.EFD.EF
(5 G n.EFD.IES A e'.Efs = s A e'.Efd = p')

)
A ((e .E fs = p A e .Efd = s) =>■

3m € N 3p' E n.EFD.EP 3ie' 6 n.EFD.EF
(s E n.EFD.I ES A e'.Efs = p' A e'.i?/c/ = s)

)
)

36. Conversely, every Inherited event store and its connections to the pro-
cesses of a E F D are connected to the EFD's parent process,

Vs E IES Ve E EF(
(e .E fs = s = > 3m 6 N 3xp E n.EFD.EP 3e' E n.EFD .E F

(p = Ln A s E n.EFD.ES A e'.Efs — s)
)
A (e .Efd = s =£■ 3m € iV 3m £ n.EFD.EP 3e' G n.EFD.EF

(p = Ln A s G n.EFD.ES A e'.Efd = s)
)

)
37. The event flow balancing rules are slightly different to those for data
flows. Every event flow output from an expandable process appears on that
process’s E F D expansion; and every event flow input to an expandiable
process appears either on the E F D or the SCD of that process’s expansion,

Ve G E F Vp G E EP(
e .E fs = p = > 3m £ N 3p' E n.EFD.EP 3e' E n .EFD .E F

(n.Ln = p A e' = (p', Inherited, e .E f l))
A e .Efd = p = ^

(3m G iV 3p' G n.EFD.EP 3e' E n .EFD .E F 3ss G n.5CT>
(n.Ln = p A (e' = (Inherited, p', e.Efl)

V (e .Efl E ss.ON V e.i?f l E ss .O F F)
)

)
where y indicates an exlusive or.

38. Conversely, every Inherited input event flow on an E F D is connected to
its parent process (which can be the Context Diagram); and every Inherited
output event flow is either connected to its parent process (which can be
the context diagrsm) or appears on the current SCD,

Ve G IE F (
e .E fs = Inherited =>•

(3m € N 3p E n.EFD.EP 3e# G n.EFD.EF
(p = Tn A e'.Efd = p A e'.EFl = e .E f l)

V 3m' G C D .C E FD .C E F (e'.Efd = Sp A e '.£ / / = e.Efl)
)

C.3. AN ALTERNATIVE SYNTAX 229

A e .Efd = Inherited = >
((3m G N Bp G n.EFD.EP Be' € n.EFD.EF

(p = Ln A e'.Efs = p A e’ .EFl — e.Efl)
V 3ie' € C D .C E F D .C E F {e' .Efs = Sp A e '.F // = e.Efl)
)

V 355 G SCD.SS{e .Efl G S S . O N V e.Efl G ss.OFF)
)
)

39. A synchronisation symbol must have only one output and more than
one input,

Vsc G 5C (
3ie G F F Bp G A E P {e .E fs = sc A e.Efd = p)
A 3ei G E F 3e2 G EF{e\.Efd = sc A e2.Efd = sc A ei e2)
)

40. Every subsystem on a SCD must have a transition connected to it,

Vss G SCD"{ON = f A O F F =

41. Every transition on a 5 0 F is either connected to the S C D ’s parent
process, or is output from one of the processes on the current EFD,

Vss G SCD Vtr G ss . 0 N {
Bin G A' 3p G n.EFD.EP 3e G n.EFD.EF

{p = Ln A e .Efd = p)
V 3p G E P 3e G E F{e .E fd = p)

)
Vss G SCO Vir G ss.OFF{

Bin G N 3p G n.EFD.EP Be G n.EFD.EF
{p = Ln A e.F fd = p)

V Bp G E P Be G E F (e .E fd = p)
)

42. A subsystem cannot be enabled and disabled by the same event.

Vss G SCD Vtr-i G ss.ON Vtr2 G ss.OFF(tri tr2)

C.3 An Alternative Syntax

An alternative representation of a set of specification diagrams of the new
notation can be given by using a textual language. Such a language can
be formed by flattening the two dimensions of the diagrams into a (one-
dimensional) text description. This language must be as clear as possible
in its description of a particular set of diagrams. In order to achieve this
clarity, the language constructs can simply divide each diagram type into its

230 APPENDIX C. DIAGRAM SYNTAX RULES

constituent symbol types, listing each instance of each symbol in a grouping.
Each grouping can then be given a heading to make it easier to identify.

The following section gives the BNF description for such a language. This
is followed by an example (textual) specification in this language. Note
that this language can be used as a textual interface to an analysis tool
as an alternative to a diagrammatic editor. Also note that the given BNF
description gives a context free description of the language. The sentences of
the language have to be parsed to ensure that a given specification conforms
to the rules for a well formed set of diagrams. Context sensitive aspects of a
given specification can be tested by applying the rules given in the predicates
of the set representation.

The Language Syntax

< Spec. Diagrams >
< Context Diagram >

< Context DFD >

< Sys. Proc. Name >
< Src/Sink List >

< Src/Sink Name >
< Optional Rep >

< Context DF List >

< Context DF >

< One Way DF >

< Copied DF >

< Merged DF >

< DF Source Name >
< DF Dest Name >
< DF Label >
< DF Dest List >

< DF Source List >

< DF Src Labels >

::= < Context Diagram > < Proc. Hierarchy >
::= Context Diagram : < Context DFD >

< Context EFD >
Context DFD < Sys. Proc. Name >
Data Sources/Sinks : (< Src/Sink List >)
Context Data Flows : (< Context DF List >)

::= < Name String >
::= < Optional Rep > < Src/Sink Name >

< Optional Rep > < Src/Sink Name > ,
< Src/Sink List >

::= < Name String >
::= < Empty >

< Positive Number >
::= < Context DF >
| < Context DF > , < Context DF List >
::= < Optional Rep > < One Way DF >
| < Optional Rep > < Copied DF >

< Optional Rep > < Merged DF >
(< DF Source Name > , < DF Dest Name > ,
< DF Label >)

::= (< DF Source Name > , (< DF Dest List >) ,
< DF Label >)
((< DF Source List >) , < DF Dest Name > ,
(< DF Src Labels >))

::= < Name String >
::= < Name String >
::= < Name String >
::= < DF Dest Name >
| < DF Dest Name > , < DF Dest List >

< DF Source Name >
| < DF Source Name > , < DF Source List >

< DF Label >

C.3. AN ALTERNATIVE SYNTAX 231

< Context EFD >

< Context EF List >

< Context EF >

< One Way EF >

< Copied EF >

< Merged EF >

< EF Source Name >
< EF Dest Name >
< EF Label >

< Bracketed Name >
< EF Dest List >

< EF Source List >

< EF Src Labels >

< Proc. Hierarchy >

< Hierarchy Level >

< Level Name >
< Data Flow Spec >

< Process List >

< Process >

< Process Name >
< Process Number >
< Process Type >

< DF Label > , < DF Src Labels >

::= Context EFD < Sys. Proc. Name >
Event Sources/Sinks : < Src/Sink List >
Context Event Flows : (< Context EF List >)

::= < Context EF >
| < Context EF > , < Context EF List >
::= < Optional Rep > < One Way EF >

< Optional Rep > < Copied EF >
< Optional Rep > < Merged EF >
(< EF Source Name > , < EF Dest Name > ,
< EF Label >)
(< EF Source Name > , (< EF Dest List >)
, < EF Label >)

::= ((< EF Source List >) , < EF Dest Name >
, (< EF Src Labels >))
< Name String >

::= < Name String >
::= < Name String >

< Bracketed Name >
::= [< Name String >]
::= < EF Dest Name >
| < EF Dest Name > , < EF Dest List >

< EF Source Name >
< EF Source Name > , < EF Source List >
< EF Label >

| < EF Label > , < EF Src Labels >
< Hierarchy Level >
< Hierarchy Level > < Proc. Hierarchy >

::= < Level Name > < Data Flow Spec >
< Event Flow Spec >

::= < Name String >
::= Data Flow Diagram Processes : (

< Process List >)
< Data Store List >
Data Flows : (< DFD DF List >)

::= < Optional Rep > < Process >
< Optional Rep > < Process > ,
< Process List >

::= (< Process Name > , < Process Number > ,
< Process Type >)
< Name String >

::= < Positive Number >
::= Atomic
| Expandable

232 APPENDIX C. DIAGRAM SYNTAX RULES

< Data Store List >

< Data Store >

< Data Store Name >
< DFD DF List >

< Data Flow >

< DFD One Way DF >

< Store DF >

< TO Store DF >
< From Store DF >
< Proc. 1-Way DF >

< DFD DF Src Name >

< DFD DF Dst Name >

< DFD DF Label >
< DFD Two Way DF >

< DFD Combined DF >

< DFD DF Sources >

< DF Src Labels >

< DF Dest Label >
< DFD Merged DF >

< Merged DF Dest >

< DFD Copied DF >

< DFD DF Dests >

::= < Empty >
Data Stores : (< Data Stores >)

::= < Optional Rep > < Data Store Name >
{ < Optional Rep > < Data Store Name > ,

< Data Stores >
::= < Name String >
::= < Data Flow >
| < Data Flow > , < DFD DF List >

< DFD One Way DF >
| < DFD Two Way DF >
| < DFD Combined DF >

< DFD Merged DF >
< DFD Copied DF >

| < DFD Split DF >
::= < Store DF >
| < Proc. 1-Way DF >

< TO Store DF >
| < From Store DF >

(< Process Name > , < Data Store Name >)
(< Data Store Name > , < Process Name >)

::= (< DFD DF Src Name > ,
< DFD DF Dst Name > ,
< DFD DF Label >)

::= Inherited
< Name String >

::= Inherited
< Name String >

::= < Name String >
(2 , < Process Name > ,
< Data Store Name >)

::= ((< DFD DF Sources >) ,
< DFD DF Dst Name > ,
(< DF Src Labels >) , < DF Dest Label >)

::= < DFD DF Src Name >
| < DFD DF Src Name > , < DFD DF Sources >
::= < DFD DF Label >
| < DFD DF Label > , < DF Src Labels >

< Name String >
: : = ((< DFD DF Sources >) ,

< DFD DF Dst Name > ,
< Merged DF Dest >)
< DFD DF Dst Name >

| (< DF Src Labels >)
::= (< DFD DF Src Name > ,

(< DFD DF Dests >) ,
< DFD DF Label >)

::= < DFD DF Dst Name >
| < DFD DF Dst Name > , < DFD DF Dests >

C.3. AN ALTERNATIVE SYNTAX 233

< DFD Split DF >

< DF Dest Labels >

(< DFD DF Src Name > , (
< DFD DF Dests >) ,
(< DF Dest Labels >))
< DFD DF Label >

| < DFD DF Label > , < DF Dest Labels >

< Event Flow Spec >

< Event Store Lst >

< Event Stores >

< Event Store Nam >
< Synch List >

< Synch List >

< Synch Name >
< EFD EF List >

< Event Flow >

< EFD One Way EF >

< Store EF >

< To Store EF >
< From Store EF >
< Proc. 1-Way EF >

< Synch 1-Way EF >

< To Synch EF >

< From Synch EF >

::= Event Flow Diagram Processes :
(< Process List >)
< Event Store Lst >
< Synch Lits >
Events Flows : (< EFD EF List >)
< Optional SCD >

= < Empty >
Event Stores : (< Event Stores >)

::= < Optional Rep > < Event Store Nam >
< Optional Rep > < Event Store Nam > ,
< Event Stores >

::= < Name String >
< Empty >
Synchs : (< Synch List >)

::= < Optional Rep > < Synch Name >
< Optional Rep > < Synch Name > ,
< Synch List >
Synch < Positive Number >
< Event Flow >

| < Event Flow > , < EFD EF List >
::= < EFD One Way EF >
| < EFD Two Way EF >
| < EFD Copied EF >
| < EFD Merged EF >
::= < Store EF >
| < Proc. 1-Way EF >

< Synch 1-Way EF >
::= < To Store EF >
| < From Store EF >

(< Process Name > , < Event Store Nam >)
::= (< Event Store Nam > , < Process Name >)
::= (< EFD EF Src Name > ,

< EFD EF Dest Nam > ,
< EFD EF Label >)

::= < To Synch EF >
| < From Synch EF >
::= (< EFD EF Src Name > , < Synch Name > ,

< EFD EF Label >)
(< Synch Name > , < Process Name >)
(< Synch Name > , < Process Name > ,
< EFD EF Label >)

234 APPENDIX C. DIAGRAM SYNTAX RULES

< Synch Name >
< EFD EF Src Name >

< EFD EF Dest Nam >

< EFD EF Label >

< EFD Two Way EF >
< EFD Copied EF >

< EFD EF Dests >

< Copied EF Label >

< CEF Src Label >
< CEF Dest Labels >

< EFD Merged EF >

< EFD EF Src List >

< Merged EFD Labels >

< Name String >
Inherited
< Name String >
Inherited
< Name String >
< Name String >
< Bracketed Name >
(2 , < Process Name > , < Event Store Nam >)
(< EFD EF Src Name > , (< EFD EF Dests >) ,
< Copied EF Label >)
< EFD EF Dest Nam >
< EFD EF Dest Nam > , < EFD EF Dests >
< CEF Src Label >
< CEF Src Label > , (< CEF Dest Labels >)
(< CEF Dest Labels >)
< EFD EF Label >
< EFD EF Label >
< EFD EF Label > , < CEF Dest Labels >
((< EFD EF Src List >) ,
< EFD EF Dest Nam > ,
(< Merged EF Labels >))
< EFD EF Src Name >
< EFD EF Src Name > , < EFD EF Src List >
< EFD EF Label >
< EFD EF Label > , < Merged EFD Labels >

< Optional SCD >

< Subsys List >

< Subsystem >

< Subsystem Name >
< Subsystem No >
< Enable Events >

< Enable Event >
< Event Name >

< Enablement Type >

< Disable Events >

< Disable Event >
< Enablement Type >

::= < Empty >
Subsystems : (< Subsys List >)
< Subsystem >
< Subsystem > , < Subsys List >
< Optional Rep > (< Subsystem Name > ,
< Subsystem No > ,
Enabled : (< Enable Events >)
Disabled : (< Disable Events >)
< Name String >

::= < Positive Number >
::= < Enable Event >

< Enable Event > , < Enable Events >
(< Event Name > , < Enablement Type >)
< Name String >
< Bracketed Name >

::= E
I R
::= < Disable Event >

< Disable Event > , < Disable Events >
::= (< Event Name > , < Disablement Type >)
::= H

C.3. AN ALTERNATIVE SYNTAX 235

< Name String >

< Name >
< Name Tail >

< Letter >

I F
I s

< Name >
< Name > < Name String >
< Letter > < Name Tail >

::= < Empty >
| < Letter > < Name Tail >

< Digit > < Name Tail >
_ < Name Tail >

b
c
d
e
f
g
h
i
j
k
1
m
n
0
P
q
r
s
t
u
V

w
X

y
z
A
B
c
D
E
F
G
H
1
J
K

236 APPENDIX C. DIAGRAM SYNTAX RULES

< Digit >

< Positive Number >

< Empty >

I L
| M
I N
I 0
| P
I Q
I R
I s
I T
I u
I V
| W
| X
I Y
I z
::= 0
| 1
I 2
I 3
I 4
I 5
I 6
I 7
I 8
I 9
::= < Digit >

< Digit > < Positive Number >

An Example Specification

This section gives an example specification in the above language for the
petrol station system.

Context Diagram :
Context DFD
Petrol Station System
Data Sources/Sinks : (Console Display, Receipt Printer,

Attendant, Supervisor, Report Printer,
3 Pump

)
Context Data Flows : (

(Attendant, Petrol Station System , Stock Delivery),
((Attendant, Supervisor), Petrol Station System,
Report Request

C.3. AN ALTERNATIVE SYNTAX 237

) ,
(Supervisor, Petrol Station System, Code),
(Supervisor, Petrol Station System, New Prices),
(Petrol Station System, Report Printer, Report),
(Petrol Station System, Pump, Price Changes),
(Pump, Petrol Station System, Transaction Details),
3 (Petrol Station System, Receipt Printer, Receipt),
3 (Petrol Station System, Console Display,

Transaction Display

),
(Petrol Station System, Console Display,
Stock Display

)
)

Context EFD
Petrol Station System
Context Event Flows : (

(Attendant, Petrol Station System ,
[Stock Delivery]

) ,
((Attendant, Supervisor), Petrol Station System,
[Report Request]

) ,
3 (Attendant, Petrol Station System, Button Pressed),
3 (Attendant, Petrol Station System,

Receipt Request

) ,
(Attendant, Petrol Station System, Take Stock),
(Attendant, Petrol Station System, On),
(Attendant, Petrol Station System, Off),
(Supervisor, Petrol Station System, [Code]),
(Supervisor, Petrol Station System, [New Prices]),
(Petrol Station System, Report Printer, [Report]),
(Petrol Station System, Pump, [Price Changes]),
(Pump, Petrol Station System, [Transaction Details]),
(Petrol Station System, Pump, Enable Pump),
(Pump, Petrol Station System, Service Request),
3 (Petrol Station System, Receipt Printer,

[Receipt]

) ,
(Petrol Station System, Console Display,
Code Verified

) ,
3 (Petrol Station System, Console Display, Bell),
3 (Petrol Station System, Console Display, Light On),
3 (Petrol Station System, Console Display,

Light Off

)

238 APPENDIX C. DIAGRAM SYNTAX RULES

)

Petrol Station System
Data Flow Diagram
Processes : (3 (Monitor Pump Operation, 0, Expandable),

(Monitor Stock, 1, Expandable),
(Change Prices, 2, Expandable),
(Print Reports, 3, Atomic)

)
Data Stores : (Transaction History, Current Stock)
Data Flows : (

(Monitor Pump Operation, Inherited, Receipt),
(Monitor Pump Operation, Inherited, Transaction Display),
(Inherited, Monitor Pump Operation, Transaction Details),
(Monitor Pump Operation, Transaction History),
(2, Monitor Pump Operation, Current Stock),
(Maintain Stock, Inherited, Stock Display),
(Inherited, Maintain Stock, Stock Delivery),
(Current Stock, Maintain Stock),
(2, Maintain Stock, Current Stock),
(Inherited, Change Prices, Code),
(Inherited, Change Prices, New Prices),
(Change Prices, Inherited, Price Changes),
(2, Change Prices, Current Stock),
(Print Report, Inherited, Report),
(Inherited, Print Report, Report Request),
(Current Stock, Print Report),
(Transaction History, Print Report)

)
Event Flow Diagram

Processes : (3 (Monitor Pump Operation, 0, Expandable),
(Monitor Stock, 1, Expandable),
(Change Prices, 2, Expandable),
(Print Reports, 3, Atomic)

)
Event Flows : (

(Monitor Pump Operation, Inherited, [Receipt]),
(Inherited, Monitor Pump Operation, [Transaction Details]),
(Monitor Pump Operation, Inherited, Bell),
(Monitor Pump Operation, Inherited, Light On),
(Monitor Pump Operation, Inherited, Light Off),
(Inherited, Monitor Pump Operation, Service Request),
(Inherited, Monitor Pump Operation, Receipt Request),
(Inherited, Monitor Pump Operation, [Transaction Details]),
(Inherited, Monitor Pump Operation, Take Stock),
(Inherited, (Monitor Pump Operation, Maintain Stock),
[Stock Delivery], (Stock Delivery Complete)

C.3. AN ALTERNATIVE SYNTAX 239

) ,
(Inherited, Change Prices, [Code]),
(Inherited, Change Prices, [New Prices]),
(Change Prices, Inherited, [Price Changes]),
(Change Prices, Inherited, Code Verified),
(Print Report, Inherited, [Report]),
(Inherited, Print Report, [Report Request])

)
Subsystem Control Diagram

Subsystems : (3 (Monitor Pump Operation, 0,
Enabled : ((On, E))
Disabled : ((Off, H))

) ,
(Maintain Stock, 1,

Enabled : ((On, E))
Disabled : ((Off, H))

) ,
(Change Prices, 2,

Enabled : ((On, E))
Disabled : ((Off, H))

) ,
(Print Report, 3,

Enabled : ((On, E),
(Stock Delivery Complete,
E

)
)

Disabled : ((Off, H) ,
(Take Stock, F)

)
) ,

Monitor Pump Operation
Data Flow Diagram

Processes : ((Request Service, 0, Atomic),
(Start The Pump, 1, Atomic),
(Record Transaction, 2, Atomic),
(Update Transaction History, 3, Atomic),
(Print Receipt, 4, Atomic),
(Check Pump Status, 5, Atomic)

)
Data Stores : (Transaction History, Current Stock,

Current Transaction, Last Transaction)

Data Flows : (
(Inherited, Record Transaction, Transaction Details),
(Record Transaction, Inherited, Transaction Display),
(Record Transaction, Current Transaction),
(2, Record Transaction, Current Stock),

240 APPENDIX C. DIAGRAM SYNTAX RULES

(Current Stock, Update Transaction History),
(Update Transaction History, Transaction History),
(Update Transaction History, Last Transaction),
(Print Receipt, Inherited, Receipt),
(Last Transaction, Print Receipt)

)

Event Flow Diagram
Processes : ((Request Service, 0, Atomic),

(Start The Pump, 1, Atomic),
(Record Transaction, 2, Atomic),
(Update Transaction History, 3, Atomic),
(Print Receipt, 4, Atomic),
(Check Pump Status, 5, Atomic)

)
Event Stores : (Pending Request, Pump Idle)
Synchs : (Synch 1, Synch 2)
Event Flows : (

(Inherited, Request Service, Service Request),
(Request Service, (Inherited, Inherited),
(Light On, Bell)

) ,
(Request Service, Pending Request),
(Start The Pump, (Inherited, Inherited),
(Light Off, Enable Pump)

) ,
(Inherited, Record Transaction, [Transaction Details]),
(Record Transaction, (Inherited, Inherited,
Synch 2

) ,
(Light On, Bell, Delivery Complete)

) ,
(Synch 1, Update Transaction History),
(Update Transaction History, (Inherited, Synch 2),
Transaction Recorded, (Light Off)

) ,
(Synch 2, Print Receipt),
(Print Receipt, Inherited,[Receipt]),
(Inherited, Synch 2, Receipt Request),
(Inherited, Check Pump Status, Pump Button Pressed),
(Check Pump Status, Start The Pump, Start Pump),
(Check Pump Status, (Start Pump, Transaction Complete),
Start New Transaction

),
(Check Pump Status, Synch 1, Transaction Complete),
(2, Check Pump Status, Pending Request),
(2, Check Pump Status, Pump Idle)

)

C.3. AN ALTERNATIVE SYNTAX 241

Subsystem Control Diagram
Subsystems : ((Start The Pump, 1,

Enabled : ((Stock Delivery Complete),
E)

)
Disabled : ((Take Stock, F))

)

Maintain Stock
Data Flow Diagram

Processes : ((Clock, 0, Atomic),
(Monitor Stock, 1, Atomic),
(Record Stock Delivery, 2, Atomic)

)
Data Stores : (Current Stock, Threshold)
Data Flows : (

((Monitor Stock, Record Stock Delivery), Inherited,
Stock Display

),
(Threshold, Monitor Stock),
(Current Stock, Monitor Stock),
(Inherited, Record Stock Delivery, Stock Delivery),
(2, Record Stock Delivery, Current Stock)

)
Event Flow Diagram

Processes : ((Clock, 0, Atomic),
(Monitor Stock, 1, Atomic),
(Record Stock Delivery, 2, Atomic)

)
Event Flows : (

(Clock, (Clock, Monitor Stock), Tick),
(Inherited, Record Stock Delivery, [Stock Delivery])

)

Change Prices
Data Flow Diagram

Processes : ((Verify Code, 0, Atomic),
(Accept Price Changes, 1, Atomic)

)
Data Stores : (Current Stock, Supervisor’s Code)
Data Flows : (

(Inherited, Verify Code, Code),
(Supervisor’s Code, Verify Code),
(Inherited, Accept Price Changes, New Prices),
(Accept Price Changes, Inherited, Price Changes),
(2, Accept Price Changes, Current Stock)

)
Event Flow Diagram

242 APPENDIX C. DIAGRAM SYNTAX RULES

Processes : ((Verify Code, 0, Atomic),
(Accept Price Changes, 1, Atomic)

)
Synchs : (Synch 1)
Event Flows : (

(Inherited, Verify Code, [Code]),
(Verify Code, (Synch 1, Inherited), Code Verified),
(Inherited, Synch 1, [New Prices]),
(Synch 1, Accept Price Changes),
(Accept Price Changes, Inherited, [Price Changes])

)

