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Universal corrections to the entanglement entropy in gapped quantum spin chains: a

numerical study
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We carry out a numerical study of the bi-partite entanglement entropy in the gapped regime of
two paradigmatic quantum spin chain models: the Ising chain in an external magnetic field and
the anti-ferromagnetic XXZ model. The universal scaling limit of these models is described by
the massive Ising field theory and the SU(2)-Thirring (sine-Gordon) model, respectively. We may
therefore exploit quantum field theoretical results to predict the behaviour of the entropy. We
numerically confirm that, in the scaling limit, corrections to the saturation of the entropy at large
region size are proportional to K0(2mr) where m is a mass scale (the inverse correlation length)
and r the length of the region under consideration. The proportionality constant is simply related
to the number of particle types in the universal spectrum. This was originally predicted in [1, 2]
for two-dimensional quantum field theories. Away from the universal region our numerics suggest
an entropic behaviour following quite closely the quantum field theory prediction, except for extra
dependencies on the correlation length.

PACS numbers: 03.65.Ud,02.30.Ik,11.25.Hf,75.10.Pq

Introduction and discussion. Entanglement is a
fundamental property of the state of a quantum system.
In the context of quantum computation, it is a crucial
resource [3]. Conceptually, it characterizes the structure
of quantum fluctuations in a more universal way than
other widely studied objects such as correlation func-
tions. Developing theoretical measures of entanglement
is therefore important to further understand the struc-
ture of quantum states, a problem of particular inter-
est and difficulty for quantum many-body systems. A
popular measure of entanglement is the bi-partite entan-
glement entropy. It measures the entanglement between
two complementary sets of observables in a quantum sys-
tem [4]. Interestingly, the entanglement entropy exhibits
universal behaviour near quantum critical points: it has
features which do not depend on the details of the model
but rather on its universality class. In the last decade,
this property has made the study of the entanglement
entropy a very active field of research.

A fertile testing ground for these ideas is the study of
quantum spin chains. A quantum spin chain is a one-
dimensional array of particles with spin degrees of free-
dom and, for our purposes, with nearest- (or few-nearest-
) neighbour interactions (this is a local spin chain).
Quantum spin chains have been realized in experiments
[5]. They provide ideal toy models for the study of a
whole range of physical phenomena, as they describe in-
teracting many-body systems yet are simple enough to
allow for the computation of many quantities. This is
especially true for integrable spin chains, since integra-
bility gives rise to the complete characterization of the
energy spectrum and states through techniques such as
the coordinate and algebraic Bethe ansatz (see e.g. [6]).
Quantum spin chains are extensively studied in the con-
text of quantum information science [7] and their bipar-
tite entanglement for blocks of consecutive spins has been
investigated in many works (see e.g. [8–14]) both numer-
ically and analytically. Most of these works concentrate
on exact critical points.

At the same time, in 1+1-dimensional quantum field
theory (QFT) several universal results have been ob-
tained for the entanglement entropy. Two of these results
deserve special attention. First, the logarithmic growth
of entanglement as the block size increases in conformal
field theory (CFT), which is controlled by the central
charge [15, 16]. This behaviour has been verified for many
critical quantum chains [8–11, 14]. Second, the approach
to saturation in massive QFT, which is controlled by the
mass spectrum [1, 2]. This has not been observed yet in
quantum spin chains.
In the present work we investigate the entanglement

entropy in two paradigmatic spin chain models (the Ising
model and the XXZ model) near to, but not at, critical-
ity. We numerically analyze for the first time the uni-
versal behaviour of the entanglement entropy of a block
of length L in the near-critical scaling limit. This scal-
ing limit is expected to be described by massive QFT. In
particular, we confirm massive QFT predictions [1, 2].
The entanglement entropy is the von Neumann entropy

of the reduced density matrix of a state |Ψ〉 with respect
to a tensor factor of the Hilbert space H = A⊗ B:

S = −TrA(ρA log ρA) with ρA = TrB|Ψ〉〈Ψ|. (1)

Let |Ψ〉 be the ground state of a quantum spin chain.
In general, it is expected that, thanks to locality, the
entanglement entropy of a continuous block A of length
L saturates as L → ∞: it only receives contributions
from entanglement between spins surrounding boundary
points of A. But this is not so at second order phase tran-
sitions. Assume that the Hamiltonian is parametrized by
h, and that there exists a value hc corresponding to a
quantum second order phase transition (critical point).
These critical points are particularly interesting, as they
characterise collective quantum behaviours. At h = hc,
and in the thermodynamic limit where the length of the
chain N → ∞, the correlation length ξ of the ground
state is infinite, and the gap ∝ ξ−1 between the ground
state and the continuum of excited states vanishes: the
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system is critical. If the dynamical exponent is z = 1 (so
that the dispersion relation is linear), then the macro-
scopic, low-energy properties are universal and described
by a CFT, see FIG. 1.

For a block A of length L, the entanglement entropy
S diverges for large L as [15, 16]:

S(L) ∼
c

3
log

(

L

ǫ

)

+ c2, (2)

where c is the central charge of the CFT, ǫ is a short-
distance scale (here and below taken as the inter-site
spacing) and c2 is a non-universal constant. The diver-
gence occurs because with ξ = ∞ sites far apart are
entangled. Thus we may extract the value of the central
charge by studying the divergence of the entanglement
entropy in critical spin chains.

In obtaining (2),

FIG. 1: Quantum field theory re-
produces the universal scaling limit
of physical quantities: observation
energies and the gap between the
ground state and the first excited
state are both very small as com-
pared to the microscopic energy
scales, like inter-site interaction en-
ergies.

the order of limits,
first h → hc then
L ≫ ǫ, is very im-
portant. Instead, let
us take h → hc and
L ≫ ǫ “simultane-
ously”: with L/ξ =:
mr fixed. This is
the near-critical scal-
ing limit, the shaded
region depicted in
FIG. 1. It is uni-
versal, described by
a massive QFT corre-
sponding to a pertur-
bation off the orig-
inal critical point.
The mass scale m

may be identified with ξ−1. In this limit, the gap of
the spin chain is infinitesimally small as compared to mi-
croscopic energies (like the inter-site interaction energy),
but the observation length is so large as to probe only the
low-energy, universal, collective excitations of the quan-
tum chain just above the gap; hence the gap still has
an effect. The entanglement entropy then has the form
of a “saturation term” (c/3) log(ξ/ǫ) + c1 which diverges
in the scaling limit, where c1 is another non-universal
constant, plus a universal scaling function f(mr). The
approach to saturation as mr → ∞ is given by an expo-
nential decay of f(mr) which is solely determined by the
spectrum of masses {mi} of the QFT [1, 2]:

S =
c

3
log

(

ξ

ǫ

)

+ c1 −
1

8

∑

i

K0(2rmi) +O
(

e−3rm
)

(3)

where m ≡ m1 is the mass of the lightest particle. Here
K0(z) is the modified Bessel function. Thus, in the near-
critical scaling limit, the entanglement entropy of the
chain encapsulates information about the mass spectrum
of the QFT. Further, despite the non-universality of c1
and c2, their difference is universal:

U := c1 − c2. (4)

In massive QFT, U is related to the expectation value of
a branch point twist field, as described in [1]. In contrast
to the large number of works dealing with critical spin
chains, the absence of studies of the near-critical scaling
regime precludes a comparison with massive QFT results.
The present work intends to fill this gap.

Ising model. This model has Hamiltonian

H = −
J

2

N
∑

i=1

(

σx
i σ

x
i+1 + hσz

i

)

, (5)

where σa
i are Pauli matrices acting on site i and we con-

sider periodic boundary conditions σi+N ≡ σi. The “mi-
croscopic” energy scale indicated in FIG. 1 is the coupling
constant J > 0, and h plays the role of an external mag-
netic field. It is well-know (see e.g. [17]) that this model
has a quantum critical point for h = hc = 1 described
by a CFT with c = 1

2 . The exact correlation length of
the chain is given by ξ−1 = log h [18] and, as expected,
diverges at the critical point. For h > 1 the system is
gapped and the ground state is unique (no symmetry
is broken). Taking the scaling limit described above, a
massive QFT is obtained: the free massive relativistic
Majorana fermion.
A numerical study of the Ising model has the advan-

tage that a free fermion map can be used to perform
computations in the thermodynamic regime. This tech-
nique is used and explained in much detail in [9] and it
is based on the use of Toeplitz determinants [11]. We
can then carry out extremely precise numerics on an ex-
actly infinite chain for very large values of L and very
small values of ξ−1, which are numerically inaccessible
for more complex models.
A numerical computation at the conformal critical

point yields the expected behaviour (2). For the Ising
model, the exact value of U = −0.131984... (we omit
here the exact expression) was first evaluated in [1]. With
c1 = log 2/2 calculated in [19] this gave, using (4), the
constant c2 = 0.478558.... This was found to agree ex-
tremely well with the numerical results obtained in [9].
Our numerics also confirm this value, see FIG. 2.
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FIG. 2: (color online) Entanglement entropy of the Ising
model for several values of h. At the critical point h = 1,
the entropy is very well described by the function (2) with
c = 0.500003 and c2 = 0.478551 (red dots). Away from the
critical point we observe the rapid saturation of the entropy
to a constant value.
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Away from criticality, the spectrum of the QFT has a
single particle. Hence formula (3), with only one term
in the sum, should describe the large-mr behavior in the
limit h → 1+. In our numerics, we take finite, increasing
values of ξ, and each time the large-L behaviour is fitted
to

S =
1

6
log ξ + c1(ξ)−

1

α(ξ)
K0(2L/ξ) (6)

(we choose ǫ = 1 and use mr = L
ξ
). We expect

c1(∞) = c1 and α(∞) = 8. FIG. 3 provides an example
of such a fit with ξ = 40, showing excellent agreement
between numerical results and the Bessel function
form of the correction to saturation. FIG. 4 shows
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FIG. 3: (color online) Correction to the saturation of the en-
tanglement entropy of the gapped Ising chain for ξ = 40. The
solid circles represent the numerical values after subtraction
of the exact saturation terms. The dashed red line repre-
sents the function 1

8
K0(2Lξ

−1). The agreement is striking

and clearly improves for increasing values of Lξ−1.

the data for c1(ξ). The points agree very well with
the exact function of ξ predicted in [16, 19], lending
support to our method. Finally, FIG. 5 illustrates the
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FIG. 4: (color online) The circles are numerical values of c1(ξ)
obtained by fitting (6). The dashed line represents exactly
twice the function in equation (13) of [19], as expected since
Peschel’s work considers a partition into two semi-infinite re-
gions. The agreement is again extremely good.

main result for the Ising chain. We show the function
α(ξ) =: αx(ξ) obtained from a fit of (6) in regions
L > xξ for x = 1.5, 2, 2.5, 3, 3.5, 4 and 4.5. In all cases,
αx(ξ) appears constant as a function of ξ, and as x
increases this constant approaches α(∞) = 8.
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FIG. 5: (color online) Numerical values of αx(ξ). Linear fit-
tings of the seven sets of data provide the asymptotic values
α1.5(∞) = 7.85581, α2(∞) = 7.9186, α2.5(∞) = 7.95252,
α3(∞) = 7.97121, α3.5(∞) = 7.9818, α4(∞) = 7.98783 and
α4.5(∞) = 7.99146. Extrapolating in x gives the prediction
limx→∞ αx(∞) = 7.99281.

XXZ spin 1/2 model in the gapped regime. Let
us now consider the Hamiltonian (with J > 0)

H = J

N
∑

i=1

(

σx
i σ

x
i+1 + σy

i σ
y
i+1 +∆σz

i σ
z
i+1

)

, (7)

with periodic boundary conditions. This is the anti-
ferromagnetic spin- 12 XXZ chain (anisotropic Heisenberg
model). This model displays a rich variety of features,
depending on the value of the anisotropy parameter ∆.
In the thermodynamic limit N → ∞ the model has a
critical line on ∆ ∈ [−1, 1]. For ∆ ∈ (−1, 1], includ-
ing the Heisenberg model at ∆ = 1, the thermodynamic
limit is well described by a CFT (a free massless bo-
son) with c = 1. The other critical point ∆ = −1 is
not described by CFT but rather corresponds to a crit-
ical theory with an infinitely degenerate ground state;
the entanglement of such states has been studied in [20].
For ∆ > 1 the model is gapped, hence the scaling limit
should be described by a massive QFT. The QFT is the
SU(2)-Thirring model (the sine-Gordon model at a spe-
cial value of its coupling constant – different values of the
coupling are recovered by approaching the critical line in
other ways, see e.g. [21, 22]). This model has a spectrum
of two asymptotic particles of equal mass.
In the XXZ model the exact correlation length is

given by ξ(∆)−1 = γ
2 +

∑∞

n=1
(−1)n

n
tanh(nγ), where

γ = cosh−1(∆) [18].
Numerical simulations on the XXZ chain were obtained

by employing the density matrix renormalization group
(DMRG) approach [24]. In contrast to the Ising example,
a new set of technical challenges arises. Whereas in the
Ising model we could use formulae for the entropy where
the length of the chain was infinity from the outset, in
the XXZ case we have to deal with finite chains. This
means that if we want to get meaningful results in the
scaling limit we need to ensure that N ≫ L and, at the
same time, if we want to test the behaviour (3) we have
to consider L ≫ ξ whilst ξ ≫ ǫ is sufficiently large so as
to be close to the critical point ∆ = 1.
We have found that for a given ∆ an optimal choice is
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FIG. 6: (color online) The function c1(ξ) near the critical
point. The points represent the numerical results; the dotted
line, the exact function as predicted in [22, 23]. Denoting by

Ũ(ξ) the function (14) of [22] minus the leading logarithmic
term 1

6
log ξ, the dotted line above is the function c1(ξ) =

2Ũ(ξ) + log 2. The factor 2 is due to the presence of two
boundary points. The term log 2 is related to the degeneracy:
our zero-momentum ground state is composed in equal parts
of two Néel-like orthogonal states of the same entropy. This
function has the property c1(∞) = 2 log 2/3.

achieved by setting N = 5ξ. Longer chains are too hard
to simulate whilst for shorter chains boundary effects
make it impossible to obtain meaningful results. We con-
sidered the cases ξ = 12, 14, 16, 18, 20 and 22, and used
again the form (6). We fitted over the range ξ < L < 2ξ.

A further challenge is posed by the fact that we have
to consider periodic boundary conditions to recover the
behaviour (6). This makes the convergence of our DMRG
algorithm much slower, forcing us to consider up to 1000
states to observe good convergence.

In order to guarantee the correct identification of the
ground state we have employed two control parameters:
the local magnetization 〈σz

i 〉 and the truncation error.
We used the condition 〈σz

i 〉 = 0 as guiding principle for
selecting the ground state. Imposing this condition is
quite challenging for periodic chains. In our work we
have been able to guarantee 〈σz

i 〉 < 10−2.

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ
æ
æ
æ
æ æ

æ æ

1.0 1.2 1.4 1.6 1.8 2.0
0.000

0.005

0.010

0.015

0.020

0.025

LΞ-1

-
SH

L
®
¥
L+

c 1
HΞ
L+

1 3
lo

gΞ

FIG. 7: (color online) Correction to the saturation of the en-
tanglement entropy of the gapped XXZ chain for ξ = 20. The
solid circles represent the numerical values after subtraction
of the exact saturation terms. The dashed red line represents
the function 1

4
K0(2Lξ

−1). The agreement is good and clearly

improves for increasing values of Lξ−1.

For L ≫ ξ we observe small oscillations in the en-
tropy between blocks with odd and even numbers of
sites. These oscillations are slightly visible in the co-
efficient c1(ξ), FIG. 6, and the Bessel function, FIG. 7,
and clearly visible in the function α(ξ), FIG. 8. Oscilla-
tions in the entropy have been seen for finite chains (see
e.g. [26]) where they arise as a consequence of finite size
effects, albeit not for the von Neumann entropy. Clearly,
in our case these oscillations must have a different origin.
We believe that they are a consequence of the degener-
acy of the ground state: for ∆ > 1 the ground state is
two-fold degenerate [18, 25] in the thermodynamic limit
(diagonalizing the momentum, two eigenvalues 0 and π
occur). Since we are always dealing with finite chains
we should never see this degeneracy in our numerical
simulations (the state with momentum eigenvalue 0 is
the “true” ground state). However for long chains, the
gap between the two states narrows and the precision of
our algorithm fails to distinguish the energies of those
states. The oscillations should then be due to an al-
ternate targeting of two linear combinations of the true
(0-momentum) ground state and the π-momentum state
(with small amplitude), depending on the parity of L.
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FIG. 8: (color online) Values of α(ξ) approaching the critical
point. The linear expression α(ξ) = −4.3261ξ−1 + 4.0039
reasonably fits the points and its extrapolation gives α(∞) =
4.0039, which is quite close to the QFT prediction αQFT = 4.

FIG. 8 shows that the coefficient α(ξ) converges with
great precision to its theoretical value 4. Contrary to
the Ising case, α(ξ) has a dependence on the correlation
length. FIG. 7 shows a good fit to a Bessel function.
Interestingly, this fit continues to be good away from ∆ =
1 as long as the coefficient α(ξ) is changed as dictated by
FIG. 8. This suggests that the function (6) may provide
to a good accuracy a universal description of the entropy
of gapped spin chains.

Finally, at the critical point, we have found that the
entropy is very well fitted by the function (2) with c =
1.00024 and c2 = 0.733758. We can therefore make a
prediction for the universal QFT constant U = c1(∞) −
c2 = −0.27166 in the SU(2)-Thirring model.

Conclusions. By studying gapped spin chains we
have provided strong numerical evidence for the be-
haviour (3) suggested in [1, 2] for two-dimensional QFT.
Besides confirming QFT predictions, our results show
that computing the entanglement entropy may be a good
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numerical way to determine the number of lightest parti-
cles in the universal spectrum, especially in combination
with the knowledge that α(∞) in (6) must be a fraction
of 8. Our results also suggest that some of the QFT pre-
dictions may still hold, with small changes, beyond the
scaling regime. It would be very interesting to derive this,
or the appropriate modification of (6), for spin chains
from first principles. We have made a prediction for the
universal constant U in the SU(2)-Thirring model, still
to be confirmed by means of QFT techniques. Finally, it
would be very interesting to carry out a similar analysis
for non-integrable spin chains and thus verify the main
result of [2], namely, the fact that the behaviour (3) also
holds for 1+1 dimensional non-integrable QFTs.
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