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ABSTRACT

A unifying approach for the study of solvability of 

algebraic synthesis problems defined on linear time 

invariant multivariable systems is given. The 

decentralized stabilization problem is formulated over the 

ring of proper and stable rational function and its 

solution reduces to the study of (sets of) matrix 

equations of the type AX = B. It is shown that many 

control problems can be described algebraically using 

matrices defined over special rings. The rings of 

importance are the Euclidean domains R[s] , Rpr(s) and Rp(s) 

and these are used to investigate the structural and 

invariant aspects of system stability equations. The 

solvability of AX = B also provides conditions for the 

solvability of the generalised Diophantine equation.

The Diagonal Stabilization Problem (DSP) is defined over 

the ring of proper rational functions which have no poles 

inside a prescribed region of the finite complex plane. 

Solvability is intimately related to systems which exhibit 

the property of cyclicity. Necessary and sufficient 

conditions are established for the existence of solutions 

to the DSP. A complete parameterization of stabilizing 

controllers for 2x2 case is given. Conditions of 

nonsolvability and hence nonstabilizability yield an 

explicit expression for the fixed modes of the system.

vii



The algebraic tools are given to investigate special type 

solutions such as realisable, stable and performance 

related controller designs as well as the more general 

case of multi-channel systems.
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a=b: a equals b

a V b 1: a1 does not equal b1

a G A: a is an element of the set A

a1 <g A1: a is not an element of the set A

a V A: for all elements a contained in the set A

B C A: B is contained within A

B n A: Intersection of A and B

B U A: Union of A and B

A: 

■ :

Defined by 

End of a proof

A ~ B: The matrix A is equivalent to the matrix B

cj(A) : The spectrum of the matrix A (equiv. the set 

of eigenvalues of A)

A:=B: The set A is by definition the set B

A = B: A is equivalent to B

x | y ; x divides y, or y is a multiple of x

i G r: i=l,2,...,r

diag.: diagonal

min: minimum

w.r.t .: with respect to

1.r .d.: left right divisor

g.1.r .d.:: greatest left right divisor

e . 1. d . : extended left divisor
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CHAPTER 1

INTRODUCTION

This dissertation is concerned with Linear Algebraic 

Synthesis Methods for Multivariable Systems and additional 

algebraic tools are developed on matrix divisors, 

projectors and solvability of matrix equations. The main 

problem studied is the Diagonal Stabilization Problem 

(DSP) and techniques are developed for solving the DSP as 

well as investigating the structural properties of 

solutions to the problem.

Recent work in this area is based on what is termed the 

Fractional Representation Approach to Linear Systems 

Theory [Des 1, Sae 1, Ant 1, Vid 1, Vis 1, Fra 3]. The 

impetus to study matrices having elements from special 

rings comes from the need to describe algebraically the 

familiar problems of stability, realizability and 

performance of linear systems. From a Control Theory 

viewpoint the rings of importance are R[s]-polynomials, 

Rpr(s)-proper rational functions which also have no poles 

inside a prescribed region of H of the finite complex 

place, denoted Rp(s). The detailed structure of the set 

Rp(s) have been thoroughly investigated [Var 3, Var 4, Var 

8] and the structural and invariant aspects of R (s)- 

modules and minimal bases have been defined. These notions 

generalise the structural tools and Algebraic Theory of
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Rosenbrock [Ros 1], Wolovich [Wol 2] and Forney [For 1] to 

the case of the ring Rp(s).

Algebraically, many control systems problems are reduced 

to the solution of (sets of) matrix equations and a great 

deal of effort has been and continues to be exerted in 

this area.

The present approach seeks to provide a unifying approach 

for their analysis as well as establish deeper results 

concerning the structure of rational matrices and 

solvability of matrix equations and thus control problems. 

The techniques developed provide the means to tackle the 

main problem, the Diagonal Stabilization Problem (DSP), 

represented algebraically as (sets of) matrix Diophantine 

equations over the ring R^s).

Decentralized control results from the need to control 

individual parts of a system directly without interaction 

between them and thereby reducing the amount of 

centralized data acquisition and information transfers 

needed to effectively control large industrial complex 

plants. The essential features that distinguish between 

centralized and decentralized systems is the decoupling of 

subsystems and plants from each other thus eliminating 

interaction but retaining the ability to effect direct 

control.

A special case of Decentralized Stabilization is the

2



problem of stabilization by a diagonally structured 

controller such that upon interconnection of unity 

feedback loop the system becomes internally stabilized. 

Conditions for solvability and the characterisation of 

solutions are given. It is demonstrated that systems which 

exhibit the property of cyclicity satisfy criteria for 

stabilization by dynamic controllers under unity feedback. 

The notion of cyclicity is obtained by reducing the system 

open loop transfer function matrix to its Hermite forms 

over the ring of proper and H-stable rational functions

V s) •

For the simple two channel case where stabilization by two 

single input-single output (SISO) controllers can be 

achieved then a complete parameterisation is generated by 

a matrix 'T' defined on the plant. The 'T' matrix governs 

the interaction between each of the two stabilizing 

channels of the two-input-two output plant. Pairs of 

controllers which stabilize the closed loop system are 

defined from knowledge of the system T-matrix. These 

controller pairs which satisfy certain conditions are 

called mode-T-mutually stabilizing controllers and provide 

the main results. These results have been extended to 

three channel systems and the application to general multi 

channel system is discussed.

In chapter 2 some basic definitions and background results 

from Linear Algebra are given. Rings, Modules and the

3



notion of Principal Ideal Domains (PID) are introduced. 

The rings R[s]-polynomials, Rpr(proper rational functions) 

and Rp(s) (proper and stable rational functions) are all 

principal ideal domains (PIDs). The Algebraic Theory of 

Linear time-invariant systems is based on the study of 

matrices over PIDs. One important aspect of that is the 

notion of the module. A module is the generalisation of 

the vector space where elements are defined from a 

commutative ring rather than from a field (as in the case 

of the vector space). A module provides a general setting 

for the purely algebraic aspects of linear control system 

problems. The above concepts and notions are used to 

develop synthesis techniques for solution of a number of 

important control problems.

In chapter 3 a summary of algebraic synthesis problem is 

given. These problems when defined over the ring R,(s) lead 

to an elegant representation from which a number of 

synthesis techniques have developed. The generalisation 

of the Youla Bongiorno and Jabr (YBJ) stabilization theory 

[You 1, You 2, Kuc 1] in which a complete parameterisation 

of the set of stabilizing controllers over R,(s) is defined 

established the fractional representation approach as a 

powerful algebraic synthesis technique [Des 1, Sae 1, Ant 

1, Vid 1, Vis 1, Fra 3, Bra 1, Cal 2, Kuc 1]. The central 

issue of the stabilization problem is the solution of a 

(set of) matrix Diophantine equation formulated as a 

Stable Exact Model Matching Problem (SEMMP) over the ring

4



R^(s). This provides the motivation to study further the 

structural aspects of matrices over Principal Ideal 

Domains.

The main aim of chapter 4 is to investigate further the 

structural and invariant aspects of matrices which are 

solutions to equations of the type AX=B and AX + BY = C 

where the given matrices A,B,C are in general rational and 

the solution matrices X,Y are to be determined from a PID 

K such that R(s) may be expressed as the field of 

fractions of K. These equations are central to the 

solution of the more generalised Diophantine equation 

AjXx + A2X2 + ... + ApXp = B where B is generally a non 

square matrix. Thus solvability of AX=B also provides 

conditions for solvability of the more general set of 

equations. The results are given for a general rational 

matrix A€ERpxm(s) using Smith-McMillan, Hermite-McMillan 

forms defined over a PID K. Although the results are 

valid for PIDs in general we are concerned with the 

Euclidean rings R[s], Rpr(s) and Rp(s) . Thus instead of PIDs 

we may say that K is a Euclidean ring (the difference is 

that in Euclidean rings, the unimodular matrices are 

expressed as products of elementary transformations).

In chapter 5 some general results are established as well 

as new solvability criteria presented for solution of 

matrix equations over PIDs. The algebraic tools developed 

in the previous chapters are used to develop a direct

5



approach for solvability of equations which is algorithmic 

in nature.

In chapter 6 the decentralized stabilization problem is 

formulated over the PID ring Rp(s). A special case of 

decentralized control is the diagonal stabilization 

problem (DSP). The concept of fixed modes is introduced 

and it is shown that diagonal stabilization is possible if 

and only if the system is free from unstable hidden modes 

thus highlighting the important role they play and the 

need to characterise them.

Necessary and sufficient conditions are established for 

the solution of the DSP using dynamic compensation. The 

notion of cyclicity is introduced and the existence as 

well as the characterisation of solutions of DSP is shown 

to be related to the property of system cyclicity.

In chapter 7 the case of systems which exhibit strong

cyclicity is examined. In general for an mxm system,

strong cyclicity is a necessary condition for

stabilization by a decentralized controller. In the

restricted case m=2, two input-■two output, strong

cyclicity is demonstrated to be both necessary and

sufficient for solution of DSP. This result demonstrates 

that strong cyclicity is equivalent to n-stabilizability 

by diagonal dynamic compensation. A complete 

parameterisation of diagonal stabilizing controllers is 

possible for the case m=2 using mode-T-mutually

6



stabilizing pairs. The properness of solutions, thus 

realizability of controllers, is defined also and the 

existence of constant solutions, hence minimal design, is 

discussed. Conditions for non-solvability and hence non- 

stabilizability yield an explicit expression for the 

system fixed modes. Finally, a discussion on the integrity 

of system operation is given. This is an important quality 

of the system since the ability of a system to remain 

stable and controllable on failure of a control channel is 

an essential part of the design.

The results obtained for the simple case m=2 are extended 

to the more general case m=3. These results provide the 

means to generalise either to diagonal control, of a 

general square system or to decentralized control of a two 

channel system.

7



CHAPTER 2

MATHEMATICAL BACKGROUND



2.1 Introduction

A great deal of what Systems Engineers do is based on the 

concepts of modern algebra and recent years have witnessed 

a growing awareness of the presence of algebra in systems 

theory. This recognition has led to further understanding 

of problems already solved and to unforeseen solutions of 

problems unsolved by other less formal methods.

The objective of this chapter is to introduce the concepts 

of Rings, Modules and Principal Ideal Domains (PIDs). 

Recent results in the area of linear multivariable control 

obtained using the so called factorization approach have 

highlighted the important role of PIDs [Des 1, Ham 2, Kuc 

1, Var 7, Var 8, Sae 2, Vid 1, Var 3]. In particular, the 

PID Rp(s) (proper and stable rational functions which have 

no poles inside a prescribed region of the finite complex 

plane and at the point s: equal infinity) gives rise to 

elegant methods for to the resolution of several important 

control algebraic synthesis problems [Cal 1, Des 2, Fra 3, 

Kuc 1, Vid 1, Var 7, Var 8].

The Hermite and Smith-McMillan forms of a rational matrix 

over a general PID are defined and the notion of Matrix 

Fraction Description (MFD) introduced. The detailed 

structure of the set of proper and stable rational 

functions Rp(s) and the properties of matrices over Rp(s) 

are given. Finally, a number of important definitions and 

results are given on the algebraic structure of Rp(s)-

8



vectors. These are known to be that of Noetherian Rp(s)- 

modules [God 1] and have been classified according to 

properties of their McMillan degree. [Var 8, Var 4].

2.2 An Introduction to R̂  (s)-MFDs and Matrices

The detailed structure of the set of proper and stable 

rational functions Rp(s) have been studied by Vardulakis 

and Karcanias [Var 3, Var 7] and a number of definitions 

and important properties are given in this section.

2.2.1 Proper and Stable Rational Functions 

Let R be the field of reals, R[s] the ring of polynomials 

with coefficients in R and R(s) the field of rational 

functions. Then every rational function t(s)=n(s)/d(s), 

n(s), d(s)GR[s], d(s)^0 can be written as

(3co _

t(s) = (J) n(s)/d(s) (2.1)

where : =5^ (t (s) ) a degree function and degree n(s) = 

degree d(s) . If > 0, we say that t(s) has a zero at 

s = oo of order q^ conversely if q^ < 0, we say that t(s) 

has a pole at s = » of order |q^|.

If t(s) E R(s) has q^ ^ 0 then t(s) is called a proper 

rational function and if the inequality is strict then 

t(s) is called strictly proper. It can easily be verified 

[eg. see Var 7] that the set of proper rational functions 

which we denote by Rpr(s) is a Euclidean ring with degree

9



function given by ¿^(tis)). Thus Rpr(s) is a principal 

ideal ring and both R[s] and Rpr(s) are subrings of R(s) . 

The elements of R[s] can be regarded as rational functions 

with no poles in C (the finite complex plane) while the 

elements of Rpr(s) can be regarded as rational functions 

with no poles at s = °°.

The units in Rpr(s) are proper rational functions u(s) for 

which 50C(u(s)) = 0 (i.e. having no zeros at s = ®) and are 

called biproper rational functions [Var 7].

Example (2.1) R[s]: The units of R[s] are constants i.e. 

the polynomials t(s) = c, c G R - {0}. Rpr(s): the units 

of Rpr(s) are rational functions t(s) = n(s)/d(s) where 

deg.n(s) = deg.d(s).

, ■ , s~f~ 1 .... s~ 1 .....
^  s (s+2) ' s+2 ' C111) 4

1 4  1

Not a unit Unit of Rpr(s) Unit of Rpr(s)
Unit of R[s]

The above can be generalised by defining a region Q of the 

finite complex plane C symmetrically located with respect 

to the real axis R and which excludes at least one point 

« on the real axis with Hc the complement of n with respect 

to C (i.e. C = H U Qc) . Let t(s) G R(s) and factorize it as

nU (s) n(s)
t(s) = tn (s) t(s) = dTYs)" * (2-2)

' d(s)

where nn(s), dn(s) are coprime polynomials with all their

10



zeros in 0 and n(s) , d(s) are coprime polynomials with all 

their zeros outside n . We define the map [Var 7] 6n: R(s) 

-*• Z U {«} via:

<5n (t(s)) =

- deg.d(s) - deg.n(s) G Z, t(s) ^ 0

>, t (s) = 0

(2.3)

or equivalently,

5n(t(s) ) = <3̂  + deg.nQ (s) - deg.dQ (s) (2.4)

The subset of R(s) consisting of all rational functions 

which are proper (ie no poles at s = °°) and have also no 

poles in the region Q (i.e. n-stable) are called proper 

and n-stable rational functions denoted Rp(s) i.e. let

Rp(s) = (t(s) G R(s) : t(s) has no poles in p: = Q U (°°) }

The set Rp(s) endowed with the operations of addition and 

multiplication forms a commutative ring with unity element 

(the real number 1) and no zero divisors and thus it is an 

integral domain (see section 2.2).

If t(s) G Rp(s) then t(s) = nn(s) n(s)/d(s) and since 

deg. (nn (s).n(s)) ^ deg.d(s) it follows that <5n (t(s)): = 

deg.d(s) - deg.n(s) ^ 0; thus <5n ( . ) for the non zero 

elements of Rp(s) may serve as a degree function. The 

degree function denotes the number of zeros of the 

function in p: = 0 U {°°} .

The algebraic structure of the set Rp(s) was initially

11



examined by Morse [Mor 1] and subsequently Hung and 

Anderson [Hun 1] established that with <5n(.) as degree 

function the set Rp(s) is a Euclidean ring and therefore a 

principal ideal domain (PID). In the following the 

function <5n when restricted to the subdomain R^s) C R(s) 

will be denoted by 8 where 6p: = Rp(s) -+ Z U {°°} . The units 

of Rp(s) are biproper rational functions which have no 

poles and no zeros in 5: = fi U {°°} ; equivalently t(s) e 

R^s) is a unit if and only if <5p(t(s)) = 0.

Example (2.3) : Rp(s): the units of R^s) are biproper 

rational functions t(s)= n(s)/d(s) where n(s), d(s) have 

no zeros in n i.e. biproper rational functions which are 

H-stable and fl-minimum phase.

A. fi is the undesired part of 
the complex plane. In the 
above case fi is the right- 
half of the complex plane.

In the above case fi is 
the right half of the 
complex plane and a 
selected part of the 
left half plane chosen 
such that a desired 
maximum damping factor 
is not exceeded.

12



s—1
ti(s) = : a unit of Rpr(s)/ not a unit of (s)

s+1t_ (s) = — —  : a unit of R (s) , a unit of R (s) . 2 s+2 pr p

Equivalently,

V 8> = Si
n_(s) " . .ftv ' n (s) s-1

¿(s)
s+2 with

5 (t (s)) = deg d - deg.n = 1 - 0 = 1, p 0, not a unit of
r  —

R / S )

. , . s+1 nn ̂  n(s) 1 s+1
t2 (s) = i+2 = dTTsT = ~ ---s+ 2 < V S' d(s) 1 s+2 with

5^(t2 (s)) = deg d - deg.n = 1 - 1 = 0 ,  a unit of

Rp(s)•

Remark (2.1) ; If ft coincides with the closed right half 

complex plane C+: = [s G C, Re(s) £ 0] then p = C+ U {<»} =: 

C+ and R^+(s) is the Euclidean ring of "proper and stable" 

rational functions. The units in R^+ are biproper stable 

and minimum phase rational functions.

■

From (2.4) it follows that if t(s) G Rp(s) then 

q: = 5(t(s)) = q^ + deg.nn(s) and q^ ^ 0 gives the order 

of the zero at s = °° of t(s) G R^s) and t(s) gives the 

number of finite zeros of t(s) inside n. Thus a

13



convenient factorization of rational functions t(s) G R(s) 

is written as

t(s) = nn <s> 

dn<s>

1 n is)  (s+a)4

(s+a)4 d(s)
(2.5)

where -« G R is outside Q and otherwise arbitrary, 

q:=<5n (t(s)) = deg.d(s) - deg.n(s) and n (s)  ̂s+«) q/d (s) 

is a unit in Rp(s). The term (nn (s)/dn (s)) (l/s+«)q) gives 

the pole zero structure of t(s) in p: = Q U {°°}. Thus the 

zeros of nn (s) give the finite zeros of t(s) in p and the 

zeros of d (s) give the finite poles of t(s) in p. 

Furthermore, if g^: = q + deg.dn(s) - deg.nn (s) > 0 then 

t(s) has a zero at s = » of order while if q^ < 0 then

t(s) has a pole at s = °° of order | q^ | [Var 7], From the 

above we see that every t(s) G Rp (s) can be written as

V s)
t(s) = ----- - . u(s) (2.6)

(s+a)4

where nn (s) has no zeros outside Q, -« G R is outside 0, 

q: = 5p(t(s)) and u(s) is a unit in R (s) . n is the right 

half part of the finite complex plane symmetrically 

located with respect to the real axis.

Example (2.3): Let t(s) — f R(s) and factorizes (s-3)(s+4) v '

it as V s>
dn (s)

1 n(s) (s+a)

(s+a)4 d(s)

s — 1 
s (s-3)

1

(S+a)°

(s+2)(s+a)° 
(s+4)

14



where q = 5p(t(s)) = deg d = deg n = 0, gives

t(s) s-1 s+2 _ s-1 . .
s (s-3) s+4 s(s-3) U(S)

where ^\s-3) ves the P°le-zero structure of t(s) in

p = H U  {°°} . With q^ = q + deg dn - deg nn = 1, t(s) has 

a zéro at s = » of order 1.

The existence of euclidean division in the ring Rp(s) has 

been established [Hun 1]. The strong links between Rp(s) 

and R[W] where W = l/(s+«) allow the reduction of a

euclidean division in Rp(s) to a standard division of 

polynomials in R[W]. This approach is more suitable for 

computational purposes. With Sp(.) as degree function the 

following result [Var 7] provides a proof that Rp(s) is a 

Euclidean ring and hence a PID.

Theorem C2.1) [Var 7]: Let t1(s), t2(s) G Rp(s), t2(s) ^ 0 

and let w = l/(s+«), -« G R, -« S fi. If t;(s) = tioc(w)

uioc(s), i=l,2 are (mod «) factorizations of t1(s), t2(s)

where tloc(w), t2oc(w) G R[w] , uloc(s), u2oc(s) are units in 

Rp(s) and 5p(t;(s)) = deg.tloc(w) then:

(1) There exist polynomials qa (w) , r^w) e R[w] such that 

t1(X(w) = ^(wJq^Cw) + rK (w) (2.7)

and either rK (w) = 0 or else deg rx < deg.t2oc(w)

15



(2) The rational functions q^s), rK (s) G Rp(s) defined by

q (s) : = u. (s) u_ (s) 1 q la' ' 2a ^ (2 .8)

(2.9)

satisfy the euclidean division conditions for t^s), t2(s) 

i. e.

The above result defines the mod « euclidean division of 

two elements of Rp(s) and indeed provides a proof that 

R (s) is a euclidean ring. For a given pair tloc(w), 

t2oc(w)GR[w] the pair q(w) , r(w)GR[w] is uniquely defined; 

thus q^, rK (s) are also uniquely defined for a mod « 

euclidean division. However different choices of « yield 

different pairs q^s), r <x(s ) and thus the euclidean 

division in Rp(s) does not possess the uniqueness property 

for the quotient and remainder. The family of (qK (s), 

ra (s)) obtained for various values « is not characterized 

by a uniquely defined "degree" remainder. The non 

uniqueness of <5p(r2(s)) has motivated the study of the pair 

(q(s) , r(s)) with 6p(r) minimum [Vis 1, Var 7].

M s )  = Msjq^fs) + ra (s) (2 .10)

and either r^s) = 0 or else 5 (r^fs)) < <5p(t2(s))

Proof see [Var 7]

■
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2.2.2 Proper and Stable Rational Matrices

The set of pxxn matrices with elements in R(s) is denoted 

by Rpxm(s) and by Rpxm[s] , Rprpxm(s) the subsets of Rpxm(s) 

consisting of pxm matrices with elements respectively in 

R[s], Rpr(s) . A matrix T £ Rprpxp(s) is called Rpr(s)- 

unimodular (or biproper) if there exists a matrix T £ 

Rprpxp (s) such that TT = Ip

Example (2.4) Let T be the 2x2 proper rational matrix

then

T =

s-2
s+1

s+1
s-2

R 2x 2 ( s ) pr ' '

s-2
s+1

s+1
s-2

_ (̂ — 2.) 
 ̂s+1

(S+1)
ls-2;

= I,

where T =

ls+l;

(S+1) 
' s-2 '

R2X2(s) pr v '

TT = I_, T is R (s)-unimodular 2' prv ;

■
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Denote now by Rppxm(s) the set of all pxm matrices with 

elements in Rp(s) . These matrices are called proper and "in-

stable" rational matrices (in the sense that they have no 

poles at infinity (proper) and also no poles inside f2) 

[Var 7], If 11 = C+, then Rppxm(s) represents the set of 

proper and "stable” rational matrices. A matrix T G Rppxp(s) 

is called Rp (s)-unimodular (or biproper) if there exists 

a matrix T G Rppxp(s) such that TT = Ip. A direct 

implication of a matrix T G Rppxp and unimodular is it has 

also no zeros at s = °° and no finite zeros in Cl (i.e. T G 

Rppxp(s), unimodular has no poles or zeros in p: = 0 U {«>}. 

A system theoretic interpretation of an Rp (s)-unimodular 

matrix has been given by Vardulakis and Karcanias [Var 7]. 

In the particular case when fl = C+, then an Rp(s) 

unimodular matrix T G Rppxp(s) represents a square, 

biproper, stable and minimum phase transfer function 

matrix. Elementary row and column operations on a T G 

Rpxm(s) are defined in the usual way and can be 

accomplished by multiplying the given T matrix on the left 

(right) by "elementary" Rp (s)-unimodular matrices obtained 

by performing elementary row (column) operations on the 

identity matrix Ip(m) • It can also be shown that every 

Rp (s)-unimodular matrix can be represented as a product of 

a finite number of elementary Rp (s)-unimodular matrices 

[Gan 1].

Definition (2.1) [Var 7]: Let T: G Rpxm(s), T2 G Rpxm(s). 

Then Tx and T2 are called "equivalent in a" if there exist

18



R (s) -unimodular matrices T, G R pxp(s), T G RP l p » • * r  p p
m x m (s) such

that :

T£T,Tr = T2 (2 .1 1)

called "column (row) equivalent in g".

■

Equation (2.11) defines an equivalence relation on Rpxm(s) 

which is denoted Ep and if Tlr T2 are equivalent in p we 

write (TlrT2) G E'’. The Ep equivalence class of a fixed T G 

Rpxm(s) is denoted by [T]Ep. Let T G Rpxm(s) with rank T=r 

and consider the quotient of Rpxm(s) by Ep, i.e. the set 

(denoted by) Rpxm(s)/E/’ of Ep-equivalence classes [T]E where 

T runs through the elements of R(s). These equivalence 

classes are characterised by determining complete sets of 

invariants and canonical forms. The Smith-McMillan form 

of a rational matrix inside p: = n U {«>} (denoted by Sp) has 

been given by Karcanias and Vardulakis [Var 2] and it is 

shown to be a canonical form for Ep on R(s) with a complete 

set of invariants for Ep on R(s) defined by the diagonal 

elements of Ŝ . The Smith-McMillan form of a rational 

matrix T over a general principal ideal domain K is given 

in section (2.4). If K is now specialized to the case K = 

Rp(s) then ST  ̂ is defined by (2.11)

where e;,tpi G Rp(s) form a complete set of invariants for 

Ep on R(s) .

S /  = [diag {e±4>{1, e2̂ 2_1f ..., e^/1} 0.p - r , m - r (2.12)
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2.2.3 Coprimeness in o of Proper and n-Stable Rational

Matrices

The notions of right or left coprimeness of a rational 

matrix in the set p: = f2 U (°°) follows from the definition 

of zeros of a rational matrix T G Rpxm(s) inside p via its 

Smith-McMillan form STP [Var 7] .

o
Definition (2.2): Given two rational matrices A G R (s), 

B G Rtxm(s) with p: = £+t ^ m and rank R(s) [A B]fc = m, then 

we may say that (the rows of) A and B are right coprime in 

o = H U (°°) if T: = [A B]1 G R ^ ^ t s )  has no zeros in p.

■

If we restrict ourselves to matrices that are proper and 

D-stable with T: = [A B]fc G R ^ ^ s )  and A, B right coprime 

in p then it has been shown [Var 7] there exists on R (s)- 

unimodular matrix Tx G Rppxp(s) such that

TiT = [Im = S/ (2.13)

and T G R̂ pxm(s) may have zeros only in nc.

Definition (2.3): A proper and Q-stable rational matrix 

T G R(,pxm(s) (p ^ m) satisfying condition (2.13) is defined 

as a R; is)-left unimodular rational matrix. Rp(s)-right 

unimodular rational matrices are defined in an analogous 

manner.

20



The notions of right (common) divisors in p and of 

greatest (common) right divisors in p of (the rows of two 

or more) rational matrices having the same number of 

columns have been defined by Vardulakis and Karcanias [Var 

8] using the Smith-McMillan form of a rational matrix 

inside the region p.

Proposition (2.1) [Var 8]: Any rational matrix T G Rpxm(s) 

with p ^ m and rankR^  T = m can be factorised (in a non 

unique way as

T = T1Tgr (2.14)

where Tx G Rppxm (s) is Rp(s)-left unimodular and Tgr G 

Rirucm(s) pole-zero structure in p = D U {°°} the same

with that of T.

■

Definition (2.4) [Var 8]: Let the proper and D-stable 

rational matrices T G R/Xm(s), T: G Rppxm(s), Tr G Rpmxm(s) 

be related via

T = T2Tr (2.15)

then Tr is a right divisor in o of T.

Definition (2.5) [Var 8]: Let T G Rppxm(s) with p h m and 

rankR(3){T) = m. Then any rational matrix Tgr G R^s) that 

satisfies (2.14) for some R^sJ-left unimodular rational 

matrix Tx G R/,pxm(s) is called a greatest (common) right 

divisor in o of (the rows of) T. ■
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Notice that if Tgr is a greatest (common) right divisor of 

T, then it follows from Proposition (2.1) that Tgr contains 

all the zeros of T in p (i.e. the finite ones in Cl and the 

infinite ones, if any). If Tgr happens to be Rp(s)- 

unimodular then T has also no zeros in p and its rows are 

said to be right coprime in o. In such a case T might have 

finite zeros outside Cl.

The Matrix Fraction Description (MFD) of a rational matrix 

over a general Principal Ideal Domain (PID) K is given by 

Definition (2.2) . If K is specialized to the case K = Rp(s) 

and let T G Rpxm(s) then T can always be represented in a 

non unique way as

T = B ^ ' 1 = (2.15)

where b2 G R/xm(s) , A2 G Rpmxm ( s ) are right coprirne in p

and Bi G R/xm(s) , A, G Rppxp ( s ) are left coprirne in p.

A systematic procedure to determine the family of coprime 

fractional representations - based on the Smith-McMillan 

form of T in p - is given by Vardulakis and Karcanias [Var 

7]. The pairs (B,,A2) , (B1,A1,) satisfying (2.15) are 

respectively right, left coprime in o Rp (s)-Matrix Fraction 

Descriptions (Rp(s)-MFD). Notice that a rational matrix T 

is proper and H-stable i.e. T G R^5™ ^ )  if and only if the 

denominator matrix Alr (A2) is Rp (s)-unimodular i.e no poles 

or zeros in p = Cl U {°°}.
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The degree function 8 introduced in section 2.5.1. for 

proper and fl-stable rational functions has been 

generalized for the matrix case [Var 8] as follows. Let T 

G Rpxm(s) , rankR(a)T = r ^ min(p,m) . Define the map <5p: 

Rppxm (s) -♦ Z U {°°} via:

V T>

r min

- <5̂ (.) among the 5^(.)'s of

- all r-th order non-zero if r > 
L minors of T.

0

L + oo if r = 0

Then,

(1) If p k m then <5p(T) k 0. Moreover if p = m = rankR^T 

then <5p(T) = 0 if and only if T is Rp (s)-unimodular.

(2) Let T: G Rppxm(s) , p k m ,  rank^^ T1 = m and 

T2 G Rpmxm(s) , rank R(s) T2 = m and let T = TjT2, then 

5p(T) = 5 (Ti) + 5p(T2) .

2.3 Modules over the Ring of Proper and Stable Rational 

Functions

The algebraic structure of the set of all proper and 

stable rational vectors Rppxl(s) which are contained within 

a given rational vector space t? is known to be that of a 

Noetherian Rp(s)-module M*. The structure of the Rp(s)- 

bases of the maximal Rp(s)-module M* have been classified 

according to properties of their McMillan degree by 

Vardulakis and Karcanias [Var 8]. It is useful to conclude 

this section with a number of definitions and results from
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the theory of proper bases of a rational vector space.

Definition (2.6): Let t £ Rppxl(s) be the set of all proper 

and n-stable rational vectors which are contained in the 

rational vector space t? spanned by the columns tj £ 

Rppxl(s) , j £ m of a general rational matrix T £ Rpxm(s) . If 

T is a basis for t?, p ^ m, rank T = m, and is expressed as 

a (right coprime in p) Rp(s) - MFD, T = BA'1, where A £ 

R̂ tnxin(s) r b £ Rppxm(s) then clearly B is a proper and te-

stable basis of d.

Let now Tx £ Rppxm(s) be a basis for t? and consider the set 

of all linear combinations of the columns of t■ £ Rppxl(s), 

j £ m of Tx with coefficients in the ring Rp(s) . This set 

is a free and finitely generated Rp f s)-module Mx

■

Notice from the above definition that any other basis for 

Mx can be obtained from Tx by post-multiplying Tx by an 

Rp (s) -unimodular matrix i.e. U £ Rpmxm(s) is an Rp(s)~ 

unimodular and define

Tx = TjU (2.16)

then T £ Rppxm(s) is also a basis for Mx. In such a case it 

can be shown [e.g. see Var 8] that the degree function 

<5p(Tx) and all bases of Mx have the same Sp (.) and thus 

<5p (. ) of any basis Tx is an invariant of the Rp(s) -module 

Mx generated by its columns. This is denoted 5p(Mx) and is 

called the stathm in o of Mx.
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Assume now that T1 G Rfipxm (s) is not R^sJ-left unimodular 

and let Tlg G Rpmxm(s) be a non-Rp (s) -unimodular right 

divisor in p of Tx (not necessarily a g.(c.)r.d. in p of 

Tx) , i.e. assume that

Ti = T2Tlg (2.17)

for some (not necessarily Rp(s)-left unimodular) T2 G 

Rppxm(s) with <5p(Tlg) ^ 8p (T2) so that Tlg contains some of 

the zeros of Tx in p. Now consider the R^(s)-module M2 which 

is generated by (the columns of) T2, then M: is a proper

M2 i.e.

Mi C M2 (2.18)

In general if Tlg, T2g , ..., Tig G Rppxm(s) are (non-R,(s)- 

unimodular) right divisors in p of T: such that

0 < 8 p (Tlg) < 8 p (T2g) < ... < 8 (Tig) (2.19)

and

Ti = Ti+1 Tig (2.20)

for some not necessarily R^,(s)-left unimodular

rational matrix Ti+1 G R/)pxm(s), then the (s) -modules 

Mj+1, i=l, 2,... generated by (the columns of) Ti+1, i=l,2,... 

form an ascending sequence of sub modules (see section 2.3 

or [Var 8]).

Mx C M2 C ... C Mj+lf i=l, 2, . . . (2.21)
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and

Sp (Mi) = Sp( M2) >... > «p(Mi+1)f i=l, 2 , . . . (2.22)

If now for some i=l,2,... Tlg =: Tgr is a greatest right 

divisor of Tj so that

T, = T Tgr

for some Rp(s)-left unimodular matrix T G Rppxm(s) , then the 

maximal Rp(s)-module generated by (the columns of) T, and 

which is denoted M*, satisfies an ascending chain 

condition on submodules [Bir 1] i.e.

Mx C M2 C ... C Mi+1 = M* (2.23)

for some i=l,2... and coincides with the set of all proper 

and Q-stable rational vectors which are contained in the 

rational vector space t?.

Remark (2.2) : The extraction of right (left) divisors

from an R^,(s)-basis matrix Tx sets up an ascending chain of 

Rp (s)-modules which is terminated when the greatest right 

(left) divisor of T: has been extracted. This property is 

known as the module inclusion property.
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Example (2.5): Let n = C+ and let the rational matrix T

where

Ls+3) (s-2)

(s+1)2 (s+2)

s-2
(s+1)(s+2)

(s+1)2

s3+s2-3s+l 

(s+2)2 (s+1)

0 G R3X2 (s)

s-1

(s+2)2

be a basis for the rational vector space t?32 with 

rankj^CT} = 2. The rational matrix T may be expressed 

as a right coprime matrix fraction in p, Rp(s) - MFD, 

T = BA'1. Then,

s-2
(s+1)(s+2)

s-2

(s+1)2

1
s+1 1

T 0 s-1

(s+1)2

s-1 ____ s-1

(s+2)2 (s+1) (s+2)

1 0

A A. -1

A B

where B G Rp3x2(s), rankR(a){B} = 2; A G Rp2x2(s), rankR(s){A) = 

2 .

Clearly B is a proper and n-stable basis of i932. The 

columns of the basis matrix B generates an Rp(s)-module M 

and any other basis B can be obtained using the R (s)- 

unimodular transformation U G Rp2x2(s) where B = BU. 

Consider the simple Rp (s)-unimodular transformation

27



S + 2
S+l

0

U =

0 s+l
s+2

«2x2 . ,
%  (s)

s-2

(s+l)2

____s-2
(s+l)(s+2)

Then B = BU 0 s-1
(s+l)(s+2) 6 R 3X2 

P
(s)

s-1
(s+2)(s+l)

s-1

(s+2)2

The Rp(s) modules generated by the columns of B = [b1, b2], 

B = [b,, b2] are given by M, M respectively as:

M= SpanR (s){iW  = SpanR (s) 
P P

SpanR (s){% ^ 2 } = SpanR (s) 
P P

s-2 s-1
(s+l)(s+2) 

0 t

(s+l)2

(S-1)

(s+2)2
-

s-2 (s-1)2

. (s+2)2 . (s+l)(s+2)
-

s-2 s-2

(s+l)2

0

(s+l)(s+2) 

(s-1)
/ (s+l)(s+2) -

s-1 s-1
(s+2)(s+l)

. (s+2)2 .
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The function Sp(B) = 4 = <5p(B) hence the stathm (see p.24) 

in p of M = 4 = M. By extracting a right divisor in P from 

B we write

s-2
s+1

B = 0

s — 1 
s+2

0

1
s+1

s-2
s+2

1
s+2

0

1
s+1

s-1
s+1 B1Big

where the function ^(BJ = 2 so that 5p(B) > «̂ (Bj) and Blg 

contains some of the zeros of B in p.

The Rp (s) -module generated by the columns of B1 is given 

by

M„ spanR
P
(s)

—
“

s-l 0s+2

0 /
1

s+1 -

s-l s-2
s+2 s+1

L

In fact, Blg is a greatest right divisor in p of B since 

rank (T) = 2 = <5p (Bj) and

M C = M*

■

The structure of the various (Rp(s)-left unimodular) bases 

of the "maximal" Rp(s) -module M* are given next. It has 

been shown [Var 8] that these bases can be classified
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according to properties of their McMillan-degree and are 

the counterpart to the concept of minimal polynomial basis 

of a rational vector space, introduced by Forney [For 1], 

for the case of the Rp(s)-module M*. The notion of column 

complexity and simple basis of a proper rational matrix 

are introduced first.

Definition (2.5): [Var 3]: Let T G Rprpxm(s), p ^ m, 

rankR^T = m, with column vectors tj and denote by <5M (tj) 

the McMillan degree of t■. Then the column McMillan-degree 

complexity of T, denoted by CMc (T) is the sum of the 

McMillan degrees of its columns, i.e.

m
C C (T): = S (2.24)

j=l J

■

The conditions under which the column McMillan degree 

complexity of a column reduced at s = ® [Var 1, Var 3] 

proper rational matrix T coincides with its McMillan 

degree <5M (T) have been established [Var 3] and defines the 

notion of a simple basis given below.

Definition (2.6) [Var 3] : A column reduced at s = °° proper 

rational matrix T G Rpxm(s) with p ^ m and rankR(sjT = m, 

which satisfies

m
£ 6 (t.) = 6 (T) (2.25)

j=l J
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is defined as a simple basis of the Rpr(s)-module M 

generated by (tj)

Proof T G Rprpxm and rankRE = m imply respectively that T 

has no poles and zeros at s =

Hence <5M (T) is the number of finite poles of T. The 

result then follows as a particular case of the more 

general Theorem in [Var 4].

Two important results from the theory of proper bases of 

rational vector spaces appear as Lemmas (1) and (2) in 

[Var 4] and are re-stated below. Lemma (2.1) is a 

particular case of a more general Theorem [e.g.see Var 2] 

concerning the relationship between (i) the total number 

of poles and zeros (finite and infinite) of a general 

rational matrix T G Rpxm(s) , and (ii) the sum of the 

invariant dynamical indices [For 1] of the left and right 

null spaces of T.

Lemma [2.1) [Var 4]: Let T G Rprpxm(s) , p ^ m, rankR^T = m 

and lim (T) = E G Rpxm with rankR (E) = m. Let v- h 0, j G m
S-+oo

the (Forney) invariant dynamical indices of the rational

vector space d spanned by the columns of T, ordF(t?) : = 

m
E Vj the (Forney) invariant dynamical order of T and

j = l

zf(T) the number of finite zeros of T. Then

Sm (T) = ordF (t?) + Zf(T) (2.26)
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lim T = :  E; G R pxm and rankR E; =  m. If there exists a 
s-+°°

Q G Rmxm(s) , rankR(s)Q = m, such that Tx = T2Q, then

Q G R p / ^ s )  and lim Q =: Q0 G R1“™  with rankR Q0 = m.
s-*»

Proof see [Var 4].

Lemma ( 2 . 2 ) [Var 4]: Let T; G Rprpxm(s), i=l,2 with

With the above definitions and results we now focus 

attention on the various Rp(s)-left unimodular bases of the 

maximal Rp (s)-module M*. We note first that unlike the 

proper submodules Mj of M* all bases of M* are column 

reduced at s = » since (by the definition of M*) they are 

all Rp(s)-left unimodular. Secondly, and due to the above 

fact, if T G Rppxm(s) is a basis of M* we can always 

determine an R̂  (s) -unimodular matrix Ur G Rpmxm(s) such that

T: = TUr G Rppxm(s) (2.27)

is a simple basis of M* for which <5M (T) = <5M (T).

Furthermore, it has been established [Var 4] that given a 

basis T of M* we can always determine an R̂  (s)-unimodular 

matrix U G Rpmxm(s) such that T = TU/1 is a simple basis of 

M* which has desired poles (in f2c) and whose McMillan 

degree is minimum among the McMillan degrees of all proper 

or proper and H-stable bases of the rational vector space 

t? spanned by the columns of T i.e. (T)  ̂ ¿m (t ) for aH
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T G Rprpxm(s) basis of 0.

Theorem (2.2) [Var 4]: Let T G Rppxm(s), p ^ m, rankR(s)T = 

m be Rp(s)-left unimodular and let M* be the Rp(s)-module 

generated by its columns tj. Then T can always be 

factorized (in a non unique way) as:

T = TUr

where T = [tlf . . . ,tm ] G Rppxm(s) is an Rp(s)-left unimodular

and simple basis of M* which has no finite zeros and U G

is Rp (s)-unimodular and the set of its finite zeros

contains as a subject the set of finite zeros (which, if

any, are in flc) of T. Furthermore, if Vj ^ 0, j G m are the

(Forney) invariant dynamical indices of the rational

vector space t? spanned by the columns of T (and also of

m
T) , ordF(t?) : = E Vj is the Forney invariant dynamical

i=l

order of ■& then: (i)

(i) <5M (tj) = Vj, j G m

m m
(ii) «„(T) = L fiM (t.) = L v. = ord (0)

j=l J j=l J

and <5m (T) is minimum among the McMillan degrees of 

all other proper bases of 0.

Proof see [Var 4]

■
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Definition (2.1): An Rp(s)-left unimodular and simple

basis T G R̂,pxm(s) of M* which has no finite zeros (and thus 

satisfies (i) and (ii) of Theorem (2.2)) is defined as a 

simple, minimal McMillan degree, proper and n-stable basis 

(SMMD—Rj (s) basis) of the rational vector space d spanned 

by its columns.

■

Example (2.6) : Let Q = C+ and consider the rational matrix

s-2
(s+1)(s+2)

T = 0

s — 1 

(s+2)2

s-2

(s+1)2

s-1

(s+1)2

(s+1)(s+2)

e r 3 x 2 ( s ) 
p

which has a finite zero at s = 1 and two zeros at s = » 

each one is of order 1. Extracting a greatest right 

divisor in p from T we can write:

s-2
s+1 0 1 1 

s+2 s+1

T = 0 1
s+1

s-1 s-2
s+2 s+2

0 s-1
s+1 T1Tgr

ov o , ,
Now Tx G Rp(s) has no zeros m  C U {«>} and therefore it 

is a proper and stable minimal McMillan degree basis of
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the rational vector space spanned by its columns with 

= 3. Notice that its column McMillan degree 

complexity is: Cuc = fiM (tu ) + 5M (t13) = 2 + 2 = 4 >

5m (Ti), i.e. Tx is not simple. Multiplying Tx on the right 

by the Rp (s)-unimodular matrix.

U
1

■3/4

0

1

„2x2 . . R (s) 
P

we obtain

s-2
s+1 0

TlUr
~3/4
s+1

1
s+1 T

1/4 s-2
s+2

which is also a proper and stable minimal McMillan degree 

basis which is simple since <5M (T) = 3 = ¿^(t^ + <5M (t2) = 

1+2 .

■

The importance of the above concepts and results in the 

resolution of linear multivariable control algebraic 

synthesis problems has been highlighted by Vardulakis and 

Karcanias [Var 8]. In particular conditions for the 

solvability of the stable exact model matching problem 

have been derived and the difficulty in constructing 

solutions to the stable minimal design problem using SMMD- 

Rp(s) bases is given. These problems involve guestions of
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properness, stability and/or minimality of solutions of 

rational matrix equations. Algebraic synthesis problems 

of this nature are formulated in Chapter 3.
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CHAPTER 3

SUMMARY OF ALGEBRAIC SYNTHESIS PROBLEMS



3.1 Introduction

The stabilization theory of Youla, Bongiorno and Jabr 

(YBJ), [You 1, You 2] for the case of continuous systems 

and Kucera [Kuc 1] for the discrete systems case in which 

a parameterisation of the set of all stabilizing 

controllers for a general multi-variable system is 

formulated, has provided much interest in algebraic 

synthesis methods [Des 1, Sae 1, Ant 1, Vid 1, Vis 1, Fra 

3, Bra 1, Cal 2], The generalisation of the YBJ theory to 

a ring theoretic setting [Des 1] established the 

fractional approach as a powerful algebraic synthesis 

technique. The elegance of the approach results from the 

use of stable factors as opposed to polynomial factors 

since products and sums of such factors are themselves 

stable. As these algebraic operations correspond to 

cascade and parallel connections of a system's 

configuration then from a synthesis design view point the 

fractional approach leads to a highly desirable 

representation of linear multi variable control problems.

In this chapter the centralized and decentralized 

stabilization problems are formulated over the ring of 

proper and fi-stable rational functions which have no poles 

inside a prescribed region n of the finite complex plane. 

The main difference between these two problems lies in the 

structure of the stabilizing controller. In the 

centralized case there is no restriction on the input-
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output connections between controllers whereas in the 

decentralized case a well defined input-output 

relationship must be maintained.

The central feature of the stabilization problems is the 

solution of a (set of) matrix Diophantine equation [Kuc 

1] of the form AX + BY = M where A,B are known matrices 

defined from the plant and X,Y are the matrices to be 

determined and form the resulting stabilizing controller.

In the centralized stabilization problem the 

characterization of solutions is given by the YBJ 

parameterisation. The parameterisation is chosen in such 

a way that the various system feedback gains are linear in 

the resulting design parameter thereby enabling selection 

of design parameter which also achieves a design 

constraint and/or optimizes same measure of system 

performance.

In the decentralized case the restriction on input-output 

connections between controllers gives rise to a highly 

structured form of stabilizing controller. The problem 

is reduced to the solution of a (set of) matrix 

Diophantine equations formulated as a Stable Exact Model 

Matching Problem (SEMMP) and provides the motivation to 

investigate the structure of matrices over a Principal 

Ideal Domain (PID).

Before presenting the stabilization problems a number of
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general aspects of a general feedback configuration are 

introduced. The definition of a well-posed system [Vid 1] 

is given. The importance of uncontrollable and 

unobservable hidden modes of a system is introduced 

through the notions of stabilizability and detectability 

respectively [Kai 1]. These standard state space notions 

when extended with respect to a symmetric region fi of the 

finite complex plane lead to a convenient external system 

description which also guarantees the system to be 

internally stable i.e. the set of proper and Q-stable 

closed loop transfer function matrices. It is interesting 

to note in the following that the plant P and Controller 

C, in the continuous case, are defined over R(s) , whereas 

in the discrete case over R(d) (d = z'1, delay operator) . 

In the continuous case we define the set of proper and 

stable rational function Rp(s), and in the discrete case 

the ring of causal and stable rational in d-functions 

Rp(d) . Both Rp(s) , Rp(d) are Euclidean rings and R(s) , R(d) 

may be considered field of fraction for Rp(s), Rp(d) 

respectively. The analysis that follows is valid for both 

continuous and discrete systems and no distinction need be 

made although for continuity the Rp(s) will be used.
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3.2 General Aspects of the General Feedback Configuration

Consider the following general control system 

configuration:

Figure (3.11 : General Control System Configuration

where P represents the m x £ transfer matrix of the plant 

and C the l x m transfer matrix of the controller. The 

vectors ujlf w2 denote the externally applied inputs, ex, e2 

denote the inputs to the controller, plant and ylr y2 the 

vector outputs of the controller, plant respectively. The 

transfer matrices P,C are both assumed to be rational and 

the set R,pxm(s) will denote the set of p x m matrices with 

elements from R^s) (the ring of proper rational functions 

with no poles inside a prescribed region of the finite 

complex plane).
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In the literature [Kuc 1], the configuration of Figure

(3.1) also appears in the following equivalent form

CONTROLLER

Figure (3.2): Alternative Control System Configuration

The configuration of Figure (3.1) will be considered here. 

Such a configuration is quite versatile and may 

accommodate several control problems. For instance, in a 

problem of tracking, w1 would be a reference signal to be 

tracked by the plant output y2. In a problem of 

disturbance rejection, or desensitization to noise, 

would be the disturbance/noise vector. Depending on 

whether or w2 is the externally applied control signal 

(as opposed to noise etc). The configuration can 

represent either feedback or cascade control.

The system under study is described by

(3.1)

The system equations can be written as
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e (3.2)= w - FGe , y ~ Ge

where

Si *i 0 I
r i 
c 0

e = , y = , F = , G =

S2 *2 -I 0 0 P

It is easy to verify using the Shur-formula for 

determinants that

|I + FG| = |I + PC| = |I + CP| —  t (3.4)

The system of figure (3.1) is said to be well-formed [Cal 

1] if t is a non zero rational function. This condition 

is necessary and sufficient to ensure that (3.1) has a 

unique rational solution for ex, e2, y:, y2 corresponding to 

vectors u>lt w2 of appropriate dimensions.

If the system is well formed then

e = (I + FG)'1 u = H (P, C) u (3.5)

y = G (I + FG) ~1uj = W (P,C)w (3.6)
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where

, denoted H ,' e \(jj

. denoted H ,
y | oj

A well formed system allows the existence of various 

closed loop functions. In the design of feedback systems 

the "properness" of these transfer functions is essential 

if no signal is to be unduly amplified or otherwise if the 

smoothness of signals throughout the system is to be 

preserved. Systems which exhibit this property are said 

to be "well-posed", a more formal definition is given 

below.

Definition (3.1): Let every sub-system of a composite

system be described by a rational transfer function. Then 

the composite system is said to be well posed if the 

transfer function of every subsystem is proper and the 

closed loop transfer function from any point chosen as an 

input terminal to every other point along the directed 

path is well formed and proper.

-1
H (P , C)

- 2 ~2

OJ-1
W(P,C) *1

OJ
-2 *2
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The well posedness property is characterised by the 

following result.

Theorem (3.1) [Vid 1] : Consider the feedback system of

figure (3.1) where P,C are proper rational matrices. The 

closed loop transfer function He|u is proper if and only if

|I + C(oo) P(oo) | = |I + P(°a) C(°°) | (3.7)

This result implies that if both P,C are proper 

then condition (3.7) is necessary and sufficient for 

(I + PC)'1, (I + CP)'1 to be proper and it follows that all 

transfer functions associated with the feedback 

configuration of figure (3.1) will be proper.

For systems that are well posed it is possible to obtain 

several equivalent expressions for H (P,C) and W(P,C). 

Thus for H(P,C) it is readily verified that

(I + PC) 1 -P(I + CP) 1 I p

-1 -1
—

C(I + PC) (I + CP) -c I
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and the following identities hold true [Vid 1]

C(I + PC)'1 = (I + CP)_1C, P(I = CP)'1 = (I + PC) _1P (3.9)

(I + PC)'1 = I-P(I + CP)'^, (I + CP)'1 = I-C(I + PC)'^

(3.10)

Using the above identities we can obtain the following 

equivalent expressions for H(P,C).

I-P(I + CP) 1C -P(I + CP) -1

H (P, C) =

(I + CP) 1C (I + CP) -1

(I+PC) -1 -(I + PC) 1P

C(I + PC) 1 I-C(I + PC) 1P

(3.11)

where the first involves only (I + CP)'1 and the second 

(I + PC)'1. For the W(P,C) transfer function we have

similar expressions, that is

-1

C 0 I p C(I+PC) 1 -CP(I+CP)-1

-1 -1
0 P -C I PC(I+PC) P(I+CP)

(3.12)
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or alternatively

C-CP(I + CP) 1C -CP(I + CP) -1

W(P,C)

P(I + CP)-1c P(I + CP) -1

C(I+PC) -1 -C(I + PC)-1P

(3.13)

PC(I + PC) -1 P-PC(I + PC) 1P

An interesting relationship between H(P,C), W(P,C) denoted 

in short by H,W is defined below

In fact, (3.14) readily follows from the following 

arguments

H = (I + FG)'1 = (I + FG - FG) (I + FG) "1

From (3.14) we have the following remark.

Remark (3.1) : The transfer function W G Rj(m+p)(m+p) (s) if

and only if H G R (̂m+p)(m+p) (s)

■

Thus in the investigation of stability (external) of the 

feedback configuration of figure (3.1), the transfer 

function H(P,C) may be used.

W = F{H - I) (3.14)

I - FG ( I + FG)'1 = I - FW (3.15)
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3.2.1 Characteristic Pole Function

The transfer function matrix of the plant and controller 

may be written as coprirne matrix fraction descriptions 

(MFD1s) over the appropriate ring of interest. Since P,C 

are generally non square we distinguish between left and 

right MFD's i.e.

P = V 1B1 = B ^ - 1 (3.16)

C = D1"1N1 = N ^ ' 1 (3.17)

By inserting (3.16) and (3.17) into the last of (3.8) we 

have

H (P, C) (3.18a)

-1

(3.18b)

Proposition (3.1) [Kai 1]: If (A^BJ, (A2,B2), (D^NJ,

(D2,N2) are coprirne pairs then (3.18a) defines a left 

coprirne MFD and (3.18b) a right coprirne MFD of H(P,C).

■
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Assume now that both plant and controller transfer 

functions are represented by coprime MFD's then the 

expressions for H(P,C), i.e the transfer functions of the 

feedback configuration are coprime and the characteristic 

pole function of H(P,C) is given by the determinants of 

the denominator matrices

A1 B1 °2 B2

f ~ det

"N1 D1

~ det

-N2 A2

where denotes equality modulo a non zero real

constant.

Proposition C3.2): The characteristic pole function of

H(P,C) is given by

f ~ det F1 ~ det F2 (3.20)

where

Fi — A1D2 + BjNj

F2 = DjA;, + NxB2

(3.21a)

(3.21b)

48



Proof

Using the Shur formula for expansion of determinants:

det

-N,

B.

D,

-1.= det D det(A + B D N )

det D det (A + B N D 1)

det D1 det D2_1 det(A1D2 + B ^ )  

det F,

applying the Shur formula to 

B2 |

= det D2 det(A2 + N2D2_1B2)

A2 j
= det D2 det(A2 + D N -1B )

= det D2 det D “1 d e t f D ^  + N B )

~ det F2

The result follows by (3.19).

■

Note the importance of the assumption that both systems 

within the feedback loop be free of hidden modes [Kai 1]. 

If this assumption were violated, relation (3.19) would 

not be valid and the last step in the above proof could

Similarly

det

-N,
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not be made. For systems with hidden modes

f ~ f0 fp fc • 22)

where f0 is defined by Proposition (3.2) and fp, fc are the 

hidden mode pole function of the plant, controller 

respectively.

Hidden modes play a key role in characterizing the 

internal stability of a feedback system in terms of the 

external description

3.2.2 Internal Stability

Internal stability of the feedback system of figure (3.1) 

is related to its state space description.

CONTROLLER

Sf: = Feedback system

Ss, i=l, 2 are state space representations of the 

controller, plant respectively:
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Sf describes the state space representation of the feedback 

system:

Figure (3.3): State Space representation of general
feedback configuration

The plant and controller are characterised by the

following sets of (not necessarily minimal) state space

equations.

Sx: xx = AjXx + Bl̂ l , Yi = Cxxx + (2 .23a)

* —2 ~ ^2—2 B2—2 / Y2 = C2—2 + 2̂—2 (3 .23b)

The feedback system is assumed to be well posed, so that 

11 + DjD2 | = 11 + D2Dj | 0, with the following constant

matrices
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(I + D2Dx)-1 (3.24)A, = (I + DxD2) A2 ~

The transfer function corresponding to the state space 

description with input vector and output vector

of signals [e^, e^]4 is clearly Note that

ex = wx - yx , e2 = w2 + yx (3.25a)

and thus

®1 =  ii i l  — *-2—2 — ^ 2 ^ —2 ^ 1 —1 D xe x )

or

ex = —A2D2C1x 1 — A2C2x2 + A2o;1 — A2D2cj2 (3.25b)

e2 = w2 + CjXi +D1e1 = uj2

or

(I + D1D2)e2 = C1x1 - D1C2x2 + + w2

or

e2 - A1C1x1 - A1D1C2x2 + A1D1w1 + A1w2 (3.25c)

Substituting into the first of (3.23a), (3.23b) we obtain

the state-space eguations.
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~2

A1-B1A2D2C1

B2A1C1

-B1A2C2

A2 B2A 1D1C2

x .

~2

+

4 xf A A , 4 xf

+
B1A2

B2A1°1

- B1A2°2

B2A 1

-1

-2

4 Bf . (3.26a)
4 uvf '

%

~2

'AI °2C1

A1C1

-A2C2

-A 1D1C2

X 1

~2

^ *f A C,

+

A1D1

-A2°2 -1

w .

4 Df
(3.26b)

The matrices (Af, Bf, Cf, Df) characterize the feedback 

system completely. The notion of internal and external 

stability are defined next.

Definition C3.2): The feedback configuration of figure

(3.3) will be called internally stable if the system
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A x 
f f

(3.27)x

is asymptotically stable. It will be called bounded- 

input, bounded-output stable (BIBO) if the transfer 

function He|u is BIBO stable.

Note that (3.27) is asymptotically stable if and only if 

the set of eigenvalues of Af is contained within the closed 

left half complex plane cr (Af) C C_, and He|w is BIBO stable 

if and only if all its poles are in C_.

To examine the conditions under which the stability of He|u 

guarantees internal stability we introduce the following 

standard state space notions.

Definition (3.3): [Won 1] (i) The pair (A,B) is 

stabilizable if the unstable subspace of x = Ax + Bu is 

contained in its controllable subspace. (ii) The pair 

(A,C) is detectable if the unreconstructable subspace of 

x = Ax + Bu, y = Cx is contained in its observable 

subspace.

In the characterization of the properties of 

stabilizability and detectability the following results
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may be readily established.

Lemma (3.1): [Won 1] (i) Any asymptotically stable system 

is stabilizable and detectable. (ii) Any completely 

controllable system is stabilizable. (iii) Any completely 

observable system is detectable.

Lemma (3.2): [Won 1] (i) A system is stabilizable if and 

only if its uncontrollable eigenvalues are stable. For 

detectability we have the dual result. (ii) A system is 

detectable if its unobservable modes are stable.

Definition (3.4): A quadruple (A,B,C,D) will be called 

stabilizable and detectable if (A,B) is stabilizable and 

(A,C) is detectable.

Lemma [3.3):TWon 1] Suppose the quadruple (A,B,C,D) is 

stabilizable and detectable. Under these conditions the 

system

x = A x (3.28)

is asymptotically stable if and only if the transfer 

function

G(s) = C ( si - A)'1 B + D (3.29)

is BIBO stable.

55



Remark (3.2); Under the stabilizability and detectability 

assumptions on a linear system, the notions of internal 

and external stability become equivalent.

The following result indicates the invariance of 

stabilizability and detectability under state feedback and 

output injection.

Lemma (3.4) : [Won 1] Let (A,B,C) be a triple and let 

L,K,R,Q be arbitrary state feedback, output injection, 

input, output co-ordinate transformations respectively 

defined on (A,B,C). Then

(i) (A,B) is stabilizable, if and only if, (A + BL, BR) 

is stabilizable.

(ii) (A,C) is detectable, if and only if, (A + KC, QC) is 

detectable.

■

3.2.3 Guaranteed Internal Stability via Closed Loop 

External System Description

With the above standard state space notions we can 

establish the main result of this section in the study of 

the feedback system of figure (3.3).

Proposition [3.31: Consider the well-posed feedback system 

Sf of figure (3.3) with controller Sx and plant S2
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represented by the quadruples (A^ Bi7 q, D;) i = 1,2. Then

(i) Sf is controllable, observable if and only if both Sx 

and S2 are controllable, observable .

(ii) Sf is stabilizable, detectable if and only if both Sx 

and S2 are stabilizable, detectable.

Proof

The system Sf is represented by the quadruple (Af, Bf, Cf, Df) 

where

Af =
o1< o1ec ~-AD_C. —A_C_1 l 2 1 2 2

+

0 > 1 0 B_ A, C, -A., D. C_
2 J 2 1 1  1 1 2j

Bf =

A L

A K

Bn 0 A_

Pi<1

1
+

2 2 2

0 B_ A. D. A,2 H H 1

A R

(3.30a)

A. 0 "-B, A_D_ -B. A ~

oiu

1 1 2  2 1 2 1
+

0 A_ B_A. -B„A. D. 0
 

n 12 2 1 2 1 1_ 2

(3.30b)

(3.30c)

Cf "

‘2°2

l t> to

A 1 "A1D1

0

c.
(3.3 Od)
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Note that

|r | |a 2| . |A1 + A1D1A2 A2D2 | — | A2 | . |AX 4- A1D1D2 |

=  I A 2 I • I A i  I * I I  +  D A I  =  I A 2 I • I A 1 I • I A 1 r 1 =

= I M

I Q  I ~  I A 2 I • I A 1 A 1 ^ 1 A 2 A 2 ^ 2  I =  ! A 2 I * I A 1 I * I A 1 I

=  | A 2 I *  o

Thus R,Q are non singular and represent input, output co-

ordinate transformations. Furthermore, L in (3.30a) 

represents state feedback and K in (3.30b) represents 

output injection.

(i) By the invariance of controllability properties under 

state feedback, input co-ordinate transformations and 

observability properties under output injection and 

output co-ordinate transformations we have:

(a) (Af, Bf) is controllable if and only if (A12, B12) is

controllable, where

A.. 0 B., 01

B12 =

1

0 A2 . 0 B2 .
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(b) (Af, Bf) is observable if and only if (A12, *-12)

observable, where

Similarly by the invariance of stabilizability, 

detectability (Lemma (3.4)) under state feedback, input 

co-ordinate transformations and output injection, output 

co-ordinate transformations respectively we have:

(c) (Af, Bf) is stabilizable, if and only if (A12, B12) is 

stabilizable.

(d) (Aj, Cf) is detectable if and only if (A12, C12) is

detectable.

By the block structure of A12, B12, C12 it follows that

(e) (A12, B12) is controllable (stabilizable) , if and only

if (Ax, Bj) and (A2, B2) are controllable

(stabilizable).

(f) (A12, C12) is observable (detectable) if and only if 

(Alf C1) and (A2, C2) are observable (detectable).

From (a), (b), (c), (d), (e), (f) the result follows.

We may now state the main result of this section.
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Theorem (3.2): Consider the well posed feedback system

Sf with the controller Sx and plant S2 both stabilizable and 

detectable. Under these assumptions, Sf is internally 

stable if and only if the transfer function He|u is BIBO 

stable.

Proof

The result follows from Proposition (3.3) and Lemma (3.3).

■

Thus under the assumption of well posedness and 

stabilizability and detectability of plant and controller 

the closed loop transfer function He|u defines both 

internal and external stability. Clearly, since

controllability implies stabilizability and observability 

implies detectability, if Sf is well posed and both plant 

and controller are free from hidden modes (controllable 

and observable) then He|w defines both internal and 

external stability.

Remark (3.3): The standard notions of detectability,

stabilizability are connected with the notion of stability 

with n = C_ closed. In many control synthesis 

applications H is a general symmetric region and the 

definitions and properties of stabilizability and 

detectability may be extended with respect to this region 

n and shall be referred to as n-stabilizabilitv, n- 

detectabilitv respectively. Theorem (3.2) should then be
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interpreted as: Sf n-stable is equivalent to He|w proper 

and n-stable.

■

By Theorem (3.2) and Proposition (3.3) it follows that

Corollary C3.1^: Consider the well posed feedback system 

Sf of figure (3.3) with controller and plant systems Slr S2 

minimal and the transfer functions P, represented by the 

R[s]-coprime MFD's: Px = A1'1B1 = B2A2_1, C = D1"1N1 = N-jD.,'1 

Then

| si - A, | - | AxD2 + B:N2| - | D1A2 + N1B2 | (3.31)

■

The above formula provides the means for computing 

| si - Aj| and it is needed in the study of stability.

3.3 Control Systems Synthesis Problems

3.3.1 Centralized Stabilization

For a linear system the problem of Centralized 

Stabilization [You 2, Des 1, Vid 1] can be formulated in 

the frequency domain as follows.

Let the linear time invariant system in the feedback 

Configuration of figure (3.1) be well posed with 0- 

stabilizable, n-detectable plant P described by the left, 

right Rp(s)-coprime MFD's

P = A1"1B1 = BjAa'1 (3.32)
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where

Ax e R/xp(s), B1 G R/xm(s); B2 G R„pxm(s) , A2 G ^"““ (s)

The centralized stabilization problem is to determine 

conditions under which an fi-stabilizable, n-detectable 

controller C defined by the left, right Rp(s)-coprime 

MFD's

C = Dj'1̂  = N2D2_1 (3.33)

may be defined such that the closed loop system is stable 

i.e. the closed loop transfer function

= : e

is an element of R̂ (m+p)x(m+p) (s)

The conditions under which such controllers exist are well 

known and a complete parameterization of all stabilizing 

controllers has been established [You 2, Des 1]. Indeed 

from (3.18) and Proposition (3.2) it is clear that for 

(A1,B1), (A2,B2) Rp (s) —coprime pairs, the centralized

stabilization problem is reduced to the solution of the 

matrix Diophantine equation [Kuc 1],

Ax D2 + Bx N2 = U G Rppxp(s) (3.34a)

or

Dj Aj + Nj Bj = U G Rpmxm(s) (3.34b)
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where U, U are arbitrary R, (s)-unimodular matrices, which 

characterises the centralized stabilization problem and is 

referred to as the Centralized Diophantine Equation (CDE). 

Notice that the above satisfy the Bezout identity [Kai 1]:

N. > 1 1 2i cH
1 1 2 2 m

-B A, B„ D0

HO

L i i L 2 2 L P J

where (D2, N2) is a solution to (3.34a) and (Dx, Nx) a

solution to (3.34b).

Multiplying (3.35) on the left, right by the R,(s) 

unimodular matrices respectively

I T I -Tm m
/

o H

HO

L P J L P J

where T E ’R/>mx'p (s) is chosen such that 

| Dx - TB11 ^ 0, | D2 - B2T | ^ 0 we obtain

(D1-TB1) (N1+TA1) " A2 -(N2+A 2T)

i

i to H A 1 . B2 (D2_B2T ) .

0 I
P

(3.36)
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The family of all stabilizing controllers C E Rmxp(s) is 

given by

C = (Dx - TB,)'1 (Nj + TAJ = N2 + A2T) (D2- B2T) ’1 (3.37)

The arbitrary parameter T £ generates the family of

stabilizing controllers for a given plant. The

parameterization is defined in such a way that the various 

feedback system gains are linear in the design parameter 

T, thus the design parameter may be selected to meet a 

prescribed design constraint: tracking and disturbance 

rejection [Fra 1, Cal 2, Sae 1]; robust design [Vid 1, Vis 

1] ; pole placement [Bra 1, Vid 1]. Finally, if any 

remaining design latitude exists after the design 

constraints have been met it may be used to optimize some 

measure of system performance: sensitivity [Sae 1, Vid 1] ; 

energy consumption etc.

The key to the parameterization is the solution of the 

Centralized Diophantine Equation. The solvability of the 

CDE is reduced to the solution of the following matrix 

equation over RJs) .

[A1 ts H

1
CN
Qi___ II c| i-

1 O H N ll

1---(N
<I ___

N2 B2

4 X A P*

or the more general form

PX = U , X*p‘ = U (3.39)
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where P(Pl), is a matrix defined on the plant, U(U) an 

arbitrary biproper matrix and X(Xk) the unknown matrix 

which defines the centralized controllers.

3.3.2 Decentralized Stabilization Problem

For a linear system the problem of decentralized 

stabilization has been examined in [Dav 1, Cor 1, Cor 2, 

Won 1] and can be formulated within the R̂  (s)-stabilization 

form over K as follows:

Let the linear time invariant system in the feedback 

configuration of figure (3.4) be well posed with n- 

stabilizable, fi-detectable plant P 6 Rprpxm(s) and 

controller C E Rmxp(s). The decentralized stabilization 

problem is to determine conditions under which a 

decentralized stabilizing controller C may be defined such 

that the closed loop system is stable.

u

CONTROLLER PLANT

Figure (3.4): Basic feedback control configuration
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Let the input-output description of the plant P by given 

by

where Pu G RprPlxrm(s) represents the decentralized plants and

p : x / :  , , , , ,
Pjj GRpr (s) , 1?*j , express the interconnections m  the

decentralized system.

The decentralized stabilization problem is to determine 

controllers of the type

( 3 . 4 1 )

such that the closed loop system under the feedback law 

Hi =  C j t Y ;  -  w j)  ( 3 . 4 2 )

is stable.

Let the left, right Rp (s)-coprime MFD's of the plant and 

local controllers be respectively

= B ^ - 1 (3.43)

Bu Nxi = N2iD2i , i G r (3.44)
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where

Ax S R/xp(s), Bj G R/xm(s); B2 G R/xm(s), A2 G R / ^ s )

Du e R„mixmi(s) , Ni; G Rmixpi(s) ; N2i G R,mixpi(s) , D2i G R/ixpi(s) 

Then,

C = diag.{Dli}

diag.{D2i} 1 = N2D2 1 G RmXp(s)

(3.45)

defines the left, right Rp(s) - coprime MFD of the 

decentralized controller.

From (3.34) the centralized stabilization problem is 

reduced to the solution of the matrix Diophantine equation 

over Rp(s) .

A1D2 + BjNj = U (3.4 6a)

or

D1A2 + NiB2 = u (3.4 6b)

N21

N21

N2r

N
11

Nli

Nlr

= D -1N.

6 7



With the further assumption that the R, (s) -coprime MFD of 

the controller C is of the form (3.45) the decentralized 

stabilization problem is reduced to the solution of the 

matrix Diophantine equation

Ax diag{D2i) + Bx block diag (N2i) = U (3.47a)

or

diag{Di;) A2 + block diag {N1;} B2 = U (3.47b)

over Rp(s) where U, U arbitrary (s)-unimodular, 

characterises the decentralized stabilization problem and 

is referred to as the Decentralized Diophantine Equation 

(DDE).

Partitioning A2, B2 according to the block structure of 

diag {D;}, block diag (N;) we have

' D,„ 0 1 A-. N.. 0 u.11 21 11 21 1
. * .

’ D, - A,. + * N,. B- . - u., 1l 2l 11 2l 1• 0• •
0 # D1 A-, 0 * N, u1r 2r 1r 2r r

(3.48)

from which

Di;A2i + Ni;B2i = U; (3.49)

where

Du G R,mixmi(s) , Nlimixpi G R,(s) ; A2i G R,mixm(s) , B2i G R/ixm(s) , 

and Uj G R mixm(s) is an arbitrary (part of an arbitrary)
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R, (s)-left unimodular matrix.

In a similar manner partitioning Alf Bj according to the 

block structure of diag {D2i}, block diag {N2i} reveals

Ai;D2i +  BliN2i =  Uj ( 3 . 5 0 )

where

Ai; G R/xpi(s) , Bu G R,pxmi(s) , D2i G R„pxpi(s) , N2i G R ™ ( s )  and 

U; G Rpxpi is an arbitrary (part of an arbitrary) Rp(s)- 

right unimodular matrix.

Equations of the type (3.49), 3.50) will be referred to as 

Generalised Diophantine Equations (GDE) and systems of 

matrix equations over Rp(s).

[Dli Nli^ 2 i , i G r with the (3.51)

A Xt B21
additional constraint that U; 
arbitrary but [Uj] Rp (s)-unimodular.

A P‘

or of the more general form

X4?1 = U (3.52)

where P4 G Rpkxr(s) is a matrix defined on the plant, U G 

R/ xr(s) an arbitrary biproper matrix and Xt G R̂,pxk the 

unknown matrix which defines the decentralized 

controllers. Note that the term "generalised" refers to 

the non square nature of the U;' s in (3.51), (3.52).
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Alternatively for an Rp(s)-left MFD of the plant,

D2i = Uf , i E r with the (3.51)

N additional constraint that Uj
zi J arbitrary but [...Uj...]

Rp (s)-unimodular.

4 x

reduces to the more general form

PX = U (3.54)

where P E Rppxk(s) is a matrix defined on the plant, U E 

Rppxr (s) an arbitrary biproper matrix and X E R/)kxr(s) the 

unknown matrix which defines the decentralized 

controllers.

3.3.3 Closed Loop Stabilization

Let the linear time invariant and closed loop stabilizable 

(ie. free of unstable hidden modes) feedback system of 

figure (3.1) with plant transfer function P E Rprpxm(s) be 

described in terms of R (s)-left, right coprime MFD as

P = = B ^ ' 1 (3.55)

where

Ax e R/xp(s) , B1 E R/xm(s) , B2 E R/xm(s) , A2 E R / ^ s )  .

It is known [You 1, You 2, Sae 1, Des 1, Vid 2] that there 

exists a stabilizing compensator C E Rmxp(s) which is free 

of unstable hidden modes such that the closed loop system 

is internally asymptotically stable i.e. all its hidden

Â li BliJ

A P
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(3.60)

respectively, where T G Rpmxp(s) and such that | Dx - TBj | ^ 

0, |D2 - B2T| ^ 0 we obtain the Bezout identity:

I T H 1

m m
rHo Ho

L P J L P .

(D1-TB1) (N1+TA1) ' A2 -(N2+a 2T)

-B1 A1 . B2 (°2-B2T > .

Im 0

(3.61)

The set of all stabilizing compensators C G Rmxp(s) for the 

plant P is given by

C = (D: - TB:) *1 (Nj + TAX) = (N2 + A2T) (D2 - B2T) "1 (3.62)

The arbitrary parameter T G Rpmxp(s) generates the family 

of stabilizing compensators but must be chosen such that 

| Dx - TBX | t* 0, | D2 - B2T | ^ 0 so that the selected

controller is realizable.

The parameterization of the set of stabilizing 

compensators for a given plant is the first step in the 

design process. Step two requires the selection of an 

appropriate parameter matrix T such that a prescribed 

design constraint is achieved e.g.: tracking and
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disturbance rejection [Fra 1, Cal 2, Sae 1); robust design 

[Vis 1, Vid 1]; pole placement design [Bra 1 Vid 1]. The 

parameterization is defined in such a way that the various 

feedback system gains are linear in the resultant design 

parameter T, Thus the design parameter may finally be 

selected to meet the design constraint and/or optimise 

some measure of system performance such as sensitivity, 

energy consumption or the like.

Example (3.1)

Let T G R2x2(s) = NrDj/ 1

T

s+1
2s

1
s(s-l)

0

1
1-s

s+1

1

0
1 “I

1-s

NR
1
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Determine the family of stabilizing compensators that 

place all the poles of the closed loop system in the 

desired area of the complex plane i.e.in nc

p = fl U {°°}

Let the desired set of poles inside nc be {-1 ± j, -1} and 

others due to the compensator but inside Qc

Let

s2 + 2s + 2 0

-(s + 1) -(s + 1) J

having zeros: -1 ± j , -1 

T = Nr Dr-1 = <Nr  D ^ ' 1) (Dr

6 B2 S V "
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T = B ^ ' 1 is the R, (s) -coprime MFD of T where 

B2 E Rppxm(s), A2 E R̂ mxm(s) both proper and H-stable and 

coprime in the region p: = f2 U{°°) . Thus by elementary row 

operations over Rp(s) reduce (B2, A2) to its Smith form over 

Rp(s) i.e. there exists a non unique Rp (s)-unimodular such 

that

A_ i
UT 2 m
L

Bn 0
. L 2

where UL can be partitioned according to the block 

structure of equation (3.58) as

where Ca = P^1 Nx gives rise to a (particular solution) 

stabilizing compensator for the closed loop system. Thus

1

( S + 2 H S + 5 )
0

- 3 s 2 + 4 s + 1
0

2s
0 1 02

( s  + 2 s + 5 ) s 2 + 2 s + 5 s 2 + 2 s + 2

s+5 1 - 2 s 2 - 5 s s s-1
0 1

s 2 + 2 s + 5 s 2 + 2 s + 5

- 2

s 2 + 2 s + 2
S+1

1 1 -s s-1 s+1
0 0 0s+2 s+2 s+2 s+2 2  ,  ,  s +2s+2

- 1 5
0

2s - -1

s 2 + 2 s + 2 s 2 + 2 s + 2 s 2 + 2 s + 2
S + 1

L J J
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(s+2)(s+5)

( s 2+2s +5)
0

-1
-3s2+4s+10

s 2+2s +5
0

(s+5)
1

-2 s 2-5
-2

( s 2+2s+5) s 2+2s+5

-3 s 2+4s +10
(s+2)(s+5)

0
stabilizes the closed loop

(s+2)

system and places the closed loop system poles in Hc.

X,0 - compensator 
poles and 
zeros

4 “ - closed loop 
poles
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3.3.4 Model matching

Consider the closed loop transfer function matrix from 

to y .2 i-n Figure (3.1) denoted H12.

Hi,2 = H12(P,C) = (I + PC)''PC (3.63)

with C the selected stabilizing compensator such that H12 

G Rppxp (s) . Then we have

Proposition (3.4); [Var 1] Let P G Rprpxm(s) with 

P = A1"1B1 = B ^ " 1 and C the set of stabilizing compensators 

with a selected compensator Ca = D1"1N1 = N ^ " 1 such that 

(3.38) holds true. Then H12 satisfies the relations.

1,2 = B2(Nx + WAX) (3.64)

Hi,2 = (D2 - (3.65)

■

From the above proposition it follows that the matrices 

X = N: + WA, G Rpmxp (s) and Y = D2 - B2W G Rppxp(s) represent 

a pair of solutions to the matrix equations

H12 = B2X (3.66)

IP “ H1>2 = YAX (3.67)

If the matrices B2 G Rppxm(s) , A: G Rppxp(s) and H12 G Rppxp(s) 

are all known then the problem of determining conditions 

under which the matrix equations (3.66), (3.67) have

proper solution X G Rprmxp(s) Y G Rprpxp(s) is known as the
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Exact Model Matching Problem (EMMP) or Model Following 

Problem (MFP) and has been the subject of numerous 

investigations. [Wol 2, Wol 3, For 1, Var 2].

With the further restriction that solutions of the above 

type problem are required to be proper and stable (ie. 

have no poles at s = » and inside the region C+ = {s G C/Re 

s ^ 0}) the problem is termed the Stable Exact Model 

Matching Problem (SEMMP) and has been examined using 

various approaches [Wol 4, Sco 1, And 1, Kuc 2, Per 1, 

Emr, Kar 1].

Proposition f3.5T: [Var 1] Let B2 G R„pxm(s) and H12 G 

R/xp(s) with rankR(s) B2 = rankR(s) H12 = p. Let TR G ^ “““ (s) 

an Rp(s)-unimodular matrix representing elementary column 

operations over Rp(s) reducing B2 to [B2/), O ] i.e. let

B2Tr = [IV Opim.p] (3.68)

Then,

i) B2p G Rppxp(s) "is a structure matrix in o" of B2 [ie.a 

g.c.l.d in p (of the columns of) of a "right 

fractional numerator" B2 G Rppxm(s) of the plant P] .

(ii) Eqn. (3.66) has a solution X G Rppxm(s) iff

Hx: = B,/1 H12 G R/xp(s) (3.69)

iii) If condition (3.69) is satisfied then a general 

solution X G Rpmxp(s) of (3.24) is given by
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X = Tr [Hi: Z ] ‘ G R / ^ s ) (3.70)

where Z G Rp̂m‘p̂xp(s) and otherwise arbitrary.

■

Remark (3.4) : If p = m = rankR^  P then B2p = B2 and TR = Ip. 

In such a case from (3.69) and (3.70) we observe that

(3.66) has a solution X G Rppxp(s) iff

Hx = X: B.T1 H1)2 G R/xp(s) (3.71)

which for fixed H12 is also the "unique" solution of

(3.66) .

From the above it also follows that (3.67) has a solution 

Y G Rppxp (s) iff

H2 = Y: = (Ip - H ^ V 1 G R/xp(s) (3.72)

which is also a "unique" solution (3.66).

The above results characterise the family of all "model" 

closed loop transfer function matrices H12 G Rppxp(s) which 

are obtainable from (3.67), (3.66) by some X G R/)mxp(s), Y

G Rppxp(s) or equivalently by some stabilizing compensators 

C (see Proposition (3.4)). Thus from (3.69) and (3.72) 

the family H* of all such H: 2 is given by

H* = (H1)2 G R/xp(s) | H12 = B^H, - H12 = H2 A,

where H; G Rppxp(s) and rankR^  H; = p , i=l,2} (3.73)
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CHAPTER 4

STRUCTURE OF MATRICES OVER A PRINCIPAL 

IDEAL DOMAIN



4.1 Introduction

The main aim of this section is to investigate further the 

structural properties of matrices which provide solutions 

to matrix equations of the type

AX = B (4.1a)

YA' = B' (4.1b)

AXB = C (4.1c)

where the given matrices A, B, C, A', B' are in general

rational and the solution matrices X,Y are determined over 

a Euclidean ring K such that R(s) may be expressed as the 

field of fractions of K.

Notice that equations (4.1a), (4.1b) are central to

solution of the more generalised Diophantine equations

AjXj + A2 X2 +,..., + ApXp B (4.2a)

YxA^ + Y2A 1 2 + YpAp'1 = B' (4.2b)

where B, B' are general non square matrices. Thus, 

solvability of (4.1) also provides conditions for 

solvability of the more general set of equations (4.2).

We have discussed in the previous chapter the importance 

of the Euclidean rings R[s]-polynomials, Rpr(s)-proper 

rational functions and Rp(s)-proper and stable rational 

functions. The results presented here for a general
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rational matrix A G Rpxm(s) using Smith-McMillan, Hermite- 

McMillan forms may also be specialised to the case of 

matrices defined over a PID K using Smith and Hermite 

forms. Note that in the following K will denote one of the 

Euclidean rings R[s] , Rpr(s) or R (s) .

We begin by introducing the notions of square and non 

square divisors of a matrix. It is then possible to use 

these notions to define coprimeness conditions, matrix 

projectors and annihilators as well as generalised left 

and right inverses of a rational matrix.

Although the results are valid for PIDs in general, we are 

concerned here with the Euclidean rings thus instead of 

PIDs we may say that K is a Euclidean ring (the difference 

is that in Euclidean rings, the unimodular matrices are 

expressed as products of elementary transformations) .

4.2 Matrix Divisors

Let A G Rpxm(s) , rankR^{A} = p ^ min (p,m) . We may 

associate the following rational vector spaces with the 

matrix A:

XAr A row—spanR^ {A) = row space of A 

XAC A column-spanR^ {A} = column-space of A 

Na  ̂A N^{A) = left-null space of A 

NAr A Nr{A } = right-null space of A
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and the following K-modules of the matrix A:

MAr A row—spanK{A) = K-row module of A

Mac A column—spanK{A} = K-column module of A.

4.2.1 Left, Right Square Divisors of a Rational Matrix

Definition (4.1) Let A G Rpxm(s), rankR^{A) = r £ min 

(p,m) and K be a P.I.D. A matrix T = TN1TD1' 1 = TD2'1TN2 G

R^is), TNi/ TDi G Kot, i=l, 2 will be called an Rfs^ -left,

right divisor (l.r.d.) of A over K if there exist matrices 

P G Kpxr, Q G K“ ", rankR^{P} = r, rankR^{R} = r such that

A = PTQ (4.3)

T will be called an R(s)-greatest left, right divisor 

(g.1.r .d) of A over K if it is a l.r.d. of A and P,Q are

irreducible over K (i.e. no zeros). Note: since P,Q are

over K, we talk about Smith forms and the matrices P,Q 

have the Smith forms over K of the type [Ir, 0]4, [Ir, 0] 

respectively. (4.4)

If we restrict ourselves to matrices from a PID, A G Kpxm. 

Then, T G K™’ (i.e.TDi are K-unimodular matrices, i=l,2) 

defines a K-g.l.r.d of A. In this case a matrix for which 

a K-g.l.r.d is K-unimodular will be called prime.
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The existence of a g.l.r.d is established in the following 

result.

Proposition (4.1) : Let A G Rpxm (s) , rankR 3̂j {A } = r ^

min(p,m) and K be a PID.

There always exist matrices P G Kpxr, Q G K™111, rankR^{P) = 

r, rankj^ŝ {Q} = r, T = TN1TD1 = TD2 TN2 G R (s) , TNi/ TDi G 

K™-, i=l, 2, det (T) = t(s) G R(s) - {0} and the matrices 

P,Q have the Smith forms over K of the type [Ir, 0]t, [Ir, 

0 ] respectively such that:

A = PTQ (4.5)

Proof

Let SA be the Smith-McMillan form of A over K. Then there 

exist K-unimodular matrices such that

A = UL SAUR (4.6)

or u la u r = SA (4.7)

where

UL/ UL G Kpxp, URUR G ĵ mxm

uLuL = uLu = Ip

UrUr - UrUr = Im

SA is the Smith-McMillan form of A written as
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r

p-r,r

r ,m-r0

0p-r,m-r

(4.8)

where

Sr* = diag.{e1 t/f1, er tpT~1} E R ™  (s) is the non-zero part

of the Smith-Mcmillan form of A over K, eir E K, e; ipf1 

E R(s).

By partitioning UR, UL according to the partitioning of SA 

we have

A =

1
C|

H

1-
-
-
-CN

r p-r
0

from which

A = U ^ *  Vx

where

r

m-r

(4.9)

(4.10)

U1 E Kpxr, V1 E K™™ and since U1, are parts of K-

unimodular matrices with rank^l!^} = r, rankR(ŝ (V1) = r 

then, the Smith forms of U1, V1 over K are [Ir, 0]fc, [Ir, 0] 

respectively.

Clearly the non-zero part of the Smith-McMillan form Sr = 

Et/>1"1 = t/;2'1E E R ^ s )  is a g.l.r.d of A. Furthermore if A 

E Kpxm then T = Sr* E Krxr, t/̂ 1, i=l,2 are K-unimodular
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matrices, rp{ E K are units Vi G r. In such a case A and T 

have no poles in K and the same zero structure in K.

The above results establish the existence of g.l.r.d of 

any rational matrix A E Rpxm(s) . We note the following.

Remark (4.1) : Let A E Kpxm rankR^{A) = r ^ min (p,m) and 

K be a PID, subring of R(s).

i) If p ^ m, then the notion of g.l.r.d (K-g.l.r.d) 

coincides with that of the standard notion of a right 

divisor (K-right divisor) of A, in this case R 

becomes an mxm K-unimodular matrix.

ii) If p ^ m, then the notion of g.l.r.d. (K = g.l.r.d) 

coincides with that of the standard notion of a left 

divisor (K-left divisor) of A, in this case P becomes 

a pxp K-unimodular matrix.

■

For a general rational matrix the row module MAr (as 

defined over K) or column nodule MAC are well defined. The 

bases for such modules are general rational matrices and 

the canonical forms are defined via the Hermite-McMillan 

form i.e.

Let A E Rpxm(s), rankR^  ^ min (p,m) and let 'd' be the 

least common multiple of the elements of A over K. Then,
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A a  e KPxm

Now the Column Hermite-Mcmillan form is given by ULA = AH, 

Ah is K-Hermite form with

u la d A d AH ^ A*H-M

where A*H_M is the Hermite-McMillan form and it is a 

rational matrix. In these forms we can carry out all 

cancellations between factors of d and corresponding 

elements of AH.

Note that with A E Rpxm(s) we have two different K-row 

modules associated with MAr = row spanK{A} as defined in 

the text. MAr = row spanK {A} where A is the numerator of 

any left MFDs over K. i.e. MAr is the module associated 

with all numerators (left) and it is also a K-module. Note 

that the vectors in MAr are general rational vectors and 

vectors in MAr are from K. A similar set of results are 

defined for MAC = column spanK{A} and associated MAC 

modules.

Example (4.1): Let K E R[s]

1
s

a(s) = s (s+1) 
(s+2 )

(s+1 )

a rational vector.
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i) The MAr column-module is defined by (c(s) , a(s) }, c(s) 

G R[s] arbitrary, and it is a general rational 

vector.

ii) The MAr column module is defined by

â(s)

s+ 2

1
s (s+2) s2 (s+1 ) 

s(s+1 )(s+2 )

(s)

MAr = (c(s) a(s)}, c(s) G R[s] arbitrary.

Remark (4.2) Let A & Rpxm(s) , rankR^{A) = r ^ min (p,m) 

and K be a PID. If T is a g.l.r.d of A over K i.e.

A = PTQ = PTN1TD1'1Q = PTD2-1TN2Q

Then,

i) the rows of TN2Q define a basis for the module space 

MAr and

the rows of TD2'1TN2Q define a basis for the module 

space MAr

ii) the columns of PTN1 define a basis for the module 

space Mac and

the columns of PTN1TD1' 1 define a basis for the module 

space Mac.

By the above remark the characterization of all greatest 

left right divisors of a rational matrix A may be defined.
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r ^ minProposition (4.2) Let A G Rpxm(s) rankR(3){A) =

(p,m) and K be a PID. If T G R^fs) , T G R ^ s )  are two 

g.l.r.d of A then T and T are equivalent over K denoted 

T E T.

Proof

Let T, T be two g.l.r.d of A over K. Then,

A = PTQ and A = P T Q (4.11)

Since both P and P define basis matrices for MA*C and both 

Q and Q define basis matrices for MA*r, then

P = PUR and Q = UtQ (4.12)

where UR/ UL G K ™  are K-unimodular matrices.

Thus by (4.11) and (4.12) we have

A = PTQ = P T Q = PUR T UlQ

and thus

P{T - UR T Ul}Q = 0 (4.13)

Since P has no right-null space, Nr{P) = 0 it follows that 

(T - UR T Ul)Q = 0

Given that Q has no left-null space, NL{Q } = 0 it follows 

that

T - UR T UL = 0

8 8



or

T = Ur T U l o T E T

■

Remark (4.3) If T is a g.l.r.d of A, then any other 

g.l.r.d of A may be obtained by

T = UR T UL (4.14)

where UL, UR are arbitrary unimodular matrices of 

dimensions rxr and all g.l.r.d. of A may be obtained via

T = UR S* UL (4.15)

where S* is the non zero part of the Smith McMillan form 

of A.

If we restrict ourselves to matrices from a PID i.e. A G  

Kpxm then the notion of the greatest left right divisor 

provides the means for the canonical decomposition of A. 

This is established in the following result.

Proposition (4.3) ; Let A G Kpxm, rankR^{A) = r ^ min (p,m) 

and K be a PID. The matrix A may be uniquely factorized as

A = PhThQh (4.16)

where PH, QH are column, row Hermite (echelon type) minimal 

basis matrices for MA*C, MA*r respectively and TH is a K- 

g.l.r.d of A.
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Proof

If T is a K-g.l.r.d of A, then A = PTQ. We can always 

find K-unimodular matrices UR, UL 6 K13" such that

PUR = PH, UlQ = Qh (4.17)

where PH, QH are the column, row Hermite form of P,Q

respectively. It is known that PH, QH are uniquely defined 

[Mar 1]. Thus from A = PTQ we have

A = PUrUr’1TUl’1UlQ = P a i V ^ L ' ^ Q H  = p h t h Q h (4.i s )

The matrices PH, QH uniquely characterize the strict

equivalence classes ER (P), EL(Q). The uniqueness of TH is 

established as follows. Let TH be another K-g.l.r.d for 

which

A = PhThQh (4.19)

Then from (4.14), (4.17) we have

A = PhThQh = PhThQh ph (^h ~ Th )Qh = 0

since Nr (PH) = {0} and N£{QH} =0, it follows that TH = TH.

■

The notion of K-g.l.r.d defined above will be used to 

characterize the non square matrix divisors of a given 

matrix defined by Pernebo [Per 1].
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4.2.2 Non Square Divisors of a Rational Matrix

Definition (4.2) Let A G Rpxm(s) , rank^fA} = r ^ min(p,m) 

and K be a PID. If A can be factorized as

A = LAo (4.20)

where L G Rpxr(s) , rankj^fL} = r and Ag G K™", then,

L is defined as an extended left divisor (e.l.d) of A over 

K. L will be called a greatest extended left divisor 

(g.e.l.d) of A over K if L is an e.l.d. of A and every 

other e.l.d of A is also an e.l.d of L.

If we restrict ourselves to matrices from a PID, A G Kpxm 

then L is defined to be a K- fgreatest) extended left 

divisor (K-(g).e .1.d) of A.

The notion of extended right divisor (e.r.d), K-extended 

right divisor (K-e.r.d) as well as the notion of greatest 

extended right divisor (g .e .r .d), K-greatest extended 

right divisor (K-g. e.r.d) of A may be introduced in a 

similar manner. The characterization of all e.l.d of a 

rational matrix A is considered next.

Theorem (4.1) Let A G Rpxm(s) , rankR(g){A) - r <. min(p,m) 

and K be a PID. The matrix A has always a g.e.l.d. L which 

has the following properties

i) L G  Rpxr(s) and may be expressed as
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L AX (4.21)

for some appropriate X G Kmxr

ii) If L and L are two g.e.l.d of A then L Er L i.e. a 

g.e.l.d is unique up to multiplication on the right 

by a K-unimodular matrix.

Proof

i) By (4.6), (4.8) and (4.9) we have

A = [U1S*r, 0p.r] UR (4.22)

and thus

A = Uj S*r Vx = LVi (4.23)

Clearly L = U1S*r G Rpxr(s) and rankR(g){L) = r; thus, L 

is an e.l.d of A. By (4.22) we have

[L, 0p_r] = AUR 1 = AUr (4.24)

By partitioning the unimodular matrix UR G K1™™ 

according to the partitioning of [L, 0 ] then,

[L \ 0p_r] = A [U1 \ U2] m (4.25)
«— > — f-
r m-r

from which L = At^ (4.26)

and thus L is expressed as in (4.22).
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In order to show that L is a g.e.l.d of A, let us 

assume that L is an arbitrary e.l.d of A. Then,

A = L Aq (4.27)

and by inserting (4.27) into (4.26) we have

L = L Aj Dj

This clearly shows that L is also an e.l.d of L and 

thus L is a g.e.l.d of A.

ii) Let Lx and 1̂  be two g.e.l.d of A. Since Lx is a 

g.e.l.d of A and 1̂  is an e.l.d of A, then

Lj  =  L2 U ( 4 . 2 8 )

for some matrix U over K. Analogously,

L2 = Lx V (4.29)

for some appropriate matrix V over K. By equations

(4.28) and (4.29) we have

Lj  =  L x VU ( 4 . 3 0 )

L;  =  L,  UV ( 4 . 3 1 )

and since Llf L2 have linearly independent columns it

follows that

VU = I and UV = I (4.32)

Thus the matrices V, U are both square and K-
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unimodular. It has been shown that the g.e.l.d of A 

is unique up to multiplication on the right by a K- 

unimodular matrix. Given that there is one g.e.l.d L 

G Rpxr(s) it follows that it is true for all g.e.l.d 

of A.

■

In the case where A G Kpxm the above result characterizes 

the K-e.l.d of A.

A similar statement can be made for the e.r.d (K-e.r.d) of 

A G Rpxm (s) (G Kpxm) .

From the proof of the above result the link between the 

g.e.l.d, g.e.r.d of A and the g.l.r.d of A and the 

corresponding decomposition of A is established. Thus, we 

may state

Corollary (4.1) Let A G Rpxm(s), rank {A} = r ^ min(p,m), 

T G R^^s) be a g.l.r.d of A and let A = PTQ where P G 

Kpxr, Q G K”™  and P, Q have the Smith forms [Ir, 0]‘, 

[Ir, 0] respectively. Then,

i) A g.e.l.d of A, L and a g.e.r.d. of A, R are defined 

by

L = PT G Rpxr(s) (4.34)

R = TQ G Rram(S) (4.35)

and A may be factorized as
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A = LQ = PR (4.36)

ii) A g.e.l.d L and a g.e.r.d R of A may be expressed as

L = AQ (4.37)

R = PA (4.38)

where Q G K ™ 1, P G K™*3 are appropriate matrices with 

Smith forms [Ir, 0]1, [Ir, 0] respectively.

Remark (4.4) In the case where A G Kpxm with K a PID then 

a K-g.e.l.d L and a K-g.e.r.d R of A are defined by

L = PT = AQ (4.39)

R = TQ = PA (4.40)

From the above result the following interpretation of the 

K-e.l.d (K-e.r.d) and K-g.e.l.d (K-g.e.r.d) may be given.

Remark (4.5) Let K be a PID and L, Lg be a K-e.l.d, K- 

g.e.l.d of A and let R, Rg be a K-e.r.d, K-g.e.r.d of A 

respectively. Then,

A = = LA„ and Lg = LMo (4. 41)

A = A ' 0Rg = A'0R and Rg = n0r (4. 42)

Given that Lg, L (Rg, R) have linearly independent columns 

(rows), then
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Mac = MLgc C Mlc (4.43)

(4.44)

that is the K-column module of A coincides with the K- 

column module of Lg and the K-row module of A coincides 

with the K-row module of Rg. Furthermore, the K-column 

module of any K-e.l.d L contains MAC and the K-row module 

of any K-e.r.d R contains MAr.

From this remark, it is clear that the extraction of K- 

e.l.d of A is equivalent to the creation of an ascending 

chain of modules containing MAC; the minimal element in 

this chain MAC itself. The extraction of the K-g.e.l.d is 

a procedure equivalent to the definition of a basis for 

Mac. The interpretation for the case of the K-e.r.d is 

similar.

Remark (4.6) All K-g.e.l.d of A have r columns where r = 

rankR(g){A); however, a K-e.l.d of A in general has j 

columns where p ^ j  ̂ r.

Similarly, all K-g.e.r.d of A have r rows, but a K-e.r.d 

of A has in general i rows where m ^ i ^ r.

Definition (4.3) Let K be a PID. A matrix A E Kpxm will 

be called K-left unimodular (K-l.u.) if the K-g.e.l.d. of 

A is K-unimodular. Similarly A will be called K-right 

unimodular (K-r.u.) if the K-g.e.r.d of A is K-unimodular.

■

96



The characterization of K-l.u, K-r.u matrices is given by 

the following result:

Proposition (4.4) Let A G Kpxm, ranki^s){A} = r ^ min(p,m) 

and K be a PID. The statements in sections (a) , (b) are

equivalent.

(a) i) A is K-left unimodular (K-l.u)

ii) The Smith form of A over K is [Ir, 0]

iii) p = r and A has no zeros in K

iv) p = r and the K-g.l.r.d of A is K-unimodular.

v) Mac = Ma *c and rank MAC is p, i.e. MAC = Kp

vi) The K-g.e.r.d of A is K-l.u

vii) These exists on K-r.u matrix X G K™*'3 such that

AX = Ip (4.45)

viii) There exists a K-l.u matrix M G K̂ ™ p̂xm such that

UL

A

M

G KrXr

is K-unimodular.

ix) There exists a UR G K”“, K-unimodular such that

(b) i) 

ii)

AUr = [Ip, 0]

A is K-right unimodular (K-r.u)

The Smith form of A over K is [Ir, 0 ] 4

(4.46)
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iii) r = m and A has no zeros in K

iv) r = m and the K-g.l.r.d of A is K-unimodular

v) MAr = MA*r and the rank MAr is m, i.e. MAr G Km

vi) The K-g.e.l.d of A is K-r.u.

vii) There exists a K-l.u matrix Y G K™13 such that

YA = Ir (4.47)

viii) There exists a K-r.u. matrix N G Kpx̂p'r̂ such that 

UR = [A, N] G Kpxp 

is K-unimodular.

ix) There exists a UL G Kpxp, K-unimodular such that 

UlA = [Ir, 0]t (4.48)

Proof

We shall prove (a) and the proof of (b) is similar.

ii) By (4.36) A = LgQ where Lg G Kpxp, K-unimodular and 

Q G Kpxr with Smith form [Ir, 0] Q.E.D.

iii) Follows directly from (ii).

iv) A = PTQ = LgQ. Given that PT is K-unimodular and 

p = r, then both P,T are square and K-unimodular.

v) PT defines a basis for MAC and P defines a basis for 

Ma*c. Given that P,T G Kpxp and K-unimodular, then 

Mac = Ma*c and rank of MAC is p.
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vi) A = PTQ = PRg where Rg = TQ. Given that T is K- 

unimodular and Q has Smith form [Ir, O] then by (ii) 

Rg is K-unimodular.

ix) By (ii) there exists UL E Kpxp, UR E K™“11, K-unimodular 

matrices such that

A = UL [Ipf O] UR = UL [Ip/ O]

[I 0]
L p J

u. 0

Im-r

U 1 U 2

U3 U4

U 1 U 2

U3 U4

" [IP ° ] °R

Clearly, UR is an mxm K-unimodular matrix and thus 

AUr _1 = AUr = [Ip, O].

vii) By (ix) and by partitioning of UR as 

UR = [X, X], then

A [X, X] = [Ip, 0] , X E Krap 

and thus AX = I

viii) From (ix) there exists UR E Krxr, K-unimodular such 

that

AUr = [Ip, 0] or A = [Ip, 0] UR, UR = Ur-1.
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Partition UR as

3TX2TG K , K-ummodular

then

A = [I 0]
L P J

take M = U2 and the result follows.

UR =

U,

U,

With the above results we now proceed to define the 

notions of divisors of two or more matrices.

4.2.3 Non Square Divisors of Sets of Matrices 

Definition (4.4) Let K be a PID

i) Let Aj G Rpxrm(s), i G n and Lg G Rpxk(s) for some k. 

Lg is a greatest common extended left divisor 

(g.c.e.l.d) of all A;, i G n if it is an e.d. of all 

Ai and if every other e.l.d of all A; is also an e.l.d 

of Lg. If we restrict ourselves to matrices from a 

PID, Ai G kpxmi, i G n, then Lg defines a K-g.c. e.l.d of

100



all Aj.

ii) Let Aj G Rpixm(s) , i G n and Rg G R^fs) for some k. 

Rg is a greatest common extended right divisor 

(g.c.e.r.d.) of all Aj, i G n if it is an e.r.d of 

all Aj and if every other e.r.d of all Aj is also an 

e.r.d of R . If we restrict ourselves to matrices 

from a PID, Aj G Kpixm i G n, then Rg defines a K- 

g.c.e.r.d of all Aj.

The following result establishes the link between the 

g.c.e.l.d (g.c.e.r.d) and the notion of (g.e.l.d) 

(g.e.r.d) of a matrix.

Lemma (4.1) Let Aj G Rpxmi, i G n, Aj E Rpixra, j G n and K a 

PID. The following statements hold true.

i) Lg G Rpxk(s) is a g.c.e.l.d of Aj, i E n if and only if 

it is a g.e.l.d. of the matrix

[ Aj, A2 , , A^ ] .

ii) Rg G Rkxm(s) is a g.c.e.r.d of Aj, j G n if and only if 

it is a g.e.r.d of the matrix

[ Ajj, A2 , ... , Aj ]

Proof

i) If Lg is a g.c.e.l.d of Ai, i G n , then

Ai = Ls Aj0, i G n, Aj0 G K
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and thus

[ Ai, A2 , , A^ ] [ LgA10, LgA2o / • • • / -'-'ĝno ]

= [A10 A20 , ... , Ano]

(4.49)

Thus, Lg is an e.l.d of the composite matrix; since, 

any other divisor of Aj, i G n also satisfies an 

equation of the (4.49) type and it is an e.l.d of Lg, 

it follows that Lg is a g. e.l.d of [Alf . . . ,An] . The 

sufficiency follows by a reversion of the arguments.

ii) The proof of part (ii) follows along similar lines.

■

Corollary (4.2) If Aj, Aj are matrices from a PID K 

respectively Aj G Kpxmi, i G n; Aj G Kpixm, j G n, then in the 

above statements:

i) holds true for a K-g. c . e . 1 . d, Ls G p̂xk of Aj and

ii) holds true for a K-g.c.e.r.d, R* G ĵ kxm of Aj

The results presented for the g.e.l.d (g.e.r.d) of a 

matrix A over K can be used for the derivation of similar 

results for the g.c.e.l.d (g.c.e.r.d) of a set of 

matrices.
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Theorem (4.2) Let Aj G Rpxmi(s) , i G n, A- G Rpjxm(s) , j G n 

and K can be a PID.

Denote by M and N the matrices

[ A-j, A2 , . . . , AJ G RpxSmi (4.50)

[Ax, A2 , . . . , Apj]fc G RSpixm (4.51)

and let rankR(gj{M} = r, rank r(3){N} = r.

i) There exists a g.c.e.l.d Lg G Rpxr(s) of Aj, i G n and 

this may be expressed as

Lg = [A1X1 + A2X2 + ...+ AnXn] (4.52)

for some X; G Kmixr matrices. Furthermore, if Lg is

another g.c.e.l.d of Ai, i G n, then

L* Er £ g

ii) There exists a g.c.e.r.d Rg G Rrxm(s) of Aj, 

j G n and this may be expressed as

Rg = tYA  + Y2A2 + ••• + YhAh] (4.53)

for some Y■ G KrxP'’ matrices. Furthermore, if Rg is

another g.c.e.r.d of Aj, j G n  , then Rg E Rg.

Proof

If the g.c.e.l.d of Aj, i G n exists, then by Lemma (4.1) 

it is given by the g.e.l.d of M. By Theorem (4.1) the
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existence of such a divisor is established and we also

have

Lg [ , A2 , , A jj ] T , T G K

By partitioning T according to the partitioning of M 

expression (4.56) is derived.

The proof of part (ii) follows along similar lines.

The module interpretation of the K-g.e.l.d (K-g.e.r.d) of 

a matrix allows the module interpretation of the K- 

g.c.e.l.d (K-g.c.e.r .d) of a set of matrices.

Corollary (4.3) Let A5 G Kpxmi, i G n, Lg G Kncr be a K- 

g.c.e.l.d of Aj and let us denote by Mj0, i G n, MLC the K- 

column modules generated by the columns of Aj, i G n and Lg 

respectively. Then the MLC is the smallest submodule that 

contains every otherwise

m
S
i=i

Proof

Since Lg is a K-g.c.e.l.d of A; i G n, then for all i G n 

Ai =  L g Aio/ i  e  n

and thus MjC C ML V i G n. Similarly if L is a K-g.c.e.l.d 

and if Mlc is the corresponding K-module then
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Aj = LAio, i E n and Lg = LT 

Thus MjC C M£c and MLC C M£c

In other words, MLC contains every M;C and submodule

Mfic containing every also contains MLC. Thus MLC is the

smallest submodule containing every M^.

On the other hand, let

m
2
i=l

be the sum of the submodules M1c , . . . , Mnc. This is 

obviously a submodule Mc containing each ; moreover, any 

submodule Mc of Mc containing each must contain

Hence

m
2
i=l

An alternative proof may be established by inspection of 

( 4 . 5 2 ) .

■

A similar interpretation may be given for the K-g.c.e.r.d, 

Rg of a set of matrices A-, j E n. In this case, the module 

generated by the rows of Rg is the minimal module that
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contains all the modules generated by the Aj, Aj E Kpixm, j 

E n or otherwise is the sum of these modules.

The module interpretation of Lg as a basis for the "minimal 

cover module" of all modules generated by the columns of 

Aj will be used in the solution of matrix equations and 

generalised Diophantine equations.

With notion of g.c.e.l.d, g.c.e.r.d defined we proceed to 

define the notion of coprimeness of a set of matrices.

Definition (4.5) Let K be a PID.

i) Given a set of rational matrices Aj E Rpxmi(s), 

i E n, [A, ,..., A,j] = M E  RpxSmi(s) , 

rankj^iM) = r then we say that (the columns of)

Ai, i E n are K-left coprime (K-l.c.) if M has no 

zeros in K.

ii) Given a set of rational matrices A- E RPjxm(s) , j E n, 

[Aj, A2 ,..., Ah]‘ = N E RSPjxm(s) , rankR(g){N} = r then 

we say that (the rows of) Aj, j E n are K-right 

coprime (K-r.c.) if N has no zeros in K.

If we restrict this to rational matrices from a PID, then 

we have the following.

Proposition (4.5) Let K be a PID and let Ai E KPxmi, i E n, 

Aj E KPjxm, j E n be two sets of matrices. Then the 

following statements are equivalent.
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(a)

i) The set Ail i G n is K-left coprime

ii) The matrix M = [Ax, A2, ... An] is K-left unimodular

iii) Let H1c denote the K-column modules generated by A;, 

i G n. Then

M
n
E

i=l
HCl

K PX!

( b )

i) The set Aj, j G n is K-right coprime

ii) The matrix N = [Ax, A2 , ..., A^ ] 6 is K-right 

unimodular.

iii) Let M;C denote the K-row modules generated by Aj, 

j G n. Then

n
Mr = E M. = K (4.54)

j=l 3

Proof

(a) The K-g.e.l.d of Aj, i G n is defined as the K-g.e.l.d 

of the matrix M = [A1, A2 ,..., Ap. ] . If Lg is 

unimodular then is the K-module Kpxl, which is the 

maximal module of Rpxl(s) rational vector space. The 

proof for (b) is similar.
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The properties of K-left unimodular matrices may then be 

used to characterize coprimeness properties of a set of 

matrices if the above Proposition is used with Proposition

(4.4) .

4.3 Projectors. Annihilators and Left, Right Inverses of 

a Rational Matrix over a PIP

For the analysis of matrix equations over principal ideal 

domains some further algebraic tools are needed. The 

notion of column, row projectors and left, right inverses 

of a rational matrix are introduced. These projectors and 

annihilators are shown to be generalizations of left, 

right inverses and are characterised using the properties 

of unimodular matrices defined over the appropriated ring.

4.3.1 Generalised column-row Projectors of a Rational

Matrix

Definition Let A G Rpxm (s) , rank (A) = r ^ min

(p.m), K be a PID and let P£ G K1"15, rankR(s) (Pf) = r, Qr G

K"” , rank {Qr} = r.

i) P£ is called a K-column projector (K-c.p.) of A over 

K if

P£A = Rg (4.55)

where Rg G Rrxm(s) , Rg = Ngr Dgr'x,

108



Ngr G K ™ , Dgr G R™“ 1 is a g.e.r.d of A over K. If A G 

Kpxm then e Rncm anci j_s a K-unimodular matrix.

ii) Qr is called a K-row projector (K-r.p.) of A over K if

AQr = Lg (4.56)

where Lg G Rpxr(s) , Lg = D/ 1 Ng£, Dgi G Kpxp, Ng£ G Kpxr, is 

a K-g.e.l.d of A over K. If A G Kpxm then Lg G Kpxr and 

Dgi is a K-unimodular matrix.

Remark (4.7) By definition, P£ produces a K-g.e.r.d of A 

and thus projects the column vectors of A onto the maximal 

K-column module MA*C of A. Alternatively, P^A produces a 

basis for MrA . Similarly, Qr produces a K-g.e.l.d of A and 

thus projects the row vectors of A onto the maximal K-row 

module MA*r of A. Alternatively AQr produces a basis for 

Mac.

Proposition (4.6) Let K be a PID. Then, every matrix A 

G Rpxm(s) , rankj^fA) = r ^ min (p,m) has a K-c.p.,

P £ G K™15 and a K-r.p., Qr G K1™".

Proof

By the Smith-McMillan decomposition of A over K we have

A = U S* V = [U s* 0

I

rH
>

1 ____

0 0

---
1

CN
>

___
1

109



U1 Rg (4.57)= ux s* v1 = Lg V,

Let U = U ' 1 , V = V ' 1 , then

° 1
Ir 0

u u =

. e 2 .

^U 1
0 Ip-r J

Ui Uj II H *-<

1
<J H Ir 0

V V = --
1

og
>

_____
1

V  -
0 Im-r

Vi Vx = Ir

By defining P£ = Ux and Qr = ^  and using 

(4.57), (4.58), (4,59) we have:

(4.58)

(4.59)

UjA Ui U, Rg Rs

AV1 = Lg Vj Vx = Ls

QED.

Proposition (4.7) If P̂ , Qr are K-c.p, K-r.p of A 

respectively, then P£ is K-left unimodular and Qr is a K- 

right unimodular matrix.
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Proof

Assume that P£ is not a K-left unimodular matrix. Then we 

may factorize it as P£ = ZP ¿, where P£ is a K-left 

unimodular matrix and Z G K™" is a nontrivial (non 

unimodular) greatest left divisor of A over K. Given that 

A may be expressed as A = PRg then P^A = ZP£PL where P^P = 

W G K™" and thus ZWRg = P̂ A. No matter what the matrix W 

is, ZW cannot be a K-unimodular matrix since Z is not. 

Thus ZWL is not a K-g.e.r.d of A, since all K-g.e.r.d of 

A are left equivalent then the result follows by 

contradiction.

An alternative characterization of column, row projectors 

of a matrix A is given by the following result.

Proposition (4.8) Let K be a PID and A G Rpxm(s) , A = PTQ 

be a g.l.r.d decomposition of A over K where T G R^is) ,

T = TN1 Td1_1 = TD2 1 TN2, is a K-g.l.r.d of A, P G Kpxr is a 

basis matrix for MA*C and Q G ¥Jxm is a basis matrix for 

MA*r. Then,

i) P£ G Krxp is a K-c.p. of A if and only if

P£P = W£ G Krxr, and K-unimodular (4.60)

ii) Qr G K”*™ is a K-r.p of A if and only if

QQr Wr G K"“, and K-unimodular (4.61)
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Proof

The sufficiency is obvious. To prove the necessity assume 

that P£P = W£ but not unimodular then

P£A = P£ PTQ = P£PRg = WrRg

since all g.e.r.d are correct by left unimodular 

transformation then Wr must be R-unimodular hence this 

result follows by contradiction.

Corollary (4.4) Let P£, Qr be a pair of K-c.p, K-r.p of A 

respectively. Then P£AQr is a g.l.r.d of A over K.

4.3.2 Prime left. Right Annihilators of a Rational Matrix

Definition (4.7) Let A G Rpxm(s), rankR(ŝ {A} = r £ min 

(p,m) and R be a PID.

i) Let p > r and N£ G K̂ p'̂ xp

N£ will be called a K-prime left annihilator 

(K-p.£.a) of A over K if n£ is a K-unimodular matrix 

and

N*A = 0p.rim (4.62)

ii) Let m > r and Nr G Kmx(m~r)

Nr will be called a K-prime right annihilator 

(K-p.r.a) of A over K if Nr is a K-unimodular matrix
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and

A N r  =  ° p , m - r  (4.63)

Proposition (4.9) Let A G Rpxm(s), rankR(sj{A) = r <. min 

(p.m) and K be a PID. Then

i) if p > r, A has always a K-p.£.a N£ furthermore if N£, 

N£ are two K-p.£.a of A then

N£ E£ N£

ii) if m > r, A has always a K-p.r.a Nr furthermore if Nr, 

Nr are two K-p.r.a of A then

Nr E Nr

Proof

By the Smith-McMillan reduction of A over K we have

Û A V

S* 0

0 0

SA

By partitioning U, V the pxp, mxm k-unimodular matrices 

respectively according to the partitioning of SA we have

U 1 S* 0

A [V1 V2] =

—
1 

(N
D__

1

0 0
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Clearly U2, V2 are K-unimodular matrices and since U2 G

K(p-r)xp left unimodular, V2 G is right unimodular

with U2A = Op_rm , AV2 = Opm_r then the rows of U2 belong to 
0

Na and the columns of U2 belong to NAr. Given that NAr has

dimension m-r, U2 is a K-left unimodular basis matrix for

NAr and similarly V2 is a K-right unimodular basis matrix

for NAr. In fact, U2 is a basis matrix for the maximal K-

module m  NA and V2 is a basis matrix for the maximal K-

module in NAr. By definition any other N£ is a K-left 

, , , 0
unimodular basis matrix for NA and thus and U2 are left 

equivalent.

■

Corollary (4.5^ Let A G Rpxm(s) , rankR(3̂ {A} = r ^ min (p,m) 

and K be a PID.

i) If p>r then there exists a pair (P̂ , N̂ ) where P£ G

is a K-c.p. and N£ G K̂ p'r̂xp is a K-p.f.a of A over K 

such that

is K-unimodular.

ii) If m > r then there exists a pair (Qr , Nr) where

Qr G K1™“- is a K-r.p and Nr G Kmx(m'r) is a K-p.r.a of A 

over K such that

.pxp (4.65)

114



¥r = [Qr Nr] G Kmxm 

is K-unimodular

(4.66)

Proof

By (4.64) we have

u, S* 0 V,
i  ̂ -J 1

A S, V = S VA =A A
0 02 L 2

and

A t ^  V2] = U'1 SA = U SA = U2]

Clearly,

U1 A = S* V1, U2 A = 0 

AV: = Uj S*, A V2 = 0

S*

0

O

O

(4.67)

(4.68)

(4.69)

and thus: Ux is a K-c.p, U2 is a K-p.f.a; Vx is a K-r.p., 

and V2 is a K-p.r.a of A over K.

By contradiction = U is a K-unimodular and ir = V is 

also a K-unimodular matrix

Proposition (4.10) Let A G Rpxm(s), rankR(3){A) r ^ min 

(p,m) and K be a PID with P̂  a K-c.p, Qr a K-r.p, be a 

K-p.£.a and Nr be a K-p.r.a. of A over K.
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i) The general family of K-c.p of A is given by

(a) P£' = UP£ + YN£ . . . if p > r (4.70)

where U G K™1" arbitrary unimodular and Y G an

arbitrary matrix

(b) P£' = UP£ ... if p = r (4.71)

ii) The general family of K-r.p of A is given by

(a) Qr' = Qr V + NrX ... if m > r (4.72)

where V G Krar arbitrary unimodular and X G K̂ m"r̂xr 

an arbitrary matrix

(b) Qr 1 = QrV . . . if m = r (4.73)

Proof

(a) Let P£ , P£' be two K-c.p of A. Then 

P£A = L, , P£ 1A = V

Given that 1̂  E L/, then Lj. = UL/, U G unimodular 

and thus

V  = P£'A = u p£a

From the above condition we have that 

(P£' - UP£ )A = 0
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and thus if p > r then,

P£' - UP£ = YN£, Y £ arbitrary and if

p = r then,

P/' - UP£ = 0

(b) The proof of part (b) follows along similar lines.

■

The following result may also be stated.

Corollary (4.6) If (P£* , N£') is any pair of K-c.p, p.£.a 

and (Qr', Nr') is any pair of K-r.p. , p.r.a of A then

.i) The matrix

is K-unimodular. 

ii) The matrix

V  = [Qr' Nr' ] G K1“ ” (4.75)

is K-unimodular.

Proof

By corollary (4.5) there exists a pair (P£, N£) such that 

the matrix ¥£ is K-unimodular. A general pair may be
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expressed as

P£' = UP£ + yn£ , N£' = U'N£

where U, U' are K-unimodular and Y E Krx̂p'r̂ arbitrary. 

Then,

¥l
I

p.'
i

N. 1i

U Y

0 U'

UP£ + YN£

UN,

U

¥  ̂ given that ^ is by construction

K-unimodular and
U

0

Y

U'

is obviously unimodular

then the rest follows.

■

The notions of K-c.p, K-r.p. are generalizations of left, 

right inverses of a matrix A over K. Such inverses are 

considered next.
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4.3.3 Left, Right Inverses of a Rational Matrix

Definition C4.8) Let A G Rpxm(s) , rankj^fA} = r ^ min 

(p,m) , K be a PID and let Ai G Kpxm, A, G K1™*. Then

i) Ai will be called a K-left inverse (K-£.i) of A over 

K if

A i A = I: (4.76)

ii) A,, will be called a K-riaht inverse (K-r.i) of A over 

K if

A A, 1 = Ip (4.77)

The conditions under which a K-£.i, K-r.i exist are 

examined next. We first state the following result.

Lemma (4.2) [Pri 1] : Let A G Rpxm(s) , then

i) A left inverse A/ G Rmxp(s) (A/ A = Im) exists if and 

only if rankR^{A} = m.

ii) A right inverse A,.8 G Rpxm(s) (AArs = Ip) exists if and 

only if rankR(3)(A) = p.

■

Remark (4.8^: Any K-£.i. a / or any K-r.i. A^ of A is by 

definition also on inverse over the field R(s). Thus, by 

Lemma (4.2) is follows that a necessary but not sufficient 

condition for the existence of a / is that the rankR(g)(A) = 

m and for the existence of A^ is that the rankR(gj{A} = p.
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Theorem (4.3) : Let A G Rpxm(s), rankR ŝj{A} = r ^ min(p,m) 

and K be a PID. Then,

i) Necessary and sufficient condition for the existence 

of a K-left inverse A£4 of A over K is that A is K- 

right unimodular.

ii) Necessary and sufficient condition for the existence 

of a K-right inverse of A over K is that A is K- 

left unimodular.

Proof

By Remark (4.8) necessary and sufficient condition for the 

existence of A¿t is that rankR(ĝ {A} = m. Thus p ;> m and the 

g.l.r.d. decomposition of A over K is of the type

A = PTQ

where P G Kpxm, T G Rmxm(s) , Q G K1™™ and Q is K-unimodular. 

Since a / exists, then

A£‘ A = Al PTQ = Im = UTQ

where U = a / P G Kmxm. Clearly, UTQ must be K-unimodular 

and then both U and T must be unimodular. However, TQ = L,. 

and thus A is K-right unimodular. To prove the sufficiency 

assume A is K-right unimodular then,

A =  PLj.
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where 1̂  G Krnxm and K-unimodular. Choose a K-c.p. of A, 

say P£. Then,

P£A = PfPLf = ULj.

where U, L,. G K1™ ” and K-unimodular. By choosing 

A£‘ = (P£ A ) ' 1 P£

the result is established. The proof of the case for 

right inverses is similar.

The intimate link of K-£. i to K-c.p. and of the K-r.i. to 

the K-c.p., K-r.p. clearly suggest that the results stated 

for the K-c.p., K-r.p. carry over for the inverses defined 

on K-right unimodular, K-left unimodular matrices. The 

family of inverses is characterised by the following 

result.

Corollary (4.7): Let A G Rpxm(s) , rankR(s){A} = r <, min(p,m) 

and K be a PID. Then,

i) If A is a K-right unimodular then the K-£.i exist or 

else the family is defined by

A£* = (P^ ) ' 1 P£ + YN£ (6.49)

where P£ G K1™* is a K-c.p., N£ G K(p'm)xm is a K-p.l.a 

and Y G k^ ^ - p) is an arbitrary matrix.

ii) If A is a K-left unimodular, then the K-r.i exists
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and the family is given by

V  = Qr (AQr ) _1 + NrX (4.80)

where Qr G K™*13 is a K-r.p. , Nr G K-p.r.a and 

X G K(m'p)xp is an arbitrary matrix.

Proof

(P£A ) _1 is clearly a K-l.i. If A£fc is another inverse then 

A/ A = { (P£A) 1 P£) A = Im and thus {A£‘ - (P£A)'X P£}A = 0 

from which

A£* = (P£ A )* 1 P£ + YN£

The case for right inverses is similar.

Remark (4.9) : A matrix A G Rpxm(s) possesses both inverses 

(left and right) if and only if p = m and it is K- 

unimodular. In this case the inverses are uniquely 

defined and A£k = = A"1. In the case where p ^ m then

the matrix A has only one of the two types of inverse 

defined above. Since a K-f.r.i is a special case of a K- 

c.p. and a K-r.i. is a special case of a K-r.p. we may 

state.

Remark (4.10):

i) Let A G Rpxm(s) be a K-right unimodular A£fc be a 

K-Z. i and N£ a K-p.f.a of A over K. Then,
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and K-unimodular$l G KPXP

ii) Let A G Rpxm(s) be a K-left unimodular, Art be a 

K-r.i and Nr a K-p.r.a of A over K. Then,

$r = [Art Nr] G K™*™ and K-unimodular.

■

4.4 Summary of Matrix Structure over a PIP

For control systems applications the rings of importance 

and the principal ideal domains R[s], Rpr(s) and R^s), 

polynomials, proper rational functions and proper and 

stable rational functions respectively. A summary of the 

structure and properties of these matrices is given below 

and the analogies between the rings are highlighted.
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Table 4.1 Comparison between Properties of Euclidean Rings Rfsl, Rpr..(s )  a n d

rv)-p*

Ring: R[s) Polynomials Ring: R (s)-Proper Rational Functions Ring: R. (s)-Proper and D-Stable Rational Functions

a (s )e  R[s] t ( s ) e  Rpp(s)

J

t (s )e  R ys)

> 0 , a(s) 0 > 0 , t ( s ) 0 > 0 , t ( s ) 0

deg a(s)

- ® , a(s) = 0

¿ „ (tfs ))

+ “  , t (s ) = 0

t(s ))

+ “  , t(s) = 0

Polynomials may have: Proper rational functions may have: Proper and 11 stable rational functions may have:

f.z . if deg (•) > 0 f.z . f.z .

no iz. i.z .  if  Sa (•) > 0 i.z .  if  sa (•) > 0

no f.p. f.p. f.p . w ill have outside il (property)

i.p . if  deg (•) > 0 no i.p . (property) no i.p . property

# f.z . = # i.p . # i.z .  = # f.p. - #f.z. # i.z .  = #f.p. - #f.z.

Units in Rls] are constants in R Units in R (s) are biproper rational 
functions.

Units in Rp(s) are biproper rational functions 
with no fhp. or i.z .  in Q.

deg a(s) = 0 Sa(. t (s ))  = 0 i$J(t (s ))  = 0



Cont . . .

rocn

Units in R[s] have: 

no f.z . 

no i . z. 

no f.p. 

no i.p .

Matrices T(s) Rpxm[s]

degree T(s) = max. (degree among 
max. order non zero 
minors)

deg. T(s) > 0

Polynomial matrices: 

may have f.z . 

may have i.z .

have no f.p. 

may have i.p .

Units in Rpr (s) have: 

may have f.z .

have no i.z . 

may have f.p. 

have no i.p .

# f.z . = # f.p.

Matrices T(s) Rprpxm(s)

¿„(T) = min. (£„,(•) among the 
£„(•) of a ll max order non zero 
minors)

SJT(s)) > 0

Proper rational matrices: 

may have f.z . 

may have i.z . 

may have f.p. 

have no i.p .

Units in R (s) have:
y

may have f.z . outside il 

have no i .z. 

may have f.p . outside D 

have no i.p .

# f.z . = # f.p.

Matrices T(s) R_pxm(s)
----- _P
<Sp(T) = min(5p(») among the 
<s£(*) of a ll max. order non zero 
minors)

ip (T (s )) > 0

Proper and n-stable rational matrices 

may have f.z . 

may have i . z.

may have f.p . outside 11 

have no i.p .



Cont . . .

R[s]-unimodular matrices (p = m) Rpr (s)-unimodular matrices (p = m biproper) R^(s)-unimodular matrices (p = m biproper)

degree T(s) = 0 ¿„(T fs)) = 0 fy (T (s)) = 0

have no f.z . may have f.z . may have f.z . outside fl

may have i .z. have no i . z. have no i.z .

have no f.p. may have f.p. may have f.p. outside il

may have i.p . have no i.p . have no i.p .

# i . z. = # i . p. # f.z . = # f.p. # f.z . = # f.p.

Modules over the rinq RCs]: Modules over the rinq R (s ): Modules over the rinq R ,(s):

T j(s ) Rpxm[s], p > m, rankR(s) T j ( s )  RprPxm(s), p > m, rankR(s) T ( s )  R ^ i s ) .  p > m, rankR(s)

T j(s) = m is a proper and
(1-stable rational basis of a rational vector

T^Cs) = m is a polynomial
basis of a rational vector space T(s)

T-(s) = m is a proper rational 
basis of a rational vector space T(s)

space T(s)

If  TR].(s) Rmxm[s] (non unimodular) 
right divisor of T-(s) i.e

If  TR)-(s) R mxm(s) (non biproper) right 
divisor of T-(s) i.e .

If  Tn-<s ) Rj,mxm(s) (non biproper) right 
divisor of T-(s) i.e .

V S> = Ti + 1<S)-TRi<S) 1,(8 ) = T j + 1 (s) -TR]- (s) Ti<s) = Ti+i(s ) .T Rj(s)

and M the R[s]-module generated 
by T j(s) then

and M the R (s)-module generated 
by T - ( s ) then

and M the RjJ(s)-module generated 
by T-(s) then

Mi Mi +1 if M,. Mf+1 if Mi Mi+1 if

deg Tj > deg Tj > . . .  > deg T* 5 ,(1 ^  > 5;)(T2) > . . .  > (T*)

and T* is R [s]-le ft unimodular then: and T* is Rp|.(s )-le ft  unimodular then: and T* is R^(s)-left unimodular then:



C o n t __

M1 M2 . . .  M* M1 M2 . . .  M* M1 M2 . . .  M*

M* is the maximal R[s]-module 
generated by the columns of the 
R [s]-left unimodular matrix

M* is the maximal R (s)-module 
generated by the columns of the 
R (s )- le ft  unimodular matrix 
T* and TGR is  the greatest right 
divisor at s = ® of Tj i.e .

M* is the maximal R^(s)-module 
generated by the columns of the 
Rj.(s)-left unimodular matrix 
T* and TgR is  the greatest right 
divisor in of T1 i.e .

T* and TG„ is the greatest right 
divisor of i.e .

T1 = t*tgr T1 = t*tgr T1 = t*tgr

r̂ o



Summary of divisors projectors annihilators and inverses

of a matrix over a principal Ideal domain K

1
| K-extended left divisor T G Kpxm, rankg^CT) = p < min (p,m)

(K-e.4.d.) 4  G K pxq is a K-e.l.d of T if

T = L1T0

K-qreatest extended left divisor T G Kpxm, rank^gjCT) - p < min (p,m)

(IC-g.e.i.d) 4  G Kpxq is a K-g.e.£.d of T if

T = LlT0 > 4  is  a K-e.i.d. of T

and

any other K-e.£.d of T, Lj
L1 = l 2K >

is a K-e.i.d. of 4
K-qreatest common extended left divisor I  ^  Kpxmi  ̂ i £   ̂ be a set of matrices

(K -g .c.e.i.d) L y  G i pxq is a K-g.c.e.t.d of T if

T = L̂ ^Tio > 4 l  is  a K -e.i.d. of a ll Tj

and

any other K-e.£.d of T-, 4 2
Lil = k 2K>

is  a K -e.i.d. of

The set is K-left coprirne if  the K -g.c.e.l.d 
of the set is K-unimodular.

K-row projector T G  HP™, r a n k e d )  = p < min (p,m)

(K -r.p .) Rr G K ™ ', rankR(s) CRr) = p

Rr is a K-r.p. of T if

TRr = L,

4  is a K-g.e.f.d. of T.
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K-prime left annihilator 

(K -p .d a.)

T G Kpxm, ranked) = m

Ne E K(P-m)xP

is  a K -p.l.a. of T if

N«T ~ °(p-m),m

and

is K-left unimodular

K-left inverse 

(K -t .i.)

T E K pxm, r a n k e d )  = p < min (p,m) 

Tt ‘ E  Kmxp

Tt 4 is a K - l. i.  of T if

t / t  =

Tj is  K-left unimodular
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CHAPTER 5

SOLUTION OF MATRIX EQUATIONS OVER 

A PRINCIPAL IDEAL DOMAIN



5.1 Introduction

Many control systems problems are reduced to the study of 

matrix equations of the type

AX = B (5.1)

or

YA' = B' (5.2)

where the given matrices A, B, A', B' are in general 

rational matrices and the solution matrices X,Y are to be 

determined from a given Euclidean ring K.

Notice that the equation YA' = B' is the dual of AX = B 

and hence results stated for one equation may readily be 

derived for the other by transposition. Results are 

established here for the case AX = B.

In recent years it has become clear that from a control 

synthesis view point the rings of importance for control 

applications are the Euclidean rings. R[s], Rpr(s) and 

R,(s). Continuing work by many researchers has highlighted 

the special aspects of the set Rp(s) of proper and stable 

rational functions [(section 2.3), Vid 1, Var 8 , Var 3]. 

In recent algebraic synthesis methods the importance of 

the set Rp(s) has established its use as a powerful 

synthesis tool for the exposition and solution of many 

control problems. It is useful then, in the examples, to 

highlight the solution of matrix equations in this section 

to specialise the ring K to be the set Rp(s) and so make
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use of the P.I.D. properties of R,(s) although, the 

analysis equally applies to any other Principal Ideal 

Domain K.

Equations of the type (5.1 and (5.2) have been discussed 

in the literature [Rot 1, Kuc 1, Per 2]. The present 

attempt is to provide a unifying approach for their 

analysis as well as establish deeper results concerning 

solvability. The machinery developed in the previous 

section will be used and in the following it will be 

assumed that A G Rpxm(s), B G Rpxr(s), are given rational 

matrices and X G K1™" where K is a Euclidean ring, such 

that R(s) is the field of fractions of K. Furthermore we 

shall denote by

Mac, Mbc, the following K-modules

Mac A col.spanK{A}, MBC A col.spanK{B} (5.3)

and let

MA = rankR(s){A) ^ (p,m)

Mb = rankR(s)(B ) * (Pf*-)

Recall from section 2 that since K is a P.I.D. the K- 

modules MAC, MBC are finitely generated and free modules 

with ranks respectively fiA, /zB, [Mar, 1].

The analysis begins with a statement which is a 

generalisation of (5.1 (5.2) over a field.
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5.2 General Results on Solvability Conditions of Matrix

Equations

Theorem (5.1): Let K be a PID. Then, the equation AX = B 

has a solution over K if and only if

Mbc C Mac (5.4)

Proof

Assume that X G K1™“- exists

If A [a^, , an]

® — [ Ml t • • • t 1

then AX = B implies that

m
b . = £ x . . a .

j=l ^
for V i G r (5.5)

thus since every column b; of B may be expressed as a 

linear combination of the columns of A the necessity is 

established i.e MBC C MAC.

To prove the sufficiency assume that MBC C MAC then every 

column b; of B may be written in the form of (5.5) for same 

Xjj G K and thus the result follows.

Note that if /¿A < min (p,m) then (5.5) is not unique since
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b; are not linearly independent.

Now if M is a free K-module with a basis {sx, sm] and

W is a submodule of M then W is also free with rank r (r  ̂

m) [Mar 1] with this property we may then state.

Remark (5.1): A necessary condition for equation (5.1)

to have a solution is that /¿B ^ /¿A

■

This module inclusion property (5.4) forms the basis for 

our analysis. In the following, conditions for the 

characterisation of these properties will be derived.

In the previous chapter we defined the notion of non 

square matrix divisors. The following result, due to 

Pernebo [Per 1], defines solutions of matrix equations 

using the non square divisors of a matrix over a PID K.

Theorem (5.2) [Per 1]: Let K be a P.I.D. Then,

the equation AX = B has a solution X over K if and only if 

the g.e.l.d. of A is also an e.l.d. of B.
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Proof

Let L¿ be a g.e.l.d. of A. Then 

^ =

If a solution exists then

B = AX = L£ AgX and thus

is an e.l.d. of B, this proves the necessity. To prove 

the sufficiency assume that L£ is the g.e.l.d. of A and 

that is an e.l.d of B. By Theorem (4.1.) may be 

expressed as = AK for some appropriate K. Furthermore 

B = L^Bq and thus B = AKB0. By taking X = KB0 the solution 

is defined.

Notice that the above result is almost identical in nature 

to the previous result in fact from the analysis of the 

previous section it is clear that the columns of a 

g.e.l.d define a basis for the column module of A, MAC. 

The condition that the g.e.l.d. of A is also an e.l.d. of 

B implies that the B = L̂ Bg and thus the column module of 

B, Mbc is covered by ML£C = MAC. Thus Theorem (5.2) is an 

alternative formulation of the Central Theorem (5.1).

5.2.1 Characterisation of Families of Solutions

If a solution of (5.1) (5.2) exists then it is important

to determine if the family of solutions can be generated.
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The following corollary provides a characterization of the 

family whenever a solution is found to exist.

Corollary (5.1): Let K be a P.I.D. Then,

If equation AX = B has a particular solution X0 over K then 

the family of solutions is characterized by the following 

properties.

(a) If NAr = {0} then X0 is uniquely defined

(b) If NAr * {0} and Nr G k mx(m'p) is a p.r.a of A, then the 

whole family is defined by

X = X0 + NrK, K G K(m"p)xr arbitrary (5.6)

Proof

Let X and X0 be the solutions of AX = B. Then 

B = AX = AX0 and thus

A(X - X0) = 0 (5.7)

(i) If N/ = {0} then X - X0 = 0

ie. X = X0 and the solution is uniquely defined.

(ii) If NAr (0) choose a p.r.a. of A as a basis of NAr 

and thus (X - X0) = NrK

X = X0 + NrK, K G Kmx(m'p) arbitrary.

■
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We now give a further result on the characterization of 

the family of solutions. This result follows directly 

from corollary (5.2) and the proof of Theorem (5.2).

Corollary f5.2): Let K be a P.I.D.

Let Rj. be a r.p, of A over K and assume that B may be 

factorized as B = L£B0

The equation AX = B has a solution of the type

X0 = Rj-Bq (5.8)

This solution is uniquely defined if NAr = {0}

If NA,r {0} and Nr is a p.r.a of A then the whole family 

of solutions is given by

X = RrB0 = + NrK (5.9)

where K E K̂ m‘p̂xr is arbitrary.

Proof

By definition L̂  = ARj. and since B = L̂ Bg a solution exists. 

By multiplying on the right by B0 we have

B = L£B0 = ARj.Bg = AX

and thus X0 = Rj.Bg is a particular solution. The remainder 

of the proof is similar to that of Corollary (5.2).

■
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The results so far establish the conditions under which a 

solution exists and whenever a solution exists then define 

the family of solutions. Notice however that these are 

not readily verifiable and simpler conditions are sought.

5.2.2 A Practical Approach to Solvability Conditions

In the search for simple criteria to determine solubility 

of the above defined matrix equations the source of 

difficulty is determining the conditions under which the 

matrix B may be factorized as B = L^Bq. A useful result is 

given next.

Theorem (5.3): Let K be a P.I.D. Then,

The equation AX = B has a solution X over K if and only if 

matrices

[A, B] and [A,0pr] 

are right equivalent.

Proof

If a solution X exists

[A , B] = [A, AX]

= [A, 0 ]1 P,rJ

= CA, 0plr] I

then,

m

0

X

I
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Clearly Ur E K(mxr)x(mxr) is unimodular and thus 

[A, B] Er [A, 0p r] 

establishes the necessity.

To prove the sufficiency assume the above equivalence, 

then there exists a unimodular matrix Ur over K such that

[A,B] = [A, 0pr] Ur

[A, 0 ]L P,rJ U 1 U2

U3 U4

(5.10a)

where Ur is partitioned according to the partition of 

[A, 0 ]. By equation (5.10a) we have

A = AU: (5.10b)

B = AU2 (5.10c )

Note that U2 E Kmxr and thus by setting X = U2 a solution 

exists.

Corollary (5.3): Let K be a P.I.D. Then,

Let [A, B] Er [A, 0pr] and let

Ur E K(m'r)x(m-r) be an unimodular matrix over K for which
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[A,B] = [A, 0. ] U.r [A, 0 .
P»r

u
1

u2

U3 U4

(5.11)

Then equation AX = B has a solution and a particular 

solution is defined by X0 = U2.

■

An alternative way of expressing the result of Theorem 

(5.3) is then as follows.

Corollary (5.4): Let K be a P.I.D. Then,

Let Ahc be the column Hermite McMillan form of A. The 

equation AX = B has a solution over K if and only if the 

column Hermite McMillan of [A,B] is

Necessary and sufficient conditions for [A,B] Er [A, 0pr] 

is that they have the same column Hermite form. Thus if 

[A ,B] Er [A, 0pr] either of the two matrices may be used to 

determine the column Hermite form. Thus we start from [A, 

0p r] and let U E K™*"1 be the unimodular matrix over K for 

which AU = Ahc. Then

(5.12)

Proof
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■ V '  °p,r]

which is the column Hermite form of [A, O ] and thus of 

[A,B]. The necessity is obvious.

[A, 0 ]
L P,rJ

U

0

0

1

The above result may be used for the derivation of a more 

practical check for solvability of AX = B (YA1 = B'). 

Attention is now focused on a more direct approach to 

solvability involving the machinery developed in section 

4 .

5.3 A Direct Approach to Solvability of Matrix Equations 

over a PIP Ring K

Definition (5.1);

Let A E Rpxm(s) and the rankR^{A} = /iA , nA <. min (p,m) and 

K be a P.I.D.

A will be called left regular if p = /zA and right-regular 

if m = |iA otherwise if p > nA then it will be called left 

irregular and if m > /iA it will be called right irregular. 

If a matrix is both left and right regular it will be 

called regular.
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Remark (5.2)

If A is left regular matrix, then NA = {0} and any K c.p. 

is a K-unimodular matrix. If A is left irregular matrix 

then NA£ { 0} and a K-p. £ . a , NAr = { 0} and a K-p. £ . a 

exists. Similarly if A is right regular matrix then N^r = 

{0} and any K-r.p is K-unimodular matrix. If A is right 

irregular matrix then NAr ^ {0} and a K-p.r.a exists.

Remark (5.3)

If Ii£ is a K-g.e.l.d. of A, then L(_ is right regular. 

Similarly if 1̂  is a K-g.e.r.d. of A then Lj. is left 

regular. If A is left regular then A is also a K-g.e.r.d. 

of itself. Similarly if A is right regular then, A is 

also a K g.e.l.d. of itself.

Proposition (5.1)

Let A G Rpxm(s) be a left irregular matrix PA£ G KmAxP be a 

K-c.p and NA£ G k^'mA x̂P be a K-p.£.a of A. Then equation 

AX = B has a solution if and only if

Na£B = 0  (5.13)

and the following equation has a solution

Pa£AX = Pa£B (5.14)
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Proof

The matrix

N,

e kpxp

is K-unimodular and thus

AX = B «— > «— > AX = B

N, N,

we have

PA£ AX = PA£B and Na£AX = 0 = NA£B

Given that the steps are reversible then the proof of the 

proposition is established.

Corollary C5.5)

. . ! tIf A is left-irregular and PA , PA are two K-c.p. and if

equation (5.13) is satisfied then equation (5.14) which

• L - lcorresponds to the two different PA , PA K-c.p., are 

equivalent.
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Proof

By proposition (4.10) the general family of K-c.p is given 

by

Pa = QPa +

where U is K-unimodular and Y arbitrary.

Thus,

Pa£B = (UPa£ + YNa£)AX = UPa£AX + YNa£AX
1---1----1
= 0

= u p a£a x = u p a£b + YNa£B = upa£ b

= 0

Thus

pa£b = u p a£b = u p a£a x

But the above equation is obtained by multiplying 

pa£b = p/ a x

on the left by the K-unimodular U

■

Note that Pa£A = LAr where LAr is a K-g.e.r.d of A. In the

e
case where A is left-irregular. PA = U where U is any K-

t
unimodular m  fact we may also assume that PA = I^A m  

this case.

The analysis so far may be summarized by the following 

remarks.
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Remarks (5.4)

The solvability of AX = B is reduced to the solvability 

of

L/X = Pa£B (5.15)

where LAr is a K-g.e.r.d of A, that corresponds to the K- 

0
c.p. PA of A. Especially, if

. . L . 1 •(a) A is left irregular, PA is a K-c.p. and NA is a K-

p.f.a, then LAr = Pa Â and equation (5.15) together 

with

Na£B = 0  (5.16)

are equivalent to the original set of equations.

p
(b) A is left regular, PA may be chosen as Ip and thus 

LAr = A and PA£B = B.

A similar remark may be stated for the solvability of YA' 

= B' .

Remark (5.5)

The solvability of the equation YA' = B' is reduced to the 

solvability of

YLa,£ = B'RA,r (5.17)

where LA/ is a K-g.e.l.d of A', that corresponds to the K- 

r.p. RA,r of A' .
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Especially,

(d) If A' is right irregular, RA,r is a K-r.p. and NA,r is
p

a K-p.r.a then, LA, = A'RA,r and equation (5.15) 

together with

B'NA,r = 0  (5.18)

are equivalent to the original set of matrices.

The solvability of the original set of equations AX = B 

(YA' = B') is thus reduced to the study of the solvability 

of the equations

LArX = Pa£B (5.19)

where

LAr G KMxm, ¡iK <. m, Pa£ E KmAxP

and with

rankR(s) {LAr} -

Note that LAr may be factorised as

L/ = TR (5.20)

where T E kmAx,jA is a K-g.l.r.d of A and R is a K-left 

unimodular.
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Proposition (5.2):

Let LAr G RMAxm(s) , fiA <. m be a K-g.e.r.d. of A, RAr G Kmx,lA 

be a K-r.p. of A and let LAr RAr = TA be the corresponding 

K-g.l.r.d of A.

a
Equation LAr X = PA B has a solution if and only if the 

following equation has a solution

taX = Pa£B (5.21)

where X is related to X in the following way:

(a) If A is right regular, /¿A = m then RAr may be chosen 

to be RAr = Im and thus LAr RAr = LAr = TA and X = X G

j^ u A x m

(b) If A is right irregular, /xA < m and NAr G is

a K-p.r.a of A, then

X = RArX + NAr X' (5.22)

where X' G «(m'M )xr is arbitrary.

Proof

(a) If A is right regular then nA = m and RAr may be 

chosen to be Im and thus LAr RAr = LAr = TA and X = X

(b) If A is right irregular then a pair RA,r = NAr of a K- 

r.p. and a K-p.r.a. may be defined and the matrix

= [ra"/ NAr] G K"“™ and K-unimodular
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Define the transformation

x = tRAr NAr] X

X'

o
and substitute in LAr X = PA B. Then

£ r r r —
P, B = L- [RA N / ]  XA A L A A J

r* r* — r* T
L, R, X + L„ X'A A A A

X'

Given that LAr RAr = TA and LAr NAr = 0 we have

Pa£B = TaX

The transformations are reversible and the result is 

established.

■

From the above analysis it is clear that the solvability 

of the original equations is reduced to the solvability of 

the equation

The general results derived so far may be applied to the 

above equations. We summarise the analysis by stating the 

following results.

t ax = pa£b (5.23)
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Theorem f 5.4):

Let A G Rpxm(s), = rankR^{A} ^ min (p,m) and K be a 

P.I.D.

VA G kmAxP be a K-c.p. and RAr be a K-r.p.,

Ta = PA  ̂ARAr be a /c-g.l.r.d. of A.

(i) If A is left-right regular (p = m = /zA) then the 

equation AX = B has a solution if and only if A is a 

left divisor of B. If a solution exists then it is 

uniquely defined.

(ii) If A is left regular (p = nK) , but right irregular (m 

> /iA) , then equation AX = B has a solution if and only 

if Ta is a left divisor of B. If a solution exists 

then a family of solutions exists and it is defined 

by

X = RAr X + NAr X'

where X is a particular solution of 

Ta X = B

NAr G Kmx(m~MA) is a K-p.r.a of A and 

X' G /c(m"ilA)xr is arbitrary.
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(iii) If A is left-irregular (p > ¿¿A) , then equation

AX = B has a solution if and only if

Na£B = 0  (5.26)

where NA  ̂E k(p'mA)xP j_s a K-p.l.a. of A and TA is a left 

. . Ldivisor of Pa B. If a solution exists then

(a) If A is right regular (m = fiA) then the solution is 

unique and is defined by solving the equation

TaX = Pa£ B (5.27)

(b) If A is right irregular (m > /¿A) then a family of 

solutions exists and this family is defined by

X = RAr X + NAr X' (5.28)

where X is a particular solution of

Ta X = Pa£ B (5.29)

N/ E Kmx(m'M) is a K-p.r.a. of A

X' E K(m‘M)xr is arbitrary.

■

Proof

The result immediately follows by propositions (5.1),

(5.2), corollary (5.5) and remarks (5.4), (5.5). Given

. • • — ithat m  all cases the central equation is TA X = PA B, 

then by Theorem (5.2) the result follows. Note that since

149



Ta is left-right regular then the notion of K-g.e.l.r.d 

coincides with the matrix itself.

A similar result may be stated for the equation YA' = B'
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CHAPTER 6

DECENTRALIZED DIAGONAL STABILIZATION: 

A FRACTIONAL REPRESENTATION APPROACH



6.1 Introduction

A special case of decentralized stabilization is the 

problem of diagonal stabilization of a linear invariant 

system P. In this special case the problem is to determine 

a stabilizing compensator C = diag{C;} such that upon 

interconnection of the feedback loop u = -Cy, where u is 

the input and y the output of P. The closed loop system 

becomes internally stable ie. P is internally stabilized 

by C. Alternatively the internal stability reguirement may 

be expressed in terms of transfer matrices (section 3.2) 

thus: the closed loop system is internally stable if (I + 

PC) is non singular and the poles of the transfer matrix 

(Eqn 3.7) H(P,C) where

H(P,C)

(I+PC)

C(I+PC)

-P(I+CP)

(I+CP)

are stable [Des 3].

The diagonal stabilization of P is possible if and only if 

P is free of unstable fixed modes under diagonal output 

feedback [Wan 1] . This fundamental result of decentralized 

stabilization highlights the important role and the need 

for characterisation of fixed modes. Various researchers 

have provided such characterisations. [Wan 1, Cor 2, 

And 1, And 2, Vis 1, Dav 3].
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The objective of this section is to give new necessary and 

sufficient conditions for the solution of the

decentralized stabilization problem using diagonal dynamic 

compensators. The notion of cyclicity is introduced using 

the unique Hermite form of a matrix defined over the ring 

of proper and stable rational functions. The existence and 

characterisation of solutions is intimately related to 

systems that exhibited the property of cyclicity.

It is useful to begin this section with a brief outline of 

the essential difference between centralized and

decentralized structure and to review the decentralized 

stabilization problem to date.

6.2 Decentralized Control Structure and Stabilization

6.2.1 Decentralized Control

Control system design techniques such as linear quadratic 

LQ (optimal) and pole-placement design use state feedback 

to improve system behaviour. It is often impossible to 

instrument a system to the extent required for full state 

feedback and to overcome this difficulty techniques such 

as linear-quadratic Gaussian (LQG), observer based control 

and time-domain compensator design have been evolved. 

However, a key feature of all these techniques is that a 

design results in which every sensor output affects every 

actuator input. We term this situation Centralized 

Control and the structure of such a scheme is shown in
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Fig.6.1 where the interaction between sensors and 

actuators results in a coupling between the controllers.

Information Link

Fig. 6.1 Centralized Control System Structure

The disadvantage of centralized control arises in many 

systems but particularly in large scale systems through 

the impossibility to incorporate so many feedback loops in 

the design. To overcome this difficulty Decentralized 

Control theory has developed [San 1]. The basic feature 

of decentralized control is the restriction on information 

transmission between certain groups of sensors and 

actuators as shown in Fig. 6.2 below. Notice that only 

state vector Xj is used to form control law u1 and 

similarly only state vector X2 forms control law u2. Thus 

decentralized control refers to the implemented control 

structure and not the control law which may be designed in 

a completely centralized way.
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Fig. 6.2 Decentralized Control Structure

6.2.2 Decentralized Stabilization and Pole Placement 

It is known that the poles of a controllable linear system 

can be arbitrarily assigned (subject to complex pole-

pairing constraints) by state feedback [Kai 1] . This 

fundamental result has been extended to show that the 

closed loop poles of a completely controllable and 

observable system can be freely assigned using a dynamic 

compensator of defined order [Bra 1]. These results have 

been used as a basis of practical synthesis procedures.

Although several authors [McF 1, Aok 1, Aok 2, Cor 3] had 

investigated the generalization of the pole placement 

question under the restriction of decentralized feedback 

control the most authoritative results are those of Wang 

and Davison [Wan 1], and Corfmat and Morse [Cor 1, Cor 2] 

and form the basis of synthesis methods for the design of
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stabilizing controllers. The procedure of Wang and Davison 

[Wan 1] in state space setting consists of sequentially 

moving unstable modes to the defined stability region 

using feedback around each channel. This procedure can 

be tedious and does not yield an explicit expression for 

the stabilizing compensator. Corfmat and Morse [Cor 1] 

define a method for "strongly connected" systems to make 

the system stabilizable and detectable through the 

remaining channel. An alternative version of this method 

is given by Vidyasagar and Viswanadham [Vis 1]. A recent 

synthesis method [Ozg 1] provides a procedure for the 

construction of stabilizing compensator using simple 

polynomial algebra and yields an explicit expression for 

the compensator transfer functions. It is applicable to 

not necessarily strongly connected systems and to systems 

of arbitrary causality degree.

6.2.3 Decentralized Stabilization Problem 

In Chapter 3 (section 3.2) the decentralized stabilization 

problem was formulated and the problem reduced to the 

solution of the matrix diophantine equation.

Ax diag (Dj} + Bj block diag {Nj} = U (6.1a)

over the ring of proper and stable rational functions R (s) 

and is referred to as the Decentralized Diophantine 

Equation (DDE).

Where (A1,B1) is an R^(s)-left coprime MFD of the plant P.
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P = A1"1 Bi; Aj G R/xp(s); Bx G R/Xm(s), P S Rpxm(s)

Partitioning (A1( Bx) according to the block structure of 

diag {D;} , block diag {N;} we have

(6 .1b)

from which

Aii Dj +  B :i Nj =  Uj

with

Di e Rp(s) , Nj G R,(s) , Ai; G R,(s) , Bi; G R,(s) and U; G R,(s) 

is part of an arbitrary Rp(s)-left unimodular matrix.

The decentralized stabilization problem is then defined to 

be the problem of determining precompensators C of the 

type

=  N 2 D 2 _ 1  ( 6 . 1 c )

(where Cj = N; Dj' 1 is an R^(s) MFD of the diagonal 

controller) such that the closed loop system (Fig 3.1) 

under the feedback
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üi = C;{Yi -  W;} (6 .Id)

is closed loop stable.

6.2.4 Stabilization by Permutation of Diagonal 

Controllers

Stabilization by direct connection of corresponding inputs 

to outputs may not always be possible and, or produce the 

optimum performance of the control system. This problem is 

characterised by system design indicators [Mac 2] which 

may be used during the design phase to evaluate the merits 

of a particular control scheme. Consider the control 

scheme shown in figure 6 . 1  below

PLANT

Fig. 6.3 Feedback Control Scheme: Diagonal Controller
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The closed loop transfer function matrix H(P,C) is given 

by Eqn (3.20) as:

where

P = D/ 1 Np, Np G Rpmxp ( s) ; Dp ^ “ “ (s)

Cdiag = Nc Dc"1, Nc G R/xm(s) ; Dc G (s)

Cdiag

The stabilization equation reduces to Eqn. (6.1a)

Dp Dc + Np Nc = U, U G Rpmxm(s) , unimodular

and the diagonal controllers are corrected 

respective input-output channels.

( 6 . 2 )

between
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Consider now the control shown in figure 6.4 below

PLANT

Fig. 6.4 Feedback Control Scheme: Permutation of Diagonal 
Controllers

The closed loop transfer function matrix is given by Eqn 

(3.20) as I + PCdiag, where

Cdiag
c . •l

ci '

'l.

l ' o *c

I + Dp 1 Np I Nc Dc' 1

Dp Dc + Np I Dc = U

(6.3)

(6.4)

159



where U G R/,mxm(s) , unimodular

I G R̂ mxin (s) ' unimodular matrix describing the 

interconnections between inputs and outputs and is known 

as the diagonal controller permutation matrix.

6.3 Stabilization of mxm plants with diagonal controller

Consider a plant transfer function P = Aj"1 Bj G Rmxm(s) , 

where A1# B: is an Rp (s) -coprime pair and let C = 

diag{ c1, . . . , cm } = N2 Dj’ 1 be an Rp(s) coprime MFD of the 

diagonal controller, where c; = n; dj’1, i G m, is an Rp(s)- 

coprime MFD of c;. Then N2 = diag{nlf . . . ,nm ), D2 = 

diag{dlr . . . , dm } . For stabilization of the plant by the 

diagonal controller C we must have (eqn. 6.1):

^ 1  ^ 2  ®1 ^ 2  ^  /
(6.5)

where U is an R^-unimodular matrix. Let us partition Alr Bx 

in terms of columns, then (6.5) yields

. . a 1—mJ dl 0 nl 0
d_ n„

2 2
. •

0 * d 0 *nm_ m_

= [H1( H2, u ] —m J
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or equivalently,

u .
—1

i=l, 2 , . . . , in (6.6)

A P.l

where E Rpmx2 (s) are matrices defined by the plant and

1x2  •the qj E R, (s) characterise the SISO controllers.

Remark (6.1) : The solvability of (6.5) is independent of 

the particular R̂, (s)-coprime MFD of the plant, in fact, if

(6.5) is solvable for the given (Ax, Bx) pair, then any 

other pair is defined by (A:, Bx) = (UL Alf UL Bx) , where UL 

E R/,mxm(s) , unimodular and thus the problem is solvable for 

the new pair (A, B) also.

Thus the set of matrices {P;, i E m) is characteristic of 

the plant, since for any other coprime MFD of the plant 

the corresponding set is (UL P;, i E m, UL E R 1̂11X111 (s), 

unimodular). This leads to the following obvious result.

Proposition (6.1): The sets {P;, i E m) , {p^, i E m) of 

matrices associated with two different R̂, (s)-coprime MFD' s 

of the plant P are Rp(s)-left equivalent. That is, there 

exists UL E Rpmxm(s) , unimodular such that

■

(6.7)
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In the following we shall use the above property for the 

development of solvability criteria, which are independent 

from the particular MFD. A set /> A {Pi( i E m) will be 

referred to as a representative decentralized matrix (RDM) 

set of the plant.

6.3.1 Cyclic and Non-Cvclic sets of Matrices

Before we proceed with the above solvability conditions we

define the notion of cyclicity.

Definition (6.1) : Let T E Rpmxk (s) , m ^ k , rankR^ {T } = k 

and let S(T) be the Smith form of T over Rp(s). Then,

(i) T will be called cyclic if,

1 0 J- -]

1 .
S* (T)

0 * 1 =

f(s)

0 0

(6.8)

i.e the first k - 1  invariant functions are trivial and 

f(s) E Rp(s)-{0}; otherwise, ie. more than one 

invariant function is non trivial, it will be called 

noncvclic.
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(ii) T will be called complete. if it is cyclic and f(s)

= 1 .  In this case S*(T) = Ik and T has no zeros in

R,(s) •

■

Note that in the present study it is assumed that the 

plant is non degenerate (|p| ^ 0) and thus in any RDM set 

p = {p;, i G m) the matrices P; have full rank.

Definition (6.2) : An RDM set p - (P;, i G m) of the plant 

P will be called cyclic if for all i G m the matrices P; 

are cyclic; if at least one of the P;' s is non cyclic, then 

p will be called non-cyclic. The set p will be called 

complete, if for all i G m, the matrices P; are complete.

■

Let us denote by F(P;) A {) fxi (s) , fi; (s)/f2i (s) } the 

invariant functions of P; and by F (p) A (F(P1);...; F(Pm)} 

the ordered set of invariant functions of p; furthermore, 

let Q = [P;; ...; Pm ] and

R(p) A R,,(s)-row module {Q} (6.9)

By proposition (6.1) it is readily shown that:

Proposition (6.2) Let p and p ' be two RDM sets associated 

with the plant P. Then,

(i) F (p) = F(p’)

(ii) R(p) = R(p’)
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Because of the above property the set F (p) and the module 

R (p) are invariants of the plant p and do not characterise 

the individual p set only. Because of the above property, 

if for a set p the cyclic, noncyclic, or complete property 

holds true, then the corresponding property characterises 

the plant and not just the individual set p. Thus, the 

system will be called cyclic. non cyclic, or complete if 

for some RDM set p the corresponding property holds true. 

The set F(/>) and the module R(p) will be denoted by Fp, Rp 

respectively. Clearly, the system is cyclic if f^s) = 1 

for all i E m and complete if (fi;(s) = 1, ^¡(s) = 1) for 

all i E m. The importance of the above notions in the 

study of decentralized SISO stabilization is examined 

next.

6.3.2 Cyclic Plants and Diagonal Stabilization

Proposition (6.3) Let P be a non cyclic plant. There

exists no diagonal compensator C = diag{C;, i E m) that 

stabilizes the closed loop system.

Proof

Let pj be a non cyclic matrix in an RDM set p of P and 

assume that there exists a diagonal controller C that

stabilizes the plant. Then, by (6 .6 ),

= u. (6 .1 0 a)
~3 V
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where Uj must be a coprime Rp(s) vector (as a column of an 

Rp (s) -unimodular matrix). Let UL_1, U^ 1 be a pair of R (s)- 

unimodular matrices that reduce Pj to its Smith form over 

Rp(s) . Then we have Pj = UL S'(Pj)UR and by (6.10a)

fu
0

0

0
. f2i

U„ g. = u. R - j (6 .1 0 b)

By partitioning UL according to the partitioning of S(Pj) 

we have

» 1 ' * 2 ' Ul ’J flj S - Hj , 3j - UR 3j - d.
1

° f2 j n . 
J

0

(6 .1 0 c)

and thus,

Yifij dj + v2 f2j hj = Uj (6 .lOd)

Clearly, since f1-/f2-, for all choices of (dj, hj) and thus 

(dj, nj) , f■ j must divide Uj and thus Uj is not coprime (since 

fjj ^ 1) . This contradicts our assumption.

The above result clearly implies the following:

■

Corollary (6 .1): A necessary condition for diagonal

closed loop stabilization of a plant P, is that P be
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cyclic.

Definition (6.3) Let fG A {fn (s),...,flm(s) } and

m
Gp(s) A n fi;(s); Gp(s) will be called the first

i=l

invariant function of P. The properties of Gp(s) are 

summarized below.

Proposition C6.4): Let P be an mxm plant and Gp be its

first invariant function. Then,

(i) Gp (s) is an invariant of the plant

(ii) The zeros in p: = 0 U {°°> of Gp(s) are fixed closed 

loop poles of any closed loop system obtained by 

diagonal pre compensation and unity feedback.

Part (i) follows from proposition (6.2). From the proof of 

proposition (6.3), it is clear that for every j E m the 

vectors Uj must be written as Uj = f-^s) u'j for a solution 

of (6.10c) to exist. Then

Proof

f
1 1

A u A u

(6 .11)
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and for all choices C = diag {C;, i G m} and u', R,(s)- 

unimodular, diag (fn (s),..., flm(s)} will be a factor of 

in the denominator (U) of the closed-loop plant and thus 

the zeros of Gp(s) define fixed-unstable closed-loop poles.

■

If Gpf(s) denotes the fixed pole function of the closed- 

loop system obtained under any diagonal precompensation 

and unity output feedback, then we have:

Remark (6.2): The first invariant function Gp(s) divides 

the fixed pole function Gpf(s) .

We now give some criteria for cyclicity of a plant. From 

the definition of the Smith form [(Chapter 2)] we have the 

following remark:

Remark ( 6 .3 ) : Let d;(s) be a greatest common divisor of 

the elements of p; (lxl minors). Then, fi;(s) is an 

associate of dj(s) and 

m
Gp(s) = u n d .(s) , where u is an R^s) unit. 

i=l 1

■

From the above remark we have:

Proposition C6.5): The system defined by the transfer

function G is cyclic, if and only if for every fixed i,
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1 ,2 ,...,in, the elements of P; are coprirne.i =

Definition (6.4): Consider now the case of cyclic plants. 

The system represented by G will be called diagonally 

stabilizable (D-stabilizable) if equation (6.5) holds true 

for some U, Rp (s) -unimodular matrix and with N, = diag{n;, 

i G m), D2 = diag{d;, i G m), (n;, d;) coprime. From 

equations (6.5), (6 .6 ) it is clear that our investigation 

is reduced to the following problem.

Problem (6.1): Given a set of full rank cyclic matrices 

P-, P; G Rpmx2 (s), i G m, we may define the following 

problems:

(i) Determine solvability of the following equations over

V s) :
d.

2x1
P . q . = u . , g . =l —l ' n .l

G R (s), d^ ^ 0, l G m

(6.12)

u. g  Rpmxl(s) arbitrary, constrained however by the 

coupling condition that U = [ui# . . . ,um ] is R^(s)- 

unimodular. This problem will be referred to as D- 

stabilization problem (DSP).

(ii) If we further constrain the problem in (i) by the 

extra condition that for all i G m, the d; solutions 

have no zeros at infinity (i.e they are also units of
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Rpr(s) , then the problem will be referred to as proper 

D-stabilization problem (PDSP).

(iii) By constraining further the problem in (ii) by 

requiring that for all i G m, the d; solutions are 

units of Rp(s), then we define the stronq-D- 

stabilization problem (SDSP).

■

6.3.3 Solvability of the Diagonal Stabilization Problem 

We consider first the general case of DSP. We shall 

examine some general solvability conditions. Notice that 

equation (6 .1 2 ) may be written in an equivalent manner as

[pi, P2, Pm ]

A P' m

= U (6.13)

2 m

Let us define g; = [d; nj 4 = [Xu , Xi2]fc. Since U is an R,(s)- 

unimodular, by using the Binet-Cauchy Theorem [Mar 2] we 

have :

|U| = u = Cm (P) Cm (Xm) (6.14)

where u G R^s) is a unit, and Cm (•) defines the m-th 

compound matrix of (•).
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The above equation is multilinear as far as the parameters 

X;j, i G m, j £ 2 in Cm (Xm) ; their exact location is to be 

investigated.

Consider just the simple case m = 2. Then X2 may be written 

as

X,

X

X

o

o

11

12

X

X

0

O

21

22

-1

<-2

-3

-4

[Xi , x2] (6.15a)

The second compound matrix is defined by

0 - (1 ,2 ) 0

X X - (1,3) A
1 1 2 1 13

X X - (1,4) A
1 1 22

—
14

X X - (2,3) A
1 2 2 1 23

X X - (2,4) A
1 2 22 24

0 - (3,4) 0

(6.15b)
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If P2 is defined by

*2 = [ P i l i  P l2  ' p21 P2 2 ] (6.16a)

Then

c2(P2) [ai2 , ai3, ai4, a23 ' a24 ' a34 J (6.16b)

a i2 = 1 P l l  ' —12 1 ' ai3 = | P l l i p21 1, ai4 = | P n i P22 1

a23 = 1 Pl2 ' P21 1 > a24 = 1 Pl2 ' P22 1

IICO

rtf | p 2i i P22 1

Then equations (6.14) becomes

ai3 -̂13 ai4 -̂14 a23 2̂3 a24 -̂24 = U (6.17)

Because of the structural form of X2 a number of zeros 

appear in C2(X2). The elements of C2(X2) are indexed by the 

sequences Q24 = {(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)}. 

Note that if the integers (1,2,3,4} are grouped as {/̂  = 

(1,2), /x2 = (3,4)}, then the element aw in C2(X2), u E Q2 4 

is zero if and only if more than one index in w = (i4, i2) 

is taken from the same /i;. The location of non zero 

elements is defined by these sequences u E Q2 4 for which 

only one index is defined from each of the /q, /i2. A table 

which allows the computation of non zero elements in C2 

(X2) is given below:
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1 21 '

M

{ (1,3) , (1,4) , (2,3) , (2,4) } = n2

the n2 set will be referred to as the essential subset of

®2,4 •

Consider now the case m = 3. The matrix X3 is defined by

X3

1

2

3

4

5

6

To complete the essential subset 03 of sequences in Q36 we 

form the composite table shown below

n2= {(1,3) , (1,4) , (2,3) , (2,4) }

: 3 4

3

n
2

(1,3) (1,4) (2,3) (2,4) }

0 ((1,3,5)(1,3,6 )(1,4,5)(1,4,6 )(2 ,3,5)(2 ,3,6 )(2 ,4,5)(2 ,4,6 )}
3
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From the above two cases a general pattern indicating the 

presence of fixed zeros in Cm (Xm) has emerged. To 

generalise these observations and prove results we 

introduce some useful notation.

Definition (6.5): Let Q 2m denote the set of strictly 

increasing and lexicographically ordered sequences of m 

integers taken from 1,2,...,2m. For the set of integers 

{1 ,2 ,...2m} a pair partitioning is defined as the set of 

ordered pairs $ = {/¿i = (1,2}; //2 = {3,4};...; ¿¿m = {2m-l, 

2m}}. A sequence w = {ii, i2,...im } G Qm2m will be called 

$-prime, if there is no pair of indices (ij, ik) G w which 

is taken from the same /jk G $. The set of all $-prime 

sequences of Qm2m, will be denoted by fi 2 and shall be 

referred to as the (m,2)-prime set of Qm2m.

With the above definition, we may state

Proposition__ (6 .6 ) : Let Xm G R,2mxm(s), Cm (Xm) =

[. . .,AW, . ..], w e Qm,2m/ nm,2C the (m, 2 )-prime set of Qm2m 

and Dm2c the complement of 0m2 in Qm2m. Then,

(i) A co-ordinate Aw = 0 for generic values of the non 

zero elements in Xm if and only if u> G f2m2c.

(ii) The non zero coordinates that correspond to generic 

values of the elements in Xm are those corresponding

to " e nm>2.
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Proof

Note that Aw is an mxm minor of Xm. Because of the block 

diagonal structure of Xm , with these blocks 2x1 vectors, 

if w = (i, i2, . . . , im) G Qm2m has at least two indices taken 

from the same E <f>, then there exists a zero column in 

the corresponding submatrix and thus Xu = 0 independent of 

the values of elements in Xm. By noting that every row 

in Xm has only one non zero element and that every mxm 

submatrix is always lower triangular the necessity 

follows.

Part (ii) follows along similar lines.

The set of coordinates in Cm (Pm) = [...,au,...] and the 

coordinates in Cm (Xm) = [. . . , Xu,...]‘ which correspond to 

uj E f2m2 will be called (m, 2) -prime coordinates and will be 

denoted by pm A (aa: <r E nm2}, Xm A (A„: a E nm2). To 

proceed with the analysis of the original problem it is 

essential to be able to compute the set fim2 for any m ^ 2 . 

This may be done by the following algorithm.

The computation of nm2 set may be systematically carried 

out as follows:

Step d ì : Set m = 2. Then, the set n2 2 is clearly 

n22 = { (1,3) , (1,4) , (2,3) , (2,4) }

Step (2) : For every sequence w2 = (ilfi2) E fi22 generate
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as (ij,i.2,3 ), ( ij f ̂ 2' ̂ * Thisthe two sequences of fi32 

process generates all sequences in ft32.

The general step is then described as:

Step m : For every = (i1, i2, . . . , i ^ )  E nm_12 generate

two sequences of ftm>2 as: (i1, i2 2m-l) ,

(i1,i2, . . . /ijn.j^m) . This process generates all sequences in

m ,2

■

The above algorithm clearly generates sequences in nm2. 

An important observation that follows from the above 

procedure is.

Remark (6 .4) : The cardinality of fim2 is 2m for all m ^ 1.

■

We now return to our original problem, which was the 

solution of equation (6.14) for some set {x^, E Rp(s), i E 

m, j E 2}. For convenience of notation we set

y2i = Xjj, when j = 2

(6.18)

y2i-i =  x ij/ when i =1

With this notation, for every a = (j;, j2, . . ., jm) E ftm2 we 

have that
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a g n, (6.19)A a =  Y j !  y j2 . . .  Y j m , m,2

Because of the fixed zeros in the flm2mc locations in 

Cm (Xm), eqn (6.13) may be reduced to the form

E aff \a = u , u E Rp(s) unit (6.20)
ctEQ_ »m , 2

The above equation is a Diophantine equation over R^(s) 

with parameters pm = {aa G Rp(s), a G f2m2} and unknowns 

xm = e RP(s), * S fim2}. The set of (m,2)-prime

coordinates is crucial for the solvability of eqn. (6.16) 

and its properties are examined next.

Proposition (6.7): The pm (m,2)-prime coordinates set is 

an invariant (modulo R^s) units) of the transfer function 

P of the plant.

Proof

For the plant P the matrix

= [Alf BJ (6.21a)

is not uniquely defined, but if (A'lf B^) is another left 

R̂  (s)—coprime MFD pair, then

T'£ = [A'x, B'J = UT£ (6.21b)

where U is an R̂  (s)-unimodular matrix. We first note that 

the matrices
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(6 .2 2 a)

*m' = [P'^P'j, •••/?'„.] = [ A 1 , , B ' J ] Sp

where Sp is a permutation matrix. From (6.18a) it follows 

that

P'm = UPm (6 .2 2b)

and thus Cm (P'm) = |U|Cm (Pm) = UCm (Pm), where u is an 

Rp(s) unit. The above relationship implies that if {aw,aw,} 

are the coordinates in Cm (Pm), Cm (P'm) then

a'w = u.aw for all u G Qm2m (6.22c)

and thus the corresponding elements of pm , p'm are 

associates.

Pm = [P1,P2,...,Pm ] = [Ax, BJ Sp

The set pm , thus characterises the plant and not the 

particular description and will be referred to as a 

general set of DSP. From the above analysis we have the 

following result.

Theorem (6.1); Let P be a plant and pm be a generator set 

of DSP. Then,

(i) A necessary and sufficient condition for solvability 

of eqn (6.20) is that the set pm is Rp (s)-coprime.

(ii) A necessary condition for solvability of DSP is that
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the set pm is Rp (s)-coprime.

Proof

The proof of part (i) is a well known result and is 

omitted. Clearly, coprimeness of pm is a necessary 

condition for solvability of DSP; it is not sufficient, 

since for every set of solutions {Xa, a E f2m2} conditions 

(6.19) must also be satisfied plus the condition that the 

denominators must be non zero.

■

The non coprimeness of pm implies that there is no 

solution of DSP. If the plant is non cyclic, then clearly 

pm is not coprime. We denote by fG (s) the greatest common 

divisor of pm ; fG (s) will be referred to as the prime 

invariant function of P. The previous analysis clearly 

also applies to non cyclic plants. The following result 

readily follows from the previous analysis.

Corollary (6.2) : Let G be a plant, and let Gp(s) , fG (s) be 

the first, prime invariant functions respectively. Then,

(i) Gp(s) divides fG (s)

(ii) The zeros of fG (s) are fixed modes of any closed-loop 

system obtained by diagonal dynamic precompensation 

and unity output feedback.
M
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The question that naturally arises is whether the fG (s) 

invariant function defines all closed-loop schemes. The 

relevant question may be phrased as:

Question (6.1): Are there fixed modes which are not zeros 

of fG (s)?

The essence of the question posed above is that although 

coprimeness of pm implies that there exists {Â } such that 

(6 .2 0 ) has a solution for u E R,(s) unit, this does not 

necessarily imply that we restrict ourselves to those {ACT} 

obtained via (6.19) (a subset of the solutions of (6.20) 

we have not additional fixed modes. This question will be 

examined later on.

A system for which fG (s) is an Rp(s) unit will be called 

strongly cyclic. Note that strong cyclicity implies 

cyclicity, but not the other way round. An interesting 

observation about the properness of the closed loop system 

that follows from the above analysis is

Remark (6.5) : If fG (s) is not an Rp(s) unit, ie. ¿^(fQ) > 

0 (has no zeros at s = °°) , then all closed loop systems 

obtained by diagonal dynamic precompensation and unity 

feedback have fixed poles at s = °° with their total 

numbers defined by ^ ( f ^ .  In this case the closed loop 

system exhibits impulsive behaviour for all compensator
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schemes of the above type and it is not stable.

Strong cyclicity is a necessary condition 

stabilization by a diagonal compensator. The case 

strongly cyclic systems is presented in Chapter 7.

■

for

of
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CHAPTER 7

DIAGONAL STABILIZATION OF 

TWO INPUT -  TWO OUTPUT PLANTS



7.1 Introduction

The case of strongly cyclic systems is examined next, 

since for stabilization strong cyclicity is a necessary 

condition for stability. We shall examine the following 

problems:

i) Solvability of the diagonal stabilization problem;

ii) Parameterization of the family of solutions;

iii) Investigation of the presence of fixed modes

To illustrate the approach we examine the simple case 

m = 2. The results for the simple case provide the means 

to generalize either to diagonal control of a general 

square system or to decentralized control of a two channel 

system [Kar 1, Kar 2].

Conditions for non solvability and hence non 

stabilizability yield an explicit expression for the fixed 

modes [Kar 1] of the system.

7.2 Solvability Conditions

For the case of m = 2 conditions (6.15) and (6.16) are 

reduced to

a i 3  ^ 1 3  +  a i 4  ^ 1 4  +  a 2 3  ^ 2 3
+ cl.2 4 2̂4 (7.1a)

where
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a l3 “  d j d 2 , ^14 ^ I n 2 '  *^23 nid2, A24 (7.1b)= n4n2

by substituting (7.1b) into (7.1a) we have

a13d1d2 + a14d!n2 + a ^ n ^  + a24n1n2 = 1 (7.2a)

Equation (7.2a) may be written as

(al3d2 + al4̂ 2) dj + (a23d2 t a24n2)nl = i (7.2b)

or

( a l 3 d l  +  a 2 3 n i ) d 2  +  ( a l 4 d i  +  a 2 4 n l ) n 2  =  1 (7.2c)

The above interpretations of conditions (7.2a) leads to 

the following result:

Proposition f7.1): Necessary and sufficient conditions

for solvability of equation (7.2a) over Rp(s) are:

i) The following equation has a solution over R,(s)

- " -

ai3 ai4 dn ra

a23 a24

!
CM
G

_
_
_
_
_
i i 1 _

_
_
_
_

with some rK , r̂  G Rp(s) and coprirne 

or equivalently
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ii) The following equation has a solution over R^(s).

--
--
-

1

H ÜJ a23 dl r
7

ai4 a24 ni

1
h* o>

1

with some r7, r5 6  R,(s) and coprime.

Proof

i) Assume that a solution (nx, , (n2, d2) exists. From 

eqn (7.2a) we may set

a i3 d 2 + a l4n 2 = r oc/ a 23d 2 + a 24n2 = (7.4a)

where clearly rK , r̂  G R^s). By substituting (7.4a) 

into (7.2a) we have

r<xdi + r>nx = 1 (7.4b)

Since nx, dx exist that satisfy (7.4b), it follows that 

r^, r̂  must be coprime, otherwise there exists no d1,n1 for 

which (7.4b) is satisfied (classical result for 

solvability of linear, scaler Diophantine equations 

[Kai 1]). This proves the necessity. The sufficiency is 

proved by a mere reversion of the steps.

Following identical arguments part(ii) may also be 

established. Note that since part (i) and part (ii) 

provide alternative necessary and sufficient conditions 

for solvability of (7.2a) and their equivalence is 

obvious.
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Conditions (7.3a), or (7.3b) provide simple criteria for 

solvability of the eqn (7.2), a restricted Diophantine 

equation, which are of a linear nature. They clearly show 

that the problem for the m = 2 case is essentially linear. 

Conditions (7.3a) will now be used to provide a deeper 

characterization of the solvability of DSP for the m = 2 

case.

7.2.1 Necessary and sufficient conditions for solvability 

of DSP

Let us define the matrices:

T =

al3 ai4

a23 a24

, T =

13

14

23

24

(7.5a)

Then, (7.3a), (7.3b) may be written as

T g 2 =
a

= r. (7.5b)

Ttq 1 =
7

= r. (7.5c)

By proposition (6 .8 ) we have:
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Remark (7.1): The matrix T defined by (7.5a) is an

invariant modulo u E Rp(s) of the system.

The strong cyclicity assumption implies cyclicity of the 

T matrix. Thus, if UL, UR are 2x2 Rp (s)-unimodular matrices 

that reduce T to its Smith form, we have

T = UL ST UR (7.6a)

and then equation (7.5b) becomes

UL ST UR g2 = r2

or

UL ST q2 — r2, cj2 — UR g2, UL — [ulf u2] (7.6b)

Under the assumption of strong cyclicity, ST may take 

either of the following two forms.

ST

ST

1

0

1

0

0

0

0

<f>

(7.6c)

(7.6d)

The matrix T characterises the solvability of the problem 

and will be referred to as the fundamental matrix of DSP. 

T will be called degenerate, non degenerate if ST is of the 

form (7.6c), (7.6d) respectively and will be called
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complete if it is non degenerate and <f> = 1. Clearly, T is 

complete if it is Rp (s)-unimodular. The solvability of 

(7.5b) is examined next.

Theorem (7.1): Necessary and sufficient condition for 

solvability of DSP for the case m = 2 is that the plant is 

strongly cyclic.

Proof

Necessity is proved by contradiction. Assume that fG (s) is 

a g.c.d. of (a13, a14, a23, a24) and that it is not a unit of 

Rp(s). By proposition (7.1) for solvability of DSP it is 

necessary that equation (7.5b) has a solution for some

(r«, r/j) coprime pair. Thus, (7 .5b) yields

a, „ a, . d_ r13 14 2 a

f —
G

a23 a24 n 2 r/?

From the above it is clear that fG must be a divisor of 

rK , r̂  and thus (ra , r̂ ) cannot be coprime for any choice 

of (d2, n2) i.e. contradiction.

To prove sufficiency, we assume strong cyclicity and 

distinguish the following cases.

Case (I) : T is complete; Then T is Rp(s) unimodular and for 

all (rK , r̂ ) arbitrary Rp(s) coprime pairs
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By proposition (8.1) a solution always exists.

Case (II): T is degenerate; Then T may be factorized as 

T = Uj v_i (7.8a)

where ux is a minimal basis vector for the column Rp(s)- 

module and vfc a minimal basis vector for the row Rp(s)- 

module of T. Then from (7.5b) we have

(7.8b)

It follows that a solution with (rK , rB) Rp(s) coprime 

always exists as long as

= u 1 A, A E Rp(s) unit (7.8c)

By (7.8b) and (7..8c) we have

n.
A (7.8d)

which has always a solution, since v1t is an Rp(s) coprime

vector.



Case CIII): T is non degenerate but not complete;

let UL be an R^s) unimodular that reduces T to its row 

Hermite form i.e.

d 2
r

a

!

P __
__

1

U t T
J-J

II

i i_
__

__
__

_ H

.  r /3 .

where

UtT =
i_l

a 1

. <t> 0

Then, by (7.9a) and (7.9b) we have

a 1
’  d 2  '

r
CL

<t> 0 3
N)

---------1

»!U

_____
i

(7.9b)

(7.9c)

and thus

«d2 + n2 = rK , <f>d2 = (7.9d)

from which, if we chose d2 = tx E R^s) arbitrary and 

rfi = <f>tlr fa = t2 E Rp(s) arbitrary,

n 2 = t2 ~ «tx (7.9e)

then,

r
a _  i

1------

CN
-P

1____

---------1

U

_______i

"  U L

1

ft
H 1--

--
--

--
- with (t2, «/»t.̂) coprirne
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This proves the result.

Remark (1.2): The zeros of the prime invariant function 

fG (s) define the set of fixed modes of all systems 

obtained by diagonal dynamic stabilization and unity 

negative feedback.

The above result demonstrates that strong cyclicity is 

equivalent to n-stabilizability by diagonal dynamic 

compensation. The problem examined next is the nature of 

the solutions. The specific questions we are addressing 

are:

i) Parameterization of the family of solutions

ii) Existence of proper solutions (realizability)

iii) Reliable solutions

iv) Minimal design, existence of constant solutions

v) Strong stabilizability, existence of stable 

solutions

7.3 Parameterization of the family of solutions

The problem under investigation may be formulated as: Find 

(r^, rg) E R^s), such that the following equations are 

solvable over Rp(s).
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T 1 (7.10)

' d r r2
=

a
, [d1, nx]

a.
1-
- to 1_
_ 1

u__
1

--
1

ox
u__

1

The above equations may be equivalently expressed as:

[d , n ] T 
1 1

d
2

n
2

1 (7.11)

where the (rK , r̂ ) parameters have been eliminated. We may 

distinguish the following cases:

be written as 

d 2 '
= 1  (7.12)

n 2 _

where Uj, v1t are Rp(s) -coprime vectors, uniquely defined 

modulo units of Rp(s).

Theorem (7.2): For strong cyclic systems with T degenerate 

the family of diagonal stabilizing compensators is given

Case (I): T is degenerate 

By (7.8a), eqn. (7.11) ma

[d1, n1] [uir v1t ]
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by the families of solutions of the following scalar 

Diophantine equations:

u„. d1 1 2
[d]_, nx]

U 1 2
1 tUll U 1 2 ]

----
1

C
M

C
____________

l

(7.13)

Proof

Let (dx, nx) , (d2, n2) be a solution of DSP. Then,

[d1, nx]

u,, d^
1 1

- r [un

2

U 1 2 . n 2 .

= r'

r, r- G R,(s)

By (7.12) we have that

and thus r must be a divisor of 1 . i.e. an R,(s) unit. 

Similarly r 1 must be a divisor of 1 and thus r' must also 

be an Rp(s) unit. This proves the necessity, the proof of 

sufficiency is obvious.

9

The above result indicates that, if T is degenerate, 

diagonal stabilization is reduced to stabilization of two
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independent SISO plants defined by the vectors u^ v1t; that 

is, if we write

Hi = [un , u12], V ! 4 = [vu , v12] (7.14)

then the SISO controllers (d!,n!), (d2,n2) that stabilize

the overall plant are solutions of the SISO stabilization 

problems defined by

U11 di + U12 n! = 1

vu d2 + V 12 n2 = 1 (7.15)

Note that ulf Yi‘ are basis vectors for the maximal Rp(s)

column, row modules of T and thus uniquely defined modulo 

units of R^s) .

The generic case of non degenerate T is considered next.

Case II: T is nondegenerate

From eqn (7.11)

[d1, n1] T
n.

= 1 (7.16)

an interesting characterization of diagonal 

stabilizability is provided by the following result.

Proposition (7.2): Consider a strongly cyclic plant with 

m = 2 and let
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ai3 ai4

a23 a24

(7.17)

The pair of (s) -coprime descriptions (n1,d1) , (n2,d2) that 

define the diagonal controller, stabilize the plant iff

i) (d^nj stabilizes the plant defined by the vector

d„ a, „ d„ + a,,n„
2 13 2 14 2

. n 2 . a23d2 + a24n2 .

(7.18a)

or equivalently

ii) (d2,n2) stabilizes the plant defined by the vector

=  [ a l3d l  + a 23n i '  a i4d l  a 24n i ]  (7.18b)

■

Proposition (7.2) is a restatement of condition (7.16). 

It describes the important property that stabilization of 

the plant by a pair (d1,n1) , (d2,n2) is equivalent to

stabilization of the SISO plant.

(a13dx + a23n1, a14dx + a^nj = (d̂ fij) (7.19a)

by (d2,n2), or equivalently to stabilization of the SISO 

plant
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(a i3^2 a i4n 2 r a 23^2 a 24n 2 ) ~  (^2 / ^ 2) (7 .19b)

by (d1,n1) . A pair of SISO compensators (d^nj, (d2,n2) 

that satisfies (7.16) will be referred to as a mode T 

mutually stabilizing pair. Thus, diagonal stabilization 

is equivalent to the existance of mode T mutually 

stabilizing pairs. The characterisation of all such pairs 

is intimately related to the parameterization of 

stabilizing compensators and is considered next.

7.3.1 Characterisation of mode T mutually stabilizing 

pairs

Let us assume that the Smith form of T over Rp(s) is

1

ST
0

0

<t>(s) .

(7.20)

and let AT = (A;, i G y.) be the distinct values of the 

zeros of <f>(s) (roots of Rp(s) elementary divisors of <f> (s) ) . 

At will be referred to as the Rp(s)-root range of T .

Definition (7.1): Let T G Rp (s) be a nondegenerate cyclic 

matrix and let (d,n) be an Rp (s)-coprirne pair. Then, (d,n) 

will be called mode T (Tfc) . R (s) -coprirne. if the pair 

(d,n), (d,n) defined by the vectors respectively

[¿,n] = [d,n] T ,

d d

= T

n n

(7.21)
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are R,(s)-coprirne

The set of mode T(Tfc) coprime vectors is characterised by 

the following result.

• • 2x2Proposition (7.3): Let T E Rfi (s) be a nondegenerate

cyclic matrix and let A? be its root range. An Rp(s)~ 

coprime pair (d,n) is:

i) mode T coprirne, iff for V A E Aj.

[d(A) , n (A) ] T (A) * 0l

ii) mode Tfc coprirne, iff for V A E Ap

T (A)

d ( A ) 

d ( A )

0

(7.22a)

(7.22b)

Proof:

i) Assume that (d,n) is not R̂  (s) coprime. Then there

exists n E C, zero of the greates common divisor such 

that [d(/i), n(ju)] = 0+. Then from the definition

[d(/0 , n(/i) ] T (M) = 0 (7.23)

and since (d,n) is R^s) coprime, [d(/x)r n(/i)] ^ 0k 

and thus for (7.23) to be true we must have |T(/i) | = 

0, ie. n E AT. Note that for V ^ € Ap, |T(/i) | ^ 0 and 

since [d(/z), n(/x)] ^ 0 , it follows that [d(/z), n(/x)]
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?*■ 0, ie. (d,n) has no zeros outside the set This 

proves part (i). Part (ii) follows along similar 

lines.

Remark (7.3) ; If T is complete, ie R^(s) unimodular, then 

every coprirne pair (d,n) is mode T and Tfc coprirne.

7.3.2 Parameterization of stabilizing diagonal controllers

With the preliminary results developed above we may state 

the following main result regarding the parameterization 

of stabilizing diagonal controllers.

Theorem (7.3) : Let G be a 2x2 strongly cyclic system with 

T nondegenerate. Then,

(a) Let (clr c2) be a pair of SISO controllers, described 

by the (s) -coprime pairs (d^nj , (d2,n2) . The

following statements are equivalent.

i) (cx, c2) stabilizes the plant

ii) (d1,n1), (d2,n2) is a mode T mutually stabilizing 

pair

iii) (d1,n1) is mode T coprime and (d2,n2) stabilizes 

(d̂ fij) . Equivalently, (d2,n2) is mode T coprime 

and (dj,^) stabilizes (d2,n2) .
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(b) The family of all (clf c2) stabilizing controllers is 

defined by:

i) For any (d1,n1) mode T coprime pair a subfamily

of { (d2,n2) } controllers that together with

(d1>n1) fixed, stabilizes the plant is given by 

the solution of

dxd2 + n1n2 = 1 (7.24a)

where

[d:,nj = [d^nj T

ii) For any (d2,n2) mode T4 coprime pair a subfamily

of {(d1,n1)} controllers that together with

(d2,n2) fixed, stabilizes the plant, is given by 

the solution of

d ^  + n2n1 = 1 (7.24b)

where

[ d2, n2 ] = [ d2, n2 ] T

Proof:

(a) The equivalence of (i) and (ii) follows from

Proposition (7.2). If (d1,n1), (d2,n2) is a mode T

mutually stabilizing pair, then eqn (7.11) has a 

solution ie.
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1[3-l, n1] T

Clearly, if (d1,n1) is not mode T coprime, then [d1,n1] 

T = [d1,n1] is not comprime and the equation d:d2 + n̂ n, 

= 1 has no solution. Thus mutual stabilization

implies mode T coprimeness of (d1,n1) . By reversing 

the arguments, mode T coprimeness of (d1,n1) , implies 

that there exists (d2,n2) that stabilizes (d^n-J . 

Furthermore, if (d1,n1) is not mode T coprime, then 

there exists no (d2,n2) solution of djd2 + n1n2 = 1 and 

this completes the proof. The statement for (d2,n2) 

being mode T coprime follows along similar lines.

(b)

i) For any fixed (dx, nx) mode T coprime, the solution 

of (7.24a) clearly defines {(d^nj, (d2,n2)}

stabilizing pairs. What has to be proved is that all 

stabilizing pairs are generated by this process. 

Thus assume that there exists a pair (d2,n2) which 

together with some (d^nj stabilizes the plant. Then 

clearly

[dx, nx] T

and (d2,n2) has to be Tfc coprime, otherwise the above
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equation cannot be solved. If we assume that (d1,n1) 

is not mode T coprime, then clearly the above 

equation also is not soluble. Thus, a stabilizing 

pair {(d1,n1), (d2,n2) } must always have the property

that (n1,d1) must be mode T coprime and (n2,d2) must 

be mode T*1 coprime. Therefore the above process 

generates the complete family. The proof of part 

(ii) is identical.

Corollary (7.1) : Let G be a 2x2 strongly cyclic plant

with a nondegenerate T and let be the root range of T.

(a) If T is complete, ie. AT = 0, then

i) For any (d1,n1) Rp (s) -coprime pair defining a 

controller for channel (1 ), the family of 

{(d2,n2)} controllers of channel (2 ) which 

together with (dx, n:) stabilize the plant is 

given by

ri a. -n,
2 -i 1 1

= T + t
n h d,
2 1 1

t E R^(s) arbitrary

(7.25a)

where (a1,b1) is a SISO plant that stabilizes
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ii) For any (d2,n2) Rp(s) coprime pair defining a 

controller for channel (2 ), the family of 

{(d1,n1)} controllers for channel (1 ) which 

together with (d2, n2) stabilize the plant is

given by

[d1,n1] = T ' 1 {[a2,b2] + t ' [-n2,d2] }, t G R p(s) arbitrary

(7.25b)

where (a2,b2) is a SISO plant that stabilizes

(d2,n2)

(b) If T is not complete, ie. ^ 0, then,

i) For any controller (d1,n1) for channel (1), such 

that

[d2 (A) , nx(A)] T (A) * 0, V A G A-p (7.26a)

there exists a controller (d2,n2) for channel 

(2 ), which together with (d1,n1) stabilizes the 

plant.

ii) For any controller (d2,n2) for channel (2), such 

that

T (A)

d2 (A)

n 2 (A)

* O , V A G At (7.26b)

there exists a controller (d1,n1) for channel (1 ), 

which together with (d2,n2) stabilizes the plant.
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The above results provide the answer to the 

parameterization problem and indeed this provides the 

tools for the investigation of special type of solutions, 

such as proper, stable, reliable and minimal design.

7.4 Proper solutions of diagonal stabilization problem

7.4.1 Properness of solutions of scalar Diophantine 

equations

Let (b,a) be an Rp (s)-coprime pair. The pair (b,a) will 

be called proper, nonproper, strictly proper, if the 

transfer function P = ba ' 1 is respectively proper, 

nonproper, strictly proper. For the general given pair 

(coprime) we define the scalar Diophantine equation.

bn + ad = 1 (7.27)

where the solution (n,d) over Rp(s) always exists because 

of the Rp (s)-coprimeness of (b,a). The solution pairs 

(n,d) are always Rp (s)-coprime and if (n0, d0) is a

particular solution then the general solution is expressed 

by

n ’ no '
+ t

a

, t G R (s) arbitrary
d . d 0 . -b P

(7.28)
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In the study of diagonal stabilization, Diophantine 

equations of the type (7.27) always emerge, where (b,a) 

is not necessarily proper; however, since (n,d) represent 

compensators the question of properness (realizability) is 

always an important aspect to be examined. A pair 

{(b,a), (n,d)) that satisfies (7.27) will be referred to

as mutually stabilizing pair; in particular (n,d) (or 

(b,a)) will be called a dual of (b,a) (or (n,d)). The 

existance of proper dual pairs for a given (b,a) is 

examined next.

The following result establishes a useful general property 

of a mutually stabilizing pair.

Lemma (7.1) : Let (b,a), (n,d) be Rp (s) -coprime and mutually 

stabilizing pairs. Then,

min {«„(b) + «„ (n) , «„(a) + «„(d) } = 0 (7.29)

Proof:

Since bn + ad = 1, by taking valuations we have:

¿„(bn + ad) = 0

By the properties of ¿^ ( •) valuation it follows that

0 = ¿oo (bn + ad) ^ min{ (bn) , «„(ad)} =

= min{50C(b) + ¿„(n), ¿„ (a) + «„(d) } ^ 0

since (b,a), (n,d) are from Rp(s) and thus have non
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negative valuations. The last condition clearly implies 

(7.29).

■

Using the above lemma we have:

Proposition (7.4): If (b,a) is a strictly proper pair,

then all dual (n,d) are proper.

Proof:

Since (b,a) is coprime and strictly proper, it follows 

that (b) = e > 0 and ^(a) = 0 .  By condition (7.29)

(necessary condition which all duals (n,d) must satisfy) 

we have

min {e + «„(n), «»(d) ) = 0

and this clearly implies (since e > 0 and ¿^(n) ^ 0 ) that 

5oo(d) = ie- all duals have d biproper, ie. they are 

proper.

■

The above result provides an alternative proof of a well 

known result that the family of stabilizing compensators 

of strictly proper plants has all its elements proper. 

For the case of nonproper plants we have:

Proposition (7.5): Let (b,a) be an (s)-coprime nonproper 

pair. Then,
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i) For all (n,d) dual pairs, ¿^(n) = 0

ii) If a proper dual exists, it has to be biproper

iii) There always exists a family of biproper (n,d) 

duals.

Proof

i) Since (b,a) is coprime and nonproper, it follows that

5oo(b ) = 0 and <5oo (a) = e' > °* Thus, by condition

(7.29) we have

min {«„(n) , e ' + «„(d) } = 0

Clearly, since e' > 0  and ¿^(d) £ 0, follows that

f i oo(n)  =  0 .

ii) Since for all dual ¿^(n) = 0, then if a proper dual 

exists we must have 0 £ ¿¡̂ (c) = ¿^(nd'1) =

5oc(n) - ¿00(d) = 0 - ^(d) = -««(d) and thus ¿„(d) = 

0. Thus, if a proper dual exists it must be 

biproper.

iii) Consider the family of duals as defined by (7.28). 

At s = 00 we have

CO
n

OO

no
+ t

OO

a

00
d

---
1

8
0
b

___
1

OO

-b
_ _
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Since (b,a) is nonproper if follows that b°° = p ^ 0 and 

a00 = 0. Furthermore, by part (ii) n0°° = a ^ 0 and thus 

the above may be written as:

00
n a

,00 „ 00 , 00
d . do P .

We may distinguish the following cases:

(a) Particular solution is nonproper

(b) Particular solution is biproper

(a) If particular solution is nonproper, then ¿^(dj > 0 

and thus d0°° = 0. By (7.29) we have

00 “ "
n a

00 00
d -t p

(7.30a)

and thus for any biproper t G R^s), ie. ¿^(t) = 0, 

d°° r* 0 and thus the corresponding d has ¿^(s) = 0 ie. 

there exist biproper duals for all biproper 

parameters t G R,(s).

(b) If particular solution is biproper, then 5^(d0) = 0 

and d0°° = 7 ^ 0 . By (7.30) we have:

00
n a

00
d

00
7 -t p

(7.30b)
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Clearly for all t E R^(s) parameters such that

(7.30c)

d°° 0 and thus ^(d) 0 , ie. solution is biproper.

■

An important remark that follows immediately from the 

above proof is stated next.

Remark (7.4): If (b,a) is an (s)-coprime, nonproper pair, 

then there exists no strictly proper dual.

The biproper duals of a nonproper (b, a) pair may be 

parameterised by the following result.

Corollary (7.2): Let (b,a) be an Rp (s)-coprime, nonproper 

pair.

(a) There always exists a biproper dual (n0, d0)

(b) Let n0°° = a ^ 0, d0°° = ¡ 3 ^ 0  and b°° = 7 ^ 0 . The 

family of biproper duals is defined by

, t E R (s) (7.31a)

- "
n no

a

= + t

d d o
-b

_
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where t°° is constrained by the condition

P - t ° ° u  *  0 (7.31b)

The proof clearly follows from the proof of Proposition

(7.5) and is omitted. Note that those t E Rp(s) for which 

nonproper solutions are obtained are characterised by the 

t°° = g/B and thus belong to a hyperplane; that is

generically, the duals of a nonproper (b, a) are biproper.

Remark (7,51 : The duals of a coprime, nonproper (b,a) are 

generically biproper.

The case of biproper pairs (b,a) is considered next.

Proposition (7.6): Let (b,a) be an Rp (s)-coprime biproper 

pair.

(a) There always exists a family of biproper duals and a 

family of strictly proper duals.

(b) Let (n0,d0) be a biproper dual

i) The family of biproper duals is defined by

, t E Rp (s) (7.32a)

- "
n

n o
a

= 4- t

d d o
-b
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where t°° is constrained by the condition

d0°° - t°° b°° * 0 , n0°° + t°° a°° * 0 (7.32b)

ii) A family of strictly proper duals is defined by

, t G R (s) (7.33a)

where t°° is constrained by the conditions 

d0°° - t^b00 * 0, n0°° - t^a00 = 0 (7.33b)

n no
a

= + t

d d o
b

Proof:

(a) The general family of duals is given by

“ “ -
n

—
no

+ t

a

d . do . -b
_ _

where from the comprimeness of every dual it follows 

that (n0, d0) may have one of the following 

properties:

i) 6oo (n0) = 0 , ^(do) > 0 : nonproper dual

ii) 6^ (n0) > 0 , <5oo(do) = 0 : strictly proper dual
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iii) (n0) = 0, ^(dg) = 0 : biproper dual

i) If (n0,d0) is nonproper, then n°° ^ 0 and d°° = 0 

and thus

o o

n

I

8
oC

i_________

,  ° o
+  t

o o
a

o o

d

1

CL
O i__

__
_ o o

-b
_ _

by selecting t such that t°° ^ -n0°°/a°°, 0 then a

biproper solution is defined.

ii) If (n0,d0) is strictly proper, then d0°° ^ 0 and n0°° = 

0 and thus

OO

n

H

i

o

i_________ + rt
8

OO
a

d°°
o o

.  d o

o o
-b

_ _

by selecting t such that t°° ^ -dg^/b00, 0 , then a

biproper solution is defined.

If (n0,d0) is biproper, then at least one biproper 

solution exists

The analysis of the above cases demonstrates that 

there always exists a biproper dual say (n0, d0) .

Using this, the whole family of duals is given by

iii)

(b)
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- “
n

=
no

+ t

a

d
. do .

-b
. _

t G R (s) 
P

At s = », the above yields

OO

n
OO

no
+ rt

8

OO
a

OO

d

---
1

8
o
b

________i

OO

-b
_ »

where n0°°, d0°°, a°°, b°° ^ 0 .  By restricting the

parameters t such that d0°° - t^b00 ^ 0 and n0°° + t^a00 

0, n00, d00 become ^ 0 and (n,d) is biproper. This 

proves part (i) . Part (ii) follows along similar 

lines.

Starting from a biproper dual (n0, dQ) the conditions for 

the existance of nonproper duals are:

d0°° - t^b00 = 0, n0°° + t^a00 ^ 0 (7.34)

and for strictly proper duals are:

d0°° - t^b00 * 0, n0°° + t00a00 = 0 (7.35)

given that t°° is constrained by equations we have:
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Remark ( 7 . 6 ) : The duals of a coprirne, biproper (b, a) are

generically biproper. The existence of nonproper and 

strictly proper duals is nongeneric.

The above results are used next for the study of proper 

diagonal stabilizing compensators.

7.4.2 Properness of solutions to DSP, m = 2 case

To generate realizable controllers we must be able to 

determine the properness of solutions to -

[d1, n1] T
n.

1 (7.36)

(d: n:) , (d2 n2) represent the SISO controllers hence the 

question of properness (realizability) is always 

important.

In the generic case, T nondegenerate, and (dx n:) , (d2 n2) 

the (s)-coprime descriptions of the stabilizing 

controllers then,

(1 ) (dj n:) stabilizes the plant defined by the vector

r d„ cL d„
2 2 2

T

. n 2 .

—

. A 2 .

------> [d1 n1]

1
3>

to i_
__

__

(7.37)
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(2) (d2 n2) stabilizes the plant defined by the vector

[d1 n1] T = [d1 n1] ----> [d1 r^] = 1

n.

(7.38)

Stabilization of a plant by a pair of SISO controllers (dx 

nx) , (d2 n2) is equivalent to stabilization of a SISO plant: 

[d2 n2]‘ by (dx nx) ; [dj nj by (d2 n2) ie. mode T Rp(s)- 

mutually stabilizing pairs.

The selection of (dx nx) such that [dx nj = [dx n1] T are 

Rp (s)-coprime, channel (1) fixed, generates a subfamily of 

controllers (d2 n2) that together with the fixed channel 

(1) stabilizes the closed loop system. The subfamily of 

controllers for channel (2 ) with fixed channel (1 ) is 

generated via the solution of the scalar diophantine 

equation -

dj d2 + n1 n2 = 1 (7.39)

with (dt nx) , (d2 n2) mode T mutually stabilizing pairs.

The selection of a realizable controller for the fixed 

channel is ensured if kf = nf df_1, ¿^(dj) £ ¿»̂ (nf) ie. 

kf is proper (strictly proper) .

Consider channel (1) fixed: ie. select a realizable 

controller kj = n1d1' 1 such that channel (1 ) ca = rij dj' 1 is
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Rp (s) -coprime. Then the pair (dx n1) will be called proper, 

strictly proper or nonproper if its respective transfer 

function cx = n1d1 is so defined.

There are three cases which may be distinguished 

( 1 ) Xâij_hx) Strictly Proper

If the R^fs) coprime plant generated by selecting 

a realizable fixed controller (dx nx) is strictly proper, 

then from Proposition (7.4) all solutions of d1d2 + n1n2 = 

1 are proper ie.

Channel fl) fixed:

(dj nx) ----- ^ (dj nx) ----- ^ (d2 n2)

realizable Strictly proper proper i.e. realizable

(2 ) (dx n^ nonproper

If the R̂  ( s ) —coprime plant (dx n1) is non proper, i.e (dx nx) 

selected to be realizable generates (dj nj non proper then 

by Proposition (7.5) there exists no strictly proper 

solution to d: d2 + n1 n2 = 1. If a solution exists then 

generically it will be biproper. The family of biproper 

solutions (generic case) is defined by (7.31a)

, t E R^(s) arbitrary

" n 2 ' " "S. ’ d,
0 1

= + t

d„ d2 n -n.
2 0 1
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but where t°° constrained by the condition /? - t° ° 7 ^ 0,

d2°°0 = p * 0 , f̂ 00 = 7 7t 0 .

Channel (1) fixed

(dj. nx) ----- ^ (dx fii) --- ^ (d2 n2)

realizable non proper biproper i.e. realizable
(generic case)

(3) fd: hx) biproper

If the Rp(s) coprime plant generated by selecting a 

realizable controller (dj nx) generates the biproper plant 

(d: n1) then by Proposition (7.6) the resultant controller 

(d2 n2) will generically be biproper. The family of all 

such controller is given by (7.32a)

’ n 2 ' " n2 n d.
0 1

= + t

cl d 2 -n„
2 0 1 J

where t is constrained by the condition

d O °  x .  0 0  . r\ „  OO  . , O O j  o o  „- t ^ 0 , n20 + t dx ^ 0

The existence of non proper and strictly proper solutions 

is non generic.
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Channel fixed

(di ni) ----- (¿1 fii) ------ * (d2 ns)

realizable non proper biproper i„e. realizable
(generic case)

7.5 Reliable Solutions of the Diagonal Stabilization 

Problem

Reliable stabilization is the ability of the system to 

maintain closed loop stability with the loss of one or 

more of its channels.

For the case of a two channel system either or both 

channels may fail. Failure of a channel is equivalent to 

the loss of a SISO controller c; = nj d; '1 -*■ n; = 0, d; 0.

There are three cases to distinguish:

(1 ) failure of channel (1 )

(2 ) failure of channel (2 )

(3) failure of channels (1) & (2).

In each case the system is said to be reliably 

stabilizable if (a) the system is closed loop stable with 

a pair of controllers (d: nx) , (d2 n2) (b) the system

remains stable with failures (1), (2) or (3) above.

We have seen from the parameterization of the family of 

solutions to the DSP that condition (a) is satisfied by
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selecting controllers to be mode-T-R^ (s) -coprime mutually- 

stabilizing. The guestion that remains to be answered is 

under what constraints do such selected controllers 

satisfy condition (b) for reliable stabilization.

Let (dx nx) , (d2 n2) be mode-T-Rp (s) -coprime mutually

stabilizing pair such that

[d1 nx] T

Then,

i) failure of channel (1 ), n: = 0

[c^, 0] T
n.

= u

[d-L, 0 ]
al3 al4 ’ d 2 "

a„ „ a„, n„
2 3 24 2

= u

[ d a  d a ]
1 13 1 14

n

= u
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2
d

d [a a ]
1 13 14

n
2

u (7.40)

ai3, a14 R, (s) -coprime -+ (d2 n2) exist and for

stabilization d4 must be a divisor of u e R,(s) -> dx 

must be a unit.

System remains closed loop stable with loss of 

channel (1) if d4 = unit E Rp(s) .

[dx n1]

channel (2 ) . n2 0

a, „ a, , d„13 14 2

a„ „ a„ , 0
23 24

u

a
13

a
23

d = u
2

(7.41)

System remains closed loop stable with loss of 

channel (2) if d2 = unit E Rp(s).
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iii) failure of channels (1 ) & (2 )

[d1 0] T u (7.42)

diai3d 2 = U ----- di, d 2 > ai3' U e R,(s) units.

System remains closed loop stable with loss of 

channel (2) & (1) if dx, d2 = units G Rp(s).

A necessary condition for reliable stabilization is 

that dj,d2 units G Rp(s).

7 .6  Diagonal Stabilization of Higher Order Systems

For the case m = 3 the scalar Diophantine equation

becomes:

a i 3 5 d l d 2 d 3
+

a i 3 6 d l d 2 n 3
+

a ! 4 5 d i n 2 d 3 a i 4 6 d i n 2 n 3

+  a 2 3 5 n i d 2 d 3
+

a 2 3 6 n i d 2 n 3
+

a 2 4 5 n i n 2 d 3 +  a 2 4 6 n i n 2 n 3

(7.43)

[  a l 3 5 d 2 d 3
+

a i 3 6 d 2 n 3

+  ( a 2 3 5 d 2 d 3
+

a 2 3 6 d 2 n 3

(  (  a i 3 5 d 3
+

a i 3 6 n 3 )  d 2

+  (  ( a 2 3 5 d 3
+

a 2 3 6 n 3 )  d 2

+  a i 4 5 n 2 d 3 +  a i 4 6 n 2 n 3 l  

+  a 2 4 5 n 2 d 3 +  a 2 4 6 n 2 n 3 l

+  ( a i 4 5 d 3  +  a i 4 6 n 3 ) n 2 ]

+  ( a 245d 3 +  a 2 4 6 n 3 ) n 2 l

d l  +  

ni = 1

d l  +  

ni = 1

(7.44)
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SET:
a i 3 5 d 3

+
a i 3 6 n 3  = r i 0

a i 4 5 d 3
+

a i 4 6 n 3  = r 2 °

a 2 3 5 d 3
+

a 2 3 6 n 3  =

©
CO

U

a 2 4 5 d 3
+

a 2 4 6 n 3  = r 4 ° (7.45a)

Then

[ri°d2 + r2°n2] dx + [r3°d2 + r4°n2] nx = 1 (7.45b)

SET: 0 j  , „ o ___ „ 1
rl d2 + r2 n2 — rl

„ 0 -i i „ 0 __   „ 1
r 3 d 2 +  r4 n 2 r 2 (7.46a)

Then

rj'dj + r2'n1 = 1 (7.46b)

(r^, r2') must be Rp (s)-coprime.

d_ r2 a

n„ r  „2 J L P J

(7.46c)

Case (_I_1 ‘ 

1

0

0

1

-> T is an R (s) unimodular 
P

r2

II i H a

n„ r  „2 L P J

with (r^, r^) arbitrary

. . coprime elements of R (s) 
\ ̂ ) P

(7.47)

219



Case rii):

1 0

0 1

Then we may decompose T as

T = ux, v1t where u1, v1 are minimal bases vectors for 

the column, row modules (R (s)) of T.

d 2
rCL +■ d 2

ra
T

. n 2 . 1
d

ta

° - 1  -1

. n 2 . 1

U
_
_
_
_
_
i

(7.48)

= Ü 1 A,

A E R^(s) unit, arbitrary (7.49)

Under this assumption

' d 2 ‘
, _ t

1----
(N

i____

. n 2 .

- -1 l-l

. n 2 .

a
(7.48) has a solution if and only if

'/? .

■a>-

n.

A and solution always exists
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Case filli :

1 0

0 <t>

d 2
=

ra
« UT T

J-J

d 2

= UL

h P

n 2 . * t h . n 2 . . rp .

1 a l a

r

C
M

T3
i ____

ra

0 <f> 0 <t> . n 2 . Xt
>
i_
__

_

(7.50)

{d2 + «n2 = fK , <f>n2 = ip)

(d2 = f« - “n2, ^n2 = *>}

i) Choose: = ¿> t: where tj arbitrary element of R^s)

Then <?i>n2 = <p gives n 2 = t 1

thus: d_ = r - an. = r - at,2 a 2 a 1

Choose: r = t„ where t„ arbitrary element of R (s)o. 2 2  p

such that

(</> t2) Rp(s) comprime
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r t. 1a _ n 2
= u T 1L

. r/3 .
^t1

(t. *tx) R^(s) comprime

(7.51)

r d. + rm. = 1 a l  p 1 tra V
n„

1

[d1 r^] 1 (7.52)
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CONCLUSIONS



CONCLUSIONS

The main aim of this thesis was to provide a unifying 

approach for the study of solvability of algebraic 

problems defined as linear time invariant multivariable 

systems. The formulation of the generalised Diophantine 

equation, over the ring Rp(s) of proper and stable rational 

functions, as the unifying stabilization problem for both 

centralized and decentralized control provides the means 

for the reduction of the Decentralized Stabilization 

Problem to the study of (sets of) matrix equations of the 

type AX = B.

It is shown that many control problems can be reduced to 

the study of matrices defined over special rings which 

describe in an algebraic context the problems of system 

stabilizability, realizability and performance. The rings 

of importance are the Euclidean domains R[s]-polynomials, 

Rpr(s) —proper rational functions and Rp(s) -proper and fi- 

stable rational functions and these are used to 

investigate the structural and invariant aspects of system 

stability equations. The solvability of AX = B also 

provides conditions for the solvability of the generalised 

Diophantine equation A:X: + A2X2 + . . . + AmXp = B where B is 

in general non square. The solvability of AX = B also 

provides conditions for solvability of the more general 

set of equations.
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The diagonal stabilization problem (DSP) has been defined 

over the ring Rp(s) and conditions for solvability have 

been given. For the case of two-channel systems 

stabilization by a diagonal dynamic controller is possible 

if and only if the system exhibits the property of 

cyclicity. In that case the system is free from unstable 

hidden modes. A complete parameterisation of diagonally 

stabilizing controllers is given for the case of two- 

channel systems.

This work provides the tools to investigate special type 

solutions such as realizable, stable and performance 

related controller designs as well as the more general 

case of n-channel systems. the general case of solving 

the Diophantine equation simultaneously with the 

multilinear system requires further investigation.

Although a clear algorithmic procedure has been developed 

for the case of 2 or 3-channel systems the general n- 

channel case becomes less manageable using the same 

approach. The main problem is that as the number of 

channels increases so too does the number and the order of 

the diophantine equations to be solved simultaneously. 

The developed theory also applies to discrete time 

systems.

This work has concentrated on the analysis of how problems 

are solved and the parameterisation of solutions. The
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freedom of choice to select a parameter which determines 

the final structure of the decentralized control scheme 

needs further investigation. Future research work should 

also include investigation into the general case of 

diagonal stabilization and how this work can be extended 

to take account of simple structured control schemes. The 

general case of block diagonal stabilization and how we 

solve the more general Diophantine equations needs further 

work. The links between the present approach and systems 

which have no fixed (unstable) modes need to be better 

understood.
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APPENDIX A

Rings, Fields and Integral Domains [God 1, Mar 1]

A ring is an abstract notion which provides a uniform and 

convenient terminology for the representation of binary 

operations on a set.

Definition (A.l) [God 1] : A ring is a non empty set K 

together with two operations + (addition) and 

(multiplication) such that the following conditions are 

satisfied.

(Rl) (K,+) is a commutative group. This means that

i) a+(b+c) = (a+b)+c, V a,b,c G K

ii) a+b = b+a, V a,b G K

iii) there exists an element 0 G K such that

a+0 = 0+a, V a G K

iv) for every element a G K there exists a corresponding 

element -a G K such that a+(-a)=0

(R2) (K, ') is a semi group. This means that

a'(b'c) = (a‘b) 'c, V a,b,c G K

(R3) Multiplication is distributative over addition i.e.

i) a ‘(b+c) = a ’b + a'c
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ii) (a+b)‘c = a ’c + b ‘c, for all a,b,c E K

As is customary, a ‘b is denoted by ab and a + (-b) denoted

a + b .

Example (A.1) The set K = {A: = A E Rnxn, matrices,

+ addition of matrices, ' multiplication of matrices}. K 

is a ring.

A ring K is said to be commutative if ab = ba, for all 

a,b E K and is said to have an identity if there exists an 

element 1 E K such that 1 "a = a ‘1, for all a E K.

Example (A.2} The set of real nxn matrices in the above 

example is not, in general, a commutative ring, i.e.

A A 5* A A where A, A E Rnxn

The set of polynomials R[s] in s-variable with real 

coefficients is a commutative ring e.g. t1(s)=(s+l), 

t2 (s) = (s2 + 2s + 1 ) , t^s), t2(s) E R [s] and clearly 

tj(s) t2(s) = t2(s) tj(s) E R[s] .

■

Definition CA.2} [God 1] : Let K be a ring. A subring of

K is a subset of K which is also a ring with respect to 

binary operations on K i.e. S is a subring of K if and 

only if

(SRI) S is closed with respect to binary operations on K. 

(SR2) For all a E S, we have (-a) E S.
■
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Example (A. 3) Let K be the ring of proper rational 

functions Rpr(s) (rational functions which have no poles at 

s = oo) and S be the ring of proper rational functions 

which are also stable denoted Rp(s). Then Rp(s) is a 

subring of Rpr(s) .

An element u of a ring K which has a multiplicative 

inverse u ' 1 G K is called a unit of K. An element b G K is 

called an associate of a G K if b = ua where u G K is a 

unit.

An element d G K is a divisor of e G K provided there 

exists an element f such that e = df. Every non-zero 

element of e G K has as divisors its associates in K and 

the units of K. These divisors are called trivial all 

others are non trivial. A non zero, non unit element e G 

K having only trivial divisors is called prime or 

irreducible element of K.

Example (A.4) The units of R[s] are the constants i.e the 

polynomials t(s) = c, c G R-{0}. If q(s) G R[s] then 

clearly the associates r(s) of q(s) are given by

r(s) = t(s) q (s)

If q(s) = (s2 + 3s + 2) then (s+1), (s+2) are non trivial

divisors of q(s) and (s+1), (s+2) are primes of R[s],
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Definition (A. 3) [God 1] : Let K be a ring with neutral 

element "0". An element a ^ 0 of K is called a divisor of 

zero if there exists an element b ^ 0 of K such that ab or 

ba = 0 .

A ring K which has no divisors of zero is called an 

integral domain. Thus, if a,b G K with ab = 0 implies 

either a = 0 or b = 0. Furthermore, for every integral 

domain where ac = be and c G K, but ^ 0, then a = b 

(cancellation law).

Example (A. 5) Let K = {A: A G  R2x2, ring of 2x2 real

• • — 2x2 •matrices) with A, A G R given by

A =

-2

-4

* 0 A = j* 0

AA

0

0

0

0

0 , A,A are divisors of zero

in K = R“ , K is not an integral domain.

The set of polynomials is an integral domain. If t:(s), 

t2(s) G R[s] and tx(s) t2(s) = 0 implies that
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tx(s) = 0 or t2(s) 0. Let

t^s) = as2 + bs + c, t2(s) = ds + e

tjis) t2(s) = ads3 + (bd + ae) s2 + (cd + be) s + ce = 0

a d = 0  -» a = 0 , or b = 0

bd = ae 

cd = be

ce = 0 -» c = 0 , or e = 0

or

O t (s) = 0 
1

d = e = 0 o t (s) = 0 
2

In the case where every non zero element of a commutative 

ring is a unit we have

Definition (A.4) [God 1]: A field F is a commutative ring 

with an identity (the element 1 ) which satisfies the 

following conditions.

(FI) F contains at least two elements 

(F2) Every non zero element of F is a unit.

Example (A.6 ) The rational numbers Q, real numbers R, 

complex numbers C and the rational functions R(s) are all
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well known examples of fields.

The Field of Fractions of an Integral Domain

If every subring of a field is a commutative integral 

domain then we can construct a field of fractions.

Definition (A.5) [God 1]: Let F be a field, K be a subring 

of F and suppose that every element x G F can be 

represented in the form y/z = yz ' 1 where y, z G K, z ^ 0. 

Then F is called the field of fractions of K. denoted F/K.

Example (A.7) Let F be the field of rational functions 

R(s) and K be the ring of polynomials R [s]. Any element 

t(s) = (s|- G R (s) where n(s), d(s) G R[s] , thus R(s) is 

the field of fractions of R[s] . This is known as the R e -

fractional representation of a rational function. 

Similarly, if K = Rpr(s) , t(s) = G R(s), n(s), d(s) G

Rpr(s) , then Rpr(s)-fractional representation of a rational 

function.

If K = R,(s)-, t (s) = R(s) , n (s) , d(s) G Rp(s) , then

R̂  (s)-fractional representation of a rational function.

The field F/K is the quotient field of F by the integral 

domain K. Generally, if K is any ring and D is any 

integral domain then K/D is termed the quotient ring 

of K by D.
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The embedding of the ring K in its field of fractions 

forms the basis of what is known as the "fractional 

representation approach" to control systems synthesis [Vid 

1]. This approach is discussed later on but in order to do 

so the notion of a discrete valuation on a field needs to 

be defined.

Definition (A. 6 ) [Mar 1]: Let F be a field. A discrete 

valuation of F is a function 7 defined on F whose values 

are integers or the symbol + <» such that

(DV1) 7 (0 ) = +00; 7 (X) G Z if x 0

(DV2) 7 (xy) = 7 (x) + 7(Y); V x,y E F

(DV3) g(x+y) £ min [7 (x); 7 (y)], V x,y E F

Example CA.8 ) Let t (s) = j- E R (s) , n(s), d(s) E Rpr (s) 

i.e. K = Rpr(s) , the ring of proper rational functions (no 

poles at s = °°) and (n(s), d(s)) defines an Rpr(s)-

fractional representation of t(s). Define the map

6^: R(s) -» Z U {+°°} via

« o o ( t ( s ) )

deg. d(s)-deg.n(s) , t(s) ^ 0 

+00 , t (s) = 0

Now t(s) can be factorized as

<3oo

t(s) = (-J-) Jjfj- where = «„(tfs))
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and deg. n(s) = deg.d(s). Then,

i) if > 0 we say that t(s) has a zero at s = « of 

order q^

ii) if q^ < 0 we say that t(s) has a pole at s = °° of 

order |q^|

iii) if qM = 0 we say that t(s) is biproper or a unit of 

Rpr(S)‘

The discrete valuation ¿oo(') may serve as a degree 

function for the set t(s) °° Rpr(s) of proper rational 

functions where ¿^(tis)) ^ 0 .

Principal Ideal Domains (PID's)

A subset I in a ring K is said to be a left ideal if I is 

a subgroup of the additive group of K and elements a G I, 

x G K imply that xa G I . Similarly, I is a right ideal if 

I is a subgroup of the additive group of K and elements a 

G K imply that ax G I, in other words if the right 

multiples of every x G I belong to I . It comes to the same 

thing to say that I is a non empty subset of K which has 

the following property: For a right ideal, ux+vy G I for 

all u, v G K and all x, y G I. Clearly if K is a 

commutative ring the notions of left and right ideal 

coincide and we speak simply of an ideal.
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Example CA.9) Let K be a commutative ring. For each x G 

K let xK (or Kx) denote the set of all multiples of x in 

K. Thus, I = xK = {ux: u G K, u:units} is an ideal of K.

■

Ideals of the type given in example (2.7) are called 

principal ideals of K. An ideal I in a commutative ring 

K is a prime ideal if a G K, b G K, ab G I implies that 

either a G I or b G I .

Example (A. 10) Consider the ring of integers Z and let 

a,b,n be any integers. Then, the set of multiples of n 

denoted n is the principal ideal generated by n. It is a 

prime ideal if and only if n divides ab implies that n 

divides a or n divides b, which is true if and only if n 

is a prime number.

Remark [A.1 ) : In the remainder of this section and

therefore the ring K is assumed to be a commutative

integral domain with identity element.

Definition (A.7) [Mar 1] : Let K be a ring and I be an 

ideal of K. If I = xK for some x G K, then I is called a 

principal ideal and x is called the generator of I. A ring 

K is said to be a principal ideal ring if every ideal in 

K is principal and if K is also an integral domain then K
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is a principal ideal domain (PID) denoted K.

Recall that a principal ideal I consists of all multiples 

of some element a E I, i.e. I = {xa: x E K}. Thus in a PID 

every ideal is generated by a single element.

Example (A. 11) The rings R[s], Rpr(s) , Rp(s) respectively: 

polynomials, proper rational functions, proper and stable 

rational functions, are all PID's.

■

The Algebraic Theory of Linear Time Invariant Systems is 

Based on the Study of Matrices over PID's

If K is a P.I.D and x,y be any two elements of K which are 

not both zero. Then a non zero element d E K is a greatest 

common divisor (g.c.d) of x,y if d divides x and y, 

denoted d|x,d|y. A g.c.d is not unique, since another 

g.c.d is given by du whenever u is a unit of K. Thus, 

every g.c.d dx of x and y is of the form d: = du for some 

unit u and once we have found one g.c.d we can quickly 

find them all. The existence of a g.c.d is given by the 

following well known result.

Theorem (A.l) [God 1]: Let K be a PID. Then every pair of 

elements x,y E K, not both of which are zero, has a 

greatest common divisor (g.c.d.) d which can be expressed 

in the form
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d = px + qy (A.l)

for appropriate elements p,q G K.

Two elements x,y G K are called relatively prime or simply 

coprirne if every g.c.d. of x,y is a unit. This is 

equivalent to saying that x and y are coprirne if and only 

if 1 is a g.c.d. of x and y. In view of expression (2.1) 

x,y G K are coprirne if and only if there exists p ,q G K 

such that p x + q y = u ,  u G K a  unit.

A parallel concept to the greatest common divisor of a set 

of elements is that of the least common multiple. If 

(xlf...,xn) is a set of elements from a PID K, none of 

which is zero. We say that y is a least common multiple 

(lcm) of this set if, Xj | y and x; | z implies y|z, for all i 

1,2,...,n .

Unique Factorization and Euclidean Domains

The coprimeness between elements of ring is characterized 

by a Euclidean division process. Rings in which a 

euclidean algorithm can be defined are given below. First, 

the conditions under which an element from a ring can be 

uniquely factorized are given.

Definition (A.8 ) [God 1]: Let K be a commutative integral
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domain. An element p G K is irreducible (prime) if it is 

not a unit and it has no divisors in K other than trivial 

ones (i.e. units of K and products of p by units). The 

ring K is said to be a unique factorization domain if it 

possesses the following two properties

(UFD1) Every element of K which is neither zero nor a 

unit is the product of a finite number of 

irreducible elements.

(UFD2) If plf...,pr = qi,..-,q5 where the P; and qj are 

irreducible elements of K. Then, r=s and the 

orders of the qj can be changed so that Kqj for 

1 £ i £r i.e. q, = u;p; with U; a unit of K.

■

The above conditions imply that if an irreducible element 

p G K divides a product xy G K then it divides x or y or 

both and for every irreducible p G K the ideal generated 

is prime. Every principal ideal domain is a unique 

factorization domain although the converse is not true.

Definition fA.9) [Mar 1]: A commutative integral domain 

is said to be a Euclidean ring or Euclidean domain if 

there exists a degree function 5 with non zero integer 

value which satisfies the following conditions

(EDI) For every x ,y G K with y ^ 0 there exists a q G

K such that either
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r: = x - qy = 0 , or else 5(r) < 5 (y). 

(ED2) If x|y then <5(x) ^ 5 (y) .

One can think of q as a quotient and r as a remainder 

after dividing x by y. Condition (EDI) states that we can 

always obtain a remainder that is either zero or else has 

a smaller degree than the divisor y. We speak of a

quotient and a remainder because q and r are not 

necessarily unique.

Condition (ED2) implies that 5(1) £ 5(x), Vx ^ 0, since 1 

divides every non zero element. Hence it can be assumed 

without loss of generality that 5(1) = 0. The same

condition implies that if x and y are associates then they 

have the same degree since in that case x|y and y|x. In 

particular 5(u)=0 whenever u is a unit.

If K is a Euclidean domain with degree function 5(‘) where

5(x+y) ^ max (5(x), 5(y)} (A.2)

5 (x,y) = 5 (x) + 5 (y) (A. 3)

then for every x,y E K with y ^ 0 there exists a unique 

q E K such that 5(x-yq) < 5(y) where the degree of zero is 

taken as (-<») . A Euclidean domain K with degree function 

5(-) is called a proper Euclidean domain if K is not a 

field and the degree function 5(-) satisfies condition

(2.3). Note that in a proper Euclidean domain the
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division process may still produce non unique quotient, 

remainders because (2.2) is not assumed to hold. This is 

the case, for example, in the ring of proper and stable 

rational functions which are studied in chapter 2 .

Example (A.13): Let K be a ring. Then a polynomial over 

K is an infinite sequence {a^aj...} such that only 

finitely many terms are non zero. The sum and product of 

two polynomials a = {a;} and b = (b;) are defined by

(a+b); = 3 ; + b;

(ab)i =
l
£

j= 0 1-1

l
= £

j= 0
a . b . .
1 i-l

For notational convenience a polynomial a = {a;} can be 

represented by a0 + ax + axs + a2s2 + ... where s is called 

the indeterminate. The highest value of the index i such 

that a; 5* 0 is called the degree of a polynomial 

a = (a0, a:, a2,...}. Thus, if a is polynomial of degree m

m .
we write a(s) = a. + a.s + ... + a s = £ a.s0 1 m .  ̂ l

The set of polynomials over K is denoted R[s] and is a

commutative ring with identity. Moreover, if K is a

domain, so is R[s] . If R is a field then R[s] is a

Euclidean domain if the degree of a polynomial in R[s] is

defined as in (2.2), (2.3). The field of fractions

associated with R[s] is denoted by R(s) and is called the
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set of rational functions over R. Note that every element 

of R(s) is a ratio of two polynomials.
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APPENDIX B

Modules over a Ring

The notion of a module over a ring provides a general 

setting for the purely algebraic aspects of linear 

problems which arise in control systems theory: linear 

algebra, differential equations, algebraic geometry, 

analytic functions, algebraic topology etc.

The definition of a module over a commutative ring is 

given first and the notion of finitely generated and free 

modules is introduced. Finally, the structure of

Noetherian modules is given and these modules when defined 

over the appropriate ring provide an important setting for 

control algebraic synthesis problems.

Definition (Bl) [God 1]: Let K be a commutative ring. A K- 

module is defined to be an object consisting of a set M 

together with the binary operations + (addition) and ' 

(multiplication) which satisfy the following two 

conditions.

(Ml) (M, +) is a commutative group. This means that the 

law of composition (x,y) -» (x+y) is commutative.

(M2) V x,y G M and V A, £ K we have:

A(/zx) = (A/z)x; lx = x

(A + = (Ax + /zx) ; A(x + y) = Ax + Ay

248



In the theory of modules, the ring K is fixed and is 

generally called the ground ring. The elements of the ring 

are called scalars and the elements of the K-module are 

called vectors.

If the ring K is a field we speak of a vector space over 

K. In particular a vector space over the field R of real 

number is called a real vector space. A vector space over 

the field of complex numbers C is called a complex vector 

space. Vector spaces over R(s) rational vector spaces and 

modules over the rings R[s] , Rpr(s), Rp(s) polynomials, 

proper rational and proper, stable rational functions 

respectively play on important role in algebraic synthesis 

methods [Var 2, Var 3, Var 7, Var 8 , Per 1].

Example (Bl) ; Let K be the ring R[s] with t(s) G R[s] 

then an R[s] module is given by

M = t (s)

0

1

0

If now the ring K is the field of rational functions R(s), 

then an R(s) vector space is given by
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0

V = r(s) r(s) G R(s)

Definition (B2) [God 1]: Let K be a commutative ring and 

M be a module over K. A submodule of M is defined to be a 

subset S of M that satisfies the following two conditions:

(SMI) S is a subgroup of the addition group M

(SM2) If x G S and A G K then Ax G S.

Remark (Bl) If K is a field, then in the above definition 

M is a vector space over K and S is a subspace of M.

Example CB2) Let K = R[s] and let Mx and M2 be two modules 

over R[s] with

0 s+3

3
H

¡1 1

(s+3)

/ m 2 = 0

(s+3) 2

Clearly, M2 = (s+SJMj thus M2 C Mj i.e. M2 is an R[s]- 

submodule of M2.
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Finitely Generated Modules

Definition CB3) Let M be a K-module and S a submodule of 

M. Then S is said to be finitely generated if a finite 

set of m elements {alr . . . ,am } G H generate the submodule 

S. The vectors [â , . . . , ara] are said to be a system of 

generators of S.

The above applies in particular to the module M itself; 

thus a module H is finitely generated if it contains a 

finite set of m vectors {â , . . . ,am } such that every vector 

x G M is a linear combination of {a1,...,am } i.e. there 

exists scalars (A1,...Am) G K such that

x = A1a1 + A2a2 + ... +Amam (Bl)

m
= 2 A. a. (B2)

i=l

The collection of all linear combinations x is called the 

module spanned by {alf . . . ,am } denoted M = spanK 

{a1,...,am }. If a; is a column, row vector then the module 

generated is called a column, row-module of M denoted Mc, 

Mr respectively.

If the ring K is a field a finitely generated module 

coincides with the standard notion of a finite dimensional 

vector space i9 and the collection of linear combinations 

x of the given vectors {ax, . . . ,am } is called the range
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space of t) . In particular if a{ is a column, row vector,

then the range space generated is called the column, row

range space of t? denoted Xs, Xr respectively. Furthermore,

the collection of all linear combinations x such that 

m
E Âa.; = 0 is called the null space of the vector space 
i=l

d spanned by the columns, rows of a.;, i E m denoted N£ 

(left-null space), Nr (right-null space) respectively. The 

corresponding notion for a module is that of the torsion 

module [God 1]. Modules which are torsion free are 

considered next.

Free Modules Bases

Definition CB4) Let M be a K-module. Then M is said to be 

a finitely generated free module if there exists a set of 

vectors {b1,...bm } in M which are linearly independent and 

generate M i.e.

m
Anb. + .... + A b = E A.b. = 0  implies 

1 —1 m—m l — i

Ax = 0 ... = Am = 0 (B3)

The vectors [b1,...,bm] are said to form a basis of M so 

that a basis is a finite set of linearly independent 

generators.

All the bases of a K-module M have m linearly independent 

generators. This number is called the rank of M over K. In
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the case where K-is a field then M is called the dimension

of the vector space and corresponds to the notion of rank 

"if and only if" the dimension of the null space of the 

vector space is zero.

Example (B3). Let K be the ring R[s] and

M = 
1

s+ 2 be an R[s]-module. Then

s+3

0 0

,,CM = span_ s+ 2 f 0
[s]

0 s+ 2

clearly linearly independent, rank of M = 2, and form a 

basis for the R[s]-module M.

Finitely Generated Modules over a Noetherian Ring

Noetherian rings were invented around 1920 by Emmy Noether 

and have been one of the principal starting points for 

modern algebra.
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Definition (B51 [God 1] : Let K be a commutative ring. Then 

K is said to be Noetherian if every ideal in K is finitely 

generated. The K-module generated over a Noetherian ring 

is called a Noetherian K-module.

All principal ideal domains are Noetherian and thus all 

modules over PID's are Noetherian K-modules. The most 

important rings in algebraic control theory are the PID's 

R[s], Rpr(s) , Rp(s) , polynomials, proper rational and 

proper, stable rational respectively.

Before giving some characteristic properties of Noetherian 

rings we first introduce the following terminology.

Let (An) be a set of subsets of a set X. Then X is said to 

be an increasing seguence if

An C An+1 , V n (B4)

and a stationary sequence if there exists an integer p 

such that

K  = \ +i' V n > p (B5)

so that Ap = Ap+1 = Ap+2 = .....  On the other hand, let F

be a set of subsets of X. An A E F is said to be a maximal 

element of F if the relations

A C B and B G F

254



imply A = B

In other words if F contains no set strictly larger than

A (this does not mean that every B E F is necessarily

contained in A).

Properties:

i) K is Noetherian i.e. every ideal of K is finitely 

generated.

ii) Every increasing sequence of ideals of K is 

stationary.

iii) Every non empty set of ideals has at least one 

maximal element.
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APPENDIX C

Normal Forms and Coprime Matrix Fraction Descriptions 

over a Principal Ideal Domain

Many of the results in the section were first obtained 

(e.g.the Smith form (1861)) for matrices with integer 

entries; it was only realised much later that they also 

hold for entries drawn from any PID. This generality is 

highly useful in systems problems. Throughout, K denotes 

a PID with Kpxm the K-module of pxm matrices with elements 

from K.

Hermite and Smith-McMillan Forms of a Rational Matrix over 

a PID

Definition (Cl) Let T and T be two matrices in Kpxm .

We say that T is left equivalent to T, written T E^ T if 

there exists a matrix E Kpxp which satisfies the

following two conditions:

(Ul) |U| is a unit in the ring K 

(U2 ) T = U£ T

Similarly we say that T and T are right equivalent, 

written T E T if there exists a matrix Ur E Kmxm which 

satisfies (Ul) and

(U3 ) T = TUr.
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Furthermore, T and T are called equivalent written, T E T 

if there exists E Kpxp, Ur E K"“™ which satisfy (Ul) and

(U4) T = U£ T Ur

Unimodular matrices are elementary matrices that 

correspond to elementary row (left), column (right) 

operations performed on the identity matrix I . There are 

three types of row (column) operation that can be 

performed on a matrix in Kpxm.

I Interchange row (column) i and row (column) j .

II To row column i add (in K) r times row column j, 

i j , r E K.

III Multiply row column i by a unit u E K.

If any of these operations is performed on the identity 

matrix the resulting matrix is an elementary matrix of the 

corresponding type.

By elementary operations we can convert matrices to 

several "standard forms". We next describe the Hermite 

normal form of a rational matrix over a PID K which is 

obtained by applying row or column operations only. When 

both row and column operations are performed on a matrix 

the Smith, Smith-MacMillan is then defined.
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Theorem (Cl) [Mar 1] (Hermite Normal Form) : Let K be a

PID. Any rational matrix T G pxm(s), rank {T} = r 

with r ^ min (p,m) can be reduced by operations in K 

(premultiplication by a K-unimodular matrix) to a (lower 

or upper) quasi-triangular form-the column Hermite form - 

in which:

i) the last p-r rows are identically zero;

ii) in column j , 1 ^ j <> r the diagonal element is prime 

and of higher degree than any non zero element above 

it;

iii) in column j, 1 £ j £ r if the diagonal element is a 

unit in K then all elements above it are zero; and

iv) no particular statement can be made about the 

elements in the last m-r columns and the first r 

rows.

Note: The above form is uniquely defined modulo
units,i.e. its elements are uniquely defined.

Remark iCl) By interchanging the roles of rows and 

columns a similar row Hermite form can be obtained. If the 

matrix T is defined as the field R(s) then reduction to 

(lower, upper) quasi-triangular form defines the (column, 

row) Hermite MacMillan form of T over R(s).
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Example (Cl) The following steps are self-explanatory. 

(Consider a matrix from Rpr(s))

1 2 0 1 1
(s+lp

1 10 2 —► 0 2
s s

l1 1
L (s+ir J

i  i 1 1

- i n  1
0 2

—►
0 2

s
zs

1
0 2 0 0

L ( s + i )  J

The corresponding unimodular matrix is

1 0 0 1 0 i 0 0 1

0 0 0 0 1 0 0 1 0

2s - 1 0 01
(s+1 ) 2

1
.(s+1 ) 2

U 1 JL

0

0

1

1

2

(s+1 ) (s+1 )

R (s)-unimodular
pr v '

A U 
= l
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1 . e. U/T = H where H is the column Hermite form of 

T £ R3x2(s ) over Rpr(s) .

Theorem (C2) (Smith-McMillan Form) [Mar 1]:

Let K be a PID and K be such that R(s) is the field of 

fractions of K. For any rational matrix T E Rpxm(s) , 

rankR^{T) = r, r ^ min(p,m) there exists K-unimodular 

matrices E Kpxp, Ur E K"“1" corresponding to elementary 

row, column operations respectively such that

U£ T Ur = ST (Cl)

where ST is a diagonal matrix having the form:

Srp = [diag{ £ ^ 1  , < • • • ' er̂ r } ®p-r,m-r] (C2 )

where E K, t/>; E K are coprime in K, i E r and obey the 

division property

i )  V'i+i I V>i i  G £ r i  , ^  =  d

ü )  «i I ei+i i  G 111

( C3 )

" |" means divide and "d" the least common multiple of the 

denominators of the entries of T.

The matrix ST can also be written as 

ST = E ir_1 = E (C4a)
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where

E = [diag { ex, e2,...,er), Op.rm.r] (C4b)

*r = diag ' {tplr ip2l...,iprl Im.r} ( C4c)

Vt = diag'{t\>x, tp2,...,iffr, Ip.r> (C4d)

In the case where the tp-’a are all units of K i.e. |¥r| = Im , 

|Ÿ£>| = Ip then ST is called the Smith Form of T over K. 

Otherwise some of the ip̂ 3 will be different from units and 

ST is called the Smith-McMillan form of T over K.

Example (C2) Let T £ R (s) be the rational matrix.

_______ s_____

(s+1 ) 2 (s+2 ) 2

T

-s

(s+2 ) 2

s

(s+2 ) 2

-s

(s+2 ) 2

Then we can check that

0
______ s_____

(s+1 )2 (s+2 ) 2
0 1 (s+1 ) 2

-(s+1 ) 2 1 0 1

or T = U£_1 ST Ur':, d = (s+1) 2 (s+2) 2 where U£, Ur are the

R [s]—unimodular matrices which reduce T to its Smith-
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McMillan form over R[s].

ST = diag. { . , . , 2  , , _ . 2  ' s+ 2(s+1 ) (s+2 )

where: = s, = (s+1 ) 2 (s+2 )2;

e2 = s2, i/>2 = s+ 2 are coprime in R[s]

Definition (Cl) [Kai 1]: The sum of the deg.^, i G r is 

called the McMillan degree of T .

Matrix Fraction Description of a Rational Matrix over a 

Principal Ideal Domain

The generalization of the representation of a rational 

function t(s) as a quotient of relatively prime (coprime) 

elements over a PID to the matrix case is given below.

Recall that if F is the field of fractions associated with 

a PID K and t(s) = a/b is a function in F then it is 

always possible to express a/b as an equivalent fraction 

f/g where f,g are coprime in K. Thus, their greatest 

common divisor is a unit in K. This notion is extended to 

the matrix. We begin by defining matrix divisors and 

multiple common divisors for the set Kpxm. Since matrix 

multiplication is in general non commutative it is 

necessary to distinguish between left and right multiples.
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Definition (C2): Let K be a PID. Any rational matrix T G 

Kpxm (s) with p ^ m, rank {T} = m can be factorized in a non 

unique way as

T = Tx Tr (C5)

where Tr G K ™ 1” is a right divisor of T and T is a left 

multiple of Tr. If Tr is a greatest right divisor (K- 

g.r.d.) of T this is denoted by Tgr. If T G Kpxm(s) , rank{T) 

= m, p £ m is any other matrix factorized as in (2.13). 

Then a square matrix T G K1™“11 is called a greatest common 

right divisor (K = g.c.r.d) of T and T if:

(GCRD1) Tgr is a right divisor of both T and T 

(GCRD2) T is a left multiple of every common right 

divisor of T and T.

Two (or more) matrices T and T are called right coprime 

over K if every K-g.c.r.d of T and T is K-unimodular.

The definition for left divisor, greatest common left 

divisor and left coprimeness follows in an analogous way.

Proposition (Cl) [Kar 3]: Let T G Kpxm(s), rank (T) = r, 

r ^ min(p,m) and K be a PID. Then T can always be 

expressed (in a non unique way) as:

T =  B -jA ^1 =  A 1' 1B1 (C6)

where
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B2 G Kpxm, A2 G K"“ ™; Aj G Kpxp, Bj G Kpxm

and (B2, A2) right coprirne over K 

(Bx A:) left coprirne over K.

Proof Let U£ G Kpxp, Ur G K11“ 111 be K- K-unimodular matrices 

that reduce T G Rpxm(s) to its Smith-McMillan form over K. 

Then from (C3) we have:

U£ T Ur = ST = E * r_1 = 'f£~1 E

Then let

B2 = U£E, A2 = Ur %

B j  -  E  U r , A x =  * £ U £

from which

and

[B1 A1] = [E U - 1

u,

and thus it follows that (B2, A2) are right and (B:, Ax) are 

left coprime in K.
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A pair (B2, A2) satisfying the above proposition is called 

right coprime K-matrix fraction description (Kj.-MFD) of a 

rational matrix T. Similarly, a pair (B1( A1) is referred 

to as a left coprime K-matrix fraction description (K£- 

MFD) .

Proposition (2.1) describes the well known fact that every 

rational matrix T can be expressed as a ratio of coprime 

over K matrix fractions. This representation of rational 

matrices was first introduced by Vidyasagar [Vid 1] for 

the case K = R^s), the set of proper rational functions 

which are also stable (i.e. have no poles at s = » or in 

a prescribed region of the finite complex plane). Matrix 

fraction descriptions of this type forms the basis of 

what is termed the fractional approach to analysis and 

synthesis of linear multivariable control algebraic 

problems.
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