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ABSTRACT

In this thesis, two main issues are addressed: Bounded state feedback and eval-
uation of structural characteristics of large scale systems with ill-defined models.

The problems related to bounded state feedback are the closed-loop eigenvalue 
mobility and stabilisability of an unstable system when subject to bounded state 
feedback. Also related are the problems of developing measures for quantitative 
controllability and measures for the distance of an unstable polynomial from stability 
as well as the root distribution of summation of polynomials. The mobility of 
the closed-loop eigenvalues and the stabilisability of unstable systems are studied 
via the investigation of root distribution of bounded coefficient polynomials. In 
this thesis, direct and inverse root inclusion problems are defined and results are 
obtained for different class of polynomials. Then the bound on the state feedback 
gain is transformed into the bound on the coefficients of the closed-loop characteristic 
polynomials and then necessary and sufficient conditions for closed-loop eigenvalue 
mobility and stabilisability are derived.

The problems of evaluating the structural characteristics of large scale systems 
with ill-defined mathematical models are also studied. The working model character-
istics and the desirable features of control theory concerning the design of large scale 
processes with ill-defined models have first been discussed. Next, the useful indica-
tors for integral stabilisability and integral controllability based on the steady-state 
gain information are discussed. Large scale systems with structural models are then 
introduced and the concepts of structural McMillan degree, poles and zeros both 
finite and at infinity are defined. The evaluation of the structural McMillan degree, 
the zeros and poles both finite and at infinity are translated into finding the paths 
of minimum or maximum weight of integer matrices. Algorithms are also proposed 
and assessed.
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MATHEMATICAL NOTATIONS AND
SYMBOLS

-  R,C:

-  R M -
-  £ [* ]:

— Rpr ( *5 ) •
—  T\

Rv(s):

— V:

— dimV:
—  B n :

Rn, C n, R n(s), --- .

fields of real, complex numbers.
field of rational functions in the variable s with real coefficients, 
ring of polynomials in s with real coefficients, 
ring of proper rational functions, 
denotes a general field, or ring.
set of matrices with p x k dimensions and elements over .F, thus 
Rpxk(s), -RpXfc[s], ■ • • denote the corresponding set of matrices with 
elements over R(s), i?[s], ■ ■ •
ring of proper rational function with have no poles in a symmetric 
set of the complex plane il, which excludes at least one point of 
the real axis.
denotes a finite dimensional vector space over some field T\ usual
cases are the real vector spaces (R-vector spaces), rational vector
spaces ( /2(s)-vector spaces).
denotes the dimension of a vector space.
set of all n-dimensional vectors (n-tuples) of elements of JF.
ra-dimensional vector spaces over T .

—  If V is a subspace of Rn, (i?n(s)), the v G V denotes a vector of Rn(Rn(s)) 
that belongs to V. If dimV =  d and {ul5 • • •, is a basis of V, then
V — [nl5 • • • G Rnxd denotes a basis matrix of V.

—  If H  G Jrpxk,Jr a field, then pjr(H) denotes the rank of H over JF, AfT{ H ]  
the right null space and Aii(H) the left null space of H.

—  H e  J-pXp, \H\ denotes the determinant of H .

State space description:

S ( A , B , C , D )  :

Assumptions:
N:
5 f:
M:
L G Rlxn:
Q G RrnXn:
F  G Rlxm:

x =  Ax +  Bu, A G Rnxn, B G Rnxl, C G Rmxn, D G Rmxl 
ŷ — Cx +  Du x G Rn,u G Rl,y G  Rm 

p(B) =  l,p(C) =  m
left annihilator of B, ( N B =  0,p(N) =  n — /, N  G J?(n-hxn) 

left inverse of B (B^B =  7 ;,p (5 + ) =  /, B  ̂ G RlXn) 
right annihilator of C, ( CM =  0, p(M)  =  n — m, M  G 7?nx(n_m)) 
state feedback, 

output injection.

output feedback, K  G Rixm: squaring down.

T G RnXn, |T| ^  0: state coordinate transformation.
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R e  Rlxl, |R| +  0: input coordinate transformation.
P E RmXm\P\ 0: output coordinate transformation.
cr(A): spectrum of A (eigenvalues of A including multiplicities)
A: eigenvalue of A.

Ma: eigenvector of A for A eigenvalue.
J(A): Jordan canonical block of A.
A = U J { A ) V : Jordan decomposition of A.

Qoc'- Output controllability Grammian.

Qsc- State controllability Grammian.

Qso'- State observability Grammian.

Pc(s): Controllability pencil.

Po(s): Observability pencil.

let lo Controllability and observability indices.

Qc: Controllability matrix.

Qo- Observability matrix.

Qoc- Output controllability matrix.
R-c(s): Restricted controllability pencil.
R 0{s): Restricted observability pencil.
c.m.i.: column minimal indices.
r.m.i.: row minimal indices.

Transfer function description 

G(s) =  C {s l  -  A)~lB +  D E Rmxl{s) 

r =  ^JR(s){G'(-s)}: 
i(s) G i?[s],d[i]:
G(s) =  Nr(s)Dr{s) - '  =  DtW-'Ntis) .  
Nr(s) e  Rmxl[s],Dr{s) e  Rlxl[s}:

Ni(s) e  / r nx,[s], Dt(s) 6 RmXm[s]:

transfer function matrix, 
normal rank of G(s). 
degree of t(s).

Right Matrix Fraction Description 
(R.M.F.D.).
Left Matrix Fraction Description 
(L.M.F.D.).

—  For T(s) e  RPxk[s]:

h ( s ) 0  '

S ( T )  =
f r ( s )

r =  PR( s ) { T { s ) }

0 0

fi(s): invariant polynomials of T(s).
S(T ): Smith normal form of T(s).
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For T(s)  G Rpxk(s ): 
M(T):

r £ds) 0 '4>i(s)

M(T)  = £r(s)
4>r(s)

0 0

Smith-McMillan form of T(s). 

r =  pR(s) {T(s)}

e,(s):
V’.'(-s):

p(s) = n ri=M s):
z(s) =  H U M * ) :

6m (T) =  d[P):
Rrnxm\s].

invariant zero polynomials, e1(s)/e2(-s)/ • • • /tr{s). 
invariant pole polynomials, i/v (s ) / t/v _ i (s ) /  ■ ■ ■ /tpi(s). 
( /)  divides
pole polynomial of P(s).  
zero polynomial of T(s).
McMillan degree of T(s).
set of m x m /?[s]-unimodular matrices.
Set o f m x m  7?pr(s)-unimodular matrices, biproper. 
(U{s) e R™xm{s), then U- \s )  G Rprxm{s)).
T(s) =  sdTd+ - - -  +  s7\ +  r 0, Ti G Rpxk, Td ±  0,

rymxm (  _\.
K bpr \S )-

T(s)  G i?px*[.s] : 
d =deg(T(.s)) =  ds[T\: scalar degree of T(s)
8 =  dm[T]: matrix degree of T(s)  (maximal degree amongst the

maximal order minors of T(s)).
t (s) =  n(s)/d(s) G R(s)
8<x>(t) =  d[d\ — d[n\: valuation at infinity of t(s).
T( s ) G Rpxk(s),
MooiT): Smith-McMillan form at infinity of T(s).

Moo(T) =

1-------
o

sqr
0

----1
o

=  P R ( s ) { T ( s ) } , q 1 > q 2 > - - - > q r

orders of infinite poles, qr < 0. 
orders of infinite zeros.

q% > 0:
li.|:

W )  =  E i i :
qp. McMillan degree at infinity of T(s).
v{T) — 8m {T) +  8m {T): extended McMillan degree of T(s).
G G C mxl,G =  YJ2U*:  singular value decomposition (SVD)

Y  G C mXTn,U G Clxl unitary matrices. 
J2 =  p-diag{ai, • • •, ar} G Rmxl, r =  min(m, l), cj\ > ■ • • >  oy.
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p-diag: (pseudo-diagonal)

<7l
02

Or

, or
v  2

0  r

0

0 -1

£ ( G ) :
*(G)i  
skG):
Columns of Y, U: 
A G T PxK :

set of singular values of G. 
maximal singular value, 
minimal singular value, 
left, right singular vectors of G.

A =

A 1 0

0 At

, Ai G JrP'xKi, A =  b-diag{/4i, • • •, At} (block-diagonal)

A — diagi^x, • • •, At}, if M  G T p'xP'

— Polynomials
P[s] : Monic polynomials in R[s] with fixed degree n.
f ( s )  G P[s]: f ( s )  =  sn + a\Sn 1 +  • • • +  an- is  +  an

Pr(s):
Ppr(s):

P +[s}:
P~[s]:
P+^[s}:
P~"[s]:

P~[s] ■
P-[s}:

»

o_j : coefficient vector of f ( s )  6 P[s].
||ay||: /2 norm of the coefficient vector aj.
||a[,]||: I2 norm of the coefficient vector aj.j.
Rational functions in s.
Proper rational functions in s. 
f ( s )  € P[s] with all the roots in the left half plane. 
f ( s )  G P[s] with all the roots in the right half plane. 
f ( s )  G P +[s] and the coefficients are bounded by ||ay||2 
f ( s )  G P “ [s] and the coefficients are bounded by ||oy||2 
f ( s )  G P[s] with all the roots in the right half plane. 
f ( s )  G jP[s ] and \a_j\ <  7 .

/2-norm
/oo-norm
greater greater than 
Integer set {1,2, ■ • • , n}
Sum of 
equivalent 
equal modulo
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Chapter 1

INTRODUCTION

The edifice of control theory consists of two main parts, system analysis and system 
design. Modelling of systems, however, forms the pillar of the edifice. System 
analysis is to investigate the interaction between the system and the embedding 
environment, as well as the internal behaviour of systems, in relation to the system 
structure and the system parameters. The behaviour of systems is expressed in terms 
of system properties and the possession of the properties by a particular system or a 
class of systems is expressed through indicators. Another aspect of system analysis is 
to establish the interelations between the systems belonging to the same class. It was 
found that some of the system properties may remain unchanged while the systems 
are subject to generalised transformations which include state transformation, state 
feedback, output feedback or output injection, etc. The properties which remain 
unchanged are the invariants of the system under specific transformations. System 
properties, property indicators and system invariants facilitate the classification of 
systems into different categories. The results of system analysis also provide the 
tools for system design.

The most important system property is that of system stability. Closely related 
concepts are system controllability, stabilisability, observability and detectability. If 
a system is unstable, one naturally asks whether it is stabilisable. System control-
lability and stabilisability are equivalent if a system is minimal. It is a well-known 
result that a system can be stabilised by using state feedback and the closed-loop 
poles of a system can be arbitrarily assigned as long as the system is controllable 
[Won.,2] and that a system is stabilisable if all the controllable modes are control-
lable [Dav.,1], However, this is true only with the important underlying assumption 
that the gains of the controller are by no means restricted. This important as-
sumption unfortunately often breaks down in reality, since due to nonlinearity, or
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saturation reasons gains are usually restricted. In fact, the controller gains and 
power are always restricted. Because controllability of systems is treated almost ex-
clusively as a qualitative property, by examining the corresponding indicators, one 
can only draw conclusions on whether it is possible to stabilise the system by using 
state feedback or not but one fails to give answers to further questions such as the 
degree of controllability of a system, or how far can one move the system eigenval-
ues when subject to bounded state feedback. In this context, further quantitative 
measures for system controllability have to be developed. Measures for quantitative 
controllability are also needed in the study of transferring the states of a system 
to a certain distance when the control signals are bounded by energy. In the last 
decade, quantitative controllability has been studied [Eis.,1] [Bol. &; Lu,l] [Tar.,1] 
in relation to the controller gain, the distance to uncontrollability, etc. However, no 
explicit result has been obtained as far as pole mobility of systems under bounded 
state feedback is concerned.

In the vast literature of control theory, the majority of the results are concerned 
with linear time invariant systems whose mathematical descriptions either in the 
frequency domain or in the state-space domain are assumed to be known exactly. 
However, the need for the control theory to cope with systems with uncertain math-
ematical descriptions arises from real applications [Doy. & Ste.,1] [Lin,l] [Rei.,1] 
[Mor. & Ste.,1] [Hin. & Pri.,1] [Kar.,1] etc, not only because exact modelling of 
complex systems is impossible, but also due to the fact that the systems and the 
embedding environment are subject to constant change; thus, even if exact mod-
elling were possible at one stage, the model can not represent the system all the time 
faithfully. Of course, errors may be introduced deliberately into the model in order 
to simplify the analysis by ignoring certain system dynamics such as the very high 
frequency response, or to linearise the problem, etc. Further, one would like to take 
a structural model in order to accommodate not just one system but a whole family 
of systems. For instance, this is particularly important in designing a controller for a 
system which is required to operate at different operating points. Due to the diverse 
sources of modelling errors, the errors of system models can be classified into two 
categories: structural or parametric and both have important physical interpreta-
tions. To work with systems whose models are not exact, provides control theory 
with fresh challenges.

In this work, the following two main issues have been addressed.

• Bounded state feedback;

• Structural evaluation of large scale (dimension) generic transfer functions.
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With respect to the first issue, pole mobility and stabilisability of systems under 
bounded state feedback is examined. Based on the fact that a link between the 
bound on the state feedback gain and the bound on the coefficient of the character-
istic polynomial can be established [Kar. b  Shan,2] [Shan b  Kar.,1], the problem 
of eigenvalue mobility and stabilisability of systems when subject to bounded state 
feedback can be studied via the root distribution of bounded coefficient polynomials. 
The problem of establishing relationships between the coefficients and the roots of a 
polynomial has been an important issue for the last two centuries and an excellent 
account of the classical results is given in [Mar.,1], One of the key problems in 
the geometry of zeros of polynomials is the establishment of regions containing all 
roots of a given polynomial. The classical results provide different upper bounds for 
the region containing all roots of a bounded coefficient polynomial; however, such 
bounds are rather weak. Two important problems are formulated in this thesis, 
which have not been addressed before: the first is the definition of the least region 
in the complex plane which contains all roots of bounded norm polynomials, and 
the second is the definition of the maximal region of the complex plane such that, if 
a polynomial has its roots in it, then its coefficient vector is bounded. For the case 
of stable polynomials the first problem is solved, whereas the second is solved for 
any type of polynomials [Kar. b  Shan,l].

The classical and the newly derived results on the properties of bounded norm 
polynomials allow the derivation of criteria characterising the mobility of closed-loop 
poles under bounded norm state feedback. This mobility is characterised by the size 
of the region the poles move. It is shown that the degree of controllability of the 
given system is an important parameter in the characterisation of the size of the 
pole mobility region; in fact, the closer to uncontrollability the system is, the smaller 
the size of the pole mobility region under bounded state feedback. The problem 
of pole mobility is closely related to stabilisability under bounded feedback. It is 
shown that controllability alone is not adequate for stabilisability under bounded 
state feedback. Different criteria for stabilisability are derived using the results 
on bounded coefficient polynomials. The problem of stabilisability under bounded 
feedback is in a sense dual to that of robustness under certainty [Hin. b  Pri.,1] 
[Hin. b  Pri.,2]; however, the tools for solving these two problems are different. The 
approach adopted in this thesis is based on the idea of finding estimates for the 
distance of an unstable polynomial from the set of stable, Hurwitz polynomials. 
An implicit assumption throughout all of the work for the bounded state feedback 
is that the state variables are physical variables and thus it makes sense to define 
performance constraints on them, as well as impose constraints on the norm of the 
state feedback which is used. In this sense, the degree of the controllability which
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affects the pole mobility is always related to the given physical variables coordinate 
system.

For the second main issue, the objective is to develop tools for diagnosis of 
generic system properties based on simple models of systems. It has been argued by 
many researchers [Lin,l] [Ros.,1] [Rei.,1] [Mor. & Ste.,1] that structural information 
of systems are vital in system design. It has been pointed out especially in [Kar.,1] 
that at the early design stages of a process, it would be highly desirable for the 
control theory to get involved in order to result in a design which will lead to quality 
controller design. However, control theory faces a challenge in working on ill-defined 
models. The evaluation of the potential from the control viewpoint of a given system 
depends on the nature, as well as the values of structural characteristics, known 
as systems invariants. System invariants affect the shape and values of control 
design indicators and also enter into the solvability conditions characterising the 
solvability of control synthesis problems. The need to introduce control theory tools 
into the “Early Process Design” [Kar.,2], that is to use control theory in evaluating 
alternative process flowsheets, determine procedures for selection of measurement 
and actuation schemes, for large dimension problems, implies that the control theory 
tools have to be adjusted for an uncertain models environment. The uncertain 
models in Early Process Design are characterised by uncertainty in the parameters, 
as well as dynamic complexity. For such large dimension uncertain models, an issue 
that arises is the evaluation of the generic values of certain structural characteristics. 
This problem is referred to as ” structural identification” and aims at producing 
algorithms for evaluating the generic value of different types of invariants, without 
using exact methodologies, which due to large dimensions may not be suitable. 
One of the most important concepts that enters all generic solvability conditions 
of control problems (see [Byrn.,1], etc) is that of the McMillan degree. For large 
dimension transfer function matrices, we consider here the problem of evaluating the 
generic McMillan degree, as well as the structure of generic infinite zeros. These are 
two of the many problems which may be addressed within the general framework of 
“structural identification” issues. These tools would help in screening and selecting 
various designs at early stages. A topic that is closely related to the evaluation of 
“Early Process Design” is that of inferring properties characterising control quality, 
of a dynamic model, from simpler models, such as the steady state models. In 
fact, this issue has to do with determining the range of predictability of a property 
starting from simple and progressively going to more and more complex models. 
Issues related to the prediction of dynamic performance properties from simple type 
models and especially, steady state models, belong to the overall problem of assessing 
Early Process Schemes with control theory tools and are also examined in this thesis.

19



Control systems design is based around a system of design indicators and sets 
of system invariants. The link of system invariants to indicators is not always clear; 
however, there are strong indications that system invariants define, in a way, the 
limits of what can be achieved by compensation. An effort to establish the links 
between system invariants and indicators runs through the spirit of the present 
work, and an attempt to enlarge the set of performance indicators is also made. 
The main theme of this thesis is to investigate a number of system properties under 
bounded feedback and link such properties to design indicators on one hand and on 
the other hand to investigate issues related to evaluation of structural characteristics 
of large scale uncertain models arising in Early Process design studies. The thesis 
is structured as follows:

In Chapter 2, some of the fundamental concepts both in mathematics and sys-
tems theory are reviewed. These will provide the necessary concepts and tools used 
in the later developments. It is then followed by a description of the most impor-
tant system properties, property indicators and system invariants under different 
transformations both in the frequency and state space domain.

In Chapter 3, the quantitative aspect of the fundamental properties, such as 
controllability, observability, output disturbability, will be examined. Quantitative 
measures will be provided for controllability and observability. The measures are 
based on the singular values of the appropriately defined Grammians. The quanti-
tative controllability provide answers to problems such as how far can one move the 
state when subject to bounded energy control. Indeed the reachable states from zero 
initial state of a controllable system, when subject to bounded energy control, can 
be parametrised by using the singular values of the state controllability Grammian. 
The quantitative output controllability of the system then will be further developed 
to provide indicators for input-output interaction which gives vital information in 
selecting control structure. Finally, more recently developed quantitative measures 
of controllability in connection to pole mobility of bounded feedback control are 
surveyed.

In Chapter 4, classical results concerning the root distribution of polynomials in 
relation to the coefficients will be reviewed. The recent developments in this area 
initiated by Kharitonov’s work together with the later results along the same line 
will also be examined.

In the first part of Chapter 5, the root distribution of I2 norm bounded coef-
ficient polynomials will be investigated. Two main problems concerning the root 
distribution of bounded coefficient polynomials will be looked into. Those are the 
root inclusion and inverse root inclusion problems. In examining these problems,
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the polynomials will be further classified into subfamilies. For stable and totally 
unstable polynomials, the minimum bound has been obtained for the root inclusion 
problem, while minimum rectangular regions have been established for the inverse 
root inclusion problem. For the general case, general upper bound for the root inclu-
sion problem is given by employing the classic results reviewed in Chapter 4. In the 
second part of Chapter 5 the root distribution of the summation of polynomials will 
be investigated. Some interesting results have been obtained for special polynomials.

In Chapter 6, the problem of bounded state feedback will be investigated. It 
is first translated into the root distribution problem of bounded coefficient polyno-
mials. The results developed in Chapter 4 and Chapter 5 will then be deployed to 
develop regions for the closed-loop poles. Effects of the controllability matrix on the 
closed-loop pole mobility will be discussed. Both SISO and MIMO systems will be 
investigated.

In Chapter 7, some issues arising in the evaluation of Early Process Models with 
structural criteria will first be discussed. The issues include the model environment 
of early design stages and the desirable properties of control theory for this type 
of problem will be outlined. Next, steady-state models will be deployed to develop 
informative indicators for closed-loop system properties such as closed-loop stabilis- 
ability, controllability as well as robustness. Then the concepts of generic structured 
transfer matrices, generic McMillan degree, finite and infinite poles and zeros will 
be defined and algorithms for evaluating the generic McMillan degree, finite and 
infinite poles and zeros will be given and assessed. These results aim at providing a 
fast assessment for screening designs at early stages when the models are ill-defined, 
by avoiding the existing algorithms which may be difficult to use for large scale type 
problems.
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Chapter 2

SYSTEM PROPERTIES, 
PROPERTY INDICATORS 
AND INVARIANTS

2.1 Introduction

System analysis is the study of system behaviour together with the interactions 
between the systems and their embedding environments. System behaviour can be 
characterised by a set of system properties, the possession of which by the systems 
can be expressed in terms of the values and graphs of corresponding indicators. 
The properties of systems are determined by the structure and the values of the 
parameters of the systems. For instance, the stability of the system depends on the 
eigenvalues of the system which are purely affected by the system matrix A while the 
controllability of a system is determined by both the system matrix A and the input 
matrix B which represents the connection with its environment. The definition of 
properties and their dependence upon the system structure and the values of the 
parameters is the first task of system analysis.

The system properties can be classified into different categories depending upon 
the types of models employed, the nature of the system indicators, whether or not 
the indicator can be used for different properties, etc..

The study of the relationship between the systems in terms of structure, param-
eters and their properties is important. The results lay down the basis for system 
classification and parametrisation. System classification in terms of system structure 
or system properties is extremely important in the sense that a characteristic system
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from a group of systems can be studied in great detail and the results can be readily 
applied to the other systems in the same group. For instance, the pole assignability 
of the whole group of controllable systems via state feedback control demonstrates 
this clearly. In this chapter, some available results of system classification in terms 
of system properties and structures are presented.

System analysis aims at producing results which will set the guidelines for sys-
tem design and compensation. In order to shape the system properties, different 
compensation schemes can be used. The system properties have been studied when 
the systems are subject to compensations. The structure and the parameters of the 
compensator affect some of the system properties while the others may remain in-
tact. Those properties that remain unchanged under a specific compensation scheme 
will be called invariants of the particular compensation scheme. Because the system 
invariants remain unchanged under a certain type of compensation, they can be used 
to characterise not only a single system but a whole family of systems and in turn 
they characterise the limits in the shaping of the property indicators when subject 
to this particular compensation.

The canonical form of systems is a concept which is closely related to the system 
invariants. Because an invariant represents a group of systems, a canonical element 
from the group stands out as the representative of the whole group and therefore 
the study of the whole group can be carried out by using this element.

The study of system properties, property indicators and system invariants has 
been carried out for both linear and nonlinear system. Results for linear systems 
have been well established while such results for nonlinear systems are still in the 
early stages of development. Only linear systems are considered in this chapter.

The chapter is structured as follows: Essential background mathematics are 
presented in section (2.2). In section (2.3), definition and classification of system 
properties, property indicators and system invariants are given. In section (2.4), 
open loop system properties and property indicators are examined whereas the closed 
loop system properties and property indicators are discussed in section (2.5). System 
invariants are reviewed in section (2.6). Finally the conclusion is given in section 
(2,7).

2.2 Background mathematics

In this section, some essential background mathematics are presented. Mathematics 
is extensively deployed in control theory. From basic definitions to system represen-
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tation, to system analysis and finally to system design, at each stage, the involvement 
of mathematics is inextricable. In fact, mathematics facilitate the development of 
control theory from the very beginning. It is also true that almost every branch of 
mathematics can find its application in control theory. The mathematics reviewed 
here does not serve to be a comprehensive survey, it covers those topics which are 
essential for the coming sections. These are: basic definitions, polynomial matrices, 
transformations and matrix pencils.

2.2.1 Rings and fields

A ring (/?,+ ,• ) is a set R, together with two binary operations +  and • on R 
satisfying the following axioms. For any element a, 6, c £ R

• (a +  b) +  c =  a +  (b +  c)

• (a +  b) =  (b +  a)

• there exists 0 € R called the zero, such that a +  0 =  a

• there exists (—a) £ R such that a +  (—a) = 0

• (a • b) • c =  a • (b • c)

• there exists 1 £ R such that 1 • a =  a ■ 1 =  a

• a ■ (b +  c) =  a- b +  a- c and ( a +  b) - c  =  a- c +  b- c 

The ring (/? ,+ , •) is called a commutative ring if

• a ■ b =  b ■ a for all a, b £ R

The units of a ring are the elements whose multiplicative inverses are also in the 
ring.

A field is a ring in which every nonzero element has a multiplicative inverse, i.e. 
a field is a nontrivial commutative ring R satisfying the following extra axiom

• for each nonzero element a £ R there exists a-1 £ R such that a ■ a-1 =  1

The set of real numbers, f?, and the set of complex numbers, C, are rings which 
are often used in control theory.
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The set of all polynomials in s with coefficients from F (F  =  R or C)  is denoted 
as F[s], That is

P[s] =  {cto5” +  al5" +  • • • +  (in— l +  an : a,- E F }  (2-1)

then the set of polynomials forms a ring + , •).

The set of rational functions in 5 with coefficients from F  (F  =  R or C)  is 
denoted as F(s).  That is

F(s)  =  {n(s)/d(s) : n(s) ,d(s) 6 F[s]} (2.2)

(F(s) ,  + , •) is a field.

The set of proper rational functions is denoted by Fpr(s) (F =  R or C),  or

FPr(s) =  { n(s)/d(s) : n(s),d(s) E F[s],d(s) ^  0,deg(d(s)) =  deg(n(s))} (2.3)

where deg(d(s)) and deg(n(s)) are the degrees of the polynomials d(s) and n(s). 
(Fpr(s), + , •) is a ring.

2.2.2 Polynomial matrices and Smith forms [Gan.,1]

A polynomial matrix P(s)  E i?mxi[5] is a rectangular matrix whose elements are 
polynomials is s

Pn{s) pu(s)

P(*) = (2.4)

Pml{s) ••• Pml{s)

where P i j ( s )  E R[s].

A square polynomial matrix is nonsingular if |P(s)| ^  0; otherwise is called 
singular.

The elementary row and column operations on P(s)  are

(1 )  . Multiplication of any row (column) by a number c ^  0;

(2 )  . Interchange of any two rows (column);

(3 )  . Addition to any row (column) of any other row (column) multiplied by any
arbitrary polynomial b(s).

These elementary row (column) operations are equivalent to pre-multiplying 
(post-multiplying) the matrix P(s)  with a nonsingular polynomial matrix whose
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determinant is a constant. These polynomial matrices will be called elementary 
matrices.

Let P(s)  be a polynomial matrix of rank r, i.e., the matrix has minors of order r 
not identically zero, but all the minors of order greater than r are identically equal to 
zero. Elementary operations do not alter the rank of a polynomial matrix. Denote by 
A ,(s) the greatest common divisor of all the minors of order i in P(s),  (¿ =  1,2,..., r). 
Further

M s) =  a °(*) = 1 (2-5)

The polynomials Aj(s), A2(.s),..., Ar(s) are called invariant polynomials of P(s).

Further if the invariant polynomials are decomposed into their irreducible factors

Ai(s) =  (s -  Ai)̂ 11 (s -  X2)m2 ■ ■ ■ (s -  Xk)Vlk 

A2(s) =  (s -  Aj)7721 (s -  \2y™ • • • (5 -  Xk)^k

\ (2 .6)

Ar(-s) = (5 -  Ai)^rl (5 -  A2)7?r2 • • ■ (5 -  Xk)nrk

Then all the powers among (5 — A1)’,n, • • ■, (5 — Xk)Vrk are called the elementary 
divisors of the polynomial matrix P(s).

The elementary row and column operations on P(s)  change neither the invari-
ant polynomials, nor the elementary divisors. So by applying elementary row and 
column operations on P(s),  it can be brought to diagonal form

A r  ( s ') 0

A r _ 1 ( 5 ) Or,/ — r

0 A i ( 5 )

Orn — r ,r Om — r ,l — r

and all the polynomial matrices which are attainable by applying elementary row 

and column operations can be transformed to the above form unique up to constant 

scale of the invariant polynomials; therefore it is referred to as the Smith canonical 

form.

Nonsingular polynomial matrices whose determinants are independent of the 

variable s are referred to as unimodular.
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2.2.3 Matrix divisors, greatest common divisors and co- 
primeness [Kai.,1]

For two polynomial matrices { N( s) ,D(s ) }  with the same number of columns, if 
there exist polynomial matrices N(s) ,D(s)  and R(s) such that

N(s)  =  N(s)R(s),  D(s) = D{s)R{s)

the R(s)  is called a right common divisor of N(s)  and D(s). If for any right common 
divisor of N(s)  and D( s ), say, R\(s), there exists a polynomial matrix W (s) such 
that R(s) =  VF(s)i?i(s), then R(s) is a greatest common right divisor (gcrd) of N(s)  
and D(s).  Greatest common right divisors are not unique, but they can differ by 
only unimodular factors.

Two polynomial matrices are right coprime if their gcrds are unimodular.

Left common divisors, greatest common left divisors and left coprimeness can be 
defined accordingly as above.

2.2.4 Transformations of matrices and Jordan forms [Gan.,1]

Two matrices A, B  E F nXn (F =  R or C ) are similar if there exists a nonsingular 
matrix T such that

B = T~lAT  (2.8)

Two matrices are similar if and only if their characteristic matrices defined as 
s i  — A and s i  — B  have the same invariant polynomials and therefore the same 
elementary divisors.

Assume that the elementary divisors are (s — Ax)r?1, (5 — A2)??2, ..., (5 — \r)Tlr where 
Ai are not necessarily distinct. 77,• will be referred to as algebraic multiplicity of A,.
If some of the elementary divisors have the same value for A,-, then the total number 
of the elementary divisors will be referred to as the geometric multiplicity of A,. By 
applying similarity transformations, all similar matrices can be transformed to the 
Jordan block diagonal form F  =  diag {F 1? F2, • • •, Fr} where

At 1 0 ... 0 0
0 A. 1 ... 0 0
0 0 At ... 0 0

0 0 0 At 1
0 0 0 ... 0 At
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2.2.5 Matrix pencil and Kronecker canonical form [Gan.,1]

Matrix polynomials of the form F + sG are defined as matrix pencils where F, G G 
Rlxn (or C lxn). The pencil F + s G  is regular if F, G € Rnxn (or C nxn) and |F+sG| ^ 
0; otherwise it is called singular. Two matrix pencils Fi +  sG\ and F2 +  sG2 are 
defined to be strictly equivalent if there exist constant matrices P  and Q such that

P(Fi + sG\)Q =  F2 + s G2 (2.9)

For regular matrix pencils, define sF  +  sG. The invariant polynomials of this 
polynomial matrix can be obtained as

Ai(s,s)
A n(s, 'S) 

A n_i •5)
^2(5,s) A n— 1 ("̂ ? ^)

A n_2(s ,s ) ’
..., An(s,s) =  A i(s,3 ) (2 . 10)

where A,-(s, 5), i — 1 ,2,..., n are the greatest common divisors of all the i x i minors 
of sF  +  sG, and A, (3,5) and A,-(s,s) are homogeneous polynomials in s and s. Then 
the elementary divisors of the form sq will be referred to as the infinite elementary 
divisors while the rest are referred to as finite elementary divisors. Two regular 
matrix pencils are equivalent if and only if they both share the same infinite and 
finite elementary divisors.

For singular matrix pencils, there exist nontrivial solutions x, y to the following 
equations

(F  +  sG)x =  0 and { F T +  sGT)y =  0 (2.11)

In the solution spaces x° and y°, there exist linearly independent bases with 
minimum degrees in s, say, x 1(s)^x2(s)  ̂...,£p(s) and y^s), y2(s), ...,y^(s) with de-
grees pi <  p2 A • • ■ A Pp and ui < u2 < • ■ ■ < vq, respectively. Then the set 
{y i, y2, ’ ' • , Pp] and {iq , 2q, • • •, nq} will be referred to as the right Kronecker in-
dices and left Kronecker indices.

Two matrix pencils are strictly equivalent if and only if they have the same finite 
and infinite elementary divisors as well as the same left and right Kronecker indices.

Strictly equivalent matrix pencils can be transformed by strictly equivalent trans-
formations into canonical Kronecker form

P (F  +  sG)<3 =  block.diag {P Ml,..., L^, ZMl,..., Z„?, 5 J -  I, s i  -  F } (2.12) 

where {F , J, {P „,}, {F „ ,}}  are unique matrices such that

• F is in Jordan form;
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• J is a nilpotent Jordan matrix, i.e. a matrix in Jordan form with all zero 
eigenvalues;

• L,j, is a fi x (/i +  1) matrix of the form

s -1 0 •• 0 0 "
0 s -1  • • 0 0

0 0 0 -1 0
0 0 0 •• s -1

• Lu is a (u +  1) x v matrix with s along the diagonal and —1 along the first 
subdiagonal.

2.2.6 Rational matrix, Smith-McMillan form, McMillan 
degree and matrix fraction description

A rational matrix T(s)  E Rmxl(s) is a matrix whose entries are rational functions 
in s. Let d(s) be the monic least common multiple of the denominators of all the 
entries of T (s); then T(s)  can be written as

T(s)  =  N(s)/d{s) (2.13)

where N(s)  is a polynomial matrix. By applying elementary column and row oper-
ations on N ( s ), it can be transformed into the Smith form, N(s)  =  L(s)S'(5)(5(5), 
where S(s)  is in Smith form, L(s) and Q(s ) are unimodular matrices. The matrix 
T(s)  can be transformed into the Smith-McMillan form

iijgl
V'l(s) 0 • • 0 0 • • 0 ’

0 »Md 0 0 • • 0

M(s)  =  L(s) 0 0 • . o(d
i/v(s) 0 • • 0

0 0 • • 0 0 • • 0

0 0 • • 0 0 • • 0

Q(s) (2.14)

where r is the normal rank of T(s),  =  1,2, ...,r are coprime.

The McMillan degree of the rational matrix T(s) E Rmxl(s) is the sum of the 
orders of Z)i=i deg {V’t(-s)}. The poles of T(s) are the roots of the denominator
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polynomial xpi(s),i =  1,2, ...,r and the zeros of T(s)  are the roots of the numerator 
polynomial et(s),z =  1,2,

A rational matrix G(s ) G Rmxl(s), whose normal rank equals m in {m ,/}, can be 
factorised factors as

G(s) =  D f 1(s)Ni(s) =  Nr( s ) D ; \ s )  (2.15)

where Ni(s), Nr(s) G f?mxi[s], Di(s) G -RmXm[s], Dr(s) G /?/x/[s] with detDi(s), 
detDr(s) ^  0. Then D f 1(s)Ni(s) and Nr(s)D~1 (s) are called the left matrix frac-
tion description and right matrix fraction description of the rational matrix G(s), 
respectively.

2.3 Definition and classification of system 
properties and property indicators

System analysis is generally based on the mathematical models of the systems. 
The models can be given either in the frequency domain or in the time domain. 
In the time domain, they are usually a set of differential equations which have 
been derived from the physical laws underlying the systems, or from input-output 
identification and subsequent realisation. In general, the set of differential equations 
can be transformed into the state-space model description S(A, B,C,  D)

S (A , B ,C , D )
xft) = Axft) + Buft) 
y ft) = Cxft) + Duft)

(2.16)

where A, B , C and D are constant matrices and A G RnXn is the state matrix, 
B G Rnxl input matrix, C G Rmxn output matrix, D G Rmxl direct transfer matrix. 
x G Rn is the state variable vector, u G R! the input variable vector and y G Rm 
the output variable vector; it is also assumed that B and C are full rank matrices.

In the input-output sense, the system is represented by the frequency domain 
transfer function model

G(s) =  C ( s l -  A ) - l B +  D (2.17)

which may also be represented by the right or left coprirne MFD’s [Cal. & Fra.,1] 
[Kai.,1]

G(s) =  Nr{s )D; ' ( s )  =  Df\s)Ni(s)  (2.18)

where Nr(s), Ni(s) G Rmxi[s], Dr(s) G 7?ixi[s], and D f s )  G /?mXm[s] and the co- 

primeness implies that the matrices

Tr(s)
NT{S) 
Dr{s) ’

Ti(s) N,(s) Di(s) (2.19)
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have no zeros (full rank for all s € C). For a given initial condition x(0) and an 
input u(t) to the system, the solution x(t) and y(t) to the equation (2.16) will be 
referred to as the state trajectory and the output trajectory, respectively.

A state-space model given in (2.16) provides information for both the input- 
output relation and the state variables while a transfer function model given in 
(2.17) describes input-output relations only. For this reason, the former will also be 
called an internal model while the latter will be called an external model.

The properties of the systems are studied in terms of the system structures and 
parameters. The definitions of property, property indicator and criteria are given 
below [Kar.,1].

Let M. denote the set of system models, which are given either in transfer func-
tion or in state-space form. M  € M  be a system model; denote V  the set of all 
possible properties of interest and it should be referred to as the property set; denote 
X the set of property indicators. Associated with every property P  £ V,  there may 
exist more than one indicators. Finally we denote by C a general set with elements, 
numbers, graphical statements, criteria, etc. and we shall call it the criteria set. 
Then we have the following definition.

D efinition 2.1 ; [Kar.,1] A system property indicator is a function f  : M. —> X 
defined on M  € M. for each P G V. If f ( M )  is the image of M  under f ,  then a 
P-property test is a function g: X C.

□

A diagrammatical illustration of the above definition is given in Figure (2.1).

Certainly, there may be more than one indicator for a system property. The 
corresponding criteria for the P-property test depends on the indicators used. Fur-
thermore, a single indicator may be used for indicating different system properties.
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An example of system models, system properties, property indicators and prop-
erty criteria is given below.

E xam ple (2.1):

models property property indicators property criteria

x = Ax + Bu

controllability of the 
states

[.B,AB, - - - ,An~lB] full rank

[s I - A , - B } full rank for all s £ C

|H
- II IH

asymptotic stability of 
free motion

eigenvalues of A
negative real parts

i  = Ax + Bu 
y — Cx -f Du

internal system poles

Classification of the properties can be made depending on the models used, the 
nature of the criteria associated with the properties, etc.

The properties can be classified as internal and external depending on whether 
the model is internal or external.

If the criteria associated with a property are of binary nature, then the property 
is called qualitative; otherwise, if the criteria are defined in terms of a range of values, 
which expresses the “degree” of possession of the property by the model, then the 
property is called quantitative.

The properties can further be classified in terms of genericity [Won.,1] [MacL. &; Bii 
If Ad is a family of models characterised by a fixed common structure but otherwise 
arbitrary parameters, then with every model M  £ M  we may associate a parameter 
vector a(M ) in the parameter space Rn. A property is called generic if it holds true 
for almost all M  £ Ad. Otherwise, a property will be called non-generic if it is 
possessed only by a subset of systems, M ', in the whole family of systems and the 
corresponding parameter vectors of M ', a(M '), form only a proper variety in the 
parameter space Rn. For instance, if we take the set of n X n real matrices, the prop-
erty of having distinct eigenvalues is generic, whereas having repeated eigenvalues 
is a nongeneric property. A generic property may also be referred to as a structural 
property.

A property indicator which is used for assessing only a single property will be 
called simple; an indicator will be called a multiple indicator if it can assess more 
than one system property. Different indicators which show the same system property 
are called equivalent.
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2.4 Op en-loop system properties and 
property indicators

In this section, the open-loop system properties and their corresponding indicators 
are reviewed. The properties include system stability, controllability, observability 
and disturbability which are of fundamental interest in system analysis.

2.4.1 System stability

The most important property of any system is the stability property. It is related 
to the behaviour of all the possible trajectories which may be generated for different 
families of initial conditions and control inputs. The stability of a system is equiv-
alent to the stability of the equilibrium points. For linear time invariant systems, 
stability can be defined in the following senses [Kai.,1] [Chen,l]. Note that the origin 
(x =  0) is always an equilibrium point for S(A, B , C, D ) models.

D efinition 2.2 : [Chen,l] A system with a state-space model S(A, B,  C, D) and a 
transfer function G(s) is:

(i) Internally stable in the sense of Lyapunov: If for any initial state ;r(0), the zero
input response remains bounded for all t > 0.

(ii) Asymptotically internally stable: If for any initial state x(0), the zero input
response remains bounded for all t > 0 and tends to zero as t —► oo. This 
property is also referred to in short as internal stability.

(iii) Bounded input bounded output stable: If for any bounded input u(t), the zero 
initial state output response is bounded.

(iv ) Totally stable: If for any initial state x(0) and any bounded input u(t), the 
output, as well as the state variables are bounded.

□

The indicators corresponding to the above definitions are defined based on the 
eigenvalues and poles of the system [Rou.,1] [Chen,l].

T heorem  2.1 Consider the system S(A, B,C,  D) with G(s) as the transfer func-
tion, and let {A,- =  crl + ju>i,i £ n }, {pj =  aj +  jo J j , J  £ u} be the sets of eigenvalues, 
poles respectively. The system is
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(i) Lyapunov internally stable, if and only if a, < 0 for all i € h, and those with a,• =
0 have a simple structure, i.e. the algebraic multiplicity equals the geometric 
multiplicity for each of the distinct eigenvalues;

(ii) Asymptotically internally stable, if and only if cti < 0, V* G h;

(iii) Bounded input bounded output stable, if and only if aj < 0, j  £ v;

(iv ) Totally stable, if it is Lyapunov internally stable and bounded input bounded 
output stable.

□

Equivalent indicators for stability can also be defined on the characteristic poly-
nomial and pole polynomial of a system. The Routh-Hurwitz test of a polynomial 
offers an alternative to calculating the exact values of the eigenvalues. If a charac-
teristic polynomial is Hurwitz, then all the eigenvalues, which are the roots of the 
characteristic polynomial, will have negative real parts and thus imply internal sta-
bility. The same applies to the bounded input bounded output stability in relation 
to the pole polynomial.

If a system is internally stable, it implies that the system is also BIBO stable and 
thus in turn it also implies it is totally stable. However, BIBO stability implies nei-
ther internal stability nor total stability since the internal and external descriptions 
of a system are not always equivalent. If the external and the internal descriptions 
of a system are equivalent, i.e. the system described in state space is both control-
lable and observable, then BIBO stability implies internal stability and thus total 
stability.

The criteria for stability properties are of binary nature and thus stability is a 
qualitative property.

2.4.2 Controllability, observability properties and 
indicators

The controllability of a system deals with the interactions between either the in-
puts and the state variables or the inputs and the outputs of a system while the 
observability is concerned with the interaction between the state variables and the 
outputs.

Definition 2.3 : [Kal.,2] The state space model S(A, B , C, D) will be called:
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(i) State-controllable, if there exists a finite time interval T , T > 0, such that for
any initial state x(0) and an arbitrary state x x in the state space, there always 
exists an input u(t) defined on [0,T] such that the system can be driven from 
the initial state x(0) at t =  0 to state x_lt at time T [x(T) =  xf\. Otherwise, 
the system is called uncontrollable.

(ii) State observable, if there exists a finite time interval T , T > 0, such that
the knowledge of the input to the system, u(t), and the output of the system, 
y(t), over the time interval [0,T] suffices to determine the initial state x(0). 
Otherwise, the system is called unobservable.

(iii) Output controllable, if for any output vector y , there always exists a finite time 
interval T , T > 0, and an input u(t) defined over [0, T] such that the output of 
the system can be steered from the initial output state y(0) =  0 to y(T)  =  y 
Furthermore, if the output of a system is not only controllable, but also can be 
steered on a preassigned curve over any period of time, then the system will be 
called output function controllable [Ros.,1].

□

The controllability property can be further distinguished as controllability or 
reachability depending on whether one tries to transfer from an arbitrary initial 
state to the origin or from the zero initial state to an arbitrary final state, i.e., 
controllability refers to the transferring to the origin of an arbitrary initial state x(0) 
while reachability refers to the transferring of the zero initial state to an arbitrary 
final state in the state space. The difference in the definition is important when 
more general models are considered.

The corresponding indicators for the controllability and observability properties 
are given below [Kai.,1] [Chen,l] [Kar. & Mac.,1] [Ros.,1].

T heorem  2.2 The state space model S(A, B , C, D ) with n , /, m the number of states, 
inputs and outputs, respectively, is

(i) State-controllable if and only if either of the following equivalent conditions hold 
true:

• All the rows of eAtB are linearly independent on [0,oo) over C.

• All the rows of (s / — A)~x B are linearly independent over C .

• The state controllability Grammian Gsc — fo eArB B TeATTdr is nonsin-
gular for any T > 0.
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• T h e  n  x  n l  c o n tr o lla b ility  m a tr ix  d efin ed  as

Qc =  [B, AB, A2B, • • •, An~xB] (2.20)

has rank n.

• The controllability pencil defined as Pc(s) — [5/ — A , —B] has full row 
rank for all s G C , or equivalently it has no finite elementary divisors.

• The restricted controllability pencil Rc(s) =  sN — NA, has rank n for all 
s G C , where N is a left annihilator of B .

(ii) State-observable if and only if either of the following equivalent conditions hold 
true:

• All the rows of CeAt are linearly independent on [0, 00) over C.

• All the rows of C(s l  — A)~l are linearly independent over C .

• The observability Grammian Gso — / 0T eATTC TCeATdT is nonsingular for 
any T >  0.

• The nm x n observability matrix defined as

Q0 =  [CT, A t C t , (A t )2C t , • • •, (AT)n~1C T] (2.21)

has rank n.

• The observability pencil defined as P0{s) = 

rank for all s £ C .

• The restricted controllability pencil R0(s) =  sM  — AM,  has rank n for 
all s 6 C, where M  is the right annihilator of C .

has full column

(iii) Output controllable (for the strictly proper case, D =  0), if and only if either 
of the equivalent conditions hold true:

• All rows of G(s) — C( s l  — A) 1B are linearly independent over C .

• The m x nl matrix Qoc =  [CB, C A B , CA2B, ■ ■ ■, C A n~1B] has rank m.

(iv ) Output function controllable if and only if the rank of G(s) is equal to m over 
R(s), where R(s) denotes the field of rational functions with real coefficients.

□

R em ark 2.1: In terms of control quality, questions such as how close a system is 
to a controllable or uncontrollable one are often raised in the context of constrained
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control. The indicators for bounded energy controllability can be defined based 
on the singular values of the controllability Grammian which will be developed in 
the next chapter. These indicators will not only provide means of characterising 
the reachable states when a system is driven by a bounded energy control, but also 
quantifying input-output interaction and thus provide measures for selecting control 
structures.

□

The controllability and observability of systems are invariants under nonsingular 
coordinate transformations. For an appropriately chosen coordinate transformation, 
the system can be brought to a canonical form in which the state variables are 
partitioned into controllable-observable, controllable-unobservable, uncontrollable- 
observable and uncontrollable-unobservable sets.

T heorem  2.3 [Kal.,2] For the state-space model S(A, B,C,  D), there exists a non-
singular coordinate transformation P , x' =  Px, such that the corresponding state 
space description S'(A' , B ',C , D') has the form

x r
—  CO K o 0 K s
x r -
—  CO K i A'co- K s
X r -
—  CO 0 0 K o

_
—  CO 0 0 0

y = 0 CP 0

An24

4o-

T /
—  C O ’  BP '

T / _  
—  C O + B'co
x f  -

C O 0

I

IH
.

O
l

O
l 0

x f -rn

xf -
x f_

(2.22)

where xfc5,x 'co,gf£o,P 5d are controllable-unobservable, controllable-observable, 
uncontrollable-observable and uncontrollable-unobservable state variable sets, respec-
tively.

□

A diagrammatic representation of the decomposition is given in Fig. (2.2).

The transfer function of a system is invariant under nonsingular state coordina-
tion transformations, therefore all the systems S(A, B,C,  D),  which can be trans-
formed to ¿ ’'(A ', B ', C , D ) by appropriate nonsingular coordination transformations, 
share the same transfer function, i.e.,

G W  =  C U “ I -  +  D. (2.23)
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Figure 2.2: Canonical decomposition

This establishes the relationship between the descriptions of systems in the time 
and the frequency domains. It shows that the transfer function represents only 
the controllable and observable subsystem, not in general the overall system. The 
transfer function and the state space descriptions are equivalent if and only if the 
system is both controllable and observable, or when the system have the same system 
poles and external poles.

Closely related to the system controllability and observability properties are the 
system stabilisability and detectability.

D efin ition  2.4 : [Won.,1] The state space model S(A, B , C, D) is

(i) Stabilisable, if the unstable states of A are contained in the controllable subspace
of the system.

(ii) Detectable, if the unobservable states of the system are contained in the stable
eigenspace o f A.

□

T heorem  2.4 [Won.,1] The system S(A, B,C,  D) is

(i) Stabilisable, if and only if its uncontrollable eigenvalues are stable.

(ii) Detectable, if and only if the unobservable eigenvalues are stable.
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These two more relaxed conditions have implications in the use of the transfer 
functions as the design models. If the system is both stabilisable and detectable, 
then the transfer functions may be used for feedback design, but not otherwise.

The uncontrollable, unobservable and the uncontrollable-unobservable eigen-
values are also referred to as input-, output- and input-output-decoupling zeros 
[Ros.,1] and the corresponding sets, including multiplicities, will be denoted by 
ZlZiZoz^ZloZi  respectively. These sets can be computed in the following way 
[Ros.,1] [MacF. & Kar.,1] [Kar. & Mac.,1].

T heorem  2.5 (i) Ziz is defined by the roots of the finite elementary divisors of 
Pc(s) =  [si — A, — B], or equivalently Rc(s) =  sN  — N A, where N is the left 
annihilator of B ;

(ii) Zoz is defined by the roots of the finite elementary divisors of Pc(s) =

or equivalently R0(s) = sM  — AM, where M is the right annihilator of C ;

(iii) Z i o z  — Z i z  D Z q z

□

s i -  A 
- C

□

The output function controllability is an important concept in process control 
[Ros.,1] where the output is sometimes required to follow certain trajectories. In this 
context, the output controllability is not sufficient to address this issue because in 
order to follow certain trajectories, impulse inputs may be required. Obviously, this 
is unrealistic in real applications. A dynamical system can only track a prescribed 
output up to p — 1 independent derivatives as stated in the following theorem.

T heorem  2.6 [Ske.,1] For the system S(A, B , C , D) , we have that

(i) A system cannot track smoothly an output function eft) with more than p — 1
independent derivatives.

(ii) A dynamical system can track smoothly the vector function eft) up to its first
p < n — 1 derivatives, if eft) is sufficiently smooth to have r derivatives, and
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th e  m a tr ix  M r d e fin ed  below  h as ran k  ( r  +  1 )m

D 0 ■ 0 0 '
CB D ■ 0 0

Mr =

C A r~2B C A r~3B D 0

(2.24)

C A T~lB CA t~2B ■ • CB D

□

Strictly proper systems (D =  0) can not have rank(Mr) =  (r + 1 )/ satisfied under 
any circumstance and therefore can only track an output eft) with a constant offset, 
y(t) — eft) =constant, if rank(Mr) =  rl. In other words, to have a smooth tracking 
of an output which has more than (r + 1)/ derivatives requires necessarily a higher 
order dynamical system.

In real applications, cases may arise when the responses to some input signals 
are required to be suppressed if not at all eliminated. Such input signals are referred 
to as disturbances or noises. A typical internal type disturbance model is obtained 
by expanding S( A , B , C, D)  as S( A , B , C, D, H ) in the following form

xft) =  A xft) +  Bu(t) +  Hu  (2.25)

y(t) — C xft) +  Duft) (2.26)

where u  6 Rd, H  £ Rnxd are the disturbance-vector and the disturbance matrix, 
respectively.

Definition 2.5 : [Ske.,1] The state space model S(A, B,C,  D, H) is called output 
disturbable if the system rejects the disturbance u_ in the output.

□

For the above system property, an indicator for the output disturbability based 
on the Markov parameters of the systems can be defined.

Theorem 2.7 [Ske.,1] For an arbitrary disturbance u( t ) , the system S(A, B,C,  D, Id) 
completely rejects u(t) if and only if

Qd = [ C H , CAH,  •••, CA n~xH ] =  0 (2.27)

□
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C(s) + w P(s)

Figure 2.3: Complete feedback configuration

2.5 Closed-loop system properties and property 
indicators based on input-output models

In order to improve system performance, systems need to be controlled by using 
different control schemes, such as feedforward, feedback, etc. Feedback control is by 
far the most widely used scheme. The effects of feedback on the system properties 
which have been summarised in the previous section are discussed in this section.

2.5.1 General feedback configuration

Figure (2.3) shows the complete feedback configuration. Let P(s)  G Rmxl,C(s)  G 
Rlxm(s) be the plant, controller transfer functions, tu^u;2 the external control or dis-
turbance signals, ex, e2 the controller and plant inputs and y , y the controller and 
plant outputs. Such a configuration can represent either feedback or cascade com-
pensation. Different design problems, such as tracking, disturbance rejection, can be 
accommodated. Therefore it is referred to as the complete feedback configuration.

The system equations are defined by

" i 0 p ' Si h ' c 0 ’ Si

fi2 <±¿2 - c 0 _ Ê2 _ . h . 0 p
- 2 .

or by
e =  tu — FGe , y =  Ge (2.29)

where e = Si , tu = yu , y = —1 , G =
' C 0 '

, F =

1
O ---
--

1

S2 ¿̂2 _ h  . 0 p - /  0

The feedback configuration is said to be well formed if

I  +  FG\ =  \I + PC\ =  \I +  CP\ £  0 (2.30)
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T h en  we m ay define the transfer functions / / ( / J, C ) ,  W ( P , C ) by

{I +  F G ) - lu = H ( P , C ) u

h  
y 2 .

G(I  + FG )~ lu  = W { P , C ) u

where

W ( P , C )

H(P,C)

C i l  +  P C ) - 1 - C P { I  +  C P y l

P C ( I  +  P C ) - '  P ( I  +  C P )~1

[ I P  P C ) - 1 - P i l  +  C P ) - 1 ' 
C i l  +  P C ) - 1 [I +  C P ) - 1

Further, we can also define the transfer functions

h =  T i P , C ) ? l2 = R(P, C)
<¿¿2

- 1 ¿̂2 Ê2 . -1 .
where T(P, C)  and R(P, C)  take the following forms

T { P , C )

R ( P , c )

C i l  +  P C ) - 1 - C i l  +  P C ) ~ XP  
i l  +  P C ) - 1 i l  +  P C ) - ^

P i i  +  C P ) - 1 P i i  +  C P )-1C 
i l  +  C P ) - 1 i l  +  C P ) ~ 1C

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

For system analysis we further define some matrices which are important in the 
study of feedback:

Q =  PC,
F  =  1 + PC,
L =  I + iPC ) - 1
s  =  ì i  +  p c ) - \

Q' =  C P  
F ’ =  I +  C P

S' =  i l  +  C P ) - 1

(2.37)

where Q,Q'  are referred to as the return ratio matrices, F, F' as the return differ-
ence matrices, L as the inverse-return difference matrix and S, S' as the sensitivity 
matrices.

Theorem 2.8 [Kuc.,1] All transfer function matrices, W i P , C ) ,  H i P , C ) , T i P , C )  
and RiP, C ) associated with the general feedback configuration have the same pole 
polynomial.
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□

The above theorem is important because it shows that it is possible to study the 
pole assignment and stabilisation problems using any of the above transfer function 
functions. Assume that the plant and the controller are in matrix fraction descrip-
tions, then the pole polynomial of the system can be obtained as presented in the 
following theorem.

Theorem 2.9 [Kuc.,1] [Vid.,1] If P = A f 1B, =  BrA f\ C  =  D f1 N, =  NrD~l are 
left, right coprime MFDs, then

(i) A left, right coprime MFD for H {P , C) is defined by

H( P,C)  =
At B, ' ’ Ai 0

ioQ1___ Dr Br

_ - N , P>, 0 A 0 Ar —Nr Ar

(ii) The pole polynomial or pole function of H(P,C)  is

(2.38)

(2.39)

where V\ =  A\Dr +  BiNr,V\ =  DiAr +  DiBr and ~  means equal modulo 
constants for  i?[s] case, or modulo R-p(s) units.

□

An important issue for the feedback system is that of well-posedness, i.e., the 
properness of all the transfer functions associated with the feedback system.

Theorem 2.10 [Vid.,1] H , C ,P  are proper transfer functions, then the general feed-
back configuration is well posed if and only if

|/  +  C(oo)P(oo)| =  I/  + P(oo)C(oo)| i  0 (2.40)

□

So if one of P ,C  is a strictly proper, then either P (oo) =  0 or C(oo) =  0, 
then the above inequality will always be satisfied and therefore the system is always 
well-posed.

The controllability and observability of the general feedback configuration are 
related to the controllability and observability of the plant and the controller in the 
following way.

Let Sp, Sc be the plant, controller state space model and Sf be the state space 
description of the general feedback configuration. Then
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Theorem 2.11 [Vid.,1] For the well-posed general feedback configuration the fol-
lowing properties hold true

(i) Sj is controllable and observable, if and only if both Sp,Sc are controllable and
observable.

(ii) Sj is stabilisable and detectable, if and only if both Sp,Sc are stabilisable and
detectable.

□

The internal stability of H (P , C ) can be related to the BIBO stability of H (P , C) 
and thus it is possible to establish means of studying the internal stability in terms 
of the BIBO stability of H(P,C).

Theorem 2.12 [Vid.,1] Consider the well-posed general feedback system with both 
Sp, Sc stabilisable and detectable. Sj is internally stable, if and only if H(P,C)  is 
BIBO stable.

□

The internal stability is related to the MFD descriptions of P(s)  and C(s) in the 
following manner.

Theorem 2.13 [Vid.,1] Consider the well-posed feedback system Sj with Sp,Sc 
both stabilisable and detectable, then

(i) If P — A f 1Bi =  BrA f l , C  — D f l Ni =  NrD f l are Rp(s) coprime MFDs, then 
Sj is internally stable if and only if either of the equivalent conditions hold 
true:

A,Dr +  B,Nr =  Vu Vi € Rv{s) - - unimodular (2.41)
D,Ar +  NiBr =  V2, V2 G Rv(s) —- unimodular (2.42)

(ii) If Sp, Sc are controllable and observable and P II ~ 
i to II B .A ~ \ C  =

Dl 1Ni =  NrD r 1 are R[s\-coprime MFDs, then the characteristic polynomial 
of Sj is defined by

|s i  -  A f | ~  |A,Br +  B,Nr\~  |D,Ar +  N,Br\ (2.43)

Furthermore, if F  =  I  +  PC,F'  =  /  +  CP are the return difference matrices, 
and A p , A c  are the plant, controller state matrices, then

\ s I - A f \
\I +  PC \~ \I  +  CP\

\ s I - A P\\sI- Ac \
(2.44)
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□

Substituting Vi, V2 in equations (2.41) and (2.42) with the identity matrices, they 
become Diofantine equations [Kuc.,1] [Vid.,1]. And the solutions (A/, 5 /), (Dr,Nr) 
or (Ar, B r), (Ci, Ni) are referred to as mutually stabilising pairs. The solutions 
for a fixed P  give the whole family of controllers which stabilises the plant while 
the solution for a fixed controller gives the whole family of plants which will be 
stabilised by the controller. These results are important in the parametrisation 
of the controllers that stabilise a given plant or the plants for a given controller. 
Equation (2.44) establishes the important property of the determinant of the return 
difference as the ratio of closed loop pole polynomials of the feedback system, which 
underlines the multivariable Nyquist and root locus theories.

2.5.2 Closed-loop stability properties and stability 
indicators —  Characteristic gain and charac-
teristic frequency loci

For a square (m — l) system S(A, B ,C, D) the conditions for transmitting a fre-
quency s in the standard scalar k output feedback configuration are defined by 
[MacF. & Kar.,2]

s ln -  A - B  
- C  glm -  D

x =  0, or P(s,g)
X

M u
(2.45)

where g =  k ( 1 6  C n,u G C 1. P(s,g)  is a two variable object and it is referred to 
as the system net. The above equality defines two eigenvalue-eigenvector problems

[sin -  S(g)]x =  0, S(g) =  A +  B(glm -  D)~'C  (2.46)

(glm -  G(s)]u =  0, G(s) =  D +  C(s ln -  A)~1B (2.47)

S(g) is called a characteristic frequency function and G(s) a characteristic gain 
function. The eigenvalue-eigenvector problem defined on S(g) (parameter dependent 
on g) defines the closed-loop eigenvalues as a function of g and x is the correspond-
ing eigenvector; if g takes real values, the solution s(<?) to equation (2.46) defines 
the multivariable root loci. Similarly, the problem defined on G(.s) (parameter de-
pendent on s) defines the open-loop characteristic gains as functions of frequency 
and u will be the corresponding characteristic directions; if s takes values on the 
Nyquist contour, this problem defines the multivariable Nyquist diagrams and direc-
tions [Ros.,3][MacF.,l] [MacF. & Kou.,1] [MacF. & Pos.,1] [Pos. & MacF.,1]. The
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7 y

Figure 2.4: Standard scalar negative feedback configuration 

characteristic equations,

A(<?,5) =  \yirn — G(s)| = gm +  ai(s)gm 1 +  • • • +  o,m(s) =  0 (2.48)

\/{s i9) — I sIn — ¿'(<¡01 =  •sn +  bi(g)sn 1 +  • • • + bn(g) =  0 (2.49)

are equivalent for all s (E cr(P),g E o~(D). The roots of the above equations are 
analytic functions of s,g,  respectively.

Definition 2.6 ; [Pos. & MacF.,1]

(i) The Nyquist diagrams or the characteristic gain loci are defined to be the m
branches gi(s) of A(g ,s )  when s takes values on the Nyquist contour, s =  jto, 
and the eigenvalue-eigenvector decomposition (defined frequency by frequency)

G{ju>) =  W( ju ) \( ju ) S( ju ) ~x, A (juj) =  diag{gi(juj)} (2.50)

as the characteristic gain decomposition ofG(juj), where the columns ofW(juj)  
are the eigenvectors of corresponding gfiju) and they are called the Nyquist 
directions or characteristic frequency vectors.

(ii) U g takes values on the real axis including oo, then the n branches S{(g) of
\/(s,g) are defined as the characteristic frequency loci, or root loci, and the 
corresponding eigenvectors of (2.4 7) as the characteristic frequency vector.

□

The Nyquist and root locus diagrams may be used to assess the closed-loop 
stability from open-loop information for the standard scalar negative feedback con-
figuration in Figure 2.4.

The root loci are the trajectories of the closed-loop poles for different values 
of k, so the stability property of the closed-loop system can be inferred directly. 
The closed-loop system stability can also be inferred from the Nyquist diagrams by 
making use of the following Nyquist theorem [MacF. & Pos.,1],
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Figure 2.5: Design configuration

Theorem 2.14 [MacF. & Pos.,1] If the open-loop system is stabilisable and de-
tectable with G(s) as its transfer function, then the closed-loop configuration given 
will be closed-loop stable, if and only if the net sum of anticlockwise encirclement of 
the critical point ( — by the set of characteristic gain loci of G(s) is equal to
the total number of right-half plane poles of G(s).

□

Apart from being a stability indicator, the characteristic gain loci may also be 
used as closed-loop property indicators for such as tracking, noise rejection under 
the assumption of relative normality of G(s) [MacF. & Kou.,1],

2.5.3 Closed-loop performance in terms of properties of 
return ratio, difference and sensitivity matrices

Consider the design configuration in Figure (2.4) which takes into account the sensor 
noise, input and output disturbances. P, C, F  are proper transfer function matrices 
of the plant, precompensator, feedback compensator, respectively (with appropriate 
dimensions), and r, dt, e ,̂ n are the reference, plant input disturbance, sensor noise 
vector signals, respectively. Assume that P, C , F  are stabilisable and detectable 
and that C, F  stabilises the feedback configuration, and thus all transfer function 
matrices from any external signal to the output y are stable.

Define the transfer functions from all external signals to the output by: IIr : r —> 
y, Hod : do —> Vj Hid. ■ d* -+ V, Hn : n -> y, then

Hr =  PC( I  + F P C ) - 1 =  ( /  +  P C F ) - 1 PC  

Hod =  (I F P C F r 1 

Hid =  {I +  P C F ) - 1 P  

Hn =  - ( /  +  PC F ) - 1 P C  F
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B y  linearity, the output of the system  is given by

y = HTr +  Hodd0 +  H uh  +  Hnn (2.51)

So for external signals with given bandwidth, the above equation describes the 
effect of each signal on the overall system response in terms of frequency domain 
transfer functions, Hr(ju),  H0d(ju), Hid(ju>), Hn(ju)  which are expressed in terms 
of the return ratio PCF,  return difference ( /  -p PCF)  and sensitivity matrix ( /  -f 
P C F )-1 . The frequency domain study of tracking, disturbance or noise rejection, 
sensitivity to plant parameter variation, robustness, etc. involves the notion of gain 
of transfer function matrices, which is defined in terms of the singular values.

2.5.3.1 Singular value and polar decomposition of transfer 
function matrices

The singular values of a system are very important property indicators of system 
properties in the frequency domain [Pos. Edm. & MacF.,1] [Doy. & Ste.,1]
[MacF. & Sco.,1]. The linear system G(s ) £ RmX,(s) is a matrix valued function of 
the complex variable s. If we evaluate G(s) at each s £ (7, especially on the Nyquist 
contour, then for G(ju)  we may define the Singular Value Decomposition (SVD) 
and Polar Decomposition.

Singular Value Decomposition: [Gan.,1] [Pos. Edm. &; MacF.,1] Let G =  G(ju)  £ 
C mxl and cr,, i £ r be the singular values of G which are ordered as crr >•■ •>cr1 > 0 
and define E =  diag(crr, ..., a\) (r =  m in{m ,/}) then G may be expressed as

G = YYFJ* (2.52)

where

(i) if m >  /, then V £ C mxi, E £ RIxI, U' £ C lxl, Y*Y =  /,, V U  =  h =  UU\

(ii) if m <  /, then Y  £ C mxm, E £ Rmxm,U* £ C mXl,Y*Y  =  Im,U*U =  Im =
uu\

which is called the singular value decomposition. Y  and U are referred to as output- 
input singular vector frame matrices and E the principal gain matrix.

Closely related to the singular value decomposition is the polar decomposition.

Polar Decomposition: [Pos. Edm. & MacF.,1] Let G =  G(jco) £ C mxl and consider 
the SVD of G as in the above. The G may be expressed as

G -  (V E F *)(rf/* ) =

G =  (YU*)(UZU*) =  $M r
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where 4>,M;,Mr are referred to as phase, left, right modulus matrices. Equations 
(2.53) and (2.54) are referred to as the polar decompositions of G. If G is square, 
YU* is unitary and its characteristic decomposition is expressed by

YU* =  $  =  PQP*,  0  -  diag(e^) (2.55)

where P  is unitary and the set of angles 0,- are defined as the principal phases.

Since G(s ) is analytic, the plots of singular values are continuous functions of u. 
In the case when the system is square, the singular values cri(juj) will be called the 
principal gain functions. The principal phases 6{(ju) are also analytic functions of 
lu. The plots of cri(jijo) define the multivarialbe amplitude Bode diagrams whereas 
the plots of Oi(juj) give the multivariable phases Bode diagrams.

An important concept in analysis and design, which is related to the SVD of 
G(s) is that of the vector gain. For a system

y(s) =  G(s)u(s), 5 =  jw (2.56)

then one may define the vector gain of G(s) for input u(s) as

gain G \u = M s) h
Il«(*)ll2

(2.57)

where || • ||2 denotes the Euclidean norm. If &(jw),a(jw)  denote the minimal and 
maximal singular values of G(jw),  the

gXjw) < M * ) h
IIm(s)||2

< a(jw),  for all u(s) (2.58)

The above property is known as the Min-Max theorem and has important im-
plications in analysing signal tracking, noise rejection and sensitivity to parameter 
variations.

2.5.3.2 Closed-loop performance indicators

The singular values of the return ratio, return difference and sensitivity matrices are 
indicators of the system tracking, noise rejection and sensitivity to plant parameter 
variations [MacF. & Sco.,1] [Pos. Edm. &: MacF.,1] [Doy. & Ste.,1],

Denote &(G) and d(G) the smallest and the largest singular values of G ( j u ) and 
the range of frequencies of interest as ii. Then

• The system has good tracking if g_(PCF) 1 for all w £ fi.
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• The system has good plant disturbance rejection if cr(7 + P C F)  1 for all 
to £ if.

• The system has good sensor noise rejection if a (I +  ( P C F) ~1) 1 over all
w G fi or equivalently g fPCF )  is small for all to £ if.

2.6 State-space invariants

Given the whole set of systems described in linear state space form, some of the sys-
tems share similar properties, such as stability, controllability, observability, tran-
sient response to step input, etc. By using different system properties, the systems 
can be classified into different categories. The reason for different systems sharing 
the same property is due to the fact that the systems share the same underlying 
structure, or even the same system parameters. In fact, the similarity in properties 
among systems lies in the equivalence relation among the systems. The equivalence 
relation among the systems can be defined mathematically as:

D efinition 2.7 ; [MacL. & Bir.,1] If A is a set, then a relation R on A is a subset 
A x A [Cartesian product, set of ordered pairs (x ,y ) , (x ,y )  £ A], A relation R is 
called an equivalence relation if it is

• Reflexive, i.e. (x ,x)  £ R, x £ R;

• Symmetric, i.e. (x,y)  £ R, then (y,x)  £ R; and

• Transitive, i.e. (x,y)  £ R , ( y , z ) £ R, then (x,z)  £ R

□

In the context of control theory, the equivalence relation can be interpreted as 
state, input and output coordinate transformations or in feedback sense as the state 
feedback, output feedback and output injection.

For a specifically defined equivalence relation, R°, denote R°(x)  as the subset 
of elements which are equivalent to x £ A, then the whole set of linear systems 
can be decomposed into a set of disjointed classes A =  U°(x,). And each of the 
classes can be represented by an element, say, x ’0 £ R°(x,) and x l0 will be called the 
representative of i?°(aq). The set of all representatives, T, of the equivalence classes 
will be called a system of distinct representatives.
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The study of the properties of a system is one but not the final goal of control 
theory; control theory also aims at producing a system with desirable properties 
by employing different compensation schemes, such as feedforward, state feedback, 
output feedback, etc. So the study of the properties under different compensation 
schemes gives guidance in choosing the different compensation schemes. In fact, 
some of the properties will remain unchanged with a certain compensation and these 
properties will be called the invariants under this particular compensation scheme. 
The mathematical definition of system invariants is given below [MacL. & Bir.,1],

Let Ad be a family of linear models, E an equivalent relation defined on Ad, 
E ( M ) the equivalent class of M  £ Ad and let Ad/ E be the quotient set of orbit (set 
of all equivalence classes). We may define

Definition 2.8 : [MacL. h  Bir.,1] Let Ad be a family of models, I a set, E an 
equivalence relation defined on Ai.

(i) A function f  : Ad —» I is called invariant of E, when M 1 EM 2 , implies f ( M i )  =
f ( Mf ) .  Also, f  is called a complete invariant for E when f(M\)  =  f {Mf )  
implies M 1 E M 2 .

(ii) A set of invariants f i ' . A d —> /,-, i =  1,2,..., k, is a complete invariant for E on
Ad, if the map defined by f  : Ad —> nf=1/t : M  —> f ( M )  = {/1 ( M ),..., /¿ (M )} 
is a complete invariant for E on Ad. The complete set of invariants is called 
independent.

□

So a complete invariant defines a one to one correspondence between the R 
equivalence R (x ) and the image of / .  By specialising the complete invariant /  such 
that a canonical element c £ R(x) uniquely characterises R{x) and c £ R(x)  will be 
referred to as the canonical form.

The importance of the study of the equivalence relation, system invariants and 
canonical forms lies in the fact that the systems can be studied in groups. The 
result of the analysis of a particular system can be extended to every system which 
is equivalent to that particular system. And this particular system will usually be 
chosen to be the representative of the class. By employing special invariant of the 
system, canonical forms can be formed in such a way that it is simple, informative 
and thus reduce the amount of effort in analysis.

The invariants reveal the system capabilities and limitations under coordination 
transformations or feedback control because the equivalence between systems can be
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interpreted in the sense of coordinate transformations as well as feedback control. 
These invariants will give valuable information in system compensation by using 
these compensation schemes.

In the sequel, the system invariants in state space domain are reviewed.

2.6.1 Equivalence relations

The equivalence relations which can be defined on the systems described by state 
space models S(A, B,C,  D) are the system coordinate transformation, input coor-
dinate transformation, output coordinate transformation and the state feedback, 
output feedback and output injection. So the most general types of transformations 
that may be applied on S(A, B ,C, D) systems involve all those defined by Q, T, R  
which are state, output, input coordinate transformations, state feedback L and 
output injection, F.  Based on Q,T, R, L, F  transformations, the following ordered
set of transformations can be defined [Kar.,1]

H k =  { Hk : H k =  { Q , T , R- L , F ) }  (2.59)

« B  =  {H'B -.H'B =  (Q,R;L) ) (2.60)

K  =  { h ‘ b : H ‘b  =  (Q ,T-F) } (2.61) 

H c £  {Hc : H c =  ( Q , T , R ; 0 , 0 )=( (2.62)

K  =  { # “ :# ;*  =  (0 .0  ,R)  =  (Q,(2.63)

K '  =  W  : -HT =  (O ,r ,0 )  =  (0 ,T ) }  (2.64)

K  =  =  (0 ,0 ,0) =  « ? ) }  (2.65)

These transformations form groups, 'Hk,'HTB,7ilB will be referred to as the Kro- 
necker, right- and left-Brunovsky groups and 7f c, Hlc% H°cs, 7isc as general, input-state, 
state-output and state-coordinate groups, respectively. The study of the system 
equivalence can be carried out using the matrix pencils. The action of these differ-
ent groups on the systems can be expressed as action on the pencils associated with 
the corresponding type of system pencils under consideration. So

(i) Action of Tit, 7ic on B, (7, D ) is defined by:

' s i  -  A' - B '  '

ifen101 
_

1CQ1T1

l___ Q 0
- C  —D' 1 o 1__

_
i

1 0 1 b i __
_ L R

(ii) Action of H TB,7 ilcs on S(A,B)  is defined by

[ s i - A '  —B' ] = Q ~ l [ s i - A  - B Q 0
L R

(2 .66)

(2.67)
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(iii) Action of 7ilB,7i°s on 5 (A ,C ) is defined by:

’ s i  -  A' ’ ' Q -1 F ' s i  -  A ’
- C 0 T - C

and finally

(iv ) Action of 7i sc on 5(A ) is defined by

s i  -  A' =  Q ~ \ sl -  A)Q

(2.68)

(2.69)

For the given groups, invariants and canonical forms may be defined. The groups 
of transformations fall into two categories, those which involve coordinate transfor-
mations only and those which also involve feedback. So we distinguish the invariants 
and canonical forms for these two different groups accordingly.

2.6.2 Invariants and canonical forms under 
coordinate transformation

2.6.2.1 State coord inate transform ations TLSC on 5(A )

For systems 5 (A ), x =  Ax, coordinate transformations are equivalent to similarity 
transformations. The structure of the eigenvalues defines the invariants and canon-
ical form [Gan.,1], [Kar. & Kal.,1],

T heorem  2.15 If A(A) is the root range of A, and 5 (A ,A ) =  { iq , ..., i/,} is the 
Segre characteristic for every A E A(A), then the set {5 (A , A,), A,- E A (A )} is a 
complete invariant for similarity equivalence on 5 (A ). The corresponding canonical 
form is the Jordan canonical form:

5(A) =  diag{-■ •, J(Xi),•••} (2.70)

where J (A,) =  diag{ Jv, (A,); •^(A,)} and (A) —

' X 1 0 • • 0 '
0 A 1 ■ • 0

0 0 0 • • 1
0 0 0 • • A

E C kxk

□

The invariant and canonical form may be computed algebraically by use of the 
Smith-form of s i  — A, or by alternative means based on sequences of numbers
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[Kar. & I<al.,l]. The maximum of the geometric multiplicities of eigenvalues is 
denoted by p, and referred to as the Segre index.

The similarity invariants define the nature of elementary motions of 5 (A ) and 
characterise stability properties. For eigenvalues on the imaginary axis, it is essential 
to compute the corresponding Segre characteristics, since it defines the difference 
between Lyapunov stability and instability. The Segre index p (maximum of q for 
all eigenvalues) defines the minimum number of inputs, outputs which are needed 
for controllability, observability, when inputs and outputs are to be selected.

If ¿/(A) is the maximal value in 5(A , A), then h =  £  i/(A) defines the degree of 
the minimal polynomial of A. Alternative canonical forms, such as those of the 
companion type may be found in [Gan.,1].

2.6.2.2 State and input coordinate transform ations on S (A ,B )

The invariants and canonical forms of 5(A, B ) under the action of 7i'f are reviewed. 
The canonical forms have important implications in identification and state space 
design. Throughout this section we assume that S(A,B)  has n state, / inputs and 
rank(i?) =  /.

For the pair (A, B)  we define the sequence of matrices

Qc, k = [ B ,  A B , ... AkB  ¡ , ¿  =  0 ,1 ,2 ,... (2.71)

where Qc,n-i  =  Qc is the controllability matrix and rank(Qc,t) <  rank(Qc,fc+i)-

D efin ition 2.9 ; [Kai.,1] The smallest integer p for which rank{QCtll) =  rank(Qĉ +1) 
is defined as the controllability index of S(A,B) .  If we assume that the linearly in-
dependent columns of Qc in order from left to right have been found and rearrange 
these independent columns as

ki,Abi , ..., A^-ibp, • • •; bh Abj,..., Aw_i6, (2.72)

then the set o f indices {pi,i  =  1 ,2 ,...,/} are called the controllability indices of 
S(A, B).

□

Some important properties of these indices are summarised by the following 
result [Kai.,1] [Chen,l] [Kar. &; Mac.,1]. Note m >  1, for all i =  1 ,2 ,.../ and the 
zero value appears only when rank(5) < /.
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T heorem  2.16 For the set Ic =  {/^,,i =  1 ,2 ,...,/} of controllability indices of 
S(A, B) the following hold true:

• The controllability index y =  max{y\, //2, •••, y i } ;

• If h is the degree of the minimal polynomial of A, then

— < y < min(h, n — / +  1) < n — / +  1; (2.73)

• yi + y 2 +  • • • Ayi < n and equality holds if and only if the system is controllable. 
Furthermore, 5Z(-=1 y t =  nc is the dimension of the controllable space of the 
system and n — nc defines the total number of uncontrollable modes;

• The controllability indices are invariant under state and input coordinate trans-
formations and state feedback;

• The set Ic is the same as the set of column minimal indices of the pencil 
Pc(s) =  [ s l - A , - B ] ;

• The set Ic — {yi , i  — 1 ,2 ,...,/} defines the set of column minimal indices 
{yf }  of the pencil Rc(s) =  sN — NA by the rule pf =  yi — 1,* =  1 ,2 ,...,/ 
[Kar. & Mac.,1];

• If G(s) =  N(s)D'~1(s) is any R[s\-right coprime MFD with D(s)  column re-
duced and S(A, B, C) is a minimal realisation of G(s) (assume G(s) strictly 
proper), then the column degrees of D (s) define the controllability indices of 
S(A,B) .

□

The set of controllability indices and the set of finite elementary divisors of Pc(s) 
pencil are invariant under TCf group, but they are not complete, i.e. more invariants 
are needed to define a complete set.

Defining a complete set of invariants for S(A,B)  under Ttsc, FCcs groups is related 
to the theory of canonical form, which is extensively treated in [Kai.,1], The Popov 
canonical form [Pop.,1], is a unique form under similarity of S(A, B).  Such a canoni-
cal form contains all additional information about the new invariants, which are now 
a set of real numbers. We may illustrate the structure of this canonical form in terms 
of an example. Thus consider a controllable system with n — 5, y\ =  2, /x2 =  3, / =  2. 
The Popov canonical form has the following general structure, where xs denote
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uniquely defined nonzero constants.

' 0 1 0 0 0 ' ' 0 0 ‘
X X X X X 1 X

0 0 0 1 0 Bc = 0 0
0 0 0 0 1 0 0
X X X X X . 0 1

(2.74)

The subsystems defined by the diagonal blocks are intercoupled and this coupling 
is defined by the crate diagram [Kai.,1] and it is an invariant. This unique canonical 
form is a useful tool in system identification. If input coordinate transformations 
are also used, then the canonical form has an identical A matrix, Ac, but the xs in 
Bc are eliminated. Different types of “pseudo canonical” forms (not unique) exist in 
the literature [Kai.,1], which once more demonstrates the minimal indices structure 
of the pair, but not all the nonzero elements are uniquely defined.

2.6.2.3 State output coordinate transform ation on S(A,B)

The definitions and results presented for (A , B ) pairs have their equivalents for 
the case of (A, C)  pairs by using transposition duality arguments, that is (AT, C T) 
is first seen as a state, input pair and by transposition and use of the changes: 
controllability <t=> observability, right MFD 4=4* left MFD, input <£> output etc, 
all definitions and results may be stated for state, output pairs (A, C).  The set of 
observability indices is denoted by I0 — {0,, i — 1,2, ...,m }, where m is the number 
of outputs and 6 denotes the observability index which now satisfies the following 
inequality

Tl
— < 6 < min(n, n — m +  1) < n — m + 1 (2.75)
m

where h is the degree of the minimal polynomial.

2.6.2.4 State coord inate transform ations on S( A, B, C)

Because S ( A , B ) and S’(A ,C ) are subsystems of S(A, B,C) ,  so the sets of con-
trollability, observability indices are invariants as well as the sets of input, output 
decoupling zeros and finite, infinite zeros. Also the additional invariants which will 
be defined under the Kronecker group Tik are also invariant under Ti.sc, since 7isc is a 
subgroup of Tik-

If Q is a transformation which brings (A ,B ) to Popov form (A c, Bc) as defined 
earlier, then the output Cc =  CQ is uniquely defined and (Ac, 5 c,C c) is an in-
put based canonical form. Similarly, if Q' is a transformation that brings (A, C )
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to the corresponding Popov form (A0,C0), then B0 =  Q~l B  is uniquely defined 
and (A0, Ba, C0) is an output based canonical form. The Popov canonical forms 
(Ac, Bc, Cc) and (Aa, B0, CQ) are related to the realisation of transfer functions based 
on canonical right, left MFDs, which are in an “echelon type form” [Kai.,1]. Al-
ternative canonical forms based on balancing the controllability and observability 
Grammians have also been defined and give important insight in model reduction.

The canonical forms and invariants under coordinate transformations are impor-
tant in system parametrisation, identification and model reduction. Some of them 
provide convenient forms for state space design.

2.6.3 Invariants and canonical forms under coor-
dinate transformations and feedback

Possible feedback schemes are state feedback, output feedback and output injection. 
The invariants and canonical forms with state feedback and output injection are well 
established while those associated with output feedback are still in development. So 
the main emphasis is placed on the invariants and canonical forms under state 
feedback and output injection.

2.6.3.1 C oordinate transform ations and state feedback
on S(A, B)

Under the action of 7iTB group (input, state coordinate transformations and state 
feedback) on 5(A , B ) systems, an equivalence class of systems EB(A, B ), which will 
be referred to as the Brunovsky orbit of S(A,B) ,  can be obtained. If Ic =  { /q ,i  =  
1 ,2 ,...,/}  are the set of controllability indices, or equivalently column minimal in-
dices of Pc(s), and D id  — {(s — At- )'r*, s € C, i =  1,2 ,...,& } is the set of finite 
elementary divisor of Pc(s), then we may summarise the properties of Eb (A ,B)  as 
follows [Bru.,1], [Kal.,2], [Kar. & Mac.,1].

T heorem  2.17 For the Brunovsky orbit EB(A, B ) , the following hold true:

1. The sets Ic , D i d  are complete and independent invariants of EB(A, B) ;

2. There is a uniquely defined canonical form, the generalised Brunovsky form, 
S(Ab , B b ), which in pencil form is described by

PcB(s) s i  — Ab  —Bb
s i  — A, 0

s i  — A
- B r

(2.76)
ID
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where A id  — diag{JTi(\i),i =  1,2, JTl(A,) is the Jordan Block associated
with (5 — A;)r', Ac =  diag{'H: , j  =  1 , 2 , pi],  Tij is the j  x j  standard nilpotent 
matrix and Bc =  bk-diag{w_J, j  =  l , . . . , /^ }  with Wj — [ 0, 0, 1 ] G R>.

□

S(Ab , B b ) is the controllable subsystem. So if S(A,B)  is controllable, then 
s i  — A id  will disappear in (2.76). The controllability indices and the structure and 
values of input decoupling zeros are the only invariants under U TB-

R em ark 2.2: Controllability indices are essential for system identification and 
study of control theory problems such as assignment of Jordan forms by state feed-
back [Ros.,1], structure and parametrisation of controllable subspaces [Won.,1], etc.

□

2.6.3.2 Coordinate transformation and output injection

The results in the previous subsection have their dual counterparts for Brunovsky 
orbit Eb (A,C) ,  obtained from S'(zl,C) under 7~ilB. The duality is based on trans-
position. So elementary divisors of P0(s) and Dop which define the structure of the 
output decoupling zeros and observability indices are complete invariants and the 
corresponding canonical form can be obtained from the transposition of (Ab , B b )•

2.6.3.3 Coordinate transformations, state feedback and output in-
jection on S(A, B , C, D):  Kronecker invariants and canonical 
form

With the action of the Kronecker group Uh on S(A, B,C,  D)  which is referred to 
as the Kronecker orbit of S(A, B,C,  D) can be formed. The invariants and the 
canonical form is defined on the pencil of the system, which is

P(s)
s i - A  - B  

- C  - D
(2.77)

with the assumption that P(s)  is characterised by Kronecker invariants [Gan.,1], 
which are defined below.

Definition 2.10 : For the system S(A, B,C,  D) described by P(s) ,  we define:

• Dz =  {(s — Zi)T,,i G 11} the set of finite elementary divisors, which defines the 
finite zero structure of S(A, B ,C, D);  the number nj =  Yfii=\Ti called the 
finite zero order of the system.
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• Doo — {s9' : 1 =  qi =  ... = q$ < qs+i < qa] the set of infinite elementary 
divisors of the system. For those qi — 1, they are called linear infinite zero 
divisors and those of sq,q > 1 are called nonlinear infinite zero divisors. The 
number =  Yli=i(9i “ 1) defined as the infinite zero order of the system.

• Ir =  {e,- : 0 <  ei <  e2 < • • ■ < ep}, // =  {^¿,0 < 771 <  • • • < rjt} are the sets
of column minimal indices, row minimal indices of P(s), respectively and they 
are called the right, left indices of the system. The numbers nr =  Y%= 1 =
£ tL i rjt are called the right-, left-orders of the system, respectively.

□

The finite and infinite zero structure is characterised in physical terms by fre-
quency transmission problems. The right and left indices are associated with the 
blocking of families of signals which are not necessarily of the simple exponential 
type [Kar. & Kou.,1],

The importance of the and // sets defined on S(A, B,C,  D)  is de-
scribed below [Tho.,1] [Mor.,1] [Kar. & Mac.,1],

Theorem 2.18 For the Kronecker orbit Ek(A,B,C,D),  the following hold true.

• The set { D z, , IT, //}  defined on S(A, B,C,  D) is a complete and indepen-
dent invariant. •

• There is a uniquely defined canonical form, the Kronecker canonical form 
S(Ak, Bk, Ck1 Dk) which in pencil form is presented as

Pk =

where

s i  -  Ak -B k

s i

-Ck ~ Dk

- A c 0 0 0 ~ B C 0 0

0 s i  — Av 0 0 0 0 0

0 0 s i ~  ^ oo 0 0 — Boo 0

0 0 0 s i  -  Af 0 0 0

0 - c v 0 0 0 0 0

0 0 -C o o 0 0 0 0

0 0 0 0 0 0 - I s

— diag{Aj : 3 =  ei . ep}  e  RnrXnr

Av = diag{Aj : .
II C3 ...,rjt} € Rn‘ xn‘

(2.78)
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A0o =  diag{Aj : j  =  f x, f, = q i ~ l , i  =  6 +  € Rn°xn°

Aj =  diag{JTf z l) : i =  1,2, ...,7r} G RnfXn)

where JT{z, ) are Jordan blocks characterising (s — 2,)T*,Aj =  Hj is the j  x j 
standard nilpotent matrix and

Cv =  6/.dia#{vJ : j  =  i?i,..., ?/i} G i?ixni

Coo =  M-diaiteJ : j  =  f u . . .J a s }  e R ^ - Sl*n°°

Boo =  : j  =  f u . . . , fa_s} G Rn°xP -sl

Bc — bl.diag{w_J : j  =  ei,...,ep} G RnrXp

where v j  =  [1, 0,..., ] G i21Xj and Wj =  [0,0,..., 0 ,1]T G /?jXl

• / /r ,  are the ranks of P(s), G(s), respectively, then the following relationships 
hold true among the numbers of the invariants

(a) r — n +  Pg , P  =  l ~  Pg , t =  m — po, n =  n j +  +  nr +  nn

(b) a =  pci and ¿> =  p{D);

(c) There are zero cmi and zero rmi, if and only if [BTD T]T,[C, D] are rank 
deficient, respectively.

(d) The transfer function matrix of S(Ak, Bk,Ck, Dk) is

Gk{s) =  Ck(sl — Ak)~l Bk + -Dfc = 

A C (*) =  d ia g {s^ \ ...,s1- ^ }

(2.79)

where Gk(s) is the Smith form at s =  oo of G(s) [Var. Lim. & Kar.,1].

□

The above summarise the results demonstrating the structure of state space 
models under the most general types of transformations that may be applied on 
state space models. The results may be simplified in an obvious manner for strictly 
proper systems, where D =  0.

Remark 2.3: The number of divisors at infinity of P(s)  is equal to the rank of 
G(s). There exists a number of linear divisors at infinity equal to the rank of D ; for 
strictly proper systems, all divisors at infinity are nonlinear, i.e., q, >  2. The orders 
of infinite zeros are defined by fi =  q, — 1, when qi are the degrees of nonlinear divisors 
at infinity. The fi define the generic asymptotic locus pattern and terminal Nyquist 
phases. If rank(Z)) =  rank(G(s)), then G(s) has no infinite zeros, or equivalently
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all qCs are equal to 1. For strictly proper, square systems with m =  /, all orders of 
infinite zeros of G(s) are /,■ =  1 if and only if rank(CB)  =  m =  /; higher order of 
infinite zeros emerge when rank(CB) < m =  /.

□

Remark 2.4: The Kronecker form S(Ak, Bk,Ck, D^) is maximally uncontrollable 
and unobservable and the dimension of the minimal system is defined by the infinite 
zero order [Kar. & Mac.,1]. State feedback and output injection are equivalent 
to post- and pre-multiplication of transfer function by i?pr(s)-unimodular matrices 
[Hau. & Hey.,1]; the special element of 7 that reduces S to its Kronecker form, is 
equivalent to a pair of i?pr(s)-unimodular matrices which reduces G(s) to its Smith 
form at s =  oo of G(.s) [Var. Lim. & Kar.,1],

□

Remark 2.5: For right regular systems rank(CB)  =  l, nr — 0 (no right indices) 
and for left regular systems rank((7i?) =  m,n; =  0 (no left indices). For left-right 
regular systems rank((75) = m — / (square nondegenerate systems), nr — ni — 0 
and

rif -f rioo =  n (2.80)

which shows that total number of finite and infinite zeros is equal to the dimension 
of the state space. For such systems, the total number of finite zeros satisfies the 
conditions:

1. D ^  0 : nj < n, if and only if rank(D) =  m — /;

2. D =  0 : rif < n — m — n — l and equality holds if and only if rank(Ci?) = m = l.

For strictly proper square systems, the number n — m =  n — / defines an upper 
bound on the total number of finite zeros.

The right and left indices are related to synthesis problems such as squaring 
down, model matching etc.

□

Remark 2.6: The finite zeros of P(s)  and Z(s)  (zero pencil) are the same. If 
q[,i =  1,2, ...,r are the degrees of the divisors at ¿f =  oo, with q[ > 3 of P(s),  then 
the degrees of the restricted zero divisors of Z(s)  are q' — 2.

□
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2.7 Summary

In this chapter, some of the fundamental linear system properties, property indica-
tors and system invariants in both the time domain and the frequency domain have 
been surveyed. These properties, property indicators and system invariants provide 
some of the main tools for system analysis and system design. Some of the well- 
known qualitative system indicators, such as controllability and observability can 
be developed into quantitative indicators. Further they can be used as indicators 
for input-output interactions. These will be examined in the next chapter.
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Chapter 3

FURTHER QUANTITATIVE 
PROPERTIES AND 
INDICATORS

3.1 Introduction

In Chapter 2, some of the basic system properties and the corresponding property in-
dicators have been reviewed. Properties such as system controllability, observability 
and output disturbability are qualitative properties.

The qualitative properties of a system are important in the sense that they reveal 
the capabilities and limitations of the system. For instance, if a system is state 
controllable, then there always exists a certain input signal with which any given 
initial state of a system can be brought to zero in a finite time interval. Otherwise, if 
a system is not state controllable, then there exists a set of system initial conditions 
which cannot be brought to zero with any control signal in a finite time.

In reality, questions such as “how close is a system to being controllable or 
uncontrollable” are asked. The distance of a controllable from an uncontrollable one 
when subject to complex and real perturbations has been studied [Bol. &; Lu,l],

In connection with the energy of the control signals, the quantitative side of the 
system properties can be studied. In Sections 3.2, the quantitative controllability, 
observability are characterised in terms of the singular values of the controllability 
Grammian and observability Grammian in relation to the minimal energy needed in 
control. So the singular values of the controllability Grammian are the indicators of 
quantitative controllability while the singular values of the observability Grammian
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are indicators of quantitative observability. Quantitative output tracking and output 
disturbability have also been defined and the singular values of correspondingly 
defined matrices are developed as indicators.

In Section 3.3, the quantitative state controllability indicators are employed to 
characterise the set of initial conditions which can be brought to the origin by a 
bounded energy control. This subset is proved to be a hyper-elipsoid. In fact, the 
initial conditions can be characterised by the singular values and the amount of 
energy for control.

In Section 3.4, the problem of selecting the inputs and outputs of a control 
system is discussed. An empirical criteria for coupling the outputs to the inputs 
are reviewed. Then the quantitative output controllability developed in Section
3.2 is further developed as a new interaction indicator and employed as a criterion 
for selecting the appropriate input-output pairing scheme in decentralised control. 
Finally in Section 3.5, existing indicators for eigenvalue mobility with respect to 
both state-feedback and output feedback gain will be reviewed.

3.2 Quantitative controllabilities and indicators

3.2.1 Output controllability

Let a system described by state space model (A , B , C, D, JT, J) be as follows:

x — Ax + Bu + Hu
~ -  “  (3.1)
y =  Cx  + Du + Jui

where A £ RnXn, B  £ Rnxl,C  £ RmXn,D  € Rmxl, H  £ RnXp, J G RmXp,x  G Rn, u £  
Rl, y £  Rm and u £ Rp.

As defined in Definition (2.3), if a system is output controllable, there always 
exists an input u(t) such that for an arbitrarily specified y{tj)  can be reached for 
an arbitrary y(to). In the following we try to find among all the possible inputs a 
particular input that needs the minimum energy and subsequently investigate the 
relationship between the minimum energy and the output controllability Grammian.

The output of the system (3.1) at tj is given as

y(tf)  =  C $ ( t f , t 0)x(t0) +  f C{tf)$(tf,cr) [B(cr)u(a) + H(<t )u (<t )] da +
Jt0

+Du(t j )  T ) (3-2)
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where <h(i/,i0) is the state transition matrix. In the case of linear time invariant 
systems, $ ( t f ,to) =  eA{t^ to).

For the given system with the initial and final output values, the input signal to 
yield this output can be found in the sequel [Ske.,1]. First we find the set of feasible 
initial state conditions x(to)- From equation (3.2), the initial output condition y (to) 
must satisfy the following condition:

y(to) — C(t0 )x(t0) + D(to)u(to) +  J(to)^(to) (3-3)

so for a feasible initial state, the above equation will have a solution for x(t0) and 
so is the following equation

C(t0) D(t0)
x(t0)

u(t0)
— y_(t o) — J(to)<¿¿(to) (3.4)

The matrix ) C(to) D(t0) will have a right inverse, 
the initial values x(t0) and u(t0) might not be unique, 
solution, we can select one arbitrarily.

However, the solution to 
If there are more than one

Having found the feasible conditions for the state variables, the input to transfer 
the output from y (to) to y(tj) can be calculated as follows:

¡tó [C (tf)$ (tf i a)B(a)  +  D(tf)S(tf -  a)]u(a)da =  

y(tf) -  C ( t f )$ ( t f , t 0 )x(to) -  J(tj)u¿(tf ) -  / / /  C(tf)^(tf ,a)H(a)u¿(a)da (3.5)

Define

y°(tf) =  y(tf ) -  C (t f )$ ( t f ,t 0 )x(t0) -  J (tf)u (tf ) -  f  ’  C (tf )^ (tf ,a)H(a)u¿(a)da 
-  ~ Jt0
Q(a) =  C (tf)$ (tf ,a )B (cr) +  D (tf) 8 ( t f - < j )  (3.6)

then
V0^ })  =  [  1 Q(cr)u(a)da (3.7)

Jt0
From the definition, ¡¿°(tf) is assumed to be an arbitrary vector. It can be verified 
by direct substitution that equation (3.7) is solved by

a W  =  6 » [ / , ? e ( i ) e TW * r ‘ ii° ( '/) (3.8)

From equation (3.8), in order to have a solution for u(a)

y ( t f , t 0) =  r  G(cr)gT(a)da (3.9)
y t0

must be invertible.
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The necessity for y { t f ,  ¿0) to be invertible can be proved by showing that for any 
control which transfers x (i0) to xftj), y ( t j , t 0) will have to be invertible. Rewrite 
equation (3.7) as:

J t o

gj(a)u(a)da

_ 9 p {a)u(a)da _
> GT(a ) =  9iW) 9v(a ) (3.10)

where p is the number of outputs.

Because y°{t j ) is arbitrary, then each element y°(tj) ,i  — 1,2, ...,p is arbitrary. 
Thus a certain linear combination of the elements of the vector gt(a) gives a different 
value y°(tj) for each i. This requires the vectors g,(cr),f =  1,2, ...,p to be linearly 
independent on the interval a £ which is equivalent to

/  G{v )GT\cr)u(a)da > 0 (3.11)
Jto

Define the output controllability Grammian matrix as

Qoc(to,tf)= [  1 C (tf)^ (tj ,a )B (cr)B T(a )^T(t f ,a )C T(tf )da (3.12)
J t o

Then equation (3.9) becomes

y { t j ,  to) =  +  D (t , )B J(t ,)C T(t,)  + +  e « ( ( „ ,  t,)
(3.13)

where 6  is the Dirac delta function.

So we have the following result.

Theorem 3.1 [Ske.,1] The system (3.1) is output controllable at to if equation (3.13) 
has the property y ( t j , t 0) > 0 for some tj > t0. If the output is controllable, then 
one control that transfers y(to) to y(tf) is given by equation (3 .8 ).

□

For strictly proper linear time invariant systems, the matrices are constants and 
the output controllability Grammian of the system becomes

Goc(t0 , t f )  =  C flf  eÂ ti -^ B B TeAT̂ i-iUt C T = c rtr  Jo
to iAaB B TeATc da C T 

(3.14)
and the control u(a) is given as

u(a) =  B T^ T(t/,a )C T l f ^ C ^ ( t /, a ) B B V ( t /,a )C Td a ]~ 1 y°(t/)

=  B TeAT^ - ^ C T [ C(fof ~to eA°B B TeAT°da)CT ] y°(tf )

=  GT(cr)Q-1 (tf ,t 0 )y°(tf ) (3.15)
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The energy of the control which drives the system from y_(t0) at t =  t0 to yftj) 
at t =  tj is given in the following:

E = [  uT(a)u(a)da 
d to

r  {  ̂¡ ¡ i  Q(e)GT(c)de ~XG{a)GT{°) [!• g ( t ) s Tu)dt 1 y°(tj) }
( f ) TM 6 - l ( t , , t a) l V i )  (3-16)

Because the system is output controllable, the output controllability Grammian, 
Goc(tf,to), is a symmetric positive definite real matrix. For a symmetric positive 
definite real matrix, we have the following theorem.

Theorem 3.2 [Gan.,1] Given a real, symmetric and positive definite matrix Q, there 
always exists a set of orthonormal eigenvectors Ui,u2, . . .  ,un with corresponding 
eigenvalues Ai >  A2 >  . . .  > A„ > 0. Set Q — | ux u2 . . .  un , then

QTQQ =  diag(\i,\2, • • ■, An) or Q =  Qdiag(\1, A2, . . . ,  Xn)QJ (3-17)

where for the transformation matrix Q satisfies the following

QQT = I 
Q -1 = QT 

\Q\ = 1-

□

Further, the quadratic form defined by the matrix A has the following property.

Theorem 3.3 [Gan.,1] If matrix A is a real symmetric and positive definite, then 
the quadratic defined by the matrix satisfies

x1Ax < Xxx^x (3.18)

where Ax is the largest of the eigenvalues.

□

Assuming that the output controllability of the system has a set of singular 
values as cq >  cq >  ..., > an, then there exists an orthonormal transformation U 
such that

Goc(tf, t0) =  t/d iag{ ax, cr2, •••, on }  U1  (3.19)

67



and the inverse of which is

G0c ( tf^o) =  U dvdg{al \ a2\ •••, an' } ( / T (3.20)

so equation (3.16) satisfies

E =  f  ' uT{a)u(a)da <  (1 /crn)yoT(tf )y°(tf ) (3.21)
Jto

so the singular values of the output controllability Grammian of a system is a very 
important measure. When the smallest singular value is big, then the energy con-
sumed in transferring the outputs from y(to) to y(tj) will be small. It is shown that 
the shorter the time available for control action, the more the energy is needed to 
steer the output from y(f0) to y(tf) [Sei.,1]. This can also be demonstrated by look-
ing at the singular values of the finite time output controllability Grammian. Indeed, 
it is shown in the following examples, the shorter the time available (smaller tj in 
our case), the smaller the singular values of the output controllability Grammian. 
In summary, we have the following proposition.

P roposition  3.1 The singular values of the output controllability Grammian of a 
linear time invariant system are important indicators for the energy needed to trans-
form from one output state to another. In particular, the minimum energy needed 
to transform from one output state to another is reciprocal to the minimal singular 
value.

□

On computing the singular values of the controllability Grammian, we first have 
to find the state transition matrix of the system, $(<, to). For a time varying system, 
commercial numerical packages should be used. However, in the case of linear time 
invariant system, by using the Jordan canonical form of the system we shall be 
able to find analytic solution to the state transition matrix [Gan.,1]. When the 
order of the system is low, the following equations can be employed to compute the 
Grammian at finite time tj.

X (t)  =  /* ' eA°B B TeAT°do, X (0) =  0 
J t o

set eAa =  Y(a)  so
Y(a) =  AeAa =  AY

(3.22)

(3.23)
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Figure 3.1: Singular Values of the Output Controllability Grammian of 
Example 3.1

with initial condition Y (0) =  eA 0 —

tions together, we have

by combining the above equa-

X (t)  =  Y {t)B B TY T(t) , V (0) =  0 
Ÿ(t) =  A Y (t ), y (o ) =  /

so the Grammian X (t)  can be computed by integrating equation (3.24) from t0 to 
tf. For the following examples, we use ode23.m or ode45.m subroutines in Matlab 
to perform the integration [Matlab]. For a detailed description of the algorithm, see 
Appendix I.

In the following we give some examples.

E xam ple (3 .1): Study the following linear time invariant system which is described 
by state-space model as:

- 1 0 - 1 1 0

X  = 0 - 1 0 x  + 1 0

0 0 - 2 0 1

1 0 1

(3.25)

(3.26)

The system is output controllable, because rank[CB CAB C A 2 B ] =  2. The 
singular values of the output controllability Grammian are plotted against t in Figure 
(3.1). Clearly, the singular values are functions of the final time tj. When tf is small, 
the smallest singular value is also small. So by using (3.21), the energy needed is 
large.
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Figure 3.2: Singular Values of the Output Controllability Grammian of 
Example 3.2

E xam ple (3 .2): Study the following system with a slight different input matrix B.

- i 0 -1 1 0
X = 0 -1 0 x + 1 0 %L (3.27)

0 0 - 2 0 0.5

i  =
’ 1 0 

0 1
1
0

X (3.28)

The singular values of the output controllability Grammian is shown in Figure 
(3.2). This system is also output controllable. However, the control will be more 
difficult than the first one in the sense that more energy is needed on transferring 
the same initial state. By examining the smallest singular value of the output 
controllability Grammian, it is smaller compared with the first system.

3.2.2 State controllability

From the definition (2.3), the system (3.1) is state controllable at t0 if and only is 
Gsc(to, if) >  0, for some tj > t0, where Gsc(to,tf) is defined by equation (3.12) except 
C — I  [Ske.,1] [Kai.,1] or

Gsc{tf,to)= [  ’  $(cr,t0)B (t)B T(t )$ T((T,t0 )da. (3.29)
J t 0

The derivation would be the same as the output controllability by setting the 
output matrix C — I  in Section 3.2.1.

For the case of linear time invariant systems, the state controllability is given by 
the following theorem:
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the system inputs u(t) [Kai,l, etc.]. The outputs of the following system:

x(t) =  A(t)x(t) +  B(t)u(t) 
y(t) =  C(t)x(t) + D(t)u(t)

is given by

y(t) =  C (t)$ (t, t0)x(t0) +  [  [D(t)$(t,cr)B(a) +  C (t)8 (t -  a)\u(a)da
Jtn

(3.35)

(3.36)

As defined in Definition (2.3), if the states of the system are observable at time 
to, then the states of the system at any other time t ^  t0 can also be deduced 
from the expression x =  $ (i, t0 )x(t0) +  //o [C (i)$ (i, a)B(a)  +  D(t)S(t — a)} u{o)da. 
Hence, the observability of the system is equivalent to the observability of the states 
at t — ¿o*

Define all the known terms in equation (3.36) as

y ( t )  =  y ( t )~  [  [C(t)$(t,cr)B(cr) +  D (t)6 (t -  a)]u(a)d<
~ Jto

then we have

y (t )  =  c ( t ) $ ( t , t 0)x(t0)

which is equivalent to the following unforced system

x(t) = A{t)x{t), 
y(t) =  C{t)x(t)

a (3.37)

(3.38)

(3.39)

The solution x(to) to equation (3.39) can be found in the following way. Multiply 
equation (3.39) from the left by [C (i)$(i, t0)]T and integrate:

f '  <f>T(t ,t0 )C T(t)y(t) dt =  [ tf <S>T(t,t0)CT(t)C(t)<f>{t,t0)x(t0)dt (3.40)
J t n  — Jtn

or

£(<o) =  ¿J $ T(t,t0 )CT(t)C (t)$ (t ,t0)dt
- 1  f tJ

'to
$ T{t ,t0 )CT(t)y{t)dt (3.41)

Note that for equation (3.41) to exist, the matrix

G.o(to,tf) =  f '  § T(t,to)CT(t)C(t)<S>{t,to)dt 
J t 0

(3.42)

must be invertible. Matrix QSo{to>tf) is defined to be the observability Grammian 
of the system. Because Gso(to,tf) satisfies

jfisoito, t ) =  - g , o(t0, t)A(t) -  AT(t)Gso{t0 ,t) -  CT(t)C (t), g,o(t0, to) =  0 (3.43)
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and also from the structure of Qso(to, tf), Gso(t, if) will at least be nonnegative. 
Hence, if Gso(toAf) is nonsingular, it is also positive definite. So it is concluded 
that the system (3.35) is observable if Gso{loAf) > 0. The sufficiency is established 
by contradiction.

Suppose the system is observable at to, but there exists no tf > t0 such that the 
columns of C(t)<fr(t,to) are linearly independent over [t0 ,tj]. Then there exists an 
n x 1 zero constant vector a such that C (i0)$(T  t0)a =  0 for all t > tQ.

If we choose xft0) =  or, then

y(t) =  C (t)$ (t ,to)a =  0 (3.44)

for all t > to.

Hence, the initial state x(to) =  a cannot be detected. This contradicts the 
assumption that the system is observable. Therefore, if the system is observable, 
there exists a finite tf such that the columns of C(t)$(t, to) are linearly independent 
over [t0 ,tf] and Gso(to,tf) > 0.

T heorem  3.5 [Ske.,1] The linear system (3.35) is observable at time tf, if and only 
if the solution Gso(toAf) is positive definite.

□

For time invariant systems, the observability of the system can be simplified; 
from equation (3.42),

Gso{t0 , t f ) =  i '  eAT^ - to)C TC eA{a- to)do =  [ tf t0 eAT°C TCeA°da (3.45)
J  t.Q J  0

if we take eAa =  ai(cr)Al, then

G s o ( t 0 , t f )  = f *  ai(a)(Al)TC TC ai{cr)Aldo
Jo i=0 ¿=0

\ C T, A?CT, .... ( A - ' ) TC T ] ( l ( a )(t i .t0)

U)q Cl(tf, to)u!o

(3.46)

c
CA

CA n—1

where id is defined by

f t j  —to
Gl(tf ,t0) =  [

Jo

a 0 (a)Ip 

^n —1 (tj)Ip

[ a0(a)Ip, ..., a n_! (cr)/pj da (3.47)
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Because Q(i0, t/ )  is positive definite, the nonsingularity condition of Gso(t0, tj) is 
satisfied if and only if u>o is of full rank.

The rank of the observability matrix is a qualitative measure of the system. Fur-
ther quantitative measure is required in order to assess the error of the observation 
of x(t0). Also when the observer of the system is gain bounded, it is important to 
study the observability quantitatively against the change of the gain.

The singular values of the observability Grammian presents a good quantitative 
measure. From equation (3.41):

x{to) =  [£so(io,i/)]_1 f  1 $ T {a,to)CT (a)y(cr)dcr (3.48)
Jto

where
Gso(t0 , t f ) =  [  $ * ( < 7 ,  t0 )CTC(cr)$(cr,t0)dcr

and Gso{to ,tf) =  fof ‘° eATaC TCeAada for time invariant cases. Because of the 
involvement of the inverse of the observability Grammian, when it is near singular, 
then the error in the observation will be big. When the element of the observation 
matrix changes, the system observability Grammian will also change, and therefore 
the singular values.

On calculating the singular values of the observability Grammian, it can be taken 
as the dual problem of calculating the singular values of the state controllability 
Grammian by taking the A and B matrices as A 4= AT, B <= CT.

In the following we present two examples.

E xam ple (3 .3 ): Study the same system as in example (3.1)

-1 0 - 1 ' ' 1 0 ’
X = 0 -1 0 x + 1 0

0 0 -2 0 1

1 0 1

(3.49)

(3.50)

The singular values of the observability Grammian against time tj are shown 
in Figure (3.3). It is shown clearly that when the observation time is short, the 
observation will be difficult and the error of the observation will be big.
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E x a m p l e ( 3 . 4 ): S t u d y t h e a b o v e s y st e m wit h a diff e r e nt o u t p u t m a t ri x C =  

’ 1  0 1 ’

0 0. 5 0 ’
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X = 0 - 1 0 x  + 1 0
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y
1  o  1

0 0. 5 0
X

( 3. 5 1)

( 3. 5 2)

T h e si n g ul a r v al u e s of t h e o b s e r v a bili t y G r a m mi a n a r e s h o w n i n Fi g u r e ( 3. 4). 

C o m p a r e d wit h Fi g u r e ( 3. 3), t h e s m all e st si n g ul a r v al u e of t h e o b s e r v a bilit y G r a m-

mi a n i s s m all e r f o r t h e s a m e gi v e n o b s e r v a ti o n p e ri o d, a n d t h e r ef o r e it i s m o r e 

diffi c ult t o o b s e r v e t h e i niti al st at e.
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3.2.4 Output tracking

In the definition (2.3) of output controllability, nothing has been said about the 
tracking of the a specified function y(t). The definition is only concerned with 
getting to y(tj). For y(t) to track an arbitrarily specified y (t), the required u(t) 
might have to contain impulses. To synthesise a well-behaved function u(t), we 
shall restrict the class of y(t)  which we will have up to (3 < n — 1 time derivatives. 
To have y(t) =  y(t)  for all t > to, we must require all derivatives to be equal. So

where
dly_{t)

dtl

yit) =  y  (*)>
dy(t) dy{t)

dt dt ’
dfyft) <Py(t)

dt2 dt2 ’

dßy{t) dßy(t)
dtß dtß ’

C Ä x ft )  +  C A l~]lBu +  C A l- 2 B ^  +  
dt

(3.53)

(3.54)

Equation (3.53) can be written in matrix form:

y  =

i--------------
S ̂

"ti

C
CA

xft) =

1

cry 
a

 

____________i . C A ß  .

D 0 0
CB D 0

CAß~lB CB

(3.55)

where y  is taken as an arbitrary vector of dimension (/3 — l)m . From Cayley - 
Hamilton theorem that A& is not independent of Af3~k,k =  1,2, ...,/? — 1, if (3 > n. 
Hence, we cannot track a function with more that n — 1 independent derivatives. 
The solution for the vector of u derivatives is a linear algebra problem which leads 
to the following results:

T heorem  3.6 [Kai.,1] [Ske.,1] [Lue.,1] The linear system (3.1) can track the vector 
function y(t)  up to its first ¡3 < n — 1 derivatives if y(t) is sufficiently smooth to
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h a v e  (3 d e r iv a t iv e s  a n d  i f  th e m a tr ix

D 0 0 0 '
CB D 0 0

CAB CB D 0 (3.56)

c a p - ' b CA^~2B CAP~3B ••• D

has full row rank (/? — 1 )m. Conversely, if yft) is a known output of the system
(3 .1 ), then an input u(t) which generates that output can be determined if Up has 
rank ((3 — 1 )m.

□

Note that the conditions of Theorem (3.6) can never be satisfied whenever D =  0. 
In this case an arbitrary y(t) cannot be matched exactly, but if rank (Up) =  (3m, then 
all derivatives { y ( f ) }  , i — 1 , 2 , . . . , / ? ,  can be tracked (Note the omission of i=0). 
This means that “tracking” occurs with a constant offset yft) — y ft) =  constant.

From equation (3.55) it is clear that to track an expected output y (£), the input 
to the system is determined by the inverse of Up] so the singular values of this 
matrix defines the nature of the control and therefore can be used as the quantitative 
measure of the tracking.

3.2.5 Output disturbability

In real applications, a system is usually disturbed by some unavoidable sources of 
noise. In this case, it would be desirable to eliminate the response in the output 
to the undesirable system inputs. The undesirable disturbances are denoted in
(3.1) as u(t), then the output disturbability is defined for output controllability 
as in Definition (2.3), except that the “input” u(t) is taken as the disturbances. 
The question posed here is whether the response to the disturbance can be totally 
eliminated.

Let J =  0 in (3.1). For yft) to follow only its undisturbed response, it is required

f  CeA(t- a)Hu(a)da =  0 (3.57)
J o

from eA^~A =  Alcti(t — a ), the above equation can be expanded to be

/  C V  A* a f t  — cr)Hui(a)dcr =  0 
J o

(3.58)
i'=0
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or

(3.59)C A 1 H [  at(t — a)io[a)da =  0 
¿=0 Jo

which leads to the following result.

T heorem  3.7 [Ske.,1] Complete disturbance rejection is accomplished in system
(3.1) with D =  0 for arbitrary disturbance Lo(t) if and only if the Markov parameters 
Mt =  C A lH are zero from i =  0 ,..., n — 1.

□

However, it is almost impossible to reject disturbances totally. In order to mea-
sure how close the system is to total rejection of the disturbance, we need to know 
how small are the Markov parameters. Define a matrix

M  =  [ C H  CAH C A 2H ••• C A n~l H ] ,

then the maximal singular value of the matrix can be used as a quantitative measure. 
The smaller the maximal singular value of the matrix, the better the quality of 
disturbance rejection of the system.

3.3 Characterisation of the relatively 
controllable initial state set

From the definition of the state controllability, if a system is controllable, then there 
always exists a control and a finite time, such that the final state can be reached. In 
this definition, no assumption is made about the nature of the control signal. For 
instance, the input signal might be required to contain impulses which is impossible 
in reality.

In real application, the energy of a control signal is always bounded. We define 
the relatively controllable initial state set for a bounded energy.

D efin ition 3.1 ; The relatively controllable initial state set is the set of initial 
states which can be steered by a control to the origin in a finite time T and the energy 
of the control signal is upper bounded by E.

□
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A ssu m in g  that a system  described by state space m odel (A , B , C )  as follows:

x(t) =  Ax(t) + Bu(t) 
y(t) =  Cx(t)

For a given initial state x(t0), the control to transfer the initial state to the origin 
is given in (3.32), which is

- l
u(t) =  - T T{a) [ ft > T {e )T T{e)de ] '  x(t0) 

where lF(e) =  <b(e,to)B(e) and the energy is given in (3.33), which is

(3.61)

E — x 1  (t0) f ’ ’
- l

(3.62)

Theorem 3.8 The control given in (3.61) gives the minimum energy control com-
pared with any other control signals which can bring the x(t0) to the origin.

□

Proof:

(a). Construction of the control: Given system (3.60), the initial state x{t0) 
and the final state x (t j ) =  0, the task is to find u(#) so that,

0 =  x(tf ) =  $ ( t f , t 0 )x(t0) +  [  $ (t /,r )B (r )u (r )d r  (3.63)
J t o

or
-  § ( t f , t 0 )x(t0) =  [  §{tf,T)B(r)u(T)dT  (3.64)

J t o

which can be rewritten as

— S.(t0) =  [  C(T)u(T)dT (3.65)
J t o

where £ (r )  =  <h(fo, t ) j3(t ).

The integration in (3.65) can be approximated by a finite sum where the 
infinite number of indeterminates u(r) are replaced by a finite number of 
indeterminates u(r,), i =  0 ,1 , . . . ,  N  — 1 as

N - 1

-  x(t0) =  £ (r«M r,)A  (3.66)
2=0

where rt =  t0 +  i A ; i =  0 ,1 , . . . ,  N  -  1; A  =  £(r,-) =  <3>(f0, r ,)5 (r t).

Let ¿7 =  | u(r0) . . .  u(r^_i) ] , £  =  [ £ (r0)A  . . .  £ ( t>/_i )A  ] , which is 
an n x TV matrix.
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Then (3.66) can be rewritten as

CU =  - x ( t 0) (3.67)

a set with more unknowns than equations.

Clearly, there can be a solution U if and only if —x(to) G 7£(£); i.e. —x(to) is 
a linear combination of the columns of £. Since x (i0) is an arbitrary n-vector, 
there can be a solution if and only if at least n columns of £  are linearly 
independent. But the fact that row rank equals to the column rank means 
that there will be a solution if and only if

the rows of £ (r ) are linearly independent; (3.68)

i.e. if and only if £  has full rank. Clearly, condition (3.68) is plausible owing 
to the fact that (3.65) will have a solution if and only if the rows of £ (r ) are 
linearly independent.

Because there are more unknowns in the equations, there will be more than 
one solution of to the approximate equation (3.66) when (3.65) is met.

One particular solution is

W  =  - £ " 1[££T]"1i ( i 0) (3.69)

CCT is invertible because the matrix £  has full rank.

(b). Minimality of the control energy: [Kai.,1] In fact, the particular solution 
is a minimum energy solution among all the solutions which will bring the 
initial state to the final state. The minimality of the energy of the particular 
solution is given in the following.

The particular solution 14* to the equation (3.67) is not unique because we can 
clearly add to it any vector 9 such that

C0 =  0 (3.70)

There will always be such vectors because only n of the N  columns of C are 
linearly independent. Therefore there are many solutions, but it turns out 
that the solution 14* has a minimum-length property

\\U* +  6 \\ > \\14*\\ (3.71)

for all 9 satisfying (3.70). The proof follows by noting that

|| U* +  9 \ \ 2 =  (U* +  6 )t (U* + 9) =  U*TU* +  9t 9 +  2U*T0 (3.72)
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B u t by (3 .6 9 ) and (3 .7 0)

U*t 6 =  x?{to)[CCT) - xC0 =  0 (3.73)

so that, as claimed in (3.71),

\\U* + 9\\2 =  ||ZY*||2 +  ||0||2 > ||U*\\2 (3.74)

□

First we study the state controllability Grammian of the system. It has been 
proved that if the system is controllable, then the controllability Grammian matrix 
of the system is always positive for a given time interval tj — t0.

Also from the definition of the controllability Grammian

Q s c  =  /  ' $(<7, t0)B (t)B T(t )$ T(a,t0)dcr (3.75)
j  to

it is clear that the controllability Grammian of the system is also symmetric. So 
from theorem (3.2) we have

Q s c  = QTAQ QQT =  I  Q~X= Q T (3.76)

where A =  diag(Ai, A2,. . ., An), Ai > A2 > . .. > A„ > 0.

The inverse of the controllability Grammian is also a real symmetric and positive 
definite matrix, because

g - 1 =  [q t a  q } - 1 =  q - 1 a ~1 q t ~ 1 =  q t a ~1q

Q (3.77)

The result concerning the set of relatively controllable initial states can be stated 
in the following:

P roposition  3.2 The set of relatively controllable initial states which are possible 
to be transferred to zero with the given energy E in a finite time tj — to is determined 
in the Q coordinate by the condition:

-^  +  -^  +  ■■■ +  ^ < E  (3.78)
Al A2 An

which is a hyper-elipsoid. The vector [ei, 6 2 ,..., en]T is defined as t — QTx.
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□

Remark 3.1: Because \Q\ =  1, the set of initial conditions which are possible to be 
brought to zero in the original coordination is a rotated version of the hyper-elipsoid 
defined in (3.78).

□

Remark 3.2: Since Qac is a function of tj — to, the singular values of Qsc are also 
functions of — to, so is the hyper-elipsiod.

□

From expression (3.78), it is clear that for a given amount of energy, the set 
of the initial states which can be brought to zero is defined by the eigenvalues of 
the controllability Grammian. Due to the symmetry and the positive-definiteness 
of the controllability Grammian, the eigenvalues are the square roots of the singular 
values.

Using linearity argument, it can be shown that from a given initial state and a 
given amount of energy, the accessible final states will also be a hyper-elipsoid set. 
The bigger the eigenvalues, the further final states can be reached.

Theorem 3.9 For a given linear time invariant system with zero initial condition, 
when subject to bounded energy control, the maximal reachable states form a hyper-
ellipsoid whose axes are defined by the singular values of the controllability Gram-
mian and the energy bound.

□

3.4 Input-output interaction indicators 
and simple control scheme selection

In multi-input multi-output systems, one output is affected by more than one in-
put in general. In industrial control, simple SISO control schemes, in which one 
input is controlled only by one output, are favoured and therefore it is important to 
choose the input variable which is most closely related to the manipulated output 
variable. Here we discuss how to select an output from the output set to control an 
input from the input set with the assumption that the input and output sets have 
already been selected. The couplings are selected usually based on empirical inter-
action rules. The interaction among the various subsystems can be assessed by Rel-
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ative Gain Array [Bri.,1], Relative Dynamic Array [Wit. & McA.,1] [Tun. & Edg.,1] 
[Gag. & Seb.,1] [Gro. Mor. & Hoi., 1] [Man. Sav. & Ark.,1] and Block Relative Gain 
which will be reviewed first. However, these rules lack theoretical justifications. By 
employing quantitative output controllability we can establish an interaction mea-
sure between the inputs and the outputs on a solid basis. Having developed a 
new interaction measure, we finally put forward a novel criterion for input output 
coupling.

3.4.1 Relative Gain Array

Relative Gain Array [Bri.,1] is a steady-state interaction measure among the inputs 
and the outputs. For a square system with n inputs and n outputs, the Relative 
Gain Array is defined as a matrix

Gr  =  [A,j] ( 3 . 7 9 )

where AtJ =  • (^Vildui)uk=o,k±j is the steady-state gain between u3
and yi when no control is applied to the system. (dyt/duJ)yl=0j^l is the steady-state 
gain between uj and yi when feedback control involving all other inputs Uk,k =  
1,..., n, k /  j  and all other outputs yi, l =  1,..., n, l /  i is applied to the system such 
that at the steady state all yi,l — 1 , n, / yf i are held at their nominal values. The 
interaction measure is only applicable when the controller contains integral action 
in each of the control loop.

The rows and columns of Gr  in equation ( 3 . 7 9 )  satisfy

n n
£ A ,  =  £ A u  =  l  ( 3 . 8 0 )

t=i j=i

and the value AtJ is an indicator of interaction between Tth input and j-th output. 
The bigger the value, the stronger the interaction. Relative Gain Array can also be 
used as an indicator for selecting the input-output pairing.

3.4.2 Relative dynamic array

R elative D ynam ic A rray [Gag. h  Seb.,1] is an interaction measure based on the 
open-loop responses of the system. The Relative Dynamic Array is defined as

Gd  =  [A ,j ] ,  A M  = 4>tJ(0 )M 0 )  ( 3 - 8 1 )
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where <j>ij{9) is defined as the integral of the open-loop step response, y,(i), to a unit 
step change in u3 at time, t =  0,

Vi{t)dt (i j 1,2, ...,n) (3.82)

and in (3.81) $(#) =  [4>ji(9)\ = [$r (0)]“ 1. The time period, 0, over which the 
integration is carried out is arbitrary depending on the signal frequencies under 
study; it was suggested 6 be specified as 20% to 100% of the dominant time constant 
of the process. The elements in a row or a column satisfy

X>W=X>«=1 P-83)
¿=1 j= 1

The values of the elements of the Relative Dynamic Array are indicators of 
dynamic interaction between the inputs and the outputs. If 9 —> oo, then the 
Relative Dynamic Array approached Relative Gain Array asymptotically.

3.4.3 Block relative gain array [Man. Sav. &: Ark.,1]

B lock  R elative Gain is a measure of interaction between subsystems. When each 
of the sub-systems contains only one input and one output, then it degenerates to 
Relative Gain Array. Block Relative Gain is defined for an n x n square system 
as follows. Assuming that the system consists of two square subsystems, one has a 
dimension m X m and the other is (n — t o ) X (n — t o )

p 1 771 n —m  "

h =  G M r II Gn G 1 2

. —2 . m2 G 2 1

------1
CN<N

C5

(3.84)

the plant is to be controlled by a decentralised control structure in which the first 
t o  outputs, y , are interconnected with the first m inputs, ul5 and the last n — m 
outputs, y , to the last n — to inputs, u2. The feedback configuration is shown in 
Figure (3.5). where the feedback F  and the gain K  have the form

then

K

m  n —m  " m  n —m  ~

(3.85)

d y ,

d u ^ y 2 =  o  

F  =  0

=  G n ( 3 . 8 6 )

dy_^

d u J y2 = 0  

F 1 =  0 

i*2 — /

=  ( [G 1 1] n )  1 =  G n  -  G i 2 G 221G21 ( 3 . 8 7 )
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Figure 3.5: Simple Control Configuration

where [G 1]n is the first m x m block of G In (3.87), Gn denotes the block 
gain between y1 and Uj when all the loops are open. Similarly in (3.87), ([G' -1]ii)_1 
denotes the block gain between y and Uj when the first m loops are open and the 
last n — m loops are closed and under perfect control, i.e. y2 =  0. Then the left and
right Block Relative Gain can be defined as

d h
% 1

BRG/ = 9uj y2=° 
F  =  0

• 9t£i Ü3 =  0 f, =  0 
F 2 =  I  _

-I - l

-1
BRGr = dt£j ------1

3 O *—<
Il II II
(N 

rCN
3»|k fc.

• duj ° o 
Il II

G n iG "1]!!

[G_1]11G11

(3.88)

(3.89)

The left (or right) Block Relative Gain can be served as an indicator for the 
interaction between the two subsystems. When BRGi is close to identity, the inter-
action is weak and otherwise, the interaction is strong. So the both RGA and BRG 
can be used as an indicators for selecting the input-output pairing.

3.4.4 Energy criterion for input-output interaction

The above methods suffer from the drawback that the system must be square. Fur-
ther, in each of the control loop, there must be an integral unit. However, in real 
application, systems need not to be square and not all the control loops have to 
have an integral unit. In order to overcome these drawbacks, we can develop the 
quantitative output controllability into an interaction indicator between the inputs 
and the outputs. As having been pointed earlier the singular values of the output 
controllability are related to the energy needed to transfer the output from an initial 
zero state to a particular final state. If an input is not connected to an output, then 
the desired state of that output cannot be achieved by exercising control from that
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un U\2 ^ l p i U2\ W2p2 U s  1 'U'spa

2/n 0.01 0.54 0.2

y 12 0.31 0.33 0.02

2 / lm i 0.02 0.6 0.07 0.34

2/21 0.12 0.22 0.89

ysms 0.35 0.71 0.6

Table 3.1: Input-output interaction table.

particular input. If the input is weakly connected to an output then the energy 
needed will be large. Further, the energy needed to achieve a certain transformation 
of the output is proportional to the inverse of the singular values, therefore, the 
greater the values of the singular values, the stronger the interaction.

In the following we propose the procedure for fine control scheme selection.

Step 1. Calculate the output controllability from any of the input U{,ut € Sj in 
the input set which is associated with the output j .

Step 2. Select the input u j  which gives the maximal value for the indicator.

□

Continue this procedure for every output in the output set, then finally one input 
for each of the output can be found and the controller design can be carried out 
based on the selected inputs and the outputs. The control input for the output 
will be chosen in such a way that the interaction indicator based on the output 
controllability Grammian gives the largest among all the input sets. Clearly, the 
system need not to be square. Table 3.1 shows an example of the values of the 
interaction indicators for a fixed time T.

R em ark 3.3: The selection procedure works on systems which are both square and 
non-square.

□

R em ark 3.4: The selection is basically an open loop criterion. The effect of the 
feedback loop will be difficult to account for, because the procedure for cal-
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culating the singular values of the output controllability Grammian needs the 
exact values of the parameters of the feedback loop.

□

R em ark 3.5: The algorithm is based on the computation of eAt of the system and 
works well for small dimension systems. When the dimension of the system 
is large, some other fast algorithm for calculating the output controllability 
Grammian should be investigated and implemented.

□

R em ark 3.6: The selection procedure can be applied to the remaining subsystem 
when some of the inputs and outputs have already been fixed for particular 
control purposes.

□

3.4.5 Example

In the following we study a 2 x 2 system which is described both in the state space 
and transfer model as:

G(s) =
i

s + l
1

(s+l)(s4-2) 
1

_ ( s + l ) ( s + 3 )  s + 3

(3.90)

and the corresponding irreducible state-space realisation of the system is:

-1 1 1
-1

B =
1 0

- 2 0 -1
- 3 1

2 1

c  =
1 0 1 0
0 - I  0 1

The RGA of the system can be calculated as

g r  =

So by using the selection criteria, 1-1 and 2-2 pairing is favoured.

2 - 1

-1 2
(3.91)

Now, if we look at the quantitative output controllability indicators which are 
displayed in Fig. (3.6). For t=4 sec., the singular values of the output controllability 
Grammian from inputs to the outputs are as shown in Table 3.
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Figure 3.6: Singular values of the output controllability Grammian 
from Ui to yj

Table 3. Singular values of the output controllability Grammian from u,- to y:
(i,j =  l,2) (t=4sec)

2/i V2
ul 0.500 0.042

U2 0.084 0.164

So the pairing 1 — 1 and 2 — 2 is also favoured.

3.5 Measures for eigenvalue mobility

Since the set of system eigenvalues is a very important indicator for various sys-
tem properties, the reallocation of the eigenvalues via state feedback as well as 
output feedback has important implications in improving system stability, dynamic 
responses, robustness, etc. It has been proved that the set of closed-loop eigenval-
ues can be arbitrarily assigned by state feedback if and only if the system under 
consideration is controllable [Won.,2], However, controllability of a system does not 
give any information on how far can the eigenvalues be moved when the system is 
subject to constrained feedback. Developing measures for near uncontrollability of 
a controllable system is important in answering questions such as how far can the 
states of a system be reached when subject to bounded energy controls, which has 
been studied in Section 3.3, or how far can the closed-loop eigenvalues be shifted 
when the feedback gains are constrained. The mobility of the closed-loop eigenval-
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ues was found to be related to the distance of the controllable system from the set of 
uncontrollable ones [Eis.,1] [Bol. h  Lu,l] as well as to the angle between the input 
direction and the set of eigenvectors [Tar.,1].

3.5.1 Distance between a controllable and the nearest un-
controllable system

Basically all systems are generically controllable, or put it in another way, the set of 
controllable systems is open and dense in the finite dimensional parameter space. In 
the neighbourhood of a controllable (A, 7?), there may not exist any uncontrollable 
pair. Therefore defining the distance between a controllable pair and a nearest 
uncontrollable pair makes sense [Bol. & Lu, 1].

D efin ition 3.2 For a given pair (A ,B ) define the distance between (A, B ) and a 
nearest uncontrollable pair by

y(A, B) — min ||AA, AJ9||2 
AA, AB

subject to (A + AA, B +  A B) being uncontrollable

where A  A £ C nXn,A B  £ Cnxl. When the perturbations are real, the distance is 
defined as

p,r(A ,B )  =  min \\AA,AB\\2 
A A, AB real

subject to (A +  A A, B +  AB) being uncontrollable

where A A  £ RnXn,A B  £ RnXl

□

By using singular value decomposition, the distances are equivalent to the min-
imum of the smallest singular value [si — A, B] for all the complex or real values of 
s, i.e.

p(A jB )  =  mincrn(s / — A, B) 
s £ C

y,r(A ,B ) =  mman(sl — A ,B )  
s e R

where crn(s l  — A) is the smallest singular value of [si — A, B],
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Computing pr(A, B ) numerically can be an involved process. However, an upper 
bound on fir(A, B) can be obtained based on the singular values of the controllability 
matrix Qc =  [ B, B A , • • •, B A n~l ].

Applying singular value decomposition on QC: we have

Qc =  Y £  0 U* (3.92)

where £  =  diag { cri, • • •, <rn}, Y  6 Rnxn and U* G Rnlxnl are orthogonal matrices. 
Then an estimate for the distance is given as [Bol. & Lu,l]

p(A, B) < fj,r {A, B ) < Qn (3.93)

where Ap is the companion form of A.

Based on the distance fi(A, B ), the mobility of eigenvalues when subject to state 
feedback control can be stated as:

T heorem  3.10 [Bol. &; Lu,l] Assume that (A, B) is a controllable pair and Xn is a 
simple eigenvalue of A. Then for any sufficiently small 7 > 0, there exists a feedback 
matrix K  with norm bounded by 7 such that all the closed-loop eigenvalues of the 
system differ from \n by at least 7p(A ,B).

□

R em ark 3.7: The result presented above is only applicable to the case when the 
norm bound 7 on the gain is sufficiently small and matrix A is simple.

□

3.5.2 A  direct measure of eigenvalue mobility

A direct measure of eigenvalue mobility, when subject to output feedback can be 
developed [Tar.,1],

Consider a linear multivariable system

x(t) =  Axft) +  Bu(t)
y(t) =  Cx(t )

(3.94)

with A having distinct eigenvalues A,,i — 1,2,...,n . An output feedback law is 
applied as:

u =  —8Ky_ (3.95)
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where 81\ is the incremental m x / feedback matrix. The set of eigenvalues of the 
closed-loop system is denoted as A,,A, =  A, +  8A,-. Then we have the following 
definition of eigenvalue mobility.

D efinition 3.3 [Tar.,1] The mobility of the eigenvalues A, of the system (A ,B ,C )  
under output feedback is defined to be

/Xl ~ 118I<1,2
(3.96)

r sxi SX,  I
SKn SKU

SXi
6K

SX, 6\,
- ^ m l Sh’ml -1

□

Let et- and f . denote the normalised right and left eigenvectors of A , then it has 
been shown that the mobility of A, may be expressed by:

li, = \\C iig  b \\2 (3.97)

R em ark 3.8: It is clear from the above result that if an eigenvalue of a system is 
uncontrollable, then f .B  =  0 and therefore, the eigenvalue mobility is zero.

□

The eigenvalue mobility can further be related to the distance between the eigen-
value and the zeros of the system. In fact, let G(s) be the transfer function. Then 
it can be expressed as:

G(s) =  C ( s l -  A)~lB =  ]T
R i

^ ( s -  At)

where R, is the residue matrix

Ri = [ { s -  \i)C{sI -  A)~'b ]

Set hi(s) =  nj*=1 ¡-¿¿(.s — A;) and W(s) — C adj (s i  — A )B , then

(3.98)

(3.99)

Ri
W (  A,-) 
hi(At)

and
_  m w h

Oii Oil | hl(Xt) |

(3.100)

(3.101)
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w h e r e a, i s a p o si ti v e c o n s t a nt r el ati n g t h e ei g e n v e ct o r s t o t h e n o r m ali s e d ei g e n v e c-

t o r s. T a k e a n el e m e n t w t J( s ), i —  1 , ..., m ,j =  1 ,...,/ f r o m W ( s ) a n d w rit e it i n t h e 

f oll o wi n g f o r m

j ( ^ )  j 2 )  ( < 5 ^ ij p) ( 3 . 1 0 2 )

w h e r e  i s a c o n s t a n t a n d  a r e t h e r o o t s of wt J( s) —  0 .  T h e n t h e ei g e n v al u e 

m o bili t y i s r el a t e d t o t h e di s t a n c e b et w e e n t h e ei g e n v al u e a n d t h e z e r o s of t h e s y st e m 

i n t h e f oll o wi n g w a y:

T h e o r e m  3. 1 1 [ T a r., 1] T h e ei g e n v al u e m o bilit y o f  / q s ati sfi e s

| hi  ( )  |

1 1/ 2

E  2  a U xi -  z m ) 2 ■ • • ( A* - z v p) 2 ( 3. 1 0 3)
i = l  j l = l

□

A ei g e n v al u e m o bili t y m e a s u r e f o r s y st e m s wit h r e p e at e d ei g e n v al u e s h a s al s o 

b e e n d e v el o p e d, t h o u g h it i s m u c h m o r e c o m pli c a t e d [ T a r., 1].

R e m a r k  3. 9: If A,- i s a z e r o of k k( s), t h e n t h e m o bili t y o f t hi s ei g e n v al u e i s z e r o. 

T hi s c o m pli e s wit h t h e e xi s ti n g t h e o r y b e c a u s e i n t hi s c a s e t h e r e i s a p ol e- z e r o 

c a n c ell a ti o n a n d t h e r ef o r e t h e s y st e m i s u n c o n t r oll a bl e.

□

3. 6 S u m m a r y

I n t hi s c h a p t e r, f u rt h e r q u a n tit a ti v e m e a s u r e s h a v e b e e n d e v el o p e d f o r o u t p u t c o n-

t r oll a bilit y, s t a t e c o n t r oll a bili t y a n d o b s e r v a bilit y. T h e s e q u a n tit a ti v e m e a s u r e s a r e 

b a s e d o n t h e o u t p u t c o n t r oll a bilit y G r a m mi a n, st at e c o n t r oll a bili t y G r a m mi a n a n d 

o b s e r v a bili t y G r a m mi a n. B y u si n g t h e q u a ntit a ti v e st at e c o n t r oll a bilit y, t h e s et of 

i ni ti al st at e s w hi c h c a n b e b r o u g ht t o t h e o ri gi n wit h b o u n d e d e n e r g y c o n t r ol si g n al s 

h a s b e e n p a r a m e t e ri z e d.

T h e q u a n ti t a ti v e o u t p u t c o n t r oll a bili t y t h e n i s f u rt h e r d e v el o p e d t o b e a n i n-

t e r a c ti o n m e a s u r e b e t w e e n t h e i n p ut s a n d t h e o u t p u t s. O t h e r i n t e r a c ti o n m e a s u r e s 

b a s e d o n t h e t r a n sf e r f u n c ti o n s o f s y st e m s h a v e b e e n r e vi e w e d. A s c h e m e f o r t h e 

s el e c ti o n o f c o n t r ol st r u c t u r e h a s b e e n p r o p o s e d a n d t h e i n p u t- o u t p u t i n t e r a cti o n 

i n di c a t o r, o b t ai n e d e a rli e r, i s u s e d a s a n c ri t e ri o n f o r t h e s el e c ti o n o f si m pl e c o n t r ol 

st r u ct u r e s.

T h o u g h t h e p r o bl e m o f cl o s e d-l o o p p ol e a s si g n m e nt o f c o n t r oll a bl e s y st e m s vi a 

st at e f e e d b a c k h a s b e e n s ol v e d, s o m e r el at e d i s s u e s, s u c h a s r el a ti v e p ol e m o bili t y

9 2



with respect to the controller gain, or how far can one move the poles when the 
controller gain is bounded, are still open. Some measures for relative pole mobility 
have recently been developed [Bol. & Lu,l] [Tar.,1], but the problem of pole mobility 
of a system when subject to bounded state feedback has yet to be addressed. This 
will be the main concern of the next three chapters.
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Chapter 4

ROOT LOCATION OF 
POLYNOMIALS —  
BACKGROUND RESULTS

4.1 Introduction

As having been reviewed in Chapter 2, the poles of a system are important stability 
indicators. When the parameters of a system are subject to uncertainties, system 
stability might be at stake. Stability robustness of systems under parameter uncer-
tainties has been extensively investigated [Lun.,1] [Doy. & Ste.,1] [Kai.,1] [Chen,l] 
[Ack.,2] etc. Here we are interested in the effect of controllability or near uncon-
trollability on the pole mobility under state feedback and what can be achieved 
under bounded feedback such as stabilisability. The effect of state feedback on the 
mobility of the closed-loop poles is manifested through the coefficients of the closed- 
loop characteristic polynomials [Kar. & Shan,2], Thus, this chapter provides some 
results on the root distribution of polynomials in relation to their coefficients. In 
Section 4.2, important classical results concerning the root distributions of polyno-
mials are presented [Mar.,1] [Xu,l], Results on the root distribution with respect to 
the coefficient variations of polynomials are reviewed in Section 4.3 [Ost.,1] [Gan.,1] 
[Arg.,1] [Arg.,2],

The relation between the coefficients of the characteristic polynomial and the 
physical parameters is usually complicated. But if we assume that the variations 
of the physical parameters are confined within upper and lower bounds, so will 
be the coefficients of the characteristic polynomial. Polynomials whose coefficients 
are within interval regions will be termed as interval polynomials. The root dis-
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tributions of interval polynomials have been studied by Kharitonov [Kha.,1] and 
it has been proved that in the complex coefficient case, the whole set of interval 
polynomials will have all the roots in the left half of the complex plane if and 
only if eight specially chosen polynomials all have their roots in the left half of the 
complex plane. The number of the special polynomials reduces to four for poly-
nomials with real coefficients. Since the introduction of this seminal result, many 
applications and extensions based on this have been developed. The robust control 
theory especially has taken a new impetus by the study of properties of interval 
polynomials [Barm.,1] [Bia. & Gar.,1] [Bie. Hwa. & Bha.,1] [Hoi. Looz. &: Bar.,1] 
[Cha. &: Bha.,1]. in Section 4.4, some of the Kharitonov type of results are re-
viewed.

In connection to stability robustness, problems such as how far a stable system 
is away from instability, are very important. Having found the distance of a stable 
system from instability, maximal allowable variations in the parameter space can 
be studied. Results obtained by D. Hinrichsen and A. J. Pritchard [Hin. & Pri.,1] 
[Hin. & Pri.,2] are reviewed in Section 4.5. A dual problem concerning the minimum 
distance of an unstable polynomial from stable polynomials has been put forward 
and methods for solving the problem have also been suggested.

4.2 Survey of previous classical results on 
polynomials

The relationship between the root distribution and the coefficients of the polynomials 
has been studied for a long time. Some results are summarised below from Marden 
[Mar.,1].

T heorem  4.1 All the roots of f ( s ) =  sn +  a isn_1 H------- ha„ € P[s] lie in the circle
|s| < r, where r is the positive root of the equation:

|q i |s ” 1 + ...-)- |orn_i 15 +  |an| — s11 =  0 (4-1)

□

The result given in [Mori,l] is basically the same.

T heorem  4.2 All the roots of f ( s )  =  s" +  a isn_1 -|-------V an € P[s], lie in the circle

where i — 1 ,2,..., n.

|r| <  1 + m a x | a ,| , (4 -2 )
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□

Theorem 4.3 The root rx of largest modulus of f ( s)  =  sn+  aisn 1 + .. . + «„ E P[s], 
satisfies the inequality

(21/71 — l)r  < |rx| < r (4.3)

where r is the positive root of the equation ( f . l ) .

□

Theorem 4.4 For any p and q such that p > 1,9 > 1,

1 + 1 =  1 (4.4)
p q V '

the polynomial f ( s )  — aos" +  ctis"-1 +  • • • +  an, has all its roots in the circle

|r| < [l +  E^o1 l « . f ] 9/P < (1 + n ^ M * )1/* (4.5)

where M  =  max |at-/ao|,i =  1 ,2 ,...,n.

□

Corollary 4.1 From the above result for p = q =  2 we have the following

n

|s| < {1 +  laj|2} 5 < \/l +  nM 2 (4.6)

□

Some further useful bounds are given in Marden [Mar.,1] and they are sum-
marised below:

Corollary 4.2 Let f ( s )  =  s11 +  » i s ” 1 +  • ■ • + an £ P[s]. Discs which contain all 
roots of f ( s )  are defined below by their radii:

I5 ! 5: [ l  +  |a n | 2 +  |o4 i—l  — Qin|2 +  • • • +  | a i  — c*2 |2 +  |1 — « 1

\ s \  <  |<^t|1/l =  ( l ^ i l  +  |o:2|1/2 +  |«a3 |1/3 +  |Qr„|1/Tl)
3 =  1

|s| <  7 =  max(|a„/an_1|,2|an_1/Qn_2|,. • • ,2 |q i |)

1/2
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For special subfamilies polynomials the following results are also stated from 
Marden [Mar.,1].

C orollary  4.3 If f ( s )  =  s” +  a 1sn_1 H-------\-an G P[s] and an > a n_! > . . .  >  a2 >
a i >  1, then f ( s )  has no root in the disc |s| < 1.

□

□

C orollary 4.4 If f ( s )  — sn + 1 + • • • -f ctn G -P[s ] ,q ,- > 0, then all its roots lie
in the circle |s| < p, where

p =  m ax{an/ttn_ i ,a n- i / o n_2, . .. ,a 2/a i ,a i }  (4-10)

□

C orollary  4.5 If f ( s )  = s n +  aiSn_1H------hQ'p5n-p+  ap+1sn_p_1 + . .  . +  an_!S +  a n G
P[s] and the following condition holds true:

n

lapl > 1 +  la=l (4.11)

then f ( s )  has exactly p roots in the unit circle.

□

C orollary  4.6 If f ( s )  =  sn +  a js"-1 + . . .  + a„_i +  an G P[s]. All roots of f ( s )  
lie in the circle |.s| <  max(L, where L is the length of the polygonal line
joining in succession the points 0 ,an,an_i, . . a 2, an, 1.

□

Note that the length of the polygonal line joining succession the points 0, a n,an_i, 
• • ■ * a 2, « i ,  1 is

L — |a„| +  |an_i — a n \ +  . . .  +  |ai — a 2| - f | l — a j |  (4 . 1 2 )

and thus the bound in Corollary (4.6) is expressed in terms of the successive differ-
ences of the coefficients.

Some improved results are given below.
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T heorem  4.5 [Xu,l] For the polynomials f ( s )  — sn + o^s71 1 +  • • • +  an £ P[.s], if 
there exists a constant r and a positive integer m such that

E l 'T-'im-l-l . . . V-72“ 1 TTm rv
| = m  — 1 ¿ - ^ J m - 2 = m _ 2 LLk = l LXJk J k -1 r~l <  1 (4.13)

where j 0 =  0 , j m =  i and a, =  0 if i £ N =  {0, then the roots rk (k £ N )
of the polynomial lie within a circle of radius r centered on the origin of the complex 
plane, i.e.,

|nt| < r, i e  N. (4-14)

If
m(n —1)

E l v̂ t V̂ jm—1 _ _ \r>J2 TTm
| 4 ^ i m - 1 = 0  ¿ ^ J m - 2 = 0  ‘ ‘ ’ l i f c = l <

¿=0
r a n — i  | „r < (4-15)

where jo =  0, j m =  ¿,a, =  0 as i > n on the left side of the inequality (f.15), then 
we have

|rfc| > r, i e i V .  (4-16)

□

T heorem  4.6 [Xu,l] If there are positive integers p,m and a real numbers (|s| < r) 
such that

i ( n + p )

E v-m- 1 . . . V J2_1 n m i n  — so- 1| iik=l\uiJk-Jk-l ^̂ Jk ~Jk-l ~P I r~l < 1

(4.17)
where jo =  0, j m =  i and a t- =  0 as i (f N , then the roots of the polynomial satisfy

|rfc| < r, i £ N. (4-18)

□

4.3 Perturbation results

When the coefficients of a polynomial are subject to uncertainties, so are its roots. 
In the literature, perturbation results are abundant. The results can mainly be clas-
sified into two categories. Firstly, the root distribution of the perturbed polynomials 
with respect to the roots of the nominal polynomials, and secondly, the roots of the 
perturbed polynomials with respect to a region which, for instance, can be a half 
plane or a circular region of particular interest. In the stability analysis of control 
systems, the second class of results is more important.



4.3.1 Relation between the roots of the nominal and 
perturbed polynomials

Consider two polynomials

/(■s) =  sn +  ui-sn 1 +  • • • +  fln-i s +  an (4.19)

g(s) = s11 + b\Sn 1 + • • • + bn_iS + bn (4.20)

Let the n roots of f ( s )  be x i,. ..,x n, those of g(s),yi,  ...,yn. The estimates for 
the differences between and yt- in terms of the expressions 16t — a, | is given below.

Set
7 =  max(l, |xt|, \yi\), T =  max(|a,|1/', |̂ |1/l), 

!  !>0

and it is well known that 7 < 2T. 

Introduce the expression

¿ | 6 f -a,-|7n ‘
' *=1

(4.21)

(4.22)

Then we have the following results.

T heorem  4.7 [Ost.,1] In the e neighbourhood of any root of f (s ) ,  x q , there is always 
one root of g(s), yo.

□

T heorem  4.8 [Ost.,1] Let the n roots of f ( s )  be X i,...,xn and those of g(s) be 
yi, . . . ,yn. Then the roots of f (s) ,  g(s) can be ordered in such a way that we have

\xt — yi\ < 2ne (i =  1,2,..., n). (4.23)

□

The value e which depends on the roots of g(s) can be estimated in the following 
way. Set

6 =  m ax\bi — a,-1, (4.24)i
which is a known number. Then e11 < 8 X "̂r11(2r)L

On the other hand, we have for any g >  0 the relation

n —1

^  g1 < m ax(l,/in) min 
¿=0

n ,

1 -  h\,
(4.25)
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So we obtain

< ¿1/nmax(l,2r)’
1

mm n,
i + 2ri

Another estimate is obtained by assuming

\bt -  at\ < oT‘ , (i =  l ,2 ,...,n );

then
n

en <  a ^ r n(2r)”- i = <jFn( l + 2  +•••+ 2 " - 1)
i=i

e <  2 T a 1/n.

(4.26)

(4.27)

(4.28)

(4.29)

A later result without involving the roots of the perturbed polynomial is pre-
sented below.

T heorem  4.9 [Ost.,1] Let Fj =  m ax{l, |at-|, |6,|}; d =  Ya =i \ai — bt\, then the roots 
of the perturbed polynomial are related to the original polynomial as

\Vi -  Xi\ < (n +  2)r1d1/n. (4.30)

□

R em ark  4.1: The results presented here are useful later on in studying the closed- 
loop pole mobility and system stabilisability when a system is subject to bounded 
norm feedback, where the perturbation expresses the feedback term.

□

The absolute deviation of the roots of the perturbed polynomial from the nominal 
ones may not be the main interest. Instead, very often it is desirable to know the 
sensitivity of the roots when subject to perturbations. The relative sensitivity of 
the roots with respect to the perturbations is given as

T heorem  4.10 [Ost.,1] Consider two polynomials

f ( s )  =  Sn -f  a\Sn 1 +  • • • +  fln-l-S +  On (4 -3 1 )

g ( s )  =  s n +  b isn +  • • • +  bn- i s  +  bn (4 .3 2 )

and assume that an /  0 i.e. that f ( s ) has n finite x t (z =  1,2, ...,n) and x,- ^  0. 
Assume further that for a certain positive r with

4n r 1/n <  1 (4.33)
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\k -  a,-| <  r|a,-|, (i =  0 , 1 , n)

Then the n roots y\,...,yn of g(s) can be ordered in such a way that

w e h a v e

Mlz, -  1 < 8nr1/", (i =  1,..., n)

(4.34)

(4.35)

□

4.3.2 Perturbation with respect to the left half of the 
complex plane

The eigenvalues of a system are the indicators of the system stability. If all the eigen-
values of the system have negative real parts, the system will be stable. Calculating 
the eigenvalues of the system is equivalent to finding all the roots of the character-
istic polynomial. However, without actually computing the roots of a polynomial, 
it can be decided indirectly whether or not all the roots of a polynomial are in the 
left half of the complex plane by using Routh-Hurwitz Theorem or Hermite-Biehler 
Theorem. If a polynomial has all its roots in the left half of the complex plane, the 
polynomial is also referred to as Hurwitz.

Theorem 4.11 (Routh-Hurwitz Theorem [Gan.,1]) All the roots of a real polyno-
mial f ( s )  =  a 0sn +  605n_1 +  au-s71-2 +  M " -3 -)--------h ams +  bm 6 R[s], (a0 /  0)
have negative real parts if and only if the following inequalities hold true,

cxoAi > 0, A2 > 0, C*oA 3 > 0, A4 > 0,...,
a0A n > 0 

A n > 0

where A j , . . . ,A n are defined as

A i =  H = b0, A 2 =  H

A n =  H
1 2 
1 2

2 i - bo bi

2 ) - a 0 a i

bo W bn — \

OiQ Oil

0 bo •' • bn _ 2
0 a0 '*' «n-2

(4.36)

(4.37)
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and H is defined to be the Hurwitz matrix as

H

b0 bx n̂—1
«0 a 1 &n— 1
0 bo bn—2
0 «0 &n- 2

oik =  0 fo r  k > f ,  \ 
bk =  0 fo r  k > J

(4.38)

□

and Hermite-Biehler Theorem is given as:

T heorem  4.12 (Hermite-Biehler Theorem [Gan.,1]) Let p(s) =  h(s2)-\-sg(s2), then 
p(s) is Hurwitz if and only if there exist positive real \i,gi and c such that

h(-L0 2) =  (Aj -  iv2)(A2 — uj2) ■ ■ ■ (A/j — to2) (4.39)

g( -uj2) =  c{gx - u j 2){p2 -o> 2) • • • (/¿,2 - t o 2) (4.40)

0 < Aj < px < A2 < p2 < ■ ■ ■
where J /x =  |, /2 =  f  — 1 / or n even

j  /x =  l2 =  ^  for n odd

□

When the polynomial coefficients are subject to perturbations, the Hurwitz- 
ness of all possible polynomials with the given perturbations can be checked in the 
frequency domain by making use of the Hermite-Biehler theorem and continuity 
argument ([Arg.,1], [Arg.,2]). Furthermore, by solving a set of inequality equations 
iteratively, the maximal allowable perturbations can be decided. The main results 
are outlined as follows:

Consider the nominal polynomial

p(s) =  ansn + an-xsn +  ■ • • -f axs +  Go £ Lt[s] (4.41)

which is assumed to be Hurwitz. Let the coefficients i =  0 ,1 ,...,n be subject 
to perturbations by an amount ¿a,-, i =  0 ,1 ,...,n. The first problem is to check 
whether the polynomials are Hurwitz when |ia,j < A  a;, i =  0,1,..., n, while the 
second is to calculate the maximal A a% which guarantees the Hurwitzness of the 
perturbed polynomials. Denote the set of all possible polynomials as P(s,6a).

If only the odd (even) coefficients were to be perturbed, the result is given as:

T heorem  4.13 [Arg.,2] The perturbed polynomials P(s,8a) remain Hurwitz if the 
odd coefficients satisfy

max Ag(uk) <  \g{ju>k)\, Vcok (4.42)
A  a,-, i = l , 3 ,5 , .. .
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where u>tt are the frequencies at which the polynomial h(s) satisfies =  0 and

A g f i o k )  =  Aoq +  Aa^to^ +  Aa^to^. +  • - • (4 .4 3 )

□

Define

9iCM  = g{joo) -  Ag(jto)

02 (jw) =  g(juj) + Ag( ju)

where A g(co) is an odd-coefficient polynomial which satisfies equation (4.42).

Since A g(to) > 0, Vtu, to ^  0, it is obvious that all odd-coefficient polynomials 
g(jto) with perturbed coefficients satisfying equations (4.42) also satisfy

M M I  <  ItfCHI <  M M I ,  Vw. (4.44)

Let cj/0, cu/j andtu/2,/  =  1,2,..., be the intersection frequencies of the polynomials 
g( ju) ,gi ( ju)  and gi{jijo) with the real axis, respectively, and let the frequency band

AW/ =  {u> : cuUn <  w <  toimax} (4.45)

be a band of frequencies centred around cu/0 and bounded by cu;max and cu/min, where 
wimi, and tu/min are the larger and smaller frequencies of {tuq, w/2}, respectively. 
Therefore the frequencies uoi at which any perturbed polynomial p(jto) with g(jto) 
satisfying equation (4.42) intersects the real axis will lie inside the band Atu/, i.e.

<wi  <  wjmM. (4.46)

The result can be stated as:

T heorem  4.14 [Arg.,2] Let the odd-coefficient perturbations be chosen such that 
they satisfy equation (f . f2).  The perturbed polynomial will then be Hurwitz, if the 
complementary set of even-coefficient perturbations satisfies

maxW( \Ah(jui)\ <  m in\h(jtoi)\, (4.47)

“ Imin <  “ 1 <  W/m„. (4.48)

□
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4.4 Kharitonov type results

In the last decade, perturbation results on polynomials have made great advance 
due to Kharitonov’s theorem [Kha.,1]. In this section, the Kharitonov’s result will 
be reviewed followed by later results developed along the same line.

T heorem  4.15 [Kharitonov’s Theorem] [Kha.,1] The polynomials

P(s)  =  a0sn +  a isn~l -\------- ha„_iS +  Q„, a k e [ u k,vk\, uk < vk. (4.49)

where the real coefficients a k take arbitrary values in the closed intervals [uk,vk], are 
strictly Hurwitz if and only if the following four polynomials are strictly Hurwitz:

Pi(s) =  V o  S n +  U \ S n  1 +  U 2 S 71 2 +  V s  sn +  • • • (4.50)

P*(s) =  V o  Sn +  V \ S n  1 +  U2Sn 2 +  UsSn 3 +  ■ • • (4.51)

Ps(s) =  U o S n  +  U i S n  1 +  V 2 S n  2 +  V s S n  +  ■ • • (4.52)

P*(s) =  U o S n +  U l S 71 1 +  V 2 S n  2 +  U s S n  3 +  • • ■ (4.53)

□

It has been proved that the number of polynomials to be checked can be reduced 
when the order of the polynomials is less than 6 [And. Jur. & Man.,1]. In the litera-
ture, many simpler proofs were provided, Bose [Bos. & Shi,1], Yeung [Yeu. & Wan.,1] 
are among them. Extensions to Kharitonov’s results are abundant and are mainly 
along two directions. In Kharitonov’s theorem the coefficients are assumed to be 
perturbed independently. When perturbations on the coefficients are dependent, the 
results yielded by Kharitonov’s theorem are very conservative. So the first category 
of extensions is to introduce dependent perturbations in the coefficients. The result 
obtained in [Bar.,1] which can accommodate linear dependent perturbations is per-
haps the best along this line of development. The second category of extension is to 
replace the left half complex plane by an arbitrary region, especially, the unit circle 
which is important for the stability test of discrete-time systems. Work such as 
those in [Soh. Ber. & Dab.,1], [Barm.,2], [Cie.,1], [Zeh.,1], [Vic.,1], [Tes. & Vic.,1], 
etc. is along this line. In the following, we examine the stability of the polynomials 
when the perturbations are linearly dependent.

Study the polynomials P( s ),

P(s)  =  sn +  (ai +  5i)sn 1 +  (c*2 +  2 +  • ■ • + (ctn-1 +  ¿n_x)s +  (a„ +  6n) (4.54)

where the perturbations <$,- are linearly dependent on a set of independent variables, 
(?i ,<72, and the set of independent variables take values from the intervals qi (E
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[q.,qi]. In this case, the polynomial set P(s)  can be expressed as a polytope of 
polynomials, i.e. the convex hull of m2 vertex polynomials, or

m2
P(s)  =  '£ \ ip<(s) (4.55)

1 =  1

where =  1 an<l Hie m2 vertex polynomials are defined by the relation between
the coefficient perturbations <*>,• and the values of q. and ç,-. So the stability of the set 
of perturbed polynomials is equivalent to the stability of the newly formed polytope.

Associate the vector /  = d \  CL 2 dn with the monic polynomial

f ( s )  — sn + aiSn 1 +  • • • +  an_i5 -f an G .P[s] (4.56)

and let Cl C Rn be the set of vectors which is the entire polytope of m polynomials. 
Define ClDH as the exposed sets where H is a nontrivial supporting hyperplane. One 
dimensional exposed sets will be called the exposed edges while the two dimensional 
exposed sets are the exposed faces. Then the result concerning the root distribution 
of the entire polytope is given as:

T heorem  4.16 [Bart. Hoi. h  Lin, 1] Let Cl C Rn be a polytope of polynomials. 
Then the boundary of the root set of f  € Cl is contained in the roots set of all 
the exposed edges of Cl.

□

So the test of Hurwitzness of the entire polytope of polynomials reduces to the 
test of the Hurwitzness of the finite number of exposed edges. Further, the Hur-
witzness of the exposed edges can be implemented using the one variable root locus 
method.

4.4.1 Maximal allowable perturbations under 
independent perturbations

In real applications, when a system is subject to perturbations, it is often important 
to know how much a system can be perturbed before reaching instability. Vari-
ous methods have been presented to calculate the maximal allowable perturbations 
based on Kharitonov’s theorem. Under the assumption that the coefficients can be 
perturbed independently and the relative bounds for the coefficients are a priori, 
then the maximal allowable perturbation is obtained by Barmish [Barm.,1], Bialas 
et. al. [Bia. & Gar.,1] with the counterpart results in the discrete time systems
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Let A tj(e) denote the j th leading principal minor of Qi(e) and define 

e* =  min{e >  0, there exists a j  < n  such that A tJ(e) < 0}, i — 1,2, 3,4. (4.61)

Then it follows that

Cmax =  minje*}, t =  1,2,3,4. (4.62)

□

4.4.2 Maximal allowable perturbations under linearly 
dependent perturbations

The coefficients of the characteristic polynomial are in general functions of some 
underlying physical variables. When the set of physical variables are under uncer-
tainty, so are the coefficients of the characteristic polynomial. Let p =  [pi,p2, ...,pp]T 
be the vector of parameters on which the polynomial coefficients depend. Further 
assume that this is a subset of the parameters which are subject to uncertainty.

A class of uncertain polynomials of nth order is defined as P(s,p)  =  sn + 
ai(p)sn_1 +  a2(p)sn_2 +  • • • +  a„_i(p)s -f an(p), where p G flp is a compact sub-
set in the parameter space f lp C Rn and a,(p) : Op —» R, i =  1,2,..,n  are real 
continuous functions of parameter vector p.

Denote the nominal parameter vector as p° G Qp corresponding to the nominal 
polynomial P°(s,p°)  € Rn. Further assume that the functions a,(p), i =  1,2, ...,n 
are affine in p, and ilp is assumed to be a convex polytope in Rp. Thus the mapping 
between the coefficients and the parameter space can be expressed as

a — Hp + h (4.63)

where a(p) ai, a2, e R n, H  G Rnxp, and h G Rn.

The uncertainty set ffp of the parameter is assumed to satisfy

Si„ = SIM = { p e  Rp : ||r(p-/)||”  < p) (4.64)

where p is a positive value, T G Rnxp is a full column rank operator and || • ||̂, 
represents a weighted /<*, norm.

A more general type of admissible root region A can be defined as a finite number 
of connected regions. A polynomial is called A-stable if all the roots of the polyno-
mial are in the region A. The admissible region is defined according to the interest of
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the analysis. When the stability of a continuous time system is under investigation, 
the region would be the left hand side of the complex plane. If the system is further 
required to have a maximal damping ratio, then it could be a circular sector, etc. 
Assume that the boundary of A, dA, can either be defined in analytical or numerical 
form, which is assumed as

dA =  {s G C : s = f?(7 ),7  G R}.  (4.65)

For practical cases, the admissible region will always be bounded. Then the set 
of A-stable polynomials P ( A) in the n dimensional space is bounded by surfaces 
defined as

P( dA) =  { f l G Ü " : s "  +  a js " -1 +  a2s"“ 2 +  • • • +  an =  0, s G dA} (4.66)

which is a linear manifold depending on the one degree freedom movement s on dA. 
Because only real coefficient polynomials are considered, the movement of s along 
dA in the upper or lower complex plane will be sufficient.

The corresponding parameter subset relating to P( dA) is given by

iî(ôA ) = {p G Rp, P{s ,p ) =  0, s G dA}.  (4.67)

which defines the set that bounds the domain 0(A ) of parameters generating A- 
stable polynomials.

For a given T, p° and weightings to,-, in order to find the maximal p for which 0(p) 
contains only the parameters which generate A-stable polynomials, the following 
optimisation problem needs to be solved:

p° — inf {p} (4.68)
P,1,P

subject to
p >  0

< —p w i < t li(p — p° )<pwi ,  ¿ =  1,2, ...,m  (4.69)
P{s,p)  =  0, s =  F{ i )

where i(, i =  1,2, ...,m  are the row vectors of the matrix T. For a given 2 G dA, 
define the following value:

Ps{z) =  inf {p}  (4.70)
P,P

subject to
[ P >  o
< -pw i < i '( p - p ° )  < piVi, i =  l ,2 ,... ,m  (4.71)

[ P{z,P) =  0.
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When P( z , p ) =  0 is empty, then set ps(z) =  oo. So the optimisation is equivalent 
to

p° =  inf {¿>,(z)} (4.72)
2 : « = F(l)

which is a one-parameter optimisation problem for each z £ dA, a linear program-
ming problem in p -f 1 parameters needs to be solved with 2m +  3 constraints. The 
above result is stated as the following theorem:

T heorem  4.18 [Barm.,2] Let A be a given admissible region of the complex plane. 
Let p° be a given nominal parameter vector generating a Astable polynomial and let 
p° given by (4.72). Then the polytope A(p°) is maximal in the class of admissible 
polytopes generating Astable polynomials.

□

4.5 Stability radii of matrices

In this section, we review the results on the stability radii of a matrix when perturbed 
either by structured or unstructured disturbances. Given a nominal stable system 
described by

x = Ax (4-73)

where A £ K nxn. It is assumed that A can be perturbed by either real or complex 
perturbations, therefore K  is either the real field K  — Ft or the complex field K  =  C . 
The system matrix is assumed to be perturbed to

A - »  A +  D A E  (4.74)

where D £ K nxl, E £ I ( qxn, which are known and fixed, define the structure of 
the perturbation while A £ K lxq is the unknown disturbance. The matrices D , E 
are determined by the nature of the disturbance. Note that output feedback effects 
on the matrix A are also of the same type. If they are identity matrices, then the 
perturbation is called unstructured and otherwise structured.

If || • ||tfi and || • || Kq are given norms on K 1 and K q respectively, the measure 
of the perturbation matrix A £ K lXq is given by the corresponding induced norm

l!A|| =  max {llAyll*'} (4.75)
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Partition the complex plane into two complementary regions

C =  CSUCU (4.76)

where Cs is an open set and denotes the stable region whereas Cu unstable region. 
So for continuous time systems

Cs =  C~ =  {s £ C : Re 6 < 0} and Cu =  C + =  {s £ C  : Re 5 > 0}

From the assumption, the nominal system satisfies

A £ K nXn, a(A) C Cs (4.77)

The stability radius of A with respect to perturbations is defined as

D efin ition 4.1 ; Given a partition (4-76) and the perturbation norm (4-75), the 
Stability Radius of A £ J(nxn wnh respect to perturbations of the structure (D, E ) £ 
K nxl x K qxn is defined by

IK =  1k (A- D, E- Cu) =  m f{||A||; A £ I<lxq, a(A +  D A E ) (1 Cu ^  oj  (4.78)

If both the structure matrices D , E are the identity matrix In we obtain the
unstructured stability radius

dx =  7k (A-: / ,  / ;  Cu) = mm11|A||; A £ I\lxq, a(A  +  A ) (1 /  o } (4-79)

dx (A ,C u) is the distance, within the normed space ( K nXn, || • ||), between A and the 
set of unstable matrices in K nxn

U { K ; Cu) =  { X  £ I<nxn; a(X)  n C „ / o }  (4.80)

□

If A , D , E  are real, according to whether A £ C qxl or A £ Rqxl, two stability 
radii, 7/? or 7c  can be derived. They are called complex and real stability radii of 
A , respectively. Clearly

7r (A; D, E; Cu) >  7c(A ; D, E\ Cu) > 0 (4.81)

For mathematical concreteness, 7k  — 7k(A; D, E; Cu) — 00 if and only if there 
does not exist A £ K lXq with er(a + D A E ) il /  0.

R em ark 4.2: The stability radius 7k  in invariant under similarity transformations 

7k (A- D, E- Cu) =  - fKiTAT-1; TD, E~l -Cu) (4.82)
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Moreover, if a(A  +  D A E ) ft int(Cu) ^  0 where int(Cu) denotes the set of interior 
points of Cu, then by continuity argument the same is true for all matrices in a small 
neighbourhood of A 6 K  Xq. Therefore, if A is Cs-stable

1k {A- D, E- Cu) =  7k (A; D, E; dCu) (4.83)

where dCu is the boundary of Cu.

□

Define 6j ( s ) and the transfer matrix associated with the triple ( A ,D , E)

G(s) =  E(s l  -  A)~lD (4.84)

then the stability radius can be characterised by maxs eacb ||G(5)||:

P roposition  4.1 [Hin. & Pri.,1] Given A £ K nxn, cr(A) C Cs, and it is perturbed 
to A T D AE ,  then the stability radius as defined in (4-78) satisfies

i - i
7k (A; D, E\ Cu) > max ||G(s)||

s£oCu
(4.85)

□

The stability radius is related to the solution of the following optimisation prob-
lem

JP( x o , v )  = Jo [ll l̂l2 -  P2IUII2] dt (4.86)

where

x(t) =  Axfit) +  Dy[t), t >  0, x(0) =

zfit) =  Ex(t)

and the associated parametrised algebraic Riccati equation

A 'X  +  X A -  X D D ' X  -  p2E*E =  0 (4.87)

Let 7in C C nxn denote the real vector space of all Hermitian n X n matrices 
and 7i f  (resp. Ti~) the convex cones of positive semi-definite (resp. negative semi- 
definite) matrices in Tin. Then the solution of the optimisation problem is related 
to the stability radius by the following theorem.

T heorem  4.19 [Hin. & Pri.,1] Suppose cr(A) C C~,p > 0. Then

(i). There exists a solution Pp £ Ti~ of (4-87) such that a (A  — DD*Pp) C C~ and 
Pp is unique among all Hermitian solutions with this property if p <  7c ;
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(i i)  . U p =  7c there exists a solution Pp E 'Hn satisfying a(A  — DD*Pp) C C and
<r(A — D D *Pp) n j R  7̂  0;

( i i i )  . I fp  > 7c there does not exist any Hermitian solution to (f.87).

If (A, E) is observable then Pp is negative definite for all p E (0,7c]-

□

The parametrised Hamiltonian matrix associated with (4.87) is

Hn
A - D D *

p2E*E —A*
(4.88)

An algorithm for computing 7C is based on the following characterisation of 7C in 
terms of Hp.

P rop osition  4.2 [Hin. Kel. & Lin. ,1] If Hp is defined by (f.88), then

p <  7c(A;  D, E ) iff a(Hp) n iR =  0

Moreover,
iw0 E cr(Hyc) iff \\G(iw0)\\ =  max ||G(iuj)||.w£R

(4.89)

(4.90) 

□

4.6 Minimal norm stabilisation

4.6.1 Stabilisation of a polynomial with minimal pertur-
bation

An equally important problem to that of the stability robustness of a stable system, 
is the minimum norm stabilisation problem of an unstable system. This is to find 
a perturbation which stabilises the system while the norm of the perturbation in 
a certain sense is minimised [Kou.,1], This will provide very useful information in 
bounded norm stabilisation. The results presented in the previous section can not 
be applied directly because of the fundamental assumption that the nominal system 
has to be stable. Here we present a method which can calculate both the minimum 
distance of an unstable system away from stable ones and the minimum distance of 
a stable system away from unstable ones.
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We study the nominal characteristic polynomial of a system

.fo(s) = sn + ays” 1 + • • • + oc°n_ + a°n (4-91)

which is unstable. The nominal system is assumed to be perturbed by

A f ( s ) =  8 isn 1 + 8 isn +  ■ ■ ■ +  8n (4.92)

where 8 1 , 8 2 , ■■■,8 n denote the effect of parametric uncertainties or feedback as per-
turbations on the coefficients. If we define

Q ( A f )  =  ¿1 +  2̂ + ' ' '  +  82n

as the performance index to be minimised. Let A( / )  be the root set of f{s)\ then 
the problem under consideration is:

• For unstable nominal system A (/0) fl C~ 7̂  0, find a perturbation with mini-
mum norm 77+ which stabilises the nominal system:

7/+ =  inf {Q (A /)  : A ( f a(s) + A f ( s ) )  D C~ =  o } (4.93)

where C ~, C + denote the left and right half of the complex plane.

□

The following stability theorem concerning polynomials provides the basis of this 
investigation.

T heorem  4.20 [Gan.,1] Define for a given polynomial f (s )

f ( s )  =  s n +  ct\Sn 1 -f- • • • +  a n_ i s  +  a n 

a rational function r(s)

Ev{f(s)} r
v n ls even

r(s) = <

(4.94)

Od{f(s)}

lf  n 18 0(1(1

(4.95)

Uv{f(s)}

where Ev{ f ( s ) }  is the even part and Od{f(s) }  the odd part of f ( s ) .  This rational 
function may be expanded as

1
r { s )  =  aiS - f

a2 s +
(4.96)

a3s + -

where a{ ’s are the ratios of two successive parameters in the first column of the Routh 
table. Then the number of negative a, is equal to the number of the roots of f ( s )  in
c +.
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□

From equations (4.94-4.96), the relations between cq and a,-, i — 1,2, ...,n can 
be established. Indeed, the coefficients, cq, of the polynomial can be expressed in 
terms of az. For instance when n =  4, we have

~(s) =  ais +
1

0,2s 4" ____ 1 _
035+ -

<24<22<23<24.S4 4" (<2l«2 4" <21U4 4" <23(24)6̂  T f 
Ct2a3Û4'S3 4" (<22 4~ 04)5

(4.97)

so the fourth order polynomial can be expressed in terms of a,-,i =  1,2,3,4 as
(2|(Z4 -f- <23«4 9 <22 4 <24 1---------------- s + ------------ s -f- —----——

f l j  Ot.4 <2 2®3®4 a  4<22<23<I4 <<1<22<23<24
/ M  = + A 3 + -01“ 2 (4.98)

This facilitates a representation of the stable polynomials in terms of the coef-
ficients at. For the fourth order case, for instance, the set of all stable polynomials 
P +[s] can be represented as

r +H {/M : A(/) c c+}
. 4 1 3 cq<22 4- (2i <24 -f «3<24 2s) =  S +  — + ---------------------------5

<2 J G4<I2<23<24

a 2 4  0-4
------------ s +
<21<22<23<24 <24<22<23<24

a,- > 0

The minimisation problem as defined above can now be rephrased for the fourth 
order case as

7/+ =  inf {Q (A (/) )  : a, > 0, i =  1, 2 ,3 ,4} (4.99)

where Q ( A ( f ) )  has a concrete form:

<3(A (/» = < 4  -  a ° f + ( ^ ¿ 4 4 4 ^  -  °s) J + -  «s) 2 + -  «$)o \2
<2l <21<22<23<24 <2l<22<23i24 <21<î2<23<24

(4.100)

A procedure for calculating the distance that an unstable polynomial away from 
stable polynomials, 7/+, can be defined as shown below:

Minimum distance from stability:

1. For a given unstable polynomial / Q(s), first construct the performance index 
Q (A (/) )  as in equation (4.100) where a,- are considered as the variables;

2. Choosing an initial vector (a^\ a ^ , ..., a °̂i) > 0 and minimise Q( A ( / ) )  subject 
to a,- > 0, i =  1,2,3,4.

Different constrained minimisation techniques can be used here. The procedure 
terminates at a local or a global minimum.
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4.6.2 Destabilisation of a polynomial with minimal pertur-
bations

The problem of destabilising a polynomial with minimal perturbations has been 
considered within the Kharitonov’s framework [Barm.,1] etc. An alternative is to 
adopt an algorithmic approach similar to what has been presented in the previous 
section. We study the nominal characteristic polynomial of a system

/ „ ( a )  =  a " +  a j a " - '  +  • ■ ■ +  < _ , a  +  <  (4 .1 0 1 )

which is stable. The nominal system is assumed to be perturbed by

A /(s )  =  <5i.sn 1 +  S2sn +  ■ ■ • +  Sn (4.102)

where ¿4, ¿2, S n denote the effect of parametric uncertainties or feedback as per-
turbations on the coefficients, if we define Q ( Af )  =  ¿4 +  8\ -f • • • + as the per-
formance index to be minimised. Let A( / )  be the root set of / (s ) ;  then the problem 
under consideration can be formulated as:

For stable nominal system A(/o) flC  = 0 , find a perturbation with minimum 
norm 7^- which destabilises the nominal system:

I f -  =  in f{Q (A /)  : A ( f0[s) +  A /(s ) )  O C '^ o )  (4.103)

□

By deploying Theorem (4.20), for the fourth order case, the set of all unstable 
polynomials P _ [s] can be represented as

/>-[■!] 3  { / ( * ) :  A(Z) n C- 1  0}
4 1 3 a4a2 +  a4a4 - f  2 a 2 +  a 4 1

= {/(s) =  s4 + — + ---------------------- s2 +
a4 a4a2a3a4

3a,- < 0, i — 1 ,2,3,4}

s H ;
a4a2a3a4 aia2a3a4

The minimisation problem as defined above can now be rephrased for the fourth 
order case as

I f -  =  inf { Q (A ( f ) )  : 3a,- < 0,i =  1,2, 3,4} (4.104)

where Q ( A ( f ) )  has a concrete form:

1Q (A (/)) = ( !  -  a i f  + + _ al)2 + ( a1± a i_ _  2 +
a4 aia2a3a4 a4a2a3a4

o \ 2

a\a2a3a4
(4.105)

<*\)
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A procedure for calculating the distance that a stable polynomial is from unstable 
polynomials, 7^-, can be defined as shown below:

Minimum distance from stability:

1. For a given unstable polynomial / D(s), first construct the performance index 
Q (A ( /) )  as in equation (4.105) where a,- are considered as the variables;

2. Choosing an initial vector (a[°\ a^\ a ^ ) > 0, which corresponds to a stable
polynomial, and minimise Q( A( f ) )  subject to the following different conditions

(i) One of the coefficients a, is negative.

(ii) Two of the coefficients a, are negative.

(iii) Three of the coefficients a,- are negative.

(iv) All the coefficients are negative.

Different constrained minimisation techniques can be used here. The procedure 
terminates at a local or a global minimum.

4.6.3 Examples

In this subsection, two examples are presented.

E xam ple (4 .1 ): For the first example, we consider an unstable polynomial which 
is given as

f ° {s)  =  s4 +  4s3 -  6s2 +  5s + 2 (4.106)

and its roots are -0.28518,-5.29736, and 0.79127 ±  jO.83534. We try to find the 
stable polynomial which is of a minimum distance from it. The performance index 
is defined in the following form:

Q(A(/)) = (i- -  4 f  + + + 6)2 + _ 5)2 + ,-----1------- 2)i
<q «102^304 axa^a^a  ̂ a\a2a^a4

(4.107)
and by employing the procedures outlined in the previous section, the optimisation 

problem can be solved with Q { A f ) =  52.1166. The perturbed polynomial is

f°(s)  +  A f ( s )  =  s4 +  4.98773s3 + 0.0002s2 + 0.0004s +  1.005~8 (4.108)

which has its roots at -4.9877,-0.000027, and —1.929-8 ±  j8.611-3 .

E xam ple (4 .2): The second example is to find a destabilising perturbation with 
minimum perturbation. The stable polynomial is given as

f°(s)  =  s4 +  4s3 +  6s2 +  5s +  2 (4.109)
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whose roots are — 1,— 2, and —0.5 ±  j'0.866.

The optimisation problem is to solve the following

. . .  niA/rw t * a\2 , / aifl2 +  -f a3a4 2minimise =  (------ 4) +  (--------------------------------6)
Q,\ (21CZ2Û3ÎZ4

+ ( _ a i ± « J _ _ 5 ) 2  +  (  1
aia2a3a4 0102113(14 - 2 ) 2

subject to

any or all <0 ,2  =  1,2,3,4

The minimum perturbation is found to be

A f ( s )  =  —0.00015s3 -  ,000073s2 +  0.000159s -  2.000053 (4.110)

with Q (A (/) )  =  4.00021 and the perturbed polynomial has a set of roots at 
0, -2.353, and -0.823388 ±  j l . 202912.

In both of the above examples, NAG library routines E04HBF and E04JBF have 
been used to carry out the minimisation and E04JBQ is used for finding the roots 
of the polynomials. The programmes can be found in Appendix 2 A & B.

4.7 Summary

The study of the relation between the coefficients and the root distributions of 
polynomials has been a subject of both immense theoretical and applications inter-
est. Since the connection between the system stability and the root distribution of 
the corresponding characteristic polynomial was established, a tremendous amount 
of effort has been devoted to the further exploration of the subject. Because the 
system structure and system parameters are subject to uncertainties, so are the co-
efficients and the roots of the characteristic polynomial of the systems. The main 
effort is devoted to the study of the coefficients and in turn the roots of the char-
acteristic polynomial due to parametric changes. Recent development motivated 
by Kharitonov’s result in the subject is fast and still foregoing with a tremendous 
momentum. In this chapter, some classical results concerning the relation between 
the roots and the coefficients of polynomials have been reviewed first, together with 
some well-known perturbation results. These results are very general and have a 
wide range of applications. Then we surveyed results in the recently developed area 
due originally to Kharitonov’s result.

In the study of stability robustness against parameter variations, it is very im-
portant to know how far a stable system is away from instability when the system is
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subject to either structured or unstructured perturbations. Some results due to Hin- 
richsen and Pritchard in this direction have also been reviewed. Further we studied 
the dual problem of finding the distance of an unstable polynomial from the set of 
stable ones. A unified procedure has been designed to calculate the minimal distance 
of an unstable polynomial from the stability domain as well as the minimal distance 
of a stable polynomial from the set of unstable polynomials. The generality of the 
classical results has important implications and yields a reduced sharpness. When 
we restrict ourselves to the study of some special groups of polynomials with special 
type of constraints on the coefficients, better results can be established. These will 
be further explored in the next chapter.
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Chapter 5

ROOT DISTRIBUTIONS OF 
BOUNDED COEFFICIENT 
POLYNOMIALS AND SUM OF 
TWO POLYNOMIALS

5.1 Root Region of Bounded Coefficient 
Polynomials

5.1.1 Introduction

The classical problem of establishing relationships between coefficients of polyno-
mials and roots [Mar.,1], has been an integral part of the study of stability and 
performance of linear control systems [Bar.,1], [Barm.,2]. An important problem 
arising in the bounded norm feedback design [Kar. & Shan,l] of linear systems, as 
well as in the robust design [Lun.,1] is the study of relationships between the norm 
of the coefficient vector of the polynomial and its location of roots in the complex 
plane. The two fundamental questions which are related to the root distribution 
and have to be studied are:

P rob lem  1: Define the infimal region r* of the complex plane such that all poly-
nomials of degree n and maximal norm 7 have all their roots in it.

P rob lem  2: Define the maximal region of the complex plane such that every 
polynomial having its roots there has norm less or equal to 7.

The solution of Problem 1 provides necessary conditions for the location of the
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roots, based on the value of the norm of the coefficient vector, but by no means 
sufficient. In fact, in F* we may find polynomials having all their roots there, but 
having norm larger than 7. The solution of Problem 2 aims at defining a subset of 
F*, say r* for which the norm constraint is automatically satisfied, as long as the 
polynomial has its roots there. Thus Problem 2 is linked to sufficiency conditions. 
Problem 1 is a classical problem addressed in the theory of polynomials with complex 
coefficients [Mar.,1]. In this chapter, as far as the first problem is concerned, we are 
to define the region and not just upper bounds as those defined in the literature 
for the case of stable or totally unstable polynomials. The second problem has not 
been addressed before in the classical literature. Problem 1 will be referred to as 
the Direct Problem, of root enclosure, whereas Problem 2 as the Inverse Problem of 
root enclosure. These two problems are studied and solved in the case of stable and 
totally unstable polynomials. The boundaries of the Tf, and regions are defined 
as branches of algebraic functions parametrised by the norm value. The general 
case of polynomials with roots both in the left and right half of the complex plane is 
finally addressed; the direct problem is solved in the third degree case, whereas the 
inverse problem is solved in the general n-th order case. The results are presented 
for the case of the /2-norm, but may readily be extended to other norms, such as 
the l\, or /oo-norm.

In Section 5.1.2, the problems to be solved are more clearly defined and it is 
shown how the classical results presented in the previous chapter can be used to 
establish the existence of upper bounds of the Direct Problem. In Section 5.1.3, the 
Direct Problem and the Inverse Problem are considered for the polynomials with all 
their roots in the left half of the complex plane as well as for the polynomials which 
have all their roots in the right half complex plane. In Section 5.1.4, general third 
polynomials are studied. Tighter solutions to the Direct Problem are obtained and 
for the Inverse Problem, maximal rectangular regions are established.

5.1.2 Definition of Problems

The problems studied here can be summarised as follows:

P rob lem  1: Define the region r* of the C-plane such that:

(i) w /(s) e i ’ [i ],A J f r ; i

(ii) V /(s ) € P[s] with Aj  fl r*c ^  0  (F*c is the C-complement of F ,̂), ||ay||2 > 7;

(iii) r* is the smallest region satisfying the above properties.

120



The classical results summarised in Chapter 4, define upper bounds (in terms 
of disks centred at the origin) with the property that they contain all zeros of 
f ( s )  £ P 7[.s]. For instance, from Corollary (4.1), a necessary region can be defined 
as the disc centred at the origin with a radius \p\ < y/l +  j 2. It is not clear, however, 
whether they have the second of the properties stipulated above and they are not 
the smallest of the regions characterised by properties (i) and (ii).

Defining the region F* does not necessarily imply that if for some f ( s )  £ P[s], 
Ay £ r ; ,  then ||ay|| < 7, or that all polynomials with Ay £ F* are elements of P 7[.s]. 
This leads to the study of the second problem.

Problem 2: Define a region of the C-plane such that:

(i) For V /(s ) £ P[s] with Ay £ then f ( s )  £ P^s] (i.e. ||ay|| < 7);

(ii) The region F  ̂ is the maximal region for which the above property holds true.

□

This problem has not been addressed before in the literature and it is motivated 
by the needs of the bounded norm feedback design. Problem (1) and (2) will be 
also referred to as the Direct and Inverse problems of root enclosure. Note that the 
existence of regions that satisfy the first of the properties has to be established 
before the second part is addressed.

□

5.1.3 Case of Stable Polynomials

In this section, Problem 1 and Problem 2 are studied in the case of stable poly-
nomials f ( s )  £ P +[s]. The existence and boundaries of the F4,F^ are established 
for this family of polynomials. The results naturally extend to the totally unstable 
polynomials.

5.1.3.1 Minimal necessary Root Region for Stable Polynomials 
with Norm Bounded Coefficients

In this subsection, the relation between the root region and the subset of the sta-
ble polynomials f ( s )  £ r +’7[s] whose coefficient norms are upper bounded by 7 
is established. This is the smallest of the regions which contain all the roots of 
the norm bounded polynomials and it will be termed as the T-Prime Region of all
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f ( s ) G P + [s], This T-Prime Region provides the solution to Probleml in the case 
of stable polynomials.

First we prove the following two Lemmas, which establish the relation between 
the norms of two polynomials /(s ) ,g (s )  which are polynomials whose coefficients 
are all positive.

Lem m a 5.1 If f ( s )  is a monic n-th degree polynomial whose coefficients are positive 
and g(s) is a polynomial of degree less than or equal to n — 1 having all its coefficients 
non-negative and they satisfy

f ( s )  =  g(s) +  h(s) (5.1)

then II«/1| >  || with equality holding only when h(s) — 0 or f ( s )  =  g(s).

P roof:

Without loss of generality, we assume h(s) to be of order n — 1, so

/(* )  = T a j T 1- 1 + ■.. +  a n (5.2)

g(s) =  sn + /?i3n" 1 + ■ ■ ■ +  fln (5.3)

h(s) = + . - - + tn (5.4)

From the assumptions of f ( s ) ,g ( s) and h(s) ,a . > 0 ,fii > 0 and t{ > 0(f =
1,2,..., n). So

f ( s )  = g(s) +  h(s)

= s” +  (/?i +  ti)sn~l +  . . . +  {fdn +  tn) (5.5)

llfi/ll = \J a\ +  «2 + ■■■+<

= f i k T h y + ($2 + ¿2)2 + • ■ ■ +  {Pn + tn)2 (5.6)

So ||f i /|| = ||ojl holds only when ti =  0 for all i =  1,2,..., n.

□

R em ark 5.1: The above Lemma holds true for the case wheri the polynomials f ( s )
and g(s) are both stable.

□

Let f ( s )  G -F+ [s]. If the polynomial has k real roots, then the root set is
A =  { -o '! , . . . , - &k-\-1 ±  JU>k+1 , — &(n-k)/2 ± jLO(n—k)/ 2  } and define

g ( f )  == {max Icr, !, i =  1,2, ..., (n -  k)/2} (5.7)

« '(/) == {max|u^|, i =  k + 1, k + 2, (n — k) / 2 ] (5.8)
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T h en  we can prove the following L em m a.

Lem m a 5.2 Let f ( s )  € -P+[s] and define f f i f ) , v ( f )  correspondingly. Let / M(s) = 
5n_1[5 — n{f)\, f f is)  =  •sn~2[.s2 + i/2( /) ] , and otj ,ctjv be the coefficient vectors of 
/ ^ ( s ) , / ^ ) .  Then the following are true:

(0 k / J< IM  
( « )  ll«/JI < ll«/ll-

P roof:

(i) First we assume ffif) = 07 with / < k. Then

m  =  n L 1,¥, ( i + ^ ) n ; r t? / 2[ ( i + ^ ) 2 + ^ ] ( ^ + ^ )  (5.9)
=  s” 1 (.S +  <7/) -|- A /(s )

By direct calculation, / (s )  is of order at most n — 1 and all its coefficients non-
negative; therefore by Lemma (5.1) ||a.y|| > ||â J| and with equality holding 
only when h(s) =  0.

Next we consider the case p(cri) =  cr/ with / > k. Then

f ( s )  =  nf=1(s +  a/)n^=A.+\/,jt?i;[(s -f (jj)2 +  cu2][(s +  a/)2 +  cu2] (5.10) 

=  (s +  (7/)sn +  A j /(s )  +  CT/Sn 1 +(72sn 2

=  / î ( s) +  A / / ( s )  +  CT/s" +  cr2 sn 2

Also from a direct calculation A 1/(s )  +  cr/sn_1 + afsn~'2 is of order at most n — 1 
and all the coefficients non-negative. Following Lemma (5.1), ||â|| >  ||ayj| .

(ii) Let u(f)  — u>i then

f ( s )  =  nf=1(s +  «rOn^ib+MîÉ/ti5 +  <l )2 +  %2][(5 +  a‘ )2 +  w/2l (5-Ü) 
=  (s2 +u;f)sn- 2 +  A f ( s )

=  f q(s) +  A f ( s )

where A  f ( s )  is of order at most n — 1 and all the coefficients are non-negative. 
Again from Lemma (5.1) ||oy|| > ||â  ||.
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□

In what follows, we are going to consider the case of i2^’7[.s], sets of poly-
nomials, that is those polynomials of _P+[s] which have all their roots on the negative 
real axis and the imaginary axis respectively and have norm less than or equal to 
7 > 0. The sets /2^'7[ s ] , a r e  defined as: is the set of polynomials
f ( s )  £ P +,7[.s] with all the roots on the real axis, while /̂ ~’7[.s] is defined to be the 
polynomials f ( s ) £ P +,'y[s] with all the roots on the imaginary axis.

P roposition  5.1 Let 7 > 0 and rp(s) — sn~1(s +  Zh) E <j)(s) — sn~2(s2 +
u>l) £ /o ’̂7[s] with ||â || =  7 ,  ||ô || =  7 .The following properties hold true:
(i) If f ( s )  £ i?o’7[s], then p ( f )  < zh;
(ii) If f ( s )  6 I ^ [ s ] ,  then v( f )  <  u v

P roof:

(i)  If we assume that there is a polynomial f ( s )  in Rq ,7 [s ] which satisfies p( f )  >  Zh,

then A ( / )  =  p( f )  — Zh = A; — 27 with the assumption that A; =  / / ( / ) ,  and

f ( s )  =  n"=1(s +  A,) =  (3 +  A ,)n^ lt¥/(s +  A,) (5.12)

=  sn *(s +  Zh) +  A /(s )

=  ^(s) +  A /(s )

and with direct calculation, A /(s )  will be of order at most n — 1 and the 
coefficients nonnegative. So following Lemma (5.1), ||(*/|| >  ||â ||.

(ii) The proof follows along similar lines.

□

So Zh and u>h define the maximal real roots and the maximal imaginary roots for 
the whole set of polynomials which have all roots either on the real axis or on the 
imaginary axis. In the general case, we prove that a necessary region for the root 
distribution is given by the rectangular defined below.

D efinition 5.1 ; For a given 7  > 0 we define the following regions of C :

= |s =  a ±  ju> € C + : — zh < a < 0, \co\ < u^}

T+ =  =  a db ju  € C + : a < - z / , }

=  {s =  cr ±  jtw £ C + : —Zh < cr <  0,\u>\ > u>h}
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Figure 5.1: Necessary Region for the 7-Norm Bounded Stable Polynomials

where Zh,Uh are defined by the polynomials:

ip-y(s) = sn- 1(s +  zh) £ P +’7[s], zh =  7 (5.16)

=  s”_2(5 +  u 2 * *h) £ P +n[s], uh =  yf f  (5.17)

and the regions are shown is Figure (5.1).

□

Then we have the following result.

T heorem  5.1 Let 7  >  0  be given and Zh =  7 , ^  =  y/7, define a region in the left 
hand side of the complex plane as in Figure (5.1), then for all f ( s )  £ P +,7[s] all 
roots of f { s )  are contained in the region $ 7.

Proof:

There are two cases to be considered, either f ( s )  has real roots (or complex 
conjugate roots) in T+, or complex conjugate roots in T*.

(1) Assume f ( s )  £ T>+,7[s], and there are k real roots and the rest are complex
conjugate root pairs of the type s = —a ±  jui, or

A /  =  { — Cl, — &k, — (Jfc+l ±  j0Jk+1, —CT(n_ fc) /2 ±  iiU(n_ fc) /2}

and with at least one root either (a) s =  ~a\ or (b) s =  — 07 ±  jug contained
in where '¡tf is as defined in Figure (5.1).
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(a) If 5 =  — ct/, then

f ( s )  — nf=1(s +  Oi)\l\=k+l [(5 +  (Tj) 2 + u 2] (5.18)

=  (5 + cri)sn 1 +  A  f ( s )

= fa,(s) + A f ( s )

So by direct calculation A f (s )  is of order at most n — 1 and all its 
coefficients non-negative. So by Lemma (5.1), ||ay|| > \\o.ja ||. As s =  
—a E 'Ll*", so A ct/ =  ct/ — Zh > 0, ct/ =  Zh +  A ct/ and f a(s) =
s” _1(5 +  ct/) =  sn_1(s +  zh + A ct/)

Ilfi/JI =  >/(** +  A c t i)2 > y/z% (5.19)

so II«/1| > 7, which is a contradiction to the assumption.

(b ) s =  —<Ti ±  ju>i E T* then:

/ W  = n*=1(a +  + + ^ 2]}[(i +  +  7 ]  (5.20)

Then by a similar argument as in (a), it follows that ||oj|| > 7, which is 
also a contradiction to the /(s )  E jP+,7[s ] assumption.

(2) Assume f ( s )  E P +nr[s],A =  { - ct i, . . . ,  -crk, - a k+1 ±  ju k+u . . . ,  - a {n-k ) / 2  ±  
j^(n-k)/‘2 ]i there exists at least one pair of roots ct/ ±  jtoi E , then

Hs)  =  nf=1(s + + + «?][(> +  aiy  +  (5.21)

By Lemma (5.2), we have ||â || > ||«/J| , where / w(s) =  sn~2 (s2 + to2).
From the assumption that s =  ct/ ±  jmi E so we have u>i — u>h > 0. Set
A u>i =  loi — o;/j, and loi =  u>h +  Au//, /^(.s) =  [s2 +  (coh -f Au//)2]sn~2. The norm
of the coefficient vector of the polynomial f w(s) is ||â || =  \J(uh + Au//)4 =  
(cJh +  Au>/)2 > < ¿ 1  =  7 . So the strict inequality follows i.e. ||c*y|| > 7 which is 
a contradiction to the assumption. Thus in both cases, if f ( s )  E T>+,7[s], then 
Aj E If f ( s )  has roots outside $ 7, then the norm of the polynomial will 
always be greater than 7.

□

The region <h7 defined in Figure (5.1) gives a necessary condition for the location 
of roots of all bounded by 7 stable polynomials. However, this region does not give 
the minimal necessary region. So we proceed to establish the minimal necessary 
region for the norm bounded polynomials f ( s )  E P +,7[s]. Within the region $ 7, we 
define subsets T7 ,$ 7 and 0+:
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D efinition 5.2 ; Let 7 >  0, then

4>7 = |s = a ±  ju  £ C+ : - z 7 < a < 0, |w| < u( o) = \j — a2 L \ jl2 ~ j»(5.22)

0 7 = {s = a ±  ju  £ C+ : -Zh < a < - z 7,w = 0} (5.23)

T+ = $+ u 0+ (5.24)

where z7 =  ^/—2 +  \/4 +  72, and the regions are shown in Figure (5.2). r+ will be
referred to as the T-Prime Region of the polynomials f ( s )  £ jP+[s ] and <$F+ denote 
the boundary ofT*.

□

The importance of the above regions is described by the following result.

T heorem  5.2 Let 7 > 0 be the given norm bound. T+ be the Y-Prime region of C + 
as defined in Definition (5.1). For all f ( s )  £ P +,7[s] with A/ = { —At, i =  1,2, ...,n } 
root set, the following properties hold true:

(i) For any -A , £ A / , — A,- £ T+.

0 0  U f ( s )  £ P +,7[s] has roots on <$r+, then either has one simple real root in 0+, 
or a pair of roots on £$+.

(iii) There exists no proper subset pY+ £ T+ with at least one point of SYf excluded 
from pY((, that contains all zeros of the polynomials in P +,7[s].

P roof:
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(i) By Theorem 5.4 for any f ( s )  £ P +,7[s] we have that the real part and the 
imaginary part of the roots satisfy 0 < at < 7 and 0 <  |cj,-| <  ^/y, for every 
1 =  1 , 2 ,  . . . , (n  -  k)/2 .

(a) We assume that a pair of roots — oy ±  jui with < <7; < 7,0;/ yf 0, then 
/ ( s )  can be written as:

f ( s )  =  nf=1(s +  cr,-) II j-”  ̂+  °b)2 +  +  a‘ )2 +  w /2|5.25)

=  sn 2[(  ̂ +  <T/)2 +  ujf] +  A /( s )

= fc,*,i(s) +  A /(s )

where / CT|)W( =  sn_2[(.s +  o';)2 +  a;2] and A /(s )  is of order at most n — 1 
and all its coefficients are non-negative. Then by Lemma (5.1)

||a/|| > ||a/<r„I1J  (5.26)

Furthermore,

=  Ĵ(2ai)2 +  (° f  +  w?)2 > +  af > yfel* =  7 (5.27)

So II^H > 7 and this leads to a contradiction. Thus, there exists no 
polynomial of f ( s )  £ P +,7[s] with a pair of complex conjugate roots 
having real part in the interval [—7, —z-y).

(b) Next we assume f ( s )  £ P +,7[,s] and there is at least a pair of complex 
conjugate roots — cp ±  ju>i such that 0 < <7 < z7 with

M  >  U>{(Tl) =  \j~(Tf +  yj~/2 -  4(7;

then

f (s) = nf=1(s + rr1)n5=fc+)1/ j¥i[(.s + cry)2 + cu2][(.s + ct;)2 + cu,2j5.28)

=  s™ 2[(s +  ai)2 +  + A /( s )  =  f ai,wi{s) +  A /(s )

where =  sn-2[(s + o';)2 +  to2] and A / ( s )  is of order at most n — 1
and all its coefficients non-negative, so by Lemma (5.1) ||o./|| > ||ay w ||. 
As from the assumption that

Ml > ¿>M) = \ j - t f  +  \Ay2 -  4<J;.

Denote Ato; =  Ml — ¿>(07) L 0 and Ml - Ato; +  then

/ ( s )  =  sn 2[(-s T 07)2 +  l o2(o";) +  2cu(cr/)Aco; +  Ato2] (5.29) 

=  s "~ 2[(s +  O';)2 +  ih2(o';)] +  (2ihAu;; +  At02)sn~2
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Again from Lemma (5.1), ||c*/|| > 7 because 2uAu>i -f Acu2 > 0, and this 
leads to a contradiction. So for any f ( s ) £ P +’7[.s], it is necessary to have 
all its roots contained in r+.

(ii) Assume that f ( s )  £ P +,7[s] has at least two roots — <7i,— £ 0 +’7, and z7 <
oy, <72 <  7. Then

f ( s )  = nf=1(s +  tr.On^+’fK s  +  Cj)2 +  (5.30)

= Sn 2(s +  <7i)(s +  C2) +  A /(s )

=  foi,<r2(s ) T A /(s )

where f ai,a2(s ) — sn~2(s +  c i)(s  +  c 2) and A f (s )  is of order at most n — 1 and 
having non-negative coefficients. As > 27,<7i =  Aoy -f-z7,cr2 =  A<72 +  z7,
with A 0 \ > 0, A ct2 > 0,ftn,a2(s) can be rewritten as

fai,a2{s ) ~  ■s" 2(-S +  A(7i +  27)(s +  A(J2 +  Z7) (5.31)

=  sn-2(s +  z7)2 +  (A c i -f A(72)s "_1 +  A ciA cr2sn_2

Because the polynomial sn_2(s +  z7)2 has norm 7 it follows that ||â || > 7 
which is a contradiction.

Now assume that / ( s )  £ / ,+,7[s] and apart from one pair of complex conjugate 

roots 07 ±  ju>i on of 0 < 07 < z7,a>/ =  \J—a2 +  — 4of, there are at
least (a) either one non-zero real root cr', or (b) a pair of non-zero complex 
conjugate roots —a' ±  jui'. Then

(a)

f (s )  = nf=i(5 +  ai )^ j l=k+{ [(5 +  a )2 +  wj]  

sn 1 (s +  a') +  A i / ( s )  

fa’ (s) +  A i / ( s ) ;

(5.32)

(b)

f (s )  = n L i(5 +  CT«')nj=fc+/2[(s +  ctj)2 +  ^ 2] 

sn 2[(s +  a')2 +  u'i] +  A 2/ ( -s )

+  A / 2(s )

(5.33)

By direct calculation, both A i(s) and A 2(s) will have nonnegative coefficients. 
Because ||q ^ ( ^ || =  ||ay || =  7, then by Lemma (5.1) we have ||<*y|| > 7, which 
is a contradiction to the assumption. Thus (ii) follows.
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(iii) If there exists a region pr+ which excludes a point —a on the boundary 
then the polynomial 0 (s) =  •s”~2[(.s + a)2 +  cu2], has a root outside ; 

however, <f>(s) £ P +’7[s] and this leads to contradiction. Let us now assume 
that the point —a £ 0+ is excluded from pILj\ Consider now the polynomial

f (s )  =  s"~2(s +  cr)(s +  x ),x  > 0 (5.34)

If we show that there exists such an x that ||c*̂|| =  7, then this will prove the
result for this case since then / ( s )  £ P +,7[s]. Note that a_j =  [<x +  x ,x ,0 , ..., 0]' 
and thus ||<a.y|| implies that x in defined as the solution of the equation

(1 + a2)x2 + (2cr)x + (a2 — 72) =  0 (5.35)

We prove next that this equation has a positive solution. Consider the function 
defined by

T(s) =  (1 +  <r2)x2 + (2cr)x +  a2 — q2 (5.36)

then T(0) =  —72 < 0 ,f(+ oo) =  +00 > 0, also

T '(s) =  2(1 +  <j 2 ) x  + 2<j  > 0,x £ [0, +00) (5.37)

thus the equation will always have a positive solution and polynomials f (s )  £
P +,7[s] of this type exist.

□

The results so far have established existence of the properties of the T-Prime 
region that contains the zeros of all bounded norm polynomials of P +,7[s]. This 
region is the minimal one that may be defined in the sense that any proper subset 
of T+ does not contain the zeros of all polynomials of P +,7[s]. This property is 
established below.

C orollary 5.1 The T-Prime region T+ is the smallest region of C + that contains 
all zeros of all polynomials of P +,1[s].

Proof:

What we have to show is that if pr^ is a proper subset of p| that excludes 
at least one point of T+, then pr^ does not contain all zeros of all polynomials 
of P +,7[s]. For proper subset pr^ that excludes at least one point of the effective 
boundary iT+, the result has been proved. We shall prove the result for regions 
that exclude at least one internal point.
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We note first that since in pH}“ the effective boundary has to be included, and 
the point at the origin (0,0) has also to be included, otherwise the polynomials 
sn_2[(.s +  a) 2 uj2] where lo = tu (̂cr), which have norm 7 are also excluded. Consider 
now a region that excludes at least a pair of complex conjugate internal points, say, 
—cr±ju>. Because —ct± j cu is a pair of internal points, on the boundary, there exists 
a pair of complex conjugate roots — a ±  j i l ,  where f) =  uJh(cr), Cl > u>. Consider now 
the polynomials of P +[.s]

fu,{s) =  sn~2[(s + cr)2 + u 2] (5.38)

fn (s) =  sn~2[(s +  a )2 + tt2] (5.39)

clearly, by construction ||â  || =  7 > ||a/w||. The polynomial f w(s) thus ||a/|| < 7 
and belongs to P +,7[s]. Thus, by excluding the point —a ±  ju>, we also exclude the 
fn (s) G -P+,7[.s] and this completes the proof.

□

The T+ region is thus the smallest region that contains all zeros of all polynomials 
of P +,7[s]. Note, however, that there exist polynomials having all their roots in the 
r+ region which have ||ay|| > 0. Defining a subset of r+ with the property that 
all polynomials with their roots inside it have a norm less than or equal to 7, is 
the second problem we have set to solve, and it is considered next. In fact, we are 
interested in the maximal subset with this property.

5.1.3.2 M axim al Sufficient R oot R egion o f C + W hich Guarantees 
N orm  B ounded Coefficient Polynom ials

In this part the sufficient condition for polynomials of P +,7[s] having all their roots 
inside a region to have their norm bounded by 7 is investigated in the case of stable 
polynomials. The resulted region provides solution to Problem 2.

First we investigate the case when all the roots of the polynomials are either on 
the real axis or on the imaginary axis. As defined in section , Rq ’7[s ], /^ [ s ]  are the 
sets of polynomial of P +[s] having all their roots either on the negative real axis or 
on the imaginary axis and their norms equal to 7. Further, we define

<t>{s) =  (s + zi)n € ^ o ’7^] (5.40)

</>(s) =  ss(s2 +  cuf)(n- 5)/2 e / 0+’7[s] (5.41)

where 6 =  0 when n is even 6 =  1 when n is odd. Set v =  (n — S)/2 and 2/,07 are 
defined as the positive roots of the following equations:

(CT)222 +  (Q )2 ?  +  . . .  + (C :)2z2n =  72 (5.42)
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(5.43)( c n v + (c j m  + . . .  + ( w  =  72

where C f  =  n(n — l)(n  — 2) ■ • ■ (n — z) / z! and ¿1 is the factorial of i.

There is a unique positive solution to each of the above equations. The unique-
ness of the solution is established below.

C orollary  5.2 Both equations (  5.\2) and ( 5-43) always have a unique positive 
solution.

P roof:

First we prove that equation ( 5.42) has a unique positive solution, then the 
uniqueness of the solution of equation ( 5.43) follows in a similar fashion. Consider

E{z) =  (C ? )V  +  (C f)2z4 +  ... + (C ") V "  -  72 (5.44)

then
E\z) =  2 (C ?)2z + 4 (C2n) V  +  ... +  2 n(C *)2z2n~l (5.45)

where E '(s) is the derivative of E(s)  with respect to s. So when z > 0,E'(s) > 0 
which means that the function E'(s) is monotonically increasing in [0,+oo). So a 
real positive z; always exists and is uniquely determined by equation ( 5.42).

□

The sufficient condition when all the roots of the polynomials are on the real 
axis or on the imaginary axis is derived below.

C orollary 5.3 Let 7 > 0 and zi,u\ defined by equations ( 5-42) and ( 5-43), where 
8 — 0 when n is even and 8 — 1 when n is odd. On both the axes, we define the two 
sections

=  {3 =  a ±  ju  : 0 >

Then and E  ̂ define 
the imaginary axis, i.e.

(1) w f ( s ) e P +[s], if a / €

(2) V /(s ) G P +[s], if A / G

<7 > —zi , lo =  0}; =  {s =  a ±  ju  : |l u| < U[}. (5.46)

the maximal sufficient regions on either the real axis or

then f (s)  G # o ’7|s]; 

E^; then f (s)  G

P roof:
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(i) First we prove the real roots case. Let Aj =  { —A,, i =  1,2, ...,n } G be the
root set. As from the assumption AA, =  2/ — A,. So 2/ =  A, +  AA, and

</>(s) =  (s +  Ai +  A A i) . . . ( s  +  An +  A A n) (5.47)

= f { s )  +  A f ( s )

where A  f ( s )  is of order at most n — 1 and all its coefficients non-negative. So 
following Lemma (5.1) we have ||f*/|| < ||â |j =  7. This establishes the result 
that all the polynomials satisfying the condition will have the norm bounded 

by 7-

Next we establish the maximality of the region. Assume that there exists 
2m > z/ such that the region [—2m,0] also gives the sufficient condition. But 
if this were the case then we can put all the zeros at z =  —zm and construct 
a polynomial as

fm(s) =  ("5 + Zm)n =  (s +  2; + A2/)" (5.48)

where A 2/ =  zm — z\ > 0. So

fm{s) = (5 + 2/)n + A  f ( s )  (5.49)

where A  f ( s )  is of order at most n — 1 and all its coefficients non-negative. By 
Lemma (5.1) ||a/m|| > ||â ||. So the maximality follows.

(ii) The case when all the roots of the polynomials are on the imaginary axis can
be established in much a similar fashion.

□

When the roots of a polynomial are not confined to the axes, the sufficient root 
region can also be established and is illustrated in Figure (5.3). We consider the 
case when the order of the polynomial is even. A polynomial f ( s )  G F +[s] which 
has n/2 pairs of roots at 5 =  — a ±  ju> can be expressed as:

/( * )  =  [(« +  
= sn +

+

+

+

+

<t )2 +  cu2]n/2 (5.50)

2 aC ",2sn~l

[(a2 +  u 2)C?/2 + 4 a 2C ”l2}sn- 2 

[4 (a3 +  au2)C i/2 +  8a3Cz,2]sn- 3

[(a2 + u2)2C^'2 + 12cr2 (cr2 + u2)C l'2 + 16<74C4n/2]sn~4 + ...

(an +  u?Cll2o n~2 + cu4C2n/V - 4 +  . . .  +  u n)
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(5.51)

Let H^ll =  7. Then

72 =  {2aCnJ 2)2 + [(a2 +  ^ ) C nJ 2 + Aa2C ^ ] 2 +

+  [ 4 ( a 3 +  g u 2 ) C ” / 2  +  8 c t 3 C 3 / 2 ] 2 +  . . .

+ (crn + u 2C ^ 2 Gn~2 + a / C ^ V “ 4 +  . .. +  cn71)2

Define D ( g , uj ) = (2crC"^2)2 +  [(<r2 + u;2)!?” 2̂ + 4ct2C ^ 2]2 +  [4(cr3 +  g u 2) C ^ 2 + 
8a3C ^ 2]2 +  • • • +  (an + u>2C ^ 2crn~2 +  u>AC ^ 2 g u~a +  • • • +  cun)2 — 72. When u  =  0, 
there exists a unique real positive solution a to the equation D(g , 0) =  0. Further, 
for every 0 < g 0 < g , there exists a unique real positive solution u>(<To) to D(g 0, l o) = 
0. The uniqueness of the solution to equation D(a0:u>) =  0 is established by the 
following two inequalities:

D(a0, 0) — (2a0Cl  ̂ )2 +  (g qC j  ̂ +  4g o C2  ̂ )2 +  . . .  +  dg — 72 

<  (2 aC T /2)2 +  {a 2 C nJ 2 +  4 a C 2n/2)2 +  . . .  +  a 71 -  7 2 

= 0

- - =  2(2C1”/2^)[(<T5+^)C 1"/2 +4<r02C2"/2]
au

+2(8crC^/,2in)[4((j3 + gl o2) ^ ' 12 +  8g 3C ^ 2) +  ■ • • 

+2(2<Tn_2C ”/2u; + 4cr” - 4C2n/V  +  . . .  +  mu71" 1) x 

(a71 +  tu2C'”/2cr7l~2 +  w4C2/2an" 4 +  . . .  +  u n)

> 0

4/̂ 7n/2̂ n—4

(5.52)

(5.53)

for all a; E [0, +00).

□

As shown in Figure (5.3), for 5 E T* we can define a subregion zF  as:

D efin ition 5.3 ; For all 7 > 0 we define:

E+ =  {s =  a ±  jio E C + : |cu| <  u (g ), —a < a <  0 }.

□

In the case when the order of the polynomials f ( s )  E .P+[.s] is odd, we study 
the following polynomial which has (n — l) /2  pairs of complex conjugate roots at 
s =  — a ±  j u  and a single real root at s =  — cr, or f ( s )  — (s -f cr)[(s +  g )2 +  
cu2](” -1)/2. Following a similar argument, we can also establish the region H+ =  
{5 =  g  ±  j u  E C + : |u;| <  a;(a), — g  < g  < 0}.

In what follows, we prove that every rectangular region as shown in Figure (5.3) 
inside EZ+ gives a sufficient region for polynomials to be norm bounded by 7.
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Figure 5.3: Sufficient Root Regions, for Stable Polynomials

Proposition 5.2 For any /(s) G P+[s] and a given norm 7 > 0, we can obtain a 
boundary given by (cr, çu(cr)) as defined in equation ( 5.52). Then for any polynomial 
f ( s )  G P+[s] with its roots satisfying y ( f )  < a and o( f )  < uj0, ||oy|| < 7.

Proof:

Assume that a polynomial f ( s )  G P +,7[.s] with all its roots satisfying y ( f )  <  a 
and z/(/) <  ço (a ) .  For every s =  cq ±  ju>i set Aa, =  a  — , Au>, =  co(a)  — u>i, then

m  =  [(S + a f + u , r /2 = m  + (5.54)

By direct calculation, A  f ( s )  is of order at most n — 1 and all its coefficients are 
non-negative. So by Lemma (5.1), ||â|| < ||oy/|| =  7.

□

Remark 5.2: Having proved the above proposition, we can generate a sequence of 
rectangulars, each of which gives a sufficient condition for the polynomials to have 
their norm bounded by 7 as shown in Figure (5.3). Each of the rectangulars gives 
the maximal rectangular region which satisfies the sufficiency requirement.

5.1.3.3 Case of Completely Unstable Polynomials

The set of completely unstable polynomials P~[s] is defined to be the set of polyno-
mials which are in P[s] and all the roots are in the right hand side of the complex 
plane. P -,7 [s] is a subset of P~[s] within which all the polynomials have their 
coefficient norm bounded by 7.
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Given any polynomial / ( s )  =  sn +  « is " -1 +  . . .  +  ctn-i-s +  a n £ P + [s],A / = 
{ A j, i =  1,2, . . . ,n }  it corresponds to a completely unstable polynomial f~(s )  =  
sn +  a f 5n_1 +  . . .  +  a f_ 1s +  £ P +[s], A/ =  { — A,, i = 1 , 2 , . . . ,  n}. So f~(s )  is
constructed from f ( s )  by setting s to be —s. The two polynomials have the same 
coefficient vector norm as shown below. Because the coefficients are related to the 
roots of the polynomials as:

« i  ^ '  a t ,  c%2 Aj , * AI 2 ,  * .  • ,

1 = 1 (*1 .*2 )GQ2,n

otk  ( A , ,  A t2 . . .  \ i k , . . . ,  a n A i A 2 . . .  A „

(*1 ,---ik)£Qk,n
where Qi.n denotes the set of lexicographically ordered, strictly increasing sequences 
of & integers from {1,2, So we have |a,| =  | or“  |, z =  1,2, . . . ,n ,  and thus

llffl/ll = llft/-l|.
Following a dual argument, the necessary and sufficient regions can be estab-

lished. in fact, the minimal necessary and the maximal sufficient region are the 
mirror images of those defined for stable polynomials’ .

R em ark 5.3: For the necessary region, we define the F_ -Prime region for all poly-
nomials f ( s )  € P _ [s] as the mirror image of T-Prime region with respect to the 
imaginary axis as in Definition (5.1), i.e.

D efinition 5.4 ; The T -Prime region of all polynomials f ( s )  £ P  [s]. 

Let 7 > 0, then

j s  = <7 i  jco G C : 0 < a < z7, |u>| < u>(a) = ĵ — o2 + \Jy2 — 4a2 1 (5.55)

0 ;  = {s = 0  ±  ju> G C~ : zhl < 0  < Zk,w = 0} (5.56)

r ;  3 $ 7 U 0~ (5.57)

where z7 =  /̂ —2 + \/4 +  72.

a

For the defined T- -Prime region, we have

T heorem  5.3 Let 7 > 0 be the given norm bound. P~ be the -Prime region ofC~  
as defined in Definition (5.3). For all f (s )  £ P _,7[s] with A/  =  {At-,i =  1,2, ...,n } 
root set, the following properties hold true:
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(i) For any A; G A/,A, G

(ii) If f ( s )  £ P “ ,'y[.s] has roots on the edge of the Y~-Prime region, <$r~, then either
has one simple real root in Q~, or a pair of roots on

(iii) There exists no proper subset pY~ £ with at least one point of <$r~ excluded 
from pY~, that contains all zeros of the polynomials in _P~,7[.s].

□

R em ark 5.4: For the sufficient region, we define the E~ region for all polynomials 
f ( s ) £ P~ [s] as the mirror image of E+ region with respect to the imaginary axis 
as in Definition (5.3), i.e,

D efin ition 5.5 ; The E~ region of all polynomials f ( s )  £ jP- [s ],

E~ =  (a =  cr ±  jui £ C~ : |tu| < u;(cr), 0 < a < a|

and for this region we have

P roposition  5.3 For any f ( s )  £ P _ [̂ ] and a given norm 7 > 0, we can obtain a 
boundary given by (<t , u;(<t )) as defined in equation ( 5.52). Then for any polynomial 
f ( s )  £ -P“ |s] with its roots satisfying p ( f )  < a and v ( f )  < ua, we have ||â|| < 7 .

□

5.1.4 Case of General Polynomials

In the general case, the roots of the polynomials may lie in both the left and the 
right hand side of the complex plane. Results concerning the distribution of the roots 
when the coefficients are bounded by /2 norm can be adapted from Theorem (4.2). 
Because for f ( s )  ~  ¿¡"Tons"-1 + a 2sn-2 +  . . . +  an_js +  an, yja\ +  a\ +  . . .  + o f  <  7, 
&i <  7, and by Theorem (4.2), we have the following proposition.

P roposition  5.4 If f ( s )  £ P'1, then all the roots of the polynomials are in the circle 
centred at the origin with a radius a,

cr =  1 +  7.

137



□

The proof follows directly from Theorem (4.2). This result establishes an upper 
bound and not the minimal bound. However, in some special cases, much tighter nec-
essary regions can be obtained. In the following we establish the minimal disk-type 
approximation of the necessary region for the case of third order monic polynomials; 
by using an analytic method, the exact boundary can also be obtained for this case.

5.1.4.1 Necessary Root Region for Third Order Monic Polynomials 
with Norm Bounded Coefficients

A general monic third order polynomial is of the following form f 3(s) — s 3 +  a xs 2 +  

Q.1  s +  o q . For bounded polynomials of this type we have:

Proposition 5.5 All the complex roots of the 7 -hounded polynomials f 3(s) are 
within the disk centred at the origin with a radius p < \J 1/72

Proof:

We prove the above proposition in the following way: assume that f ( s )  has a 
pair of complex conjugate roots, z — a ± j u ;, which are outside the disk, then there 
exists no real root s =  a such that ||â )|| < 7 stands.

Let Af3 =  { —a, a ±  ju>} be the root set, where the complex roots are outside the
disk centred at the origin with a radius p =  yjyf-y2 +  4, or

\/a2 +  to2 > p =  \j^ 7 2 +  4 (5.58)

then

f 3(s) =  (s +  a)[(s + a )2 + co2] (5.59)

— s T (a -f- 2<7)s2 -f (o'2 T 2au T u>2)s T a(a2 T co2)

The coefficient vector norm should satisfy

11073II =  (a +  2a )2 + (cr2 +  2acr + a>2))2 + a2(a2 +  a>2)2 (5.60)

=  [1 +  4cr2 +  (cr2 +  Uj2)2]a2 +  4(cr +  au? +  a3)a +  [4a2 +  (a2 +  u;2)2]

<  72

so we have the following inequality

[1 +  4a2 +  (a2 +  lo2)2]o 2 + 4(a +  au2 +  a3)a + [4a2 +  (a2 +  to2)2 -  72] < 0 (5.61)

138



where 1 + 4a2 + (cr2 +  a;2)2 > 0. Because \J a2 +  tu2 > p =  \/t 2 +"T,

A a =  [4(<r +  crcu2 + cr3)]2 -  4[1 + 4cr2 + (a2 + iu2)2][4<72 +  (cr2 + l j2)2 -  72]

< 4 [ -  12a4 -  16a2 - 4  -4 a ;4]

< 0 (5.62)

So we have proved that no complex roots are possible to be outside the disk 
defined above.

□

The previous result of a necessary region has established the existence for the 
case of general third order polynomials. Yet a tighter region can be established.

P roposition  5.6 For a given coefficient vector norm bound 7 > 0, a necessary 
complex root region for third order polynomials is given by the disk centred at the 

origin with a radius p =  \Z\/72 +"?, where 8 =  7 x ^  < 1.0.

P roof:

Assume that a norm bounded third order polynomial has one real root a + j 0 and 
a pair of complex conjugate roots a ±ju>. Further assume that the pair of complex 
conjugate roots are outside the disk defined which is centred at the origin with a 
radius p =  \JV 72 + X  Then

/ 3 (s )  =  (s  +  a ) [ (s  +  cr)2 +  cu2] (5 .6 3 )

=  s d  (® d  2cr)s T  (<7 Y  2acr - f  w )s  4  o(cr -f- co )

The coefficient vector norm should satisfy

I|a/3 || =  (a +  2cr)2 + (cr2 + 2acr + u;2)2 +  a2(cr2 +  cu2)2 < 72 (5.64)

=  [1 + 4cr2 +  (cr2 +  u>2)2]a2 + 4 (cr +  au;2 +  cr3)a +  [4cr2 +  (cr2 +  cu2)2]

< 72

For inequality ( 5.64) to hold, there should exist a real solution to “a” . So the 
following inequality has to be satisfied:

A a =  (4cr + 4c73 + 4(7u;2)2 + 4 ( l + 4 ( j 2 +  (74 +  2cr2a;2 + cu 4) x

(7 2 _  4a 2 - a 4 - u 4 -  2<t 2u; 2) >  0 (5.65)

However, when cr2 +u>2 > p2 — y j f1 +  8, A a/4  < — {d2 +  (1 +  72)8 — 72 +  [4 ĉr2 + 
(\/72 +  8 — 4a2)2] } . So if the pair of complex conjugate roots are outside the defined
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region, inequality ( 5.65) will not be true, neither will be inequality ( 5.64). So for 
every third order polynomial, all the complex conjugate roots will fall inside the 
defined disk if their coefficient vectors are bounded by 7 > 0.

□

Remark 5.5: The results established above are much better when compared with 
the result stated in Proposition (5.5). For instance when 7 =  0.5, then the present 
proposition gives a result \Jy/~i2 +~? =  0.895, while Proposition (5.5) gives 1 + 

7 =  1.5. When 7 =  100, then the present proposition gives a result \J\/72 + T  = 

10, \J\[yL +  6 =  10, while Proposition (5.5) gives 1 +  7 =  101, which is more than 
10 times bigger. The larger the given bound, the bigger the difference.

□

Also, the results are better when compared with those obtained by Boses and 
Luther [Boe. & Lut.,1]. The result adapted from their Theorem 1 is as follows:

Theorem 5.4 For a given 7, ||ay|| < 7, then all zeros of f ( s )  =  sn +  ai-s" 1 +  . . .  + 
an_is +  an lie in the unit disk \z\ < R where

i 1/n < 1/
1 [1 —(n )̂1/"] J ’ 7 -  i / n
min {(1 +  7) ( l  -  [(1+7)17/o_ w7]) , 1 +  2n(n7 -  l)(n  +  1)} , 7 >  1/

R : =

□

So when n — 3,7 =  0.2, the present result gives Jy/'y2 +  7 =  0.68 while Theorem

(5.4) gives R =  0.7995. For n =  3,7 =  0.5, \ J + T  =  0.895 while Theorem (5.4) 
gives R =  1.75. For both 7 < 1/n and 7 > 1/n, the result obtained here are much 
better. If we compare this result with Proposition (5.4), we find that Theorem (5.4) 
usually gives a tighter region than when 7 is small and the opposite is true when 7 
is big for higher order polynomials. For instance when n — 4 and 7 =  0.2, Theorem
(5.4) gives R =  0.9266 while Proposition (5.4) gives 1 +  7 =  1.2. However, when 
n — 4 and 7 =  5, Theorem (5.4) gives R =  7.627 while Proposition (5.4) gives 
1 +  7 =  6.

5.1.4.2 Sufficient Polynomial Root Region

The sufficient root region for the general polynomial case is shown as in Figure (5.4). 
The region consists of the sufficient region when all the polynomials are stable and 
the sufficient region when all the polynomials are completely unstable. The suffi-
ciency of the region can be established as follows:
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Figure 5.4: Sufficient Root Regions for General Polynomials

P roposition  5.7 Let E =  E+UE~ be a rectangular with its edges on u;(cr) as shown 
in Figure (5.1). For all. f ( s )  G P[s] such that A/  G E we have that ||o/|| <  7.

P roof:

First we define another polynomial f +(s) which takes all the roots of f ( s )  which 
are in the left hand side of the complex plane. For the roots in the right hand side 
of the complex plane, we take the mirror images. From the assumption, all the 
roots of f +(s) are in the sufficient region. Then the sufficiency can be established 
by showing 7 =  ||a/+ || >  ||«/ ||.

From the direct relation between the roots and the coefficients of the polynomials,

Q:i y ' Aj, ol 2 y ) Ajj • a¿2 , . . .  5
'=1 (*l.l2)6Q2,n

OLk y  ) AtI Xi2 . . .  Au , ..., otn Ai A2.  •.  An
(ii,-ik)eQk.u

where Qk,n denotes the set of lexicographically ordered, strictly increasing sequences 
of k integers from {1,2, ...,n }.

If we set f + (s) =  sn+ a^sn~l + . .  ,-f a^_ls + a + , then |qT| > |aj|, for i =  1, 2,..., n. 
So 7  >  \\QLf+ || >  ||f i / ||.

□

So every rectangular as shown in Figure (5.4) provides a maximal sufficient root 
region for the general polynomial case. The region defined by co(a) thus describes 
the locus of the edges of all rectangulars E for which the bounded norm property 
holds true.
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5.2 Root distribution of the sum of two 
polynomials

5.2.1 Introduction

In this section, the root distribution of the sum of two polynomials are studied. The 
importance of the study can be highlighted by the control problems such as stability 
robustness and state feedback. In the study of control robustness, assume that a 
system has a nominal characteristic polynomial

fo{s ) =  5”  +  aqsn 1 +  2 +  • • • +  & n - l s  +  a n

and the system is perturbed by parametric disturbances, then the actual system 
characteristic polynomial will be

f ( s ) — fo(s ) +  A /(s )  =  sn + (ax +  (3i)sn 1 + • • • +  (an_x +  /?„_])s + (an + ¡3n) (5.66)

where A f ( s )  =  (3\Sn~1 +  ^isn~2 +  ■ • • +  +  ftn is the additive disturbance. The
knowledge about the disturbance will usually be limited. Here we assume that the 
disturbances satisfy the following condition

\//3,2 + A2 +  --- +  « < r ,

It is important to study the root distribution of the polynomial in equation
(5.66).

The other important problem is the study of bounded gain state feedback. Given 
a controllable single-input single-output system

x =  Ax +  bu(t) (5.67)

and assume that it has a characteristic polynomial

fo(s)  =  sn +  axsn 1 +  • • • -f c*n_is +  a n (5.68)

When the system is under bounded state feedback with the feedback gain bounded 
as

^ 2  +  k2 +  . . .  +  k2 <  7 /  (5 .6 9 )

then, the closed-loop characteristic polynomial

fc(s ) =  Sn +  P\Sn T  • • • +  +  fin (5.70)
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can be considered as the open loop characteristic polynomial being disturbed, i.e.

, f c ( s )  =  / o ( - s ) + ^ / s  =  -sn-t-(ai +  A a i)sn 1 +  - • • +  ( « 7i - i  +  A a n_1).s +  (a ri-f-Aan) (5.71)

where the bound on the disturbance is proportional to the bound on the feedback 
gain.

Equation (5.71) takes the same form as equation (5.66). In light of the results 
presented in the previous section, the root distributions of the polynomials with 
bounded coefficients can be studied. The polynomial in equation (5.66) can be 
considered to be the sum of two polynomials each with a known root distribution, 
i.e.

f (s) -  +  -M5)] (5.72)

/i (s )  — -s” +  2aisn 1 + 2a2sn 2 + • • • +  2 +  2an (5.73)

^2(>s) =  s11 + 2/?isn 1 + 2/32sn 2 + • • • + 2/?n_is +  2f3n (5.74)

where f i (s)  is a fixed polynomial while f 2(s) has varying coefficients. So the root 
distribution of the original polynomial /( s )  is equivalent to the root distribution of 
the sum of the two polynomials fi (s)  and f 2(s).

In the literature, root distribution of the composite polynomials has been studied. 
Results are summarised in Marden [Mar.,1]. The most fundamental result is the 
continuity theorem relating the roots of a polynomial and the coefficients.

The roots of a polynomial are continuous functions of the coefficients of the 
polynomial.

T heorem  5.5 [Mar.,1] Let

fo{$) =  ■sn +  «is™ 1 +  a2sn + • • • +  0 -n = nj?=1(a — Sj)m* (5.75)

f ( s )  =  sn +  (oq +  A a i)sn 1 + («2 + A cx2)sn 2 +  • • • +  (oin +  A a„) (5.76)

and let
0 <  rk <  min \sk -  Sj|, j  =  1,2,..., k -  1, k +  1, ...,p. (5.77)

There exists a positive number t such that, if

I Aa,-| <  e for i =  1,2, (5.78)

then f ( s )  has precisely mk roots in the circle with centre at s a n d  radius r*,.

□

A result on the root distribution of the linear combination of polynomials given 
in [Mar.,1] is stated below:
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Theorem 5.6 [Mar.,1] The zeros of the linear combination

F(s)  =  A ifi(s)  + X2f 2(s) +  ■ ■ ■ +  Xpf p(s) (5.79)

where Â  ^  0 ,j =  1 ,2 ,_, p, lie in the locus T of the roots of the equation,

Ai(s — Qii)"1 +  A2(s — oc2 )"2 + ■ • • + A p(s — ctp)np = 0 (5.80)

where the a i , a 2, .. .,a p vary independently over the regions C\, C2, ..., Cp, respec-
tively, and fi(s) and C{ are defined as

fi(s) =  sn‘ +  aitisn' 1 +  • • ■ +  , i =  1,2, ...,p, (5.81)

The zeros o f fi(s) are assumed to lie in a circular region Cf ■ Unless otherwise 
specified, the region will be bounded by a circle Ck with centre Ck and a radius of r

□

The particular case p =  2 and rii = — n is one in which we can readily
determine T.

C orollary 5.4 For the case when p =  2 and ri\ =  n2 =  n, we write X2/Xi =  —A 
and denoted by u>i,u2, ...,u>n the nth root of X with lui = 1 when A = 1. The roots of 
the previous equation are

Sk
QU ~ ¿̂<*2 

1 -  uk (5.82)

where k =  1,2, ...,n when X ^  1 and k =  2 ,3,...,n  when A =  1. The locus T will 
then consist of the ensemble of loci IT of the Sk when a i and a 2 vary over their 
circular C] and C2 respectively.

□

By making use of the above theorem, we study the root distribution of the sum 
of the following two polynomials. The two polynomials are third order and have 
three roots as cr, a ±  ju> and —<r, —a ±  ju>. So

/ i ( s ) =  (5 — a )[(s  — a ) 2 +  tn2] (5.83)

^(■s) =  (s  +  o ') [ (s  +  a ) 2 +  co2]

We can draw two circles Cj and C2 which encloses the roots of fi (s)  and f 2(s) 
respectively. Then the roots of the sum of the two polynomials should be contained
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Figure 5.5: Root Distribution Region of the Sum Polynomial.

within the contours given by

■Sl

■s 2 —

■S3 —

on +  a2

a i ~ (§ + J ^ ) a 2 

1 _  (§ + 2^r)Q2 

a i ~ (I 2
1 ~ (| - J ^ ) a 2

(5.84)

(5.85)

(5.86)

where and a 2 vary over circles C\ and C2 respectively. The region obtained is 
shown in Figure (5.5). Compare this region with the actual roots of the polynomial, 
which are located all along the imaginary axis, it is clear that the result given by 
the theorem is far too conservative. The conservativeness is perhaps introduced by 
the necessity to have circular region C, to enclose all the roots of /¿(s).

The root distribution of a linear combination of polynomials with respect to the 
common roots of the all the polynomials has also been studied [Kar. Gia. & Hub.,1], 
The concepts of exact zeros and almost zeros have been defined. The exact zeros 
will be the zeros of any linear combination of polynomials while the almost zeros act 
as poles attracting the roots of the linear combination of polynomials. It was shown 
that disk centred at the almost zeros with finite radius can be defined and the disk 
will include at least one root of the linear combination of polynomials. Estimates 
for the radius have also been given [Kar. Gia. & Hub.,1].

In this section, the root distribution of the summation of some special class of 
polynomials are studied. In Section 5.2.2, second order polynomials are studied 
and tight root distribution regions are obtained. In Section 5.2.3, the results are 
generalised to third order polynomials and to general polynomials in Section 5.2.4.
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5.2.2 Second Order Polynomial Case

In this subsection we prove that if two second order polynomials have roots which 
form mirror image with respect to a line that is parallel to the imaginary axis then 
the sum polynomial of the two will have roots all on that line. Further we prove that 
for two polynomials both with real roots, then the root region of the sum polynomial 
can be defined by the smallest and the largest roots of the polynomials. First we 
study the following problem:

(a). Two Summand polynomials having roots as mirror image 
with respect to a line parallel to the imaginary axis

We consider first the following special cases:

1. Summand polynomials with equal real roots.

Proposition 5.8 Assume that the two summand polynomials each has two 
equal real roots, f\(s) =  (s — a d 2 and / 2(s) =  (s — erf)2 ■ Then the roots of the 
summation polynomial will have no root except on the {s € C : s =  a ± ju ,c r  =  

, u  > 0} line.

Proof:

The proof is straightforward. Because

f i { s ) =  -s2 +  2<7is  +  a2, /2(<s) =  s2 +  2<72s +  cr2

and f\(s) +  / 2(s) — 2[s2 + (<7i +  cr2)s H—  
so f\(s) -f / 2(s) has two roots at

— (ai + <r2) ±  — 2cr1cr2 +  a2) —(<Ti +  <r2) ±  j\cr\
2 =  2

which are on the line defined by {s € C : s — a ±  ju j, a =

(5.87)

— —  (5.88)

, t u > 0}.

□

2. Summand polynomials with different roots.

Proposition 5.9 Assume one of the polynomials has roots at si = a — 7 1 , s2 = 
a — 7 2 and the other at s\ = cr +  7x, s2 =  a +  7 2, 71 > 0 ,7 2 > 0. So

f ( s ) =  /i (s )  +  /a(s) =  2s2 -  4<t s  +  2qj72 (5.89)

so the roots which are a ±  jyj'tx'li are °n the mid-line a ±  jui.
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□

3. Case of summand polynomials having equal imaginary parts.

Proposition 5.10 Assume one of the summand polynomials has roots at s — 
—ay ±  jui\ and the other at s =  — er2 ±  juq then

f i { s ) +  h i 3) — 2s2 + 2(<xi + <72)5 +  cr2 +  er̂  +  2u>2 (5.90)

which has roots at

~{vi  + cr2) ±  ((Tj -  a2)2 -  4(jj\ 
s =  -------------------- -----------------------------  (5.91)

So the roots are located on the mid-line drawn between the two pairs of imagi-
nary roots.

□

So from the above result, we have the following:

Proposition 5.11 In the case of second order polynomials, if two summand poly-
nomials have roots on either side of a line which is parallel to the imaginary axis and 
the roots form mirror image with respect to this line, then the summation polynomial 
will have all its roots on this line.

□

Employing the above proposition, we study the root distribution for the sum-
mation polynomial f ( s ) =  f\(s) + / 2(s) when fi(s)  has fixed roots at 71,72,71 < 72 
while the roots of / 2(s) are varying but confined in the region defined as S2 = 
[73,74],73 < 74- We have the following Corollary.

Corollary 5.5 The summation polynomial f ( s )  will have all its roots in the region 
defined as 6 =  {s £ C : s =  a ±  ju , — < cr < —"I174 }.

Proof:

The sum of the two polynomials is

AM + AM = 2[s2 + + + fa + T). + ™Lp2l] (5.92)
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substituting s with =  a + jw, the sum polynomial can be expressed in terms of its 
real and imaginary parts:

r I \ . r ( \ r/ 2 2\ , ( b l  +  7 2 )  +  (7 3  +  74 ) 7 1 7 2  +  7 3 7 4 :/ l ( s ) + / 2(s) =  [(<7 - W )  +  -----------------------------<7+ ---------------- ] +

+ 2j u[ 2a --------------------------- ] (5.93)

The roots of the polynomial are the variables which make both the real and 
imaginary parts zero. Taking the imaginary part of the sum polynomial

2 j u[ 2c --------------------------- ] =  0 (5.94)

which leads to cr =  —-  ^ - +7- . From the assumption, we have — < <7 < 72 *74
and thus the above is proved.

□

(b). Two summand polynomials of which one has a pair of complex 
conjugate roots while the other has two real roots

Proposition 5.12 If one of the polynomials has two equal real roots 7 while the 
other has a pair of complex conjugate roots a ±  ju>. In this case, we prove that the 
roots of the sum polynomial will be distributed along the line +  jto,u) € R.

Proof:

Because
fi (s)  =  (s — 7 )2, 72(5) =  (s — a )2 + a/2 (5.95)

and the sum polynomial is

f i (s)  +  f 2 (s) =  2s2 -  2(7 +  a)s +  (72 + <72 +  u;2) (5.96)

so the roots of the summation polynomial are

_ 7 +  a ±  ^ - ( 7  -  a )2 -  2cu2
•Si,2 ---------------------- -------------------- (5.97)

□

From the above proposition we immediately have the following corollary.

Corollary 5.6 For a fixed polynomial fi(s) with a pair of complex conjugate roots at 
ctj Itju) 1 and a polynomial ^(-s) with real roots in the region defined as 8\ =  [71,72], 
then the roots of the summation polynomial of the two are confined in the region 
6 =  [s  : s =  a ±  ju  \ ^ 1 . < a < ^ ± ^ } .
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Proof:

From proposition 5.12, the sum polynomial [(5 — <7i)2-|-tj1] +  (s +  7i)2 has all roots 
distributed along the line and the sum polynomial [(5 — <Ji)2 +  07] -f (s +  72)2
has all roots distributed along the line <7> ̂ 72. By using continuity argument, the 
roots of the polynomial fi (s)  +  ^ (s )  will have all its roots in the region 6.

□

(c). Both the summand polynomial having complex conjugate roots

Proposition 5.13 If the two summand polynomials are f\(s) =  (s — cy)2 -f u\ and 
=  (5 — oy)2 +  of\, i.e. both having complex conjugate roots. Then the sum 

polynomial will have all its roots on the line at s =  ?1+g2.

Proof:
f l { s ) =  52 — 2(Ti S +  CT2 + ÎU2, /^(s) =  S2 — 2g 2S ~F <j\ +  tu2 (5.98)

and
2 2

f i { s ) +  ('5) =  2[s2 + (ctj +  (72)5 H— ———-] (5.99)

so fi (s)  +  72(5) has two roots as

(°i +  a2) ±  -  a2)2 -  (u2 +  to2) /rinnX
51,2 =  ------------------------- ----------------------------  (5.100)

which are on the mid-line of -1-" 172.

□

From the above proposition 5.13, we can have the following corollary.

Corollary 5.7 If the summand polynomials f i { s ) , f 2(s) have roots distributed in the 
stripes defined as f i  =  {s =  o  : 74 < <7 < 72} and <j>2 =  {5 =  <7 ±  u> : 73 <  <7 < 
74}, then the roots of the summation polynomial will always fall in the stripe defined 
as $  =  { s =  cr ±  u; : 71 ̂ 7? < a < 72 |7i }.

Proof:

From proposition 5.13, the summation polynomial [(s — 7i )2+ cj2] + [(s — 73)2+ cu2] 
has all its roots along the line and the polynomial [(5—72)2+tu2] +  [(s — 74)2+cu2] 
has all its roots along the line 72j)74. So from continuity argument, all the roots of 
fi (s)  +  f 2(s) are in the stripe defined as $.

□
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5.2.3 Case of third order polynomials

(a). Roots of the summand polynomials are on either side of a 
line and form mirror images with respect to a line which 
is parallel to the imaginary axis

Proposition 5.14 If the roots of the summand polynomialsfi(s), f 2(s) form mirror 
images with respect to a line which is parallel to the imaginary axis, then the sum-
mation polynomial of the two third order polynomials will have all its root distributed 
along this line.

Proof:

(i) Summand polynomials with equal real roots.

In the case when the polynomials have three equal roots, fi(s)  and f 2(s) are

f i ( s )  — s 3 +  37 1s 2 +  3 7 j s  +  7 ^

./^(s) =  S3 +  372s 2 +  3 7 2 5 +  7 2

the sum of these two polynomials is

/.(.) + Ms) = 2[s3 + + 1tint,
set s — a +  j u , then

f i (a  +  ju)  + f 2(a +  ju)
or  3 1 -Q 2 Q 2 ■ 3 , ^ 7 l  +  372 2 2 , 0 -  \=  ¿[cr +  jda to — Saco — jco H-------- -------(a — to +  2jauj)

( 5 .10 1 )

(5 .10 2 )

(5 .10 3 )

37i +  37|, _ , , 7i + 372 •-(a +  ju )  + ju]

2 [a 3 — 3cu ;2 +
(37j + 372)(cr2 -  uj2) 37!2 + 3722 7? + 72

+ a +

+ j 3 a 2uj -  jto3 +  (37! +  3~i2)jau  +  ju] (5 .10 4 )

We first take the imaginary part, which is 

3juj[a2 + (71 + 72)0- + (
.................... =  °

(5 .10 5 )

this leads to either u> =  0 or a2 +  (71 -f 72)cr -f ( Tl+Tg _ -) =  0.
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N e x t, we take the real part, which is

_3 o  _  2 , +  3 7 2  ( _ 2  .2 \ , 3 7 i  +  3 7 2 7 l  +  72a-3 -  3<tu+ + '-(a2 — cu2) + Lcr +

=  <r3 +

2 v~ ' ' 2 “ ' 2
371 +  372 2 3q2 + 872 , 7? +  72 /o 2 , 871+372 2n

2 a + — 2— ^ + — 2— (3" “  + — —
=  jK » 3 + '■'rn a ' + 37,V  + -¡f) + (<T3 + 3-ft ff2 + 372 ct + t I)1

o 2r , 7 i +72!-3w [a + — -— J

=  ^[(a +  7 i)3 + (<r + 72)3] ~ 3cj2[(7 +  71 ^  72j =  0 (5.106)

Case 1: When u> =  0, from the real part equation (5.106) we have

^[(cr +  7 i)3 +  (<7 +  72)3] =  0 (5.107)

where <7,71 and 72 are real. And therefore f(cr) =  \[{cr +  71)3 + (a +  72)3 
attains zero only when a =  7--+ 72.

So when u  =  0,cr =  71 *72 is one of the roots of the summation polynomial. 

Second, we consider the case when lo ^  0.

Case 2: When to /  0, then from equation (5.105) and (5.106) we have

|[(C7 + 7 i)2 +  (^ +  72)2] ~  X  =  0 
\[{cr + 7 i)3 +  W +  72)3] -  3uj2[a +  7l+72-] =  0

(5.108)

From equation (5.108) we first show that a =  — 7l^7?, cu =  ^ (7 2  —71) is a pair 
of solutions to the equation. From the uniqueness argument of the zeros of 
the third order polynomials, we have proved that the roots of the summation 
of the two polynomials will have zeros only on the line defined by — — ~7* .

(ii) Case when the roots of the polynomials form mirror images with respect to a 
line parallel to the imaginary axis.

Given any two monic third order polynomials, if their roots form mirror images 
with respect to a line parallel to the imaginary axis, then the summation 
polynomial of the two will have all its roots on this line.

We prove that on the line there exist 3 roots of the polynomial; therefore the 
polynomial will have no root other than on this line.

Assume that the variable takes values from the line. For s =  2+ ^ i -f ju; where 
to takes values from — 00 to +00, then the sum polynomial can be presented 
as

f i ( s ) + h ( s ) 71eiQl72e,a273e,a3 +

7 i 7 2 7 3 e ,( o i + " 2+ a3 ) +  7 17 2 7 3 e i[3ir" ( a i+ a 2 + 0 3 ) )
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Figure 5.6: Root distributions of the sum of two symmetric third order polynomials

So the polynomial attains zero if and only if

oil +  a 2 + c*3 + (2fc +  1 )tt = 37r -  (q x +  a 2 +  a3) (5.109)

where k takes integer numbers and a x +  a 2 + a3 takes values from — to 
From (5.109) we have

=  37T
„  , . , 37r x  2

=  37T — (2 k +  1) 7T <  — ——

+ 1)tt > 0

k <  2.5

Thus there exist three roots of the polynomial on the line.

2(ö i  + ol2 +  0:3) -j- (2k -f l)?r 
— 37t x 2
----- 2-----  <  2(ax + a 2 + a3)

67r > (2k 
1—  < 
2 “

(b). Sum m and polynom ials with real roots

□

C orollary  5.8 If we assume that the summand polynomials f ( s )  and g(s ) have real 
roots and all their real roots are distributed in the regions

h\ =  {s 6 C : s — a ±  ju,uj =  0,7i < a <  73} (5.110)

6 2 =  {s E C : s =  cr ±  ju},u) =  0,74 < a < 76}. (5.111)

then its roots are all confined within the region defined as

r  =  {s  € C : 3 =  a ±  ] l o, lu =  0, 71 +  74 < <t < 73 +  76}. (5.112)
Zj
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Figure 5.7: Root distributions of the sum of two third order polynomials 

P roof:

From the assumption, each of the two summand polynomials has three real roots. 
Let be the three real roots of /i(s )  and — v\, — i^, — ̂ 3 be the three
real roots of / 2(s). Further assume g,\ < //2 < ^3 and i/\ < u2 < 3̂.

We construct two polynomials using the minimal and the maximal roots of the 
summand polynomials as in the following:

(1) For polynomial / ( s ) ,  we construct two polynomials f\(s) and / 2(s)

M s)  =  (5 + /Î3)3 (5.113)

^(•s) =  (5 +  /ii)3

(2) For polynomial g(s), we construct two polynomials gi(s) and #2 ( s )

^ 1 (5) =  (5 +  i/3 )3 ( 5 .1 14 )

52(5) =  (s +  i/j)3

From proposition 5.14, the summation polynomial of fi{s)  and ^ (3 )will have 
all its roots distributed along line l\ and the roots of the summation polynomial of 
f\(s) and g2(s) are distributed along the line /2. If g(s) takes three real roots in 
the region ¿2 as defined earlier, then using the continuity argument, the roots of the 
summation polynomials f i (s)  + g(s) will have all its roots distributed in between 
the lines l\ and /2. Similarly, it can be proved that the roots of the summation 
polynomials / ( s )  4- g(s) are distributed in the region defined by T.
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5.2.4 High order polynomials

For the general case, the root distribution of the sum polynomial is more difficult. 
General results as given by Marden may be applied. However, they are very conser-
vative. In this section, we shall generalise some of the results developed in earlier 
sections for high order polynomials.

(a). Sum m and polynom ials o f which each has n equal real roots

P roposition  5.15 If the two summand polynomials each of which has n equal real 
roots, then the summation polynomial will have all its roots on the line — 71 , where
7i and 72 are the roots of the summand polynomial fi(s)  and / 2(.s), respectively.

P roof:

We distinguish two different cases, i.e. when the order of the polynomial is even 
or odd. We will prove for the case when the order of the polynomial is even, that, on 
the line {s — a +  jtu, <7 =  — 71 , to > 0} we will have n/2 roots of the summation
polynomial.

Assume s =  cr+cu, a =  — 71 * 72, u  > 0. Then the sum polynomial can be expressed 
as a function of u> when the variable is in the half line

f { s )  =  (5 +  7 l)n +  (5 +  72)n (5.115)

=  (2^ + ^ r  +  ( - 2L^ + ^ r

set a — 11 ~72, then

f i s ) =  (a + jio)n +  (—a +  ju>)n (5.116)

=  ^neina + 7nein(I ' i')

where a =  cos ,a, , , 7 = v'a2 + a:2.

When lo varies from 0 to +00, a changes from 0 to 7t / 2. From equation (5.117), 
it is clear that f ( s )  attains zero when

n(r — a) =  na +  (2k + l)n (5.117)

Because n is even, it can be expressed as n =  2n1,n 1 =  n/2. Then the equality 
(5.117) becomes as

2nx(7r — a) =  anxa +  (2A: +  l)x  (5.118)

4nxa =  (2nx — 2fc)7r-f 7T (5.119)
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Figure 5.8: Root distribution of the sum of two n-th order polynomials 

when a varies from 0 to tt/ 2, we have the following inequality

0 < (2rii ~  2&)7t +  7r < 2nX7r (5.120)

which leads to the following inequality

1/2 < k < — - + 1  (5.121)

for k — 1,2, ...,n , it satisfies the equality (5.117). Therefore, there are 2nx = n 
zeros of the summation polynomial on the — 2i±2a. line. And fr0m the uniqueness 
argument, all the roots of the summation polynomial are located on the line.

The case when n is odd can be proved similarly, except that on the half line 
(s =  cr +  ju>, a =  — 71 * 72, u  >  0), there are roots.

□

(b). Roots of the summand polynomials form mirror images 
with respect to a line parallel to the imaginary axis

Theorem 5.7 If the roots of the two summand polynomials form mirror images 
with respect to a line which is parallel to the imaginary axis, then the roots of the 
summation polynomial will be distributed along this line.

Proof:

The roots of f\(s) and / 2(s) form mirror images with respect to line / as shown 
in Figure (5.8). We prove that on line /, there exist n roots of the summation 
polynomial.
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Assuming s moves along line /, i.e. s =  oq + ju , where cr0 is fixed while to varies 
from —oo to oo, then the summation polynomial can be expressed as

f i (s)  +  f 2 (s) =  7 ieiai72e!“2 • ■ • 7„e'"" +  7^ :(T~ai)72e,(T_a2) • ••7„ei(,r-“ n)

=  7x72 ■ • • 7ne,(ai+“ 2+" '+an) +  7x72 • ■ • 7„ ed—  («1+« 2 + -+ a B)]

So the polynomial attains zero if and only if

Ox -f 02 +  • • • +  cxn + (2k +  1)tt = mr — (ex] + cr2 4- ■ ■ • + o n) (5.122)

where k takes integer numbers and cti +  a 2 + ■ ■ ■ + a„ takes values from — to 
From (5.122) we have

2(o?i 4“ ¿*2 A • • • 4" ex«) "F (2F 4~ 1)7r =  nit
—mr x 2 . , . , , n7r x 2

2 5: 2(q j  4- a 2 4- • • • + o n) =  nTf ~ (2fc + 1 )tt < — ——

2mr >  (2F 4- 1)7r > 0
1 2n — 1

—  < k < ---------
2 -  -  2

there indeed exist n roots of the polynomial on the line.

n ix  

2 '

□

(c). Summand polynomials each having n different real roots

Denote the roots of the summand polynomial f { s )  and g(s) as Oj, bt, i =  1, 2,..., n, 
a\ <  a2 < • • • < a„, ¿i <  ¿2 5: ■ • • < ¿n- We construct two extreme polynomials for 
each of the suminand polynomial.

(1) For polynomial / ( s ) ,  we construct two polynomials ffis)  and / 2(s)

/l(-s) =  (s4-ctn)n (5.123)

/ 2(s) =  (^4- ai)n

(2) For polynomial g(s), we construct two polynomials fi (s)  and g2(s)

fhl5) =  (5 +  bn)n (5.124)

S2 (s) =  (s 4- bi)n

C orollary 5.9 If both the summand polynomials have real roots, and their roots are 
distributed in the region defined as in the regions Si and S2

<$1 =  {s £ C : s =  a ±ju>, ui — 0, 71 < cr <  72} 

¿2 =  {s G C : 5 =  a ±  juj,Lo =  0 , 7 3  < a <  74}.
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then its roots are all confined within the region defined as

r  j c  n  . ■ n 7' +  73 ^ ^ 72 +  74,1 = { s e C : 3  =  <7 ± j w , u  =  0, — ——  < a <  ---- -----}. (5.127)

Proof:

The proof follows along similar line to those of the proof of Corollary 5.8.

□

5.3 Summary

In this chapter, the root distribution regions of bounded coefficient polynomials as 
well as the sum of two polynomials have been investigated. In the first section, 
bounded coefficient polynomials have been considered. For stable and completely 
unstable polynomials minimal necessary regions and maximal rectangular sufficient 
regions have been established. For the general case, much tighter upper bounds of 
the necessary region for third order polynomials have also been established, whereas 
the sufficiency condition based on rectangulars has been shown to extend to the case 
of general polynomials.

In the second section, the problem of root distribution of the sum of two poly-
nomials with known root distributions has been addressed. For the case when the 
roots of the summand polynomials form mirror images with respect to a line which 
is parallel to the imaginary axis, it has been proved that all the roots of the sum-
mation polynomial of the two are distributed along this line. Stripe regions have 
been obtained for the roots of the summation polynomial if the summand polyno-
mials have only real roots but they are confined to an interval. These results are 
improvements over the previous results available for the roots of the summation of 
two polynomials.
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Chapter 6

POLE MOBILITY AND 
STABILISABILITY OF LINEAR 
SYSTEMS UNDER BOUNDED 
STATE FEEDBACK

6.1 Introduction

Closed-loop control schemes have many advantages over open-loop control schemes; 
tolerating modelling inaccuracy, parameter variation, operating point drifting, just 
to name a few. The most important feature, above all, is to shape the dynamic 
response of the system, i.e. to choose and construct a feedback scheme in such a 
way that the system performance satisfies the user given specifications.

In the time domain, both state feedback and output feedback schemes can be 
used. In general, an output feedback control scheme is more practical than a state 
feedback scheme because the outputs of a system are accessible while the state 
variables of a system are, in general, not accessible. However, the state feedback 
scheme has been studied because either the states may be accessible or can be 
reconstructed using observers; furthermore, the additional significance of the state 
feedback scheme is due to that output feedback is a special case of state feedback 
and thus what can be achieved under state feedback provides an upper limit of what 
can be achieved by output feedback.

An important use of state variable feedback is to reallocate the set of system 
eigenvalues. The eigenvalues, which are equivalent to the system poles when the
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state space representation is minimal, are important system property indicators. 
The most important property shown by the set of system eigenvalues is the system 
stability. If a system is stable, then it is necessary and sufficient that the eigenval-
ues do not have positive real parts. The reallocation of the system eigenvalues by 
using constant gain state feedback has been studied by many researchers, among 
them are Wonham [Won.,2] and Davison [Dav.,1] and an excellent account of the 
recent status of the problem may be found in [Mun.,1]. They have proved that the 
closed-loop eigenvalues can be arbitrarily assigned using constant gain state variable 
feedback if and only if the system is controllable. Further, they concluded that if 
the unstable modes of the system are all controllable, then it is always possible to 
find a state feedback control scheme such that the resulting system is stabilised. An 
implicit assumption of the standard theory so far has been that the feedback gains 
are not constrained; this implies that under certain conditions the gains required 
may be very high and thus the ideal solution predicted by the theory may not be 
possible to implement, ft is the aim of this work here to investigate the effect of 
the bounded norm assumption of the feedback on system properties such as pole 
mobility, stabilisability etc.

The standard state feedback theory of linear systems relies extensively on the 
assumption that there are no constraints on the elements of the controller. In 
practice, however, very high gains are unrealistic and undesirable either due to 
saturation and nonlinearity issues, or due to the excessive energy demands associated 
with the control action. Studying certain issues of the norm restricted state feedback 
theory is the aim of this chapter; the particular emphasis is on the issues related to 
eigenvalue mobility under bounded norm feedback. When the gain of the controller 
is restricted, stabilisability and thus also pole assignability may not be guaranteed 
under the controllability assumption. The mobility of poles (eigenvalues) under 
bounded gain feedback is central in the extension of the standard theory to the case 
of bounded norm state feedback design. For simplicity of analysis, we assume that 
the feedback gains are constrained as

1141» < 7 / (6 .1)

where / is a vector in the case of SISO systems and a matrix for MIMO systems and 
|| • ||n denotes ln norm. It should be stressed here that the norm of a given feedback 
matrix may vary, if we carry out a coordinate transformation on the system. It will 
be assumed that the system states are physical variables on which constraints are 
naturally imposed and thus coordinate transformations changing a given physical 
state description to another description of a general type make no sense here as far 
as preserving constraints on high gain.
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The mobility of the closed-loop eigenvalues of a system is related to the quan-
titative controllability of the system as well as the constraints on the controller. 
Different measures have been used to define the degree of controllability and the 
relative pole mobility of the closed-loop systems has been studied [Paig.,1] [Eis.,1] 
[Bob & Lu,l] [Tar.,1] etc. The mobility of the closed-loop eigenvalues with respect 
to the constraints on the controller gain can be investigated in a number of ways 
depending on how the constraints on the gain are defined. In some of the pre-
vious work [Ack.,2] [Bie. Hwa. h  Bha.,1] [Kee. Bha. & How.,1] the constraints on 
the controller gain are defined parametrically, i.e. the controller gain vector takes 
values from some real intervals and the closed-loop poles are equivalent to the roots 
of corresponding interval polynomials. So the Kharitonov’s theorem can be applied 
[Kha.,1], The problem of mobility under output feedback has been considered in 
[Kar. h  Gia.,1], where discs trapping the closed-loop poles, for certain families of 
systems, are defined. The results of the previous approaches, however, do not apply 
to the case of norm constrained state feedback. In this chapter the constraints on 
the controller gain is defined in terms of the l? norm. Here we first translate the 
bound on the controller gain into the bound on the coefficients of the closed-loop 
characteristic polynomial and then establish the regions containing the closed-loop 
eigenvalues.

In Section 6.2 the SISO system are investigated and in Section 6.3, we study the 
MIMO systems. For SISO systems, regions have been established for the closed-loop 
eigenvalues to be assignable for the given bounded norm feedback. If the system 
contains unstable open-loop poles, the stabilisability of the systems has also been 
studied. Similar results have also been established for MIMO systems.

6.2 Bounded norm feedback and the pole mobil-
ity, stabilisability of SISO systems

In this section, the problem of closed-loop pole mobility with bounded state feedback 
controller is considered. A controllable single-input single-output system is assumed 
with a state-space description given below:

x — Ax-\-bu(t) (6-2)
Ty = ç x

where x G Rn, A G € Rnxl,u G R,y  € R, and ç G RnXl.
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From (6.7), the coefficient vector of the closed-loop characteristic polynomial 
satisfies

PT =  aT - k TR{A,b) (6.10)

where R(A,b) =  Q (A ,b)T(a) and will be referred to as the scaled controllability 
matrix. So the norm of the coefficient vector of the closed-loop characteristic poly-
nomial satisfies the following inequalities:

Ŵ h =  \\aT-kTR(A,b)\\2 ( 6 . 1 1 )

< \\aTh  +  \\tTR(A,b)\\2

< ||aT||2 + ||ir ||2 -||/?(A,6)||2

< \\*Th  +  v \ \ R ( A M 2

Set

then

lb +  7/ ■ ||Æ(A,6)||2, (6.12)

m *  < 7v (6.13)

Equation (6.13) has translated the norm bound on the feedback gain into the 
norm bound on the coefficients of the closed-loop characteristic polynomial. It is 
shown clearly that the coefficients of the closed-loop characteristic polynomial are 
bounded when the controller gain is bounded; therefore, the closed-loop poles cannot 
be arbitrarily allocated.

Remark 6.1: From equations (6.12) and (6.13) it is shown clearly that the bound 
on the coefficients of the closed-loop characteristic polynomial is affected both by 
the bound on the feedback as well as the /2 norm of the scaled controllability matrix
R(A,b).

□

Remark 6.2: The /2 norm of the scaled controllability matrix R(A,b) is affected 
by the coordinate transformation on the system. Let Q be a nonsingular coordinate 
transformation, then the Z2 norm of the new scaled controllability matrix becomes

I|fi(^',0ll2 = \ m ,A b ,A *b ,...,A ’'- 'b }Q -'T (a )h  =  1Q• ||Æ(/1,6)||2 (6.14)

where 7q  is the condition number of the transformation matrix Q. So the study of 
the pole mobility of the closed-loop system should always be carried out with respect 
to the natural coordinates and without using coordinate transformations which may 
affect the meaning of the norm conditions. It is also clear from the above that the 
bounded feedback pole mobility study makes sense only when the states are natural 
variables for which imposing constraints makes sense.
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□

The mobility of the closed-loop poles depends on the scaled controllability ma-
trix R(A,b). In the following, it can be demonstrated that if a system is nearly 
uncontrollable, i.e. the smallest singular value of the scaled controllability matrix is 
very small, then excessively large controller gain is needed to move the poles away 
from their original location. In fact, let us rewrite equation (6.10) as

a T -  dT =  kTR(A,b) (6.15)

and also write the scaled controllability matrix in SVD form

R{A,b) =  U
0-2

(7  7-1

V (6.16)

where a 1 > cr? > • • • > an > 0 are the singular values of the scaled controllability 
matrix. Then equation (6.15) is equivalent to

(0\

(a T ~ ^ T)[w1 ,W2, ...,?£„] = h !  [«!,«2 ,
(02

(6.17)

where [uq, w2, ..., ULn] =  [u.iiU.2 , - , l h ]  =  U. From equation (6.17), the relation
between the controller gain and the singular values of the scaled controllability 
matrix can be presented as:

(.a T — /?T) x =  CTifcr ut-, i — 1,2,.., n (6.18)

and thus the ¡2  norm of the controller gain satisfies

 ̂ 2 <  —  X 
<7

\a ^ h - W m h  ll«T -/3||2
lit. II2 (Or

i =  1,2,..., n (6.19)

therefore nearly uncontrollable systems will have smaller singular values and will 
need larger gains to control.

Remark 6.3: The mobility of the closed-loop poles depends not only on the bound 
on the controller gain, but also on the singular values of the scaled controllability 
matrix. The bigger the singular values, the easier the poles are able to be moved 
away from their original location.

□

The problems studied in this section are:
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(i) Establishing upper bounds for the pole mobility region which contains all the
closed-loop eigenvalues under bounded norm feedback.

(ii) Establishing upper bounds for the pole mobility region which contains all the
eigenvalues of the stable closed-loop system under bounded norm feedback.

(iii) If some of the open-loop poles are unstable, examining the stabilisability under 
bounded state feedback.

The results presented in Chapter 5 on the root distributions of norm bounded 
polynomials can be applied on the root distributions of the closed-loop characteris-
tic polynomials. The necessary root inclusion regions for the bounded coefficients 
closed-loop characteristic polynomial define the necessary assignable closed-loop pole 
regions for the given bounded state feedback system. In the following we study the 
necessary assignable pole region for the general case by using Theorem (4.9), Propo-
sition (5.5) and then the necessary assignable pole region employing Theorem (5.2) 
when the closed-loop poles are all assumed to be stable.

6.2.1 Pole Mobility Regions which contain all the 
closed-loop eigenvalues under bounded norm 
feedback

The results stated in the previous section may now be used for the study of pole 
mobility of SISO systems under bounded norm feedback.

(1). The Ostrowski’s pole mobility region.

The result presented in Theorem (4.9) provides the links between the distance of 
the roots and the coefficients of two polynomials. Assume the same notations as in 
Theorem (4.9). Now f ( s )  and g(s) represent the open- and closed-loop characteristic 
polynomials, respectively, i.e.

f { s ) =  fo{s) =  sn +  ct\Sn 1 +  • ■ • +  Oin—\S +  an 

d(s ) =  f c ( s )  = S n + (3iSn 1 + • • • + f i n - 1>5 +

By employing equation (6.15), the values of Pi =  m ax{l, |a,-|, \/3i\} and d = 
i lQt' — AI can be calculated as

T i  =  m a x { l ,  | « i | ,  I A I }

< m ax{l, |q ,-|+ 7/• ||-R(A,6)||2} (6.20)
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(6.21)

d = E k - A ' I
1=1

< n • 7/  • ||/2(A,6)||2

then by applying Theorem (4.9), we can compute the maximal distance, <5, between 
the open-loop and closed-loop poles by

8  =  max |At — //j| < (n + 2 )Y\d}^n. (6.22)
•a

where Ai , f i j , i , j  =  1,2, ...,n are the open- and closed-loop poles of the system. A 
result on the closed-loop pole mobility under bounded feedback is described below:

Theorem 6.1 The poles of the SISO closed-loop system under a bounded state feed-
back Ic, such that ||¿||2 < 7j , will be in the circles which are centred at the open-loop 
poles with a radius 8  where

8 =  (n +  2 )r 1 d1/n (6.23)

and Ti,d are defined as above.

a

Remark 6.4: The bound obtained for the closed-loop poles with respect to the 
open-loop poles is shown to be proportional to (7/  ■ \\R{A, 6)||2)^+"*- Thus a system 
with larger values of 7j and ||/?(T, 6)||2 will have greater closed-loop pole mobility.

□

(2). Single disc type pole mobility region.

By using Theorem (5.4), we can establish another upper bound for pole mobility 
region for the closed-loop system. Let us define a circle, Df,  in the complex plane 
with the centre at the origin such as:

Df =  {5 (E C; |s| < 1 + 7p}. (6.24)

where 7P is defined by equation (6.12), i.e. 7p =  ||ar ||2 +  7/ • \\R(A,b)\\2. From 
Theorem (5.4), every eigenvalue of the closed-loop system is contained in a circle 
defined by the following result.

Theorem 6.2 For a controllable system (T,6); if the state feedback gain is con-
strained by l2-norm as <  7/ ,  then all the eigenvalues of any closed-loop system 
will have all its roots in the circle Df.
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□

R em ark 6.5: This result demonstrates that the bound on the closed-loop poles 
is proportional to the value 7j ■ ||/?(A, ¿)||2- Compared with the result in Theorem 
(6.1), Theorem (6.2) is less conservative when the value 7j ■ \\R(A, 6)||2 is large.

□

(3). Pole mobility of third order systems:

For lower dimension systems (n < 3) a much tighter necessary closed-loop pole 
region can be established by using Theorem (5.6).

T heorem  6.3 If the system is of order 3, then all the complex conjugate closed-loop 
poles lie within the circle centred at the origin with radius

P=\/\/l2p + A i

where A 7p x < 1.0 and all the real roots satisfy |p, j < 1 +  7p.

□

R em ark 6 .6 : Compared with Theorems (6.1) and (6.2), the result given in Theorem 
(6.3) is the least conservative for third order systems because the bound on the 
closed-loop poles is proportional to J 7/  • ||i?(A, &)||2.

□

A comparison of the different results will be made at the end by an example.

6.2.2 Pole Mobility Region of the stable closed-loop 
eigenvalues under bounded norm feedback

When the closed-loop system is stable under the constrained feedback, then a tighter 
region for all the roots of the closed-loop characteristic polynomial can be obtained.

F°r 7p >  0, define as in Definition (5.2) the Tp-Prime region as:

n =  {s — a ±  joj G C + : 0 > a > — z7p, |cu| < cu(cr)} (6.25)

=  {5 =  a ±  ju  G C + : - z h < a < - z lp,u  =  0} (6.26)

r ; =  $+ U 0+7p 7p (6.27)

where zh =  7p, z7p =  y j-2  +  ^4 +  7p and u(cr) =  J~cr2 +  -  4a2. Then all
the stable closed-loop system will have all its characteristic polynomial roots in Tp-
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Prime region. Thus, if 7P is defined as indicated by equation (6.12), we have the 
following theorem.

T heorem  6.4 For a controllable system (A, 6), if the state feedback gain is con-
strained by l2-norm as ||&||2 < 7j, then all the eigenvalues of any stable closed-loop 
system will have all its roots in the Tp-Prime region.

P roof:

For a controllable system (A,b), if the state feedback gain is constrained by l2- 
norm as ||&||2 <  7/,  then from equations (6.10-6.12), it is shown that the coefficient 
vector of the closed-loop polynomial is bounded by 7p, or

ll^ lh  < l r = llsTi!2 + 7 / • ||H(A,6)||2. (6.28)

So from Theorem (5.2), it follows that all the eigenvalues of any stable closed-loop 
system under this bounded controller will be in the Pp-Prime region.

□

R em ark 6.7: The circular region Dj  contains r+p, or P+p C Df.  So the conserva-
tiveness of the maximal region is reduced in the case when all the closed-loop systems 
are stable by using r+p instead of Dj.  The P^ region is the smallest uncertainty 
region for the mobility of the stable closed-loop eigenvalues under the bounded state 
feedback.

□

R em ark 6.8: For the necessary pole mobility regions obtained here there exist 
points which will never be closed-loop eigenvalues of the state feedback system with 
the given bound constraint.

□

A comparison of the different results, which also demonstrates the conservative-
ness of them, is given below.

E xam ple (6 .1): A helicopter near hover can be described by the equations

Xl -0 .0 0 2 - 1 . 4 9.8 ’ Xl ' 9.8 "

X2 = -0 .0 1 - 0 . 4 0 x2 + 6.3

X3 0 1.0 0 x3 0

(6 .2 9 )

where x x =  horizontal velocity, x 2 — pitch rate, x3 =  pitch angle, u— rotor tilt 
angle.
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The open-loop characteristic polynomial is

f 0 (s) =  s3 + 0.42s2 -  0.006s + 0.098

with open-loop poles at

Ai =  -0.6565 

A2i3 =  0.1183 ± j 0 .3678

therefore the controllability matrix and the Toeplitz matrix of a are

Q(A,b) =
’ 9.8 -9.016 65.58552 -0.006 0.42 1

6.3 -2.618 1.13736 ,r (a )  = 0.42 1 0
0 6.3 -2.618 1 0 0

so

R(A,b) =  Q(A,b)T(a)
62.7142 -4 .9 9.8

0 0.028 6.3
0.028 6.3 0

(6.30)

(6.31)

The 1-2 norm of the matrix R(A,b)  is

||Ä(A,6)||2 =  62.1742 (6.32)

Assume the feedback gain vector is bounded by 7/  =  ||&||2 < 1, then the norm 
bound on the coefficients of the closed-loop characteristic polynomial in equation 
(6.12) is

7P =  l|aT||2 + 7/ ' \\R(A,b) \ \ 2 

=  63.1455

So the necessary closed-loop pole regions for the general case can be established.

( 1)  . From Theorem (6.1), the closed-loop poles are located in the circles which are
centred at the open-loop poles A¿,z =  1,2,3 with a radius <5, where

8 =  (n + 2)rxd1/n = 1506.2 (6.33)

(2)  . From Theorem (6.2), we can obtain a circle Df centred at the origin with a
radius 1 +  7p, or

Df = {s e  C\ |s| < 1 +  7P =  64,1455} (6.34)
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r=64.1455

Result (2)

Figure 6.1: Upper Bounds for Closed-loop Pole Mobility Regions
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Figure 6.2: Actual Closed-loop Pole Distribution Under Bounded Feedback

(3 ). Yet, we can establish a much tighter necessary closed-loop pole region by using 
Theorem (6.3). From Theorem (6.3), the complex conjugate closed-loop poles 
must lie within the circle

G C; |s| <  p = 17p + 7 p x / T + 4 - 7p
7.9469 (6.35)

while the real closed-loop poles /i j  satisfying \/j,j\ <  1 +  7P =  64.1455.

(4 ). If we require all the closed-loop poles to be stable, then from Theorem (6.4), 
all the closed-loop poles are in the r p-Prime region as defined in (6.27)

|s =  a ±  ju  £ C + : -7.822 < a <  0, \u\ < \J-a 2 + \/63.14552 - 4 a 2}

{s  =  a ±  ju  € C + : -63.1455 < a < -7.822, u  =  0}

U 0 +
T'P T'p

<s>+Ip

0+T'p
r+

The results are presented in Figure (6.1), while the actual pole distribution of 
the closed-loop system is shown in Figure (6.2). It is shown clearly that the result 
obtained by using Theorem (6.1) is the most conservative and the results yielded by 
applying Theorem (6.3) and Theorem (6.4) are the least conservative.

R em ark 6.9: The norm of the scaled controllability matrix, R(A,b)  affects the 
upper bounds for the closed-loop pole mobility in such a way that the bigger the 
norm, the larger the mobility of the system.

□
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6.2.3 Stabilisability o f unstable SISO systems

In this subsection, the stabilisability of open-loop unstable SISO systems is con-
sidered. Given an open-loop unstable system, then we say that the system is 7¡- 
stabilisable if there exists a feedback k which satisfies ||fc||2 <  7/  such that the 
resulted closed-loop system has all the eigenvalues in the left half of the complex 
plane; otherwise, the unstable system is not 7^-stabilisable under any 7j--bounded 
feedback.

In the following we define a region, Dn, with the property that if an unstable sys-
tem has a root outside this region, then the system is not stabilisable by the bounded 
state feedback; this region will be referred to as the necessary stabilisable region. 
This region is defined in terms of the bound of the state feedback gain, 7/  and the 
scaled controllability matrix, R(A,b).

N ecessary stabilisable region

Assume that the open-loop characteristic polynomial and / 0(s) and the desirable 
closed-loop polynomial f c(s) are:

fo (s ) =  sn +  c>L\Sn  1 +  • • • +  <yn ,

/c(-s) =  sn + P\Sn 1 +  • • • + Pn

and that the bound on the state feedback gain is ||&||2 <  7/. From equation (6.7), 
it should be remembered that

N | 2 < ||/?||2 +  7/ ’ \\R(A,b) \ \ 2 =  7n (6.36)

Using the results for pole mobility we have:

T heorem  6.5 For the system (A,b), if A has an unstable eigenvalue outside the 
circle

Dn =  {s € C;\s\ <  1 + 7n} (6.37)

then the system is not 7/  -stabilisable.

P roof:

If A has an unstable eigenvalue outside the circle Z)n, it follows from Theo-
rem (5.4) that the coefficient vector of the open-loop characteristic polynomial, a, 
satisfies

||a||2 > 7n (6.38)
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which is contradictory to equation (6.36). Therefore, the open-loop poles must lie 
inside the circle Dn.

□

Therefore, the part of Dn disc which lies in the right half plane defines a nec-
essary region within which all unstable eigenvalues must lie for the system to be 
7/-stabilisable.

Another necessary condition for system stabilisation can be developed by using 
Theorem (3.1). As stated in Theorem (3.1), the closed-loop poles of a system when 
subject to a bounded state feedback k, such that ||&||2 <  7/  can be moved at most 
to a distance from the open-loop poles by 6  = (n + 2)r1<f1/n, where Ti and d are 
defined in equations (6.20) and (6.21). In order to stabilise a system, this distance 
should be larger than the distance of any unstable pole from the imaginary axis. If 
we define A as

A =  max{|rea/(A,)|, A, 6 Aou} (6.39)

where Aou is the set of open-loop unstable eigenvalues, then we have the following 
necessary condition for system stabilisability.

T h eorem  6.6 Let (A, b) be a stabilisable pair. A necessary condition for this pair 
to be 7 f-stabilisable is that

6  >  A (6.40)

where 6  =  (n +  2 )r1d1/"  with Ti,d defined by (6.20), (6.21) and A is as defined by 
(6.39) above.

□

The above result defines an alternative type of necessary condition for 7/-stabilisability 
in terms of the distance of the unstable eigenvalues from the imaginary axis. These 
two results may be used in a negative way to infer non-stabilisability. Sufficient 
conditions are considered next.

6.2.4 Sufficient conditions for stabilisability

A sufficient condition for 7/-stabilisability can be obtained by employing equation 
(6.7).

C orollary  6.1 Given a system (A,b) and the set of desired closed-loop poles as Ac, 
then the system can be 7/ - stabilised, if the controller k satisfies

Il£||2>l|fa-ffl-.fr1(/t,&)||2. (6 .4 1 )
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□

This is an obvious result that provides the means for working out sufficient 
conditions. If we set Ac =  {0,0, a sufficient condition for 7/-stabilisability is
given below:

R em ark 6 .10: A sufficient condition for 7/-stabilisability is that

\\kh> W a - R r ' i A M * -  (6-42)

□

R em ark 6 .11: From (6.41), it follows that ||fc||2 satisfies the inequality

7 -1 < ■- ' .U !2 < 7_1
h - i h  ~ ~

where 7 ,7  are the maximum and minimum singular values of R(A,b).

(6.43)

□

Another sufficient condition for stabilisability can also be obtained if we first find 
a stable characteristic polynomial, / c(s), which has a minimum distance from the 
unstable characteristic polynomial. Instead of using Ac — {0 ,0 ,..., } in Remark 6.10, 
the set of roots of / c(s) is used. Then the controller gain to achieve the assignment 
for this set of closed-loop poles defines a sufficient condition for stabilisability. In 
order to find the closest stable characteristic polynomial from the unstable open- 
loop characteristic polynomial, the procedure described in Section 4.6 can be used. 
However, the performance index to be minimised is a function of k and the scaled- 
controllability matrix R(A,b).  Indeed,

Q (A /) = ||fc1'^ - 1(A ,6)||= (6.44)

Having found the closest stable characteristic polynomial, say /" (s ) , the corre-
sponding controller gain, ¿°, can be computed

S = ( £ ~ a T)R-'(A,b)(6.45)

where /3q is the coefficient vector of f°(s).  Therefore, by continuity argument, an-
other sufficient condition for stabilisability is that

II—II2 > Wkoh (6.46)
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Example (6.2):

Given an unstable system (A, 6),

0 1 0 0 0

0 0 1 0
,b =

0

0 0 0 1 0
- 2 - 5 6 - 4 1

and the open-loop characteristic polynomial is

f°(s)  = s4 + 4s3 -  6s2 +  5s +  2

with roots -0.28518,-5.29736, and 0.79127 ± j0 .83534. 

From Remark 6.10, a sufficient condition is given by

||*||2 > ||a-iT1(A,6)||2 =  9.0

As shown in Example (4.2), a closest stable polynomial is found to be

/ c°(s) =  s4 +  4.987735s +  0.0002s2 +  0.0004s +  1.005-8

with roots at —4.9877,-0.000027, and —1.929-8 =b j18.611—3. So the controller gain 

ko is

kT ( g - a T)R~\A,b)

0.98773 6.0002 -4.9996 - 2

So another sufficient condition can be presented as

11*112 >  \\Lh =  8.1224

6.3 Bounded norm feedback of MIMO systems

6.3.1 Introduction

An important study in the closed-loop design of the MIMO systems is the closed-loop 
eigenvalue placement via state feedback. It was proved by Wonham [Won.,2] that 
the closed-loop eigenvalues of a MIMO system can be arbitrarily assigned via state 
feedback if and only if the system is controllable. Different pole assignment meth-
ods, as well as formulae for computing the controller gain matrices have been pre-
sented [Won.,2] [Bas. & Gur.,1] [Ack.,2] [May. & Mur.,1] [Ros.,1] [Mun.,1] [Moo.,1]
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[Verg. & Kai.,1] [Kar. & Gia.,2] [Pat.,1]. Here we first study the methods of as-
signing the set of desired closed-loop eigenvalues to the system. We present two 
ways of closed-loop eigenvalue assignment. The first method will be based on the 
controller form of the system while the second will be using dyadic feedback. Then 
the eigenvalue mobility of the system, when subject to bounded state feedback will 
be investigated for different pole placement methods. In Section 6.3.2, the methods 
of pole assignment are presented while in section 6.3.3, closed-loop pole mobility of 
the MIMO systems under bounded norm state feedback are presented.

6.3.2 Methods of pole assignment

Given the following MIMO system,

x =  Axft)  +  Bu(t) (6-47)

V =  C Tx(t)

where x G Rn, A G Rnxn, B  G Rnxl,u G Rl, y E  f?m, and C G RnXm.

The system is subject to state feedback

u =  K x ( t ) +  Gvft) (6.48)

where K  G Rlxn, G G Rlxl and v G Rl is the real system input.

So the closed-loop system is equivalent to

x =  (A + BI<)x(t) +  BGu(t)  (6.49)

y =  C Tx(t)

If the system (H, B ) is controllable, or equivalently, Q =  J B AB ■ ■ ■ An~l B J  

is of full rank, then it is proved that the closed-loop eigenvalues of the system can 
be assigned arbitrarily when the desired closed-loop eigenvalues form a symmetric 
set [Won.,1],

T heorem  6.7 [Won.,2] For a MIMO system as given in (6 .41), the desired closed- 
loop eigenvalues can always be assigned if and only if the system is controllable.

a
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For controllable MIMO systems, the pole assignment can be carried out either 
based on the canonical controller form of the system or by a direct method if the 
matrix A is simple. First, the pole assignment based on the canonical controller 
form of the system is investigated.

(a). Pole Assignm ent Based on Controller Form

In order to obtain a canonical controller form of a system, we first have to select 
a new coordinate system. Because the system is assumed to be controllable, so 
the controllability matrix, Q — [ B AB ■■■ An~l B j of the system is of full 
rank. From this n x nl matrix, we can select a set of n vectors which are linearly 
independent. Different from the case of SISO systems, the selection of the n linearly 
independent vectors can be done in different ways. Depending on the way the 
set of linearly independent vectors is selected, the controller form will in general be 
different. In this sense, the controller form cannot be defined as canonical. However, 
if the selection procedure of the linearly independent vectors is fixed, then for similar 
matrices, we will always obtain the same controller form.

For a given controllability matrix, Q =  B AB ■ ■ ■ An~l B , of the system, 
we select from left to right until n linearly independent vectors are found. Rearrange 
then in the form

Qo =  {  bi Abi ■■■ Akl 1 bi b2 ■■■ Ak‘ lbi j (6.50)

and define
/

cri =  ^i) — k\ k2, ..-Tcri — kt = n
1=1

(6.51)

Now let
qx = the <7,th row of Q~x (6.52)

and form

T -' =  \ { A ^ - \ \  ... qT (AT)1* - ' f i  ... qJ \T (6.53)

Then the newly formed transformation matrix T will transform the system pair 
(A, B) into controller form, i.e.,

T~ 1 A T = A C, T~XB — Bc (6.54)
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where Ac and Bc are in the forms

X
1
0
0
x

x x x
0
0
0
x x x  

1 0
0 1

X X
0 0
0 0

x  x  •• • x  x

X X • •• X X

X X X
0 0

x x x

0 0 1 0 _

Under the transformation
x — Tx.

and the state equation of (6.47) becomes

¿c =  (Ac +  BcI<c)xc(t) +  BcGv(t) 

y =  C x.it)

where { A C, B C} are as in (6.55) and

1
0

(6.55)

(6.56)

K c =  I<T (6.57)

Because there are different ways of choosing the set of linearly independent vec-
tors from the controllability matrix, there are more than one controllability canonical 
forms. However, when the canonical form is fixed, then the matrix to transform the 
system into the specific controllability canonical form is uniquely defined.

The uniqueness of the transformation matrix is proved in the following:

P roposition  6.1 The nonsingular matrix which transforms a system into its canon-
ical controllability form is uniquely defined.

P roof:

Assume that there are two matrices T\,T-2 which both are nonsingular and can 
carry out the following:

7i =  r 2 +  A T  (6.58)

and

T f'A T i =  A 

T f'A T i =  A
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Because in both of the cases, (AC, B C) are the same and therefore the controlla-
bility matrices are the same. After transformation, the controllability matrix of a 
system becomes

Q =  TxQo, Q = T2 Q0 (6.60)

where Qo is the original controllability matrix.

So we result in T\Qq =  T2 Qq or ATQo = 0.

This shows that A T must be orthogonal to Q0 which is of full rank, and hence-
forth we conclude that A T =  0.

□

(b). Procedure of Pole Assignment Based on Controller Form

The procedure to assign the desired closed-loop eigenvalues to the system can 
be carried out on the controller form in (6.55) as follows.

• Choose an appropriate precompensator G to set all the entries marked x in 
the {lst , , (k\ +  l)th,(k\ +  k2 + 1 )th,...} rows of Bc zero. This can always 
be done by elementary transformations because of the appropriately located 
Is in these rows. Let a nonsingular matrix G be chosen to represent these 
elementary transformations, or

1 0  0 ••• 0 
0 0 0 0

BCG =
0 1 0 ••• 0
0 0 0 ••• 0

0 0 0 ••• 1
0 0  0 ••• 0

(6.61)

Define BCG =  B°, Bc — B°G 1 and also define K c = G 1 Kc, Kc — G K C so

BCK C -  BCGKC = B°I<C (6.62)
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[Kar. & Gia.,2]. A special case of the general linearisation methods is the Dyadic 
Feedback Controller method. If the system matrix A is cyclic, and the system 
( A,B)  is controllable, then there exists at least one vector q such that {A , Bq] is 
controllable.

P roposition  6.2 [Won.,1] If (A, B) is controllable and A is cyclic, there exists at 
least one vector q such that (A,Bq) is controllable. In fact, it holds that “almost 
any” m X 1 vector q will suffice.

□

For these systems, the pole assignment of the MIMO system can be reduced 
to a SISO pole assignment problem. Therefore, the simple relation between the 
coefficients of the open-loop characteristic polynomial and the desired closed-loop 
characteristic polynomial can be obtained as shown in (6.7). Because the closed-loop 
system characteristic polynomial f c(s) is:

f c(s) =  det(s/ — A +  B K ) (6.65)

then clearly the coefficients of the closed-loop characteristic polynomial depend on 
kij in a multilinear way as long as / > 2 [Kar. &; Gia.,2]. If we write K  in the form

K  =  UL =
Y '

U D
l

u f  +  ÜL ( 6 .66)

where U € RlXq,I< £ W xn and U,L are arbitrarily fixed matrices of dimensions 
/ x  (q — 1) and (q — 1) X n. If UL = 0 then K  =  u i l which is a dyadic feedback. 
Now the closed-loop characteristic polynomial becomes

f c(s) =  det ( s I - A - B K )

=  det[s/ -  {A + BUL) -  B y ? ]

= det (s i  — A — bJT) (6.67)

where A =  A -f BUL  and bu = Bu. So the nonlinear problem is reduced to a linear 
one, which is equivalent to a SISO system problem, i.e.:

x =  Ax +  buu(t) (6.68)

V =  cx

with state feedback
u ( t )  =  [ Tx  +  v { t ) (6 .6 9 )
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Denote
91
92

Qm

91
92

9m

91

92

Qm

r(£ ). (6.74)

Based on the procedures for carrying out closed-loop pole assignment, the pole 
mobility of the closed-loop eigenvalues with respect to the bounded gain state feed-
back is studied in the next section.

6.3.3 Pole mobility of MIMO system under bounded 
state feedback

In the SISO case, the norm bound on the state feedback gain is defined to be the /2 
norm. A natural extension of the /2 norm for the vector case to the matrix case is 
the Frobenius norm. So in MIMO systems, we assume that the norm of the state 
feedback gain matrix K  is bounded by the Frobenius norm. The definition of the 
Frobenius norm of a matrix A =  [a^] is:

/  - E E - 2u
=1 j=1

(6.75)

In the following we study the closed-loop pole mobility of the MIMO system 
under the Frobenius norm bounded state feedback, \\K\\f <  7 . Because there are 
different ways of pole assignment, the pole mobility of the closed-loop system de-
pends on the specific method employed. In the sequel, a sufficient closed-loop pole 
region is first obtained based on the pole assignment using the controller canonical 
form. A necessary region is then obtained by using the dyadic feedback for systems 
when A is cyclic.

(a). Sufficient Assignable Closed Loop Pole Region
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From section 6.3.2, the feedback gain matrix can be obtained for the desired
~T

closed-loop characteristic polynomial in such a way that the nonzero rows Jc{ , i =  
2, 3,..., m in

BCK T  =  B °K C =

r rT 11__ ¿12 ¿in *1
0 0 ...  0 0

¿21 ¿22 ¿2 n ~£
0 0 .. .  0 = 0

^ml ■̂m2 ... 1-rX/mn ¿T—m
0 0 .. .  0 0

- -

are chosen to make the closed-loop system matrix as 

Ac -  B °K C =

or they satisfy

hj = - x , j ,  j  ±  i +  1,* =  2 ,3 ,...,m , j  =  1,2, ...,m  

hj = -  Xij +1, j  = f +  1, * =  2,3, ...,m

and in terms of Frobenius norm, the matrix BCI(T  should satisfy

\
, r T m n
fc.ll2 + E E 4+ E (x,v-i)2

: =  2 j = l j / j  + l i= 2 ,j= l  +  l

(6.76)

(6.77)
r  x -  fcn X -  fc12 X -  * ! , _ ] X - X —

1 0 0 0
0 1 0 0

0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0

1 0 0 0
0 1 0 0

0 0 1 0

0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 0
0 1 0 0

0 0 1 0

(6.78)

(6.79)

\\BcKT\\j =

where Xp, i =  2 ,3,...,m ,j = 1,2, ...,n of matrix ,4C. So the vector satisfies

(6.80)

iU II 2
N

m n
(l|ft/<T||/)2 - 2 E 4 -  E (x.i-l)2

i=2 i =2, j =»+1

<

=  7*

1
m n

72 ■ llB.UMmi? - E E 4 -
t=2 j = l » = 2 , j = t + l

E  ( x o -  ! ) 2

(6 .8 1 )
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From (6.77), the norm relation between the closed-loop characteristic polynomial 
vector, the first row of matrix Ac and the gain vector kx stands as

P = k i - * i  (6-82)

and therefore

\\P_h ~ \\h h  +  l l ü i l b  < 7 k +
\

Z  x u =  7/?
i=i

(6.83)

R em ark 6.13: From (6.81) and (6.83), it is clear that the transformation T in-
troduced in transforming the system into controller form affects the norm bound 
on the coefficients of the closed-loop characteristic polynomial. When ||T||/ is big, 
the bound 7  ̂ on the coefficient of the closed-loop characteristic polynomial will be 
relaxed and the results subsequently obtained for the root distribution will also be 
conservative.

□

Having obtained the norm bound on the coefficient vector of the closed-loop 
characteristic polynomial, the maximal reachable closed-loop poles of the system 
can be obtained.

T heorem  6 .8  For a controllable system (A ,B ), if the state feedback gain is con-
strained by Frobinus-norm as ||/F||/ < 7, then all the eigenvalues of any closed-loop 
system will have all its roots in the circle D

R = {s £ C : |s| < 1 + 70} (6.84)

where 7  ̂ =  +  ^£,=1 x 2u .

□

If the closed-loop poles are all stable, then they are necessarily within the 7 -̂ 
Prime region which is defined in Definition (5.2).

T heorem  6.9 For a controllable system (A,B) ,  if the state feedback gain is con-
strained by Frobinus-norm as \\K\\j <  7, then all the eigenvalues of any stable 
closed-loop system will have all its roots in the 7^-Prime region.

□

(b). M axim al Assignable Pole Region

If a system has A cyclic, then as shown in section (6.3.2), the MIMO pole as-
signment problem can be transformed to a scalar case by dyadic state feedback.
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searching the controllability matrix Q(A, B) from left to right to find 3 independent 
vectors and rearrange then in the order bx Abx A 2 bx ... A 2 b2 which gives P,

P =
1 -1  0
1 - 2  0
0 0 1

(6.95)

and a transformation matrix P, which transforms the original system into the 
controller-form, can be obtained as

(6.96)
1 2 1 -1 2 -1

T - 1 1 1 , T - 1 = 1 -1 0
0 0 1 0 0 1

by which the system can be transformed into the following controller-form:

Ar = T~ AT
- 3 - 2 1 "

1 0 0
0 0 -3

1 -1
Bc =  T~1B = 0

o

O 1

so we can choose G
1 1 
0 1

and

B:  =  BCG =
1 0 
0 0 
0 1

Set

then

I<r I<T =

B°0 K C

1̂1 k\ 2 k
k2\ ¿22 k

k\\ ¿12 ¿13
0 0 0

¿21 2̂2 2̂3

1 3

2 3

The gains k2j, j  =  1,2,3 are selected to make the matrix Ac +  B °K C satisfy the 
following condition

A c +  B ° K C

1 CO + —  2  +  ¿ 1 2 CO ' A & 'C
fc

CO ---
---

-1

1 0 0 — 1 0 0

¿21 ¿22 — 3  +  ¿2 3 0 1 0

(6 .9 7 )
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r=31.94

Region 1

Figure 6.3: Necessary closed-loop pole regions via controller-form

where P i P2 P 3

polynomial.
are the coefficients of the desired closed-loop characteristic

So following equation (6.81), we can obtain the norm of kx as

\\kih < 7fc =  \/30 ' -  10 (6.98)

which demonstrates clearly that the norm bound of the gain matrix must satisfy 
Ik >  -333 for this particular example.

The coefficients of the possible assignable closed-loop characteristic polynomial 
must satisfy

^  I I Ì 1 I I 2  + E  XL = v^4 +  ^307fc2 -  10 =
3 =1

(6.99)

Deploying Theorems (6.8), (6.9) we can establish the following necessary closed- 
loop pole regions.

R egion 1: The poles of the closed-loop system with the controller norm bounded 
by \\K\\f < lie in the circle D which has its centre at the origin and a radius 
r =  1 +  ip  and 7/? =  \f\A + -  10.

R egion 2: If all the closed-loop poles are stable then they are necessary confined 
by the y^-Prime region as defined in Definition (5.2).
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If we take 7* =  5, 7  ̂ =  30.94, then the regions are plotted in Figure (6.3).

(b) Dyadic feedback method: Set K  — qr = q 1

<72
| /[ l2 I3 j ■ The vector q

should be chosen to make the controllability matrix Q(A, Bq) to be of full rank, i.e.

rank (Q( A , jBqj'j =  rank
<7i ~  <7i — <72 <7i +  4 <72
<7i - 2 qx 4<7i

<72 - 3 <?2 9<72

= 3

which gives

<7i i  0,g2 ^ 0 and q2 /  2

By applying inequality (6.91) we have

Tm \2 < \\ql ||2 +  "2 • 7 • \\Q(A, B)\\j ■ ||T(q )||/

=  13.63 +  220.O67*

(6 . 1 0 0 )

If we take 7* =  5, then \\/3 \ \ 2  < 1320.35. Two similar necessary regions Region 
1° and Region 2° have been obtained for the closed-loop poles as in figure (6.4). 
However, they are substantially larger compared with Region 1 and Region 2.

Using the general result of root distribution for third order bounded coefficient 
polynomials presented in Chapter 6, a much less conservative region can be obtained 
for the closed-loop poles. The results is shown in Region 3° in figure (6.4).

In Figure (6.5), numerical tests of the closed-loop poles are displayed. It is shown 
that the closed-loop poles are mainly distributed on the real axis and the theoretical 
result given is quite conservative.

6.3.5 Stabilisability of unstable MIMO systems with 
bounded norm state feedback

In this subsection, the stabilisability of unstable MIMO systems are studied when 
the state feedback gain matrix is norm bounded. By a system to be stabilisable 
we mean that there exists a state feedback satisfying the given bound such that 
the open-loop unstable MIMO system can be stabilised. Here only the controllable 
systems (A, B) with A being cyclic are studied.

The assumption that the system matrix A is cyclic is not too restrictive in 
the sense that for a controllable pair (A,B) ,  almost all A +  B K  is cyclic with K  
arbitrarily chosen.
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Region 1°

Figure 6.4: Necessary closed-loop pole regions via dyadic feedback
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Figure 6.5: Numerical test of the closed-loop distribution

Lem m a 6.1 [Kai.,1] For a controllable pair, any closed-loop system with almost any 
feedback K , A +  B K  is cyclic. Obviously, this is true when K  is norm bounded.

□

Because the system (A, B ) is controllable and matrix A is cyclic, the stabilisation 
of the unstable MIMO system can be transformed into a SISO stabilisation problem 
as described in Section 6.3.2. Given the system

x — Ax(t)  +  Buft) (6.101)

y = Cx( t )

and with a state feedback law

u =  Kxft )  +  Gyft) (6.102)

where the state feedback gain satisfies the condition

\\K \\f < 7 (6.103)

By using dyadic state feedback, the relation between the coefficients of the open-loop 
characteristic polynomial and the closed-loop characteristic polynomial is given by

f  =  aT -  kTQ(A,b)T(a ) (6.104)

where the controllability matrix Q(A,b)  is defined as

Q(A,b) = [ b  Ab ■■■ An~1b ]

=  [ Bq ABq ••• An~lBq ]

= [ B  AB  ••• An~1 B ] T ( q ) (6.105)
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and T(q) is defined in equation (6.74). If we now set

6  =  kTQ{A,b)T(a ) (6.106)

then we have
\m2 = m - 7 -\\Q(A,B)\\r \\T(a)\\f (6.107)

(a) . N ecessary stabilisable region

Let the the set of desired stable eigenvalues of the closed-loop system be denoted 
by Ac =  {Ai,i =  l ,n } .  In the following we look at the necessary condition for an 
unstable system to be stabilisable and further has Ac as its closed-loop eigenvalues. 
From equation (6.72), we have

\\SLh < ||£||2 +  m • 7 • \\Q(A, 5)11/ • ||r(a)||/  =  7n (6.108)

Then a disk can be obtained such that any system with open-loop eignevalues 
outside this disk cannot be stabilised by the bounded state feedback.

Theorem 6.11 For a given system (A,b), if the open-loop system has an unstable 
eigenvalue outside the circle

Dn =  { s e  C;|s| < l +  7„ }  (6.109)

where 7n is defined in (6.108). Then the system is not Ac-stabilisable under the 
bounded state feedback.

Proof:

From equation (6.108), if the closed-loop poles were to be moved to Ac with the 
bounded norm feedback, it is necessary that ||ô||2 <  7n- However, if the open-loop 
system has an eigenvalue outside Dn, following Proposition 5.4 the norm of a will 
necessarily be greater than 7n which is impossible. This completes the proof.

□

(b ) . Sufficient condition for the existence of stabilising controllers

In this subsection, we study the problem of finding a controller such that the 
closed-loop can be stabilised. The norm of this controller gives a sufficient bound 
for the system to be stabilised. A controller can be found by putting all the closed- 
loop poles at the origin. In the SISO case, the solution is trivial because a unique 
solution can be found for the controller by solving equation (6.7). In the MIMO 
case, however, the controller cannot be uniquely defined.
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If we place all the roots of a system at the origin, then the system can be 
considered to be marginally stabilised. Further, we assume that dyadic feedback is 
used, i.e. K  =  q x F . For this particular case, the closed-loop characteristic of the 
system is simply

fc(s) =  Sn

and correspondingly the coefficient vector is ¡3 =  0. From equation (6.66-6.73), we 
have

a T =  lTQ(A,b)T(a) (6.110)

and the gain vector /7 can be found. However, it is necessary that the input direction 
of the dyadic feedback q has to be fixed beforehand because it affects Q(A,b). The 
controller norm is in turn affected by the input direction since 11/T11 =  ||q/T||. There-
fore, choosing different dyadic feedback direction q will result in different controller 
gain / and different controller K  as well.

6.4 Summary

In this chapter, the problem of closed-loop pole mobility has been addressed, when 
the state feedback controller is norm bounded: in this case the closed-loop poles 
of the feedback system cannot be arbitrarily assigned even though the system is 
assumed to be controllable. By deploying the classical and recent results on the root 
distribution of bounded coefficient polynomials in Chapter 6, we have established

for SISO systems:

• A region which contains all the poles of the closed-loop system when under 
bounded norm state feedback. This region is defined in terms of the system 
matrix (A, 6), the norm bound on the controller gain vector, 7*. If the desired 
closed-loop characteristic polynomial has a zero outside this region, then there 
exists no controller which will give rise to the expected closed-loop character-
istic polynomial and at the same time the norm of the controller is bounded 
by the given value. For systems with low order (n < 3) a much tighter region 
has been established.

• A region that contains all the possible stable closed-loop poles with the bounded 
norm controller. If any desired closed-loop pole is outside this region, the 
closed-loop system is not attainable using any feedback with the norm bounded 
by the given value.
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• A necessary region has been obtained which contains all the open-loop poles 
which are to be stabilised by the given bounded norm controller.

for MIMO systems:

• When assigning the closed-loop poles via controller form, a region which con-
tains all the poles of the closed-loop system when under bounded norm state 
feedback has been established. The region is defined in terms of the system 
matrix (A, B), and the norm bound on the controller gain vector, 7*. If the 
desired closed-loop characteristic polynomial has a zero outside this region, 
then there exists no controller which will give rise to the expected closed-loop 
characteristic polynomial and at the same time the norm of the controller is 
bounded by the given value. Also we have obtained a necessary region which 
contains the all the stable closed-loop poles with the norm bounded controller.

• When assigning the closed-loop poles using dyadic feedback scheme, a region is 
established which contains all the possible closed-loop poles with the bounded 
norm controller. If any desired closed-loop pole is outside this region, the 
closed-loop system is not attainable using any feedback with the norm bounded 
by the given value. A tighter region is obtained for low order systems. Further, 
if we have established a region which contains all the stable closed-loop poles 
with the bounded controller.

• A necessary region is obtained for the open-loop poles which are possibly sta- 
bilisable by the bounded controller if only the dyadic feedback control scheme 
is allowed.

The regions established here are quite conservative. The conservativeness is in-
troduced mostly by the inequalities used to convert the norm bound on the controller 
onto the bound on the coefficients of the closed-loop characteristic polynomial.
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Chapter 7

ISSUES ON STRUCTURAL 
SYNTHESIS OF LARGE SCALE 
SYSTEMS

7.1 Introduction

In all the previous chapters, the properties and property indicators are studied for 
the systems whose mathematical models are known exactly. In practice, however, 
working on systems which can be described by exact mathematical models is more 
than a luxury. The nature of the models on which the analysis is carried out is 
determined by the problems one poses, the data available and the environment 
within which one works. For instance, as argued in [Kar.,2], if the control theory 
is to intervene in process design at early stages, which is believed to be beneficial, 
then the control theory has to work on systems whose models are ill-defined. By an 
ill-defined model we mean that a model captures only the main characteristics of a 
system and the values of the parameters may not be exact. For instance, a steady- 
state model features only the steady state information while the dynamics of the 
system is ignored. In general, errors are introduced when systems are represented 
by ill-defined models. The errors can be classified into two categories: unstructured 
or parametric. If the model of a system features only the structural information, 
then the error will be unstructured. Otherwise, the error will be parametric.

A lot of research effort has been devoted to the study of system properties based 
on ill-defined models. The main interest is to predict the true system properties in 
exploring the ill-defined models. The problems are tackled in both the frequency do-
main and the state-space domain. The frequency domain analysis caters for the un-
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structured errors naturally [Doy. & Ste.,1] [Kar.,2] while state-space domain analysis 
caters for parametric errors [Rei.,1] [Lin, 1] [Mor. & Ste.,1]. The properties which 
are dependent on the structure of a system will be referred to be the structural or 
generic properties. For instance the controllability, observability of a system may 
be determined by the underlying graph structure of a system and thus they have 
a structural version [Lin, 1 ] known as the structural controllability and structural 
observability. The structural properties are important in that these properties are 
generically possessed by all the systems which may have different parametric values, 
but share the same underlying graph structure; therefore the study of the structural 
properties is relevant not only to one particular system but to a class of systems. 
This analysis, on one hand, provides means to detect certain structural character-
istics, and on the other hand enables the prediction of solvability of certain control 
problems and determines lower bounds for the required numbers of inputs, outputs 
needed for the presence of certain system properties.

In this chapter, we will be dealing mainly with ill-defined models. In Section 7.2, 
we will first discuss the general issues arising with the modelling of large intercon-
nected systems. We will look into the model characteristics in early process design 
and outline the desirable features of the control theory in early process design aiming 
at providing a general framework for structural analysis. In Section 7.3, we concen-
trate on issues related to predicting the system properties based on the steady-state 
models. Necessary conditions for the system controllability, stabilisability and sys-
tem integrity related to the steady-state models are reviewed. In Section 7.4, the 
notions of generic structured transfer function and finite generic McMillan degree 
will be introduced. Then methods for evaluating the finite generic McMillan degree 
will be discussed. Finally in Section 7.5 generic properties of structured transfer 
function at infinity will be investigated.

7.2 General issues arising with the modelling of 
large interconnected systems

7.2.1 Model characteristics in early process design

The specific problems arising with the attempt to intervene in early process design 
with control theory design tools are due to the nature of the models available. At 
the early design stages, the models available to the control engineers are often very 
simple, in the sense that the dynamics are not known exactly and the numerical
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values of the parameters are also inexact. Further, the models of the processes 
will be of very large dimension. These characteristics of the models available con-
tribute considerably to the difficulties faced in carrying out the expected meaningful 
intervention in the early process design with control theory and design tools.

Most of the existing control theories apply readily to systems with well defined 
models either described in the transfer function or state space but fail to work on 
systems with inexact models. First, it should be mentioned the general models the 
control theory will have to work on at an early process design stage. Considering the 
nature of the models, it is strongly argued in [Kar.,2] that the system be described 
by External Structural Dynamical Models for early process design. By External 
Structural Dynamical Models, we mean the models which are of the transfer function 
type with the elements being dynamical SISO models whose parameters are not 
known exactly. They are more appropriate than the exact state space models, the 
exact transfer function models and the structural state space models used so far, 
due to the following reasons:

• A state space model requires the knowledge of the exact number of states. In 
an early process design environment, where the subprocesses may be modelled 
with varying accuracy models, this implies an updating of the overall state 
space model every time the subprocess models are modified.

• The models of subprocesses may contains delay units or more general distribu-
tive parameter characteristics; such features may be more easily handled in the 
frequency domain, rather than in the time domain, where the corresponding 
state space model may become infinite dimensional.

• A transfer function model indicates clearly the structure of interconnections 
and the possible reasons for interactions. A general state space model obtained 
by minimal realisation does not reflect the structure of interconnections, since 
its states are not necessarily associated with the subprocesses. Models with 
physical variables, which reflect the structure of interconnections may be ob-
tained, but they are not necessarily minimal.

So the tools developed later should work on the External Structural Dynamical 
Models.

The next main characteristic of early process design models is that the models are 
under constant modification in terms of both the dynamical complexity and param-
eter accuracy. This characteristic presents the second challenge to the development 
of useful tools in control theory for the intervention in early process design.
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It is a common practice that the design of a process starts off with a process 
flowsheet which represents the main components, interconnections, etc. Associated 
with the flowsheet is the data file with the detailed description of the components, 
the values of the parameters, interconnections, etc. The mathematical models de-
scribing the overall system may have varying complexity in dynamical terms and 
accuracy in terms of parameter values. For instance, we can associate a Boolean 
graph representing the existence of the components and the interconnections among 
the components qualitatively or a quantitative steady-state model representing the 
system steady-state response when subject to step input.

Let Ad denote the whole set of models associated with a given flowsheet. The 
models of large dimension, structured (and possibly sparse), transfer function ma-
trices with fixed dynamic complexity and variable parameter uncertainty will be 
denoted as {M t}, Mt G M.. All such linear models stem from the same flowsheet 
and thus they have the same graph structure, which is defined by a Boolean ma-
trix. The family {M ,} has two parametric dimensions, the dynamic complexity and 
the parameter accuracy. By dynamic complexity we refer to the order, type of the 
rational approximation, which is used for each of the functions representing process 
elements; this complexity may be measured by the ordered set of McMillan degrees 
of approximations of the process elements. For models with the same dynamic com-
plexity, the term parameter accuracy is used in the standard way. The dynamic 
complexity and parameter accuracy, introduce some ordering for the set M .

The first and simplest model in M. is the graph model Mg, represented by a 
Boolean matrix; the only information indicated by such a model is the generic 
existence of the components and the couplings between the inputs and outputs for 
almost all frequencies. The next subfamily of models are the steady-state models 
{M o}, and the elements of this subfamily are characterised by their accuracy; such 
models indicate the steady-state coupling of inputs and outputs in a quantitative 
way for step inputs. The steady state models express the value of transfer functions 
at s — 0 and their associated graph may differ from that of M5; conceptually such 
models differ from the rest in the family, since they express certain aspects of the 
overall behaviour predicted by the dynamic models.

The rest of the families of models, i.e. {M i}, {M 2}, etc. represent the families 
of dominant lag, multi-lag models etc, and {M^} represents a family of well defined 
dynamic models, used in the final design stages. The evolution of the models is 
shown in Figure (7.1).

The dynamic complexity of the models should be measured by the McMillan de-
gree which indicates the total number of internal variables associated with a minimal
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Figure 7.1: Evolutionary development of Early Process Design models 

representation of G(s).

The objective is to evaluate design alternatives and make choices using low com-
plexity and accuracy models and some set of comparison criteria. These criteria 
are based on the properties of the ill-defined models and should have a prediction 
capability, as far as the properties of higher complexity and accuracy models, which 
are not available at this stage. Since we deal with families of linear systems, the 
standard concepts and tools of control theory, such as system properties, property-, 
design-indicators, invariants etc., are well defined for every model in M.. From the 
large set of properties and invariants of linear systems theory, we have to select those 
which are most relevant in the context of rough dynamic models. In deciding about 
the relevance of properties, invariants the following characteristics should be taken 
into consideration:

(i) . Universality, that is, if they are defined on Mt, then they are also defined on
all Mi+j, j  =  1,2,...

(ii) . Computability, that is there exists a robust algorithm for checking the presence,
or computing the values.

(iii) . Parameter insensitivity, that is their presence is independent of parameter
variations which are within the system graph structure.

The important control problems associated with early process design are ad-
dressed in the next subsection.

199



7.2.2 Desirable features of control theory in process design

Conventionally, the design of a chemical process is carried out solely by the chemical 
engineers according to the chemical-physical laws of the process. The control engi-
neers will be involved at a very late stage of the design. It is argued that an early 
intervention by the control engineers in the design of a process will be beneficial 
[Kar.,2] [Mor. &: Ste.,1], This role of control theory differs substantially from their 
previous roles in the design of a system. Early decisions on

(i) . Identification of control quality characteristics of large scale models;

(ii) . Identification and sorting out of all possible sets of inputs (and potential ac-
tuators) and output (and potential sensors);

(iii) . Decomposability, partitioning of large scale control design problems into smaller
dimension problems; and finally

(vi). Selection and design of structured, simple control schemes

will not only be desirable, but also be very beneficial from the control point of 
view in getting a good control structure and finally achieving quality control of the 
process.

The possible contribution of the control theory listed above has to be complemen-
tary to the practical rules, experience and techniques, which are currently available. 
A short description of the concrete problems involved in the problems and their 
relevance to the early design of a process is given below.

(i) For a given system with specified inputs and outputs, the problem is to iden-
tify the model characteristics, which precondition the existence of a simple control 
scheme, or exclude undesirable system response characteristics for a given system 
with specified inputs and outputs. It is of particular importance in choosing alter-
native systems resulted from selecting different input and output sets. It is required 
that the selection algorithm can work on large dimension and ill-defined models 
efficiently. The difficulty lies in the definition of desirable and undesirable system 
properties and characteristics.

(ii) Although the whole sets of possible inputs and outputs can be listed, not 
all of the potential inputs and outputs will be used for actuation and measurement 
purposes due to economical or physical limits. Process considerations and experience 
may define subsets of input and output variables and a further selection of them has 
to be done based on the properties of the resulting model. Avoiding decisions which
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may lead to system models with undesirable properties, is the most important task 
here. The most important problems are:

• Define some estimates of lower bounds on the number of process inputs and 
outputs which are essential for an easy control problem;

• Evaluate alternative choices of input and output variables with operability and 
control quality criteria;

• Define the actuators and sensors scheme such that the resulting model has 
certain desirable features from the control design viewpoint.

(iii) Most of the process applications are of large dimension in nature and the 
design techniques are difficult to apply. Reducing the overall design problem to 
smaller dimension problems by rearrangement of the inputs and output is an im-
portant problem. Specific problems are:

• Derive interaction measures among subsystems when the overall system is 
partitioned into subsystems.

• Examine compensation transformations which may reduce the inherent process 
coupling, and thus lead to subsystems with small dimensions.

(vi) In order to design a process, the coupling of measurement and actuation 
variables should be as simple as possible due to reliability considerations. So the 
structure of the control schemes and their suitability for the control quality specifi-
cations have to be defined and assessed. Important issues which arise in the design 
of such structured control schemes are:

• Derive tests and criteria for determining the range of possible control struc-
tures;

• Examine methods for designing the dynamics of the already structured con-
trollers;

• Derive tests for measuring the robustness (under model uncertainties) and 
integrity (under actuator, sensor failures) of the structured control system 
and suggest methods for designing robust, high integrity schemes; •

• Examine methods which will allow the design of control schemes that may 
guarantee good performance not only for one, but for many process operating 
points.
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7.3 System properties based on the steady 
state gain information

As discussed in Chapter 3, useful interaction measure between the inputs and the 
outputs can be obtained from the steady state gain information. As a matter of fact, 
some more system properties can be inferred from the steady state gain information, 
in particular, the relative gain array (RGA), which has been defined in subsection 
(3.4.1).

Based upon the steady state gain information, the system stabilisability, system 
controllability, system integrity as well as property robustness can be studied. In 
process control, a system is usually operating at steady state and the steady state 
error is required to be zero; therefore in each of the control loops, there should 
be an integrator. Under this assumption, the stabilisability and controllability of 
the closed-loop system can be inferred from the steady state gain and/or the RGA 
matrix [San. &; Ath., 1] [Nie., 1] [Gro. Mor. & Hol.,1], System integrity, which is 
defined to be the stability of the system when one or more of the system sensors 
and/or system actuators fail, can also be studied from these information [Mor.,1] 
[Gro. Mor. & Hol.,1]. Furthermore, useful information concerning system sensitiv-
ity when subject to model-reality errors in modelling can be extracted from the 
steady state RGA information [Gro. Mor. & Hol.,1].

7.3.1 Integral stabilisability

In the following, closed-loop control systems with a specific class of controllers will 
be studied. The special feature of the class of controllers is that in each of the con-
troller channels, there exists an integrator. Such controllers are termed as integral 
controllers and the stabilisability of the system is referred to as integral stabilisabil-
ity. Because every loop of the integral controller contains an integrator, it can be 
decomposed into a matrix of integrators - /  and a compensator matrix C (s ); where 
A; is a positive constant and /  is the identity matrix of appropriate dimension. The 
system has a general configuration as shown in Figure (7.2). Let H(s) =  G(s)C(s).  
Observe that for a proper 6r(.s) the newly defined transfer function H(s)  could well 
be non-proper. In the following we study the closed-loop stability with integral 
controllers. First the following definition is given.

D efin ition  7.1 : [Gro. Mor. & Hol.,1] A system H (s ) =  G(s)C(s)  is called inte-
grally stabilisable if there exists a k > 0 such that the closed-loop system in Figure 
(7.2) is stable and has zero tracking error for all asymptotically constant inputs.
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Figure 7.2: General Configuration with Integral Controller

□

A necessary condition for a system to be integrally stabilisable is given by the 
following result:

T heorem  7.1 [Gro. Mor. & Hol.,1] Assume that H(s) is a proper rational transfer 
matrix. H(s)  is integrally stabilisable only if det(H{0)) > 0.

□

For SISO systems, the above theorem becomes necessary and sufficient.

C orollary  7.1 Assume that h(s) is a proper rational transfer matrix. h(s) is inte-
grally stabilisable if and only if h(0) > 0.

□

Specifically when the system is controlled in a decentralised manner, i.e. the 
compensator C(s) has a diagonal form, then concerning the stability of the individual 
control loops and the overall stabilisability of the system, we have the following 
result.

T heorem  7.2 [Nie.,1] [Gro. Mor. h  Hol.,1] Consider the control system of the con-
figuration shown in Figure (1-2) with plant transfer matrix G(s) and diagonal com-
pensator C(s).  The following conditions hold true:

• G (s) is open-loop stable;

• H(s)  =  G(s)C(s)  is rational and proper;

• Any one-variable control system, obtained from the multivariable system by 
opening any n — 1 feedback loops, is stable.
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Then there exists no k with k > 0, such that the overall system with all the 
closed-loops operating is stable if

detG{ 0)
n?=i#i(0)

(7.1)

Furthermore, the above condition becomes necessary and sufficient for SISO or 2 x 2  
system.

□

R em ark 7.1: The above result provides an important guideline for designing a 
system in a decentralised manner. It is a common practice that on designing a large 
system, the overall design is first broken it into smaller subsystems, usually SISO 
systems, and then stabilising controllers are designed for each of the subsystems. 
As it is pointed out in the above theorem, if the decentralised system were to be 
integrally stabilisable, it is necessary that both the individual small systems be 
stable and

detG(O) >Q
n”=i5u(o) -

Otherwise, one is put into the dilemma of having either unstable individually de-
signed loops or an unstable overall system. So the above theorem can be employed 
to be a necessary test for system stability.

□

From Theorem 7.2, the system integrity can also be studied. By integrity, we 
mean that a system will remain stable even though some of the system sensors and 
actuators fail in operation.

D efin ition  7.2 ; The system in Figure (7.2) is jth-sensor failure sensitive if the 
overall system is integrally stabilisable but the reduced system with the failed jth 
sensor removed (kj = 0 )  is not.

□

From the above definition, if a system is not jth-sensor failure sensitive, then the 
system can be suitably set up in such a way that even if the jth sensor fails, the 
stability of the remaining system can still be maintained with an appropriate choice 
of the controller gain i.e. the system integrity is ensured. Otherwise, the system will 
go unstable as soon as the jth-sensor fails regardless how the controller is set up.

Similarly, jth-actuator failure sensitive can be defined though more consideration 
is needed here. When an actuator fails, the corresponding manipulated input will
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lose control. Worse still, the control signal will assume a wrong value. For example, 
if a phneumatic valve gets stuck and remains fully open all the time. Generally, this 
will affect all the loops of the system. For simplicity, it is assumed that only the jth 
output is left uncontrolled when the control over u,- is lost.

Definition 7.3 ; The system shown in Figure (1.2) is jth-actuator failure sensitive 
if the overall system is integrally stabilisable while the reduced system with the jth 
actuator and the jth sensor removed and with the controller appropriately reduced is 
not integrally stabilisable.

□

The conditions for system jth-sensor failure sensitive and jth-actuator failure 
sensitive follows from theorem 7.2 directly.

T heorem  7.3 [Gro. Mor. & Hoi., 1] Assume that H(s)  is rational, proper and inte-
grally stabilisable. The system is jth-sensor failure sensitive if det(Gn (O)C’-”  (0)) < 0, 
where Gn (0) denotes the remaining matrix with jth column and jth row removed.

□

Theorem  7.4 [Gro. Mor. & Hoi.,1] Assume that H(s)  is rational, proper and inte-
grally stabilisable. The system is jth-actuator failure sensitive if def(G,-?J(0)C-7J(0)) < 
0.

□

With respect to decentralised control scheme, the overall stabilisability is related 
to the stabilisability of the individual control loop in the following way through the 
relative gain array (RGA) which was defined in subsection (3.4.1) as

RGA =  [A,j](G), i , j  =  l , . . . ,n  (7.2)

Theorem  7.5 [Gro. Mor. & Hol.,1] If \:j(G) <  0, then for any compensator C(s)  
with the properties

• G (s)C (s) is proper;

• Cji =  Cij =  0, V7 /  j ,
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the closed-loop system shown if Figure (7.2) has at least one of the following prop-
erties

• The closed-loop system is unstable;

• loop j  is unstable with all the other loops opened;

• the closed-loop system is unstable as loop j  is removed.

□

The above theorem has important practical implications. It has been a common 
practice in process design that each loop of a system is firstly individually designed 
and the stability of the individual loops are ensured, then the system is integrated 
together. However, unless the diagonal elements of the steady state gain matrix, 
Ajj(G) >  0, the stability of the so designed overall system can not be achieved. Fur-
ther, for systems with Ajj(G) >  0 and an appropriately designed diagonal controller, 
an overall stabilisable system will be ith-sensor failure sensitive or ith-actuator fail-
ure sensitive.

R em ark 7.2: The conditions given in the above theorem is only a necessary con-
dition. Further, for some systems with H(s)  improper, even the condition does 
not hold, there still may exist k >  0 such that the overall system is stabilisable as 
demonstrated by the following example.

□

E xam ple 7.1: Given a SISO system g(s) =  which is controlled by an PI
controller, kc(s)/s =  k(s +  l ) /s . From the definition h(s) =  which is
improper.

The characteristic equation is

(2 -  5k)s2 +  (1 -  10Jfc)s -  5k =  0

and the system is stable for 0.4 < k < oo, despite h(0) < 0. Such system will be 
termed as conditionally stable.

In practice, systems which are only conditionally stable are difficult to tune 
because the range of the parameters for the system to be conditionally stable is not 
only difficult to decide but also subject to constant change as the operating point, 
system environment, parameters are changing. To remedy the above weakness, a 
stronger definition is given on stability and for which sufficient condition can be 
obtained from the steady state information.
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7.3.2 Integral controllability and steady state in-
formation

If a system H(s)  as defined in Figure (7.2) is improper, the integral stabilisability of 
the system cannot be determined from the steady state gain information. Further 
concepts are needed to remedy the weakness of integral stabilisability.

D efin ition 7.4 : [Gro. Mor. & Hol.,1] The open-loop stable system Ii{s) is called 
integrally controllable if there exists a k* >  0 such that the closed-loop system shown 
in Figure (7.2) is stable for all values of k varying in the interval 0 < k < k* and 
has zero tracking error for asymptotically constant disturbances.

□

R em ark 7.3: The difference of this definition from that of system stabilisability is 
that a range of positive gains starting from zero will make the system stable rather 
than any exact value. A practical consequence of this definition is that integrally 
controllable systems can be tuned on-line starting with a very low gain for which 
stability is guaranteed, and then increasing the gain until acceptable performance is 
achieved.

□

Conditions for a system to be integrally controllable are given below.

T heorem  7.6 [Gro. Mor. & Hol.,1] The stable system H(s) is integrally control-
lable if all the eigenvalues of H (0) lie in the open right half o f the complex plane. 
The system H(s) is not integrally controllable, if any of the eigenvalues of H (0) lie 
in the open left half of the complex plane.

□

A system which is only conditionally integrally stabilisable will not be integrally 
controllable as stated in the next corollary.

C orollary  7.2 [Gro. Mor. & Hol.,1] If det(H(0)) < 0, then H (s ) is not integrally 
controllable.

□

The relationship between the integral controllability and integral stabilisability 
is that all integrally controllable systems are integrally stabilisable, but not vice
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versa. The case that integrally stabilisable systems are not integrally controllable 
happens only when an even number of eigenvalues of //(0 ) are in the left half plane 
because a necessary condition for integrally stabilisability is if det(i/(0)) > 0.

However, for SISO systems, the two concepts are equivalent.

T heorem  7.7 [Gro. Mor. & Hol.,1] Any proper rational system h(s) which is inte-
grally stabilisable is also integrally controllable.

□

Integrally controllable systems have an advantage over integrally stabilisable 
systems in that the loops can be tuned starting from very small gains. On the other 
hand for integrally stabilisable systems, it is difficult to compute the stable range 
for the gain.

For an integrally controllable system, the stability of the remaining system re-
sulting from taking out the loops with failed sensors or failed actuators can be 
studied as for integrally stabilisable systems. Some further definitions on system 
sensor failure tolerant and system actuator failure tolerant are given.

Definition 7.5 ; The system H(s) shown in Figure (7.2) is j  sensor failure tolerant 
if both the overall system and the reduced system, with the j-th sensor removed are 
integrally controllable, and the system is actuator failure tolerant if both the complete 
system and the reduced system with the jth actuator and the jth sensor removed are 
integrally controllable.

□

Conditions for system to be sensor failure tolerant or to be actuator failure 
tolerant are direct consequences of the definition and theorem 7.6.

C orollary 7.3 [Gro. Mor. & Hol.,1] The system with H(s) rational is jth sensor 
failure tolerant if all the eigenvalues of 77(0) and Hn (0) are in the open right half 
complex plane. It is not jth sensor failure tolerant if any of the eigenvalues of H (0) 
of Hj : (0) are in open left half complex plane.

□

C orollary 7.4 [Gro. Mor. & Hol.,1] The system with H(s) rational is jth actuator 
failure tolerant if all the eigenvalues of H (0) and GJJ (0), C-” (0) are in the open right
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half complex plane. It is not jth actuator failure tolerant if any of the eigenvalues of 
H (0) of GJ:(0), C” (0) are in open left half complex plane.

□

For small dimensional systems, the RGA of the system also provides some infor-
mation on the system sensor and/or actuator failure tolerance.

T heorem  7.8 [Gro. Mor. & Hoi., 1] Let G(s) be a 2 x 2  system. If Xjj(G) > 0, 
then there exists a diagonal compensator C(s) such that II(s) is lst-sensor and/or 
actuator failure tolerant and 2nd-sensor and/or actuator failure tolerant.

□

For 3 x 3  systems, a weaker result is given by:

C orollary  7.5 [Gro. Mor. & Hol.,1] Let G(s) be a 3 x 3  system. If \]J(G) > 0 ,j = 
1,2,3. If a diagonal compensator C(s) can be found such that:

• H(s)  =  G(s)C(s)  is integrally controllable and

• M O ) > 0, j  =  1,2,3,

then the closed-loop system shown in Figure (7.2) is jth-sensor and/or actuator 
failure tolerant, for j  =  1,2,3.

□

So the eigenvalues of the steady state gain matrix H (0) provides information not 
only on the integral controllability of a system, but also on the integrity of a system 
when some of the sensors and/or actuators fail.

7.3.3 Robustness and the RGA

One of the most important properties a system should possess is robustness against 
model-reality differences. A controller designed for a given model, when applied to 
the real system, may result in performance which is quite different from specifica-
tions. So it is important to analyse the sensitivity of system stability with respect 
to the model-reality difference.

From the previous subsections, it is shown that the integral stabilisability of a 
system is closely related to the diagonal elements of the RGA of the system. So the
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sensitivity of the elements of the RGA when the elements of the steady state gain 
matrix are subject to uncertainties is an important measure of the system sensitivity. 
The relative sensitivity of the elements of the RGA is related to the elements of the 
steady state matrix in the following way.

T heorem  7.9 [Gro. Mor. & Hol.,1] Consider the n x n  transfer function matrix G 
with its inverse G =  G~l and its associated RGA. Relative changes in the g ’s and 
gi j ’s are related as

d\:,
(1 -A p ) -__/1 \ \ dgij

and
A,

d\t3 Au

9 ij

l dgij
Aij 9ij

□

So it is clearly shown that the sensitivity to error in the modelling of gi3 increases 
when the value AtJ is far away from unity.

System design when subject to model reality difference has been studied quite 
extensively [Doy. & Ste.,1]. Depending on the domain the analysis is carried out, 
the models used and the nature of the model-reality difference, different methods 
can be used to represent the model-reality difference. One of the most popular ways 
is to use the h ,l 2 °r loo norm. The l\,li or i<x> norms are defined as follows. Given 
a vector 1

||i||i =  m a x i ,

12 , E'.2
\ t=i

=  H u
i=i

The induced norm of a matrix is defined as
l|Ahc||=  max ———

*¿0 || x ||

and the condition number of a matrix as

7 (A ) e e ||A||||A-1||.

Then for the 12 norm, the following stands

\\A\\2 = a(A)  

IIA-̂ la = s.(A)

7 (A) = a(A)/a(A) .
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where a (A ) and a (A) are the maximum and the minimum of the singular values of 
matrix A.

A matrix with 7 (A) close to 1 is called well-conditioned while a matrix with 
7 (A) !§> 1 is called ill-conditioned. From the analysis by [Wil.,1] [Gol. & van Loan,l] 
etc. the eigenvalues of a matrix that is well-conditioned are less sensitive to pertur-
bations than the eigenvalues of an ill-conditioned one.

Because the eigenvalues of the steady state gain matrix are indicators of integral 
controllability, so the sensitivity of the eigenvalues of the steady-state matrix to 
model reality difference is also the stability robustness. The maximal allowable 
difference between the model and reality to retain integral controllability is defined 
by:

T heorem  7.10 [Gro. Mor. & Hol.,1] Assume the model G(s) with controller C(s)  
is integrally controllable. Then the plant G (s) with the same controller C(s) is 
integrally controllable if the difference is bounded as

||G -  G||2 < -C ||G ||2. (7.3)
7(G)

where 7 (G) is the condition number of G and || • ||2 denotes the Euclidean norm.

□

Clearly, the system is more error tolerant when 7 (G) is close to 1.

The sensitivity of a system is invariant with respect to input output scaling. The 
condition number of a matrix, however, is not and so neither is the relation presented 
in (7.3). Realising that the RGA of a system is independent of the input-output 
scaling, efforts have been made to explore the relationship between the sensitivity 
and the RGA. In view of equation (7.3), the system is least sensitive to model-reality 
error when the condition number attains its minimum when subject to optimal 
scaling. Denote the minimum condition number as 7*(G), then it is related to the 
11 norm of the RGA for 2 x 2  systems as:

T heorem  7.11 [Gro. Mor. & Hol.,1] For a 2 x 2  transfer matrix G, the minimum 
condition number 7* is given by

7 ‘ = \\ROA\\, + J\\RGA\\, -  1 (7.4)

□

Therefore, from equation (7.4), 7* is bounded above by 2 x ||RGb4||i and ap-
proached ||RCA||i as it becomes large. So large elements in the RGA result in large
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||# (7 /4 ||i and in turn implies large 7*. So when |Ajj| is large, the system will be very 
sensitive to model-reality error.

However, there is no proved simple relationship between the minimum condition 
number and the l\ norm of RGA.

7.4 Generic McMillan degree of structured 
rational matrices

7.4.1 Introduction

In this section, the generic McMillan degree of a rational matrix is investigated. 
From the definition, the McMillan degree of a rational matrix can be calculated 
from the orders of the denominators of the matrix in Smith-McMillan form. So al-
gorithms can be designed to first transform the rational matrix into Smith-McMillan 
form by using unimodular transformations and then find the sum of the orders of 
the denominators. As pointed out by MacFarlane, Karcanias, etc., this method is 
impractical in terms of computations to obtain the Smith-McMillan form. An alter-
native has been suggested by MacFarlane & Karcanias [MacF. & Kar.,1], that is to 
obtain the pole polynomial as the least common multiple of the minors of all orders. 
The order of this least common multiple gives the McMillan degree. This method 
may also be used for computation of the generic form of the Smith-McMillan form or 
the given structure system, as well as the unstable McMillan degree. This method 
does not require the transformation of the rational matrix into Smith-McMillan form 
and computationally is more practical.

It is a fact that, in the early design stages, the exact values of the parameters 
in the elements of the transfer function are not known exactly. Yet, it is desirable 
to have some knowledge on the McMillan degree since it indicates the complexity 
of the system. Given the structure of the transfer function matrix and the type 
of the non-zero entries of the matrix, the evaluation of the McMillan degree of 
such systems will be termed as generic evaluation of the McMillan degree and the 
McMillan degree will be termed as generic McMillan degree of the element structured 
uncertain model. The poles and zeros of a system provide important information in 
the study of the multivariable root-locus design, system properties at infinity, etc. 
When the parameters of the system are not given exactly, we also wish to calculate 
the generic degree of the poles and zeros at infinity.

In this section we first define the genericity of transfer function matrices, the
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«2

Figure 7.3: A general system

McMillan degree and poles, zeros both finite and at infinity. Then, methods for 
evaluating the generic McMillan degree both finite and infinite are presented. Finally 
we assess the methods which are proposed here.

7.4.2 G eneric structured transfer functions and 
generic M cM illan  degree

As pointed in section (7.2.1), the models at early design stage provide only some 
structural information about the system. The structural information includes the 
fixed poles in the transfer function matrix, the orders of the nonzero entries of the 
matrix and some repeated patterns due to specific dynamic units which are modelled 
with certain known dynamic complexity. But otherwise, the values of the parameters 
of the transfer functions are not known exactly. Assume that all the entries of the 
transfer function are proper rational fractions. For a system of dimension m x  /, a 
structured overall transfer function matrix H(s)  is H(s)  € 7?™xi[s]. The notion of 
structured transfer function matrices of variable complexity is demonstrated by the 
following example.

E xam ple 7.2: Consider the system of Figure (7.3) which can be represented by the 
aggregated model as in Figure (7.4), where the three subsystems are described by:

h  = Giux 

y2 = G2u 2 

2/3 =  G3 U3

and for the aggregated model, we have

y =  G(I +  FG)~lu
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Figure 7.4: Aggregated model

where u =  [uf Y , V =  { ¿ ¿ É Y  and

G i

G 2
0

0 G ;

0 0 - I
0 0 I

- I 0 0

The matrix F  represents the interconnections while the matrix G represents the 
dynamics of the system. Assume the subsystems are all of dimension 2 x 2  and

1 6

G i  =
( a + l ) ( * + 5 ) ( s + 1 0 )

1
(3 + 1 ) ( s + 2 ) ( s + 5 ) ( s + 1 0 )

1
L ( s + 2 ) ( s + 5 ) ( s + 1 0 ) ( i + l ) ( s + 2 ) ( s + 5 ) ( s + 1 0 )

G 2 =

2 .5
3+1

0

0

0.75
s + 2

0 . 1 2 ( s —1 ) s

G 3 =
( s + l ) ( s + 2 )

6.0
( s + l ) ( s + 2 )

s - 7
L ( i + l ) ( i + 2 ) ( s + l ) ( s + 2 )  J

Following the procedure in the previous section, the structure of the system can be 
modelled by the Boolean model as

Gs

1 1 0 0 0 0
1 1 0 0 0 0

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 1
0 0 0 0 1 1
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and by the steady-state model as

Go —

G x =

0.02 0.01 0 0 0 0

0 . 0 0 1 0 . 0 0 1 0 0 0 0

0 0 2.5 0 0 0

0 0 0 0.375 0 0

0 0 0 0 -0.06 0
0 0 0 0 3.0 - 1

by taking only the dominant pole, then
" 0 U 2 0 .0 1 0 0 0 0

S + l s +  l
0 .002 0 .0 0 1

0 0 0 0s +  2 S + l

0 0
2.5

0 0 0
S + l

0 0 0
0.75
s + 2 0 0

0 0 0 0  “ 0 . 0 6 ( s —1) S

s + l s + l

0 0 0 0
3 .0

5 + 1
s —2 
5 + 1

and so on.

□

The above example demonstrates that the composite system is modelled in terms 
of the subsystem models {G i,G 2,Ga} and the interconnection structure matrix F. 
Such models are referred to as Internal Progenitor Models (IPM) [Kar.,3] and always 
lead to “structured” transfer function matrices for the composite system (when the 
subsystem models are fixed). A structured transfer function matrix is a transfer 
function with certain elements fixed to zero, some elements being constant and other 
elements expressing the simple dynamics of the subsystems. The transfer function of 
a composite system for which the underlined interconnection matrix F  is not known 
or not explicitly stated, is called an External Progenitor Model [Kar.,3] and the only 
evidence in the interconnection structure is that provided by the structured nature 
of the overall transfer function. Structured transfer function matrices frequently 
arise as models in the Early Process Design Stages [EPIC] and some of their basic 
problems associated with their structural characteristics will be considered here. It 
will be assumed throughout the following, that the structured transfer function is 
given but the underlined matrix F  is not known. Some of the issues discussed next 
are of particular importance for large dimension matrices.

An example of a 3 x 3 structured proper rational transfer function matrix, H(s)  
is given below

H(s)
a \a 2 A\ A3

A3 Al A\A2 A,
A\ A4 A\

(7.5)
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D efinition 7.7 ; The generic McMillan degree of the structured transfer function 
H(s)  G R™x,[s] is the McMillan degree when the gam parameters of the entries take 
generic values.

□

R em ark 7.5: In the computation of any minor of a generic rational matrix, there 
is no pole zero cancellation occurring.

□

By the above definition, Remark (7.4) and the definition of McMillan degree 
based on the minors [MacF. & Kar.,1], we have the result.

P rop osition  7.1 The generic McMillan degree of the structured transfer function 
matrix H(s)  G is equal to the sum of the generic McMillan degree of the
matrices Hi(s), H2(s), ■ ■ ■. That is, if 8gm(Hi) denotes the generic McMillan degree 
of a structured transfer function matrix Hlt then

8gm(H) =  6gm(Hl) +  8gm{H2) + .... (7.7)

P roof: Without loss of generality, we assume that Ht(s) and Hj(s ) are two simple 
structured transfer function matrices of H(s)  which are associated with the funda-
mental dynamics A, =  and Aj — A,- yf Aj. We prove that if the generic
McMillan degrees of the matrices H{(s), H: (s) are 6gm(Hi), 8gm(H: ), then the contri-
butions of the terms A{ =  jk— and - =  —T~ towards the generic McMillan degree 
of the structured transfer function matrix H(s)  are exactly 8gm(Hl) and 8gm(Hj).

Because the generic McMillan degrees of the matrices Ht(s) and Hj(s) are 
8gm{Hi) and Sgm(H: ), the least common multiples of all minors of the matrices 
Ht(s) and Hj(s) are (s+Xt)a6gm{Ht) and —  ?8m(J/j), respectively. Under the genericity 
assumption, there will be no pole-zero cancellations among the constituent parts in 
the determinants of the minors; therefore the terms in the least common multiple of 
all minors of the matrix H(s) due to terms A; =  —f r  and A , = —h- are of the forms 

and  ̂~+'x"p~8m(wp > respectively, i.e., the contributions towards the generic 
McMillan degree of the structured transfer function matrix due to the fundamental 
dynamics A{ — and Aj =  are 8grn(Ht) and 8gm(Hj), respectively. This 
proves the Proposition.

□
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R em ark 7.6: The evaluation of the generic McMillan degree of a structured transfer 
function matrix is reduced to finding the generic McMillan degrees of the simple 
structured matrices H{(s).

□

In the following, we look into the methods of computing the generic McMil-
lan degree of the simple structured transfer function matrices. First we define the 
concepts of order, path and weight.

D efinition 7.8 ; Given a simple structured matrix Hi(s) E R™xl ,m. < l, the order 
of an entry in the matrix is the power of the fundamental dynamics, a path is a 
sequence o f m elements selected from the matrix with no two elements from the 
same column or from the same row. The length of a path is the number of non-zero 
elements in the path. The weight of a path is defined to be the sum of the orders 
of the elements in the path. The maximal weight of all the independent paths of the 
matrix is denoted as T(Ht).

□

R em ark 7.7: The constant terms of the structured transfer function matrix do 
not contribute to the weight. From the definition of generic McMillan degree, the 
constant terms do not contribute to the generic McMillan degree. So the constant 
terms are equivalent to fixed zero elements.

□

R em ark 7.8: The zero and constant entries do not contribute to the weight of a 
path.

□

R em ark 7.9: A path with the maximal weight does not necessarily have to be the 
longest path, as displayed by the following simple structured matrix

A4 A '
A2 0

For this matrix there are two paths,

H(s) =

hu —> h2 2 with length 1 and weight 4 
h\ 2  h2i with length 2 and weight 3

□
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In the following we study the simple structured matrices Iil(s). Because only the 
non-zero dynamic elements need to be considered, and the non-zero entries represent 
the same dynamic unit with different orders, for the simplicity of notation, we use 
the orders of the dynamic of the entries only. For example, in (7.6) the matrix H\(s) 
is simplified to be

A i 0 2 1 0

0 0 A \ - >  / ,  = 0 0 1

0 1 0 2

In general, a map can be defined between a simple structured matrix Ht(s) and 
an integer matrix It such that the entries of the integer matrix correspond to the 
orders of the entries in Hfs) .

Concerning the relationship between the generic McMillan degree and the weight 
of paths, we have the following result.

P roposition  7.2 The generic McMillan degree of the simple structured matrix Ht(s) 
is equal to the maximal weight,

<W Hi) = r{Hi).

P roof: For a given simple structured matrix //¿(s) with a maximal weight T(Ht(s)), 
we prove that the order of the least common multiple of all the minors of all orders 
of the matrix Ht(s) is generically T(Ht(s)) and so is the generic McMillan degree. 
Without loss of generality, we assume A% — —F-. We first prove that 8gm(Hi) >  
r (Hi). Assume that the length of a maximum weight path is /p, then from the 
definition of path, it is clear that there exists a minor of order lr x Ip which contains 
this path. The denominator of the determinant of the minor is generically (s + 
A,)r^ )  because there is no cancellation involved under the genericity assumption, 
therefore, the order of the least common multiple of all minors is greater or equal to 
T(Hi). Second we prove that if 8gm(Ht) > T(Hi), then there exists an independent 
path whose weight w* satisfies w* > T(Ht). If 8gm(Ht) > T(Hi), then there must 
exists at least a minor whose denominator has an order exactly as 8gm(Hi). Because 
there is no cancellation among the terms of the constituent parts to the minor, there 
exists a set of elements selected from different rows and columns whose product is 
in the form ŝ+xy gm(Hi) • In other words, there exists a path which has a weight w* 
and w* — 8gm(H1) > r ( H t). This contradicts to the assumption that F(Hi) is the 
maximal weight. So we have 8gm(Hi) =  T(Hi).

□
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Having defined the generic McMillan degree we investigate the methods of cal-
culating the generic McMillan degree in the next section.

7.4.3 Methods for evaluating the generic McMillan degree

In this subsection, we present three ways of evaluating the generic McMillan degree 
of a structured rational transfer function matrix and the merits and disadvantages 
of these methods are assessed.

(a) : Direct method

The first method is to find all the possible independent paths for the m x / matrix 
and the corresponding weight is calculated for each of the path. The maximum 
among all the weights gives the generic McMillan degree.

This method involves very heavy computations when the order of the system is 
high. For a matrix of dimension m x m, the number of paths equals to the factorial 
of m, which is ml. The fixed zeros in the structured matrix are not taken into 
account. So even when the matrix is of sparse nature, the number of calculations 
involved will be the same as in the case of non-sparse matrices.

(b) : Leading order coefficient matrix method

For a given integer matrix A £ 7Vmx/, where N  represents integer matrices, define 
the weight o f a column kt to be

kt =  the maximum of the zth column of A (7-8)

and the complexity of A as 6(A) to be

6(A) =  ¿2  h  (7.9)
¿=1

We can define row weight and complexity in a similar manner. In general, we 
can always write

A =  AicS +  L (7.10)

where

S =  diag{&,-, i =  1 ,2 ,...,/}

Aic =  the maximum-column-weight coefficient matrix
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The matrix A\c is a Boolean matrix and by rank of A\c we mean the usual 
structural rank [Rei.,1]. The next Proposition follows.

P roposition  7.3 The generic McMillan degree of an m x l simple matrix with m > l 
is equal to the sum of the elements in S, i.e. ¿(A) =  Za=i h: if the rank of the leading 
weight matrix is l; otherwise it is always less than X)!=1 kt.

P roof: We show that the maximal weight is less or equal to the complexity. If 
matrix Aic is of full column rank, then they are equal. From the definition of the 
complexity and the maximal weight of an integer matrix, it is clear that

r(A)<<5(A) (7.11)

Inequality may hold because the entries with values equal to the weights of columns 
may appear in the same row, therefore they will not appear in the same path.

If the matrix Aic has rank / (nonsingular), then a path can be selected from 
different rows and columns with length l and maximal weight Y î-\ So it follows 
from Proposition (7.1) that the generic McMillan degree of A is X !̂=i &:•

□

Applying a dual argument, a dual statement can be made if the leading row 
coefficient matrix of A , Amr is of rank m. However, when the leading row or column 
coefficient matrix is rank deficient, nothing can be said on the generic McMillan 
degree. Of course, it is possible to select a column from matrix L to replace the 
columns in A/c which are linearly dependent on the other columns. The criterion to 
select the columns from L is complicated and it is believed that the criterion is also 
difficult to implement.

(c ): A  m ore effective search algorithm

Since most of the computation time will be spent on summation operations, in the 
following we present an algorithm aiming at reducing the summation operations. 
The algorithm is first presented for lower order matrix cases, then it will be extended 
to the general cases.

(i). 3rd order case

or the leading (colum n) weight m atrix , of A

L  — the sm aller rem aining elem ents
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For the third order m atrix  case, we look at the following m atrix

a n « 1 2 « 1 3

« 2 1 « 2 2 « 2 3

« 3 1 « 3 2 « 3 3

There are two independent paths which include a33 entry as an element, namely,

an —1" «22 «33 and ai2 —> 0,2 1 —>■ a33

To calculate the weights of the two independent paths requires 2 x 2  =  4 number of 
summation operations, those are 011+ 022+033 and Oi2+ a2i+ a 33. Because both paths 
contain a33 as an element, there is no need to carry out all the summation operations 
before we can decide which path gives the larger weight. Indeed, we first carry out 
the summation operations On +  o22 and ai2 +  a2i . By then we know which of the two 
independent paths should be selected, i.e., we can take either au —>• a22 or ai2 —» a2i 
depending which gives the larger weight. Having chosen the particular route, the 
maximal weight containing a33 entry can be obtained by just adding the value o33. 
So instead of doing 4 summation operations, only three summation operations are 
needed, i.e., an +  a22, ai2 +  a2i and plus one more summation operation either for 
(an +  a22) +  a33 or for (aJ2 +  a2J) +  a33. For the purpose of generalisation, we express 
the number of summation operations as (2! +  1) =  3.

The above analysis can be carried over to the cases when the independent paths 
contain either a43 or a23. The number of summation operations needed for both of 
the cases are also (2! +  1) =  3. So the total amount of summation operations needed 
for the 3rd order matrix case is 3 x (2! +  1) =  9.

Compare with the original method, the number of summation operations needed 
accounts only 9/12 =  75%, a reduction of 25%. The percentage of summation 
operations needed will be substantially less when the order of the matrices increases.

when the order approaches 00.

a 14 
a24 
0 3  4 
a44

We first consider the independent paths which include a44 entry as an element. 
From the definition of independent paths, the rest of the elements of an independent 
path have to be selected from the submatrix

As a matter of fact, the percentage approaches 0 

(ii). 4th order case

Now, we look at a 4th order matrix

« 1 1 « 1 2 « 1 3

« 2 1 « 2 2 « 2 3

« 3 1 « 3 2 « 3 3

« 4 1 « 4 2 « 4 3

222



«11 «12 «13

«21 «22 «23

«31 «32 «33

Instead of carrying out all the summation operations of the independent paths se-
lected from this submatrix with the element a44, we select an independent path from 
all the 3! =  6 independent paths which gives the maximal weight. Only the weight 
of this maximum weight path need to be added up with the value of a44. Further, 
this weight gives the maximal weight for all the independent paths containing the 
a44 entry as an element.

As having been shown earlier, the number of summation operations which is 
needed for selecting the maximal weight for the submatrix M44 is 3 x (2! -f 1) =  9, 
the number of summation operations needed to obtain the maximal weight for all 
the independent paths which contain a44 as an element is just 3 x (2! -f 1) +  1 =  10.

The above analysis can be implemented directly on the cases when the inde-
pendent paths containing ai4,a24 or a34 as an element. So the number of sum-
mation operations needed to give the maximal weight for the 4 x 4  matrix is 
4 x (3 x (2! +  1) +  1) =  40.

The reduction in the number of summation operations needed is 3 x 4! — 40 =  32, 
which constitutes 32/72 =  44.4%.

(iii). General order case

The analysis in the previous two sections can be directly generalised to the 
general case. Given an n x n matrix,

«11 «12 ’ 1̂ n

«21 «22 ' 0'2n

« n l « n 2 Q"nn

If we fix ann as one element in the independent paths, the rest of the elements have 
to be selected from the submatrix

a  i i «12 O 'ln  — l

«21 «22 * * a 2 n - l

« 7 1  —  11 « 7 1  —  12 •

The number of summation operations needed to obtain the maximum weight path 
from all the independent paths is (n — 1)(1 +  (n — 2)(1 +  (n — 3)(- • ■ +  3(1 +  2!) • • •),
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and the number of summation operations needed to give the maximal weight among 
all the independent paths containing the ann entry as an element requires exactly 1 
more summation operation, i.e., 1 +  (n — 1 )(1 + (n — 2)(1 +  (n — 3)(- • • + 3(1 + 2!) • • •). 
So the amount of summation operations needed to give the maximal weight for an
n x n  matrix is n(l +  (n — 1)(1 +  (n — 2)(1 +  (n — 3)(----h 3( 1 +2!) • • •). The expression
can be rewritten as

A'  = rc(l +  (n —l)(l  + (n — 2 ) ( l T ( n —3)(--- + 3(1+2! )  •••)

= n +  n(n — 1) +  n(n — 1 )(n — 2) +  n(n — l)(n  — 2)(n — 3) +  ■ • • +  n!

So the percentage of summation operations needed compared with the original 
method for the general case is

A ' _  n +  n(n — 1) +  n(n — l)(n  — 2) + n(n — l)(n  — 2)(n — 3) +  • • • +  n\ 1 
A (n — l)n! n — 1

and
A '
—-----> 0, as n —> oo
A

(iv). Comparison of the results

In this subsection, we compare the new algorithm with the original method. The 
following table gives the number of summation operations needed, the percentage of 
operations for the new method compared with the original one for different orders 
of matrices.

order 3 4 5 10 15 20

original method 12 72 480 32659200 1.830 X 1013 4.622 x 1019

new method 9 40 205 6235300 2.247 x 1012 4.180 x 1018

percentage 75% 55.56% 42.71% 19.09% 12.27% 9.04%

So this method is much better compared with the method proposed in (a).

Remark 7.10: The algorithm can be implemented for finding the minimum weight 
path with obvious changes.

□

(d). Diagonalisation procedure

From the definitions of the path and the weight of a path, it is clear that by exchang-
ing rows and columns, the path and weight will not be changed. So diagonalisation
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procedures involving only row and column permutations can be used. The diagonal-
isation procedure can be very beneficial for large dimensional and sparse matrices. 
Assuming that the system can be diagonalised into two diagonal blocks of dimen-
sions nx and n2, nx +  n2 =  n, and we carry out the search of the maximal weight 
for each of the matrix using method (a), the total number of independent paths to 
be searched is nx! + n2!. Compared with the total number of independent paths in 
the original matrix n!, it will be much smaller. Of course, different methods can be 
used for searching the maximal weight path of the submatrices.

7.5 Generic properties of generic transfer func-
tions at infinity

The poles and zeros of a system at s — oo are important in the sense that they pro-
vide the information on the system behaviour at s — oo [Kai.,1] [Var. Lim. & Kar.,1]. 
There are several problems in which it is important to keep track of the behaviour 
at s =  oo. Poles at s =  oo characterise nonproper systems (or systems with differ-
entiators), as may arise in constructing inverse systems, while the zeros at oo are 
important, for example, in studying the asymptotic behaviour of multivariable root 
loci, decoupling, etc. For scalar systems with n poles and m zeros, m < n, m of the 
closed-loop poles will converge toward the m finite poles will the remaining n — m 
poles will converge to the n — m zeros at infinity. A similar conclusion can be made 
for multivariable systems.

However the definitions given for the poles and the zeros in Section (2.2.6) do 
not extend to s =  oo as it can be shown that the jR[s]-unimodular matrices used 
to transform N(s)  into the Smith-form can have both poles and zeros at oo. So 
by unimodular transformations, the information at s =  oo will be destroyed. It is 
important to observe that the pole-zero information of the system is preserved for 
any finite frequency when under unimodular transformations but not always
the structure at infinity. If we make the bilinear transformation

cl X T b 

c\ T  d (7.12)

where c /  0 and ad — be ^  0, which will merely transform the complex s plane into 
itself, then this transformation will move the point at s =  oo to the point A =  — ̂ . 
The Smith-McMillan form for H(A) will accurately reflect the behaviour of H {A) 
for all point except those at s =  oo. In particular, the Smith-McMillan structure at 
A =  — ~ will accurately reflect that of H(s ) at s =  oo. If the constants a,b,c,d are
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chosen a s o  =  0 = d,6 = c = l ,  then s =  j  and with the substitution s =  j ,  the 
pole-zero information at 5 =  00 can be studied by A =  0.

For instance, a simple unimodular matrix

U(s)
1 s
0 1

with substitution s =  j

¿/(A -1)
1 A“ 1
0 1

whose Smith-McMillan for can be calculated as

(7.13)

(7.14)

A“ 1 0 
0 A

(7.15)

which shows that U(s) has a pole and zero at s =  00.

An alternative way of calculating the pole-zero structure of a system both at finite 
and infinite frequencies is to use the valuation method [Kai.,1] [Var. Lim. & Kar.,1] 
which characterizes the Smith-McMillan form directly. Define for a scalar rational 
function g(s)  the discrete valuation at s =  00 by:

Voo(g) =  the 00 valuation of g(s)

= denominator degree - numerator degree (7-16)

for example,
5 +  1

°° L(5 — 1)2(5 + 2) J
and for matrix case, the definition is extended as,

=  2

vm(g) =  the algebraically smallest 00 valuation of all 
the i x i minors of H(s).

Then the Smith-McMillan form at s =  00 is defined by

Moo(s) =  diag {s CTlt<xd ,..., .s'7’'*00)}

where
o-i(oo) =  ct2(oo ) =  t)(J> -

(7.17)

(7.18)

(7.19)

The family of unstructured generic models in the frequency domain is defined
by:
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Definition 7.9 : For transfer function models G(s), where G(s) is proper, it is 
assumed that the number of inputs (l), outputs (m) are fixed, but the gtj(s) elements 
of G(s) are generic proper rational functions. The family of systems is denoted by 
E Pr(l,m).

□

Then for generic systems in the family (/,m ), we have the following result.

T heorem  7.12 [Kar. & Kou.,1] For generic systems of the f2pr(^m ) family, the 
following properties hold true:

• The generic element of 53 (/, m) has no infinite zeros. If the system is strictly 
proper, then the generic system of f f pr(l,m) has m in{m ,/} number of first 
order infinite zeros.

• If m l, the generic system has no finite zeros. If m =  l, the generic proper 
system has n finite zeros and the generic strictly proper system has n — m finite 
zeros, where n is the McMillan degree ofG(s) .

□

In the following we consider a family of systems described in the frequency do-
main with a fixed structure. For instance, a system H(s) is structurally given as

H(s)
4̂ 1 ̂ -2 Ai A3

A3 Al Ai A2 A;
0 A4 Aï

(7.20)

where At, i =  1,2,3, 4 are dynamic models in the frequency domain whose orders 
are fixed while the coefficients in both the denominator and the numerator may take 
arbitrary values. We define the valuation element-wisely at infinity as:

uoo(H) =  The element-wise valuation of H(s)

=  \u-

(7.21)

(7.22)

where u'f, =  Uoo ( ) ,  * =  l , . . . ,m , j  =  1 ,...,/.

First we state the following result.

P roposition  7.4 [Var. Lim. & Kar.,1] Given two generic rational functions f ( s )  
and g(s) with valuations a =  v ^ if)  and (3 =  (g), respectively. Then we have

Voo(f ■ g) = Voo{f) +  Voo(g) (7.23)

Voo ( f ± g )  =  min{u00( /) ,u 00(5f)} (7.24)
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□

R em ark 7.11: A structured transfer function matrix H (E Rl*rl can be transformed 
into an integer matrix Uoo(H) of the same dimension whose entries are the valuation 
of the corresponding entries in the structured transfer function matrix.

□

The path, weight, etc can be defined for the integer matrix u0 0(H)  as in Definition 
(7.8). We can now establish the following result concerning the i x i valuation of 
H( s ) at infinity as:

P roposition  7.5 The i x ith order valuation of H(s) at infinity is equivalent to the 
minimal weight of length i in matrix u ^ H ).

P roof:

If the minimal weight of any independent paths with length i is £,, we have to 
prove that there exists a n i x i  order minor in H(s)  such that the valuation of this 
minor at infinity is tt. Construct an i x i order minor by taking the minor just 
containing the minimum weight path. Then the order of the minor will be i x i and 
by employing Proposition (7.4), the result is established.

□

For the system given in equation (7.20), if we assume that the components take 
the following forms

Tli

4̂ 2

A3

A4

_____ <fn_____
s2 + b u s  + b\2 

Ü2lS2 +  S22S T  Û23

¿ 2 l ^ 4 T  ¿22-S3 +  ¿ 2 3 5  +  ¿2 4  

031S +  <232

¿ 3 1 S  +  ¿32
a41

■S2 +  ¿ 4 1 S  +  ¿42
then the element-wise valuation of the matrix H(s)  is given as

Uoo(77)
6 2 0
0 4 4
oo 2 4

(7.25)

The generic valuation of 1 x 1 minors of the matrix H(s)  at infinity 
minimum among all the entries, or =  0. The minimal weight paths

is the 
of the
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2 x 2  m inors

6 2 

0 4

1----

\o 1----oCO1___

1 0 4 4 4

0 4
oo 2

4 4 
2 4

0 4
oo 4

6 2

oo 2
6 0

oo 4
2 0

2 4

are 2, 0 ,4 ,2 ,2 ,6 ,4 ,8 ,10 ,2 . So the generic valuation of the 2 x 2  minors at infinity 
is 0, i.e., v£\H ) =  0. Finally the generic valuation of the 3 x  3 at infinity is the 
minimum weight path of u ^ H )  which is 2, so =  2. Finally we have

v£ \ h ) = o

vg\H ) =  0 

»< ? (» )  =  2

and therefore the rational matrix generically has one zero of order 2 at infinity and 
no generic poles.

R em ark 7.12: Assuming that the normal rank of the matrix H(s)  is r, because we 
consider only the proper system, the difference between the total number of zeros 
and the total number of poles at infinity is given by the minimal weight of all the 
independent paths with a length r.

□

R em ark 7.13: From the above definition and analysis, it is clear that the number 
of generic poles and zeros at infinity remains unchanged as long as the element-wise 
valuation of the rational matrix is the same, because then all the minors of all orders 
will be the same. In fact, this happens when the valuations of the elements At are 
fixed.

□

R em ark 7.14: In order to find the minimal weight of all the independent paths, 
the methods proposed in Section 7.4.3 for finding the maximal weight of all the 
independent paths can be adapted. The only change needed is to mark the minimum 
weight path instead of the maximum weight path.

□
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7.6 Summary

In this chapter, we first discussed some of the general issues arising from the mod-
elling of interconnected complex systems from the control engineer’s view point. 
The attention is focused on process modelling at different design stages exploring 
the possibilities of applying control theories and tools in the design process. Two 
equally important aspects are highlighted: model environment and features of con-
trol theory. On one hand, the model environment in which the control theories wish 
to work is generally poor. Under these circumstances, it is argued [Kar.,2] that 
External Structural Dynamic Models are better suited for the life circle of design. 
On the other hand, features of control theory such as defining the minimal number 
of inputs, eliminating bad designs at early stages will be desirable.

Next, we looked at the properties which can be inferred from the steady-state 
models of systems. The properties include integral stabilisability, integral controlla-
bility, system sensor failure sensitivity, system actuator failure sensitivity and system 
robustness. The corresponding property indicators are based simply on the steady- 
state models and are vary useful in screening bad designs at an early stage.

Then we defined the notions of generic structured transfer functions, generic 
McMillan degree and generic poles and zeros both finite and at infinity. For the 
generic structured transfer functions, we transformed the problem of evaluating the 
generic McMillan degree into a problem of searching the maximal or minimal weight 
paths of the correspondingly defined integer matrices. Methods for searching the 
maximal or minimal weight path are then proposed and assessed.
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Chapter 8

CONCLUSIONS AND 
SUGGESTIONS FOR 
FURTHER WORK

8.1 Conclusions

The two main issues addressed in this thesis are bounded state feedback and evalu-
ation of structural characteristics. The topics covered in relation to bounded state 
feedback are quantitative controllability, the distance a stable polynomial from in-
stability or of an unstable polynomial from stability and the root distribution of 
bounded coefficient polynomials. These are investigated in Chapters 4, 5 and 6, 
respectively. The problems of evaluating structural characteristics are discussed in 
Chapter 7.

In Chapter 3, quantitative state controllability, output controllability, quantita-
tive observability of systems based on the state-space singular values of the Con-
trollability Grammian and Observability Grammian have been developed. Next, the 
singular values of the state Controllability Grammian are developed to be indicators 
for parametrising the initial conditions in the state-space which can be brought to 
the origin with bounded energy controls. Indeed, the subset of initial conditions form 
a hyper-elipsoid whose axes are defined by the singular values of the state Control-
lability Grammian. Then, the quantitative output controllability is also developed 
to be an interaction measure based on energy between the inputs and outputs; this 
indicator can give important information in selecting input-output pairing schemes 
when the problem of selection of control structure is considered. In addition to the 
theoretical development of the property indicators, implementation of the property
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indicators based on MATLAB have also been produced. Finally, other quantitative 
controllability measures based on the distance that a controllable system away from 
uncontrollability and eigenvalues and eigenvectors are reviewed.

Because a link between the bound on the state feedback gain and the bound on 
the coefficients of the characteristic polynomial of a system can be established, the 
pole mobility of a system under bounded state feedback can be examined through the 
study of root distribution of bounded coefficient polynomials. So in Chapter 4, var-
ious classical results concerning root distribution in relation to the coefficients have 
been reviewed. Also included are the recent most well-known result of Kharitonov’s 
theorem and the variations developed thereafter.

If one can find the minimum distance of an unstable polynomial from stabil-
ity and the corresponding closest stable polynomial, then one could similarly find 
the minimum distance of an unstable system from stability and the corresponding 
closest stable system. Then by making use of this minimum distance a necessary 
condition imposed on the feedback gain for a system to be stabilisable could be 
produced in the feedback context. This may provide an alternative approach in 
bounded gain stabilisation. Along this line, the problem of finding the distance of a 
stable polynomial from the set of unstable polynomials, as well as the distance of an 
unstable polynomial from stable polynomials has been discussed. A novel method 
has been proposed for calculating either the distance a stable polynomial away from 
instability or the distance of an unstable polynomial from stability. Some of the re-
sults were later employed to establish an upper bound on the root inclusion problem 
of bounded coefficient polynomials in Chapter 6.

In studying the root distribution of bounded coefficient polynomials, the prob-
lems of inverse and direct root inclusion of polynomials have been formulated in 
Chapter 5 for bounded coefficient polynomials. The bound on the coefficient is 
given in terms of the l2 norm on the coefficient vector. For different subfamilies of 
polynomials, different root distribution regions have been established, that is: •

• For the direct root inclusion problem, minimum regions with algebraically 
defined boundaries have been obtained for the set of /2 norm bounded stable 
polynomials P +,'l'[s] as well as the set of /2 norm bounded totally unstable 
polynomials P _,7[.s].

• Maximum rectangular regions have been obtained fox the inverse root inclusion 
problem for both the stable and totally unstable polynomial sets P +,7[s], P~,7[s]

• For the general polynomials P[s], upper bound for the direct root inclusion 
problem is obtained. In addition, for the lower order polynomials, a tighter
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upper bound for the direct root inclusion problem has also been produced. 
With respect to the inverse root inclusion problem, the region is given by 
combining the maximum rectangular regions for both the stable and totally 
unstable polynomials.

The direct root inclusion problem for the set of norm bounded general polynomial 
needs further investigation. The aim is to find a minimum region which contains all 
the coefficient bounded polynomials P[s]. The general results derived so far are still 
by no means minimal. If the bound on the coefficients is given in other forms, for 
instance in terms of /i, I3 or /<*,, etc. the impact on corresponding direct and inverse 
root inclusion problems should also be investigated. Also addressed in Chapter 5 is 
the problem of root distribution for the sum of two monic polynomials. Results show 
that the roots of the sum of two monic polynomials whose roots are symmetrically 
distributed with respect to a line parallel to the imaginary axis are distributed along 
the line solely. And applications based on this result have been made for the case of 
root distribution of the sum of two polynomials each of which has a root distribution 
in a subset of the real axis.

In Chapter 6, the closed-loop pole mobility for SISO systems under bounded 
state feedback has been studied. The bound on the controller gain is given in terms 
of the I2 norm. First the norm bound on the controller gain is transformed into the 
bound on the coefficients of the characteristic polynomial. Then, results developed 
in the previous chapters are deployed to establish the upper bound for the closed- 
loop poles. If an open-loop system is unstable, then sufficient conditions have been 
obtained for the system to be stabilisable by the bounded feedback.

Closed-loop pole mobility for MIMO systems under bounded state feedback has 
also been studied. However, the norm bound on the controller gain is given in terms 
of Frobenius norm instead of /2 norm. The closed-loop pole mobility regions are 
established for the cases when special pole assignment methods are used, namely 
dyadic feedback scheme and controller form pole assignment scheme. If an open- 
loop system is unstable, then sufficient conditions are given for the system to be 
stabilisable under bounded state feedback. In dyadic feedback, or indeed for the 
general linearisation feedback scheme, the selection of the input direction affects the 
coefficient bound on the closed-loop characteristic polynomials and hence the final 
mobility regions. The problem of how to select the best input direction to render 
maximal pole mobility under bounded state feedback has still to be answered.

Evaluation of structural characteristics are addressed in Chapter 7, where the 
working model characteristics and the desirable features of control theory concern-
ing the design of large scale processes with ill-defined models have first been dis-
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cussed. It is argued that external structural dynamic models should be used in the 
design and a family of models with increasing complexity should be developed in 
order to suit the need at different design stages. However, the models should have 
the characteristics such as Universality, Computability and Parameter insensitivity. 
Then, some existing results concerning the development of useful tools based on the 
steady-state gain information has been reviewed. Not only integral stabilisability 
and integral controllability can be inferred from the steady-state gain of a system, 
but also system integrity and robustness. Next, we have defined the concepts of 
generic structured transfer functions, generic McMillan degree at both finite and 
infinite frequencies. It has been proved that the evaluation of the generic McMil-
lan degree, generic poles and zeros both finite and at infinity can be transformed 
into searching independent paths with either maximal or minimal weight of integer 
matrices. Different searching algorithms have been proposed and assessed.

8.2 Suggestions for further research work

Further research work is needed in both the areas of bounded state feedback design 
and evaluation of structural characteristics of large scale systems with ill-defined 
mathematical models.

The mechanism how the system matrix and the input matrix affect the quan-
titative controllability, i.e., the singular values of the Controllability Grammians is 
not very well understood; nor is the mechanism how the system and input matrices 
affect the mobility of system eigenvalues under feedback control. In addition, the 
effects of feedback on the singular values of either Controllability Grammian, or 
controllability matrix of the closed-loop systems need to be further explored. It is 
believed that these will provide vital information in feedback design.

In this work, the bounded state feedback problem is tackled via the study of 
the root distribution of bounded coefficient polynomials. The results derived on the 
mobility of closed-loop eigenvalues under bounded state feedback control are still 
quite conservative. The main cause of the conservativeness is due to the inequalities 
used in transforming the bound on the feedback onto the bound on the coefficients of 
the closed-loop characteristic polynomials. In order to reduce the conservativeness, 
one could possibly establish tighter regions for the direct root inclusion problem 
of bounded coefficient polynomials for the general case. However, the alternative 
approach by finding the minimal distance an unstable system from stability nu-
merically is believed to be the key to this answer. Along this line, the nature of 
the numerical problem such as the existence of global minimum should be properly
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investigated.

As to the problem of evaluating the structural characteristics of large scale sys-
tems with ill-defined models, only a general framework is outlined in this work. In 
order to provide a set of comprehensive and systematic tools in assisting process 
design at early stages, much more further work is needed in this direction. For 
instance, the selection of control structures such as defining the lower bound on the 
number of inputs and outputs and selecting inputs and outputs for actuation and 
measurement purposes, the evaluation of system properties like stability robustness 
against structure of parameter variations, etc., should be examined further. Com-
putationally economical tools need to be developed in order to work on large scale 
systems. Considerations should also be given to systems which are of sparse nature.
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Appendix: I
I.A. MATLAB code for the computation of controllability Grammian computation.

'/, This programme calculates the controllability Grammian as a function 
*/. of time. The singular values of the controllability Grammian shows 
'/, the controllability of the eigenvalues in the sense that the bigger 
'/, the singular values, the less the energy needed to transfer a system 
'/, from an initial state to a desired final state.
'/, These are the initial condition assignment
disp('please specify the data source:either by m-file or from keyboard 
sou=input('input matrices A, B, and time t from the keyboard, ’ ’ y ’ ’ or 
" n " ? '  , 's') ; 
if sou=='y'
a=input('The system matrix A is:') 
b=input('The input matrix B is:') 
tff=input('The final time tff is:') 
else
disp('please specify the m-file which contains the data')
inn=input( ' ','s');
inn=['load ',inn];
eval(inn)
a
b
tff
end
[n,m]=size(a);
[nn,mm]=size(b); 
m=mm; 
t0=0.; 
steml=0; 
stem2=0;

for i=l:2*n*n 
xO(i)=0.;

end
for i=l:n

x0((i-l)*n+i)=l.;
end 

x0=x0' ;
[t,x]=sode23('st',n,m,a,b,tO,tff,xO); 
i=length(t); 
for i1=1:i;

for j=l:n;
for k=l:n;

steml(j,k)=x(il,n*n+(j-l)*n+k); 
txout((j-1)*n+k)=x(il,n*n+(j-1)*n+k);

end
end
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xxout= [xxout;txout];
[v,s ,u]=svd(steml); 
temcond=rcond(s); 
for i2=l:m;

stem2(i2)=s(i 2,12);
end
singular=[singular;stem2] ; 
condition= [condition;temcond] ;

end
plot(t.singular)
title('singular values of controllability Grammian') 
xlabel('t')
ylabel('singular values')
disp('strike any key to continue').pause
plot(t, condition)
title('condition number of controllability Grammian') 
xlabel('t')
ylabel('condition number')

I.B. MATLAB code for the computation of output controllability Grammian com-
putation.

I, outgra.m calculates the output controllability Grammian of a 
/ system. The singular values of the output controllability 
*/. Grammian of the system are indicators of the output assignability 
V, of the system.
*/, These are the initial condition assignment 
steml=0; 
stem2=0;
disp('please specify the data source:either by m-file or from keyboard 
sou=input('input matrices A, B, and time t from the keyboard, ''y'' or 
" n " ? '  , 's') ; 

if sou=='y'
a=input('The system matrix A is:') 
b=input('The input matrix B is:') 
c=input('The output matrix C is:') 
tff=input('The final time tff is:') 

else
disp('please specify the m-file which contains the data')
inn=input('','s');
inn=['load ',inn];
eval(inn)
a
b
c
tff

end
[n.m]=size(a);
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[nn.mm]=size(b);
m=mm;
t0=0.;
for i=l:2*n*n 

x0(i)=0.;
end
for i=l:n

xO((i — 1)*n+i) = l.;
end
xO=xO ' ;
[t,x]=sode23('st',n,m,a.b,tO,tff,x0) ;

i=i;
while tff-t(i)>0,i=i+l; end 

for i1 = 1 :i
for j=l:n;

for k=l:n;
sterni(j,k)=x(il ,n*n+(j-l) *n+k) ; 
txout((j-1)*n+k)=x(il,n*n+(j-1)*n+k);

end
end
xxout=[xxout;txout];
[v, s ,u] =svd(c*steml*c' ) ; 
temcond=rcond(s); 
for i2=l:m

stem2(i2)=s(i2,i2) ;
end
singular=[singular;stem2] ; 
condition=[condition;temcond];

end
plot(t,singular)
title( ' singular values of output controllability Grammian') 
xlabel('t ’)
ylabel('singular values') 
disp('strike any key to continue').pause 
plot(t, condition)
title( ' condition number of output controllability Grajnmian') 
xlabel('t ')
ylabel('condition number')

I.C. MATLAB code for the computation of observability Grammian computation.

'/, This programme calculates the singular values of the finite time 
'/, observability Grammian. The singular values of the observability 
'/, are the indicators of the accurcy of the observation of the 
'/, states.

'/, These are the initial condition assignment
disp('please specify the data source : either by m-file or from keyboard
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sou=input('input matrices A, B, and time t from the keyboard, ’'y'' 01 n’ 
if sou==’y'

a=input('The system matrix A is:') 
c=input('The output matrix C is:') 
tff=input('The final time tff is:') 

else
disp('please specify the m-file which contains the data’)
inn=input('’,’s');
inn=['load ’,inn];
eval(inn)
a
c
tff

end 
t0=0; 
steml=0; 
stem2=0; 
a=a' ; 
b=c' ;
[n,m]=size(a);
[nn,mm]=size(b); 

for i=l:2*n*n 
x0(i)=0.;

end
for i=l:n

xO((i-l)*n+i)=l.;
end 

xO=xO’;
[t,x]=sode23(’st',n,m,a,b,tO,tff,x0); 
i=l;
while tff-t(i)>0,i=i+l;end 
for i1=1:i

for j=l:n;
for k=l:n;

steml(j,k)=x(il,n*n+(j-1)*n+k); 
txout((j-1)*n+k)=x(i1,n*n+(j-1)*n+k);

end
end
xxout=[xxout;txout];
[v,s,u]=svd(steml); 
temcond=rcond(s); 
for i2=l:m;

stem2(i2)=s(i2,i2) ;
end
singular=[singular;stem2]; 
condition= [condition;temcond];

end
plot(t,singular)
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title('singular values of observability Grammian’) 
xlabel('t ' )
ylabel('singular values')
disp('strike any key to continue').pause
plot(t, condition)
title('condition number of obsevability Grammian') 
xlabel('t')
ylabel('condition number')

I.D. Affilateci programme for integration which is adopted from ode23.m is MAT- 
LAB.

function [tout, yout] =sode23(F,n,m,a,b,tO, tfinal, yO, tol, trace) 
'/.S0DE23 Integrate a system of ordinary differential equations using 

*/.
'/, [tout, yout] = sode23(F, n,m,a,b,tO, tfinal, yO, tol, trace)

•/.
•/. INPUT:
'/, F - String containing name of user-supplied problem description.
'/, Call: yprime = fun(t,y) where F = 'fun'.
I t - Time (scalar).
'/, y - Solution column-vector.
’/. yprime - Returned derivative column-vector; yprime(i) = dy(i)/dt.
'/, n - dimension of matrix a.
*/, tO - Initial value of t.
*/, tfinal- Final value of t.
'/, yO - Initial value column-vector.
*/, tol - The desired accuracy. (Default: tol = l.e-3).
I, trace - If nonzero, each step is printed. (Default: trace = 0).

y.
’/. OUTPUT:
’/, tout - Returned integration time points (row-vector).
’/, yout - Returned solution, one solution column-vector per tout-value

y.
’/. The result can be displayed by: plot(tout, yout).
’/. Initialization 
pow = 1/3;
if nargin < 9, tol = 0.001; end 
if nargin < 10, trace = 0; end 
'/, Initialization 

t = tO;
hmax = (tfinal - t)/5; 
hmin = (tfinal - t)/20000; 
h = (tfinal - t)/100; 

y = y0 ( : ) ; 
tout = t; 
yout = y .';
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tau = tol * max(norm(y, 'inf'), 1); 
if trace

cla, t, h, y
end
'/. The main loop

while (t < tfinal) \& (h >= hmin)
if t + h > tfinal, h = tfinal - t;

end
'/, Compute the slopes

si = feval(F, t, y,n,m,a,b); 
s2 = feval(F, t+h, y+h*sl’,n,m,a,b); 
s3 = feval(F, t+h/2, y+h*(si’+s2')/4,n,m,a,b); 

l Estimate the error and the acceptable error
delta = norm(h*(sl' - 2*s3’ + s2’)/3,’inf’); 
tau = tol*max(norm(y,’inf’),1.0);

*/, Update the solution only if the error is acceptable 
if delta <= tau 

t = t + h;
y = y + h*(sl’ + 4*s3’ + s2’)/6; 
tout = [tout; t]; 
yout = [yout; y.'];

end
if trace

home, t, h, y
end

*/. Update the step size 
if delta = 0.0

h = min(hmax, 0.9*h*(tau/delta) “ pow);
end 

end;
if (t < tfinal)

disp(’SINGULARITY LIKELY.’) 
t

end

I.E. Function st.m

function xdot=st(t,x,n,m,a,c) 
b=c*c’; 
for i=l:n;

for j = 1:n ; 
tem=0; 
for h=l:n;

tem=tem+a(i,h).*x( (h-1)*n+j) ;
end
xdot((i — 1)*n+j)=tem;

end
end
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for i=l:n ;
for j = l : n ; 

t e m 2 = 0 ; 
for k=l:n ; 

t e r a l = 0 ; 
for h=l:n ;

teml=teml+x((i—1)*n+h),*b(h,k)
end
tem2=tem2+teml.*x(( j -l)*n+k);

end
xdot(n*n+(i-l)*n+j)=tem2;

end
end
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Appendix: II
II.A. FORTRAN code for computing the minimum distance of a stable polynomial 
from instability (Fourth order case)

INTEGER N ,I
DOUBLE PRECISION BL(4), BU(4),X(4),B(5),BB(5),PL,PU,NL,NU,

* PXI,NXI,XX(15,4),FF(15),R0T(2,15,4),F,RT(2,'
DATA BB/1.,4.,6.,5.,2./
COMMON//BB(5)
EXTERNAL MINROOT,0R00T,MINFUN 

c 
c

N=4
PRINT *,'COEFFICIENTS OF THE ORIGINAL POLYNOMIAL ARE'
DO 15 1=1,5 

15 B(I)=BB(I)
PRINT *,(B(I) ,1=1,5)
CALL 0R00T(N,B)
PL=1.e-20 
PU=1.E20 
NL=-1.E20 
NU=-1.E-20 
PXI=10.
NXI=-10.

C
C
C

DO 300 I0VAL=1,N 
IF (I0VAL.EQ.1) THEN 

IL0CAL=N
DO 99 1=1,ILOCAL 
BU(I)=PU 
BL(I)=PL 
X(I)=PXI 

99 CONTINUE
DO 98 J=l,ILOCAL 
BU(J)=NU 
BL(J)=NL 
X(J)=NXI
CALL MINFUN(N,X ,BU,BL,F)

DO 299 IX=1,4 
299 XX(J,IX)=X(IX)

FF(J)=F 
BU(J)=PU 
BL(J)=PL 
X(J)=PXI
CALL MINR00T(N,X,RT)
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449
98

298

448

297

4 4 7

DO 449 IX=1,4
ROT(1,J,IX)=RT(l,IX)
R0T(2,J,IX)=RT(2,IX) 
CONTINUE
ELSE IF (I0VAL.EQ.2) THEN
BU(1)=NU
BL(1)=NL
X(l)=NXI
BU(2)=NU
BL(2)=NL
X(2)=NXI
BU(3)=PU
BL(3)=PL
X(3)=PXI
BU(4)=PU
BU(4)=PL
X (4)=PXI
CALL MINFUN(N,X,BU,BL,F) 

DO 298 IX=1,4 
XX(5,IX)=X(IX)
FF(5)=F

CALL MINROOT(N,X,RT)
DO 448 IX=1,4
ROT(1,5,IX)=RT(1,IX)
ROT(2,5,IX)=RT(2,IX)
BU(1)=NU 
BL(l)=NL 
X(1)=NXI 
BU(3)=NU 
BL(3)=NL 
X(3)=NXI 
BU(2)=PU 
BL(2)=PL 
X(2)=PXI 
BU(4)=PU 
BU(4)=PL 
X(4)=PXI
CALL MINFUN(N,X,BU,BL,F) 

DO 297 IX=1,4 
XX(6,IX)=X(IX) 
FF(6)=F

CALL MINROOT(N,X,RT)
DO 447 IX=1,4
ROT(1,6,IX)=RT(1,IX)
R0T(2,6,IX)=RT(2,IX)
BU(1)=NU
BL(1)=NL
X(1)=NXI
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296

446

295

445

BU(4)=NU 
BL(4)=NL 
X(4)=NXI 
BU(3)=PU 
BL(3)=PL 
X(3)=PXI 
BU(l)=PU 
BU(1)=PL 
X(1)=PXI
CALL MINFUN(N,X,BU,BL,F) 

DO 296 IX=1,4 
XX(7,IX)=X(IX)
FF(7)=F

CALL MINR00T(N,X,RT)
DO 446 IX=1,4
ROT(1,7,IX)=RT(1,IX)
R0T(2,7,IX)=RT(2,IX)
BU(3)=NU 
BL(3)=NL 
X(3)=NXI 
BU(2)=NU 
BL(2)=NL 
X(2)=NXI 
BU(1)=PU 
BL(l)=PL 
X(1)=PXI 
BU(4)=PU 
BU(4)=PL 
X(4)=PXI
CALL MINFUN(N,X,BU,BL,F) 

DO 295 IX=1,4 
XX(8,IX)=X(IX)
FF(8)=F

CALL MINROOT(N,X,RT)
DO 445 IX=1,4
ROT(1,8,IX)=RT(1,IX)
R0T(2,8,IX)=RT(2,IX)
BU(4)=NU 
BL(4)=NL 
X(4)=NXI 
BU(2)=NU 
BL(2)=NL 
X(2)=NXI 
BU(l)=PU 
BL(l)=PL 
X(1)=PXI 
BU(3)=PU 
BU(3)=PL
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294

444

293

443

96

292

442

X(3)=PXI
CALL MINFUN(N,X,BU,BL,F) 

DO 294 IX=1,4 
XX(9,IX)=X(IX) 
FF(9)=F

CALL MINROOT(N, X , RT)
DO 444 IX=1,4
ROT(1,9,IX)=RT(1,IX)
ROT(2,9,IX)=RT(2,IX)
BU(3)=NU 
BL(3)=NL 
X(3)=NXI 
BU(4)=NU 
BL(4)=NL 
X(4)=NXI 
BU(l)=PU 
BL(1)=PL 
X(1)=PXI 
BU(2)=PU 
BU(2)=PL 
X(2)=PXI
CALL MINFUN(N,X,BU,BL,F) 

DO 293 IX=1,4 
XX(10,IX)=X(IX) 
FF(lO)=F

CALL MINROOT(N,X,RT)
DO 443 IX=1,4

R0T(1,10,IX)=RT(1,IX)
R0T(2,10,IX)=RT(2,IX)

ELSE IF (I0VAL.EQ.3) THEN 
ILOCAL=N 
DO 96 1=1,ILOCAL 
BU(I)=NU 
BL(I)=NL 
X(I)=NXI 
CONTINUE 
DO 95 J=l,ILOCAL 
BU(J)=PU 
BL(J)=PL 
X(J)=PXI
CALL MINFUN(N,X,BU,BL,F) 

DO 292 IX=1,4 
XX(10+J,IX)=X(IX) 
FF(lO+J)=F 

CALL MINROOT(N,X,RT)
DO 442 IX=1,4
ROT(1,10+J,IX)=RT(1,IX)
ROT(2,10+J,IX)=RT(2,IX)
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BU(J)=NU 
BL(J)=NL 
X(J)=NXI 

95 CONTINUE
ELSE IF (I0VAL.EQ.4) THEN 

ILOCAL=N
DO 93 1=1,ILOCAL 
BU(I)=NU 
BL(I)=NL 
X(I)=NXI 

93 CONTINUE
CALL MINFUN(N,X,BU,BL,F)

DO 291 IX=1,4
291 XX(15,IX)=X(IX)

FF(15)=F
CALL MINROOT(N,X,RT)
DO 441 IX=1,4
ROT(l, 15,IX)=RT(1,IX)

441 ROT(2, 15,IX)=RT(2,IX)
END IF

300 CONTINUE
DO 259 1=1,15

PRINT *,'F= ' ,FF(I)
DO 258 J=1,4

PRINT *, ’ AT X(I) =',XX(I,J)
258 CONTINUE

DO 257 J=1,4
PRINT *,'ROOTS=’,ROT(l,I,J), ' +i',R0T(2,I,J) 

257 CONTINUE
259 CONTINUE

STOP
END

C
C

SUBROUTINE MINFUN(N,X,BU,BL,F)
INTEGER N,LH,LIW,LW,ISTATE(4), IW(2),N0UT 
DOUBLE PRECISION ETA, F, FEST, STEPMX, XTOL 
INTEGER IBOUND, IFAIL, INTYPE, IPRINT, J, MAXCAL 
LOGICAL LOCSCH
DOUBLE PRECISION BL(4), BU(4), DELTA(4) , G(4), HESD(4) 
DOUBLE PRECISION HESL(6),W(36),X(4)
EXTERNAL E04HBF, E04JBF, E04JBQ, FUNCT,

* MONIT
PRINT *, '********************************************** ’
LH=6
LIW=2
LW=36
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IFAIL=1
CALL E04HBF(N,FUNCT,X,NF,DELTA,HESL,LH,

* HESD,F,G,IW,LIW,W,LW,IFAIL)
IPRINT=0

c PRINT *,'**********************************************'
LOCSCH=.TRUE.
INTYPE=0
MAXCAL=40*N*(N+5)
ETA=.5e0 
XT0L=0.OeO 
STEPMX=4.0e4 
FEST=4.0 
IB0UND=0 
IFAIL=1
CALL E04JBF(N,FUNCT,MONIT,IPRINT,LOCSCH,INTYPE,E04JBQ,

* MAXCAL,ETA,XTOL,STEPMX,FEST,DELTA,IBOUND,BL,BU,X ,HESL,
* LH,HESD,ISTATE,F,G,IW,LIW,W,LW,IFAIL)

IF (IFAIL.NE.0) WRITE(NOUT,FMT=996) IFAIL 
IF (IFAIL.NE.1) THEN
PRINT *,'THE FUNCTION AT EXIT IS F=', F 
PRINT *,'at the point ’, (X(J),J=1,N)
END IF

IF (IFAIL.EQ.2) THEN
WRITE (N0UT,FMT=993) (ISTATE(J),J=1,N) 
WRITE (N0UT,FMT=992) (HESL(J),J=1,LH) 
WRITE (N0UT,FMT=99l) (HESD(J),J=1,N)

END IF
c PRINT *, 'For minimization ifail=', IFAIL
996 FORMAT(///' ERROR EXIT T Y P E 13, 'SEE ROUTINE DOCUMENT')
993 FORMAT(' WHERE ISTATE CONTAINS', 415, '.')
992 FORMAT(' HESL CONTAINS',/' ', IP, 6e20.4)
991 FORMAT(' AND HESD CONTAINS', lP,4e20.4)

RETURN
END

C
SUBROUTINE FUNCT(IFLAG,N,XC,FC,GC,IW,LIW,W,LW)
DOUBLE PRECISION FC,XJ
INTEGER IFLAG,LIW,LW,N
DOUBLE PRECISION GC(N),W(LW),XC(N)
INTEGER IW(LIW)
DOUBLE PRECISION DEI,DE3,BB(5)
COMMON//BB(5)

c PRINT*, 'IFLAG=',IFLAG
IF (IFLAG.NE.3) THEN 
DE1=XC(1)*XC(2)*XC(3)*XC(4)
DE3=XC(1)*XC(2)+XC(1)*XC(4)+XC(3)*XC(4) 

c if (XC(l).eq.O) PRINT*, '!!!!!!!',DE1,(XC(i),i=l,4)
FC=(1./XC(1)-BB(2))**2+(DE3/DE1-BB(3))**2
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* +((XC(2)+XC(4))/DE1-BB(4))**2+(1/DE1-BB(5))**2
c PRINT *,(XC(i),i=l,4),FC

ELSE
XJ=XC(l)+GC(l)
DE1=XJ*XC(2)*XC(3)*XC(4)
DE3=XJ*XC(2)+XJ*XC(4)+XC(3)*XC(4) 
GC(l)=(l./XJ-BB(2))**2+(DE3/DEl-BB(3))**2

* +((XC(2)+XC(4))/DE1-BB(4))**2+(1/DE1-BB(5))**2 
C

XJ=XC(2)+GC(2)
DEl=XC(l)*XJ*XC(3)*XC(4)
DE3=XC(l)*XJ+XC(l)*XC(4)+XC(3)*XC(4)
GC(2)=(l./XC(l)-BB(2))**2+(DE3/DEl-BB(3))**2

* +((XJ+XC(4))/DE1-BB(4))**2+(1/DE1-BB(5))**2 
C

XJ=XC(3)+GC(3)
DE1=XC(1)*XC(2)*XJ*XC(4) 
DE3=XC(l)*XC(2)+XC(l)*XC(4)+XJ*XC(4)
GC(3)=(1./XC(1)-BB(2)) **2+(DE3/DE1-BB(3))**2

* +((XC(2)+XC(4))/DE1-BB(4))**2+(1./DE1-BB(5))**2 
C

XJ=XC(4)+GC(4)
DE1=XC(1)*XC(2)*XC(3)*XJ 
DE3=XC(l)*XC(2)+XC(l)*XJ+XC(3)*XJ 
GC(4)=(1./XC(1)-BB(2))**2+(DE3/DE1-BB(3))**2

* +((XC(2)+XJ)/DE1-BB(4))**2+(1./DE1-BB(5))**2 
END IF

c PRINT *,FC,GC(1),GC(2)
c PRINT*, ’BB(*****)=',(BB(i),i=l,5)

RETURN
END

C
C

SUBROUTINE MINROOT(N,X,RT)
DOUBLE PRECISION X(N),C(5),TE,RE(5),IM(5),TOL,RT(2,4) 
INTEGER N,M,IFAIL,I 
EXTERNAL C02AEF 
M=N+1
TE=X(l)*X(2)*X(3)*X(4)
C(l)=l.
C(2)=l/X(l)
C(3)=(X(1)*X(2)+X(1)*X(4)+X(3)*X(4))/TE
C(4)=(X(2)+X(4))/TE
C(5)=l/TE
DO 25 1=1,M
PRINT *,JC(',1, ’ )=> ,C(I)

25 CONTINUE
TOL=l.E-20
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IFAIL=1
CALL C02AEF(C ,M, RE,IM,TOL, IFAIL)
IF (IFAIL.NE.O) THEN
PRINT *,'THE PROCEDURE HAS FAILED'
ELSE

DO 30 1=1,N 
RT(1,I)=RE(I)
RT(2,I)=IM(I)

C PRINT *,'ROOT ',1,'=',RE(I),' +i ',IM(I)
30 CONTINUE
C PRINT *,'IFAIL FOR FINDING THE ROOTS IS ',IFAIL

END IF 
RETURN 
END 

C
SUBROUTINE OROOT(N,B)
DOUBLE PRECISION B(5),RE(5),IM(5) ,TOL
INTEGER N,M,IFAIL,I
EXTERNAL C02AEF
M=N+1
IFAIL=1
T0L=1.E-20
CALL C02AEF(B,M,RE,IM,TOL,IFAIL)
IF (IFAIL.NE.O) THEN

PRINT *,'THE PORCEDURE HAS FAILED'
ELSE

DO 35 1=1,N
35 PRINT *,'OROOT',1,'= ',RE(I),'+i ',IM(I)
C PRINT *,'IFAIL FOR FINDING THE ROOTS IS'.IFAIL

END IF 
RETURN 
END 

C
SUBROUTINE MONIT(N,XC,FC,GC,ISTATE,GPJNRM,COND,

* POSDEF,NITER,NF,IW,LIW,W,LW)
INTEGER NOUT
DOUBLE PRECISION COND,FC,GPJNRM 
INTEGER LIW,LW,N,NF,NITER
LOGICAL POSDEF
DOUBLE PRECISION GC(4),W(36),XC(4)
INTEGER ISTATE(4),IW(2)
INTEGER ISJ,J
N0UT=6

c PRINT *, NITER,NF,FC,GPJNRM
c PRINT *, ' J X(J) G(J)

DO 20 J=1,N 
ISJ=ISTATE(J)
IF (ISJ.GT.O) THEN

STATU
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PRINT *,’ ', J,XC(J) ,GC(J),’
ELSE IF (ISJ.EQ.-l) THEN

PRINT *,' ' , J,XC(J),GC(J),'
ELSE IF (ISJ.EQ.-2) THEN

PRINT \  J,XC(J).GCO),’
ELSE IF (ISJ.EQ.-3) THEN

PRINT J,XC(J),GC(J),'
END IF

20 CONTINUE 
END

FREE '

UPPER BOUND' 

LOWER BOUND' 

CONSTANT'

II.B. FORTRAN code for computing the minimum distance of an unstable polyno-
mial from stability (Fourth order case)

INTEGER N ,I
DOUBLE PRECISION BL(4), BU(4) ,X(4),B(5),BB(5),PL,PU,NL,NU,

* PXI,NXI,XX(15,4),FF(15),R0T(2,15,4),F,RT(2,<
DATA BB/1.,4., - 6 . , 5. ,2./
C0MM0N//BB(5)
EXTERNAL MINR00T,0R00T,MINFUN

c

15

C
C
C

99

c
c 299 
c

N=4
PRINT *,'COEFFICIENTS OF THE ORIGINAL POLYNOMIAL ARE' 
DO 15 1=1,5 
B(I)=BB(I)
PRINT *,(B(I),1=1,5)
CALL 0R00T(N,B)
PL=1.e-20 
PU=1.E20 
PXI=10.

IL0CAL=N
DO 99 1=1,ILOCAL 

BU(I)=PU 
BL(I)=PL 
X(I)=PXI 
CONTINUE
CALL MINFUNfN.X.BU.BL.F)
PRINT *, ’ ****&&&.****’ , (X (i) , i=l ,4) 
DO 299 IX=1,4

XX(J,IX)=X(IX)
FF(J)=F

CALL MINR00T(N,X,RT)
DO 449 IX=1,4
ROT(1,J,IX)=RT(1,IX)
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449 ROT(2,J , IX)=RT(2,IX)
STOP
END

C
C

SUBROUTINE MINFUN(N,X,BU,BL,F)
INTEGER N,LH,LIW,LW,ISTATE(4), IW(2),NOUT 
DOUBLE PRECISION ETA, F, FEST, STEPMX, XTOL 
INTEGER IBOUND, IFAIL, INTYPE, IPRINT, J, MAXCAL 
LOGICAL LOCSCH
DOUBLE PRECISION BL(4), BU(4), DELTA(4), G(4), HESD(4) 
DOUBLE PRECISION HESL(6),W(36),X(4)
EXTERNAL E04HBF, E04JBF, E04JBQ, FUNCT,

* MONIT
PRINT *,'*********************************************'
LH=6
LIW=2
LW=36
IFAIL=1
CALL E04HBF(N,FUNCT,X,NF,DELTA,HESL,LH,

* HESD,F,G,IW,LIW,W,LW,IFAIL)
IPRINT=0

c PRINT *,'*********************************************'
LOCSCH=.TRUE.
INTYPE=0
MAXCAL=40*N*(N+5)
ETA=.5e0 
XT0L=0.le-15 
STEPMX=4.Oe4 
FEST=4.0 
IB0UND=0 
IFAIL=1
CALL E04JBF(N,FUNCT,MONIT,IPRINT,LOCSCH,INTYPE,E04JBQ,

* MAXCAL,ETA,XTOL,STEPMX,FEST,DELTA,IBOUND,BL,BU,X ,HESL,
* LH,HESD,ISTATE,F,G,IW,LIW,W,LW,IFAIL)

IF (IFAIL.NE.O) WRITE(N0UT,FMT=996) IFAIL 
IF (IFAIL.NE.l) THEN
PRINT *, 'THE FUNCTION AT EXIT IS F=', F 
PRINT *,'at the point ', (X(J),J=1,N)
END IF

IF (IFAIL.EQ.2) THEN
WRITE (N0UT,FMT=993) (ISTATE(J),J=1,N) 
WRITE (N0UT,FMT=992) (HESL(J),J=1,LH) 
WRITE (N0UT,FMT=991) (HESD(J),J=1,N)

END IF
c PRINT *, 'For minimization ifail=', IFAIL
996 FORMAT(///' ERROR EXIT TYPE',13, 'SEE ROUTINE DOCUMENT')
993 FORMAT(' WHERE ISTATE CONTAINS', 415, '.')
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992 FORMAT(' HESL CONTAINS',/' ', IP, 6e20.4)
991 FORMAT(' AND HESD CONTAINS', lP,4e20.4)

RETURN
END

C
SUBROUTINE FUNCT(IFLAG,N,XC,FC,GC,IW,LIW,W,LW)
DOUBLE PRECISION FC,XJ
INTEGER IFLAG,LIW,LW,N
DOUBLE PRECISION GC(N),W(LW),XC(N)
INTEGER IW(LIW)
DOUBLE PRECISION DEI,DE3,BB(5)
COMMON//BB(5)

c PRINT*, 'IFLAG=',IFLAG
IF (IFLAG.NE.3) THEN 
DE1=XC(1)*XC(2)*XC(3)*XC(4) 
DE3=XC(1)*XC(2)+XC(1)*XC(4)+XC(3)*XC(4) 

c if (XC(l).eq.O) PRINT*, '!!!!!!!',DE1,(XC(i),i=l,4)
FC=(1./XC(l)-BB(2))**2+(DE3/DEl-BB(3))**2

* +((XC(2)+XC(4))/DE1-BB(4))**2+(1/DE1-BB(5))**2
c PRINT *,(XC(i),i=l,4),FC

ELSE
XJ=XC(l)+GC(l)
DE1=XJ*XC(2)*XC(3)*XC(4) 
DE3=XJ*XC(2)+XJ*XC(4)+XC(3)*XC(4)
GC(1)=(1./XJ-BB(2))**2+(DE3/DEl-BB(3))**2

* +((XC(2)+XC(4))/DE1-BB(4))**2+(l/DEl-BB(5))**2 
C

XJ=XC(2)+GC(2)
DE1=XC(1)*XJ*XC(3)*XC(4)
DE3=XC(1)*XJ+XC(1)*XC(4)+XC(3)*XC (4) 
GC(2)=(1./XC(1)-BB(2))**2+(DE3/DE1-BB(3))**2

* +((XJ+XC(4))/DEl-BB(4))**2+(l/DEl~BB(5))**2 
C

XJ=XC(3)+GC(3)
DE1=XC(1)*XC(2)*XJ*XC(4)
DE3=XC(1)*XC(2)+XC(1)*XC(4)+XJ*XC(4)
GC(3)=(l./XC(l)-BB(2))**2+(DE3/DEl-BB(3))**2

* +((XC(2)+XC(4))/DE1-BB(4))**2+(1./DE1-BB(5))**2 
C

XJ=XC(4)+GC(4)
DE1=XC(1)*XC(2)*XC(3)*XJ
DE3=XC(l)*XC(2)+XC(l)*XJ+XC(3)*XJ
GC(4)=(1./XC(1)-BB(2))**2+(DE3/DE1-BB(3))**2

* +((XC(2)+XJ)/DE1-BB(4))**2+(1./DE1-BB(5))**2 
END IF

c PRINT *,FC,GC(1),GC(2)
c PRINT *, 'BB(*****)=',(BB(i),i=l,5)

RETURN
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END
C
C

SUBROUTINE MINROOT(N,X,RT)
DOUBLE PRECISION X(N),C(5),TE,RE(5),IM(5),T0L,RT(2,4) 
INTEGER N,M,IFAIL,I 
EXTERNAL C02AEF 
M=N+1
TE=X(l)*X(2)*X(3)*X(4)

C(l)=l.
C(2)=l/X(l)
C(3)=(X(l)*X(2)+X(l)*X(4)+X(3)*X(4))/TE
C(4)=(X(2)+X(4))/TE
C(5)=l/TE
DO 25 1=1,M
PRINT *,'C(',1,') = ',C(I)

25 CONTINUE
PRINT *,(X(i),i=l,4)
PRINT *,'&&&&&&&&&&&'
TOL=l.E-20 
IFAIL=1
CALL C02AEF(C,M,RE,IM,TOL,IFAIL)
IF (IFAIL.NE.O) THEN
PRINT *,'THE PROCEDURE HAS FAILED'
ELSE

DO 30 1=1,N 
RT(1,I)=RE(I)
RT(2,I)=IM(I)
PRINT *,'ROOT ',1,' = ',RE(I),' +i \IM(I)

30 CONTINUE
C PRINT *,'IFAIL FOR FINDING THE ROOTS IS \  IFAIL

END IF 
RETURN 
END 

C
SUBROUTINE OROOT(N,B)
DOUBLE PRECISION B(5),RE(5),IM(5),TOL
INTEGER N,M,IFAIL,I
EXTERNAL C02AEF
M=N+1
IFAIL=1
T0L=1.E-20
CALL C02AEF(B,M,RE,IM,TOL,IFAIL)
IF (IFAIL.NE.O) THEN

PRINT *,'THE PORCEDURE HAS FAILED'
ELSE

DO 35 1=1,N
35 PRINT *,'OROOT',1,'= \RE(I),'+i ',IM(I)
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C PRINT *,'IFAIL FOR FINDING THE ROOTS IS'.IFAIL
END IF 
RETURN 
END 

C
SUBROUTINE MONIT(N,XC,FC,GC,ISTATE,GPJNRM,COND,

* POSDEF,NITER,NF,IW,LIW,W,LW)

INTEGER NOUT
DOUBLE PRECISION COND,FC,GPJNRM
INTEGER LIW,LW,N,NF,NITER
LOGICAL POSDEF
DOUBLE PRECISION GC(4),W(36),XC(4)
INTEGER ISTATE(4),IW(2)
INTEGER ISJ.J
N0UT=6

c PRINT *, NITER,NF,FC,GPJNRM
c PRINT *, ' J X(J) G(J)

DO 20 J=1,N 
ISJ=ISTATE(J)
IF (ISJ.GT.O) THEN

PRINT *,' ', J,XC(J),GC(J),' FREE'
ELSE IF (ISJ.EQ.-l) THEN

PRINT*,' ', J,XC(J),GC(J),' UPPER BOUND'
ELSE IF (ISJ.EQ.-2) THEN
PRINT*,' ', J,XC(J),GC(J),' LOWER BOUND'
ELSE IF (ISJ.EQ.-3) THEN

PRINT*,' ', J,XC(J),GC(J),' CONSTANT'
END IF

20 CONTINUE 
END

STATUÌ
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