

City, University of London Institutional Repository

Citation: Ozkaya, M. & Kloukinas, C. (2012). Highly analysable, reusable, and realisable

architectural designs with XCD. Communications in Computer and Information Science, 340
CCIS, pp. 72-79. doi: 10.1007/978-3-642-35267-6_10

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/2882/

Link to published version: https://doi.org/10.1007/978-3-642-35267-6_10

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Highly Analysable, Reusable, and Realisable
Architectural Designs with XCD

Mert Ozkaya and Christos Kloukinas

School of Informatics, City University London
London EC1V 0HB, UK

{mert.ozkaya.1,C.Kloukinas}@city.ac.uk

Abstract. Connector-Centric Design (XcD) is a new approach to spec-
ifying software architectures. XcD views complex connectors as highly
significant in architectural designs, as it is the complex connectors that
non-functional quality properties in systems can emanate from. So, XcD
promotes in designs a clean separation of connectors (interaction be-
haviours) from components (functional behaviours). Designers can then
specify connectors in detail explicitly thus easing the analysis of sys-
tem designs for quality properties. Furthermore, XcD separates control
behaviour from connectors as control strategies. Architectural designs
in XcD thus become highly modular with re-usable components, con-
nectors, and control strategies (representing design solutions for quality
properties). The end result is the eased architectural experimentation
with different design solutions by re-using components/connectors and
formal analysis of these solutions to find out the optimal ones.

1 Introduction

Architectural description of systems is described in terms of two main ele-
ments – components and connectors [1]. However, current design languages (e.g.,
SysML [2] and AADL [3]) do not support connectors as first-class elements. That
is, they only make available simple connector types (e.g., procedure call and
event broadcast) and high-level complex connectors (i.e., interaction protocols)
are not supported. This leads to architectural designs being more like low-level
specifications [4]. In such cases, complex connectors would be either not speci-
fied or at best integrated into components. However, omitting the specification
of complex connectors results in architectural mismatch [5], i.e., the inability to
compose independent components to a whole system due to wrong assumptions
they make about their interaction. Furthermore, formal analysis of architectural
designs w.r.t. quality properties is hindered too; it is the complex connectors
from which system-level global issues emanate from. When the behaviour of a
complex connector is instead integrated into components, the analysis becomes
more difficult as designs become less modular. It is almost as trying to analyse
a program where procedures have been replaced by goto statements.

Complex Connectors are essentially interaction protocols specifying at a
high-level how interacting system components are to be composed into an entire

2 Mert Ozkaya, Christos Kloukinas

system. Let us consider n trains, t1,..., tn, which operate on a single station (as
is the case in London Underground). They interact with each other through a
signaling interaction protocol that instructs trains how to behave in particular
cases. For instance, trains on their way to a station have to reduce their speed if
the present train in the station experiences a delay. Or the trains might have to
stop right on the track depending on an issue that might break out on the station.
So, the interaction protocol herein is the one that determines how trains can
interact properly without resulting in safety issues (e.g. collision) and thereby is
the key part for analyses against non-functional quality properties (e.g., safety).
On the other hand, the trains themselves are unaware of each other and operate
independently. Therefore, if there were no interaction protocols coordinating
their behaviour, they would possibly collide leading to safety issues.

In this paper, we introduce our new connector-centric approach (XcD) to
specifying software architectures. Inspiring from Wright ADL [6], XcD separates
connectors (representing interaction protocols) from components (representing
functional behaviour). Thus, architectural designs can be easier to (i) under-
stand, (ii) develop and (iii) more importantly analyse. Indeed, the complex con-
nectors, where system-level quality issues emanate from, now become explicit in
designs. Connectors in XcD, unlike Wright connectors enforcing centralised glue,
are decentralised thus rendering distributed system designs realisable. Further-
more, to maximise modularity XcD separates control behaviour from connectors
as control strategies. Design solutions for quality properties can then be specified
externally to connectors. This eases the architectural experimentation with dif-
ferent alternative design solutions without modifying components/connectors.
Thus, architectural design with alternative solutions for quality properties can
be formally analysed easily and the optimal solutions can be explored early on.

2 Component Specification in XCD

The functional units in systems, components are specified in XcD with (i) ports
(P e,r,s,p) representing the points of interaction with their environment, (ii) data
(D) representing the component state, and (iii) functional and (minimal) inter-
action constraints (FC and IC respectively).

Ports are similar to those of CORBA [7] – emitter ports (P e) and recipi-
ent ports (P r) that emit and receive events respectively; socket ports (P s) and
plug ports (P p) that provide and require methods respectively. Here events and
methods are grouped into interfaces (e.g., iget,set comprising get and set events)

which are then supported by ports (e.g., p
iget,set
user emits).

Functional and interaction constraints represent the functional and the min-
imal interaction behaviours of a component respectively. The former allows for
specifying the acceptable arguments for methods/events accessible via ports;
the latter, if desired, for specifying (i) the particular manner in which the com-
ponent wants to behave (i.e., the order of actions), or (ii) the conditions under
which it does not know how to behave thus leading to interaction exception. XcD
constraints are specified following the well-known Design by Contract (DbC) ap-

Highly Analysable, Reusable, and Realisable Architectural Designs 3

proach [8], inspired by JML [9] too. The syntax for XcD constraints is thus: (port,
method/event, pre-condition, post-condition), stating that when a method/event
action occurs via a port, if the pre-condition is met, then the post-condition is
to be met.

In Fig. 1 and Fig. 2 the user and memory components interacting via shared-
data connector are specified in XcD. The user specification does not have inter-
action constraints (i.e., ICuser = ∅), meaning that its instances emit or receive
events in any order. Whereas in the memory, ICmem states that (c1) upon receiv-
ing event set via the port pmem receives, the component state is to be updated,
setting initialisedm to True, (c2) upon receiving event get from the users, if
initialisedm is True, then the event is received successfully (i.e., post-condition
is True), else, as stated in the last constraint (c3), an Interaction Exception (i.e.,
Int EX) is to be thrown. Thus, the memory does not know what to do in case it
receives event get before event set causing access to uninitialised data. As for the
functional constraints, neither component has any (i.e., FCuser/mem = ∅), as the
events (i.e., get and set) emitted or received via the ports do not have parameters.[
Pe : {piget,setuser emits}, Pr : {piget,setuser receives}, D : {Bool initialisedu = False},
FCuser : ∅, ICuser = ∅

]
Fig. 1: User Component Specification

[
Pe : ∅, Pr : {piget,setmem receives}, D : {Bool initialisedm = False},
FCmem : ∅, ICmem

]
ICmem :


c1 :

(
pmem receives, set, T rue, initialisedm

)
c2 :

(
pmem receives, get, initialisedm, T rue

)
c3 :

(
pmem receives, get,¬initialisedm, Int EX

)


Fig. 2: Memory Component Specification

3 Connector Specification in XCD

The high-level interaction protocols among components, connectors are speci-
fied in XcD with roles and channels. Depicted in Fig. 3, shared-data connector,
coordinating access to a (shared) memory by users, is specified in XcD. Connec-
tor roles are described in terms of data-variables, port-variables, and interaction
constraints. Roles essentially represent the interaction behaviour of components
interacting via the connector. Indeed, the user components specified in Fig. 1
will assume the user and initialiser roles in Fig. 3a and Fig. 3c respectively;
the memory components in Fig. 2 assume the memory role in Fig. 3b. Con-
nector channels represent the communication links between interacting roles;
each is specified with a pair of port-variables and a communication type, e.g.,
synchronous and lossy. In Fig. 3d, the channels specify which recipient port-
variable receives events of which emitter port-variable, e.g., ch3 stating that the
recipient port-variable of the memory role receives the events emitted by the

4 Mert Ozkaya, Christos Kloukinas

ruser :[
Pe : {pviget,setuser emits}, P

r : {pviget,setuser receives},
D : {Bool initialisedu = False}, ICuser : ∅

]
(a) User Role specification ruser

rmemory :[
Pe : ∅, Pr : {pviget,setmem receives}, D : {
Bool initialisedm = False}, ICmem : ∅

]
(b) Memory Role specification rmemory

rinit :[
Pe : {pviget,setinit emits}, P

r : {pviget,setinit receives},
D : {Bool initialisedi = False}, ICinit

] ICinit :{
c1 :

(
pvinit emits, get,True, True

)
c2 :

(
pvinit emits, set,True, initialisedi

)}

(c) Initialiser Role specification rinit

ch1 :
[
sync, (pvinit emits, pvuser receives)

]
ch2 :

[
sync, (pvuser emits, pvinit receives)

]
ch3 :

[
sync, (pvmem receives, pvinit emits)

]
ch4 :

[
sync, (pvmem receives, pvuser emits)

]
(d) Channel Specifications for the Shared-Data

Fig. 3: XcD Connector Specification for Shared-Data Connector

emitter port-variable of the initialiser role through synchronisation (i.e., sync)
of events.

Interaction protocols are imposed through role interaction constraints on the
component(s) assuming the roles. The interaction constraints of roles are in-
tended for enforcing components to behave in a particular manner (i.e., through
imposition of specific order on action execution). Components can thus be avoided
from getting involved in unexpected interactions due mainly to actions (e.g.,
event listening and receipt) performed in wrong order. The end result is then a
set of components interacting with their environments successfully to compose
the whole system. ICinit in Fig. 3c, for instance, states that (c1) the emission
of event get via the port-variable pvinit emits occurs with no pre- and post-
condition (i.e., both are True), and (c2) upon emission of the event set with no
pre-condition, inititalisedi is set to True. Effectively, the initialiser role= allows
assuming user components to perform actions (i.e., the emission of event get or
set) in any order.

connector Shared Data2 =
role Initializer=let A = set→ A u get→A u ℘

in set→A
role User = set→User u get→User u ℘

glue = let Continue=Initializer.set→Continue � User.set→Continue �
Initializer.get→Continue � User.get→Continue � ℘

in Initializer.set→Continue ℘

Fig. 4: Wright Connector Specification for Shared-Data Connector, reprinted
from Figure 4 of [6]

Decentralised Connectors are adopted in XcD, distinguishing it from the

Highly Analysable, Reusable, and Realisable Architectural Designs 5

Wright ADL [6] which also focuses mainly on connectors. Unlike XcD, Wright
enforces a centralised glue for connector specification which composes the be-
haviour of contained roles into a whole system behaviour. Indeed, as depicted
in Fig. 4, Wright specification of the shared-data connector includes a glue co-
ordinating the events of the user and initialiser roles. However, the glue, just
like SOA choreographies [10], is problematic. As shown in [11,12], realisation of
choreography specifications is not always possible thus leading to systems that
are impossible to implement.

4 Control Strategy Specification in XCD

XcD, unlike similar approaches, e.g., Wright [6] and Exogenous Connectors [13],
introduces a new architectural abstraction for specifying design solutions.

XcD control strategy is specified by means of external interaction constraints
that refer to a specific connector role. The constraints herein are intended for
constraining the role behaviour further so that the assuming components obey
an additional order of action execution. The end result is to be the satisfaction
of the design solution (e.g., for quality properties) represented by the control
strategy. For instance, memory in Fig. 2 might be accessed before its state-data
is initialised thus leading to safety issues (e.g., deadlock, as the memory throws
interaction exception where users expect successful termination). One can avoid
this by specifying a control strategy for the memory role, as in Fig. 5. The ICstr
in Fig. 5 states that (c1) event get is not allowed to be received by the memory
role until when pre-condition, initialisedm evaluating to True, is met. Thus,
interacting with users memory always receives event set first to initialise its
data which prevents it from throwing exception and thereby causing deadlock.

Unlike other approaches supporting design solutions (e.g., aspects in AO-
ADL [14]), control strategies, e.g., in Fig. 5, are specified externally to connector
specifications. The end result of such highly modular architectural designs is, as
shown in the evaluation section, the eased architectural experimentation with
different design solutions and their analysis for quality properties.[
r memory,
ICstr

]
ICstr :

{
c1 :

(
pvmem receives, get,
when(initialisedm), True

)}
Fig. 5: XcD Control Strategy Specification for the Memory Role

5 Evaluation

We have developed the first version of a toolset, used as plugin to Eclipse [15],
that allows designers (i) to specify their system architectures in XcD and (ii)
to automatically translate their models into formal specification in FSP formal-
ism [16]. FSP formal specifications can then be automatically analysed through
model checkers e.g., LTSA. Through our toolset, we have automatically encoded
the architectural specifications, described in Fig. 1, Fig. 2 Fig. 3, and Fig. 5, in

6 Mert Ozkaya, Christos Kloukinas

FSP. Our goal herein was to show how it helps in design to improve modularity
(i.e., separate functional, interaction, and control behaviours), which is intro-
duced with XcD. For simplicity, herein we considered 2 different configurations
of the shared-data system: one (MemoryInitialised) with the control strategy
specified in Fig. 5 and another (NoStrategies) with no strategy. Interestingly,
both configurations comprise the same component and connectors; it is only the
strategy employed on the former that distinguishes it from the latter.

Table 1 shows the formal analysis results for these 2 configurations with one
user 1. Table 2, Table 3, and Table 4 show the results for 3, 5, and 7 users
respectively. Unsurprisingly, the strategy is successful in avoiding deadlocks,
resulting from users accessing un-initialised data. Moreover, modelling formal
specifications as state-machines, LTSA ends up with the same number of states
(i.e., 5) for the shared-data’s formal specification, regardless of which configura-
tion is applied. This shows that the design solution represented by the strategy
MemoryInitialised not only avoids deadlock but also maintains state-space ef-
ficiency of the formal model. Hence, designers can better utilise the state space
during the formal analysis by, e.g., analysing their systems with more users.

With the external control strategy we easily experimented with a design
solution, without modifying components/connectors, and further analysed our
system design for safety property (i.e., deadlock freedom). If the experiment
results were not satisfactory, we could so easily employ different strategies and
analyse the system design with them. Hence, highly modular XcD lets designers
easily analyse their designs with alternative solutions for quality properties.

Strategies State
Dead-
lock

NoStrategies 5 Yes
MemoryInitialised 5 No

Table 1: Configurations with 1 Users

Strategies State
Dead-
lock

NoStrategies 5 Yes
MemoryInitialised 5 No

Table 2: Configurations with 3 Users

Strategies State
Dead-
lock

NoStrategies 5 Yes
MemoryInitialised 5 No

Table 3: Configurations with 5 Users

Strategies State
Dead-
lock

NoStrategies 5 Yes
MemoryInitialised 5 No

Table 4: Configurations with 7 Users

6 Related Work

Widely used modelling languages, e.g., UML [17] and SysML [2], unlike XcD,
neglect connectors and offer mere associations that can expose only wire-like
connections between components. ADLs, e.g., Darwin [18] and Rapide [19] suffer
from the same problem too; while Darwin views connectors as bindings between

1 We used LTSA version 2.2. with 2000 MB of RAM.

Highly Analysable, Reusable, and Realisable Architectural Designs 7

required and provided service of components, Rapide as connections between
input events and output events released by components. Better yet, AADL [3]
introduces a set of pre-defined connector types. However, it does not allow spec-
ifying any different complex connector types.

The lack of interest to connectors has been spotted earlier by Garlan [5], and
subsequently Wright ADL [6] has been developed, which formalises connectors.
XcD aims at enhancing Wright by going further and separating also the con-
trol behaviours from connectors. Moreover, XcD, unlike Wright, does not enforce
(centralised) glue specification for connectors and thus render distributed system
designs realisable. Viewing connectors as first-class entities, Plasil et all.’s [20]
work is also similar to XcD. However, they allow for compound connectors that
can encapsulate components too. This is avoided in XcD to maximise the under-
standability, re-usability and analysability of architectural designs. Exogenous
connectors [13], like XcD, promotes clean separation of components from con-
nectors. However, control behaviour is scattered inside the exogenous connectors,
which by contrast in XcD is specified externally as control strategies.

BIP [21], like XcD, separates control behaviours from connectors. However,
it neglects connectors, viewed as first-class elements by XcD, and supports only
rendezvous and broadcast interaction methods. Similarly, AO-ADL [14] intro-
duces aspect for design solutions, which are, unlike control strategies, specified
inside connector specifications and thus the re-usability of connectors and the
experimentation with different aspects get hindered.

7 Conclusion and Further Work

Connector-Centric Design (XcD) introduces a new architectural modelling lan-
guage that aims to revive the complex connectors in architectural designs. To this
end, XcD, inspired from Wright ADL, cleanly separates in designs connectors
(interaction behaviour) from components (functional behaviour). However, un-
like Wright, XcD adopts decentralised connectors that do not allow for glue-like
specifications which lead to un-realisable system designs. Furthermore, like BIP
language, XcD separates design solutions (control behaviour) from connectors
and introduces them as control strategies. Hence, designers can specify realisable
system architectures in a highly modular way through re-usable components,
connectors, and control strategies. This significantly eases the experimentation
with different combination of components/connectors/control-strategies and also
the formal analysis w.r.t. quality properties. Indeed, with external control strate-
gies, designers can easily conduct formal analysis of their system with different
design solutions by re-using components/connectors, and decide early on the
optimal design solutions that best meet quality properties.

Currently, we are working on extending XcD so that it supports channel
types and also extending the XcD language too to improve its expressiveness.

Acknowledgements. This work has been partially supported by the EU project
FP7-257367 IoT@Work Internet of Things at Work.

8 Mert Ozkaya, Christos Kloukinas

References

1. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. SIG-
SOFT Softw. Eng. Notes 17(4) (October 1992) 40–52

2. Balmelli, L.: The systems modeling language for products and systems develop-
ment. Journal of Object Technology 6(6) (2007) 149–177

3. Feiler, P.H., Gluch, D.P., Hudak, J.J.: The Architecture Analysis & Design Lan-
guage (AADL): An Introduction. Technical report, Software Engineering Institute
(2006)

4. Delanote, D., Baelen, S.V., Joosen, W., Berbers, Y.: Using aadl to model a protocol
stack. In: ICECCS, IEEE Computer Society (2008) 277–281

5. Garlan, D., Allen, R., Ockerbloom, J.: Architectural mismatch or why it’s hard to
build systems out of existing parts. In: ICSE. (1995) 179–185

6. Allen, R., Garlan, D.: A formal basis for architectural connection. ACM Trans.
Softw. Eng. Methodol. 6(3) (1997) 213–249

7. Wang, N., Schmidt, D.C., O’Ryan, C.: Component-based software engineering.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (2001) 557–571

8. Meyer, B.: Applying ”design by contract”. IEEE Computer 25(10) (1992) 40–51
9. Chalin, P., Kiniry, J.R., Leavens, G.T., Poll, E.: Beyond assertions: Advanced

specification and verification with jml and esc/java2. In de Boer, F.S., Bonsangue,
M.M., Graf, S., de Roever, W.P., eds.: FMCO. Volume 4111 of Lecture Notes in
Computer Science., Springer (2005) 342–363

10. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented com-
puting: a research roadmap. Int. J. Cooperative Inf. Syst. 17(2) (2008) 223–255

11. Alur, R., Etessami, K., Yannakakis, M.: Inference of message sequence charts.
IEEE Trans. Software Eng. 29(7) (2003) 623–633

12. Alur, R., Etessami, K., Yannakakis, M.: Realizability and verification of msc
graphs. Theor. Comput. Sci. 331(1) (2005) 97–114

13. Lau, K.K., Elizondo, P.V., Wang, Z.: Exogenous connectors for software compo-
nents. In Heineman, G.T., Crnkovic, I., Schmidt, H.W., Stafford, J.A., Szyperski,
C.A., Wallnau, K.C., eds.: CBSE. Volume 3489 of Lecture Notes in Computer
Science., Springer (2005) 90–106

14. Pinto, M., Fuentes, L., Linero, J.M.T.: Specifying aspect-oriented architectures in
ao-adl. Information & Software Technology 53(11) (2011) 1165–1182

15. International, O.T.: Eclipse platform technical overview. Technical report,
http://www.eclipse.org/whitepapers/eclipse-overview.pdf (2003)

16. Magee, J., Kramer, J.: Concurrency - state models and Java programs (2. ed.).
Wiley (2006)

17. Ivers, J., Clements, P., Garlan, D., Nord, R., Schmerl, B., Silva, J.R.O.: Document-
ing component and connector views with uml 2.0. Technical Report CMU/SEI-
2004-TR-008, Software Engineering Institute (Carnegie Mellon University) (2004)

18. Magee, J., Kramer, J.: Dynamic structure in software architectures. In: SIGSOFT
FSE. (1996) 3–14

19. Luckham, D.C.: Rapide: A language and toolset for simulation of distributed
systems by partial orderings of events. Technical report, Stanford, CA, USA (1996)

20. Bálek, D., Plasil, F.: Software connectors and their role in component deployment.
In Zielinski, K., Geihs, K., Laurentowski, A., eds.: DAIS. Volume 198 of IFIP
Conference Proceedings., Kluwer (2001) 69–84

21. Bliudze, S., Sifakis, J.: The algebra of connectors - structuring interaction in bip.
IEEE Trans. Computers 57(10) (2008) 1315–1330

