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Four Theorems on the Psychometric Function
Keith A. May*, Joshua A. Solomon

Division of Optometry and Visual Science, City University London, London, United Kingdom

Abstract

In a 2-alternative forced-choice (2AFC) discrimination task, observers choose which of two stimuli has the higher value. The
psychometric function for this task gives the probability of a correct response for a given stimulus difference, Dx. This paper
proves four theorems about the psychometric function. Assuming the observer applies a transducer and adds noise,
Theorem 1 derives a convenient general expression for the psychometric function. Discrimination data are often fitted with
a Weibull function. Theorem 2 proves that the Weibull ‘‘slope’’ parameter, b, can be approximated by bNoise|bTransducer,

where bNoise is the b of the Weibull function that fits best to the cumulative noise distribution, and bTransducer depends on

the transducer. We derive general expressions for bNoise and bTransducer, from which we derive expressions for specific cases.

One case that follows naturally from our general analysis is Pelli’s finding that, when d ’!(Dx)b, b&bNoise|b. We also
consider two limiting cases. Theorem 3 proves that, as sensitivity improves, 2AFC performance will usually approach that for
a linear transducer, whatever the actual transducer; we show that this does not apply at signal levels where the transducer
gradient is zero, which explains why it does not apply to contrast detection. Theorem 4 proves that, when the exponent of a
power-function transducer approaches zero, 2AFC performance approaches that of a logarithmic transducer. We show that
the power-function exponents of 0.4–0.5 fitted to suprathreshold contrast discrimination data are close enough to zero for
the fitted psychometric function to be practically indistinguishable from that of a log transducer. Finally, Weibull b reflects
the shape of the noise distribution, and we used our results to assess the recent claim that internal noise has higher kurtosis
than a Gaussian. Our analysis of b for contrast discrimination suggests that, if internal noise is stimulus-independent, it has
lower kurtosis than a Gaussian.
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Introduction

On each trial of a 2-alternative forced-choice (2AFC) discrim-

ination task, observers are presented with two stimuli, one (often

called the pedestal) with stimulus value x~xp, and one (the target)

with value x~xpzDx, where x represents a value along some

stimulus dimension, such as contrast, luminance, frequency, sound

intensity, etc., and Dx represents a (usually) positive increment in x.

The observer has to say which stimulus contained the higher

value, xpzDx. For this task, the function relating stimulus

difference, Dx, to the probability of a correct response, P, is called

the psychometric function. The form of the psychometric function can

reveal characteristics of the underlying mechanisms, helping to

constrain the set of possible models. In this paper we present four

theorems that help us to understand the properties of the

psychometric function and clarify the relationship between the

psychometric function and the underlying model.

In order to fit the psychometric function to data, we need a

mathematical function whose parameters can be adjusted to fit the

kind of data set usually obtained. A widely used function is the

Weibull function, and two of our theorems relate specifically to this

function. Letting YWeibull represent the Weibull function, and

letting PWeibull represent its output (i.e., the predicted proportion

correct), the Weibull function is given by

PWeibull~YWeibull(Dx)~1{0:5 exp {(Dx=a)b
� �

: ð1Þ

a is the ‘‘threshold’’ parameter, the stimulus increment that

gives rise to a proportion correct of YWeibull(a)~
1{0:5=e~0:816:::. In what follows, we will frequently refer to

this threshold performance level as Ph, so this term should be read

as the constant, 1{0:5=e~0:816:::. b is often referred to as the

‘‘slope’’ parameter, because it is proportional to the gradient of the

Weibull function at Dx~a when YWeibull(Dx) is plotted on a log

abscissa.

In 2AFC visual contrast discrimination experiments where the

contrasts of both stimuli are at least as high as the detection

threshold, b usually falls between 1 and 2, with a median of

around 1.4 (see Table 1 and Figure 1). As the pedestal contrast

approaches zero (making it a 2AFC contrast detection task), b
increases to a value of around 3 [1–5].

When YWeibull(Dx) is plotted on a log abscissa, changing the

value of a shifts the function horizontally, but otherwise leaves it

unchanged (Figure 2A), and changing the value of b linearly

stretches or compresses the function horizontally, leading to a

change of slope (Figure 2B). On this log abscissa, the Weibull

function always has the same basic shape, up to a linear horizontal

scaling. When YWeibull(Dx) is plotted on a linear abscissa,
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Table 1. Fitted Weibull function parameters for 2AFC contrast discrimination.

l = 0 l fitted

Study Condition/observer Pedestal a b W a b l W

Bird et al. [34] CMB 0.03 0.00735 1.12 0.245 0.00735 1.12 5610213 0.245

CMB 0.3 0.0779 1.11 0.260 0.0692 1.21 0.0309 0.231

GBH 0.03 0.00737 0.734 0.246 0.00643 0.832 0.0251 0.214

GBH 0.3 0.0574 0.952 0.191 0.0541 0.993 0.0128 0.180

Foley & Legge [1] JMF, 0.5 cpd 0.00400 0.00165 1.35 0.412 0.00165 1.35 361029 0.412

JMF, 2 cpd 0.00230 0.00111 1.56 0.484 0.00111 1.56 5610212 0.484

JMF, 8 cpd 0.00300 0.00125 1.44 0.418 0.00123 1.46 0.0071 0.410

GW, 0.5 cpd 0.00400 0.00134 1.50 0.335 0.00134 1.50 2610212 0.335

GW, 2 cpd 0.00229 0.000923 1.58 0.404 0.000923 1.58 1610212 0.404

GW, 8 cpd 0.00330 0.00117 1.40 0.353 0.000996 1.94 0.0544 0.301

Henning et al. [47] CMB 2.09 cpd 0.15 0.0421 1.49 0.281 0.0421 1.49 1610212 0.281

CMB 8.37 cpd 0.15 0.0461 1.81 0.307 0.0379 2.21 0.0796 0.253

GBH 2.09 cpd 0.15 0.0363 1.49 0.242 0.0363 1.49 2610212 0.242

GBH 8.37 cpd 0.15 0.0401 1.21 0.267 0.0244 6.70 0.0645 0.163

Henning & Wichman
[40]

GBH* 0* 0.0219* 4.26* –*

GBH* 0.01* 0.0102* 13.1* 1.02*

GBH* 0.02* 0.00562* 1.67* 0.281*

GBH 0.04 0.00705 0.987 0.176

GBH 0.08 0.0156 1.16 0.195

GBH 0.16 0.0322 1.75 0.201

GBH 0.32 0.0773 1.45 0.241

NAL* 0* 0.00619* 4.84* –*

NAL* 0.00141* 0.00492* 5.90* 3.48*

NAL* 0.00283* 0.00407* 2.28* 1.44*

NAL* 0.00566* 0.00224* 1.43* 0.395*

NAL 0.0113 0.00272 0.902 0.241

NAL 0.0226 0.00707 0.990 0.312

NAL 0.0453 0.0150 0.943 0.331

NAL 0.0905 0.0233 1.28 0.257

NAL 0.181 0.0424 1.59 0.234

NAL 0.362 0.0658 1.33 0.182

TCC* 0* 0.00838* 6.38* –*

TCC* 0.005* 0.00443* 2.14* 0.886*

TCC 0.01 0.00339 0.912 0.339

TCC 0.016 0.00787 1.17 0.492

TCC 0.032 0.0126 1.52 0.393

TCC 0.08 0.0301 1.64 0.377

TCC 0.16 0.0381 1.27 0.238

TCC 0.32 0.0686 1.10 0.214

Meese et al. [4] Pedestal 2‘ dB* 0* 0.00855* 3.32* –*

Pedestal 210 dB* 0.00316* 0.00557* 2.44* 1.76*

Pedestal 25 dB* 0.00562* 0.00346* 1.47* 0.615*

Pedestal 0 dB 0.01 0.00340 1.47 0.340

Pedestal 5 dB 0.0178 0.00654 1.48 0.368

Pedestal 10 dB 0.0316 0.0110 1.40 0.348

Pedestal 15 dB 0.0562 0.0176 1.58 0.313

Pedestal 20 dB 0.1 0.0233 1.47 0.233
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changing the value of a linearly stretches or compresses the

function horizontally as well as changing the threshold (Figure 2C),

while changing the value of b changes the shape of the function in

a way that cannot be described as a linear horizontal scaling

(Figure 2D).

Since b is proportional to the slope of the Weibull function on a

log abscissa, the low value of b for contrast discrimination

(compared with detection) often leads to the psychometric function

for discrimination being described as ‘‘shallow’’, and that for

detection as ‘‘steep’’. However, psychometric functions for contrast

discrimination can be steeper than for detection when plotted on a

linear contrast abscissa (e.g., Nachmias & Sansbury [6], Figure 2;

Foley & Legge [1], Figure 1). We must therefore be vigilant not to

be misled by the common practice of referring to b as the ‘‘slope’’

parameter. b does control the slope of the Weibull function on a

log abscissa, and this fact plays a key role in the proof of Theorem

2 of this paper, but the psychometric function is often plotted on a

linear abscissa, and, in this case, a and b both affect the slope

(Figures 2C and 2D); on a linear abscissa, a additionally controls

the threshold and b additionally controls the overall shape of the

psychometric function. Thus, when considering a linear abscissa, it

would be more appropriate to describe b as the ‘‘shape’’

parameter, rather than the ‘‘slope’’ parameter.

The Weibull function defined in Equation (1) asymptotes to

perfect performance (PWeibull~1). This is rarely achieved by

human observers due to lapses of concentration, etc., and this can

lead to a dramatic underestimation of b if the observer makes just

one lapse on an easy trial [7]. Because of this problem, many

researchers use a version of the Weibull function that includes a

‘‘lapse rate’’ parameter, l:

PWeibull~(1{l){(0:5{l) exp {(Dx=a)b
� �

: ð2Þ

This function asymptotes to PWeibull~(1{l), and reduces to

Equation (1) in the case of l~0. The psychometric function

described by Equation (2) would result if the observer performed

according to Equation (1) on a proportion (1{2l) of trials, and

guessed randomly on the remaining trials.

The Weibull function was originally proposed by Weibull [8] as

a useful, general-purpose statistical distribution. Its widespread use

as a psychometric function can be traced back to Quick [9], who

was apparently unaware of Weibull’s prior work. Quick proposed

this function because, given certain assumptions, the Weibull

function makes it easy to calculate how detection performance will

be affected by adding extra stimulus components, or increasing the

size or duration of the stimulus, an approach that has become

Table 1. Cont.

l = 0 l fitted

Study Condition/observer Pedestal a b W a b l W

Pedestal 25 dB 0.178 0.0339 1.47 0.191

Pedestal 30 dB 0.316 0.0536 1.36 0.170

Nachmias & Sansbury [6] CS 0.0079 0.00387 1.27 0.489

Mean of suprathreshold (non-starred) conditions 1.32 0.298 1.82 0.297

Median of suprathreshold conditions 1.38 0.274 1.49 0.267

This table shows Weibull parameters fitted to 2AFC contrast discrimination data from six studies. The data from Meese et al. [4] are for their Binocular condition (plotted
as squares in their Figure 5); these data were kindly provided by Tim Meese. For the other five papers, we read off the data points from digital scans of the figures (Bird
et al. [34], Figure 1; Foley and Legge [1], Figure 1; Henning et al. [47], Figure 4 (sine wave stimuli only); Henning & Wichmann [40], Figure 4; Nachmias & Sansbury [6],
Figure 2). In most cases, these figures plotted the proportion correct, P, for several different contrast differences, Dc, and we fitted the Weibull function using a
maximum-likelihood method; specifically, we fitted the Weibull function by maximizing the expression

P
Dc P log½YWeibull(Dc)�z ½1{P� log½1{YWeibull(Dc)�, where

YWeibull is the Weibull function whose parameters were being fitted. In Henning & Wichmann’s [40] paper, the figures plotted the Dc values corresponding to 60%, 75%,
and 90% correct on the fitted psychometric functions, so we had to fit Weibull functions to points sampled from Henning & Wichmann’s own fitted psychometric
functions, rather than to the raw data. Where possible, we fitted both the lapse-free Weibull function of Equation (1), and the Weibull function of Equation (2), which
includes a fitted lapse rate parameter, l. Parameters for the former fit appear under the heading ‘‘l~099, and those for the latter appear under the heading ‘‘l fitted’’. In
many cases, the data did not sufficiently constrain l because there were no data points on the saturating portion of the psychometric function; in addition, Meese et al.

’s Weibull fits did not include a lapse rate parameter. The Weber fraction, W, is given by a
�

xp , where xp is the pedestal value. The means and medians at the bottom of

the table are calculated from those studies for which the pedestal level exceeds the detection threshold, so that both stimuli were clearly visible. The cases where the
pedestal is below detection threshold are stared in the table, and these were excluded from the means and medians.
doi:10.1371/journal.pone.0074815.t001
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Figure 1. Distribution of fitted Weibull b values in Table 1. The
fitted b values from the suprathreshold (non-starred) conditions of
Table 1 were dropped into bins with edges that stepped from 0.8 to 2.4
in jumps of 0.2 (the histogram thus excludes one outlier, the value 6.70
for Henning et al.’s [47] observer GBH at 8.37 cpd). For this histogram,
we used the b values that had been fitted using a nonzero lapse rate
parameter where available, as this is more likely to reflect the true b.
The median of this hybrid population (some including a lapse rate
parameter, some not) was 1.43 (indicated by the vertical dashed line).
doi:10.1371/journal.pone.0074815.g001
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known as probability summation [10–13]. Quick focused on yes/no

detection tasks, where the observer has to make a binary decision

about a single stimulus (as opposed to the 2AFC tasks that we

consider in this paper, in which the observer makes a binary

decision about a pair of stimuli), but a similar analysis can be

applied to 2AFC tasks [2].

Most treatments of probability summation with the Weibull

function invoke the ‘‘high threshold assumption’’ that a zero-

contrast stimulus never elicits a response in the detection

mechanism, so detection errors are always unlucky guesses. This

assumption makes a number of predictions that have turned out to

be false [2,14–16]. Furthermore, the convenient mathematics of

probability summation with the Weibull function only applies to

detection. For suprathreshold discrimination, where both stimuli are

easily detectable, these computational benefits do not apply.

Despite this, many researchers have continued to use the Weibull

function to fit data from both detection and discrimination

experiments for three perfectly valid reasons: it is well-known, fits

well to the data, and is built into QUEST [17], probably the most

widely used adaptive psychophysical method.

Different models of visual processing will deliver different

mathematical forms for the psychometric function. Therefore,

because of the widespread practice of fitting a Weibull function to

data, it is of interest to know what happens when we fit a Weibull

function to a psychometric function that is not a Weibull. In

Theorem 2 of this paper, we derive a general analytical expression

that gives a very accurate approximation of b when the Weibull

function is fitted to non-Weibull psychometric functions.

Although the usage of the Weibull function has its origin in

outdated theoretical views, the Weibull function has very

recently become more relevant again, due to the work of Neri

[18]. He argues that the internal noise on the decision variable has

a Laplace distribution, which, as we explain later in this

Introduction, can lead to a psychometric function that has the

form of a Weibull function with b~1.

First, we consider how the psychometric function might arise

from the properties of the observer. In 2AFC discrimination

experiments, the observer can be modelled using a transducer,

followed by constant additive noise. The transducer converts the

stimulus value, x, into some internal scalar signal value, R(x). R is

called the transducer function. A noise sample from a stationary,

stimulus-invariant distribution is then added to the internal signal,

R(x), to give a noisy internal signal value. If the noise has zero

mean, then R(x) will be the mean internal signal for stimulus value

x. The observer compares the noisy internal signal values from the

two stimuli, and chooses the stimulus that gave the higher value.

From the experimenter’s perspective, the observer behaves as if

a sample of noise, e, is added to the difference of mean signals, z,

given by

z~h(Dx)~R(xpzDx){R(xp): ð3Þ

The observer is correct when zzew0, i.e. when ew{z. The

probability, P, of this happening is given by

P~
Ð?

{z

f (e)de, ð4Þ

where f is the probability density function (PDF) of the noise, e.

This integral corresponds to the shaded area in Figure 3A. f has to

be even-symmetric, even if the noise added to the output of the

transducer is not. This is because the noise sample on z is equal to

the noise sample on the target minus the noise sample on the

nontarget. This is equivalent to swapping the sign of the nontarget
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Figure 2. Effect of varying Weibull a and b on log and linear abscissas. (A) Varying a on a log abscissa: The curve shifts horizontally. (B) Varying b
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noise sample and adding it to the target noise sample. The sign-

reversed noise sample on the nontarget will have a PDF with

mirror symmetry relative to the PDF of the noise sample on the

target, so the sum of these two values will have an even-symmetric

PDF. From the even symmetry of f we have

P~F (z)~
Ðz

{?
f (e)de, ð5Þ

where F is the cumulative distribution function (CDF) of the

observer’s noise on the internal difference signal, and corresponds

to the shaded area in Figure 3B. So the psychometric function for

2AFC discrimination, expressed as a function of z, will trace out

the positive half of the internal noise CDF, increasing from 0.5 to 1

as z increases from 0 to ‘.

Figure 4 plots the CDFs and PDFs for several different forms of

noise distribution (the mathematical definitions of these distribu-

tions will be given later). These CDFs (plotted as functions of z) do

not have a sigmoidal shape: The point of inflection is at zero on

the abscissa. This is because the point of inflection corresponds to

the peak of the derivative, and the derivative of these functions is

the noise PDF, which peaks at 0 in each case.

In summary, F is the CDF of the internal noise, and takes an

input of z (Equation (5)); z is the output of h, a function that is

determined by the transducer and pedestal, and takes an input of

Dx (Equation (3)). The composition of these two functions, F0h,

gives the observer’s psychometric function when it is plotted as a

function of Dx. We use Y to represent this composition of

functions:

P~Y Dxð Þ

~ F0hð Þ Dxð Þ

~F h Dxð Þ½ �

~F zð Þ

~F R xpzDx
� �

{R xp

� �� �
:

ð6Þ

f(ε)

−z 0

Noise, ε

A

f(ε)

z0

Noise, ε

B

Figure 3. Graphical representation of the probability of a
correct response. The shaded areas in A and B correspond to the
integrals in Equations (4) and (5), respectively. The smooth curves trace
out the PDF of the noise, f(e) on the internal difference signal, z. As
explained in the text, f has to be even-symmetric, and this means that
the two integrals in Equations (4) and (5) are equal. The shaded areas
correspond to the probability of a correct response. The psychometric
function (expressed as a function of z) is the CDF of the noise,
increasing from 0.5 to 1 as z increases from 0 to ‘.
doi:10.1371/journal.pone.0074815.g003
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Four Theorems on the Psychometric Function

PLOS ONE | www.plosone.org 5 October 2013 | Volume 8 | Issue 10 | e74815



If we fit the Weibull function, YWeibull, of Equation (1) to the

psychometric function, Y, of Equation (6), then the Weibull slope

parameter, b, will be determined by both the noise CDF, F, and

the transducer, R. In Theorem 2, we show that, to a good

approximation, b can be partitioned into a product of two factors,

bNoise and bTransducer. bNoise estimates the b of the Weibull

function that fits best to the noise CDF, while bTransducer depends

on the transducer function. Weibull b is found by multiplying

these two factors together. We derive general analytical formulae

for both factors, and then derive, from these formulae, specific

expressions for bNoise for a variety of noise distributions, and

specific expressions for bTransducer for several commonly used

transducer functions.

Our work greatly extends a result previously published by Pelli

[19]. He showed that, for 2AFC detection or discrimination,

b&bNoise|b: ð7Þ

where b is the slope of d ’ [20] against Dx on log-log axes. Pelli

derived this relationship using the concrete example of contrast

detection, but it is a purely mathematical relationship (outlined in his

‘‘Analysis’’ section, Ref. [19], p. 121), which makes no assumptions

about the underlying model, and could equally well be applied to

discrimination along any unspecified stimulus dimension by replac-

ing the contrast term, c, with Dx in his Equations (14) to (21).

Pelli’s analysis ran as follows. Given the definition of d ’ for 2AFC,

d ’~
ffiffiffi
2
p

W{1(P) ð8Þ

(where W is the cumulative Gaussian), and the observation or

assumption d ’~ Dx=Dx0:76ð Þb (where Dx0:76 is the value of Dx

corresponding to a proportion correct of W(1
� ffiffiffi

2
p

)&0:76, giving

d ’~1, and b is the log-log slope of d ’ against Dx), we have

P~W Dx=Dx0:76ð Þb
. ffiffiffi

2
ph i

: ð9Þ

Note that Equation (9) has the same form as Equation (6) if the

pedestal, xp, is zero, the transducer is a power function, R(x)!xb,

and the internal noise CDF is the cumulative Gaussian (as is

usually assumed). If we let bNoise represent the b of the Weibull

function, YWeibull(:), that fits best to the cumulative Gaussian,

W(:), then, substituting this Weibull function for W(:) in Equation

(9) yields a Weibull function with b given by bNoise|b, which is

Relation (7).

In our terms, the ‘‘b’’ part of Relation (7) is bTransducer, the factor

determined by the transducer; we will show that, in the case of a

power-function transducer and zero pedestal, our general expres-

sion for bTransducer reduces to b. We obtain Weibull b by

multiplying bNoise and bTransducer together, resulting in an

estimated b given by bEst~bNoise|bTransducer, which is equal to

bNoise|b in the scenario just described. In this paper, we derive

general analytical expressions for bNoise and bTransducer so that we

can easily estimate Weibull b for any combination of noise

distribution and transducer function, not just the specific case

considered by Pelli.

In many situations, the observer can be modelled using a linear

filter. This is equivalent to using a linear transducer, R(x)~rx,

where r is a constant. For this transducer, Equation (6) gives

Y(Dx)~F (rDx) for a linear transducer, R xð Þ~rx: ð10Þ

Thus, the linear observer’s psychometric function (plotted on a

linear abscissa, Dx) will have the same basic shape as the internal

noise CDF, F, just differing by a horizontal scaling factor, r. So, if

the observer behaves in a linear fashion, the psychometric function

plotted on linear axes gives us a direct plot of the shape of the

internal noise CDF. In this situation, since b controls the Weibull

function’s shape on linear axes, the b that fits best to the

psychometric function will be the b that fits best to the noise CDF

(the sensitivity parameter, r, will determine the best-fitting a, since

a controls the Weibull function’s horizontal scaling on linear axes).

The internal noise is usually assumed to be Gaussian, but Neri

[18] has recently disputed this assumption. Using reverse

correlation methods, he attempted to measure both the ‘‘deter-

ministic transformation’’ (in our terms, the transducer function for

contrast), and the shape of the internal noise distribution. He

concluded that, for temporal 2AFC detection of a bright bar in

noise, the contrast transducer was linear, and the internal noise

had a Laplace distribution (whose CDF and PDF are given in

Figures 4A and 4E, respectively). This is a radical departure from

the Gaussian assumption that has usually been made since the

invention of signal detection theory in the 1950s [14]. The Laplace

distribution has higher kurtosis (i.e., has a sharper peak and

heavier tails) than the Gaussian (compare Figure 4E with 4F). As

we shall see later on, for positive z, the Laplace distribution has a

CDF that takes the form of a Weibull function with b~1. Since

the psychometric function has the same shape as the internal noise

CDF for a linear observer, Neri’s proposal that the transducer is

linear and the internal noise has a stimulus-independent Laplace

distribution predicts that the observer’s psychometric function

should, like the Laplace CDF, be a Weibull function with b~1. As

noted earlier (and shown in Table 1 and Figure 1), this does not

generally seem to be the case – with noise-free stimuli, b is around

3 for contrast detection and, even for suprathreshold contrast

discrimination, where b is substantially lower, it is still usually

found to be greater than 1; later, we shall show that, assuming

additive noise, these b values are more consistent with a

distribution that has lower kurtosis than a Gaussian.

Although the whole of this paper is couched in terms of the

transducer model, it is not necessary to accept the transducer

model to find the results useful; we just have to assume that the

psychometric function has a form consistent with a particular

combination of internal noise distribution and transducer function.

For example, the intrinsic uncertainty model produces psycho-

metric functions that are consistent with additive noise following an

expansive power-function transducer with exponent that increases

with channel uncertainty [21], but the model itself has no explicit

transducer. Alternatively, suppose the observer carries out the

discrimination task by making noisy estimates of each stimulus

value and comparing them. Due to the noise, repeated presen-

tations of the same stimulus value, x, will give a distribution of

estimated values, x̂x, around the mean estimate. If we can find a

function, R, such that the shape and width of the distribution of

R(x̂x) is independent of x, then the observer is equivalent to a

transducer model with additive noise. In this class of model, the

stimulus value, x, is transduced to give R(x), and then stimulus-

independent noise is added to the signal. But we do not have to

assume that this is literally how the observer works – the noisy

estimates of the stimulus values could have arisen from all sorts of

mechanisms, not just a transducer followed by additive noise.
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In keeping with our terminology of Ph for the threshold

performance level, we introduce the terms zh and Dxh to represent

the values of z and Dx at threshold, i.e. the values of z and Dx when

the proportion correct is Ph, which we define as 1{0:5=e.

Theorum 1. A General Expression for the
Psychometric Function in Terms of the Stimulus
Values and the Threshold

Introduction
Equation (6) gives a general equation for the psychometric

function in terms of the transducer function, R, and the noise

CDF, F. The sensitivity of the system (which determines the

discrimination threshold, Dxh) can be adjusted either by changing

the gain of the transducer function (i.e., stretching or compressing

R along its vertical axis), or by adjusting the spread of the noise

CDF (i.e., stretching or compressing F along its horizontal axis), or

both. Since the units in which we express the internal signal are

arbitrary, researchers will usually either (1) fix the spread of the

noise CDF at some convenient standard value (say, unit variance),

and vary the transducer gain to achieve the desired threshold, or

(2) fix the gain of the transducer at some convenient standard value

(say, unit gain), and vary the spread of the noise CDF to achieve

the desired threshold. However, for our purposes, it is more

convenient to reformulate Equation (6) so that both the spread of

the noise CDF and the gain of the transducer are set to convenient

values, and the threshold is specified directly. This allows us to

consider general forms of the transducer and noise, without having

to worry about specifying the gain of the transducer or spread of

the noise correctly – the reformulated equation will take care of

the spread of the psychometric function automatically. Theorem 1

derives an expression for the psychometric function that meets

these requirements.

Statement of Theorem 1
Theorem 1 has three parts:

1. The expression for the psychometric function, Y(Dx), in

Equation (6) can be rewritten as.

Y Dxð Þ~F F{1 Phð Þ
R xpzDx
� �

{R xp

� �
R xpzDxh

� �
{R xp

� �
 !

, ð11Þ

where Dxh is the stimulus difference corresponding to a

performance level of Ph.

2. If we change the gain of the transducer by replacing the

function R(x) with rR(x), this will have no effect on the

psychometric function, Y(Dx) in Equation (11).

3. Similarly, if we change the spread of the noise CDF by

replacing the function F (z) with F (z=s), this will have no effect

on Y(Dx) in Equation (11).

Proof of Theorem 1
First, let us substitute the threshold values of P and Dx into

Equation (6):

Ph~F R xpzDxh

� �
{R xp

� �� �
: ð12Þ

Equation (12) can be rearranged to give

F{1 Phð Þ
R xpzDxh

� �
{R xp

� �~1: ð13Þ

Since the left hand side of Equation (13) is equal to 1, we can

multiply anything by this expression, and leave it unchanged.

Multiplying the argument of F in (6) by this expression, we obtain

Equation (11), which proves Part 1 of the theorem. If we replace

the transducer, R(x), in Equation (11) with one that has a different

gain, rR(x), the r’s will obviously cancel out, leaving the

psychometric function, Y, unchanged, which proves Part 2 of

the theorem. To prove Part 3 of the theorem, consider what

happens if we replace the function, F (z), in Equation (11) with one

that has a different spread, F (z=s). Then the inverse function is

given by sF{1(P), and the s’s cancel out:

Y Dxð Þ~F

sF{1 Phð Þ
R xpzDx
� �

{R xp

� �
R xpzDxh

� �
{R xp

� �
s

0
BBB@

1
CCCA

~F F{1 Phð Þ
R xpzDx
� �

{R xp

� �
R xpzDxh

� �
{R xp

� �
 !

,

which is identical to Equation (11). %

Discussion of Theorem 1
Equation (11) gives us an expression for the psychometric

function (parameterized by the threshold, Dxh) in which we can

use any convenient standard form of the transducer function or

noise distribution, without having to worry about setting the right

gain or spread.

Although, for most of this paper, we define the threshold as the

stimulus difference that gives rise to a performance level, Ph,

defined as 1{0:5=e, Theorem 1 actually holds for any value that

Ph could have taken.

Note that, in the special case of a zero pedestal (xp~0) and a

transducer that gives zero output for zero input (R(0)~0),

Equation (11) reduces to

Y Dxð Þ~F F{1 Phð Þ
R Dxð Þ
R Dxhð Þ

� 	
if xp~0 and R(0)~0: ð14Þ

Theorem 2: An Expression That Estimates the
Best-Fitting Weibull b for Unspecified Noise and
Transducer

Statement of Theorem 2
Theorem 2 has two parts:

1. If the parameters of the Weibull function, YWeibull(Dx), of

Equation (1) can be set to provide a good fit to Equation (6),

then the best-fitting beta will be well approximated by

bEst~bNoise|bTransducer, ð15Þ
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where bNoise and bTransducer are given by the following

expressions:

bNoise~2eF{1 Phð Þf F{1 Phð Þ
� �

, ð16Þ

bTransducer~
R’ xpzDxh

� �
Dxh

R xpzDxh

� �
{R xp

� � , (17)and f and R’ are the

derivatives of, respectively, F and R with respect to their inputs.

2. bNoise is an estimate of the b of the Weibull function that fits

best to the noise CDF, F, in Equation (6).

Proof of Theorem 2
By assumption, the Weibull function provides a close fit to Y of

Equation (6), so the gradient of Y at threshold will closely match

the gradient of the best-fitting Weibull function at threshold.

Therefore, since b is proportional to the gradient of the Weibull

function at threshold with an abscissa of log (Dx), we can derive a

close approximation to b from the gradient of Y at threshold on

this abscissa. To create a log abscissa, let y~ ln (Dx), so that

Dx~ey: ð18Þ

If we substitute ey for Dx in Equation (1), we find that the

gradient of the Weibull function on the log abscissa, y, is given by

dPWeibull

dy
~

b

2

Dx

a

� 	b

exp {
Dx

a

� 	b
" #

: ð19Þ

For the Weibull function at threshold performance

(PWeibull~Ph), it follows that Dx~a. Substituting a for Dx in

(19) gives

dPWeibull

dy






PWeibull~Ph

~
b

2e
, ð20Þ

and so

b~2e
dPWeibull

dy






PWeibull~Ph

: ð21Þ

To evaluate Equation (21), we use the chain rule to expand the

derivative:

b~2e
dPWeibull

dz
|

dz

dy






PWeibull~Ph

: ð22Þ

As noted above, the assumed good fit of the Weibull function,

YWeibull, of Equation (1) to Y of Equation (6) means that the

output, PWeibull, of the Weibull function is close to the output of Y,

which is the proportion correct, P. Substituting P for PWeibull in

Equation (22) therefore gives us a good estimate of b, which we

call bEst:

bEst~2e
dP

dz
|

dz

dy






P~Ph

: ð23Þ

From Equation (6), we see that P~F (z), so dP=dz is given by

f (z), the noise PDF (which is the derivative of F (z) with respect to

z). At threshold, z~zh, and so,

bEst~2ef (zh)|
dz

dy






P~Ph

: ð24Þ

We will see that the first part of Equation (24), 2ef (zh), is

proportional to bNoise, the b-estimate of the Weibull function that

fits best to the noise CDF, and the second part, dz=dy at threshold,

is proportional to bTransducer defined above. Most of the work

involves deriving an expression for dz=dy at threshold.

Using Equation (18) to substitute for Dx in Equation (3), we get

z~R xpzey
� �

{R xp

� �
: ð25Þ

Let us define xt as the target stimulus value:

xt~xpzDx~xpzey: ð26Þ

Using Equation (26) to substitute for xpzey in Equation (25),

we have

z~R xtð Þ{R xp

� �
: ð27Þ

Then,

dz

dy
~

dz

dxt

|
dxt

dy

~R0 xtð Þey

~R0 xpzDx
� �

Dx,

ð28Þ

where R’ is the derivative of R with respect to its input. At

threshold, we can substitute Dxh for Dx in Equation (28), giving

dz

dy






P~Ph

~R0 xpzDxh

� �
Dxh: ð29Þ

Using Equation (29) to substitute for dz=dy in Equation (24), we

obtain

bEst~2ef (zh)R’ xpzDxh

� �
Dxh: ð30Þ

From Equation (6), we have P~F (z), so, considering the values

of P and z and threshold,
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zh~F{1 Phð Þ: ð31Þ

Using Equation (31) to substitute for zh in Equation (30), we

have

bEst~2ef F{1 Phð Þ
� �

R’ xpzDxh

� �
Dxh: ð32Þ

To evaluate this expression as written in Equation (32), we need

to know the gain of the transducer and the spread of the noise

CDF, or at least their ratio. However, if we know the shape of the

transducer (apart from the gain), and we know the shape of the

noise CDF (apart from the spread), we can work out the ratio of

gain to spread from Dxh. But it is much more convenient to

reformulate Equation (32) so that this is taken care of, and we can

arbitrarily set the spread of the noise CDF and the gain of the

transducer to any convenient values. We can use the same trick

that we used in Theorem 1: We multiply the expression in

Equation (32) by the left hand side of Equation (13), which equals

1. After doing this, and rearranging the terms, we obtain

bEst~2eF{1 Phð Þf F{1 Phð Þ
� �

|
R’ xpzDxh

� �
Dxh

R xpzDxh

� �
{R xp

� � : ð33Þ

Equation (33) can be written in the form given by Equations (15)

to (17), which proves the Part 1 of the theorem.

We now prove Part 2, that bNoise is the estimated b of the

Weibull function that fits best to the noise CDF, F. First, note that

all linear transducers have the form R(x)~rx. This gives

R’(x)~r, and so, from Equation (17), bTransducer~1, regardless

of the value of r, xp or Dxh. Therefore, from (15), bEst~bNoise for

a linear transducer. Now, consider the linear transducer R(x)~x.

For this transducer, Equation (6) gives Y(Dx)~F (Dx). The

estimate of b when the Weibull function, YWeibull(Dx), is fitted to

Y(Dx) is given by bEst~bNoise, as it will be for any linear

transducer. Since, in this case, Y(Dx)~F (Dx), the Weibull

function has also been fitted to the noise CDF, and the estimated b

of this fitted function is given by bEst~bNoise. %

Discussion of Theorem 2
To get an intuition into how Weibull b is partitioned into the

two terms, bNoise and bTransducer, let us refer back to Equation (21).

This equation shows that b is proportional to dPWeibull=dy at

threshold. We used the chain rule to express dPWeibull=dy as

dPWeibull=dz|dz=dy, which is approximately equal to

f (zh)|dz=dy. f (zh) depends only on the noise distribution, and

is proportional to bNoise; dz=dy at threshold generally depends on

the transducer, the pedestal and the threshold, and is proportional

to bTransducer; their product is proportional to Weibull b. This is

essentially where Equations (15) to (17) come from. The equations

were tidied up by specifying the constants of proportionality, and

defining bNoise and bTransducer in such a way that they are

independent of any horizontal scaling of the noise distribution, or

any vertical scaling of the transducer function. Thus, the bNoise

term will be the same for, for example, all Gaussian distributions,

whatever the spread, and the bTransducer term will be the same for,

for example, all power functions with a particular exponent,

whatever the gain.

Equation (17) expresses bTransducer as a function of the threshold

stimulus difference, Dxh. Alternatively, for nonzero pedestals, we

can reformulate Equation (17) as a function of the Weber fraction,

W, defined as the ratio Dx
�

xp at threshold:

W~Dxh

�
xp: ð34Þ

From Equation (34), we obtain Dxh~Wxp, and, using this

expression to substitute for Dxh in Equation (17), we can rewrite

the expression for bTransducer in terms of W:

bTransducer~
R’ xp 1zWð Þ
� �

Wxp

R xp 1zWð Þ
� �

{R xp

� � if xp=0: ð35Þ
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Figure 5. Geometrical interpretation of the expression for bTransducer. In each panel, the thick, magenta curve represents the transducer
function. The horizontal axes represent the transducer input, and the vertical axes represent the transducer output. xp is the pedestal level, and Dxh is
the discrimination threshold. The gradient of the blue line, DRh=Dxh , is equal to V, defined in Equation (39). The green line is the tangent to the

transducer at point xpzDxh,R xpzDxh

� �� �
; its gradient is equal to U, defined in Equation (38). The ratio U=V is equal to bTransducer. For an expansive

transducer (panel A), UwV , so bTransducer
w1. For a compressive transducer (panel B), UvV , so bTransducer

v1. For a linear transducer (panel C),

U~V , so bTransducer~1.
doi:10.1371/journal.pone.0074815.g005
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The Weber fraction can only be defined if xp=0. If xp~0 and

R(0)~0, Equation (17) reduces to

bTransducer~
R’ Dxhð ÞDxh

R Dxhð Þ if xp~0 and R(0)~0: ð36Þ

When the stimulus dimension of interest is contrast, a

discrimination experiment with a zero pedestal is called a contrast

detection experiment.

One important property of bTransducer is that it is always greater

than 1 for a fully expansive transducer function (i.e., one for which

the slope always increases away from zero with increasing input),

and is always less than 1 for a fully compressive transducer

function (i.e., one for which the slope always decreases towards

zero with increasing input). Here we provide a geometrical

argument (illustrated in Figure 5) to explain why this is the case.

First, note that we can rewrite Equation (17) as

bTransducer~
U

V
, ð37Þ

where

U~R’ xpzDxh

� �
, ð38Þ

and

V~
R xpzDxh

� �
{R xp

� �
Dxh

~
DRh

Dxh
, ð39Þ

with

DRh~R xpzDxh

� �
{R xp

� �
: ð40Þ

These quantities are illustrated for an expansive transducer in

Figure 5A, where the thick, magenta curve represents the

transducer. The filled circles mark points xp,R xp

� �� �
and

xpzDxh,R xpzDxh

� �� �
. The gradient of the blue line connecting

these two points is V, defined in Equation (39). The short, green,

line segment is the tangent to the transducer at

xpzDxh,R xpzDxh

� �� �
; its gradient is U, defined in Equation

(38). It is clear from the diagram that, for an expansive transducer,

like the one illustrated, the gradient of the transducer at

xpzDxh,R xpzDxh

� �� �
must always be steeper than the blue

line, because, as we travel along the transducer function from

xp,R xp

� �� �
to xpzDxh,R xpzDxh

� �� �
, the transducer approach-

es the second point from below the blue line. Therefore, U must

always be greater than V, so, from Equation (37), bTransducer must

always be greater than 1.

Figure 5B illustrates the situation for a compressive transducer.

Here, as we travel along the transducer function from xp,R xp

� �� �
to xpzDxh,R xpzDxh

� �� �
, the transducer approaches the second

point from above the blue line, and so the gradient of the

transducer at the second point must be lower than the gradient of

the blue line. Thus, U must always be less than V, so, from

Equation (37), bTransducer must always be less than 1.

Finally, Figure 5C illustrates the situation for a linear

transducer, i.e. one that is neither expansive nor compressive.

Here, the gradient of the transducer is equal to the gradient of the

blue line, so U~V , and therefore bTransducer~1. This provides a

geometrical insight into the previously proved fact that

bTransducer~1 for a linear transducer.

In conclusion, Weibull b can be partitioned into two factors:

bNoise (Equation (16)), which estimates the b of the Weibull

function that fits best to the noise CDF, F; and bTransducer

(Equation (17), (35) or (36)), which is determined partly (or, as we

shall see, sometimes completely) by the shape of the transducer

function, R. bTransducer is greater than 1 for an expansive

transducer, less than 1 for a compressive transducer, and equal

to 1 for a linear transducer. bNoise is independent of the spread (i.e.

horizontal scaling) of the CDF (analogously, Weibull b is

independent of the spread of the Weibull function on linear axes);

bTransducer is independent of the gain (i.e. vertical scaling) of the

transducer. Multiplying bNoise and bTransducer together gives us

bEst, the estimate of Weibull b. The expressions for bNoise and

bTransducer derived above are completely general. In later sections,

we derive values for bNoise given specific noise distributions, and

expressions for bTransducer given specific transducers.

There are two possible sources of error in the Weibull b

estimate, bEst. Firstly, the derivation of the expression for bEst

relies on the use of dP=dz as an approximation of dPWeibull=dz at

threshold in the step from Equation (22) to (23), where P is the

output of the psychometric function, Y, and PWeibull is the output

of the best-fitting Weibull function. The accuracy of bEst relies on

these two slopes being close at the threshold performance level. A

second potential source of inaccuracy is that, even if these two

slopes are very close at the threshold level, the overall psycho-

metric function, Y, might still not be well fit by a Weibull function,

in which case the best-fitting Weibull b could deviate substantially

from bEst. However, as we will show, in the range of conditions

usually encountered, the Weibull function does provide a good fit

to the psychometric function, so bEst is accurate. In cases where Y
is a Weibull function, the best-fitting Weibull function will fit

exactly, and bEst gives the exact value of the best-fitting Weibull b.

Deriving bNoise for Specific Noise Distributions

As proved in Theorem 2, bNoise is an estimate of the b of the

Weibull function that fits best to the noise CDF. In this section, we

evaluate the analytical expression for bNoise (Equation (16)) for

several different noise distributions. We also compare each value

with the b value obtained by fitting the Weibull function to the

noise CDF numerically. There is of course no single correct

answer to the question of what is the best-fitting b – it depends on

both the fitting criterion and the points on the psychometric

function that are sampled. When Pelli [19] fitted the Weibull

function to the Gaussian CDF, he minimized the maximum error

over all positive inputs. We instead performed a maximum-

likelihood fit over all inputs from 0 to twice the threshold (actually,

we approximated this by sampling the psychometric function in

discrete steps of one thousandth of the threshold). Our rationale

for this approach was that fitting the psychometric function is

usually done by maximum likelihood, and the threshold usually

falls around the middle of the set of stimulus values.
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Evaluating bNoise for a generalized Gaussian noise CDF
Most psychophysical models use Gaussian noise. This is partly

because the Gaussian is often easy to handle analytically, but also

because, according to the Central Limit Theorem, the sum of

independent sources of noise tends towards a Gaussian-distributed

random variable, whatever the distribution of the individual noise

sources. However, as noted earlier, Neri [18] has recently argued

that internal sensory noise is closer to a Laplace distribution. Both

the Gaussian and the Laplace are parameterizations of the

generalized Gaussian, which we consider in this section.

The generalized Gaussian CDF is given by the following

expression, with horizontal scaling (i.e. spread) determined by t,

and shape determined by r:

P~FGen:Gaussian(z; r,t)~
1zsgn(z)c DzD=tð Þr; 1=r½ �

2
, ð41Þ

where sgn(z)~1 for z§0 and {1 for zv0, and c is the lower

incomplete gamma function, defined as

c f; nð Þ~ 1

C(n)

ðf
0

tn{1e{tdt: ð42Þ

C(n) in Equation (42) is the gamma function, which is a continuous

generalization of the factorial, given by

C(n)~
Ð?
0

tn{1e{tdt: ð43Þ

Note, the lower incomplete gamma function is often defined

without the normalization term, C(n), but it is more convenient for

us to define it as in Equation (42), because otherwise we would just

have to divide by C(n) anyway, complicating the expression for the

generalized Gaussian in Equation (41); in addition, the MATLAB

function gammainc evaluates the function as defined in Equation

(42).

The variance of the generalized Gaussian distribution is given

by

sz
2~

t2C 3=rð Þ
C 1=rð Þ : ð44Þ

We use the subscript, z, in Equation (44) to indicate that this is

the variance of the noise on the difference of mean signals, z, as

opposed to the variance of the noise on the transducer outputs,

which we could call sR
2. As long as the noise on the two

transducer outputs within a trial is uncorrelated and has zero

mean, then we have sz
2~2sR

2, and so sz~sR

ffiffiffi
2
p

, whatever form

the noise CDF takes.

The PDF of the generalized Gaussian distribution is given by

the derivative of the CDF:

fGen:Gaussian(z; r,t)~
r

2tC 1=rð Þ exp {
DzD
t

� 	r� 	
: ð45Þ

As noted above, the shape of the distribution is determined by

the parameter, r. When r~2, Equation (45) describes the

Gaussian PDF:

fGen:Gaussian(z; 2,t)~
1

sz

ffiffiffiffiffiffi
2p
p exp {

z2

2sz
2

� 	
: ð46Þ

When r~1, Equation (45) describes the Laplace PDF:

fGen:Gaussian(z; 1,t)~
1

sz

ffiffiffi
2
p exp {

DzD
sz

� ffiffiffi
2
p

 !
: ð47Þ

For positive z, the inverse of the generalized Gaussian CDF is

given by

z~F{1
Gen:Gaussian(P; r,t)

~t c{1 2P{1; 1=rð Þ
� �1=r ð48Þ

(we don’t need to worry about negative z, because, for any

monotonically increasing transducer, and positive Dx, z as defined

in Equation (3) is always positive). The inverse of the lower

incomplete gamma function, c{1, in Equation (48) can be

evaluated using the MATLAB function gammaincinv. At thresh-

old, P~Ph~1{0:5=e. Substituting these values into Equation

(48), we get

F{1
Gen:Gaussian Ph; r,tð Þ~t c{1 1{1=e; 1=rð Þ

� �1=r
: ð49Þ

We can use the expression for F{1
Gen:Gaussian Ph; r,tð Þ in Equation

(49) to substitute for F{1 Phð Þ in Equation (16), and we can use the

expression for fGen:Gaussian(:; r,t) in Equation (45) to substitute for

f (:) in Equation (16). The different instances of t cancel out, giving
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Figure 6. bNoise
Gen:Gaussian rð Þ plotted as a function of r. This curve plots

the predicted b when the Weibull function is fitted to the CDF of
generalized Gaussian distributions with a range of different r values.
The graph asymptotes to a value of e{1 (see Appendix S1), indicated
by the horizontal dashed line. The shape of the generalized Gaussian
distribution is determined by r. r-values of 1 and 2 are special cases:
r~1 gives a Laplace distribution, and r~2 gives a Gaussian
distribution.
doi:10.1371/journal.pone.0074815.g006
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us an expression for bNoise for the generalized Gaussian noise

distribution that is a function of r:

bNoise
Gen:Gaussian rð Þ~ rI1=r

C 1=rð Þ exp 1{Ið Þ, ð50Þ

where

I~c{1 1{1=e; 1=rð Þ: ð51Þ

The subscript, ‘‘Gen.Gaussian’’, on bNoise
Gen:Gaussian in Equation (50)

indicates the general form of the noise CDF.

Figure 6 plots bNoise
Gen:Gaussian rð Þ as a function of r. As proved in

Appendix S1, bNoise
Gen:Gaussian rð Þ?e{1 as r??. Values of

bNoise
Gen:Gaussian rð Þ for r = 1, 2, and 4 are given by

bNoise
Gen:Gaussian 1ð Þ~1 ð52Þ

bNoise
Gen:Gaussian 2ð Þ~1:302 to 4 significant figuresð Þ ð53Þ

bNoise
Gen:Gaussian 4ð Þ~1:562 to 4 significant figuresð Þ: ð54Þ

The value of bNoise for the Laplace distribution (Equation (52)) is

exactly 1. This is because the positive half of its CDF is a Weibull

function with b~1. This can be seen from the fact that

c(f; 1)~1{ exp ({f), and so Equation (41) gives, for positive z,

FGen:Gaussian(z; 1,t)~1{0:5 exp {z=tð Þ: ð55Þ

The Weibull function with b~1 therefore gives an exact fit to

the Laplacian noise CDF, and the estimated Weibull b, given by

bNoise~1, is exactly correct.

The coloured curves in Figures 7A, 7B, and 7C show the

generalized Gaussian noise CDFs for r = 1, 2, and 4, respectively,

and the thick, black curves show the best-fitting Weibull functions

(maximum-likelihood fit over inputs from 0 to twice the threshold).

Also shown in each panel is the appropriate value of bNoise from

equations (52) to (54), and the best-fitting Weibull b, which we call

bFit. As explained above, the match between bFit and bNoise is

exact for the Laplace (r~1, Figure 7A), but the match is also very

good for the other distributions. For the Gaussian (r~2,

Figure 7B), bFit~1:295, very close to our analytically derived

value of bNoise
Gen:Gaussian 2ð Þ~1:302. As discussed earlier, Pelli [19]

fitted the Weibull to a Gaussian CDF using a different fitting
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Figure 7. Noise CDFs from Figure 4 plotted against the best-fitting Weibull functions. The thin, coloured curves shown in (A) to (D) are the
CDFs from Figures 4A to 4D, respectively. The thick, black curves are the Weibull functions that give the best (maximum-likelihood) fit across the
range of inputs shown on the horizontal axis. This fit was carried out by maximizing the expression

P
z F (z) log½YWeibull(z)�z

½1{F (z)� log½1{YWeibull(z)�, where F is the noise CDF, and YWeibull is the Weibull function whose parameters were being fitted. The Weibull
function provides a perfect fit to the Laplace CDF (A), an excellent fit to the Gaussian (B), and logistic (D) CDFs, and an acceptable fit to the

generalized Gaussian with r~4 (C); this partly justifies our use of P as an estimate of PWeibull in Equation (23). The bFit values are the b parameters of

the fitted Weibull functions. The bNoise values are our analytical estimates of bFit , given by Equations (52) to (54) for panels (A) to (C), respectively, and

Equation (60) for panel (D). In each case, bNoise provides a close match to bFit . The parameter in brackets in each bNoise
Gen:Gaussian term is the shape

parameter, r (see Equation (50)). As noted in the text, the CDFs all have a point of inflection at zero. With the exception of panel A, the best-fitting
Weibull functions have a point of inflection slightly above zero (b would have to be 1 or less for the steepest point to occur at zero). Nevertheless, the
Weibull functions still provide good fits.
doi:10.1371/journal.pone.0074815.g007
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method: He minimized the maximum error over all positive

inputs. The b value he obtained from this fit was 1.247. As noted

earlier, there is no single ‘‘correct’’ answer, but our maximum-

likelihood fitting paradigm is probably more representative of the

process of fitting a function to psychophysical data, and our

obtained b of 1.295 is very close to the analytically obtained value.

The match between bNoise and bFit for r~4 (Figure 7C) is also

close, the deviation being far smaller than the margin of error

usually encountered when measuring Weibull b [22–27].

Evaluating bNoise for the logistic noise CDF
Sometimes, the logistic function is used instead of the Gaussian,

for computational convenience (e.g. Ref. [28]). The logistic

function is very similar in shape to the Gaussian. Its CDF is given

by

P~FLogistic z; tð Þ~ 1

1z exp ({z=t)
: ð56Þ

As noted by Strasburger [29], this function is identical to the

hyperbolic tangent function, given by Ftanh(z; t)~0:5

ftanh½z=(2t)�z1g. Its variance is t2p2
�

3. The PDF of the logistic

distribution is given by the derivative of the CDF:

fLogistic z; tð Þ~ exp ({z=t)

t 1z exp ({z=t)½ �2
: ð57Þ

The inverse of the logistic CDF is given by

z~F{1
Logistic P; tð Þ~{t ln 1=P{1ð Þ, ð58Þ

At threshold, P~Ph~1{0:5=e. Substituting these values into

Equation (58), we get

F{1
Logistic Ph; tð Þ~t ln 2e{1ð Þ: ð59Þ

We can use the expression for F{1
Logistic Ph; tð Þ in Equation (59) to

substitute for F{1 Phð Þ in Equation (16), and we can use the

expression for fLogistic(:) in Equation (57) to substitute for f (:) in

Equation (16). This gives

bNoise
Logistic~ ln 2e{1ð Þ 1{1=(2e)½ �

~1:216 to 4significant figuresð Þ:
ð60Þ

As before, the subscript on bNoise indicates the form of noise

CDF. The accuracy of this approximation is confirmed in

Figure 7D. The b parameter of the fitted Weibull function

(bFit~1:196) is very close to the estimated value from Equation

(60).

Theorem 3. Tendency towards Linear Behaviour
with Non-Zero Pedestals

Introduction

As shown earlier, for a linear transducer, bTransducer~1, and so

bEst~bNoise, which takes a value of around 1.3 for Gaussian

internal noise. So, if a transducer model has additive Gaussian

noise and generates psychometric functions with a Weibull b of

about 1.3, that might seem to suggest that it contains a linear

transducer. However, a transducer model with additive Gaussian

noise can in fact generate psychometric functions with b&1:3 for

suprathreshold contrast discrimination even when the transducer

departs wildly from a linear function [4]. Theorem 3 explains how

this occurs.

Statement of Theorem 3
If the gradient of the transducer is not 0 or ‘ at the pedestal

level, then, as Dxh?0, bTransducer?1 .

Proof of Theorem 3

As noted earlier, bTransducer~U=V , where U and V are given in

Equations (38) and (39), respectively. The limit of V as Dxh?0 is

the derivative of R at xp, i.e.R’ xp

� �
, by definition of the derivative,

and the limit of U as Dxh?0 is obviously R’ xp

� �
, so we have

lim
Dxh?0

U~ lim
Dxh?0

V~R’ xp

� �
: ð61Þ

Then, provided that R’ xp

� �
is not 0 or ‘, we have

lim
Dxh?0

bTransducer~ lim
Dxh?0

U

V
~

lim
Dxh?0

U

lim
Dxh?0

V
~

R’ xp

� �
R’ xp

� �~1: ð62Þ

If R’ xp

� �
is 0 or ‘, then R’ xp

� ��
R’ xp

� �
is an indeterminate

form, 0=0 or ?=?, and cannot be evaluated. In this case, we

cannot evaluate the limit of bTransducer by dividing the limit of U by

the limit of V. The limit must instead be evaluated in some other

way that will depend on the form of the transducer, and the limit

in this case will not necessarily be 1.

Discussion of Theorem 3
Theorem 3 shows that, whatever the transducer function, as long

as its gradient is not 0 or ‘ at the pedestal level, Weibull b will

approach that for a linear transducer as sensitivity improves.

Virtually all proposed transducers do have a finite, nonzero

gradient for nonzero inputs; therefore, if the internal noise is

approximately Gaussian, we would expect Weibull b to be close to

1.3 for suprathreshold contrast discrimination. Detection and

discrimination data are often fitted with a power-function

transducer or a Legge-Foley transducer (both considered below),

and, with these transducers, the gradient is 0 or ‘ at an input level

of zero. Thus, for these transducers, when the pedestal level is

zero, Equation (62) does not apply, and b does not necessarily

approach that for a linear transducer as sensitivity improves. This

explains why, for contrast detection experiments (i.e. when the

pedestal is zero), Weibull b has been found to deviate greatly from

the value of 1.3 expected from a linear transducer with Gaussian

noise.

Consider what happens in general when the pedestal approach-

es zero. If we assume that R(0)~0, then, as xp drops below Dxh,

both U (Equation (38)) and V (Equation (39)) become dominated

by the Dxh term, and bTransducer approaches the value given in

Equation (36), which is not, in general, equal to 1. Thus, we would

expect Weibull b to deviate substantially from the linear case for
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low pedestals. Meese, Georgeson and Baker [4] showed that this is

indeed the case for visual contrast discrimination, and we examine

their work in more detail later, in the section on the Legge-Foley

transducer.

Deriving Psychometric Function and Weibull b for
Specific Nonlinear Transducers

As shown earlier, bTransducer~1 for any linear transducer. For a

nonlinear transducer, bTransducer will deviate from 1, and this is

how the transducer has its effect on bEst, the estimated Weibull b.

Starting with one of the general expressions for bTransducer

(Equation (17), (35) or (36), as appropriate), we can substitute a

specific transducer function for the general function, R, to give a

specific expression that describes bTransducer for that transducer.

Similarly, starting with one of the general expressions for the

psychometric function (Equation (11) or (14), as appropriate), we

can substitute a specific transducer function for the general

function, R, to give a specific expression for the psychometric

function. In this section, we consider five commonly used

scenarios: a power function with zero or nonzero pedestal, a log

function, and a Legge-Foley function [30] with zero or nonzero

pedestal.

Power-function transducers have been used to account for visual

contrast discrimination data. As the pedestal increases from 0, the

discrimination threshold first decreases, and then starts to increase

with further increases in pedestal; this function, giving contrast

discrimination threshold at each pedestal level, is known as a

‘‘dipper function’’. The initial dip can be explained by an

expansive power function (i.e., one with exponent greater than 1)

at low contrasts [1,6], while the increase in contrast discrimination

threshold for larger pedestals can be explained by a compressive

power function (i.e., one with exponent less than 1) at high

contrasts. The Legge-Foley transducer approximates an expansive

power function at low contrasts and a compressive power function

at high contrasts, and accounts for the whole dipper function

[4,30]. We also include the log transducer in our analysis, firstly

because discrimination at high pedestal levels has often been found

to adhere closely to Weber’s law in many different perceptual

dimensions and sensory modalities [31–35] (a prediction of the log

transducer with additive noise), and, secondly, because we have

discovered an interesting link between the power function and the

log transducer, which is presented in Theorem 4.

Power function and zero pedestal
The first case that we consider is the one examined by Pelli [19],

i.e. d ’!(Dx)b. As noted earlier, this relationship between d ’ and

Dx is consistent with a power function transducer (R(x)~rxb) and

zero pedestal (xp~0). In this case, we can use Equation (36) to

derive bTransducer, and it follows easily that

bTransducer
Powerfunc,xp~0~b ð63Þ

(as with bNoise, the subscript on bTransducer describes the specific

case). Thus, using Equation (63) to substitute for bTransducer in

Equation (15), we have

bEst~bNoise|b, ð64Þ

which is the relationship derived by Pelli [19] (Relation (7) of this

paper).

From Equation (14), it follows that, for a power function

transducer and zero pedestal, the model’s true psychometric

function is given by

YPower func,xp~0 Dxð Þ~F F{1 Phð Þ
Dx

Dxh

� 	b
 !

ð65Þ

with the subscript on Y describing the specific case. Equation (65)

gives us the option of expressing the stimulus difference in absolute

units, Dx, or in ‘‘threshold units’’, Dx=Dxh —the two options differ

only in a linear horizontal scaling. The latter is useful when dealing

with general cases where the threshold is not specified; the

psychometric function is often expressed in this way [19,29,36].

The coloured curves in Figure 8 show the psychometric function of

Equation (65). Different rows of panels show psychometric

functions for different noise CDFs, F, as indicated on the right

of the figure. Different columns of panels show psychometric

functions for different transducer exponents, b. The thick, black

curves show the best-fitting Weibull functions. These provide a

good fit to the true psychometric functions, justifying the premise

of Theorem 2, which is that the Weibull function provides a good

fit.

Each panel of Figure 8 also compares b of the best-fitting

Weibull function (bFit) with the estimate, bEst, given by

bEst~bNoise|b. In every case, bEst is very close to the fitted

value, the discrepancy being far smaller than the margin of error

usually encountered in psychophysical measurements of psycho-

metric function slope [22–27]. For each transducer (i.e. each

column of Figure 8), the difference in bEst between the different

noise CDFs (i.e. between the different rows of Figure 8) is caused

entirely by the different values of bNoise. For example, the value of

bEst for the Gaussian will always exceed that for the Laplace by a

factor bNoise
Gen:Gaussian 2ð Þ

.
bNoise

Gen:Gaussian 1ð Þ~1:302:

Power function and nonzero pedestal
We now consider the case of a power function and any pedestal

value, a generalization of the previous case. First, starting with

Equation (17), we trivially obtain

bTransducer
Powerfunc ~

b xpzDxh

� �b{1
Dxh

xpzDxh

� �b
{xp

b
, ð66Þ

which reduces to Equation (63) when xp~0. When xp=0, we can

start with Equation (35), from which it follows straightforwardly

that

bTransducer
Powerfunc,xp=0~

b 1zWð Þb{1
W

1zWð Þb{1
: ð67Þ

Figure 9 plots bTransducer
Powerfunc,xp=0 as a function of the Weber fraction,

W (defined in Equation (34)), for several values of the transducer

exponent, b. These curves all converge to a value of 1 towards the

left. This is because, for a power function transducer with nonzero

pedestal, the gradient of the transducer at the pedestal level is not

0 or ‘, and so, as proved in Theorem 3, bTransducer
Powerfunc,xp=0?1 as

W?0:
From Equation (11), we can see that, for a power function

transducer with unspecified pedestal, the model’s true psychomet-
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Figure 8. Psychometric functions resulting from power-function transducers and zero pedestal. The thin, coloured curves show the
psychometric function of Equation (65), plotted as a function of Dx=Dxh . Different rows of panels show psychometric functions with different noise
CDFs, F, given by the Laplace distribution (top row of panels), the Gaussian (second row), the generalized Gaussian with r~4 (third row) or logistic
(bottom row). Different columns of panels show psychometric functions for different transducer exponents, b, as indicated at the top of the figure.
The thick, black curves show the best-fitting (maximum-likelihood) Weibull functions. The curves in the middle column (b~1, top to bottom) are
identical to Figures 7A to 7D, respectively. This is because b~1 gives a linear transducer, and so the psychometric functions for b~1 will have the

same shape and same fitted b as the CDF (see Equation (10)). Each panel displays the b value of the best-fitting Weibull function (bFit) and the

estimate, bEst~bNoise|b, where bNoise is given by Equation (52), (53), (54) or (60), as appropriate.
doi:10.1371/journal.pone.0074815.g008
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ric function is given by

YPowerfunc Dxð Þ~F F{1 Phð Þ
xpzDx
� �b

{xp
b

xpzDxh

� �b
{xp

b

 !
ð68Þ

If xp=0, then we can divide through by xp
b, and rewrite

Equation (68) in terms of the Weber fraction, W:

YPowerfunc,xp=0 Dxð Þ~F F{1 Phð Þ
1zW Dx=Dxhð Þð Þb{1

1zWð Þb{1

 !
ð69Þ

Equation (68) is a general formula for the psychometric

function, given a power-function transducer and any pedestal

value. Equations (65) and (69) are simpler expressions for this

psychometric function in the cases of zero and nonzero pedestals,

respectively. As with Equation (65), Equation (69) gives us the

option of expressing the stimulus difference in absolute units, Dx,

or threshold units, Dx=Dxh. The coloured curves in Figure 10

show the psychometric function of Equation (69) for a range of

Weber fractions and a transducer exponent of 2. Different rows of

panels show psychometric functions for different noise CDFs, and

different columns of panels show psychometric functions for

different Weber fractions, W. The thick, black curves show the

best-fitting Weibull functions. Each panel also compares b of the

best-fitting Weibull function (bFit) with the estimate, bEst, given by

bEst~bNoise|bTransducer
Powerfunc,xp=0. Figure 11 is the same as Figure 10

except that the transducer exponent is 0.5. In every case, the

Weibull function fits well to the true psychometric function, and

the agreement between bFit and bEst is very good.

It is interesting to compare the psychometric functions in

Figures 10 and 11 with those for the same transducer when the

pedestal is zero; these are given in the columns of Figure 8 headed

‘‘b~2’’ and ‘‘b~0:5’’, respectively. It is clear that, even with the

rather large Weber fraction of 0.8, the existence of a nonzero

pedestal brings Weibull b much closer to the linear case (the case

of a linear transducer is shown in the column of Figure 8 headed

‘‘b~199).

Logarithmic transducer
The log function is undefined for zero inputs, so we can only

consider a log transducer for nonzero pedestals. If the transducer

takes a logarithmic shape for all inputs greater than the pedestal

value, then it is effectively logarithmic for the whole of the range of

stimulus values being considered.

For a logarithmic transducer, R(x)~rloga(x), Equation (35)

leads to

bTransducer
log ~

W

1zWð Þ ln 1zWð Þ ð70Þ

for any base of logarithm, a. In Theorem 4B, below, we show that,

for any Weber fraction, bTransducer
log is the limiting value of

bTransducer
Powerfunc,xp=0 as b?0. The bottom (black) curve in Figure 9

plots bTransducer
log as a function of W.

Starting with Equation (11), it is straightforward to show that,

for a log transducer, the model’s true psychometric function is

given by

Ylog Dxð Þ~F F{1 Phð Þ
ln 1zW Dx=Dxhð Þð Þ

ln 1zWð Þ

� 	
ð71Þ
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Figure 9. bTransducer for the power-function transducer with nonzero pedestal, plotted as a function of Weber fraction. Each curve gives

bTransducer for a different transducer exponent, b. bTransducer asymptotes towards 1 as W decreases, and towards b as W increases. For typical Weber

fractions of less than 0.3 (see Table 1), bTransducer does not deviate much from 1. The bottom curve, in black, shows the limiting case, as b?0. All the
plotted functions except the one for b?0 are given by Equation (67). In Theorem 4B, we prove that the limiting case as b?0 is identical to the curve
corresponding to a logarithmic transducer; this curve is given by Equation (70).
doi:10.1371/journal.pone.0074815.g009
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The coloured curves in Figure 12 show the psychometric

function of Equation (71) for a range of Weber fractions. Different

rows of panels show psychometric functions for different noise

CDFs, and different columns of panels show psychometric

functions for different Weber fractions. The thick, black curves

show the best-fitting Weibull functions. Each panel also compares

b of the best-fitting Weibull function (bFit) with the estimate, bEst,

given by bEst~bNoise|bTransducer
log . The Weibull function gives an

excellent fit to the true psychometric function in every case, and
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Figure 10. Psychometric functions resulting from transducer R!x2 and nonzero pedestal. The thin, coloured curves show the
psychometric function of Equation (69) with b~2. Different rows of panels show psychometric functions with different noise CDFs, as indicated on
the right of the figure. Different columns of panels show psychometric functions for different Weber fractions, W. The thick, black curves show the

best-fitting (maximum-likelihood) Weibull functions. Each panel displays the b value of the best-fitting Weibull function (bFit) and the estimate,

bEst~bNoise|bTransducer
Powerfunc,xp=0 , where bTransducer

Powerfunc,xp=0 is given by Equation (67), and bNoise is given by Equation (52), (53), (54) or (60), as appropriate.

doi:10.1371/journal.pone.0074815.g010
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the agreement between bFit and bEst is very good. As the Weber

fraction decreases, Weibull b approaches that for the linear case.

Legge-Foley transducer
If the noise is additive, then no single power-function transducer

can fit contrast discrimination data across the whole contrast

range, because we need an expansive function to explain

facilitation at low contrasts, and a compressive function to explain

the rise in threshold with pedestal at high contrasts. Legge and

Foley [30] used a sigmoid transducer that was expansive at low

contrasts and compressive at high contrasts, as required:

RLegge-Foley(x)~
rxu

kvzxv
, ð72Þ

where u, v, r and k are constants, all greater than zero. The
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Figure 11. Psychometric functions resulting from transducer R!x0:5 and nonzero pedestal. All details are the same as in Figure 10, except
that the transducer exponent is 0.5.
doi:10.1371/journal.pone.0074815.g011
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transducer in Equation (72) seems to have been first used in

psychophysics by Stromeyer and Klein [37], and it is sometimes

referred to as the Stromeyer-Foley function [36,38], but we use the

term ‘‘Legge-Foley transducer’’, as Legge and Foley’s use of this

transducer is probably better known. For low inputs, x, the Legge-

Foley transducer approximates a power function with exponent u;

for large inputs, it approximates a power function with exponent

(u{v). Legge and Foley had u~2:4 and v~2, so the transducer

was an accelerating power function (with exponent <2.4) for low

inputs, and a compressive power function (with exponent <0.4) for

high inputs. The point of inflection (at which the transducer

changes from expansive to compressive) occurs at an x value close

to k for typical values of the fitted parameters (see Appendix S2 for

a derivation of the formula for calculating the position of the point

of inflection).

Assuming a zero pedestal, we can substitute RLegge-Foley for R in

Equation (36), giving

bTransducer
Legge-Foley~

uz(u{v) Dxh=kð Þv

1z Dxh=kð Þv if xp~0: ð73Þ

If the threshold, Dxh, is much less than k, the right hand side of

Equation (73) approaches u, as we would expect: The Legge-Foley

transducer in this case approximates a power-function transducer

with exponent u, and, for the latter transducer with zero pedestal,

bTransducer is simply equal to the exponent, as in Equation (63).

For nonzero pedestals, we can substitute RLegge-Foley for R in

Equation (17) to obtain, after some work,

bTransducer
Legge-Foley~

uW
1zW

{
vW 1zWð Þv{1

k=xpð Þvz 1zWð Þv

1{
k=xpð Þvz 1zWð Þv

1z k=xpð Þv½ � 1zWð Þu

if xp~0: ð74Þ

Figure 13 plots bTransducer
Legge-Foley as defined in Equation (74) as a

function of xp

�
k, for typical ranges of u, v, and W. The middle

panel of the left column (v~2,u{v~0:5) is very close to Legge

and Foley’s [30] parameters, while the middle panel of the middle

column (v~3, u{v~0:5) is very close to Meese et al. ’s [4] fitted

parameters, which we describe in detail later.

One striking feature of these functions is that they all have a

dipper shape – as the pedestal increases, bTransducer
Legge-Foley dips down to a

minimum and then increases slightly before approaching its

asymptote on the right. While it is well known that the

discrimination threshold, Weibull a, traces out a dipper function

as xp increases from zero [4,6,30,34,39], to the best of our

knowledge no one has ever reported a dipper function for Weibull

b before, so we set out to see if there was evidence for one in the

previous literature. We found such a dipper function for b in the

data of Henning and Wichmann [40] (see Figure 14 and Table 1).

Henning and Wichmann did not report Weibull b, but they

reported all thresholds at three different performance levels,

allowing us to fit Weibull functions to their data.

For the log and power-function transducers, bTransducer is a

function with one or two arguments, so it was practical to test the

accuracy of the expressions for a range of plausible arguments. In

contrast, bTransducer
Legge-Foley has five arguments, corresponding to three of

the transducer parameters, as well as the pedestal and either the

Weber fraction or the threshold. To constrain the argument space

so that we can test the accuracy of Equations (73) and (74), it is

helpful to use values for these arguments that have occurred in real

experiments. Legge and Foley’s study is not suitable for this

because their model had several channels, and did not have the

straightforward relationship between stimulus and probability of a

correct response described by Equation (6). However, the

psychometric function generated by Meese et al. ’s [4] preferred

model really is a parameterization of Equation (6), so we can assess

the accuracy of Equations (73) and (74) for their stimulus values

and transducer parameters.

Meese et al. ’s study was on binocular integration, and their

data were best fit by a model that they called the ‘‘twin

summation’’ model. This model has a transducer that extends

Legge and Foley’s transducer so that it can handle inputs from left

and right eyes:

RTwinsummation~
xL

mzxR
mð Þp

Zz xL
nzxR

nð Þq , ð75Þ

where xL is the stimulus contrast in the left eye, and xR is the

contrast in the right eye. In Equation (75), we use upper-case Z in

place of the lower-case z that Meese et al. used, to avoid confusion

with our own z, defined in Equation (3). In Meese et al. ’s fully

binocular condition (xL~xR~x), Equation (75) reduces to the

standard Legge-Foley transducer of Equation (72), with

u~mp, ð76Þ

v~nq, ð77Þ

k~ 2{qZð Þ1=v
, ð78Þ

r~2p{q: ð79Þ

In Meese et al. ’s fully monocular condition (xL~0 and xR~x
or vice-versa), Equation (75) reduces to the Legge-Foley transducer

with u and v defined as in Equations (76) and (77), but with the

other parameters given by

k~Z1=v, ð80Þ

r~1: ð81Þ

The fitted values of m, n, p, q, and Z appear in the bottom line of

Meese et al. ’s Table 2. Using these values, we can specify the

equivalent Legge-Foley transducer in the binocular or monocular

conditions using Equation (72) with u and v given by Equations

(76) and (77), and k and r given by Equations (78) and (79) for the

binocular condition, and by Equations (80) and (81) in the

monocular condition. The values of u, v, k, and r are given in the

legend to our Figure 15 for the binocular condition, and Figure 16

for the monocular condition. In summary, although Meese et al.

fitted a single transducer function across all their conditions, the

equivalent Legge-Foley transducer differs between the binocular

and monocular conditions. In both cases, u~3:53 and v~3:07,

giving (u{v)~0:460, so, although the effective exponent at low
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contrasts was substantially higher than that of Legge and Foley

[30], the effective exponent at high contrasts was similar.

Meese et al. had one further parameter, the standard deviation,

sR, of the noise on the transducer output, which took a fitted value

of 0.259. Meese et al. assumed uncorrelated zero-mean Gaussian

noise on each signal, so the two sources of noise on each trial

would combine to produce Gaussian noise on the internal

difference signal with standard deviation given by sz~sR

ffiffiffi
2
p

.

We can therefore define the noise CDF, F, as the cumulative
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Figure 12. Psychometric functions resulting from a logarithmic transducer. The thin, coloured curves show the psychometric function of
Equation (71). Different rows of panels show psychometric functions with different noise CDFs, as indicated on the right of the figure. Different
columns of panels show psychometric functions for different Weber fractions, W. The thick, black curves show the best-fitting (maximum-likelihood)
Weibull functions. Each panel displays the b value of the best-fitting Weibull function (bFit) and the estimate, bEst~bNoise|bTransducer

log , where

bTransducer
log is given by Equation (70), and bNoise is given by Equation (52), (53), (54) or (60), as appropriate.

doi:10.1371/journal.pone.0074815.g012
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Gaussian with standard deviation sR

ffiffiffi
2
p

. This is equivalent to

Equation (45) with r~2 and t~sz

ffiffiffi
2
p

~2sR:
After we have defined the transducer, R, and the noise CDF, F,

the psychometric function (i.e., the mapping from (xp,Dx) onto

probability correct, P) is fully defined by Equation (6). For the

Legge-Foley transducer, the psychometric function cannot be

inverted algebraically, but the fitted model’s threshold, Dxh, can

be found by searching for the contrast difference, Dx, that gives

rise to a probability correct of Ph. The Weber fraction, W, is then

given by Equation (34), and the obtained values of Dxh and W can

be used in Equations (73) or (74) (depending on whether or not

xp~0), along with u, v, and k, to calculate a value for bTransducer
Legge-Foley

for each pedestal level.

Each panel of Figure 15 shows (in green) the psychometric

function generated by Meese et al’s twin summation model for a

particular pedestal level in their binocular condition. The thick,

black curves show the best-fitting Weibull functions. Each panel

also compares b of the best-fitting Weibull function (bFit) with the

estimate, bEst, given by bEst~bNoise
Gen:Gaussian 2ð Þ|bTransducer

Legge-Foley, with

bNoise
Gen:Gaussian 2ð Þ given by Equation (53) (the model’s Weber

fractions, W, which are used to calculate bTransducer
Legge-Foley, are given

in the individual panels). The Weibull fits are good, and the

agreement between bFit and bEst is mostly excellent. Note how

Weibull b begins to deviate substantially from the linear value (1.3)

as the pedestal drops to very low levels, as explained at the end of

the Discussion of Theorem 3. Note, too, how both bFit and bEst
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Figure 13. bTransducer for the Legge-Foley transducer with nonzero pedestal. The curves were generated using Equation (74). Each column of
panels has a particular value for v, and each row of panels has a particular value for the difference (u{v). Within the panels, the Weber fraction, W, is
indicated by the colour of the curve (the legend in the top-left panel applies to all panels). The curves approach horizontal asymptotes on the right
(indicated by dotted lines), with vertical position given by Equation (67) with b~u{v. This is because, as mentioned earlier, as the input signal
increases, the Legge-Foley transducer approaches a power function with exponent (u{v). This asymptote can also be derived from Equation (74) by
setting k

�
xp to 0, which gives the limit as xp??. On the left, the curves come close to approaching an asymptote with vertical position given by

Equation (67) with b~u because, at low contrasts, the Legge-Foley transducer approximates a power function with exponent u. These near-
asymptotes are indicated by dotted lines on the left of each panel. They are not true asymptotes because, even for xp~0, the Legge-Foley transducer

is not exactly equal to a power function over a finite range of inputs. The horizontal, dashed lines indicate bTransducer
Legge-Foley~1. The vertical dashed lines

indicate the value of xp

�
k corresponding to the point of inflection of the Legge-Foley transducer. An expression for this quantity is derived in

Appendix S2. For typical values of u and v, including those in this figure, the point of inflection occurs very close to an input of k, giving xp

�
k&1. For

pedestals above this value, both the target and pedestal will lie in the compressive region of the Legge-Foley transducer, so bTransducer
Legge-Foley must be less

than 1. For this reason, none of the curves enter the top-right quadrant in any of the panels.
doi:10.1371/journal.pone.0074815.g013
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show a dipper function, with the lowest value falling at a pedestal

level just above k (xp~1:78%); the finding of a dipper function for

bFit in close agreement with that of bEst verifies that the predicted

dipper function for b shown in Figures 13 and 14 is a real

prediction of the Legge-Foley transducer, and not just a peculiarity

of our analytical approximation. Unlike the data of Henning and

Wichmann [40], Meese et al. ’s [4] data (given in Table 1) do not

actually show a dipper for b, but this is not a serious concern

because, as mentioned earlier, Weibull b is difficult to measure

accurately, and such a small effect on b could easily be lost in the

experimental noise. Figure 16 shows the same analysis for Meese

et al’s monocular condition.

Theorem 4. For Nonzero Pedestals, 2AFC
Performance for a Power-Function Transducer
Approaches That for a Log Transducer as the
Exponent Approaches Zero

Introduction
We stated earlier that, for a nonzero pedestal, as the exponent of

a power function transducer approaches zero, bTransducer ap-

proaches that for a logarithmic transducer, whatever the Weber

fraction. This seems a remarkable finding, because the expressions

for bTransducer
Powerfunc,xp=0 and bTransducer

log (given by Equations (67) and

(70), respectively) appear quite different. In fact, for a given

threshold level, the whole 2AFC psychometric function for the

power-function transducer and nonzero pedestal (given by

Equation (69)) approaches that for a log transducer (Equation

(71)) as the exponent, b, in Equation (69) approaches zero.

Both of these results stem from a more fundamental result: As

the exponent, b, of a power function approaches zero, the function

converges towards a log function plus a constant. Because 2AFC

performance in the transducer model is based on the difference of

transducer outputs, this constant cancels out, and, in the limit as

b?0, the difference of power functions equals the difference of log

functions.

This can be understood from Lemma 1, below.

Lemma 1

limb?0
xb{1

b
~ ln (x): ð82Þ

Proof. To begin with, note that, for b=0,

ðx
1

tb{1dt~
tb

b

� �x

1

~
xb{1

b
: ð83Þ

Therefore,
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Figure 14. Dipper functions for Weibull b from Henning and Wichmann’s data. Weibull b was fitted to Henning and Wichmann’s [40]
published data as described in the legend of Table 1. These b values are plotted in black lines and symbols, excluding observer GBH’s b value of 13.1
for a pedestal contrast of 0.01, which is obviously an outlier. In each case, the function mapping pedestal contrast to b has a dipper shape. To see
whether the dip occurred in the predicted location, we fitted a Legge-Foley transducer model to Henning and Wichmann’s data separately for each
observer. The model’s predicted proportion correct, PModel, was give n by Equation (6) with the transducer function, R, given by the 4-parameter
Legge-Foley transducer (Equation (72)), and the noise CDF, F, given by the generalized Gaussian (Equation (41)), which had r as a free parameter, and
t set so that sz~1, using Equation (44) (thus we adjusted sensitivity by adjusting the transducer gain, rather than the noise CDF spread). For each
pedestal value, Henning and Wichmann reported the contrast differences, Dx, corresponding to three different performance levels (proportion
correct, PData = 0.6, 0.75, or 0.9), sampled from their fitted psychometric functions. We performed a maximum-likelihood fit of the Legge-Foley
transducer model to the data, by adjusting the parameters to maximize the likelihood,

P
(xp ,Dx) PData log (PModel)z(1{PData) log (1{PModel). Fitted

model parameter sets (u, v, k, r, r) were (3.78, 3.38, 0.0322, 15.3, 0.947) for GBH, (3.36, 3.02, 0.00968, 22.7, 2.09) for NAL, and (3.93, 3.51, 0.0102, 18.9,
2.15) for TCC. For each observer and pedestal value, we used a numerical search method to find the threshold, Dxh , corresponding to a proportion

correct of Ph , and then calculated the Weber fraction, W, using Equation (34). We then found bTransducer
Legge-Foley using Equation (74), and bNoise

Gen:Gaussian(r) using

Equation (50). The analytical prediction of Weibull b is then given by bTransducer
Legge-Foley|bNoise

Gen:Gaussian(r), and this is plotted in magenta in the figure. Each

observer’s global minimum in Weibull b was close to that in the analytical prediction.
doi:10.1371/journal.pone.0074815.g014
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lim
b?0

xb{1

b
~ lim

b?0

ðx
1

tb{1dt~

ðx
1

t{1dt~ ln (x)%:

From Lemma 1, we can see that, when b is small,

xb

b
& ln (x)z

1

b
, ð84Þ

which explains why the power function converges towards a log

function plus a constant, 1=b, as the exponent, b, approaches zero.

When the transducer outputs are subtracted to make the decision

in a 2AFC task, this constant cancels out, so we have

x1
b

b
{

x2
b

b
& ln (x1){ ln (x2), ð85Þ

and this is why 2AFC performance for the power function

approaches that for a log function as the transducer exponent

approaches 0. This does not apply to a zero pedestal because the

log function is undefined for zero input.

For those readers who find this informal argument unconvinc-

ing, we now prove directly that the two psychometric functions are

identical (Theorem 4A) and that the bTransducer values in the two

cases are also identical (Theorem 4B).
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Figure 15. Psychometric functions resulting from a Legge-Foley transducer in Meese et al. ’s binocular condition. The thin, green
curves show the psychometric functions generated by Meese et al. ’s [4] twin-summation model in their binocular condition; in this condition, their
transducer is equivalent to the Legge-Foley transducer of Equation (72) with u~3:53, v~3:07, k~1:10, r~1:05. Note k is in units of % contrast, as
used by Meese et al.; to convert to units of Michelson contrast, k should be divided by 100. The CDF of the noise on the internal difference signal, z, is
a cumulative Gaussian with standard deviation given by sz~0:366. Each panel gives the model’s psychometric function for a different pedestal
contrast, xp , in Meese et al. ’s binocular condition. The thick, black curves show the best-fitting (maximum-likelihood) Weibull functions. Each panel

displays the b value of the best-fitting Weibull function (bFit) and the estimate, bEst~bNoise
Gen:Gaussian 2ð Þ|bTransducer

Legge-Foley, where bTransducer
Legge-Foley is given by

Equation (73) for xp~0, and by Equation (74) for the other pedestal levels. The Weber fraction, W, in these equations was calculated from the model’s
threshold, found by inverting the model’s psychometric function using a numerical search method, as explained in the text. Because this model fitted
well to Meese et al. ’s data, these Weber fractions are close to (but not exactly equal to) the actual Weber fractions obtained in the experiment, given
in Table 1.
doi:10.1371/journal.pone.0074815.g015
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Theorem 4A
Statement of Theorem 4A. YPowerfunc,xp=0 Dxð Þ , defined in

Equation (69), approaches Ylog Dxð Þ, defined in Equation (71), as

the power-function exponent, b, in Equation (69) tends to zero.

Proof. From Equation (69),

YPowerfunc,xp=0 Dxð Þ~F F{1 Phð Þ
1zW Dx=Dxhð Þð Þb{1

1zWð Þb{1

 !

~F F{1 Phð Þ
1zW Dx=Dxhð Þð Þb{1

h i.
b

1zWð Þb{1
h i.

b

0
@

1
A: ð86Þ

So,

lim
b?0

YPowerfunc,xp=0 Dxð Þ~

F F{1 Phð Þ
lim
b?0

1zW Dx=Dxhð Þð Þb{1
h i.

b
n o

lim
b?0

1zWð Þb{1
h i.

b
n o

0
B@

1
CA: ð87Þ

Applying Lemma 1 to the numerator and denominator,

lim
b?0

YPowerfunc,xp=0 Dxð Þ~F F{1 Phð Þ
ln 1zW Dx=Dxhð Þð Þ

ln 1zWð Þ

� 	

~Ylog Dxð Þ: ð88Þ

Theorem 4B
Statement of Theorem 4B. As b?0, bTransducer

Powerfunc,xp=0?
bTransducer

log .

Proof. We can rewrite Equation (67) as

bTransducer
Powerfunc,xp=0~

W 1zWð Þb{1

1zWð Þb{1
h i.

b
: ð89Þ
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Figure 16. Psychometric functions resulting from a Legge-Foley transducer in Meese et al. ’s monocular condition. The same as
Figure 15, but for Meese et al. ’s monocular condition. In this condition, their twin summation model is equivalent to the Legge-Foley transducer of
Equation (72) with the same parameters as those given in the legend to Figure 15, except with k~1:89 and r~1.
doi:10.1371/journal.pone.0074815.g016
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The limit of the numerator of Equation (89) as b?0 is simply

W 1zWð Þ{1
, and the limit of the denominator as b?0 is given

by Lemma 1, so we have

lim
b?0

bTransducer
Powerfunc,xp=0~

lim
b?0

W 1zWð Þb{1

lim
b?0

1zWð Þb{1
h i.

b

~
W

1zWð Þ ln 1zWð Þ ð91Þ

~bTransducer
log :% ð92Þ

Discussion of Theorem 4
Theorem 4 shows that, for nonzero pedestals, 2AFC perfor-

mance with a power function transducer approaches that of a log

transducer as the power-function exponent approaches zero. As

noted earlier, contrast discrimination data have previously been fit

with the Legge-Foley transducer of Equation (72) with parameters

set so that, at high contrasts, the transducer was approximately a

power function with an exponent of around 0.4–0.5 [4,30].

Figure 17 shows that an exponent of 0.5 is close enough to zero to

make the psychometric function very similar to that from a log

function (compare the blue and black curves in Figure 17).

General Discussion

In 2AFC discrimination experiments, the observer can be

modelled using a transducer, followed by constant, additive noise.

In this paradigm, the psychometric function is given by Equation

(6), where F is the CDF of the internal noise, and R is the

transducer function. The model’s sensitivity to a stimulus

difference, which determines its threshold, can be adjusted by

setting the gain on the transducer (i.e. stretching or compressing R

vertically) while keeping the spread of the noise CDF constant at

some convenient level, or by setting the spread of the noise CDF

(i.e. stretching or compressing F horizontally) while keeping the

gain of the transducer constant at some convenient level. Theorem

1 reformulates Equation (6) so that both the transducer gain and

the spread of the noise CDF can be set to convenient levels, and

the threshold can be set directly.

Although the presentation of the theorems in this paper makes

heavy use of the theoretical framework in which the stimulus signal

is put through a transducer, and stimulus-independent noise is

added, it is not necessary to accept this model to find the theorems

useful: All we need to assume is that the psychometric function has

a form consistent with such a model. For example, the intrinsic

uncertainty model contains no transducer, but generates a

psychometric function that closely approximates that of a power-

function transducer with additive Gaussian noise [21], so the

theorems in this paper can be applied to that model as if was a

transducer model.

Nevertheless, the theorems do have added value if we go along

with the transducer model, because they give an insight into the

roles played by the different elements of the transducer model in

determining the form of the psychometric function. In the next

section, we give a summary of some of the insights that we have

gained into the Weibull function. The sections after that examine

some of the issues in more detail; each of these detailed sections is
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Figure 17. Psychometric functions for the power-function transducer with nonzero pedestal. The psychometric function for b?0 was
generated using Equation (71); the others were generated using Equation (69). In both cases, we assumed Gaussian internal noise (i.e. F is the
cumulative Gaussian). All the psychometric functions go through the point (1,Ph), by definition of the threshold (the abscissa is in threshold units, i.e.
Dx=Dxh). Each panel shows psychometric functions for a particular Weber fraction. Each curve within a panel shows the psychometric function for a
particular transducer exponent, b. The orange curve (b~2) is the psychometric function plotted in green in the second-to-top row of Figure 10. The
blue curve (b~0:5) is the psychometric function plotted in green in the second-to-top row of Figure 11. The black line shows the limit as b?0. As
proved in Theorem 4A, this limiting case is identical to the psychometric function for a log transducer. This is the psychometric function plotted in
green in the second-to-top row of Figure 12. This figure illustrates two effects. Within each panel, we see how the psychometric function for the
power-function transducer converges towards that for a log transducer as the exponent decreases (Theorem 4). Across panels (right-to-left), we see a
demonstration of the effect proved in Theorem 3, whereby, with a nonzero pedestal, all psychometric functions converge towards that for a linear
transducer as the discrimination threshold decreases (in this case, since we are plotting psychometric functions for Gaussian noise, the functions
converge towards the pure noise CDF of Figure 4B as the Weber fraction decreases).
doi:10.1371/journal.pone.0074815.g017
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self-contained, and any of them can be skipped without affecting

the intelligibility of the other sections.

The Weibull Function
Functions of proportion correct against stimulus difference are

often fitted with a Weibull function, which has two parameters of

interest: the threshold, a, and ‘‘slope’’ or ‘‘shape’’ parameter, b.

Most psychophysical research has focussed on the threshold, but b
can be informative too, and has proved useful when competing

models make quite similar predictions of threshold [4]. Theorem 2

shows what happens to b when the Weibull function is fitted to the

psychometric function for the transducer model, given in Equation

(6). This theorem shows that b can be partitioned into two factors:

bNoise, which depends only on the shape of the internal noise

distribution, and bTransducer, which depends on the transducer

function, and can also depend on the pedestal level and the

observer’s threshold. Weibull b is estimated by multiplying these

two factors together. bNoise is the estimate of the b of the Weibull

function that fits best to the noise CDF. We found that, for all the

noise CDFs in Figure 7, bNoise accurately estimates the best-fitting

Weibull b, which validates the accuracy of our general expression

for bNoise (Equation (16)) for a range of noise CDFs. From our

general expressions for bNoise and bTransducer, we derived

expressions for several specific cases. In each case, these specific

expressions provided accurate estimates of the fitted Weibull bs,

and will do so in any other situation in which we can express the

observer’s or model’s true psychometric function in the form of

Equation (6), and the Weibull function provides a good fit (this is

because the only premise of Theorem 2 is that the Weibull

function can be adjusted to provide a good fit to Equation (6)).

As well as providing a convenient formula to estimate Weibull

b, our theorems give many insights into the genesis of this

parameter. By partitioning the expression for b into the two

factors, bNoise and bTransducer, we can understand the separate

contributions made by the noise distribution and the transducer.

One insight is that Pelli’s [19] finding (that b&bNoise|b for a

power-function transducer and zero pedestal) is a specific instance

of the more general expression (Equation (15)) that we derived in

Theorem 2. In our terms, the ‘‘b’’ part of Pelli’s relation is

bTransducer, and our general expression for bTransducer reduces to b

for a power function transducer and zero pedestal.

Another insight relates to bNoise: Since bNoise is a number that

depends on the noise distribution, changing the noise distribution

simply changes all the Weibull bs by a fixed proportion.

For example, we showed that bNoise for Gaussian noise is

larger than bNoise for Laplacian noise by a factor

bNoise
Gen:Gaussian 2ð Þ

.
bNoise

Gen:Gaussian 1ð Þ~1:302 (see Equations (52) and

(53)); therefore, changing from Laplacian to Gaussian noise

without any other change will increase Weibull b in every

situation by a factor 1.302.

A further insight relates to bTransducer: Theorem 3 proves that, as

long as the gradient of the transducer function is not 0 or ‘ at the

pedestal level, bTransducer approaches 1 as the discrimination

threshold decreases. We showed that the Weber fractions generally

obtained for contrast discrimination between two easily visible

stimuli are small enough to make bTransducer close to 1, the value

for a linear transducer. Therefore, in this case, Weibull b is close to

bNoise, which is about 1.3 for Gaussian noise. Since the Central

Limit Theorem provides a good reason for assuming that the noise

should be approximately Gaussian, this explains why Weibull b
turns out to be close to 1.3 for suprathreshold contrast

discrimination (although, as explained below, in the section

headed ‘‘The shape of the internal noise distribution’’, the fitted

b values in Table 1 are in general slightly too high to be consistent

with a Gaussian, suggesting a distribution with lower kurtosis).

The linearizing effects of the pedestal have been noted before

[4]. Given that all differentiable functions are ‘‘locally linear’’, one

might argue that the surprising thing is not that performance

becomes linear with decreasing discrimination threshold, but that

there are cases where this does not happen. A commonly

encountered example of the latter is the case of a power-function

transducer and zero pedestal, analysed previously by Pelli [19].

Here, bTransducer is always equal to the power-function exponent,

so psychophysical performance never becomes linear, however

small the threshold gets. It is not that the power function disobeys

the rule that all differentiable functions are locally linear, but

rather that the definition of local linearity used in the definition of

a differentiable function is too weak for our purposes. In the next

section, we introduce a different definition of local linearity that is

strong enough to determine whether or not linear behaviour will

emerge as the discrimination threshold decreases. We show that

this ‘‘strong local linearity’’ is not shown by the power function at

x~0.

‘‘Local linearity’’ and Weibull b
One might think that the tendency towards linear behaviour

with decreasing discrimination threshold is just a trivial conse-

quence of the fact that any differentiable function is ‘‘locally

linear’’: The definition of differentiability requires that a function

be ‘‘well approximated’’ by a linear function near the point of

interest. However, the definition of ‘‘locally linear’’ that appears in

the test of differentiability is not sufficient to guarantee linear

psychophysical discrimination behaviour for small thresholds. As

we saw earlier, for a power-function transducer, R(x)~rxb, and

zero pedestal, bTransducer is always equal to b, however small the

threshold gets. Theorem 3 does not apply in this case (except when

b~1), because, when b=1, the gradient of the transducer is 0 or ‘

at a pedestal level of zero. For bw1, the power function is

differentiable at x~0, and so it is locally linear in the sense

required by the definition of differentiability, but it does not

generate linear behaviour for small thresholds. We can see this in

Figure 18, which shows an expansive power-function transducer

with exponent 2. As the pedestal value increases from zero, the

function mapping the stimulus difference, Dx, onto the internal

difference signal, z, appears increasingly linear, and this linearizing

effect becomes more pronounced as the range of inputs decreases.

But, when the pedestal value is zero, the mapping from Dx to z

always has the same form as the transducer, R, regardless of the

range of inputs. However much we zoom into the power function

at x~0, it still looks like a power function with the same exponent.

So there is clearly a sense in which an expansive power function is

not locally linear at x~0. What is going on?

To make sense of this, we need to consider exactly what we

mean when we say that a differentiable function must be locally

linear. What follows is equivalent to the definition of differentia-

bility given by Hasselblatt and Katok (Ref. [41], p. 400), but

simplified to deal with functions of one variable only. For a

function, g(x), to be differentiable at x~a, there must be some

straight line, L(x), through the point (a,g(a)), such that

Dg(azDx){L(azDx)D approaches zero more quickly than Dx

does. More formally, g is differentiable at a if and only if there

exists a number M such that, if we define L(x)~g(a)zM(x{a),
then
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Figure 18. Effect of a pedestal on the linearity of an expansive power-function transducer. Each panel in the rightmost column shows the
same expansive power-function transducer given by R(x)~x2. The panels to the left show parts of this transducer sampled over different ranges of
inputs: The width of the range is varied across columns of panels, and the lower limit of the range is varied across rows of panels. The lower limit
would correspond to the pedestal value, xp , in a discrimination experiment. The abscissa of the curves on the left is the stimulus difference, Dx, and
the ordinate is z, the difference in internal signal values after transduction. The b-value given in each panel is the exponent of the power function that
fits best (least squares) to these curves. Each coloured box drawn on a transducer in the right column indicates the part of the transducer that is
sampled by the correspondingly coloured curve given in a panel to the left on the same row. It can be seen that, as the pedestal increases, the best-
fitting exponent quickly approaches 1, giving an approximately linear mapping from Dx to z. This linearizing effect is enhanced as the width of the
range decreases. x, xp , and Dx are given in arbitrary units: For a given transducer, the best-fitting exponent is determined by the ratio of the pedestal
value to the width of the input range. For example, with the transducer shown here, when the pedestal value is equal to the width of the range, the
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lim
Dx?0

Dg(azDx){L(azDx)D
DDxD

~0: ð93Þ

If this condition is satisfied, then g is differentiable at x~a, and

M is the derivative of g at that point. An expansive power function

clearly satisfies this condition for a~0. In this case, M~0 and

g(a)~0, so L(x)~0 for all x, and g(azDx)~(Dx)b. Thus,

lim
Dx?0

Dg azDxð Þ{L azDxð ÞD
DDxD

~ lim
Dx?0

D(Dx)bD
DDxD

, ð94Þ

and, for bw1, the limit in Equation (94) is zero.

So the expansive power function is locally linear at x~0 in the

sense required for differentiability. However, when we look at the

top row of Figure 18, we can see that it will never look like a

straight line, however much we zoom in. To capture this

behaviour, we need a different definition of ‘‘locally linear’’, and

the key property of linear functions that we need to appeal to is the

fact that the gradient of a linear function is constant. For any

function, g, Let S1 be the slope of the secant between the points

(a,g(a)) and (azDx=2,g(azDx=2)), and let S2 be the slope of the

secant between the points (azDx=2,g(azDx=2)) and

(azDx,g(azDx)). Figure 19 illustrates these secants for three

types of function over the range a to (azDx): an expansive power

function where a=0 (Figure 19A), an expansive power function

where a~0 (Figure 19B), and a straight line (Figure 19C). The

slopes, S1 and S2, of these secants are given by

S1~
g azDx=2ð Þ{g að Þ

Dx=2
ð95Þ

and

S2~
g azDxð Þ{g azDx=2ð Þ

Dx=2
: ð96Þ

We define the curve’s ‘‘index of acceleration’’, g, as

g~
S2
S1

~
g azDxð Þ{g azDx=2ð Þ½ �= Dx=2ð Þ

g azDx=2ð Þ{g að Þ½ �= Dx=2ð Þ : ð97Þ

For an expansive function, the slope increases towards the right,

so S2wS1, and gw1; for a compressive function, gv1; and, for a

linear (or, strictly speaking, affine) function, g~1. We can

therefore take the limit of g as Dx?0 to indicate whether the

function is locally expansive, compressive, or linear at x~a. We

classify a function as being ‘‘strongly locally linear’’ at x~a if g?1
as Dx?0. This precisely captures the kind of local linearity that is

relevant to Weibull b. In general, the numerator and denominator

on the right hand side of Equation (97) both approach the

derivative, g’(a), as Dx?0, and so, as long as the gradient of g at a

is not 0 or ‘, we have

lim
Dx?0

g~
g’(a)

g’(a)
~1 if the gradient of g at a is not 0 or?: ð98Þ

Thus, all differentiable functions are ‘‘strongly locally linear’’ at

a except those with zero gradient at a (those with infinite gradient

at a are not differentiable at a anyway, and are not locally linear by

either definition). If the gradient at a is zero, then Equation (98)

gives us the indeterminate form 0=0, so the limit of g cannot be

evaluated using Equation (98), and the function will not necessarily

be strongly locally linear at a. The conditions necessary for

Equation (98) to apply are the premises of Theorem 3. Thus, we

can now see what is happening in Theorem 3. In all cases for

which the premises of Theorem 3 are satisfied, the transducer

function is strongly locally linear at the pedestal level, and so linear

behaviour will be expected to emerge as the threshold decreases,

and we sample a progressively smaller range of inputs. For the case

of a power function, g(x)~xb, with a~0 (Figure 19B), we can go

back to Equation (97) to derive the limit of g. In this case, we have

best-fitting exponent is always 1.227; when the pedestal is twice the width of the range, the best-fitting exponent is always 1.126. For a zero pedestal
(top row), the best-fitting exponent is always 2, regardless of the width of the input range, and in this sense the power function is not ‘‘strongly
locally linear’’ at x~0.
doi:10.1371/journal.pone.0074815.g018
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Figure 19. Index of acceleration, g. (A) The wide, magenta curve shows an expansive power function sampled over a range of inputs from a to
(azDx), where aw0. The horizontal blue lines both have length Dx=2, and the vertical blue lines have length Dy1 and Dy2 as indicated. The slope,
S1 , of the secant (the oblique line) across the left half of the curve is given by Dy1=(Dx=2), and the slope, S2 , of the secant across the right half of the
curve is given by Dy2=(Dx=2). Our index of acceleration, g, is given by S2=S1 . For the power function, when a=0, g?1 as Dx?0, so the curve is
‘‘strongly locally linear’’ at x~a. (B) The same as A, but with the bottom of the range of inputs, a, equal to zero. In this case, g depends only on the
exponent of the power function, and so it does not approach 1 as Dx approaches zero. The power function is not ‘‘strongly locally linear’’ at x~0. (C)
The same as A, but for a straight line function. Here, g~1 for all a and Dx.
doi:10.1371/journal.pone.0074815.g019
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g~
Dxð Þb{ Dx=2ð Þb

h i.
Dx=2ð Þ

Dx=2ð Þb
h i.

Dx=2ð Þ
~2b{1: ð99Þ

Thus, the index of acceleration is 2b{1, whatever the value of

Dx. The limit of g as Dx?0 is therefore not 1 (unless b~1), and so

the power function is not strongly locally linear at x~0. The ratio

of the slopes, S1 and S2, of the secants is unchanged as Dx?0, and

so the shape of the power function does not become any more

linear as we zoom in, as shown in Figure 18.

In summary, the definition of local linearity embodied in the

definition of a differentiable function is not strong enough to

explain why discrimination performance does not always ap-

proach that for a linear transducer as the discrimination threshold

decreases. We introduced a different definition of local linearity,

which we call ‘‘strong local linearity’’, and it is only when the

transducer conforms to this stronger definition of local linearity at

the pedestal level that we should start to see linear behaviour as the

discrimination threshold decreases.

Relationship between Weibull b and log-log slope of d9

against stimulus level
As mentioned earlier, in a detection task (i.e. where the pedestal

is zero), if d ’ is a power function of stimulus level (with exponent b),

then the resulting psychometric function is given by Equation (9),

which has the same form as Equation (6) with a power-function

transducer and Gaussian noise. In this scenario, if log (d ’) is

plotted against log (Dx), the resulting function is a straight line

with slope b. Pelli [21] was the first to appreciate the relationship

between b and Weibull b, showing that, for the intrinsic

uncertainty model,

b&0:80b: ð100Þ

He later realised that this relationship is not specific to the

uncertainty model, but instead applies to any model for which d ’ is

a power function of stimulus level [19]; the intrinsic uncertainty

model shows this relationship because d ’ is approximately a power

function of stimulus level in this model.

In his earlier paper, Pelli [21] derived Relation (100) from the

uncertainty model, for which the psychometric function does not

fit perfectly to either the Weibull function, or Equation (9) (for

which d ’ is a power function of stimulus level). In his later paper

[19], he assumed a model for which the psychometric function was

precisely that of Equation (9), and found the best-fitting Weibull

function. This resulted in the relationship, b~1:247b, which can

be inverted to give b&0:802b, which is the same as Relation (100)

within the specified margin of error. So, in Pelli’s earlier analysis

[21], using the uncertainty model, both the Weibull function and

Equation (9) were approximations, whereas his later analysis [19]

assumed Equation (9) to be precisely correct, and the Weibull

function to be an approximation. Strasburger [29] took the one

remaining option, which is to assume that the Weibull function is

precisely correct, and Equation (9) is an approximation. For

several different Weibull functions (with different b values), he

plotted d ’ against stimulus level. Because, in Strasburger’s analysis,

Equation (9) was an approximation, the log-log plots of d ’ against

stimulus level were not exactly straight lines, but they were nearly

straight for d ’v1. Strasburger found the change in log stimulus

level between d ’~0:1 and d ’~1, and used this to define the slope,

and this resulted in a similar relationship to that of Pelli, but with a

slightly higher constant of proportionality: b&0:88b.

Our equations give an alternative approach to formulating this

relationship. If we assume, like Pelli [19], that Equation (9) is

precisely correct, then the ‘‘true’’ psychometric function is

identical to that from a power-function transducer, zero pedestal,

and additive Gaussian noise. In this case, bTransducer is given by

Equation (63), and bNoise is given by Equation (53), giving

b&1:302b, or b&0:768b. The reason why our equations yield a

lower constant of proportionality than Strasburger’s is that our

expressions for Weibull b are based on the psychometric function

at the performance level Ph~1{0:5=e. From Equation (8), this

corresponds to a d ’ level of 1.27, where Strasburger’s log-log plots

of d ’ against stimulus level start to become noticeably shallower.

Strasburger’s slopes were derived between d ’ levels of 0.1 and 1,

which correspond to performance levels of 0.53 and 0.76,

respectively, i.e. approximately the bottom half of the psychomet-

ric function; if we fitted the Weibull function to the bottom half of

the true psychometric function, we should expect to get a different

value for b than if we fitted across a wide range of performance

levels.

So far, we have focussed on the relationship between Weibull b
and the exponent of a simple power function. Klein [36] examined

the relationship between Weibull b and the exponent of the

numerator of the Legge-Foley transducer (u in Equation (72)). He

expressed the Legge-Foley transducer slightly differently from

Equation (72):

d ’~
x1

u

j1z(1{j1)x1
v

, ð101Þ

where j1 is a constant, and x1 is the stimulus level, x, divided by the

stimulus level that gives d ’~1. The subscript, 99199, on x and j in

Equation (101) indicates the value of d ’ that we obtain when

x1~1; it is easily seen that, if x1~1 in Equation (101), then d ’~1,

giving a performance level of 0.76. Equation (101) can produce

log-log plots of d ’ against stimulus level very much like those

derived by Strasburger for the Weibull model, becoming more

shallow with increasing stimulus level. This suggests that the model

described in Equation (101) is a better approximation of the

Weibull model than the simple power-function transducer.

To find the psychometric function for Klein’s model (defined in

Equation (101)), we can use Equation (101) to substitute for d ’ in

Equation (8), and obtain

P~W
rx1

u

kvzx1
v

� 	
, ð102Þ

where

kv~j1=(1{j1), ð103Þ

and

r~1
� ffiffiffi

2
p

1{j1ð Þ
� �

: ð104Þ

Equation (102) is the psychometric function that would arise from

a Legge-Foley transducer with zero pedestal, and additive, unit-

variance, Gaussian noise on the internal difference signal, z.

Klein constrained the transducer parameters so that j1~0:614,

and v~(1{0:39=1:06)u. Thus, the only free parameter of the
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model was u. He found that, for any u, and any stimulus level, x1,

the psychometric function defined by Equation (102) was

extremely close to a Weibull function with b~u=1:06. Klein

remarked that he was very surprised to discover that this fixed

relationship between u and b held for all values of b without

having to change the other parameters of the Legge-Foley

transducer. But we can explain this surprising finding by using

our expression for bTransducer for the Legge-Foley transducer and

zero pedestal (Equation (73)). First, let Dxh be the threshold value

of x1 corresponding to a performance level of Ph~1{0:5=e. For

any value of u, v is determined by u, and both r and kv are

determined by j1, and we can find Dxh by numerical search; we

can then plug these values of v, kv and Dxh into Equation (73) to

obtain an expression for bTransducer
Legge-Foley in terms of u. When we do

this, we always obtain bTransducer
Legge-Foley~u=1:3803120209 (to 10

decimal places). We estimate Weibull b by multiplying

bTransducer by bNoise, and as already noted, the model defined in

Equation (101) implies Gaussian noise, so bNoise is given by

Equation (53). When Equation (53) is evaluated to 14 decimal

places, we find bEst~u=1:0601030546 (to 10 decimal places) for

any u, supporting what Klein found.

To understand why bTransducer is a fixed multiple of u, we need

to express the stimulus in different units. Let xD denote the

stimulus level, x, divided by the stimulus level that gives d ’~D,

where

D~
ffiffiffi
2
p

W{1 Phð Þ, ð105Þ

with Ph~1{0:5=e. We can then define the d ’ function as

d ’~
DxD

u

jDz(1{jD)xD
v
: ð106Þ

Equation (106) has the same form as Equation (101), but with the

stimulus expressed in different units. When xD~1, Equations

(106) and (105) give d ’~D~
ffiffiffi
2
p

W{1 Phð Þ, and so, from Equation

(8), the proportion correct is Ph. Thus, when we express the

stimulus in units such that the stimulus level is xD, the threshold

value, Dxh (which we have defined to be the stimulus value

corresponding to a performance level of Ph), is simply given by
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Figure 20. Pairs of noise distribution and transducer exponent consistent with the Weibull parameters for contrast discrimination.
r is the generalized Gaussian CDF shape parameter, and b is the power-function transducer exponent. Each curve plots the set of (r,b) pairs
consistent with one of the fitted psychometric functions for suprathreshold contrast discrimination given in Table 1 (non-starred conditions). Where
available, we used the fitted b and W parameters from the Weibull fit that included the lapse rate parameter, l. Note that the contour for Henning
et al. ’s subject GBH in the 8.37 cpd condition lies out of range of the axes in this figure, and so is not visible. This is because the fitted Weibull b of
6.70 is much higher than usually found – almost certainly an unreliable measurement.
doi:10.1371/journal.pone.0074815.g020
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Dxh~1, ð107Þ

rather than having to be found by numerical search.

Using Equation (106) to substitute for d ’ in Equation (8), we

obtain

P~W
rxD

u

kvzxD
v

� 	
, ð108Þ

where

kv~jD=(1{jD) ð109Þ

and

r~D
� ffiffiffi

2
p

1{jDð Þ
� �

: ð110Þ

Let us again assume that v is some fixed multiple, M, of u, as it is in

Klein’s example:

v~Mu, ð111Þ

for constant M. Using Equations (107), (109) and (111) to

substitute for the terms in Equation (73), and simplifying, we find

bTransducer
Legge-Foley~u 1{M(1{jD)½ �, ð112Þ

and so, for constant M and jD, bEst is a fixed multiple of u, given by

bEst~u 1{M(1{jD)½ �|bNoise
Gen:Gaussian 2ð Þ: ð113Þ

This explains Klein’s surprising finding that, with the constraint

that v is a fixed multiple of u, there is a fixed multiplicative

relationship between u and b that holds for all values of b when the

other Legge-Foley transducer parameters are held constant.

The shape of the internal noise distribution
For several decades, the internal noise in psychophysical models

has usually been assumed to be Gaussian, but recently, Neri [18]

argued that it has a Laplace distribution, which has considerably

higher kurtosis than a Gaussian. This conclusion was reached

using reverse correlation techniques to investigate detection of bar

stimuli embedded in noise.

But do Neri’s conclusions about the internal noise also hold for

noise-free stimuli? It is not possible to use Neri’s methods to study

the internal noise when the stimuli are noise-free because these

methods require substantial amounts of noise to be added to the

stimuli. For noise-free stimuli, we can learn something about the

internal noise from the b of the fitted Weibull psychometric

function, because the shape of the noise distribution affects

Weibull b through the factor bNoise in Equation (15). If we knew

the value of bNoise, that would greatly narrow down the set of

possible internal noise distributions. The key difficulty is that, as

noted by Neri [18], the internal noise distribution is confounded

with the deterministic transformation, i.e. the transducer. This

confound is made explicit in Equation (15), where Weibull b is

shown to be the product of bNoise and bTransducer. Since

psychophysical measurements are generally affected by both the

internal noise and the transducer, we are limited in the conclusions

that we can draw about the internal noise distribution. For

example, a Weibull b of 1.3 is consistent with Gaussian internal

noise and a linear transducer, because bNoise for the Gaussian is

1.3 (Equation (53)), and bTransducer for a linear transducer is 1; but,

since bNoise for Laplacian noise is 1 (Equation (52)), a Weibull b of

1.3 is also consistent with Laplacian internal noise and a

combination of transducer, pedestal, and threshold that yields

bTransducer~1:3. A partial solution to this problem is to focus on

experimental situations where it is likely that bTransducer
v1; then it

follows from Equation (15) that bNoise
wb. In this case, the fitted

Weibull b places a lower bound on bNoise, and possible internal

noise distributions will be those for which bNoise
wb.

One situation where we can be reasonably sure that

bTransducer
v1 is suprathreshold contrast discrimination. If the

internal noise is additive, then the transducer in the suprathreshold

region of the contrast axis has to be compressive to account for the

rise in discrimination threshold with increasing pedestal for

suprathreshold pedestals, as found by numerous researchers

[4,6,30–32,34,39,40,42]. As explained in the discussion of

Theorem 2, and Figure 5, a compressive transducer will give rise

to bTransducer
v1. Thus, for suprathreshold contrast discrimination,

although we cannot determine the exact value of bNoise from the

psychometric function, we know it must be greater than the fitted

Weibull b. Looking at Table 1, most of the Weibull b values for

suprathreshold contrast discrimination fall above 1, and so bNoise

in these cases must be greater than 1, and therefore inconsistent

with a Laplace distribution. Out of 38 suprathreshold discrimina-

tion conditions (i.e. where the pedestal is greater than the detection

threshold), 31 conditions gave a fitted b that was greater than 1.

In general, there will be many different pairs of noise

distribution and transducer function that are consistent with the

data. Suppose we just consider generalized Gaussian noise

distributions (parameterized by the shape parameter, r) and

power-function transducers, parameterized by the exponent, b;

most transducers would usually be well-approximated by a simple

power function over the limited range of inputs spanned by the

psychometric function. For a given empirically obtained psycho-

metric function, we could then plot a contour of all the possible

pairs of (r,b) that are consistent with the empirical data. We will

now do this for the data in Table 1.

For generalized Gaussian noise, bNoise is given by bNoise
Gen:Gaussian

in Equation (50), which is determined by the shape parameter, r.

For a power function transducer, bTransducer is given by

bTransducer
Powerfunc,xp=0 in Equation (67), which is determined by the

transducer exponent, b, and the Weber fraction, W. For these

forms of noise and transducer, the fitted Weibull b, which we call

bFit, should be related to bNoise
Gen:Gaussian and bTransducer

Powerfunc,xp=0

according to the following approximation:

bFit~bNoise
Gen:Gaussian rð Þ|bTransducer

Powerfunc,xp=0 b; Wð Þ

to a good approximation:
ð114Þ

In Equation (114), we explicitly indicate that bNoise
Gen:Gaussian is a

function of r, and bTransducer
Powerfunc,xp=0 is a function of b and W. For a

given empirically obtained psychometric function, we know the
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fitted Weibull b, i.e. bFit, and the fitted Weber fraction, W (these

values are given in Table 1), and we can plug these values into

Equation (114), to give an equation with two unknowns, r and b. It

is not possible to rearrange this equation algebraically to make

either r or b the subject; however, for any r, we can search for the

b that satisfies the equation. This allows us to trace out a contour of

all the possible pairs (r,b) that are consistent with the fitted b and

W.

Figure 20 plots the (r,b) contours for the suprathreshold

conditions given in Table 1 (i.e., the non-starred conditions). If we

assume the noise is Laplacian, then the transducer exponent

consistent with the data can be read off by seeing where the

contour for that condition intersects the vertical dashed line

(corresponding to r~1). For most conditions, the exponent, b,

would have to be substantially greater than 1 to be consistent with

both the data and the Laplacian assumption. As argued earlier, the

transducer for suprathreshold contrast discrimination should be

compressive, and would fit best to a power function with bv1, so

the range of possible (r,b) pairs are those that lie below horizontal

dashed line (corresponding to b~1). The lowest possible values of

r consistent with a compressive transducer are those where the

contours intersect the horizontal dashed line. For the conditions in

Figure 20 that do intersect the horizontal dashed line, the median

point of intersection is given by r~2:55, implying a distribution

that has lower kurtosis than a Gaussian, the opposite of Neri’s

proposal. Furthermore, note that 2.55 is the median of the minimum

possible r values, corresponding to the limit as the compressive

transducer approaches linearity. For a more substantially com-

pressive transducer (i.e. b substantially less than 1), the r values

plotted in Figure 20 are higher, corresponding to distributions with

substantially lower kurtosis than a Gaussian.

How can we reconcile these results with those of Neri, which

suggest that the noise has higher kurtosis than a Gaussian? One

possibility is that the shape of the noise distribution is dependent

on the stimuli, with noisy stimuli somehow inducing a Laplacian

internal noise distribution, while noise-free stimuli induce an

internal noise distribution that has much lower kurtosis. Another

possibility is that the assumption of additive, stimulus-independent,

noise may be incorrect. For example, Kontsevich and Tyler [43]

argued that the transducer is an expansive power function (with

exponent 2–2.7) over the whole contrast range, and the increase in

contrast discrimination threshold with increasing pedestal is

caused by an increase in the noise variance with increasing

contrast. While the additive and variable noise models are barely

distinguishable on the basis of Kontsevich and Tyler’s data (see

Ref. [44]), the possibility of variable noise has some support from

2-response 4AFC experiments [15,45], and might resolve the

apparent conflict between Neri’s results and those in Table 1. If

Kontsevich and Tyler are correct that the transducer is an

expansive power function across the whole contrast range, then

this would result in a higher Weibull b than a compressive

function, and in this case, the b values of around 1.4 obtained for

suprathreshold contrast discrimination may well be consistent with

Laplacian noise with variance that increases with contrast. Further

consideration of this hypothesis falls outside the scope of this

paper, because here we are mainly concerned with formal

relationships between models and psychometric functions within

the theoretical framework of a transducer and additive noise.

Relationship between power function and log
transducers

Theorem 4 showed that, as the exponent of a power function

transducer approaches zero, 2AFC behaviour approaches that for

a log transducer. This comes about because, in the limit as the

exponent tends to zero, the difference of power functions becomes

proportional to the difference of logs. This gives us an insight into

what determines the difference between the two fitted exponents in

the Legge-Foley transducer. Recall that, for high inputs, the

Legge-Foley transducer approaches a simple power function with

exponent (u{v). For typical Weber fractions of around 0.3, the

transducer exponent makes little difference to the predicted

Weibull b (see Figure 9), so the fitted exponent is more strongly

constrained by the threshold, a, that it predicts for each pedestal

level. If threshold is proportional to the pedestal, then we have

Weber’s law (i.e. the Weber fraction, Dxh

�
xp is constant, so that a

plot of Dxh against xp is a straight line with a slope of 1 on log-log

axes). A logarithmic transducer would generate Weber’s law [46];

this is because, for additive noise, the discrimination threshold,

Dxh, corresponds to a constant internal difference signal, zh, and a

logarithmic transducer would give zh~loga(xpzDxh){loga(xp),

implying Dxh

�
xp~azh{1~ constant, which is Weber’s law. On

the other hand, a linear transducer would cause Dxh to be constant

with respect to xp, so that the plot of Dxh against xp was a straight

line with a slope of 0. As the exponent of the power function

transducer increases from infinitesimally above zero (giving the

same performance as a log transducer) to 1 (giving a linear

transducer), the slope of the plot of Dxh against xp on log-log axes

will gradually decrease from 1 to 0. Actual slopes obtained in the

literature usually fall between 1 and 0.6 [4,6,32,34], and this

would require an exponent between 0 and 1, which explains why

the difference between the fitted exponents in the Legge-Foley

transducer [4,30] falls in this range. A corollary of Theorem 4 is

that no power function transducer could generate a log-log slope

of Dxh against xp that was greater than 1: As the exponent

increases from zero, the slope decreases from 1. This also applies

to any transducer that approximates a power function for high

inputs, such as the Legge-Foley transducer.

Lapse rate
As noted earlier, psychophysical observers sometimes respond

incorrectly, even on easy trials. This may be due to lapses of

concentration, so that the observer either did not look at the

stimuli, or cannot remember which interval contained the target;

on such trials, the proportion correct will be 0.5. Suppose the

proportion correct on non-lapse trials is given by YNon-lapse(Dx).

Then, if lapse trials occur with probability 2l, the probability

of a correct response overall will be given by Y(Dx)~
(1{2l)YNon-lapse(Dx)zl. The effect of l is to linearly compress

the psychometric function vertically so that the upper asymptote is

(1{l). For simplicity, our analytical results regarding Weibull b
are derived assuming l~0, but it is important to realize that these

results still apply for non-zero lapse rates. To understand why,

note that, if we change the true psychometric function so that the

lapse rate is non-zero, the psychometric function will be vertically

compressed but otherwise unchanged. Thus, the best-fitting

Weibull function will be one that is vertically compressed but

otherwise unchanged. This change to the Weibull function is

achieved by increasing l while keeping a and b the same, so the b
of the best-fitting Weibull function is unchanged by introducing a

non-zero lapse rate. Our results about Weibull b therefore suffer

no loss of generality by being derived under the assumption of

l~0.

Conclusions

We analyzed the psychometric function within the theoretical

framework of a transducer and additive noise. We showed that, for

a variety of commonly used transducers and noise distributions,
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the true psychometric function was well fit by a Weibull function.

We showed that Weibull b, which controls the Weibull function’s

shape on a linear abscissa, can be partitioned into two factors.

One, which we call bNoise, is the b of the Weibull function that fits

best to the CDF of the noise on the internal difference signal. The

other factor, which we call bTransducer, depends on the transducer

function and pedestal level, and can also depend on the observer’s

threshold. To a close approximation, the b of the Weibull function

that fits best to the true psychometric function will be given by

bNoise|bTransducer. We derived general expressions for bNoise and

bTransducer, and, from these, derived specific expressions for

particular noise distributions and particular transducers. We

showed that, for a wide range of noise distributions and

transducers, the fitted Weibull b was closely matched by

bNoise|bTransducer. For a power function transducer with expo-

nent b, and zero pedestal, bTransducer~b, which gives us the

relationship between Weibull b and b derived by Pelli [19]. The

power of our approach is that it can easily be applied to any noise

distribution and any transducer, provided that the Weibull

function provides a good fit to the psychometric function.

We also explained why, as the discrimination threshold

decreases, 2AFC behaviour will approach that for a linear

transducer for suprathreshold discrimination, but not for detec-

tion. Although most transducer functions are differentiable (and

therefore locally linear in one sense), we showed that, at the point

at which the gradient of a nonlinear function is zero, the function

fails a stronger test of local linearity, and it is this stronger kind of

local linearity that is critical for determining whether or not

behaviour becomes linear with decreasing threshold. For detection

experiments, the transducer usually has zero gradient at the (zero)

pedestal level, and is not ‘‘strongly locally linear’’ in the sense that

we defined, and this prevents the psychophysical behaviour from

approaching that for a linear transducer as the threshold

decreases.

In Theorem 4, we showed that, as the exponent of a power

function approaches zero, psychophysical behaviour approaches

that for a logarithmic transducer. A corollary of this theorem is

that the log-log slope of the threshold vs pedestal curve can never

exceed 1 for a power-function transducer and additive noise.

Finally, an understanding of the factors that determine Weibull

beta gives us some insight into the shape of the noise distribution.

In apparent contrast to a recent claim [18] that the internal noise

has considerably higher kurtosis than a Gaussian distribution

(based on experiments on detection of a bar embedded in noise),

our analysis of suprathreshold contrast discrimination with noise-

free stimuli suggests that the internal noise does not have higher

kurtosis than a Gaussian; if anything, the internal noise appears to

have lower kurtosis than a Gaussian. Both our analysis and that of

Neri [18] made the assumption of additive, stimulus-independent

noise, and we suggest that one possible resolution of this apparent

contradiction might be to drop that assumption.

Supporting Information

Appendix S1 Proof that bNoise
Gen:Gaussian rð Þ asymptotes to

e{1 as r??.
(PDF)

Appendix S2 Point of inflection of the Legge-Foley
transducer.
(PDF)
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