

City, University of London Institutional Repository

Citation: Ozkaya, M. & Kloukinas, C. (2013). Towards a design-by-contract based

approach for realizable connector-centric software architectures. Paper presented at the
ICSOFT 2013 - Proceedings of the 8th International Joint Conference on Software
Technologies, 29 - 31 Jul 2013, Rejkyavik, Iceland.

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/2881/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Towards a Design-by-Contract Based Approach for Realizable
Connector-Centric Software Architectures

Mert Ozkaya and Christos Kloukinas
Department of Computer Science, City University London, London, EC1V 0HB, UK

{ mert.ozkaya.1, C.Kloukinas}@city.ac.uk

Keywords: Architecture Description Language, Design by Contract, Complex Interaction Protocols, Realizable Designs

Abstract: Despite being a widely-used language for specifying software systems, UML remains less than ideal for soft-
ware architectures. Architecture description languages (ADLs) were developed to provide more comprehen-
sive support. However, so far the application of ADLs in practice has been impeded by at least one of the
following problems: (i) advanced formal notations, (ii) lack of support for complex connectors, and (iii) po-
tentially unrealizable designs. In this paper we propose a new ADL that is based on Design-by-Contract (DbC)
for specifying software architectures. While DbC promotes a formal and precise way of specifying system be-
haviours, it is more familiar to practising developers, thus allowing for a more comfortable way of specifying
architectures than using process algebras. Furthermore, by granting connectors a first-class status, our ADL
allows designers to specify not only simple interaction mechanisms as connectors but also complex interaction
protocols. Finally, in order to ensure that architectural designs are always realizable we eliminate potentially
unrealizable constructs in connector specifications (the connector “glue”).

1 Introduction

Since the early work on software architectures
[Perry and Wolf, 1992, Garlan and Shaw, 1993], spe-
cialized architecture description languages (ADLs)
[Medvidovic and Taylor, 2000] have been proposed
for specifying software architectures. But UML has
become a de facto design language for specifying and
designing software systems – more practitioners use
it than all other languages (e.g., AADL, ArchiMate,
etc.) combined [Malavolta et al., 2013], even though
it is less than ideal [Dashofy et al., 2002]. This is de-
spite some ADLs having formally defined semantics,
enabling not only formally precise models that help
avoid confusion about what is meant by the specifi-
cation but also early formal analysis of software ar-
chitectures. Other ADLs offer automatic code gener-
ation, etc. Nevertheless, UML is still the first choice
of practitioners for specifying software architectures,
with most ADLs seemingly remaining of interest to
the research community alone. In our view, there are
three main problems that ADLs suffer from: (i) for-
mal notations for behaviour specifications that require
a steep learning curve, (ii) lack of support for com-
plex connectors (i.e., interaction protocols), and (iii)
potential for producing unrealizable designs. Indeed,
to the best of our knowledge, there is no ADL that is

easy to learn, treats connectors as first-class elements
and ensures that architecture specifications are realiz-
able. While (i) has been identified by practitioners as
being a serious impediment to their adoption of cur-
rent ADLs, (ii) is not an issue that they consider as
crucial 1 but we believe that it can substantially help
in developing concise designs, as it promotes reuse-
by-call instead of reuse-by-copy. Condition (iii) is in
fact something that has not been identified so far at all
to the best of our knowledge 2 but we believe that it is
crucial to identify and resolve, if a connector-centric
ADL is to succeed.

Formal notations Many ADLs (e.g., Wright [Allen
and Garlan, 1997], LEDA [Canal et al., 1999], SOFA
[Plasil and Visnovsky, 2002], CONNECT [Issarny
et al., 2011], etc.) adopt formal notations, e.g., pro-
cess algebras [Bergstra et al., 2001], for specifying
the behaviours of architectural elements. They do so
in order to enable the architectural analysis of sys-
tems, which is extremely important in uncovering se-
rious system design errors early on in the lifetime of

1Along with a number of researchers, as many ADLs do
not support connectors.

2Perhaps due to the non-adoption of ADLs supporting
connectors, as it is a side-effect of their connector specifi-
cation structure.

a project. Indeed, if such an analysis is not possible,
then there is no point in using a specialized language
for software architectures – even simple drawings suf-
fice. However, the aforementioned ADLs employ no-
tations that practitioners view (with reason) as having
a steep learning curve [Malavolta et al., 2013]. Thus,
practitioners end up avoiding them and use instead
simpler languages, even if that means that they lose
the ability to properly describe and analyze their sys-
tems – better an informal description of a system that
everybody understands than a formal description of a
system that people struggle understanding.

Limited support for complex connectors Another
problem with many ADLs (e.g., Darwin [Magee and
Kramer, 1996], Rapide [Luckham, 1996], LEDA
[Canal et al., 1999], and AADL [Feiler et al., 2006]),
as well as with UML, is that they provide limited or
no support for complex connectors, treating them in-
stead as simple connections. Other ADLs, such as
UniCon [Shaw et al., 1995], provide only partial sup-
port through a limited number of basic connectors
but do not allow designers to freely specify their own
(complex) types. This is unfortunate because connec-
tors represent the interaction patterns between com-
ponents, i.e., the interaction protocols that are em-
ployed to achieve the system goals using the sys-
tem components, such as reliability. By instead of-
fering support only for components, architects end
up with two alternatives. One is to ignore protocols,
which inhibits the analysis of crucial system proper-
ties, such as deadlock-freedom, and also leads to ar-
chitectural mismatch [Garlan et al., 1995], i.e., the in-
ability to compose seemingly compatible components
due to wrong assumptions these make about their in-
teraction. The other is to incorporate the protocol
behaviour inside the components themselves, which
leads to complicated component behaviour that is nei-
ther easy to understand nor to analyze and makes
it difficult to reuse components with different pro-
tocols, as well as to find errors in specific protocol
instances. Incorporating protocol behaviour inside
components is essentially following a reuse-by-copy
approach, whereby each component has its own copy
of the protocol constraints. On the other hand, support
for protocols through first-class connectors promotes
a reuse-by-call approach, whereby there is only one
instance of the protocol constraints and these are sim-
ply called wherever they are needed.

Potentially unrealizable designs The third prob-
lem of existing ADLs is that when they do support
user-defined, complex connectors, they do so in a way
that can lead to unrealizable designs. This is because,

Figure 1: A nuclear power plant’s unrealizable MSCs [Alur
et al., 2003]

connector Plant Connector =
role Incrementor = ur→na→Incrementor
role Doubler = ur→na→Doubler
role NA = increment→ NA u double→NA
role UR = increment→ UR u double→UR
glue =Incrementor.ur→UR.increment→Incrementor.na→

NA.increment→Doubler.ur→UR.double→
Doubler.na→NA.double→ glue �
Doubler.ur→UR.double→Doubler.na→NA.double→
Incrementor.ur→UR.increment→Incrementor.na→
NA.increment→ glue

Figure 2: Wright’s (unrealizable) connector for Alur’s nu-
clear power plant

Figure 3: An implied bad scenario in Alur’s plant [Alur
et al., 2003] (hidden by Wright’s glue specification)

ADLs of this category are following the approach ini-
tiated by Wright [Allen and Garlan, 1997] and re-
quire connectors to include a glue element. As stated
in [Allen and Garlan, 1997], a connector role spec-
ifies the “obligations of [a] component participating
in the interaction” and a glue specifies “how the activ-
ities of the [. . .] roles are coordinated.” – a connector
glue is supposed to be more than simple definition/use
relationships. The fact that the glue can introduce
inter-role interaction constraints is deeply problem-
atic however, because these constraints cannot always
be implemented in a decentralized manner by the
components that assume the connector roles, as these
can only observe their local state [Tripakis, 2001,Tri-
pakis, 2004]. In fact, it has been shown that the prob-
lem of deciding whether a glue can be realized is un-
decidable [Tripakis, 2001, Tripakis, 2004, Alur et al.,
2003, Alur et al., 2005], so there is no general algo-

rithm that can be implemented to warn architects that
the glue they are specifying is not realizable by the
existing roles. The only easy solution to realize a pro-
tocol then is to introduce yet another component that
will assume the role of the glue, thus transforming all
protocols into centralized ones.

An example of such an unrealizable protocol from
a simplified nuclear power plant is described in [Alur
et al., 2003] and reproduced in Figure 1. The in-
teraction therein involves an Incrementor (P1) and a
Doubler (P2) client roles updating the amounts of the
Uranium fuel (UR) and Nitric Acid (NA) server pro-
cesses in a nuclear reactor. After the update opera-
tions, the amounts of UR and NA must be equal to
avoid nuclear accidents, for which reason we wish to
allow only the sequences shown in Figure 1. The in-
teraction of the two clients with the NA and UR vari-
ables, can easily be specified in Wright as in Figure 2.
Note that this glue specification does two things. First
it establishes bindings between clients and servers
(e.g., Incrementor.ur→UR.increment). Then it con-
straints interactions by requiring that we only al-
low UR.increment→NA.increment or UR.double→
NA.double. This specification is however unrealiz-
able as [Alur et al., 2003] have shown because it is
impossible to implement it in a decentralized manner
in a way that avoids behaviours excluded by the glue,
e.g., the one depicted in Figure 3. The only way to
achieve the desired behaviour is to introduce another
role, for a centralized controller G. Roles Incrementor
and Doubler then need to inform G when they wish to
interact with UR and NA and have G perform the in-
teractions with UR and NA in their place.

2 Our Approach

The ADL we are developing tries to overcome the
problems identified in the previous section and offer:

• first-class support for user-defined complex con-
nectors;

• realizable software architectures by construction;
and

• a simple to understand, yet formal, language
for specifying behaviour, based on design-by-
contract (DbC).

2.1 Support for Complex Connectors

Our ADL grants connectors in software architectures
first-class status, allowing designers to specify both
simple interaction mechanisms and complex proto-
cols. These can then be instantiated as many times

r 1x r 2

r 3x r 4

r 2x r 3

r 1

r 2 r 3

r 4

r 1x r 4

Figure 4: Simple connectors in circuits

→ (r1, ||(→ (r2,r3),r4))

Figure 5: Complex connectors in circuits

as needed, allowing architects to simplify the specifi-
cations of their components and easily reuse the spec-
ification of complex protocols.

To illustrate how important this is for both archi-
tectural understandability and also analysis, we will
use a simple example from electrical engineering. Let
us consider k concrete electrical resistors, r1, · · · ,rk,
i.e., our system components. When using a sequen-
tial connector (→), the overall resistance is computed
as R→(N,{Ri}N

i=1) = ∑
N
i=1 Ri, where N,Ri are vari-

ables (Ri correspond to connector roles), to be as-
signed eventually some concrete values k,r j. If us-
ing a parallel connector (‖) instead, it is computed
as R‖(N,{Ri}N

i=1) = 1/∑
N
i=1 1/Ri. So the interaction

protocol (connector) used is the one that gives us the
formula we need to use to analyze it – if it does not
do so, then we are probably using the wrong connec-
tor abstraction. The components (r j) are simply pro-
viding some numerical values to use in the formula,
while the system configuration tells us which specific
value (k, r j) we should assign to each variable (N, Ri)
of the connector-derived formula. By simply enumer-
ating the wires/connections between resistors/compo-
nents, we miss the forest for the trees. This leads to ar-
chitectural designs at a very low level that is not easy
to communicate and develop – as [Delanote et al.,
2008] found the case to be with AADL.

Figure 4 shows the number of simple connectors
(identified with red ellipses) that are needed in our
system. It is easy to see that there are many of them
and it is not so easy to identify the protocol logic,
especially as the system size increases – this is the
equivalent of spaghetti code. By making interaction
protocols implicit in designs, analysis also becomes
difficult and architectural errors can go undetected un-
til later development phases. Indeed, we are essen-
tially forced to reverse-engineer the architect’s intent
in order to analyze our system – after all, the architect
did not select the specific wire connections by chance
but because they form a specific complex connector.
When complex connectors are employed instead as in
Figure 5 then the number of connectors to be consid-
ered is reduced substantially. This makes it much eas-

ier to understand the system and to analyze its overall
resistance by taking advantage of the connector prop-
erties as:

r→(r1,||(→(r2,r3),r4)) = r1 + r||(→(r2,r3),r4)

= r1 +
1

1
→(r2,r3)

+ 1
r4

= r1 +
1

1
r2+r3

+ 1
r4

2.2 Realizable Software Architectures

Connectors in our ADL are not specified with glue-
like elements. Instead, we consider connectors as a
simple composition of roles, which represent the in-
teraction behaviour of participating components, and
channels that allow actions of one role to reach an-
other. Coordination is now the responsibility of roles
alone. If a particular property is desired then it must
be shown that the roles satisfy it. But this is a prob-
lem that is decidable for finite state systems – model-
checking. Thus an architect can easily specify a pro-
tocol and be sure that it has the required properties.
Designers can also feel reassured that the architectural
protocols are indeed realizable in principle.

So in the case of Figure 1, the architect should
quickly realize that the desired property is not sat-
isfied by the roles and opt for a centralized protocol
instead, by adding a centralized controller. Thus, sur-
prises are avoided – it becomes clear early on whether
something can be made to work in a decentralized
manner or not, as it is tested by the more experienced
architect. The less experienced designers do not have
to waste their time trying to achieve the impossible or
take the easy way out and turn a decentralized pro-
tocol into a centralized one. We essentially turn the
glue from constraints to be imposed, to a property that
needs to be verified, thus turning an undecidable prob-
lem that the implementers have to deal with, into a de-
cidable one for them (and pushing the responsibility
to resolve the issue to the more experienced architect).

2.3 DbC-based Specifications

Java Modelling Language (JML) [Chalin et al., 2006]
seems to be gaining popularity among developers, as
they use it for “test-driven development” and even for
static analysis in some instances. Our new ADL at-
tempts to follow this trend so as to maximize adop-
tion by practitioners. Thus, it departs from the ADLs
that adopt process algebras, and instead follows a
Design by Contract (DbC) [Meyer, 1992] approach
like JML, specifying behavioural aspects of systems
through simple pairs of method pre-/post-conditions,

in a syntax reminiscent of JML. DbC allows for a for-
mal specification of systems, as it is based on Hoare’s
logic [Hoare, 1969] and VDM’s [Bjørner and Jones,
1978] rely-guarantee specification approach. DbC
has so far been mainly considered for programming
languages (e.g., Java through JML), which is why
contracts have been restricted to provided services
(i.e., class methods).

There are very few ADLs that employ DbC. The
work of Schreiner et al. [Schreiner and Göschka,
2007] along with the TrustME ADL [Schmidt et al.,
2001] are some of the very few examples applying
DbC at the level of software architecture. Schreiner
et al.’s work however does not support component
interfaces emitting or receiving events. Moreover,
they view connectors as simple interconnection mech-
anisms, providing no support for the contractual spec-
ification of complex interaction protocols. Likewise,
TrustME supports only required and provided inter-
faces for components, again neglecting asynchronous
events. Our approach attempts to apply DbC in a
more comprehensive manner, covering both methods
and events. As we view connectors as first-class el-
ements, we use DbC to specify their behaviour as
well. Our ADL further extends DbC by structuring
contracts into functional and interaction parts.

2.3.1 Component Contracts

Components are used to specify at a high-level the
functional units in software systems. Our ADL allows
designers to describe freely as components whatever
they deem appropriate in their system, not impos-
ing, nor introducing, low-level notions (e.g., threads,
processes) as AADL does. Component types are es-
sentially specified in terms of (i) ports representing
the points of interaction with their environment, and
(ii) data representing the component state. Simi-
larly to CORBA interfaces [OMG, 2006], component
ports can be either event consumer/emitter ones, cor-
responding to CORBA sink and source events respec-
tively, or provided/required method ones, correspond-
ing to CORBA facets and receptacles.

The behaviour of components are specified in
terms of contracts attached to event/method actions
(e.g., method call and event emission) performed via
the ports. Extending DbC, our ADL allows to attach
contracts to required methods too, to specify usage
patterns of the required service, and also to the events
emitted/received by emitter/consumer ports. Another
extension we applied is the separation of contract
specification into functional and interaction contracts,
allowing to distinguish between the functional and in-
teraction behaviour. The former allows for relating
component data, event/method parameters, and re-

sults, while the latter specify (i) the particular manner
in which components want to behave (i.e., the order of
actions), and (ii) the cases in which they do not know
how to behave, thus leading to chaotic behaviour.

2.3.2 Connector Contracts

As aforementioned, connectors in our ADL are in-
troduced to represent high-level complex interaction
protocols, which the components interacting through
connectors adhere to. Connector types are specified
in terms of roles and channels. Each role can be
viewed as a component wrapper as depicted in Fig-
ure 6, which further constrains the interaction be-
haviour of the component assuming it. A role is
described with data and port-variables, mirroring a
component – a role is essentially a component vari-
able, with extra state. The port-variables of a role
are bound to ports of the components assuming the
role. Channels of a connector represent the commu-
nication links between interacting roles and can be
synchronous or asynchronous. A channel is described
with a pair of communicating role port-variables and
its communication type.

The behaviour of connectors is specified with in-
teraction contracts attached to the port-variable ac-
tions. These interaction contracts constrain port-
variable actions so that the respective component
ports behave in a particular manner (i.e., enforcing
a certain action order), according to the desired in-
teraction protocols. In doing so, components avoid
undesired interactions with other components associ-
ated with the same connector. The end result is then a
set of components interacting with their environments
successfully to compose the whole system. All con-
straints imposed are local ones, ensuring realizability.

3 Case Study: Shared-Data Access

Listing 1 below illustrates our ADL’s DbC-based
behavioural specification on shared-data access. An
important thing to note is the overall syntax; it resem-
bles JML, with expressions that shouldn’t feel alien
to practitioners – a far step from process algebraic
notations. Two component types are specified, user
between lines 1–21 and memory between lines 22–
44. User comprises a required port, puser r (lines
4–12), through which its instances call method get
from the memory and an emitter port, puser e (lines
13–20), through which event set is emitted. Memory
comprises a provided port, pmem p (lines 25–34),
through which its instances accept calls for method
get from users and a consumer port, pmem c (lines

Component Component

Role Role

Channel
Sync or Asyncport portport-var port-var

Figure 6: Connectors with roles wrapping components

35–43) through which event set is received.
Ports are specified in terms of method/event

signatures and contracts (i.e., @ f unctional and
@interaction). @interaction constraints on port ac-
tions (e.g., method call and event emission) have
precedence over @functional, i.e, the evaluation of
the latter depends on the satisfaction of the former.

User Component Type User’s required port
puser r is used to call method get. These calls
are delayed until the promised condition specified in
@interaction is met. Since it is true in line 6, get
can be called immediately. Next, the @ f unctional in
lines 7–10 is evaluated; since get has no parameters,
there is no promised actual parameters (promises con-
dition in line 8 is true). Upon receiving the response
after calling get, the received result is ensured to be
stored in variable data.

The user components emit event set through its
emitter port puser e. Note that events are specified
without return types – they can only have an identi-
fier and parameters. The emission of event set is de-
layed until the promised condition of @interaction in
lines 14–15 is met. Since it is specified as true, emis-
sion can be made at any instance, using the promised
actual parameters specified in @ f unctional (line 17).
This then ensures that initialised u is set to true. Also
note that events are emitted/received asynchronously.

Memory Component Type Memory’s provided
port pmem p receives calls for method get. These
calls are accepted when the accepts condition in
@interaction is met, initialised m evaluating to true
(line 27). Otherwise, the call is re jected when
initialised m is f alse (line 29) leading to chaotic be-
haviour. If the call is accepted, then @ f unctional in
lines 30–32 is evaluated. There, it is ensured that the
result value to be emitted is equal to the sh data.

The memory components receive event set via
the consumer port pmem c. The reception of event
set is delayed until the promised condition is met
in @interaction. Since it is specified as true in
line 37, the set event can be received at any in-
stance. Upon reception of the event set, @ f unctional
in lines 38–41 is evaluated. As the functional
pre-condition (requires) is true, the event’s post-
condition initialised m is ensured and sh data is set
to data arg.

1 component user{
2 bool initialised_u = false;

3 int data;
4 required port puser_r {
5 @interaction{
6 promises : true; }
7 @functional{
8 promises : true;
9 requires : true;

10 ensures : data = \result; }
11 int get();
12 };
13 emitter : port puser_e {
14 @interaction{
15 promises : true; }
16 @functional{
17 promises : data_arg = 7;
18 ensures : intialised_u = true; }
19 set(int data_arg);
20 }; //port ends
21 }; // component ends
22 component memory {
23 bool initialised_m = false;
24 int sh_data = 0;
25 provided port pmem_p{
26 @interaction{
27 accepts : initialised_m;
28 also :
29 rejects : !initialised_m; }
30 @functional{
31 requires : true;
32 ensures : \result = sh_data;}
33 int get();
34 }; // port ends
35 consumer port pmem_c{
36 @interaction{
37 accepts : true; }
38 @functional{
39 requires : true;
40 ensures : intialised_m = true
41 && sh_data = data_arg; }
42 set(int data_arg);
43 }; // port ends
44 }; // component ends
45 connector sharedData(
46 userRole{pv_user},memoryRole{pv_mem}) {
47 role userRole{
48 bool initialised_u = true;
49 required port variable pv_user_r{
50 @interaction{
51 promises : when(intialised_u); }
52 int get();
53 };
54 emitter port variable pv_user_e{
55 @interaction{
56 promises : true;
57 ensures : initialised_u = true; }
58 set(int data_arg);
59 }; // port -variable ends
60 }; // role ends
61 role memoryRole{
62 bool initialised_m = true;
63 provided port variable pv_mem_p{
64 @interaction{

65 accepts : when(intialised_m);}
66 int get();
67 }; // port -variable ends
68 consumer port variable pv_mem_c{
69 @interaction{
70 accepts : true;
71 ensures : initialised_m = true; }
72 set(int data_arg);
73 }; // port -variable ends
74 }; // role ends
75 channel async user2memory_m(pv_user_r ,
76 pv_mem_p);
77 channel async user2memory_e(pv_user_e ,
78 pv_mem_c);
79 }; // connector ends

Listing 1: Shared-data Access in our ADL

Shared-Data Connector Type The connector
type sharedData, specified in lines 45–79, serves as a
mediator between users and memory. It essentially
avoids memory from behaving chaotically. In the
sharedData, two roles are specified, userRole in lines
47–60 and memoryRole in lines 61–74, where the for-
mer is assumed by the user component instances and
the latter by the memory instances.

The interaction behaviour of the event ports is
constrained via the respective port-variables (i.e.,
pv user e of the userRole and pv mem c of the
memoryRole) so that emission/receipt of event set en-
sures that the respective role data initialised u/m is
set to true. Furthermore, the pv mem p in lines 63–
67 and pv user r in lines 49–53 constrain the mem-
ory provided port, so that it delays calls for method
get until the shared data is initialized, and the user
required port so that it does not make calls for get un-
til the data is initialized. Therefore, the correspond-
ing ports of the user and memory components playing
the roles interact in a way that an event set is always
executed before method get is called. This avoids at-
tempts to access uninitialized data and the resulting
chaotic behaviour, as well as deadlocks.

In lines 75–78, there are two channels specified to
indicate which role port-variable communicates with
which other role port-variable.

Finally, the matching between connector roles and
components is performed via the connector parame-
ters, as specified in line 46. At configuration time,
when sharedData is instantiated, the user and mem-
ory component instances and their ports are passed as
its parameters.

4 Discussion

As can be seen by Listing 1, the notation used for
DbC in our ADL follows a JML-like syntax, which is

familiar to practitioners. This should help facilitate its
adoption as it does not require a steep learning curve
– one should be able to use it with minimal train-
ing. At the same time, it introduces connector con-
structs that are essentially (decentralized) algorithms
(as protocols are). So practitioners who have expe-
rienced the distinction between say C++ classes and
C++ generic algorithms should feel comfortable with
the distinction between components and connectors
as made here. Apart from π calculus’ ability to send
channels as messages, which we do not support, our
ADL should allow architects to express what they can
express now with ADLs based on process algebras.

All constraints in our ADL are local, expressed
on local component/role data and parameters. This
ensures realizability and makes reasoning about the
effects of actions easier. Data are encapsulated, so
there are no aliasing problems, and concurrency is
controlled through the ports – each port is a concur-
rent unit, thus ensuring that actions of a port are mu-
tually exclusive. As event emission/consumption and
method servicing (at provided ports) are atomic, ar-
chitects need only guarantee (and verify) that method
calling (at required ports) will not lead to data race
conditions.

The type of constraints an architect uses depends
on the tool support they have. If for example they ex-
press something like 0≤ x+y+z≤ 25 then their tool
would probably need to use an SMT solver or theo-
rem prover and be helped by the architect whenever
it cannot prove or disprove a claim. However, we be-
lieve that in practice one can constrain the type of ex-
pressions used, so as to enable automated verification
through a model-checker, without losing much. The
aforementioned constraint can easily be expressed as
x ∈ [0,25]∧ y ∈ [0,25− x]∧ z ∈ [0,25− x− y], which
makes it easy for a model-checker to establish, as it
introduces an order for selecting values for variables.
By constraining the form of expressions we enable
better tool support for practitioners and make it pos-
sible for these tools to be fully automated 3.

5 Conclusions

This paper presents a new ADL that aims at re-
solving three main problems in current ADLs: (i)
advanced formal notations used for specifying be-
haviours, (ii) lack of support for complex connectors,
and (iii) potentially unrealizable designs.

In response to these problems, our ADL follows
a Design-by-Contract approach for specifying be-

3Less is more.

haviour, using a JML-like syntax as much as pos-
sible. Thus, practitioners should be able to use it
with minimal training and find it not much differ-
ent to other languages that they might have used,
such as JML. Furthermore, architectural connectors
in our ADL can be used to specify either simple inter-
connection mechanisms or complex interaction pro-
tocols. So, large and complex systems can be spec-
ified at a high level as components interacting via
complex interaction protocols, like someone may use
C++ classes and C++ generic algorithms to structure
a system so as to avoid re-coding generic algorithm
fragments inside the classes. Finally, connectors are
specified as a set of decentralized, independent roles
assumed by the participating components. There is
no glue-like centralized element in connector speci-
fications or elsewhere – all constraints are expressed
on local state. This leads to architectural designs that
are realizable by construction and whose verification
is decidable (when restricted to a finite number of el-
ements) through model-checking.

Acknowledgements

This work has been partially supported by the EU
project FP7-257367 IoT@Work – “Internet of Things
at Work”.

REFERENCES

Allen, R. and Garlan, D. (1997). A formal basis for architec-
tural connection. ACM Trans. Softw. Eng. Methodol.,
6(3):213–249.

Alur, R., Etessami, K., and Yannakakis, M. (2003). Infer-
ence of message sequence charts. IEEE Trans. Soft-
ware Eng., 29(7):623–633.

Alur, R., Etessami, K., and Yannakakis, M. (2005). Realiz-
ability and verification of msc graphs. Theor. Comput.
Sci., 331(1):97–114.

Bergstra, J. A., Ponse, A., and Smolka, S. A., editors
(2001). Handbook of Process Algebra. Elsevier.

Bjørner, D. and Jones, C. B., editors (1978). The Vienna De-
velopment Method: The Meta-Language, volume 61
of Lecture Notes in Computer Science. Springer.

Canal, C., Pimentel, E., and Troya, J. M. (1999). Specifica-
tion and refinement of dynamic software architectures.
In Donohoe, P., editor, WICSA, volume 140 of IFIP
Conference Proceedings, pages 107–126. Kluwer.

Chalin, P., Kiniry, J. R., Leavens, G. T., and Poll, E. (2006).
Beyond assertions: Advanced specification and ver-
ification with JML and ESC/Java2. In FMCO’05 –
Formal Methods for Comp. and Obj., volume 4111 of
LNCS, pages 342–363. Springer.

Dashofy, E. M., van der Hoek, A., and Taylor, R. N. (2002).
An infrastructure for the rapid development of xml-
based architecture description languages. In Tracz,
W., Young, M., and Magee, J., editors, ICSE, pages
266–276. ACM.

Delanote, D., Baelen, S. V., Joosen, W., and Berbers, Y.
(2008). Using aadl to model a protocol stack. In
ICECCS, pages 277–281. IEEE Computer Society.

Feiler, P. H., Gluch, D. P., and Hudak, J. J. (2006). The Ar-
chitecture Analysis & Design Language (AADL): An
Introduction. Technical report, Software Engineering
Institute.

Garlan, D., Allen, R., and Ockerbloom, J. (1995). Architec-
tural mismatch or why it’s hard to build systems out
of existing parts. In ICSE, pages 179–185.

Garlan, D. and Shaw, M. (1993). An introduction to soft-
ware architecture. In Ambriola, V. and Tortora, G., ed-
itors, Advances in Software Engineering and Knowl-
edge Engineering, pages 1–39, Singapore. World Sci-
entific Publishing Company. Also appears as SCS and
SEI technical reports: CMU-CS-94-166, CMU/SEI-
94-TR-21, ESC-TR-94-021.

Hoare, C. A. R. (1969). An axiomatic basis for computer
programming. Commun. ACM, 12(10):576–580.

Issarny, V., Bennaceur, A., and Bromberg, Y.-D. (2011).
Middleware-layer connector synthesis: Beyond state
of the art in middleware interoperability. In Bernardo,
M. and Issarny, V., editors, SFM, volume 6659 of
Lecture Notes in Computer Science, pages 217–255.
Springer.

Luckham, D. C. (1996). Rapide: A language and toolset
for simulation of distributed systems by partial order-
ings of events. Technical report, Stanford University,
Stanford, CA, USA.

Magee, J. and Kramer, J. (1996). Dynamic structure in soft-
ware architectures. In SIGSOFT FSE, pages 3–14.

Malavolta, I., Lago, P., Muccini, H., Pelliccione, P., and
Tang, A. (2013). What industry needs from archi-
tectural languages: A survey. IEEE Transactions
on Software Engineering, 99(PrePrints):1–25. DOI:
10.1109/TSE.2012.74 .

Medvidovic, N. and Taylor, R. N. (2000). A classification
and comparison framework for software architecture
description languages. IEEE Trans. Software Eng.,
26(1):70–93.

Meyer, B. (1992). Applying “Design by Contract”. IEEE
Computer, 25(10):40–51.

OMG (2006). Corba component model 4.0 specification.
Specification Version 4.0, Object Management Group.

Perry, D. E. and Wolf, A. L. (1992). Foundations for the
study of software architecture. SIGSOFT Softw. Eng.
Notes, 17(4):40–52.

Plasil, F. and Visnovsky, S. (2002). Behavior protocols
for software components. IEEE Trans. Software Eng.,
28(11):1056–1076.

Schmidt, H., Poernomo, I., and Reussner, R. (2001). Trust-
by-contract: Modelling, analysing and predicting be-
haviour of software architectures. J. Integr. Des. Pro-
cess Sci., 5(3):25–51.

Schreiner, D. and Göschka, K. M. (2007). Explicit con-
nectors in component based software engineering for
distributed embedded systems. In Proceedings of the
33rd conference on Current Trends in Theory and
Practice of Computer Science, SOFSEM ’07, pages
923–934, Berlin, Heidelberg. Springer-Verlag.

Shaw, M., DeLine, R., Klein, D. V., Ross, T. L., Young,
D. M., and Zelesnik, G. (1995). Abstractions for soft-
ware architecture and tools to support them. IEEE
Trans. Software Eng., 21(4):314–335.

Tripakis, S. (2001). Undecidable problems of decentral-
ized observation and control. In Proc. of the 40th

IEEE Conf. on Decision and Control, volume 5, pages
4104–4109, Orlando, FL, USA. IEEE.

Tripakis, S. (2004). Undecidable problems of decentralized
observation and control on regular languages. Inf. Pro-
cess. Lett., 90(1):21–28.

