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Abstract
Penetration testing (PT) is a method for assessing and evaluating the security of digital 
assets by planning, generating, and executing possible attacks that aim to discover and 
exploit vulnerabilities. In large networks, penetration testing becomes repetitive, complex 
and resource consuming despite the use of automated tools. This paper investigates rein-
forcement learning (RL) to make penetration testing more intelligent, targeted, and effi-
cient. The proposed approach called Intelligent Automated Penetration Testing Framework 
(IAPTF) utilizes model-based RL to automate sequential decision making. Penetration 
testing tasks are treated as a partially observed Markov decision process (POMDP) which 
is solved with an external POMDP-solver using different algorithms to identify the most 
efficient options. A major difficulty encountered was solving large POMDPs resulting from 
large networks. This was overcome by representing networks hierarchically as a group of 
clusters and treating each cluster separately. This approach is tested through simulations 
of networks of various sizes. The results show that IAPTF with hierarchical network mod-
eling outperforms previous approaches as well as human performance in terms of time, 
number of tested vectors and accuracy, and the advantage increases with the network size. 
Another advantage of IAPTF is the ease of repetition for retesting similar networks, which 
is often encountered in real PT. The results suggest that IAPTF is a promising approach to 
offload work from and ultimately replace human pen testing.
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1 Introduction

Modern networks are generally becoming larger and more complex due to increasingly 
sophisticated applications. At the same time, cyber security threats are more frequent 
and commonplace, prompting security professionals to add more security layers and 
policies (He & Bode, 2006). Unfortunately, networks continue to have vulnerabilities 
due to human errors, misconfigurations, and systems weaknesses (Bacudio et al., 2011). 
Penetration testing (PT) is a proactive approach to protect networks by identifying their 
exploitable vulnerabilities. PT is a central, often mandatory component of cyber secu-
rity audits. It constitutes all standard auditing and testing tasks starting from informa-
tion gathering and analysis, planning, identifying vulnerabilities, and executing relevant 
exploits (Backes et al., 2017).

In the beginning, most PT processes were done manually with tests run against a 
limited number of hosts, which allowed manual PT to be effective. Then the prolifera-
tion of computer networks forced the automation of PT tools to cover more ground in 
a short time (Phong & Yan, 2014). Nonetheless, automation was not enough in light of 
highly technological organizations with hundreds or more IP addresses and increasingly 
complex applications and virtualization; PT experts found it difficult to assess the secu-
rity of every component in a reasonable time. To meet this challenge, machine learning 
(ML) has become indispensable to further improve efficiency, accuracy and coverage. In 
addition, PT is a repetitive process where organizations perform the testing periodically 
or whenever a major network upgrade occurs (e.g., new infrastructure added) (Abu-
Dabaseh & Alshammari, 2018). Intelligent PT tools capable of learning from experi-
ence are well suited for repetitive similar tasks.

Metasploit, Core Impact, Nessus and other tools that come with Kali and Parrot paved 
the way for more automated PT but always required a portfolio of scripts and tools com-
manded and orchestrated by an experienced human tester. Core Impact was the first auto-
mated vulnerability scanner that initiated the use of AI leading to popularity of this tool 
with early stage testers. To achieve more efficiency, other research has focused on using AI 
and ML for penetration testing which can be more efficient and more effective, saving time 
and resources compared to manual testing (Abu-Dabaseh & Alshammari, 2018).

This paper focuses on reinforcement learning (RL), an artificial intelligence tech-
nique that enables a system to learn and adapt without following explicit instructions 
but instead by interacting with its environment (Yaqoob et al., 2017). The introduction 
of RL in pen testing, especially with current size and complexity of network infrastruc-
ture, is considered as a valuable addition to PT practice. In fact, a higher number of 
online services mean a larger exposition surface with attacks that can range in scale 
from massive state-sponsored attacks to simple attacks on individuals and small busi-
nesses in the hopes of gaining credentials or financial details (Ghanem & Chen, 2019).

In our experiments with embedding RL into PT tools, notably Metasploit, a scalability 
problem was encountered arising from exponential growth in computational power demand 
as the size of the RL environment increased (Ghanem & Chen, 2019). Moderate and 
large size networks led to very large POMDP environments in terms of number of states, 
transitions and observations. After considering different approaches, this paper proposes 
to tackle the scalability problem using hierarchical reinforcement learning (HRL) which 
reduces dimensionality by decomposing the RL problem into several sub-problems.

In this paper, Section  2 reviews the current challenges in automating PT. Sec-
tion 3 presents RL principles in the context of PT. In Section 4, HRL is proposed and 
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described for automating PT. Section 5 describes the new IAPTF framework. Solution 
of POMDP is discussed in Section 6. Experimental results are given in Section 7.

2  Research background

In this section we will briefly review PT and current challenges in its regular automation 
(also called blind), highlighting the existing tools and systems to address the efficiency 
issues in medium and large LANs. This section will establish the motivation behind our 
research which aims to address the scalability problem experienced in our previous paper 
(Ghanem & Chen, 2019).

2.1  Penetration testing

PT has been a cornerstone in cyber security practice during the last decade. It implies plan-
ning and performing a real and controlled attack on a digital asset (machine, Web server, 
software or network) with the aim of evaluating its security, PT is becoming as key meth-
ods employed by organizations for strengthening their defenses against cyber threats (Sar-
raute et  al., 2012). The process of PT is often divided into a sequence of tasks in order 
to methodically and comprehensively assess the security of the system and often include 
actively identifying vulnerabilities and perform a set of actions to test if the target could be 
compromised by running exploits against those vulnerabilities (Yaqoob et al., 2017).

In practice, PT tasks shown in Fig. 1 vary from case to case but generally start with an 
information gathering phase, where the expert explores the web using OSINT (open source 
intelligence) techniques to gather information about the target system. After completing 
the first phase, the PT expert will engage in a discovery phase to actively harvest security 
related information such as the system architecture, configurations and security measures 
in place. Next the PT expert will analyze the gathered information to look for potential vul-
nerabilities for exploitation in order to gain control (full or partial) or escalate the privilege 
held. Lastly, the newly gained access will be used to penetrate further, repeating this pro-
cess until the desired target is achieved or no more attack vectors are possible. The findings 
of PT are reported along with expert recommendations.

A key element about PT practice is it remains non-standard in term of methods and 
approaches and also involves the use of a versatile tools, systems and frameworks to 
accomplish different activities and tasks. For instance, the information gathering phase 

Fig. 1  Simplified network PT workflow and activities
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typically involves utilizing tools such as traffic monitoring, port scanning and OS finger-
printing in order to gather relevant information that can be used to dress target system 
security profile and therefore determine if it contains a vulnerability that can be exploited. 
On the other hand, the exploitation phase requires the use of different framework and even-
tually customized payload modules and scripts in order to execute the relevant exploits 
aiming to take advantage of the identified vulnerabilities with the aim of compromising the 
target or gaining additional privilege or control over it. The post-exploitation tasks also are 
not standardized and additional tools such as rootkits are used to maintain the breach and 
work toward further penetration also called pivoting. Finally, PT also involves testing sce-
narios and attack vectors that differ per asset (Ghanem & Chen, 2019).

2.2  PT automation and optimization

The first attempt to address PT automation was attack planning as part of the AI Planning 
in Cyber Security domain (Boddy et al., 2005). Independently, the approach was put for-
ward by Core Security researchers (Sarraute et al., 2013) and implemented in their PT tool 
Core Impact. Their approach captures most security variables and solves scenarios based 
on the probability of success of actions, execution time, and generated traffic.

In related work, (Backes et al., 2017) attempted to automate PT by mitigating vulner-
abilities and countermeasures by conducting comprehensive what-if analyses. A concep-
tual framework is provided to reason about mitigation actions applied to a network model. 
The approach determines optimal combinations that minimize attacker success following a 
holistic mitigation strategy (Backes et al., 2017).

In a recent work, (Zennaro & Erdodi, 2020) attempted to apply RL to solve capture the 
flag (CTF) scenarios. Fundamentally, CTF competitions are very specific scenarios which 
do not account for many variables in typical PT, but the study was significant for investi-
gating the relevance of different RL techniques.

A noteworthy proposal aimed to automate exploitation and post-exploitation by com-
bining deep RL and the PowerShell empire post-exploitation framework (Maeda & 
Mimura, 2021). RL agents pick a PowerShell module and use its internal features as action 
states and then compare the learning progress of three RL models; A2C, Q-Learning, and 
SARSA. The results showed that A2C is the most efficient and trained agent can eventually 
obtain the admin privileges of the domain controller system.

2.3  Research motivations and contribution

During the last decade, several researchers attempted to tackle PT automation and optimi-
zation using AI techniques. In our previous research (Ghanem & Chen, 2019) we proposed 
the first versatile, fully automated and intelligent framework for network PT called IAPTF 
(Intelligent Automated Penetration Testing Framework). However, the approach used in 
modelling the PT domain as RL problem for medium and large networks resulted into 
enormous POMDP environments that were difficult to solve and we experienced the well-
known curse of dimensionality problem (Sarraute et al., 2012). Furthermore, the previous 
work faced two major challenges:

• Exploitation the re-use of the knowledge already learned in the future to determine 
automatically the best action in a given state.
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• Exploration the number of explored attack vectors resulting from continuous policies 
improve in parallel with agent exploring new states.

The current work aims to overcome the aforementioned challenges. For the scalability 
issue, we propose an innovative hierarchical RL representation which is embedded within 
IAPTF and tackles large networks efficiently and effectively by dividing large networks 
into clusters following a security-oriented logic, and then tackling each cluster separately 
as small network at first stage, then the network of head of clusters. In terms of captur-
ing expertise for reuse, we propose a novel knowledge extraction, generalization using 
scripts and an expert system which is dedicated to expertise processing, storing and direct 
future re-use (Bertoglio & Zorzo, 2017), while the use of hierarchical RL enabled IAPTF 
to achieve an accepted balance between efficiency and exploration notably by guarantee 
(Al-Emran, 2015).

3  Reinforcement learning

RL provides a conceptual framework to address a fundamental problem in artificial intel-
ligence, the development of situated agents that learn how to behave while interacting with 
the environment. RL is increasingly seen as a general framework for learning in a human 
way in both model-free and model-based approaches (Bacudio et al., 2011). In this section, 
RL fundamentals will be reviewed, as well as POMDP modeling and solving.

3.1  POMDP fundamentals

RL came from the notion that a human expert can be assisted or ultimately replaced by 
automated systems. RL provides a conceptual framework to address a fundamental prob-
lem in Ai which is how situated agents can learn how to behave by interacting with the 
environment. In RL, this problem is formulated as an agent-centric optimization in which 
the goal is to select actions to gain as much reward as possible in the long run (Yaqoob 
et al., 2017; Ghanem & Chen, 2019). An overview of RL is shown in Fig. 2.

Sequential decision making is usually formalized as a Markov decision process (MDP) 
when fully observed with no uncertainties, or otherwise as a partially observed Markov 
decision process. There are two basic approaches to solve MDP and POMDP which are 
planning and reinforcement learning.

A partially observable Markov decision process is a tuple (S,A, T,R, � ,O,B) where S 
is the set of possible states; A is the set of possible actions; T  is the set of possible transi-
tions; R ∶ S|A is the reward function; O is the set of possible observations; B is the belief 
distribution calculated from Prob ( O ∣ S ); γ is the discount factor with preset value in the 
[0, 1] domain; and π is the set of learned policies πi. Belief state space denoted as B is a 
|S|− 1 dimensional simplex whose elements are probability distributions over states. T is a 
state transition and observation probability matrix, defined by the following equations:

R is a reward function, defined by the equation:

(1)Ta
ss�

= P[St+1 = s�|S(t) = s,A(t) = a]

(2)Oa
so�

= P[St+1 = o�|S(t) = s,A(t) = a]
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The overall reward Gt and state value functions are:

and the action value function Qπ(s,a) is:

Policy function is defined as:

Belief probabilities are calculated as:

Transition model describes transitions between beliefs, rather than transitions between 
states, where bo

a
 is the belief state reached when starting in belief state b, taking action a, 

and observing o. It is calculated as:

(3)Ra
s
=

t=n∑

t=0

[R(t + 1)|S(t) = s,A(t) = a]

(4)Gt =

k=m∑

k=0

�
kRt+k+1

(5)V
�
(s) =

∑

�

[G(t)|S(t) = s]

(6)Q
�
(s, a) =

∑

�

[G(t)|S(t) = s,A(t) = a]

(7)Π(a|s) =
∑

�

[A(t) = a|S(t) = s]

(8)b ∈ B|b(S) = Prob(S|currentstate)

Fig. 2  The POMDP conceptual framework in context of PT (Moerland et al., 2020)
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Then the belief states iterate through time and get updated as follows:

Policies map beliefs to actions:

Finally, the Bellman equation for POMDP backups is defined as:

In the next subsection we will describe the representation of PT practice as a POMDP 
environment.

3.2  RL for intelligent automated PT

RL is often presented as the most efficient ML technique for sequential decision-making 
in control problems. In the quest for AI-led PT practice and unlike previously proposed 
approaches involving supervised learning where it is difficult to provide supervision, RL is 
suited because usually there is incomplete knowledge about the correct or optimal action 
in a given stage. In recent years, RL has achieved impressive advances in AI exceeding 
human expert performance in many domains notably in sequential-based problems (Roijers 
et al., 2013).

Modern RL involves a combination of planning and learning resulting in the field of 
models (initially known or learned) and learning to approximate a global value function 
or policy graph. While RL has shown great success in defensive cyber security, notably 
intrusion detection and cyber threat intelligence, it usually faces challenges like random-
ness, uncertainty and partial observability in offensive security. Nonetheless, it comes with 
important benefits such as data efficiency, targeted exploration, stability and explainability 
as discussed in (Moerland et  al., 2020) and its suitability for PT has been demonstrated 
(Ghanem & Chen, 2019).

3.3  Representing PT as RL problem

In RL, we enumerate three approaches as illustrated in Fig. 3. In model-free RL, the learn-
ing occurs without access to any pre-representation or pre-structuring of the environment. 
Rather than building such an internal model, the RL agent instead stores estimates for the 
expected values of the actions available in each state or context, shaped by a history of 
direct interaction with the environment. By contrast, in model-based RL, the agent does 
possess an internal model, one that both predicts action outcomes and estimates the imme-
diate reward associated with specific situations. Decisions are made through planning 
instead of on the basis of stored action values (Sarraute et al., 2012).

(9)bo
a
(s�) =

P(o�s�)
∑

sP(s
��s, a)b(s)

P(o�b, a)

(10)P(bo
a
∣ b, a) =

∑

s�

P(ot+1 = o ∣ st+1 = s�)
∑

s

P(s� ∣ s, a)b(s)

(11)Π ∶ B → A

(12)V(b) ← max
a∈A

[
∑

s∈S

R(s, a)b(s) + �

∑

o

P(bo
a
|b, a)V(b(a, o))

]
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In short, the distinction between model-free and model-based RL lies fundamentally 
in what information the agent stores in memory. In model-free RL, the agent stores a 
representation of the value associated with individual actions which is an estimate of 
the cumulative reward the agent expects to gain over the course of future behavior, 
when beginning in a particular situation with a particular action. Updates to these val-
ues, known collectively as the value function, are driven by reward prediction error 
which is generated based on action outcomes experienced during direct interaction 
with the environment (Spaan, 2012).

HRL expands the set of actions available to the RL agent to include a set of tem-
porally extended sub-tasks or subroutines. In the implementation of HRL that we will 
take as our focus — the options framework3 introduced by (Sarraute et  al., 2013), 
these temporally abstract actions are referred to as options. Options can be selected for 
execution, just like low-level (primitive) actions. Once this happens, behavior is guided 
by an option-specific policy, which dictates the action to be selected in each possible 
situation or state. Each option is additionally associated with an initiation set, defining 
the situations in which the option can be selected or launched; a termination function, 
which dictates when execution of the option ends; and an option-specific reward func-
tion, a pseudo-reward function, which attaches a special form of reward to specific 
outcomes, effectively defining the goals being pursued during execution of the option.

4  Hierarchical RL for large networks

The obvious approach to address the scalability issue in POMDP solving is by solving 
smaller environments which arise from dividing large environments into many smaller 
ones by either splitting a large network into a number of sub-networks or by consid-
ering each phase activities and tasks separately. We detail here the two approaches 
considered and implemented initially within IAPTF, then justify the choice of the clus-
tering approach to achieve an efficient hierarchical RL representation of PT (Jain & 
Niekum, 2018).

Fig. 3  A comparison of planning, model-based and model-free RL approaches and implication on policy 
and value function
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4.1  Network security‑based clustering

In this subsection, we will present the methodology adopted to address the scaling issue 
encountered in solving the RL problem for medium and large size networks (Ghanem & 
Chen, 2019). Initially, we will re-introduce the proposed POMDP model which will serve 
as a starting point to the new hierarchical RL model for representing large network PT. To 
achieve this goal we had to consider two options: the PT phases separation and security 
cluster separation. The latter was the most adequate in terms of efficiency and relevance. 
The obvious approach to address the scalability issue in POMDP solving is by solving 
smaller environments which arise from dividing large environments into many smaller 
ones by either splitting the large network into an number of sub-networks or by considering 
each phase activities and tasks separately.

Initially we considered a task-oriented clustering approach which aimed to divide large 
POMDP into smaller environments covering each one or two tasks or activities. This 
approach will certainly reduce the size and thus the solving time but it will produce incon-
sistent results as PT practice is highly interactive and some activities are repetitive and 
dependent on each other making tasks and activities separation irrelevant. As the task-
based approach turned out to be inadequate, we changed to a more realistic and logical 
approach based on dividing a large network into several clusters. Each cluster is tackled 
separately as a small network and then the network of clusters is dealt with in the final 
stage. We refer to this approach as security clustering which mimics real-world PT prac-
tice by considering each part of network with the same security protection and defense at 
the time. Figure 4 details large LANs often found in corporate context security clustering 
which will be detailed later in the next subsection.

The proposed approach involves the adoption of a two-tier hierarchical POMDP rep-
resentation of PT practice which is fundamentally different from sub-networking basic 
decomposition of POMDP as it relies on security isolation aspect and not on the network 
addressing mechanisms. The output is a set of small clusters (number is at least twice as 
superior than the subnets number) and a network of clusters. Clustering will therefore gen-
erate many small size POMDP environments and their solving will be time-efficient as we 
expect to avoid the scalability issue (Ghanem & Chen, 2019).

Fig. 4  Two-level hierarchical representation of PT practice using security clustering
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4.2  Hierarchical POMDP representation for PT

The most important component of IAPTF-Prep is the security clustering scripts. This mod-
ule output is twofold. Firstly, the cluster constitutions in term of name and IP address of 
each machine and the belonging cluster. secondly the head (or heads) of each cluster which 
is in theory the most vulnerable machine with root/admin control.

The proposed approach focuses on a key characteristic of network PT practice namely 
security isolation overview. This is a common approach for hackers and cyber attackers as 
they oversee the target network from a security point of view and not simply networking 
functioning in the aim of extracting key information about the security isolation and reach-
ability (Bacudio et al., 2011). It will be noticed in the proposed clustering approach that 
some fundamental networking features and aspects were neglected in the task of dividing 
large LANs and WANs and thus modeling them into smaller POMDP environments. The 
eliminated networking data are indeed irrelevant from the PT point of view and doing so in 
IAPTF comes for the benefit of scalability as removing such useless details which results 
in reducing the associated POMDP environment size and therefore contribute hugely into 
improving the efficiency. Finally, it is important to highlight that the one-way filtering and 
blocking workflow adopted in security systems (firewalls, routers and intrusion detection) 
is a key element in our proposed clustering approach making the clustering approach fun-
damentally different from the regular sub-netting approach which is by default symmet-
ric (reciprocity of reachability between subnets) as illustrated in Fig.  5 where SN0 and 
SN1 are considered the only subnets in the network following the symmetric reachability 
approach (Stock, 2017).

In term of adapting the proposed POMDP representation, we opted for a two-tier (lev-
els) approach; first is to consider each security cluster as a separate network and only 
represent the data about machines in that cluster in the low-level POMDP environments 
(Joglekar, 2008). Then we represent the network of the head of each cluster and including 
all possible connections including machine-to-machine and cluster-to-cluster connections 
information to fully reflect the real-world inter-cluster connectivity. In the Clustering mod-
ule we implemented three scripts detailed below.

The first script defines the cluster composition and named Cluster-composition.py 
which the output is the full security clustering of the network. In other words, the result is 
many clusters (number will depend on the size of the network, configurations and security 

Fig. 5  Security clustering approach output from regular sub-netting in context of medium LAN, election of 
HoCs and constitution of intra-clusters network
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setting DiD but will be at least three) which contain each many machines belonging to the 
same cluster will be treated similarly. The idea behind this assumption is the nature of the 
networking environment, the machine belonging to the same sub-net often has a similar 
defense and protection. In fact, an attacker who gains control of a host will easily progress 
to the rest of the machine on the same sub-net or cluster as a trust relation (in some appli-
cations) exists between the infected host and the remaining allowing the attacker to take 
advantage to execute the exploit against those machines.

The second script named Clusters-Connectivity.py oversees capturing and process-
ing information regarding the type of connections (active and available) along with the 
type of the used protocol, security, and other relevant information such as the number of 
hopes. The number of hops is purely related to the existing security mechanism separating 
two different machines (cluster) such as firewalls, IDSs, IPSs, routers, and so on. The full 
details about the representation are in the previous section.

The third script named HoC.py is in charge of identifying the head of clusters HoC (in 
some occasion more than one machine is designated as HoC). The idea starts by reducing 
the low-risk machine first and only focus on machine with a large attack surface. Attack 
surface stands for the number of open ports, running services and associated vulnerabilities 
in the machine making it more likely to be targeted and exploited by hackers. We exclude a 
honeypot machine (or even a honey-net) from being HoC. An illustrative example with the 
output of HoC.py on the test-bed network basing on IAPTF-Prep vulnerability assessment 
output data is in Fig. 5.

Finally, it is worth noting that the proposed approach does include the attacker machine 
which is often connected through the Internet (external) but will be considered as an inde-
pendent cluster (C0) for the purpose of modeling.

4.3  Representing PT in form of POMDP environment

In this section, we reintroduce the proposed representation of the PT problem in form of 
POMDP environment. This has been detailed in past paper (Ghanem & Chen, 2019) where 
the proposed representation which was introduced through a series of illustrative examples. 
In this paper, we will not re-introduce fully the proposed representation but simply build 
upon it and only focus on the features and aspects that are relevant for the HRL repre-
sentation. Information about security and the network topology and security architecture 
are therefore included RL state space in addition to representing configuration and built of 
each machine in the network.

State space The most important part of the representation deals with states which include 
machines, networking and security information. First we consider machines configuration 
as separate entities. A computer machine or networking device, either physical or virtual, 
is represented by the character M, R or S depending on its functionality in the network, 
respectively, Computer, Routing device, or Security Device. Then, each character is fol-
lowed an assigned ID number such as M1 or R2. Then we represent available and active 
connection of each machine and the the cluster to which it belongs as character C followed 
by ID number. The main information represented about a machine are the OS, version, 
Service-Pack or Knowledge-Base, open TCP or UDP ports, running services. In addition 
as the Vulnerability Assessment data is merged into the POMDP representation we add 
the relevant CVE number and details about the status which is either Secured, Vulnerable, 
Compromised, Untested or simply Unknown. An example of machine representation is 
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provided in Fig. 6. The second phase of representation covers the networking data about 
connection and reachability. The example of M13 and M20 connected using a TCP on 
SMTP and HTTP over SSL via a router and belonging to the same security cluster is rep-
resented as M13-M20-TCP-SMTP-C5. The third and final phase covers networking func-
tionality and security consideration. We extract information from Trace-Route function and 
add information about hops number at the end which will represent the number of network-
ing equipment separating the two machines with only security and routing mechanism and 
system being considered as hops between the machine. Thus, machines belonging to the 
same cluster should have a direct connection or at worst only one hop and this is reflected 
in the model by the number 0 or 1 meaning zero and one hops. Fig. 6 is an example of 
POMDP state space representation.

Action space the actions representation is meant to mimic real world PT actions per-
formed by testers and thus encompass all PT tasks and sub-tasks following a certain nota-
tion. As with any RL problem, the number of action is known, static and limited and PT 
does not fall out of this logic and we include in this space a variety of PT related actions 
such as Probe, Detect, Connect, Scan, Fingerprint, VulnAssess, Exploit, PrivEscal, Pivot 
in addition to some generic action that will be used for control purpose by RL agent. The 
number of actions that the expert can perform is huge and cannot be totally represented 
within the RL action space such as Terminate, Repeat and Give-Up and others as detailed 
previously in [20]. Furthermore, as in PT domain successful or failed action might require 
further or repeating actions we defined some additional actions in order to differentiate 
between the original action and the others action. In practice, the purpose of such represen-
tation is to deal with the special and complex scenarios notably:

Fig. 6  Example of partial POMDP representation of PT practice including states, actions, observation, ini-
tial-belief, transition and observation probabilities and rewards
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• Actions failed to fully (root) control a machine that leads to further action attempting 
user session or escalates privileges or switching to other attack paths.

• Action partially failed due to uncertain or incomplete information and which might 
succeed when additional information becomes available.

• Actions prevented or stopped by security defense (Firewalls or Intrusions Detection 
Systems) which may be re-attempted under different circumstances.

In terms of transition and observation probabilities as well as the rewarding scheme they 
remain unchanged from our previous work (Ghanem & Chen, 2019).

5  Intelligent automated PT framework

In this section, we will gradually introduce the different components and modules consti-
tuting the proposed IAPTF framework.

5.1  Pre‑processing and memory building

In our proposed framework, the main challenge we noticed is that PT is a highly repeti-
tive practice which led us to take advantage of this repetitively, re-usability and similar-
ity rather than having it as counterweight to our framework performances (Babenko & 
Kirillov, 2022). We came up with idea of extracting the knowledge output during any test-
ing and make it general (perform generalization processing) then store it into an expert 
system for future use. The first part of this activity is the generalization tasks which are 
done through python scripts directly on the output XML files of the POMDP PT solv-
ing results. Once done, we progress into storing this precious knowledge in a basic expert 
system (ES) using CLIPS (Zhou et al., 2008). The diagram of IAPTF-Prep system e con-
stituted from all modules of IAPTF responsible of preparing, processing and constructing 
the memory is illustrated in Fig.  7. There are several different modules and features in 
the proposes architecture, but we only focus in this section on functions which offload the 
POMDP solving XML files and extract from the policy graph (PG), basing on standard 
formula and input regarding network configuration the decision (acting) policy made in 
each situation which is extracted in their original context to avoid irrelevant generalization. 
Then, a python script named ES-Generalization.py is applied into this data to produce a 
general format from which specific data is removed such as IP addresses, machine name, 
non-generic data.

The next step in building the IAPTF memory is the implementation of the expert system 
which will oversee storing and reusing of decision policies. Since the aim of this research 
is mainly applying RL in PT practice, the ES was a second priority, and we decided that we 
will not implement a heavy weight ES within IAPTF and only relying on CLIPS which is a 
public domain software tool for building expert systems. We will briefly describe how the 
general production system tool CLIPS is used to extract, process, store and reuse expertise 
for network penetration testing purposes using previous testing captured experiences. The 
proposed system can also be applied to real-time time decision making assist in terms of 
replying to PT tasks.

In IAPTF we opted for a direct application of CLIPS expert system to achieve our 
objective of capturing and replaying human CEH expertise and knowledge. CLIPS is a 
complete environment for developing IAPTF expert systems which includes an integrated 
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editor and a debugging tool and enable inferences or reasoning. CLIPS provides the three 
key elements of: memory for data, knowledge-base, and rule-base. The written program 
consists of rules, facts, and objects with the inference engine to select rules (action) to be 
executed for a given object. In IAPTF, we built a PT expert system by performing some 
modification into the default CLIPS code by introducing features such as single and mul-
tiple string pattern matching, certainty factors and timestamp with uses of MSF plugins 
adapted for pre-processing. The complexity of MSF in terms of data handling and stor-
ing add nonetheless more complexity and challenges for our proposed expert system. To 
overcome these shortcomings, we proposed an integration of our developed CLIPS expert 
system with MSF-POSTGRESQL database. Thus, IAPTF allows the simplification of the 
complex data workflow by considering complete testing and attacking scenarios instead of 
atomic actions. Finally, a python script will ensure CVE and NVD databases import and 
store within the IAPTF-Memory and it will oversee the following:

• Storing and structuring in a specific format enabling CVE use and search by the 
IAPTF-Core directly basing on customized research criteria

• Enabling the usage of a lighter version of the large database both in terms of number 
of CVEs and the description information stored within the original databases CVE and 
NVD. Only relevant information from PT point of view is kept in IAPTF-Memory.

• Direct interaction with Metasploit MSF console to enable real-time search narrowing 
and prioritization based on NVD score as calculated per CVSSv3.

5.2  IAPTF‑core module

Figure 8 illustrates IAPTF-Core module functioning, the main component is the RL sys-
tem and the memory.In terms of solving PT generated POMDP problems, we opted for a 
rigorous approach aiming to scientifically elect the best solving approach following several 
metrics (Ghanem & Chen, 2019).

Fig. 7  IAPTF-Prep modules ensuing data collection, processing and storing functioning along with popu-
lating and interacting with the Expert System
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The first step towards the solving is to select the appropriate solving approach. As we 
already demonstrated that PT practice versatility required a model-free RL and thus pre-
eliminated solving approaches related to the model-based RL namely learning a model 
and using a model, we then considered the two available options: policy search and 
value iteration. PT practice is by default decision-making oriented tasks and this nature 
give more credit to the policy search approach as the quality of the solving is more 
related to the relevance of the decision policy (PG) rather than the accumulated value 
form repeating the task during many iterations. Fig. reffig:choices summarizes the solv-
ing choices and directions made in IAPTF.

As described earlier, our choice of embedding RL within the PT practice comes from 
its suitability, relevance, and pertinence to sequential decision-making problems of 
which PT is one of them. The second challenge we faced was to decide on the modeling 
approach with two major candidates namely model-free and model-based approaches 
being considered and investigated. Here again the nature of PT activities and the ver-
satility of possible tasks that vary with the tested asset have heavily influenced the 
choice of model-free approach. In fact, despite limiting the scope of IAPTF to computer 
network PT, the environment remains complex and hard to capture fully which made 
impossible the adoption of model-based RL approach. Finally, the solving techniques 
were discussed, and the choice of policy search technique was made over the value iter-
ation. This obvious choice is backed by our initial aim of fully automating and optimiz-
ing the PT practice and thus offloading the human expert whether CEH or CPT of deci-
sion making duties and thus having the software agent as replacement require decision 
policy tree which we construct from the POMDP solving output of policy graphs (PG).

Once the modeling approach and solving technique choices were made, the second 
major step was electing the appropriate solving modes; approximate or exact. The aim 
of this work is not only to embed RL within the PT practice to enable an intelligent 
automation of the PT tasks but also enhance accuracy and efficiency. Therefore, we 
opted for a more comprehensive framework which offers flexibility at an early stage 
of development. The idea is to implement and test both solving mode starting with the 
approximate one because of its flexibility. Many approximate solving algorithms were 
shortlisted to finally select PERSEUS which was the first solving algorithm imple-
mented during early modeling stage to test and evaluate the proposed representation 
of PT practice as POMDP problems. Nonetheless, as IAPTF aims a high efficiency 
and accuracy other exact solving algorithms were candidates to be integrated and early 
assessment confirmed that GIP is the most relevant and efficient candidate. Thus, PER-
SEUS and GIP (both original and modified version) were embedded within IAPTF 
through the external solver POMDPsolve, and many modifications were introduced to 
allow a more flexible solving and input handling.

Fig. 8  IAPTF-Core module diagram with RL functioning and memory handling
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6  Solving POMDP problem

When it comes to the solving method, we considered, implemented and tested both 
methods of solving POMDP problem: approximate solving and exact solving. Most 
exact solving of POMDPs algorithms operate by optimizing the value function over all 
possible beliefs states but exact solutions are typically computationally intractable for 
all but the smallest problems. As the exact solving involving value iteration for deter-
mining the value function of POMDPs, the optimal action can be read from the value 
function for any belief state (Pineau & Gordon, 2003). But the exact solution comes at a 
cost of time and computational power which is exponential in actions and observations 
dimensionality of the belief space grows with number of states.

Figure 9 summarizes the choices made in the journey to model PT as RL problem 
along with the solving approach we opted for in our proposed framework.

6.1  POMDP approximate solving

The approximate solving approach is efficient but inexact because it relies on a discrete 
choice of belief states. In this work we will use it for guidance and comparison purpose. 
We will utilize Point-Based Value Iteration (PBVI) which begin at some initial belief 
then pick belief points by forward simulation and prune by distance. It approximates an 
exact value iteration solution by selecting a small set of representative belief points and 
then tracking the value and its derivative for those points only which ensures the value 
function increases for every belief point in every iteration. In practice, PBVI relies on a 
stochastic approach in choosing belief points, and by maintaining only one value hyper-
plane per point, PBVI is reputed for successfully solving large problems which network 
PT in one of them. In IAPTS, we used PERSEUS (Spaan & Vlassis, 2005); Randomized 
Point-based Value Iteration for POMDPs which performs approximate value backup 
stages, ensuring that in each backup stage the value of each point in the belief set is 
improved. Perseus performs backup stages until some convergence criterion is met, and 
the convergence criteria can be by tracking the number of policy changes (Walraven & 
Spaan, 2017; Spaan & Vlassis, 2005).

Fig. 9  IAPTF RL modeling and solving choices
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6.2  POMDP exact solving

The second possible solving method of POMDP is the exact. Exact solving POMDP prob-
lem and computing the optimal solutions is challenging because of the high computational 
requirements of POMDP solution algorithms. We opted for several algorithms use a sub-
routine to prune dominated vectors in value functions, which requires a large number of 
linear programs (LPs) to be solved and it represents a large part of the total running time. 
In this paper we show how the LPs in POMDP pruning subroutines can be decomposed 
using a Benders (Sarraute et  al., 2012). The resulting algorithm incrementally adds LP 
constraints and uses only a small fraction of the constraints. Our algorithm significantly 
improves the performance of existing pruning methods and the commonly used incremen-
tal pruning algorithm. Our new variant of incremental pruning is the fastest optimal prun-
ing-based POMDP algorithm. Full algorithm function was detailed in (Zhang et al., 2003) 
and (Walraven & Spaan, 2017) proposed and implemented an enhanced version which we 
utilized in this research.

6.3  External solvePOMDP

In IAPTF, we opted for the option of relying on a state-of-the-art external POMDP solver 
called SolvePOMDP rather than implementing our internal one including LP solver and 
solving algorithms and associated libraries and functions from the scratch. SolvePOMDP 
is an open-source Java program for solving POMDPs. This solver includes an exact solv-
ing called generalized value-iteration pruning algorithm (GIP) (Walraven & Spaan, 2017) 
and an approximate solving called randomized point-based value iteration algorithm (PER-
SEUS) (Spaan & Vlassis, 2005). It comes with two built-in linear programming solvers 
that can be used without any additional configuration namely LPSolve and JOptimizer. The 
latter solver runs faster but remains less reliable as some minor numerical instability prob-
lems often result in producing unreliable output. In this research, JOptimizer was only used 
during early research phase as we tested the initial POMDP representation of PT practice. 
The input for SolvePOMDP is a set of *.POMDP files defined using Cassandra’s POMDP 
file format (Cassandra et al., 2013) and the output resulting solutions are represented by 
alpha vectors and policy graphs (Spaan, 2012).

7  Test results

7.1  Test‑bed and testing environment

The experiments were run on a HP Z2 tower with CPU Intel Xeon processor E7-2176, 
8 core, 20MB cache and 3.70GHz, an unbuffered memory of 64GB DDR4 2666 DIMM 
ECC, graphical Nvidia QUADRO P4000 8GB GFX. This machine runs Linux Calculate 
20 kernel version 5.4.6 which is the fastest and most resource-efficient Linux distribution 
based on Gentoo. This built maintains an optimal balance between state-of-the-art process-
ing libraries and a renowned stability.

The SolvePOMDP runs without time horizon limit until a target precision 𝜖 = 0.001 
is reached. A discount rate (factor) of 0.95 was used to improve performance. We ini-
tially tested several discount rates varying from 0.5 to 0.99 and we settled on a 0.95 
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value which guaranteed a better balance between efficiency (time required for solving) 
and testing coverage (number of generated attack vectors). The POMDP environments 
generator is implemented in a Python script which import processed data directly from 
IAPTF memory and rely on the following parameters: number of machines (physical 
and virtual) N, number of identified vulnerabilities V, number of pre-fetched (relevant) 
exploits E, number of security clusters C, and number of machines with unchanged con-
figuration I (since last testing).

Once POMDP environment files are created, they will be parsed into a buffer file which 
serves as input for the SolvePOMDP solver. At the end of each round, output PGs are 
translated by the attack-vector-gen.py script into attack vectors then transmitted to Metas-
ploit framework to act upon. On the other hand, output PGs are processed in parallel using 
a Generalization.py scripts to make them general and are then fed to the CLIPS expert sys-
tem for future direct application. In terms of SolvePOMDP parameters, the table in Fig. 10 
summarizes the POMDP solving experiences set-up and used parameters.

Fig. 10  IAPTF-Core module diagram with RL functioning and Memory handling
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7.2  Results and discussion

To evaluate the new IAPTF and notably the HRL representation as well as the different 
new modules, we planned a series of tests on real-world data captured for real corporate 
network and reconstructed and implemented on a Virtual Box environment. Although the 
tests cover different network size varying from 2-200 machines, our main focus are medium 
(30-100) and large (100-200) networks. Previous attempts to solve POMDP environment 
generated from a medium size LAN required a large amount of time of 149.5 hours (6.2 
days) for a network of 100 machines which is an unreasonable amount of time. The poor 
performances in medium networks of 30-100 machines was expected as the exact POMDP 
solving is a P-SPACE complete problem compared with NP-complete in approximate solv-
ing, thus the time required for solving became computationally intractable. We tested the 
new hierarchical representation of PT which meant solving several small size POMDP 
problem for each cluster then solving the inter-clusters POMDP problem. We accounted 
for the overall time required and we repeated the test 20 times for small networks, 10 times 
for medium networks, and 5 times for large networks. The obtained results for five solving 
approaches, namely PERSEUS, RL-GIP-LPSolve, RL-GIP-LPSolve+Initial Belief HRL-
GIP-LPSolve, and HRL-GIP-LPSolve+Initial Belief are plotted in Fig.  11 showing the 
mean values and standard deviations.

The results show some loss of performance for HRL (compared with regular RL for 
very small networks) with number of machines up to 10 machines (4 clusters, 33 vulner-
abilities, 24 exploits). This issue is completely justified by the fact that clustering and 
cluster processing is useless and only slow down IAPTF. In small networks, security 
clustering produce often a big number of security clusters and thus many very small 
(2-3 machines) POMDPs on the top of the POMDP representing the Heads of clusters. 
This will result into forcing IAPTF in executing a big amount of data manipulation and 

Fig. 11  Solving different size POMDP problem using different algorithm and initial belief handling 
approaches. X-axis represents the number of machines and Y-axis represents time in seconds necessary to 
solve the problem
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POMDPs’ solving which are in fact unnecessary gorging the fact that Regular RL solv-
ing of entire POMDP is faster

However, HRL-GIP effect is largely appreciated in larger networks and reach a very 
good rate in 100-machine network (25 clusters, 102 vulnerabilities, 80 exploits). HRL 
approach requires 224087.118 ± 12564.7 (2.6 days) compared with 538318.624 ± 
31964.2 (6.2 days) in regular RL-GIP. Going beyond the 100-machine size, HRL is at 
least 4 times more efficient and reaching 200 machine size (52 clusters, 153 vulner-
abilities, 115 exploits), HRL-GIP performed almost as well as approximate PERSEUS 
and required 340582.592 ± 16297.8 (3.9 days) compared with 1685011.539 ± 71160.5 
(19.5 days) for RL-GIP and 278369.056 ± 5236.9 (3.2 days). When we repeat the tests 
using the output of previous testing as initial belief (after processing), GIP-HRL surpass 
PERSEUS performance and only required 1.2 days compared with 3.2 for approximate.

In terms of re-testing, we ran networks PT for each network 4 times each while intro-
ducing changes in the assessed network, the amount of change is different each time 
and represent 10%, 30%, 50% and 75%. The tests were carried out for algorithm variant 
with customized initial belief, namely RL-GIP-LPSolve+Initial-Belief and HRL-GIP-
LPSolve+Initial-Belief. The obtained results were better than expected in 10% and 30% 
context which reflect the PT real-world domain. Figure 12 provides a comparative illus-
tration for each of the tests comparing with the initial testing.

The results confirm the hypothesis on the crucial impact of prior knowledge and 
initial belief on the algorithm performances as it accelerate the convergence toward 
optimal value. The obtained results in the context of 100- to 200-machine LANs were 
extremely encouraging and nearly halved the consumed time as shown in Fig. 12.

Finally, we evaluated the overall effectiveness of IAPTF compared with regular semi-
automated MSF and human CEH manual testing. The efficiency was calculated based 
on two metrics: the global testing time and the number of covered attack vectors, and 
an overall efficiency ratio was calculated. In terms of consumed time and as shown in 
Fig.  13, IAPTF over-performs CEH expert in medium and large networks despite the 
heavyweight pre-processing and post-processing. IAPTF performs twice better than 
human CEH in 200-machine network and 5 to 6 times better than blind automation.

In terms of coverage, we calculated the number of valid (either successful or failed) 
attack vector covered which we measured and compared as summarized in Fig. 13(b).

The number of attack vectors covered by all variant of IAPTF exceed by far any test 
performed by CEH. The number even doubled in large networks making IAPTF more 
reliable in terms of PT output confidence.

Fig. 12  Re-testing the same network after introducing a percentage of changes in machines configurations
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8  Conclusion

This paper explores a novel approach of embedding RL techniques to the offensive cyber 
security domain. By adopting a hierarchical RL representing of the complex PT domain 
we overcame the huge scaling-up challenges in solving large POMDP encountered with 
regular RL representation of PT on medium and large networks. The proposed approach 
divides the network into security clusters and enables IAPTF to deal with each cluster 
separately as small networks (intra-clusters), then proceed to the processing of the net-
work of clusters heads which results into covering all possible basic and most of com-
plex (multi-steps) attacking vectors and thus matching and even exceeding the effective-
ness of Certified Ethical Hackers. The proposed IAPTF is a versatile and comprehensive 
framework which relieves human experts from time-consuming repetitive tasks and 
unveil special and complex situations such as unusual vulnerabilities or combined non-
obvious combinations which are often ignored in manual testing.

In terms of output, and as this research focused mainly on improving efficiency and 
effectiveness of IAPTF in large networks context, the obtained result are by far better in 
terms of time efficiency and covered tests. Although, human CEH would spend the same 
time in completing PT tasks on networks smaller than 100 machines, the number of cov-
ered attack vector and thus validated vulnerabilities is far superior in IAPTF. In larger 
network up to 200 machines, neither CEH nor automated system can compete against 
IAPTF when HRL is adopted as this approach addressed two major issues we faced with 
previous RL representation: the performance enhancement and expertise capturing.

The first is illustrated by the result of solving several small POMDP problems 
rather than dealing with one large and complex environment. The second is effectively 
addressed by the HRL approach which facilitated and simplified the process of expertise 
capturing and generalization which allow the re-usability in the case of retesting the 
same network when only few changes were introduced which is often the real-world 
context in PT. The results obtained confirm the efficiency, accuracy, and effectiveness 
of the proposed framework IAPTF designed to offload and ultimately replace the slow, 
costly and unreliable human PT experts. As draw back of the proposed approach, we 
can identify the slight decrease in the covered attack vectors which would results in 
missing some complex attack vectors that human hacker might adopt. This challenge 
will constitute a research vector for future research works.
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