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Abstract: Fabricated slim floor beams are produced by welding a steel plate to the bottom flange of an 
I-shaped steel section. The welded steel plate makes them structurally efficient and serves as a platform 
to support the steel decking of composite floor and the pre-cast concrete slabs. During their fabrication, 
an air-gap is induced between the steel plate and the bottom flange. Previous experimental 
investigations have shown that this air-gap has an influence on their thermal behaviour at elevated 
temperatures. Though the air-gap presence has an influence on their thermal performance, no 
investigations have yet been conducted to analyse its effects on their structural response in fire. This 
research investigates the effects of air-gap on structural response of fabricated slim floor beams in fire. 
During this study, finite element modelling is performed to simulate the response of fabricated slim floor 
beams and the predicted behaviour is verified against the available test data from literature. The 
validated finite element model is then employed to perform parametric studies to investigate the effects 
of the presence and size of the air-gap on their response in fire. Results obtained show that the presence 
of the air-gap has a significant influence on structural response of these beams at elevated temperatures. 
On the other hand, the size of air-gap has no or negligible effect on their thermal behaviour as well as 
on their structural response in fire. It was found that the presence of the air-gap restricts temperatures 
on the bottom flange and helps in achieving an improved fire resistance. As the presence of the air-gap 
is found to be helpful and beneficial, findings from this research can be used to develop similar designs 
for structural members as an efficient and inexpensive way to improve their behaviour in fire. 

Keywords: Slim floor beams, Fire resistance, Air-gap effect, Finite element modelling, Composite construction 
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1 INTRODUCTION 

Slim floor beams became prominent in the Nordic countries during late 1970s as they offer 
numerous advantages over traditional composite beams with hanging steel sections [1]. Though 
the slim floor technology has recently got a wider acceptance, the art of shallow floor 
construction is being used since the 1790s [2]. Earlier, during the 19th century, filler joist type 
of shallow floor systems were frequently used [2]. The shallow floor construction was however 
forgotten and not much attention was paid till the 1970s when Hat beams and Thor beams were 
introduced in the Nordic countries. Other designs of slim floor beams including the delta beams 
and the fabricated asymmetric slim floor beams followed these initial design types [1]. Slim 



N. Alam et al. 

 2 

floor beam construction was introduced in the United Kingdom (UK) in the 1990s [3]. Since 
their introduction, distinct designs of these flooring systems, including fabricated slim floor 
beams (FSFBs), are widely used by the construction industry. FSFBs are very common in the 
UK as they are easy to fabricate using existing steel sections and plates [3]. Like other types of 
shallow floor beams, FSFBs offer various advantages including a flat soffit and a reduced depth 
of floor. The flat soffit offers ease of installation for the hydraulic and electric services, while 
the reduction in floor depth reduces the structure height and the cost of cladding [3]. During the 
floor construction, the steel section is encased within the casted concrete. This concrete 
contributes towards their second moment of area and induces partial encasement keeping the 
steel section insulated in fire conditions. The concrete insulation helps in maintaining low 
temperatures on the steel section, hence, FSFBs like other shallow floor systems hold an 
inherent fire resistance of around 60 mins [4,5]. During their fabrication process, an air-gap is 
inherited between the bottom flange and the welded steel plate. This air-gap has a considerable 
influence on their behaviour in fire resulting in a temperature difference of around 350°C 
between the bottom flange and the welded steel plate [6]. Though experimental investigations 
are available on influence of this air-gap on their thermal response [7], any influence of the 
presence and size of the air-gap on the structural response of FSFBs in fire is still unknown. In 
this paper, the structural response of FSFBs is investigated and effects of the air-gap presence 
and its size are analysed. 

2 AIMS AND OBJECTIVES 

The aim of this study is to investigate the effects of air-gap on the structural response of 
FSFBs in fire. To achieve this, a detailed analytical model is established and validated by 
replicating the thermal and structural response of FSFBs from literature. The validated 
analytical model is then used to perform a parametric investigation to analyse the influence of 
the air-gap presence and its size on structural response of FSFBs in fire. 

3 THE FIRE TEST 
During this research, a fire test conducted on a FSFB assembly is selected for the finite 

element modelling (FEM) purposes. This fire test was conducted on a 5000 mm long FSFB 
assembly on the 14th of February 1991 at Warrington Fire Research Centre (WFRC) [8]. The 
test specimen was simply supported with a span of 4500 mm between the supports as shown in 
Fig 1(a). The steel section of the FSFB used for the test was formed using a 254x254x73 
universal column (UC) and a 455 mm wide steel plate having a 15 mm thickness, Fig 1(b). Both 
the UC section and the steel plate were manufactured using S275 steel. Part of the floor 
surrounding the steel web between the flanges was cast-in-place concrete while the outer parts 
of the floor consisted of pre-cast concrete blocks 440 mm long, 140 mm wide and 215 mm deep 
[8]. These blocks rested on the welded steel plate as shown in Fig 1. The cube strength of the 
cast-in-place concrete was reported to be 30 MPa. Detailed instrumentation was performed to 
measure the temperatures and displacements during the test. Temperatures were measured 
using K-type thermocouples at seven distinct locations on the steel section of the test assembly 
[8]. In addition, arrangements were also made to measure the vertical displacements using 
Linear Variable Differential Transformers (LVDTs). The test assembly was exposed to 
standard fire for 90 mins and data was recorded in terms of temperatures and vertical deflections 
during the heating phase [8]. 
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Figure 1: Details of the FSFB assembly used during the fire test [8] 

4 ANALYTICAL MODELLING 
Finite element modelling (FEM) for the FSFB assembly is performed using ABAQUS [9]. 

Though various analytical investigations are available in literature on the behaviour of shallow 
floor systems at elevated temperatures [10,11], they address the asymmetric slim floor beams 
(ASBs). Response of the FSFBs differs to that of ASBs due to the presence of air-gap between 
the welded steel plate and the bottom flange in the latter case. Hence, in this study, FEM is 
performed to analyse the response of FSFBs in fire and emphasis is made to highlight the 
influence of the air-gap presence and its size on their response. An analytical model is 
developed for the FSFB assembly used during the fire test described in section 3. The overall 
depth of the analytical model is 269 mm and has a span length of 4500 mm. Width of the 
assembly is 584 mm including 140 mm wide pre-cast concrete units on both sides of the steel 
section. The breadth of cast-in-place concrete, including the web of the steel section is 304 mm, 
Fig 1(b). Similar to the test assembly, the depth of the pre-cast units is kept at 215 mm while 
the depth of the cast-in-place concrete is kept at 254 mm during the FEM. Like the test, no 
concrete is modelled above the top flange. An air-gap of 1 mm is modelled between the welded 
steel plate and the bottom flange of the FSFB. During the FEM, the heating regime and 
boundary conditions are kept the same as those reported for the test while the non-linear thermal 
properties of the materials including the thermal conductivity, specific heat, and the density are 
taken as recommended by the Eurocodes [12]. During the thermal analysis, 8-node hexahedral 
solid linear heat transfer elements (DC3D8) are used to model the concrete and steel. Heat 
transfer through the surfaces is modelled via the surface film condition using convection 
coefficients for exposed and unexposed surfaces as 25W/m2K and 9W/m2K respectively, 
following the Eurocodes recommendations [13]. Any heat transfer via radiation from the 
unexposed surfaces is ignored. For exposed surfaces and for the cavity between the welded 
plate and bottom flange of the steel section, radiation is modelled using an emissivity of 0.7 as 
recommended by the Eurocodes [14]. The thermal analysis for the FSFB assembly is performed 
for a period of 90 mins against the actual furnace temperatures [8]. During the thermal analysis, 
a perfect contact is modelled at the interface of steel and concrete allowing full heat transfer as 
done previously [10,11,15].  

The structural response of the FSFB assembly in fire is evaluated in two steps. During the 
first step, static loads are applied while in the second step, the FSFB assembly is heated using 
the validated thermal predictions obtained from the thermal analysis. All external loads applied 
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during FEM are uniformly distributed and are same as those applied during the test having a 
degree of utilization of 0.46 of the FSFB [8]. Structural response of the FSFB assembly is 
measured in terms of vertical deflection at mid-span following recommendations of the British 
Standards, BS 476-20 [16]. During the structural analysis, the concrete part is modelled using 
8-node linear brick elements (C3D8) while the steel part is modelled using 8-node linear brick 
elements with reduced integration (C3D8R). Both these elements were found to yield better 
results in comparison with other available element types. During the analysis, non-linear 
PDWHULDO�PRGHOV�DUH�HPSOR\HG�IRU�ERWK�VWHHO�DQG�FRQFUHWH��6WHHO� LV�PRGHOOHG�XVLQJ�WKH�µ9RQ�
0LVHV�SODVWLF�PRGHO¶�ZKLOH�FRQFUHWH�LV�PRGHOOHG�XVLQJ�µWKH�FRQFUHWH�GDPDJH�SODVWLFLW\�PRGHO¶�
having a dilation angle of 55° for reasons mentioned previously in the references [10,11]. 

5 RESULTS FROM ANALYTICAL MODELLING 

Results from the analytical modelling are presented in the following: 
 

 
(a) Thermal results after 90 mins of heating, section AA´ 

 
(b) Temperatures for thermocouple 

positions, section AA´ 

 
(c) Temperature difference between 

bottom flange and the welded steel 
plate at section AA´ 

Figure 2: Thermal behaviour, FEM predictions vs test data 
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5.1 The Thermal Results 
The thermal behaviour of FSFB is analysed in terms of temperatures for four thermocouples 

at section AA´. Thermal predictions from FEM for these thermocouple positions are presented 
in comparison with the test data in Fig 2. Thermocouple positions 1, 2 and 3 represent the 
middle parts on the welded steel plate, bottom flange and web respectively, while thermocouple 
position 4 represents the middle part on the right half of the top flange as shown in Fig 1(c). 
The temperature profiles obtained at the end of the 90 mins from the FEM analysis are presented 
in Fig 2(a) for section AA´. It is seen that a higher temperature gradient is observed across the 
section. Temperature differences due to the presence of the air-gap between the welded plate 
and bottom flange can also be seen in Fig 2(a). The thermal predictions from the FEM are 
plotted against the reported test data [8] for the selected position of thermocouples in Fig 2(b) 
which gives a good agreement with the test data. A significant temperature difference exists 
between the thermocouples on the welded steel plate and the bottom flange as shown in Fig 
2(c). This temperature difference is approximately 400°C after a fire exposure of 30 mins for 
the test data and as predicted by FEM. 

5.2 The Structural Results 

Results on the structural response of FSFB are analysed in terms of the predicted mid-span 
deflection against the reported test data for the beam assembly.  
 

 
(a) Deflected shape of  FSFB assembly at failure 

 
(b) Mid-span deflection, Test vs FEM 

Figure 3: Structural response of the FSFB assembly, test vs FEM 
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Deflected shape of the FSFB at failure is shown in Fig 3(a) which shows the deflection is 
maximum in the middle and gradually reduces towards the supports. The predicted mid-span 
deflection from FEM is plotted against the test data in Fig 3(b). Deflection results from FEM 
are in very good agreement with the test data. Deflection-based failure criteria for beams is 
defined by the British Standards (BS 476-20) in terms of the maximum deflection and the 
maximum rate of deflection as given in Eq. (1) and Eq. (2) respectively [16].  During the test, 
the FSFB assembly offered a fire resistance of 83 mins, while during the FEM, it offered a fire 
resistance of 81 mins. In both cases, failure initiated by exceeding the limits for the rate of 
deflection given by Eq. (2). 

L/20       (1) 
L2/9000d      (2) 

Where, L is the clear span of the specimen: 
d is the depth of the beam, the distance from top to the bottom. 
Failure criteria in Eq. (2) are only applicable when the deflection has exceeded L/30. 

Predictions from the FEM and their agreement with the test data shows that the FEM method 
used during this study envisages the response of FSFBs at elevated temperatures with 
considerable accuracy. Hence, the proposed method is used to conduct a parametric study to 
investigate the effect of the air-gap and its size on response of FSFBs in fire. 

6 PARAMETRIC ANALYSIS 

Influence of the air-gap on response of FSFBs in fire is analysed through a parametric 
analysis performed using the FEM method presented in section 4. In first part of the parametric 
study, influence of the air-gap presence is investigated while in the second part, effects of the 
air-gap size on response of FSFBs are analysed. During the sensitivity analysis, a 4500 mm 
long FSFB assembly, having a width 1000 mm is modelled. Depth of the FSFB assembly is 
295 mm as shown in Fig 4. The modelled FSFB consists of an HEB-240 steel section with a 
welded steel plate of 15 mm thickness and 440 mm width as shown in Fig 4. A 40 mm thick 
layer of normal weight concrete is modelled above the top flange while uniform geometry is 
considered along the length of the beam assembly. The yield strength for structural steel is taken 
as 355 MPa while the compressive strength of concrete is considered to be 30 MPa. 
 

 

Figure 4: Details of FSFB assembly used during parametric analysis 
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During the parametric study, thermal behaviour of FSFB is analysed and presented in terms 
of the temperatures predicted for five thermocouple positions shown in Fig 4(b). The thermal 
analysis for the FSFB assembly is performed for 120 mins against the standard fire exposure 
conditions, ISO-834 [18]. On the other hand, the structural response is of FSFB is analysed in 
terms of the mid-span deflection [16]. Parametric analysis is conducted for FSFBs without the 
air-gap and with air-gaps of 0.5 mm, 2.2 mm, 4.1 mm and 10 mm. For all FSFBs, the structural 
response at elevated temperatures is analysed for a degree of utilization of 0.46, similar to the 
approach used during the experimental programme in the references [6,7]. 

6.1 Presence of the Air-gap and its Effect 

Effect of the air-gap presence on thermal behaviour of FSFBs is investigated by 
modelling two beam assemblies with similar geometric properties as described in the above 
section. The first assembly is modelled without an air-gap ensuring the material continuity, 
while the second assembly is modelled with an air-gap of 0.5 mm between the welded steel 
plate and the bottom flange. Thermal predictions for both FSFB assemblies after an exposure 
of 120 mins to standard fire are presented in Fig 5. For FSFB assembly without the air-gap, the 
temperature difference for position 1 and 2, representing the welded steel plate and the bottom 
flange, is very low. A maximum temperature difference of 33°C is predicted after 56 mins. 
  

 
(a) Thermal gradient across the section of 

FSFB assembly without air-gap 

 
(b) Thermal gradient across the section of 

FSFB assembly with air-gap 

 
(c) Comparison for thermocouples on 

welded plate and bottom flange 

 
(d) Comparison for thermocouples on web 

and top flange 

Figure 5: Thermal comparisons for FSFB assemblies with and without air-gap 
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On the other hand, for the FSFB with 0.5 mm air-gap thickness, the temperature difference is 
high and is predicted to be 375°C after 29 mins as shown in Fig 5(c). After 120 mins of fire 
exposure, the temperature difference for the latter case is 180°C which is still significantly 
higher as compared to that for the former case where this difference is 29°C for the same 
duration of fire exposure. Results from the analysis show that the presence of the air-gap has a 
high influence on thermal behaviour of FSFBs at elevated temperatures. It is seen in Fig 5(c) 
that the temperatures on the welded steel plate for the case with air-gap are significantly higher 
while those on the bottom flange are much lower compared to those predicted for the case 
without the air-gap. In case where there is no air-gap, the continuity of material and absence of 
air-gap ensures efficient heat transfer and the resulting temperature difference is very low. 
Hence, presence of the air-gap between the welded plate and bottom flange acts as an insulation 
and restricts the efficient heat transfer resulting in higher temperature differences between the 
welded plate and the bottom flange. 

For both cases, a higher temperature gradient is observed across the section and the predicted 
temperatures reduce with the increase in distance from the exposed bottom parts towards the 
unexposed upper parts, Fig 5(a) and Fig 5(b). Influence of the air-gap presence reduces with 
the increase in distance from the bottom flange and eventually becomes negligible for the top 
flange as seen in Fig 5(d). 

During the structural analysis of FSFBs, a load representing the degree of utilization of 0.46 
is applied. The applied load is based on the capacity of the FSFB with 0.5 mm air-gap at ambient 
temperatures. The FSFBs are later heated using the temperatures obtained during the thermal 
analysis. The predicted structural response of both FSFBs in terms of the mid-span deflection 
is presented in Fig 6. It is seen that the FSFB without the air-gap displayed a fire resistance of 
66 mins while the one with 0.5 mm air-gap displayed a fire resistance of 78 mins before 
reaching the failure criteria. In both cases, failure initiated by exceeding the limits of the rate of 
deflection given by Eq. (2). This shows that the presence of air-gap has a positive influence on 
the structural response of FSFBs and helps in achieving an improved fire resistance. In this 
case, an additional fire resistance of 12 mins was attained. 
 

 
Figure 6: Effect of air-gap on structural response of FSFBs 

Presence of the air-gap seems helpful and beneficial; hence, similar designs can be proposed 
for other structural members as an efficient and inexpensive way to improve their fire 
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resistance. Presence of the air-gap between the bottom flange and the welded steel plate restricts 
temperatures on the bottom flange, as a result, FSFBs retain their strength and stiffness offering 
a higher fire resistance. 

6.2 Effect of the air-gap size 
Earlier, in section 6.1, it was found that the presence of the air-gap has a considerable 

influence on response of FSFBs in fire. During this part of the parametric study, the effect of 
air-gap size on their response in fire is investigated. FSFB assemblies with air-gap thickness of 
0.5 mm, 2.2 mm, 4.1 mm and 10 mm are modelled and investigated. The modelled FSFB 
specimens are similar to the FSFB assembly used in the first part of the parametric study except 
for the size of the air-gap. The FSFB specimens are exposed to standard fire for a period of 120 
mins as before. 

The thermal predictions obtained from FEM for the FSFB assemblies are presented in Fig 
7. It is seen in Fig 7(a) that the thermal predictions for all five thermocouple positions are similar 
irrespective of the air-gap size. These findings are similar to the results obtained during an 
earlier experimental investigation [6,7]. This earlier experimental investigation was limited 
only to the thermal behaviour of FSFBs in fire [6,7]. During FEM, the effect of the air-gap size 
on the thermal behaviour of FSFBs is found to be negligible.  
 

 
(a) Thermal predictions for FSFBs with 

different air-gap sizes 

 
(b) Temperature difference between bottom 

flange and welded plate 

Figure 7: Thermal comparisons for FSFB specimens with different air-gap sizes 

Temperature differences between the thermocouple position on the welded plate and the 
bottom flange are presented in Fig 7(b) for all FSFBs. These temperature differences are similar 
and in excess of 350°C after 30 mins of fire exposure. This similarity of results shows that the 
size of the air-gap has no or negligible influence on the thermal behaviour of FSFBs in fire. 

To analyse the effect of air-gap size on the structural response of FSFBs at elevated 
temperatures, FEM is performed for the FSFB assemblies with 0.5 mm, 2.2 mm, 4.1 mm, and 
10 mm air-gap sizes. The structural response for FSFBs is evaluated for a degree of utilization 
of 0.46 based on the individual capacities of each FSFBs. Results of the FEM demonstrate that 
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the effect of the air-gap has a negligible influence on the structural response of FSFBs at 
elevated temperatures. The FSFBs with 0.5 mm air-gap thickness exhibited a fire resistance of 
78 mins while the ones with 2.2 mm, 4.1 mm, and 10 mm air-gap thickness exhibited a fire 
resistance of 79, 79.2, and 79.5 mins, respectively as shown in Fig 8. In all cases, failure 
initiated by exceeding the rate of deflection limits recommended by the British Standards, BS 
476-20 [16]. Consequently, it can be concluded that the air-gap size has no or negligible effect 
on the structural response of FSFBs in fire. 
 

 
Figure 8: Effect of air-gap size on the structural response of FSFBs in fire 

7 CONCLUSIONS 
This paper investigates the effects of air-gap on response of fabricated slim floor beams in 

fire. It was found that the finite element modelling method used in this study can simulate the 
response of FSFBs at elevated temperatures with good accuracy. Presence of the air-gap has a 
considerable influence on the thermal behaviour of fabricated slim floor beams in fire. This air-
gap acts as a layer of insulation, as a result, a higher temperature difference between the welded 
steel plate and the bottom flange of the steel section is observed. The air-gap presence has a 
larger influence on the bottom parts of these beams as compared to upper parts, the top flange 
and upper web. Though the presence of air-gap has a major influence on the thermal behaviour 
of fabricated slim floor beams in fire, the size of this air-gap has no or negligible effect on their 
thermal behaviour. Similarly, it was found that the presence of air-gap has a considerable 
influence on the structural response of fabricated slim floor beams in fire and results in an 
improved fire resistance. The size of the air-gap, on the other hand, was found to have no or 
negligible influence on the structural response of fabricated slim floor beams at elevated 
temperatures. Presence of the air-gap is found to be beneficial; hence, findings from this 
research can be used by fabricators and manufactures to propose similar designs for other 
structural members as an efficient and inexpensive way to improve their fire resistance without 
the use of fire protection materials. 
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