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Fig. 1. Summary maps of eye movements by time clusters. The temporal positions and extents of the clusters are shown on a timeline 
at the bottom.  

Abstract— Eye movement analysis is gaining popularity as a tool for evaluation of visual displays and interfaces. However, the 
existing methods and tools for analyzing eye movements and scanpaths are limited in terms of the tasks they can support and 
effectiveness for large data and data with high variation. We have performed an extensive empirical evaluation of a broad range of 
visual analytics methods used in analysis of geographic movement data. The methods have been tested for the applicability to eye 
tracking data and the capability to extract useful knowledge about users’ viewing behaviors. This allowed us to select the suitable 
methods and match them to possible analysis tasks they can support. The paper describes how the methods work in application to 
eye tracking data and provides guidelines for method selection depending on the analysis tasks. 

Index Terms—Visual analytics, eye tracking, movement data, trajectory analysis. 

 

1 INTRODUCTION 

Eye tracking is the process of measuring and recording gaze 
positions and eye movements of an individual. This technology is 
being increasingly used in visualization and human-computer 
interaction sciences for evaluation of visual displays and user 
interfaces. Researchers employ eye tracking to understand how their 
designs are actually used and, possibly, even obtain insights into 
users’ ways of reasoning and problem solving. In evaluating one 
design, researchers want to check if users’ behaviors correspond to 
the supposed ways of use, see where the users may have difficulties, 
and understand how the design can be improved. In evaluating two 
or more alternative designs, researchers want to know not only which 
design is better in terms of task completion times and error rates but 
also why it is better: How does the use of this design differ from the 
use of the others? What is more difficult, confusing, or inconvenient 
in the other designs? 

Eye tracking produces large amounts of data that are quite hard to 
analyze. The standard tools and methods have rather limited 
capabilities. They do not support studying of the spatio-temporal 

structure of eye scanpaths, in particular, how the movements change 
over time while the user carries out a given task. 

Eye tracking data have the same structure as data about 
movements of discrete objects in the geographic space, further 
referred to as geographic movement data. Considerable progress in 
methodological and technological support for analyzing geographic 
movement data has been recently made in the areas of data 
management [18], machine learning [17], GIScience [21] and visual 
analytics [3]. Some of the methods designed for geographic 
movement data can also be useful in analyzing eye tracking data; 
positive examples of such use already exist. However, not all 
methods may be relevant since the movement properties and the 
possible questions of interest are not the same for eye movements 
and for road or sea traffic, human mobility, or animal migration. 

From the methods developed in different research areas, visual 
analytics methods are most appropriate for employing in eye tracking 
analysis. Visual analytics approaches may involve methods 
developed in statistics, machine learning, and other analytical 
disciplines, but they are specially designed to be used by human 
analysts. The main goal is to enable human understanding, and this is 
what eye tracking analysts need: understanding of eye movements 
and insight into the underlying cognitive processes.  

We have performed an extensive empirical study of existing 
visual analytics methods used for geographical movement data to 
assess their suitability for eye movement analysis. Most of these 
methods are described in the literature, but their application to eye 
tracking data has not been investigated yet. For the study, we used 
the following methodology. Two groups of researchers, further 
called ‘technology group’ and ‘evaluation group’, had different roles 
according to their major areas of expertise. The technology group, 
consisting of two experts in geographic visualization and analysis, 
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applied various methods to data provided by the evaluation group 
and created illustrated reports about the results. The evaluation 
group, consisting of four experts in information visualization and 
evaluation of visual displays and user interfaces, posed their 
questions about users’ viewing behaviors, studied the reports, 
interpreted the results based on their expertise, and evaluated the 
utility of the methods. New questions often arose from studying the 
reports and discussions. The technology group tried to find answers 
also to these questions by means of the available methods. The 
groups had one half-day and one full-day face-to-face meetings. In 
the remaining time frame of about four months they regularly 
communicated through electronic channels.  

From about 30 generic methods relevant to movement data [3], 
23 method realizations were available for the study and have been 
tested. From these, 6 methods have been found ineffective and the 
rest judged as useful. Here, we describe by examples the selected 
methods and the eye movement analysis procedures in which these 
methods are used. The methods and procedures combine 
computational techniques for data transformation and analysis, visual 
displays, and interactive operations. The paper ends with guidelines 
for method selection depending on the analysis tasks. 

Hence, our research contribution is the systematic evaluation of 
movement analysis methods for the applicability to eye tracking data 
and the development of guidelines for selecting appropriate methods 
depending on analysis goals. 

The size of the material we want to convey to the visualization 
research community does not permit presenting it in the paper in a 
detailed form. This paper gives brief descriptions of the methods for 
acquainting the reader with the methodology and showing its 
potential. For the readers interested in more details and for those who 
wish to employ the methodology for their own studies, we provide 
supplementary materials [4] with the following contents: 
• a more detailed description of the methodology of the empirical 

study and the eye movement data that were used for it; 
• enlarged figures from the paper with extended explanations; 
• detailed illustrated guidelines for selecting eye tracking analysis 

methods depending on analysis tasks; 
• list of methods that have been judged as insufficiently effective; 
• link to the software that was used for the study. 

2 STRUCTURE AND PROPERTIES OF EYE TRACKING DATA 

Eye tracking data consist of records about the positions and times of 
gaze fixations. Each record includes the following components: user 
identifier, time, position in the display space (x- and y-coordinates), 
and fixation duration. The records may also include other attributes, 
e.g., stimulus identifier when different stimuli are used in the data 
collection. The temporally ordered sequence of records of one user 
referring to one stimulus is further called eye trajectory or scanpath, 
as in the literature on eye tracking. 

Geographical movement data have the same structure: moving 
object identifier, time, and position (in geographical space) defined 
by coordinates; additional attributes may also be present. The 
structural similarity suggests that both classes of data may be 
analyzed using the same methods. However, there is a significant 
difference between eye movements and movements of physical 
objects governed by inertia: eye movements include instantaneous 
jumps (saccades) over relatively long distances [14]. The 
intermediate points between the start and end positions of a jump are 
not meaningful; it cannot be assumed that there exists a straight or 
curved line between two fixation positions such that the eye focus 
travels along it attending all intermediate points. This prohibits the 
use of methods involving interpolation between positions, as in 
creating movement density surfaces [33]. Hence, not all movement 
analysis methods are valid for eye trajectories. 

Another concern is whether the tasks for which a method was 
developed are relevant to eye movement analysis. For example, the 
methods intended to analyze collective simultaneous movements of 
multiple objects can hardly be useful in analyzing eye trajectories 

since simultaneous eye movements of two or more users viewing the 
same image are usually not tracked. Even if such data were collected, 
the eye foci of different users are unlikely to interact in the screen 
space similarly to interactions of material moving objects. Hence, not 
all movement analysis methods are meaningful for eye trajectories.  

3 TYPES OF EYE MOVEMENT ANALYSIS TASKS 

We use the term ‘analytical task’ to denote possible interests of eye 
movement analysts, i.e., the questions they may seek to answer. The 
possible types of tasks have been in part extracted and generalized 
from the eye tracking-related literature and in part generated during 
the study, when the evaluation group posed their questions and the 
technology group, from their side, applied the methods to the data 
and looked what could be learned. 

The possible tasks can be divided into two major categories: tasks 
focusing on areas of interest (AOIs) and tasks focusing on 
movements. The first category deals with the distribution of the 
user’s attention over a display. It can be subdivided into several task 
types according to the following aspects: 
• whether the AOIs are predefined (e.g., certain targets the users are 

supposed to search for) or need to be extracted from the data (e.g., 
elements/parts of an image attracting more attention); 

• whether the evolution of the attention over time is of interest; 
• whether the analyst needs general results for the entire set of users 

or looks for essential differences between individuals or groups 
(e.g., experts versus novices); 

• whether the study is focused on a single display or compares two 
or more displays. 

Common for these tasks is that only the fixations are analyzed 
and not the saccades or transitions between the AOIs. For example, 
Çöltekin et al. [11] compare two interfaces by analyzing fixation 
durations and fixation counts for predefined AOIs.  

In the second task category, the movements are of primary 
interest. AOIs are important, but the focus is on transitions between 
them and their temporal order. Analysts want to discover the users’ 
strategies in visual exploration, search, and performing given tasks. 
They also want to understand whether and where the users have 
difficulties. Movement-focused tasks are indispensable in evaluation 
of information displays and user interfaces. This task category can be 
subdivided as follows: 
• Examine the general characteristics of the movements, e.g., 

prevalence of long or short movements, presence of sharp turns, 
path complexity, etc. 

• Examine the spatial patterns of the movements, e.g., jumps across 
large areas or gradual scanning, spatial clustering or dispersion, 
radial or circular moves, etc. 

• Study the relation of the movements to the display content and/or 
structure, e.g., correspondence to the arrangement of the display 
elements, movements along available lines or figure boundaries, 
connections and transitions between the AOIs, etc. 

• Understand individual viewing or searching strategies, compare to 
expected or theoretically optimal strategies. 

• Understand general viewing or searching strategies of multiple 
users, find and interpret different types of activities. 

• Find typical paths, e.g., as frequent sequences of attended AOIs. 
• Detect and investigate indications of possible users’ difficulties: 

returns to previous points, repeated movements, and cyclic 
scanning behaviors. 

Like the AOI-focused tasks, the movement-focused tasks can be 
additionally classified according to the following aspects: 
• whether the evolution of the eye movements over time is of 

interest; 
• whether different users or groups are compared; 
• whether different displays are compared. 

Analysis of eye tracking data usually involves many tasks that 
may require several analysis methods. The next section briefly 
reviews the methods that have been previously applied to eye 



tracking data. It shows that AOI-focused tasks are better supported 
by the standard methods than movement-focused tasks, which are 
therefore given more attention in our paper. 

4 RELATED WORK 

There are many statistical metrics that can be derived from eye 
tracking data. Poole and Ball [28] systemize these metrics and their 
possible interpretations. For example, high saccade/fixation ratio 
indicates more processing, large saccade amplitudes indicate more 
meaningful cues (as attention is drawn from a distance), etc. 
However, eye movements cannot be fully understood just from those 
numbers. Visual analysis is essential for further insight. 

The most popular tool to visually analyze eye tracking data is the 
attention heatmap [8] showing the distribution of users’ attention 
over the display space. Heatmaps can be easily generated using 
standard eye tracking software. They can visualize counts of 
fixations, counts of different users who fixated on different areas, 
absolute gaze duration, and relative gaze duration (percentage to the 
total time spent). Attention heatmaps may be useful for AOI-focused 
tasks. In comparative studies (different time intervals, different users, 
or different images) several heatmaps are compared. Eye tracking 
analysts also try to determine users’ search strategies by analyzing 
series of heatmaps generated for consecutive time intervals [27][28], 
which show how the users’ attention foci change over time. 
However, the characteristics of the eye movements, the links 
between the attention foci, and the paths followed during the search 
remain unclear. 

Another visualization technique provided by standard software is 
the gaze plot, which represents fixations by circles with sizes 
proportional to the fixation durations and connects consecutive 
fixations by lines. Eye movement analysts usually admit that this 
method is not suitable for large data due to enormous overplotting 
[10][22][25]. 

A common method suitable for movement-focused tasks is 
scanpath comparison [15] based on computing the degree of 
dissimilarity between two scanpaths. The latter are represented as 
strings where the symbols designate the AOIs and are arranged in the 
order of attending the AOIs; then a distance function based on string 
editing is used [15][29]. The function computes the cost of 
transforming one string into another by means of deletions, 
insertions, and substitutions. This can be extended to account for the 
fixation durations and distances between the AOIs [23]. In analyzing 
multiple scanpaths, pairwise distances may be averaged [15][29] or 
used to cluster the paths by similarity [10]. The matrix of pairwise 
distances can be fed to a projection algorithm, e.g., multidimensional 
scaling [12] (MDS), and the projection can be visualized [10][23] for 
finding groups of similar scanpaths.  

Opach and Nossum [25] admit that scanpath comparison may be 
ineffective in case of large variance among eye trajectories. The 
authors even conclude that the method requires the visual stimuli to 
be specially designed to minimize the possibilities of different 
viewing strategies. Thus, this method works well enough in text 
reading studies [23] and psychological tests [15] where the AOIs 
(words, numbers, letters, etc.) are predefined and supposed to be 
viewed in a particular order. Çöltekin et al. [10] represent scanpaths 
in a generalized way: the possible AOIs are assigned to classes 
according to their semantics or function; the scanpaths are 
transformed to sequences of class labels and thereby become more 
comparable; the analysis is based on these sequences. 

The scanpath comparison methodology does not provide a way to 
see the original scanpaths. The analyst has to deal with the strings, 
which may be not easy to understand, especially when the symbols 
represent automatically extracted AOIs and therefore lack semantics. 
Çöltekin and Kraak [22] suggest that the space-time cube (STC) [19] 
can be used to visualize eye trajectories. It is good for detailed 
exploration of a single trajectory and even for multiple trajectories 
when there is not much diversity among them [22]. When the 
variance among the trajectories is high, STCs may be used for 

looking at previously identified clusters of similar trajectories or for 
comparing two selected trajectories. 

Eye trajectories have also been analyzed using the movement 
summarization method originally developed for geographic data 
[16][24]. The successful uses of this method and STC show that 
geographic movement analysis methods can also be useful in eye 
movement analysis. However, no systematic investigation of the 
potential of these and other techniques for eye movement studies has 
been done earlier. Our research is aimed at filling this gap. 

5 VISUAL ANALYTICS METHODS AND PROCEDURES 

The movement analysis methods have been tested on a quite 
challenging eye tracking dataset reflecting the use of node-link tree 
diagrams. The experiment in which the data were collected is 
described elsewhere [9]. 37 participants were given different tree 
diagrams and asked to find the least common ancestor of three or 
more marked leaf nodes. The stimuli differed in the complexity of 
the trees (i.e., number of the nodes, links, and hierarchy levels), 
number of the marked leaves, and layout. Here, the goal is not to 
describe the analysis of this particular dataset and report its results 
but to present the relevant analysis methods and show what kinds of 
insights can be gained by means of them. Still, it is worth noting that 
the findings obtained during the current study extend the previous 
analysis results [9] while being consistent with them. 

5.1 List of the Analysis Methods 

The following analysis methods have been judged as useful in eye 
movement analysis and will be described in the paper: 

MT: map display of trajectories. Variant: map of trajectory segments 
satisfying a filter MTF. 

STC: space-time cube display of trajectories.  
PSA: path similarity analysis consisting of computation of pairwise 

distances between trajectories, projection, and grouping of the 
trajectories by similarity. 

FM: flow map of summarized eye movements. Variants: (a) small 
multiple flow maps MFM; (b) flow maps of differences FMD, 
e.g., between time intervals or user groups; (c) juxtaposed flow 
maps JFM showing movements on different displays. 

AM: summary map of spatial distribution of users’ attention. 
Variants: (a) small multiple attention maps MAM; (b) maps of 
differences AMD, e.g., between time intervals or user groups; (c) 
juxtaposed attention maps JAM for different visual stimuli. 

CTF: clustering of time intervals by similarity of the spatial patterns 
of flows. 

CTA: clustering of time intervals by similarity of the spatial patterns 
of attention distribution. 

TVT: temporal view of trajectories showing attributes of trajectory 
segments, such as the distance to a selected AOI, the distance to 
the nearest previous point, etc. 

TSF: filtering of trajectory segments. 
TEE: extraction of events from trajectories.  
FSD: discovery of frequent sequences of area visits. 

5.2 Data Transformations 

Various transformations of movement data [3] may precede the 
analysis or be involved in it as an integral part. The following 
transformations are meaningful for eye tracking data.  

5.2.1 Adjustment of Time References  

Adjustment of time references replaces the original time stamps in 
the trajectories by new references derived in a certain way from the 
original ones. There are two classes of time transformations [2]: 
projecting onto temporal cycles and aligning the start and/or end 
times of multiple trajectories. Only the second class is applicable to 
eye tracking data. Aligning either the start or end times means 
shifting the timelines of the trajectories to a common origin or a 
common end without changing the time units and durations of the 



 

trajectories. Aligning both the start and end times means that the 
trajectories are equalized in duration and the time is no more 
measured in the original absolute time units but in fractions of the 
trajectory duration. 

Aligning the start times of eye trajectories is always reasonable. 
Aligning the end times may be useful when all users are supposed to 
come at the end to a certain target. Aligning both the start and end 
times allows the analysts to disregard individual differences in the 
viewing/searching speed and focus on the strategies used. 

5.2.2 Spatial Generalization  

Spatial generalization means replacement of the original spatial 
positions in the trajectories by coarser space units, e.g., points by 
areas. Multiple trajectories are easier to compare after the 
transformation when the same set of space units is used for the 
generalization of each trajectory. The units may be obtained by 
means of space tessellation. Arbitrary regular grids may distort the 
spatial patterns and introduce geometric artifacts. Tessellation based 
on the spatial distribution of characteristic trajectory points may be 
more appropriate [6]. Another approach is to use areas (convex hulls 
or buffer zones) enclosing dense clusters of fixation points, which 
can be found by means of density-based clustering. Such areas can 
also be created interactively. 

5.2.3 Spatio-Temporal Aggregation  

The type of spatial aggregation that is valid for eye movement data is 
discrete aggregation [6] using a finite set of places, such as 
compartments of space tessellation or previously defined AOIs. 
Trajectories are transformed into sequences consisting of visits of the 
places and moves (transitions) between them; hence, spatial 
generalization is involved. Then, for each place, various statistics of 
the visits are computed: count of visits, count of different visitors 
(users), total and/or average time spent in the place, etc. For each 
pair of places, statistics of the moves from the first to the second 
place are computed such as count of the moves and count of different 
users. By dividing the first count by the second the average number 
of moves per user is obtained. Aggregated moves are often called 
flows and the respective counts of the individual moves or objects 
(users) that moved are called flow magnitudes.  

In spatio-temporal aggregation, time is divided into intervals and 
the statistics are computed by these intervals. As a result, each place 
receives one or more time series of visit statistics and each 
connection (i.e., ordered pair of places for which at least one move 
exists) receives one or more time series of move statistics. 
Adjustment of the time references in the trajectories may be 
reasonable to do before performing spatio-temporal aggregation. 

5.3 Exploring and Comparing Individual Trajectories 

Trajectories can be shown as lines on a map display MT where the 
visual stimulus serves as a background. Reducing the opacity of the 
lines decreases display clutter and exposes concentrations of 
movements (Fig. 2A; the data subset represented here will be 
henceforth used as a running example). This display may be useful 
for examining one selected trajectory when its shape is relatively 
simple (Fig. 2B) or for comparing two simple trajectories, but the 
effectiveness quickly decreases as the shape complexity increases 
(Fig. 2C). A space-time cube STC can partly “disentangle” a 
complex trajectory (Fig. 2D), but the spatial positions of the fixation 
points are not immediately clear and may only be identified using 
special interaction techniques. 

Eye movement analysts usually deal with many scanpaths. It is 
unfeasible to examine each in detail. However, it can be useful to 
look at selected trajectories, e.g., the fastest or shortest ones. For 
these purposes, the map and STC displays are appropriate. 

Exploration and comparison of many trajectories can be done 
using computational estimation of the degrees of dissimilarity 
(distances) between them. Before comparing trajectories, it may be 
useful to apply generalization to remove minor fluctuations.  

 

Fig. 2. A: a map display of multiple trajectories shown with 20% 
opacity. B,C: map displays of selected trajectories. D: space-time cube 
with a single trajectory. 

   

 

Fig. 3. Projection and clustering of eye trajectories by similarity. A: A 
Sammon’s projection of the whole set of trajectories. B: The set is re-
projected after removing the outlier. The projection space is divided 
into Voronoi polygons, which define clusters. C: A “table lens” view of 
trajectory attributes; the colors represent the cluster membership. D: A 
selected cluster of trajectories in an STC; one trajectory is highlighted. 

Some of the distance functions developed for comparison of 
geographic trajectories can also be useful for eye trajectories. 
Particularly, we suggest the route similarity function [1], which 
repeatedly searches for the next pair of closest points from two 
trajectories and computes the mean distance between the matching 
points plus the sum of the deviations of the unmatched points from 
the matching parts of the trajectories normalized by the lengths of the 
matching parts. Unlike the commonly used string editing function, 
the route similarity function does not require encoding of trajectories 
by sequences of symbols and naturally accounts for the spatial 
distances between the fixation points. 

One possible use of the distance function for path similarity 
analysis PSA is to compute the distances of all trajectories to one 
selected trajectory (e.g., the fastest one) or a hypothetical optimal 
trajectory and then analyze how the other trajectories differ from it. 
Another possibility is to create a matrix of pairwise distances 
between the trajectories and use it for obtaining a two-dimensional 
projection of the set of scanpaths by means of MDS or Sammon’s 
mapping [31].  The projection can expose one or a few outliers, as 
the point in the lower left corner of the projection plot in Fig. 3A, 
which lies far apart from all others (the point represents the trajectory 
shown in Figs. 2C and 2D). It is reasonable to filter out the outliers 
and apply the projection to the remaining trajectories. Then, the 



trajectories are grouped according to their proximity in the projection 
space. One of the possible ways to do this is by Voronoi tessellation 
of the projection space (Fig. 3B); the seeds may be chosen 
automatically and/or interactively. The projection is also used to 
assign different colors to the groups. Then, the groups are chosen for 
viewing in an STC (Fig. 3D) and on a map. In this way, the intra- 
and inter-group variation is estimated.  

Figure 3D shows a group of three trajectories that is rather 
compact in the projection space (it is located on the top right in Fig. 
3B); one trajectory is highlighted in black (the corresponding points 
are also highlighted in the projection plots). Time adjustment to the 
common start and end has been applied to the trajectories to facilitate 
the comparison. The scanpaths are similar in that the eyes first 
moved from the center to the right, then to the left, then again to the 
right, and returned to the center. Yet, there is also much diversity, 
which is even higher in the other groups. The differences between 
the groups are also high. The projection stress coefficient may also 
be indicative of the level of variation. In our example, the 
coefficients are very high (0.346 in projection A and 0.312 in 
projection B), indicating high variation. 

The groups can be further explored using other displays. Thus, 
Fig. 3C shows a table lens display of the scanpath lengths and 
durations; the rows are sorted by increasing duration. The dark row 
corresponds to the highlighted trajectory. We see that the upper right 
corner of the projection B (colored in shades of red) includes shorter 
and faster trajectories than the lower left corner (cyan). The white 
bar at the bottom of the table represents the aforementioned outlying 
trajectory. It is much longer and slower than all others. 

5.4 Investigating Overall Spatial Patterns 

When eye trajectories are highly diverse, the analysis at the level of 
individual scanpaths may be ineffective for gaining a general 
understanding of the display use. The movements need to be 
analyzed at a higher abstraction level using discrete spatial and 
spatio-temporal aggregation. The space needs to be generalized to a 
finite set of places, e.g., by means of space tessellation (Fig. 4), 
which is done automatically on the basis of the spatial distribution of 
the fixation points [6]. In Fig. 4, the fixation points are shown by 
green hollow circles. The black circles represent the generating seeds 
for the Voronoi tessellation. The cell sizes, which are regulated by a 
method parameter, determine to what extent the data will be 
generalized and aggregated. It is advisable to try several parameter 
values to obtain a suitable level of abstraction and good conformity 
to the content of the visual stimulus. 

Figure 5 provides an example of a summary map (a combination 
of flow map FM and attention distribution map AM) resulting from 
spatial aggregation of multiple scanpaths. As Section 5.2.3 explains, 
aggregation produces two sets of summary attributes: related to 
places (i.e., generalized positions) and related to connections 
between the places. In an AM, one or more place-related attributes 
are visualized by coloring of the places or by symbols or charts. In 
Fig. 5, the total time spent in each place by all users is represented by 
the size of the green circle. In an FM, connection-related attributes 
are visualized using flow symbols connecting the places. The 
symbols may have the shape of a half of an arrow pointing in the 
direction of the movement [32], to enable representing opposite 
flows. They vary in widths proportionally to the attribute values [20], 
e.g., to the counts of moves between the places, as in Fig. 5. For 
better legibility, the flows representing fewer than 3 moves have 
been filtered out. Still, there are many intersections among the flow 
symbols, which clutter the display. This is a consequence of the 
discontinuous, inertialess character of eye movements: the flows 
reflect eye jumps from place to place without attending intermediate 
places. Unfortunately, clutter reduction by means of edge bundling 
(e.g., [26]) would introduce much distortion, which can be 
misleading. The view can be made clearer by focusing on subsets of 
flows selected according to the magnitude, length, origin, 
destination, and/or direction. 

Flow maps can support many of the movement-focused analysis 
tasks, including comparative analyses. Given below are examples of 
observations that can be made. 

General character of the movement: There are short and long 
movements; the shorter ones are more frequent. Repeated moves are 
detected by visualizing the average number of moves per user. 

Spatial patterns of the movements: The movements are spatially 
dispersed rather than clustered. There are both jumps across large 
areas and short moves indicating gradual scanning.  

Relation of the movements to the display content and/or 
structure: Many of the moves follow the links of the tree diagram. 
There are also moves along the diagram perimeter. Generally, the 
spatial pattern of the movements corresponds to the tree structure. 

Relation of the movements to particular AOIs: In our example, 
there are predefined AOIs: the marked leaf nodes, the tree root, and 
the target node (solution), which was initially unknown to the users 
and needed to be found. These three classes of AOIs are represented 
by red, blue, and green dots, respectively. The FM shows that the 
eyes moved between the marked leaves and the target node 
following the tree structure. 

5.5 Exploring Eye Movement Patterns over Time 

Using spatio-temporal aggregation, eye movement summaries for 
different time intervals can be obtained. This allows analysts to see 
how the process of viewing or searching proceeded over time and, 
possibly, discover a common strategy or ascertain the absence of 
such a strategy. The exploration is best supported by small multiple 
flow maps MFM, i.e., several juxtaposed flow maps each 
representing one time interval. This technique is limited in the 
number of intervals that can be represented on the same display. 
However, an alternative technique, animated map, does not support 
comparisons between different time intervals. 

 

Fig. 4. Space tessellation for generalization and aggregation of eye 
trajectories. 

 

Fig. 5. A summary map of eye movements and attention distribution. 
The sizes of the circles represent the total time spent in the areas. The 
widths of the violet arrow symbols are proportional to the counts of eye 
moves between the areas.  



 

Figure 6 shows a temporal sequence of flow maps. Before the 
aggregation, the trajectories were aligned to the same start and end 
times. The maps correspond to 10 relative time intervals each 
representing 10% of the task completion time. For clutter reduction, 
only the flows representing at least two moves are shown. The maps 
tell us that in the first 10% of the time the users mostly moved their 
eyes from the display center towards the periphery and along the 
perimeter. Peripheral movements also prevailed in interval 2. In the 
next two intervals, the users explored the subtrees containing the 
marked leaves (red dots). In intervals 5-7, much movement between 
the marked nodes and the solution (green dot) occurred. Many 
movements were related to the two marked nodes in the center of the 
tree. Being spatially close, these nodes belong to different branches. 
Evidently, some effort was needed to figure out where each node 
belongs and to trace the branches to their common origin. In 
intervals 8-9, the users focused on the side branches, also the ones on 
the top right having no marked nodes. The users might check if any 
marked node was there. In the last 10% of the time, most moves 
were to and from the target node. Note that moves to and from the 
root (blue dot) occurred only in the first 10% of the time.  

The MFM by large time intervals give us a rough overview of the 
task fulfillment process. We see indications of different types of 
activities that might be performed by the users. Now we want to 
refine our preliminary findings. The idea is to aggregate the data by 
small time intervals and then cluster these intervals by similarity of 
the flows of eye movements. In this way, we expect to see more 
clearly the activity types and when they occurred. 

For the clustering of time intervals by similarity of the flows 
CTF [7], the combination of aggregate attribute values (e.g., eye 
move counts) associated with all connections in each interval is 
taken as a feature vector of this interval. A clustering algorithm is 
applied to the feature vectors of all time intervals. When several 
consecutive intervals have similar feature vectors, the algorithm will 
unite them into longer intervals. Non-continuous time clusters can 
also be obtained. This may mean that different activities are not 
performed in a strict order or in the same order by all users. 

The time clustering approach is illustrated in Fig. 1. The data 
were aggregated by intervals of 1% of the task completion time. The 
k-means clustering algorithm was applied to the resulting vectors of 
the eye move counts. After summarizing the data by the time clusters 
[7], MFM representing the average counts were created. We tested 
different values of the parameter k (number of clusters) for obtaining 
well discriminable and interpretable spatial patterns. Figure 1 shows 
the results for k = 9. Lower values of k merge some of the patterns 
observable in Fig. 1 and higher values reveal unimportant fine 

differences. The colored caption of each map indicates the time 
cluster represented by the map (the colors were obtained by 
projecting the cluster centers onto a 2D color space as illustrated on 
the right). The horizontal segmented bar below the maps shows the 
relative temporal positions and extents of the time clusters. The sizes 
(i.e., total durations) of the time clusters are shown in the table in the 
lower right corner. 

Figure 1 demonstrates clearer spatial patterns than Fig. 6. We see 
the different activities performed by the users and can estimate the 
relative time spent for each type of activity: 
• initial familiarization (finding the root and following the branches 

descending from it): 4% (violet); 
• tracing the tree perimeter: 5% (blue); 
• exploring subtrees (the movements do not necessarily follow the 

tree links but rather cross or encircle the subtrees): 8+4+6=18% 
(light cyan, bright cyan, and bright green); 

• tracing tree branches (by following the links): 8+14+31=53% 
(orange, yellow, and lettuce green); 

• checking the candidate solution (by moving from it in different 
directions): 20% (pink). 

We can also better recognize the prevailing movement directions. 
Thus, in tracing the tree perimeter and partly in exploring subtrees 
(clusters in light and bright cyan) clockwise movements prevail. 
Branches are mostly traced from lower tree levels upward. 

5.6 Exploring Patterns of Users’ Attention 

Spatial patterns of users’ attention can be explored analogously to 
the flows. Aggregate attributes related to the places (e.g., cells of 
space division) and time intervals are visualized on small multiple 
attention distribution maps MAM by area coloring or by diagrams 
placed in the areas. It is possible to use clustering of time intervals 
by similarity of the attention distribution CTA: a clustering 
algorithm is applied to the feature vectors composed of the aggregate 
attribute values referring to the places and small time intervals. The 
results are visualized on MAM representing summaries (e.g., 
attribute means) for the time clusters. 

When the analyst is interested in users’ attention with respect to 
particular AOIs, the techniques of proximity-based visualization [13] 
and event extraction [5] can be used as exemplified below. In Figs. 6 
and 7, we have noticed much scanning related to the two marked 
leaves in the center of the tree diagram. Examining these nodes and 
their links was not needed for the task fulfillment. An optimal 
strategy would be to trace the paths from the leftmost and rightmost 
marked leaves upward and ignore the marked nodes between them. 
To investigate how much attention was given to the two task-
irrelevant nodes, we use the temporal view of trajectories TVT (Fig. 
7A). The horizontal dimension represents time. The times in the 

Fig. 6. Summary maps of eye movements by relative time intervals
each representing 10% of the task completion time. 

  

Fig. 7. Analysis of attendance of particular AOIs. A: The trajectories 
are represented in a temporal view by horizontal segmented bars. The
colors encode distances to selected AOIs. B: Only trajectory segments
satisfying a filter are visible on a map. C: A scatterplot of the counts of
the visits of the selected AOIs against the task completion times. D: 
The shape of the highlighted trajectory is close to theoretically optimal.



trajectories are aligned to common starts and ends; the units are per 
mille (i.e., thousandths) of the task completion time. The trajectories 
are represented by stacked segmented bars; each bar corresponds to 
one user. The bars are ordered from top to bottom by ascending task 
completion time. The bar segments are colored according to the 
distances of the corresponding trajectory points to the selected AOIs 
(i.e., to the nearest of the two marked leaves in the center). The range 
of the distances is interactively divided into intervals, which are 
assigned distinct colors. Note that the intervals in our example are 
unequal and, hence, the color coding is non-linear. Dark blue 
segments, which represent distances up to 100 pixels, occur almost 
in all trajectories, often several times. Hence, almost all users 
attended the selected AOIs and their vicinity, mostly in the beginning 
and middle of the task completion time. 

For a more precise investigation, we apply extraction of events 
from trajectories TEE as follows. The active legend on the left of the 
TVT (Fig. 7A) enables interactive filtering of trajectory segments 
TSF. By clicking on the colored rectangles, we filter out the 
segments where the distances are over 100 pixels. This affects the 
map of trajectories MT: it shows only the points and segments that 
satisfy the filter (Fig. 7B); this variant of MT is referred to as MTF. 
By decreasing or increasing the distance threshold value (the interval 
break 100 in the TVT is moved to the left or to the right), we can 
regulate the extent of the area around the selected AOIs to be 
considered as their neighborhood. The segments satisfying the filter 
can be treated as events [5]. Statistics of these events can be 
computed and attached to the trajectories: event count, total duration, 
start time of the first event, and end time of the last event. The 
statistics show us that only four users did not attend the 
neighborhood of the selected AOIs. The scatterplot in Fig. 7C 
exhibits a positive correlation between the event count (vertical axis) 
and the task completion time (horizontal axis).  

We iteratively select the trajectories that had no events of coming 
close to the selected AOIs to check whether the users employed the 
theoretically optimal strategy. The trajectory highlighted in black in 
Fig. 7D (as well as in Fig. 3) is the closest to the optimal path and 
has the second best task completion time. The highlighted trajectory 
includes a jump from the vicinity of the rightmost marked leaf to the 
left side of the tree without attending the marked nodes in between. 
Later the user moved from the leftmost marked leaf to the target 
node, from there to the rightmost marked leaf, and then returned to 
the target. These moves comply with the optimal strategy. Several 
moves at the beginning can be interpreted as familiarization with the 
tree: center – root – top right corner – along the perimeter towards 
the rightmost marked leaf. However, the user did not come directly 
to this leaf but first made a couple of moves in the vicinity, which 
may indicate visual search. Similar behavior is observed at the left 
side of the tree. The attendance of the second and third marked 
leaves from the left was not needed for task completion. Probably, 
the two closely located marks were more prominent than the leftmost 
mark and thus attracted user’s spontaneous attention before the 
relevant leaf could be found. Hence, it is quite probable that this user 
did try to apply the optimal strategy but had to search for the relevant 
marked nodes. The other scanpaths do not exhibit the triangular 
shape of the optimal strategy. 

5.7 Determining User’s Difficulties 

To understand what difficulties the users might encounter while 
performing the tasks, it is reasonable to compare the scanpaths of 
unsuccessful users with those of successful users or the scanpaths of 
slow users with those of fast users. In our dataset, all users 
successfully completed the tasks, but the completion times greatly 
vary. We divide the users into four equal-size groups according to 
the task fulfillment time. The movement and attention patterns of the 
groups can be explored and compared using multiple flow and 
attention maps MFM and MAM. These can be complemented by 
maps of differences FMD and AMD where the connection- and/or 
place-related values for one of the groups are subtracted from the 
corresponding values for the other groups. As an example, Fig. 8 

presents a combined flow and attention map of differences between 
the user groups 1 (the fastest) and 2 (the second fastest). The flow 
symbols represent the counts of moves between the places and the 
circles represent the counts of place visits (i.e., eye fixations in the 
places). The counts for group 1 were subtracted from the respective 
counts for group 2. The positive and negative differences are shown 
by symbols in different (opposite) colors.  For the flows, the positive 
differences are shown in violet and negative ones in green. The 
widths of the flow symbols are proportional to the absolute values of 
the differences. The flows where the absolute differences are less 
than 2 are hidden for better display legibility. For the circles, the 
positive differences are shown in red and negative in cyan and the 
sizes are proportional to the absolute values of the differences. 

The flow symbols in violet and circles in red tell us that the users 
from group 2 made more eye moves and fixations in the middle part 
of the tree diagram than the users from group 1. As said earlier, the 
middle part of the tree is not relevant to fulfilling the users’ task. The 
fastest user group paid less attention to this task-irrelevant part, 
which can explain their better performance. The flow symbols in 
green and circles in cyan tell us that the users from group 1 paid 
more attention to the tree branches on the top right, which do not 
contain marked leaves and therefore are also not relevant to the task. 
It is interesting that the flows are directed from the center or root of 

Fig. 8. The map shows the positive and negative differences between 
the counts of eye moves (violet and green arrows, respectively) and 
area visits (red and cyan circles, respectively) for user groups 2 and 1.

   

Fig. 9. Repeated visits of the same places for two equivalent tree 
diagrams with a traditional top-down layout (A, C) and a radial layout 
(B, D). A, B: In the temporal views of the eye trajectories, the 
distances to previous trajectory points are represented by color-
coding. C, D: The maps show only the parts of the trajectories where
the distances to previous points are below 25 pixels.  



 

the tree to the top right and clockwise from the top right corner along 
the tree periphery. This may signify a systematic overview of the tree 
diagram and/or systematic search for the marked leaves. 

In a similar way, we compare the other two groups to the fastest 
group. We find that the three slower groups attended almost all 
places more frequently than the fastest group; the slower the group 
is, the higher are the place visit counts. The same holds for the move 
counts, except that the fast group has higher counts of long moves 
across several tree layers and/or several branches. The longer 
saccades may mean that the faster users had a better overall view of 
the tree and could move their attention foci more freely than the 
slower users, who were more constrained by the tree structure and 
moved mostly along the links. 

Judging from the place visit counts, the slower users attended 
some of the places repeatedly. To see in more detail how often the 
users returned to previous fixation points, we use the temporal view 
of trajectories TVT, in which we visualize the distances to the 
nearest of the previous trajectory points such that the travelled path 
from these points is not shorter than a chosen threshold (e.g., 100 
pixels). Figure 9A shows these distances for the tree diagram 
considered so far. For comparison, Figure 9B shows the same 
information for an equivalent tree diagram with radial layout. The 
bars representing the trajectories are ordered by increasing task 
completion time. Dark blue encodes distances below 25 pixels. In 
Fig. 9A, dark blue is rare at the top of the display, but its proportion 
increases toward the bottom. With the radial layout (Fig. 9B), even 
the fastest users returned quite often to previous points and the bars 
become almost completely blue at the bottom of the display. We set 
the segment filter TSF to the value range 0-25 and look at the filtered 
segments in the corresponding maps MTF (Figs. 9C and 9D; the 
lines connect consecutive points satisfying the filter). The 
concentrations of the points reveal the areas to which the users 
returned. 

By matching the tree structures in the two stimuli, we find out 
that the hierarchy positions of the frequently re-visited nodes are the 
same in both diagrams except that there were no returns to the root in 
the traditional diagram and many returns to the root in the radial 
diagram. The density of the return points and connecting segments is 
much higher in the radial diagram. The high density of the segments 
means that not only the same nodes were re-visited, but also the 
same moves repeatedly made. The repetitions indicate high users’ 
difficulties. 

Our next question is whether the users repeatedly moved their 
eyes forth and back between two nodes or made many longer paths 
passing through the same pair or group of nodes. We apply a 
computational method for discovery of frequent sequences of area 
visits FSD. A suitable method is TEIRESIAS [30], originally 
developed for the discovery of frequent subsequences (motifs) in 
biological sequences. When eye trajectories are generalized by 
replacing points by areas, they receive additional representations as 
strings consisting of the area identifiers and suitable for FSD. We 
demonstrate the use of FSD by example of the data for the radial tree 
diagram shown in Fig. 9D. Given the minimum motif length of four 
and minimum support (number of occurrences) of five, the method 
finds 230 repeated sequences of length 4 to 10, of which 88 do not 
contain wildcards, 129 include one wildcard, and 13 two wildcards. 
A wildcard is a special symbol (dot) indicating that any symbol may 
occur in the corresponding position in the sequence. Twelve most 
frequent sequences are shown in a fragment of a tabular display in 
Fig. 10A. We see that there were many moves forth and back 
between areas 01 and 02. 

To facilitate the interpretation of the sequences with regard to the 
display content, they are represented as trajectories in the diagram 
space; the positions in the trajectories are the areas whose identifiers 
appear in the sequences. All trajectories receive the same start time 
and equal time intervals between the positions. This approach works 
well for sequences without wildcards, but it is unclear what spatial 
position could represent a wildcard. Our current provisional solution 
is duplicating the previous position. 

The STC in Fig. 10B shows the trajectories representing the 
sequences without wildcards (the lines connect the centers of the 
areas). The line thickness is proportional to the frequency (number of 
occurrences). The trajectories are drawn with 20% opacity; hence, 
darker shades indicate overlapping of many trajectories. In Fig. 10C, 
all sequences are summarized in a flow map. The width of the flow 
symbols is proportional to the number of sequences in which the 
corresponding moves appear. The area identifiers are shown by 
labels. The move from area 01 to area 02 appears in 126 sequences 
and the opposite move in 114 sequences. Such a cyclic scanning 
behavior can indicate search problems due to the lack of user training 
or bad interface layout [28]. By taking a closer look at the diagram, 
we detect an intersection of links, which could cause users’ 
confusion. 

We have also applied FSD to the equivalent tree diagram with the 
traditional layout. TEIRESIAS found a quite small number of 
sequences, of which six were related to the two marked leaves in the 
diagram center considered earlier (Fig. 7). No cycling forth and back 
between two areas occurred, but there were returns to the area above 
the two central marked leaves. Evidently, some users had difficulties 
in determining their positions in the hierarchy. 

6 GUIDELINES FOR METHOD SELECTION 

Table 1 matches the previously described methods with the types of 
eye movement analysis tasks defined in Section 3 and thus can be 
used for selecting suitable methods depending on the task (see also 
[4] for more details). Brief summaries of the methods along with 
possible variants of their use are given below as a reminder.  
MT: map display of trajectories or frequent area sequences 

represented as trajectories. Visual encoding: user or user group by 
coloring; sequence frequency by line width. Interaction: zooming 
and panning; changing the opacity level; highlighting and filtering to 
select individual trajectories or subsets. Variant: map of trajectory 
segments satisfying a filter MTF. 
STC: space-time cube display of trajectories or frequent AOI 

sequences represented as trajectories. Visual encoding: same as in 
MT. Interaction: rotation and shifting; changing the opacity level; 
highlighting and filtering to select trajectories or subsets. 
PSA: path similarity analysis, consisting of computation of 

pairwise distances between trajectories, projection, and grouping of 
trajectories by similarity. Visual encoding: position in the projection 
space by color. Interaction: semi-automatic tessellation of the 
projection space; interactive modification of the existing division. 
The results are viewed using MT and STC. 

Fig. 10. A: Frequent subsequences discovered by TEIRESIAS are 
shown in a table view. B: The frequent subsequences are represented 
as trajectories in a space-time cube. C: A flow map summarizes the 
frequent subsequences. 



FM: flow map of summarized eye movements. Visual encoding: 
aggregate attributes (count of moves, count of different users, 
average number of moves per user) by line thickness or color coding. 
Interaction: zooming and panning; filtering of flows by attribute 
values; filtering of trajectories resulting in dynamic re-computing of 
the aggregate attributes and subsequent map update to reflect the 
changes. Variants: (a) small multiple flow maps MFM, showing 
movements in different time intervals or time clusters or movements 
of different users or user groups; (b) flow maps of differences FMD 
between time intervals, time clusters, users, or user groups; (c) 
juxtaposed flow maps JFM showing movements on different 
displays. 
AM: summary map of spatial distribution of users’ attention; may 

be combined with FM. Visual encoding: one or more aggregate 
attributes (count of fixations, count of different users, average 
number of fixations per user, total fixation time, average fixation 
time per user) by area shading, proportionally sized symbols, or 
diagrams; time series of attribute values by diagrams. Interaction: 
zooming and panning; filtering of areas by attribute values; filtering 
of trajectories resulting in dynamic re-computing of the aggregate 
attributes and subsequent map update to reflect the changes. 
Variants: (a) small multiple attention maps MAM, showing attention 
distribution in different time intervals or time clusters or for different 
users or user groups; (b) maps of differences AMD between time 
intervals, time clusters, users, or user groups; (c) juxtaposed attention 
maps JAM, showing attention distribution on different displays. 
CTF: clustering of time intervals by similarity of the spatial 

patterns of flows and aggregation of the moves between areas by the 
time clusters. Visual encoding: color assignment to the clusters, 
which may be done using projection of the cluster centers to a color 
space. The results are viewed using MFM. 
CTA: clustering of time intervals by similarity of the spatial 

patterns of attention distribution and aggregation of the attention-
related attributes of the areas by the time clusters. Visual encoding: 
same as CTF. The results are viewed using MAM. 
TVT: temporal view of trajectories. Visual encoding: attributes 

of trajectory segments by color coding. The attributes may be 
computed on demand, e.g., distance to selected AOIs, distance to 
nearest previous point. Interaction: zooming and panning; changing 
interval breaks; changing color scale; segment filtering. 
TSF: filtering of trajectory segments; may be done within TVT. 

The results are viewed using MTF. 
TEE: extraction of events from trajectories based on TSF. Event 

statistics for the trajectories is automatically computed: event count, 
total duration, start time of the first event, end time of the last event. 
The resulting events may be represented as points on a map or in 
STC [5]; the statistics are visualized and analyzed as trajectory 
attributes. 
FSD: discovery of frequent sequences of area visits. The results 

can be represented as trajectories and viewed using MT and STC. 
Time adjustment is recommended to use with STC, TVT, TEE, 

CTF, CTA, and with MFM and MAM showing time intervals or 
time clusters. Spatial generalization and spatial aggregation are 
required for CTF, CTA, and all variants of FM and AM. Spatio-
temporal aggregation is involved in CTF, CTA, and in MFM and 
MAM showing time intervals or time clusters. FSD is based on 
spatial generalization; spatio-temporal aggregation may be applied to 
the results. 

7 CONCLUSION 

Based on available literature on eye movement analysis, we have 
studied the methods and tools that are currently used and assessed 
their capabilities and limitations. We have also learned the types of 
research questions (tasks) involved in eye movement analysis. We 
have found that the current repertoire of tools and methods is too 
limited to fully satisfy the needs of eye movement researchers 
regarding the variety of possible tasks and effectiveness for large 
datasets and data with high variation. At the same time, the state-of-

the-art in methods for analyzing movements of discrete objects in 
geographical space is now quite advanced. However, the 
applicability and usefulness of these methods for eye movement 
analysis has not been systematically studied. 

We have undertaken an empirical evaluation of these methods for 
the possibilities of employing them to analyze eye movements. We 
have checked the methods for the applicability with regard to the 
data structure and properties and investigated their capacity to bring 
insights to users’ viewing or searching behavior. Based on our 
experiments, we have chosen a subset of potentially useful methods 
and method combinations and matched them to possible types of 
tasks in eye movement analysis. The results of our work can be 
helpful for researchers analyzing eye movements, in particular, for 
evaluation of visual displays and interfaces. 
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