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A B S T R A C T

The success of neural networks on medical image segmentation tasks typically relies on large labeled datasets
for model training. However, acquiring and manually labeling a large medical image set is resource-intensive,
expensive, and sometimes impractical due to data sharing and privacy issues. To address this challenge,
we propose AdvChain, a generic adversarial data augmentation framework, aiming at improving both the
diversity and effectiveness of training data for medical image segmentation tasks. AdvChain augments data
with dynamic data augmentation, generating randomly chained photo-metric and geometric transformations
to resemble realistic yet challenging imaging variations to expand training data. By jointly optimizing the
data augmentation model and a segmentation network during training, challenging examples are generated
to enhance network generalizability for the downstream task. The proposed adversarial data augmentation
does not rely on generative networks and can be used as a plug-in module in general segmentation networks.
It is computationally efficient and applicable for both low-shot supervised and semi-supervised learning. We
analyze and evaluate the method on two MR image segmentation tasks: cardiac segmentation and prostate
segmentation with limited labeled data. Results show that the proposed approach can alleviate the need for
labeled data while improving model generalization ability, indicating its practical value in medical imaging
applications.
1. Introduction

Medical image segmentation plays an essential role in healthcare ap-
plications, including disease diagnosis, treatment planning, and clinical
research (Smistad et al., 2015). In recent years, many deep learning-
based techniques have been developed for medical image segmentation,
achieving high performance in terms of both speed and accuracy (Shen
et al., 2017; Litjens et al., 2017). However, training a deep neural
network generally requires a large amount of labeled data. In medical
imaging, acquiring and manually labeling such a large dataset is ex-
tremely challenging for several reasons. First, labeling medical images
is time-consuming and expensive as it requires experienced human
observers with domain expertise. Second, collecting and sharing large
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datasets across clinical sites is difficult due to data privacy and ethical
issues. As a result, it is typical that only a small number of labeled
images are available for training a neural network, which hinders
the deployment of effective deep learning solutions for healthcare
applications.

To alleviate the data scarcity problem, data augmentation ap-
proaches have been proposed (Shorten and Khoshgoftaar, 2019), which
aim to increase the diversity of the available training data without col-
lecting and manually labeling new data. Conventional data augmenta-
tion methods mainly focus on applying simple random transformations
to labeled images. These random transformations include intensity
transformations (e.g. pixel-wise noise or image-wise brightness and
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contrast adjustment) and geometric transformations (e.g. affine or
elastic transformations). Most of these transformations perform basic
image manipulations without taking image contents into account or
accounting for downstream tasks, which may introduce redundant data
points that does not necessarily improve generalization (Miyato et al.,
2018).

In this work, we introduce a generic adversarial data augmentation
framework (AdvChain), aiming at improving both the diversity and
ffectiveness of training data for medical image segmentation tasks.
dvChain improves data diversity with dynamic data augmentation, gen-
rating randomly chained photo-metric and geometric transformations
o resemble realistic complex data variation at training. Different from
onventional random data augmentation approaches, AdvChain allows
o optimize the underlying transformation parameters in arbitrarily
hained transformations (providing they are differentiable). By tak-
ng both image information and the current network fragility into
ccount to optimize the transformation parameters, AdvChain improves
he ‘hardness’ of augmented images to better regularize the network
raining (Section 3.1).

The proposed framework AdvChain can accommodate a wide range
f differentiable photometric and geometric transformations for the
oint optimization of data augmentation and network in both super-
ised and semi-supervised learning. In this work, as a proof of concept,
our different image transformation models are employed to resemble
ealistic imaging variations in MR imaging. They are: (a) an image noise
ugmentation model; (b) an intensity transformation model which am-
lifies intensity non-uniformity by simulating low-frequency intensity
orruptions caused by inhomogeneities of the magnetic field; (c) a
lobal image geometric transformation model based on affine trans-
ormation that simulates patient movement (e.g., rotation, translation)
nd imaging resolution variations (e.g., scaling) during scanning; (d)
diffeomorphic deformation model which simulates intra-subject mor-
hological difference attributed to pathology, growth and motion, and
nter-subject morphological difference. By generating realistic and var-
ous ‘hard’ examples for data augmentation, we force the network
o learn robust semantic features against various imaging variations,
eading to improved model generalization. Besides, AdvChain strength-
ns the consistency regularization for medical segmentation tasks by
mploying a composite loss function, which encourages both pixel-
evel consistency as well as contour-based consistency (Section 3.4).

e demonstrate the efficacy of the proposed method on two public MR
mage datasets in challenging low-data supervised and semi-supervised
ettings (e.g., with only 1 labeled subject for training). Our method
utperforms several strong consistency-regularized methods and strong
omposite data augmentation method (RandAugment (Cubuk et al.,
020)) in low-data regimes (e.g., with only 1 or 3 labeled subject for
raining), indicating its efficacy to improve the generalizability of the
odel on MR segmentation tasks when labeled data is limited.

This work is an extension to our previously presented work at MIC-
AI (Chen et al., 2020), where we introduced adversarial photometric
ata augmentation with a bias field intensity transformation model and
emonstrated its effectiveness on a binary cardiac segmentation task.
n this work, we substantially extend the framework by including both
dversarial photometric and geometric transformations and compos-
ng these transformations in a flexible way to further improve image
iversity and resemble data variations in magnetic resonance (MR)
maging. In particular, we present a novel adversarial diffeomorphic
eformation model to generate challenging morphological variations,
s a way to improve the segmentation model generalization ability.
inally, we extend the framework to multi-class segmentation problems
nd comprehensively evaluate our method on two public datasets, one
onsisting of cardiac MR images and the other of prostate MR images.
xperiments on both datasets show the effectiveness of our method,
hich improves image segmentation performance and outperforms
2

ompetitive consistency regularization-based methods.
2. Related work

We first review several advanced data augmentation techniques
that have been developed recently (e.g. data mixing, adversarial data
augmentation) and then introduce consistency-based semi-supervised
learning methods which are closely related to this work.

2.1. Data mixing

Data mixing methods generate new data samples by mixing multiple
samples together (Zhang et al., 2018; Hendrycks et al., 2020; Berthelot
et al., 2019). A representative work is Mixup (Zhang et al., 2018),
which creates new training samples by combining random pairs of
images (𝑥𝑎, 𝑥𝑏) and their labels (𝑦𝑎, 𝑦𝑏) via linear interpolation: 𝑥𝑛𝑒𝑤 =
𝛽𝑥𝑎 + (1− 𝛽)𝑥𝑏, 𝑦𝑛𝑒𝑤 = 𝛽𝑦𝑎 + (1− 𝛽)𝑦𝑏, where 𝛽 is a weighting parameter
sampled from the beta distribution. Though originally proposed for
image classification, Mixup has been successfully adapted to medical
image segmentation tasks, including knee segmentation (Panfilov et al.,
2019), brain segmentation (Li et al., 2019), and cardiac segmenta-
tion (Chaitanya et al., 2019). One problem with this technique is that
the mixed images can be unrealistic and difficult to interpret. Also, the
diversity of generated samples by data mixing is limited since the mixed
samples still lie in the span of the training data (Wu et al., 2020).

2.2. Adversarial data augmentation

Adversarial data augmentation applies perturbations to original
images to fool the model into making classification mistakes. These
perturbed images (also known as adversarial images) are then used to
optimize the network for improved robustness against particular pertur-
bations. Recent studies have shown that adversarial data augmentation
can be more effective than random data augmentation (Madry et al.,
2017; Volpi et al., 2018; Suzuki and Sato, 2020). Most existing works
are based on simple gradient-based noise attack, i.e. using the gradi-
ents of the neural network to generate additive adversarial noise to
perturb images (Madry et al., 2017; Goodfellow et al., 2015; Carlini and
Wagner, 2017; Tramèr and Boneh, 2019; Miyato et al., 2018; Paschali
et al., 2018). However, researchers have found that neural networks
can be fragile to other more complex forms of transformations that
may occur in images, such as affine transformations (Kanbak et al.,
2018; Engstrom et al., 2019; Zeng et al., 2019; Finlayson et al., 2019),
illumination changes (Zeng et al., 2019) or small deformations (Alaifari
et al., 2019). For medical image segmentation, the majority of related
works focus on crafting effective adversarial examples and leverage
them to evaluate model robustness. For example, Paschali et al. (2018)
applied a targeted attack, specifically a dense adversary generation
(DAG) attack (Xie et al., 2017), to generate effective pixel-wise noise,
which fools a segmentation network into producing poor segmentation
on brain images. Chen et al. (2019a) proposed to use conditional
GANs to model spatial deformation and noises for adversarial image
construction.

In contrast to existing adversarial data augmentation which aug-
ments images with a single, fixed type of image transformation (Miyato
et al., 2018; Wang et al., 2021a; Chen et al., 2020; Xie et al., 2017;
Alaifari et al., 2019; Kanbak et al., 2018; Zeng et al., 2019; Finlayson
et al., 2019; Madry et al., 2017; Goodfellow et al., 2015; Carlini
and Wagner, 2017; Tramèr and Boneh, 2019; Paschali et al., 2018),
AdvChain is capable of directly optimizing the transformations param-
eters in dynamic data augmentations, e.g., arbitrarily chained image
photometric and geometric transformations, better generating realistic
and challenging image variations that may occur at medical imaging
applications. Existing composite data augmentation optimization works
such as generative adversarial network (GAN)-based data augmentation
approach (Gao et al., 2021) are very computational intensive and
suffer from the training instability problem, as they need to train

different GANs to produce photometric and geometric transformation



Medical Image Analysis 82 (2022) 102597C. Chen et al.

𝐷

parameters separately. Their approach cannot be used to optimize
randomly chained transformations due to high training instability and
memory costs, which involves the optimization of multiple stacked
GANs. Our method, by contrast, can efficiently optimize all different
transformations in a chain, even with only one forward pass and
backward pass.

On top of AdvChain, we also present a novel adversarial data aug-
mentation with diffeomorphic transformations based on stationary ve-
locity fields, which could generate realistic, morphological variations
to fool the network. At training, we directly optimize the underlying
static velocity field and integrate them to generate diffeomorphic de-
formations. This is fundamentally different from existing adversarial
deformation works based on GANs (Chen et al., 2019a; Gao et al., 2021)
where a generative network is required to model additive displacement
fields. The network has to be pre-trained with a carefully designed
regularization loss on the deformation fields to restrict the realism of
generated deformations. The produced deformations may not be invert-
ible, thus restricting its use for computing the pixel-wise consistency
regularization in the original input space.

2.3. Consistency regularization

Viewing data augmentation as a way of encoding invariances and
equivalences into a neural network, consistency regularization methods
apply data augmentation to unlabeled data for semi-supervised learning
based on the assumption that the predictions of a data point and
its augmented/perturbed example should be consistent (Sajjadi et al.,
2016; Li et al., 2020; Miyato et al., 2018; Berthelot et al., 2019; Xie
et al., 2020a; Sohn et al., 2020; Wang et al., 2021a). A consistency
regularization term is generally introduced to the loss function to
encourage a model to produce consistent predictions on similar inputs
(e.g., unlabeled data and its augmented ones). On the basis of this
mechanism, many works explored different data augmentation tech-
niques, including random data augmentation (e.g., pixel-level noise,
affine transformations) (Sajjadi et al., 2016; Liu et al., 2020; Li et al.,
2020), data mixing (Berthelot et al., 2019; Hendrycks et al., 2020) and
adversarial data augmentation techniques (Miyato et al., 2018; Volpi
et al., 2018; Xie et al., 2020b; Suzuki and Sato, 2020).

For medical image segmentation tasks, several related works ex-
plored different types of data augmentation to enhance consistency
regularization (Cui et al., 2019; Li et al., 2020; Chen et al., 2020).
These works focused on utilizing weak, random augmentation methods
such as random Gaussian noise (Cui et al., 2019), random affine trans-
formations (Li et al., 2020), and adversarial bias fields (Chen et al.,
2020). A major difference in our work is that we consider modeling
more complex photometric and geometric transformations and propose
adversarial training to optimize the transformation parameters to gen-
erate more challenging augmented images. We believe that, with more
diverse and effective realistic data augmentation to regularize training,
the proposed method can better enforce the model to learn high-level,
robust representations for an improved generalization ability.

3. Methods

The goal of medical image segmentation is to learn a mapping from
an image space  to a label space  . In deep learning, the mapping
is parameterized by a neural network, e.g., U-net (Ronneberger et al.,
2015), 𝑓𝜃 :  →  , where 𝜃 denotes the network parameters, such as
weights and biases in the convolutional layers. Assume we have a small
labeled dataset 𝐷𝐿 ∶ {(𝐱𝑖, 𝐲𝑖)}𝑁𝑖=1 (𝑁 > 0) and an unlabeled dataset

𝑈 ∶ {(𝐱𝑖)}𝑀𝑖=1(𝑀 ≥ 0), where images 𝐱 and pixel-wise labels 𝐲 are
drawn from the joint distribution 𝑃 ( ,). The learning goal is to train
a network 𝑓𝜃 parameterized by 𝜃 to model the conditional probabil-
ity distribution 𝑃 (|). As the network usually contains millions of
parameters, it is important to regularize the network to alleviate the
over-fitting problem, especially when there is insufficient training data.
3

Recent works on image classification have shown that consistency
regularization with data augmentation can be an effective approach
to regularizing the network and exploiting the value of unlabeled
data (Xie et al., 2020a). Our method follows this learning paradigm. At
a high level, the learning objective for the network can be formulated
as follows:

min
𝜃

E𝐱∈𝐷𝑙
𝑠

(

𝐲, 𝑓𝜃(𝐱)
)

+ 𝜆E𝐱∈𝐷𝑙∪𝐷𝑢
(𝐱; 𝑓𝜃 , 𝐭 ). (1)

Here 𝑠 denotes the supervised loss (e.g., cross-entropy loss) for
labeled images in the training set;  is a consistency regularization
term computed on both labeled and unlabeled data; 𝜆 is a weighting
factor to balance the supervised and regularization loss terms. In par-
ticular,  measures the inconsistency between the prediction for the
original image 𝑓𝜃(𝐱) and the prediction for the image under a single or
a composite perturbation/transformation function: 𝑓𝜃(𝐭 (𝐱)). 𝐭 is short
for  (⋅, 𝐭) denoting the transformation function  parameterized by 𝐭.

3.1. AdvChain: A generic adversarial data augmentation framework for
effective consistency regularization

In this work, we employ an adversarial training approach to first
optimize transformation parameters 𝐭 so that augmented images can
better regularize network training (Miyato et al., 2018). In other words,
we would like first to find perturbations/transformations to which the
current segmentation model is most sensitive and then utilize them
for consistency regularization. Different from existing adversarial data
augmentation methods (Chen et al., 2020; Miyato et al., 2018) where
they only consider a fixed type of pixel-level perturbations, we propose
AdvChain, a generic adversarial data augmentation framework which
allows optimizing the parameters in a random chain of different image
transformation functions (incl. photo-metric and geometric transforma-
tions) for improved data diversity, with the aim of better reflecting
complex image variations in MR imaging. In this work, we employ
four different image transformation functions as a proof of concept
(will be introduced in Section 3.3), allowing to generate not only pixel-
level perturbations but also geometric variations, e.g. morphological
variations.

The whole learning procedure can be generally described as a
two-step optimization, as shown in Fig. 1:

• With the segmentation parameters 𝜃 fixed, we update the image
transformation parameters 𝐭 in the search space to produce an
adversarial image augmentation  , so that it maximizes the
disagreement (measured by ) between the original prediction
𝐩 = 𝑓𝜃(𝐱) and the prediction on the perturbed image 𝐩′ =
𝑓𝜃(𝐭 (𝐱)). Here  can be a single transformation or a compos-
ite transformation with chained image transformation functions
 ∶ 1◦2,… , ◦𝑛 (𝑛 >= 1) with corresponding transformation
parameters 𝐭 ∶ 𝐭1, 𝐭2,… , 𝐭𝑛;

• With the optimized transformation parameters 𝐭∗ fixed, we ob-
tain an AdvChain augmented image 𝐱∗ = 𝐭∗ (𝐱) and feed it
to the network to update the segmentation network parame-
ters 𝜃 to minimize the supervised loss 𝑠 and the consistency
regularization loss .

Mathematically, the learning objective can then be formulated as
follows:

min
𝜃

E𝐱∈𝐷𝑙
𝑠

(

𝐲, 𝑓𝜃(𝐱)
)

+ 𝜆E𝐱∈𝐷𝑙∪𝐷𝑢
(𝐱; 𝑓𝜃 , 𝐭∗ ). (2a)

𝑠.𝑡. 𝐭∗ = argmax
𝐭∶(𝐭)

(𝐱; 𝑓𝜃 , 𝐭 ). (2b)

Here, (𝐭) denotes a set of constraints that specify the search space
of corresponding transformation parameters. These constraints are es-
sential as they explicitly ensure that augmented or perturbed images
remain meaningful and realistic. Since it is difficult to determine the

∗
optimum parameters 𝐭 in practice, we relax the objective in Eq. (2)(b).



Medical Image Analysis 82 (2022) 102597C. Chen et al.
Fig. 1. AdvChain overview. AdvChain is a generic adversarial data augmentation framework for medical image segmentation, which allows optimizing the parameters in a randomly
sampled augmentation chain (incl. photo-metric and geometric transformations) for enhanced consistency regularization. Left: Given a segmentation network 𝑓𝜃 , an input image
𝐱 and a randomly sampled chain of transformation functions  ∶ 1◦2 ,… , ◦𝑛 (𝑛 >= 1) with corresponding transformation parameters 𝐭 ∶ 𝐭1 , 𝐭2 ,… , 𝐭𝑛, AdvChain first optimizes the
underlying transformation parameters 𝐭 in the direction of maximizing the inconsistency (measured by ) between the network prediction for the original image 𝐩 = 𝑓𝜃 (𝐱) and the
prediction for the augmented image 𝐩′ = 𝑓𝜃 (𝐱′). Right: The updated transformation parameters 𝐭∗ are then used to generate an AdvChain augmented image 𝐱∗ to train the network.
Specifically, the network parameters 𝜃 are optimized in the direction of minimizing the consistency loss  computed between the original prediction 𝐩 and the prediction for the
AdvChain image 𝐩∗, in together with the supervised loss 𝑠 (if its ground-truth label 𝐲 is available).
We instead try to find a relatively effective 𝐭∗ that produces higher in-
consistency loss  to strengthen the network regularization, compared
to its random initialized counterpart. To achieve the goal, we employ
the commonly used projected gradient descent (PGD) algorithm (Madry
et al., 2017) to update the randomly initialized transformation pa-
rameters in a chain, which has been found effective to optimize the
parameters with constraints across many applications (Xing et al.,
2021):

𝐭𝑖 ← Π 𝐭𝑖 + 𝛼𝑖∇𝐭𝑖∕‖∇𝐭𝑖‖2. (3)

Here, Π is the projection operation that projects the updated parameters
onto the feasible set constrained by , 𝛼𝑖 specifies the step size when
we update the parameters 𝐭𝑖 for the transformation function 𝑖 in a
chain along the direction of the normalized gradient ∇𝐭𝑖∕‖∇𝐭𝑖‖2.
In practice, we use the same step size for different transformation
for simplicity. We apply the chain rule to efficiently compute the
gradients along the augmentation chain1. We use normalized gradients
to update the parameters in each transformation function to avoid
gradient explosion or vanishing problems when the length of chained
transformations is long.

3.2. Increasing the data diversity of AdvChain with dynamic transforma-
tions

AdvChain allows to optimize dynamic transformations: e.g. single or
composite transformations randomly generated at training. Such flexi-
bility is highly adorable as the data diversity can be largely increased at
a low cost. While it is possible that better performance can be achieved
by employing the optimum combinations of transformation functions
for a particular task, it often requires extraordinary high computational
costs to search for improved data augmentation policies (Cubuk et al.,
2019). Therefore, in AdvChain we simply randomly select and chain
the transformations in an arbitrary order, allowing itself to explore all
possible solutions as a trade-off between efficiency and effectiveness.
Specifically, for each image, each transformation function is randomly
selected with a probability of 𝑝 and then chained in a random order to
produce a high diversity of augmented images. We then apply adver-
sarial training to this chain, which optimizes the underlying parameters
in each transformation.

In Algorithm 1, we illustrate the detailed steps of the proposed
adversarial data augmentation method with a random chain of trans-
formations for consistency regularization. For ease of understanding,

1 Applying the chain rule allows us to calculate the gradient of the loss
function with respect to the parameters of each transformation function in a
chain in an efficient way. The transformation functions are required to be
differentiable. In our work, all transformations satisfy the criterion, where
the geometric transformations are implemented using the differentiable spatial
transformer module (Jaderberg et al., 2015).
4

we use subscripts 1, 2, 3 to represent three different arbitrary image
transformation functions.

Algorithm 1 AdvChain
1: Input: labelled or unlabelled training set: 𝐿 ∪ 𝑈 , a segmentation

network 𝑓𝜃
2: Requires: a set of predefined transformations { }, number of

update steps 𝑘, step size 𝛼
3: for 𝐱 ∈ 𝐿 ∪ 𝑈 do
4: Randomly select transformation operations with a probability of

𝑝 from a group of transformation functions { }, e.g., 1, 2, 3.
5: Chain them in a random order, e.g., 312 = 3◦1◦2 and ran-

domly initialize the transformation parameters 𝐭(0)312 ∶ 𝐭(0)3 , 𝐭(0)1 , 𝐭(0)2

6: for j=0,..., k-1 do
7: Compute consistency loss (𝐱; 𝑓𝜃 , 312(⋅; 𝐭

(𝑗)
312))

8: Apply the chain rule to computing gradients ∇𝐭3, ∇𝐭1, ∇𝐭2
and update 𝐭3, 𝐭1, 𝐭2, respectively using Eq.(3)

9: end for
10: Return the chain of data augmentation with optimized parame-

ters to augment images:  𝑎𝑑𝑣
312 (𝐱) = 312(𝐱; 𝐭𝑎𝑑𝑣312 ).

11: Compute the loss for network optimization using Eq. (2a).
12: end for

3.3. Realistic image transformation functions

AdvChain is an advanced, generic, lightweight adversarial data aug-
mentation framework, which can be applied to optimize any types of
differentiable photometric and geometric transformations on-the-fly. In
this work, we consider four different image transformation functions
as a proof of concept. The transformation functions are constructed to
reflect common data variations that exist in MR images, including:

• an additive image noise model noise, which adds pixel-wise noise
to images (Section 3.3.1),

• an image intensity transformation model bias, which generates
bias fields to corrupt images. Bias field can introduce intensity
inhomogeneities in images, which is a common artefact in MR
imaging (Sled et al., 1998; Tustison et al., 2010; Ferreira et al.,
2013) (Section 3.3.2),

• an image geometric transformation model aff ine, which simu-
lates image spatial variance caused by patient movement and
the adjustment of acquisition parameters (e.g., image resolution,
field-of-view) during scanning (Section 3.3.3),

• a diffeomorphic deformation model morph, which simulates inter-
and intra-subject shape variability attributed to age, pathology,
and motion (Section 3.3.4).
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Fig. 2. Adversarial example construction with: (a) image noise model noise: (b) image intensity transformation model with bias field bias; (c) image geometric transformation
model aff ine; (d) image deformation model morph.
Without loss of generality, we assume that all image transformations
are defined in 2D space and performed on 2D images 𝐱 ∈ R𝐻×𝑊 . One
should note that these transformations can be potentially extended to
3D space.

3.3.1. Image noise model noise
We begin with the most commonly used image noise model, which

applies additive noise to perturb images, as shown in Fig. 2(a). Follow-
ing existing adversarial data augmentation works (Goodfellow et al.,
2015; Madry et al., 2017; Miyato et al., 2018), the image noise model
is formulated as

𝐱noise = noise(𝐱; 𝐫) = 𝐱 + 𝐫, (4)

where the magnitude of the noise 𝐫 is bounded by 𝜖𝑛𝑜𝑖𝑠𝑒. The magnitude
constraint 𝑛𝑜𝑖𝑠𝑒 can be described as follows:

‖𝐫‖2 ≤ 𝜖noise. (5)

Here 𝜖noise(𝜖noise ≥ 0) is a scalar controlling the level of noise.

3.3.2. Image intensity transformation with bias field bias
Following previous related works on bias field correction (Sled

et al., 1998; Tustison et al., 2010), a multiplicative intensity transfor-
mation is adopted here to introduce intensity non-uniformity to images.
As shown in Fig. 2(b), the intensity of the image 𝐱 is perturbed by
multiplying with the bias field 𝛷bias ∈ R𝐻×𝑊 :

𝐱bias = bias(𝐱; 𝐜) = 𝐱 ⊙𝛷bias(𝐜), (6)

where ⊙ denotes point-wise multiplication. Similar to the bias field
model in N4ITK (Tustison et al., 2010), we use a set of uniformly
distributed 𝑏× 𝑏 control points 𝐜 = {𝑐(𝑖,𝑗)}𝑏×𝑏 for bias field construction,
based on the fact that the bias field is smoothly varying across the
image, see Fig. 2(b). Following Sled et al. (1998), Tustison et al.
(2010), 𝐜 is defined in the log-transformed bias field space for numerical
stability during optimization. A smooth bias field is obtained by first
interpolating a grid of regularly spaced control points 𝐜 with a third-
order B-spline smoothing (Gallier and Gallier, 2000) and then taking
the exponential for value recovering: 𝛷bias(𝐜) = exp(𝐵(𝐜)). Here, B rep-
resents the interpolation function with uniform B-splines for smoothing.
When 𝐜 = 𝟎, 𝛷bias = 𝟏 (identity field).

The magnitude constraint for the bias field perturbation bias is
defined as:

∀(𝑥, 𝑦) ∈ R2, ‖𝛷bias(𝐜) − 𝟏‖∞ ≤ 𝜖bias, (7)

where 𝜖bias(𝜖bias ≥ 0) is a scalar to control the maximum level of
corruption caused by the bias field.
5

3.3.3. Image geometric transformation model aff ine
To model image-level geometric variations we use an affine trans-

formation to transform images. This process is defined as:

𝐱aff ine = aff ine(𝐱; 𝐚) = aff ine(𝐱; 𝑡𝑥, 𝑡𝑦, 𝑟, 𝑠𝑥, 𝑠𝑦), (8)

where 𝐚 contains five affine parameters [𝑡𝑥, 𝑡𝑦, 𝑟, 𝑠𝑥, 𝑠𝑦] to characterize
translation 𝑇 , rotation 𝑅 and scaling 𝑆 operations which are per-
formed in succession, see Fig. 2(c). Given a 2D image 𝐱 and the affine
parameters 𝐚, a pixel 𝐱(𝑢, 𝑣) at position (𝑢, 𝑣) in the original image
𝐱 is transformed to a new position (𝑢′, 𝑣′) via the following matrix
multiplications:

⎡

⎢

⎢

⎣

𝑢′

𝑣′

1

⎤

⎥

⎥

⎦

= (𝑇 ⋅ 𝑅 ⋅ 𝑆) ⋅
⎡

⎢

⎢

⎣

𝑢
𝑣
1

⎤

⎥

⎥

⎦

, (9)

where 𝑇 =
⎡

⎢

⎢

⎣

1 0 𝑡𝑥
0 1 𝑡𝑦
0 0 1

⎤

⎥

⎥

⎦

, 𝑅 =
⎡

⎢

⎢

⎣

cos 𝑟𝜋 − sin 𝑟𝜋 0
sin 𝑟𝜋 cos 𝑟𝜋 0
0 0 1

⎤

⎥

⎥

⎦

, 𝑆 =

⎡

⎢

⎢

⎣

1 + 𝑠𝑥 0 0
0 1 + 𝑠𝑦 0
0 0 1

⎤

⎥

⎥

⎦

. We use a normalized Cartesian coordinate

system centered at (0,0) to specify each pixel’s location (𝑢, 𝑣). Each
location is normalized by the input spatial dimensions so that its value
lies in [−1, 1]: −1 ≤ 𝑢 ≤ 1,−1 ≤ 𝑣 ≤ 1. Each transformation parameter is
restricted in a user-defined range to control the range of the spatial
transformations. The constraint for the affine transformation model
𝑎𝑓𝑓𝑖𝑛𝑒 can be described as:

− 𝜖𝑎𝑖 ≤ 𝑎𝑖 ≤ 𝜖𝑎𝑖 ; ∀𝑎𝑖 ∈ [𝑡𝑥, 𝑡𝑦, 𝑟, 𝑠𝑥, 𝑠𝑦]. (10)

3.3.4. Image deformation model morph
To introduce intra- and inter-subject anatomical variations, we

would like to construct a generator that can produce a smooth spatial
transformation to deform the image, while preserving its topology and
spatial layout. To achieve the goal, we model these variations using in-
vertible and differentiable diffeomorphic transformations (Vercauteren
et al., 2009). Specifically, following previous works on diffeomor-
phic image registration, e.g., Demons (Vercauteren et al., 2009), we
parameterize the deformation 𝛷morph using an underlying stationary
velocity field 𝐯 that 𝜕𝛷morph(𝑡)

𝜕𝑡 = 𝐯(𝛷(𝑡)
𝑚𝑜𝑟𝑝ℎ), where 𝛷(𝑡)

𝑚𝑜𝑟𝑝ℎ represents the
deformation at time 𝑡. The final deformation 𝛷morph is obtained by
starting with an identity transform 𝛷(0)

𝑚𝑜𝑟𝑝ℎ = 𝐼𝑑 and integrating the
stationary velocity field 𝐯 over 𝑡 ∈ [0, 1].2 As shown in Fig. 2(d), given

2 We employ the scaling and squaring (Arsigny et al., 2006) to ap-
proximate the integration to accelerate the computation as a common
practice (Balakrishnan et al., 2019; Arsigny et al., 2006; Vercauteren et al.,
2009).
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a 2D image 𝐱 and a 2-dimensional velocity field 𝐯, the deformed image
is obtained using the following function:

𝐱morph = morph(𝐱; 𝐯) = 𝐱◦𝛷morph = 𝐱◦∫
1

𝑡=0
𝐯(𝛷(𝑡)

morph) 𝑑𝑡. (11)

ere 𝐱◦𝛷morph represents 𝐱 warped by a deformation field 𝛷morph ∈
R𝐻×𝑊 ×2. To initialize the velocity field 𝐯, we sample a random, low-
resolution tensor 𝐯′ ∈ R

𝐻
𝑑𝑠 ×

𝑊
𝑑𝑠 ×2 (𝑑𝑠 ≥ 1).3 We impose a magnitude

constraint morph to 𝐯′ to control the level of deformation:

𝐯′‖2 ≤ 𝜖morph. (12)

This is achieved by directly applying L2 norm to 𝐯′ and re-scaling
t to find an approximate solution in the constrained space: 𝐯′ ←

morph
𝐯′

‖𝐯′‖2
(Miyato et al., 2018). To further encourage the spatial

smoothness of the deformation, following the related work on the
diffeomorphic demons (Vercauteren et al., 2009), we apply Gaussian
smoothing 𝐾smooth to the velocity field: 𝐯′ ← 𝐾smooth(𝐯′) as well as
to the integrated deformation: 𝛷smooth ← 𝐾smooth(𝛷morph). In this way,
we ensure the deformation is smooth and diffeomorphic without in-
troducing additional smoothness regularization terms, simplifying the
optimization procedure (Cachier et al., 2003). In the experiments, we
used a small Gaussian kernel 𝐾smooth with 𝜎𝑠𝑚𝑜𝑜𝑡ℎ = 1, as suggested
by Vercauteren et al. (2009).

3.4. Consistency loss function 

3.4.1. Consistency loss function for photometric transformations
For photometric transformations, i.e. bias, noise, we directly use a

composite distance loss function  to compute the consistency regular-
ization term  computed on the original probabilistic prediction 𝑓𝜃(𝐱)
and perturbed prediction 𝑓𝜃( (𝐱)):

(𝐱; 𝑓𝜃 ,  ) = (𝑓𝜃(𝐱) , 𝑓𝜃( (𝐱; 𝐭))). (13)

The composite distance function  measures two predictions 𝐩,𝐩′ in
the same image coordinates, which is defined as follows:

(𝐩,𝐩′) = 𝑀𝑆𝐸 (𝐩,𝐩′) +𝑤𝐶𝑜𝑛𝑡𝑜𝑢𝑟(𝐩,𝐩′),
𝑀𝑆𝐸 (𝐩,𝐩′) = ‖𝐩 − 𝐩′‖22,

𝐶𝑜𝑛𝑡𝑜𝑢𝑟 =
𝐶
∑

𝑐≠𝐵𝐺

∑

𝑆∈ 𝑆𝑥 ,𝑆𝑦

‖𝑆(𝐩(𝑐)) − 𝑆(𝐩′(𝑐))‖22.
(14)

Here we adopt the mean-squared-error loss 𝑀𝑆𝐸 to measure pixel-
wise differences, as a common practice in consistency regularization
related works (Tarvainen and Valpola, 2017; Li et al., 2020; Cui et al.,
2019; Berthelot et al., 2019). In addition, we employ a contour-based
loss function 𝐶𝑜𝑛𝑡𝑜𝑢𝑟 to better capture the difference on the foreground
objects’ boundaries between two predictions (Chen et al., 2019b).
𝑆𝑥, 𝑆𝑦 represent Sobel filters in the x- and 𝑦-directions, which are used
to extract object boundaries from the model’s probabilistic map for
every class 𝑐 except the background (BG) class. 𝑤 is a weight that
controls the relative importance of two terms. In our experiments, we
empirically set it to 0.5. We believe that combining pixel-wise and
contour-based loss terms can help the network to better capture the
semantic dissimilarity between two predicted segmentation maps.

3.4.2. Consistency loss function for geometric transformations
For geometric transformations, i.e., morph, aff ine, Eq. (13) is not

directly applicable as the position and/or structural information of
target objects also changes accordingly. We, therefore, transform the
perturbed prediction back to the coordinates of the original image
accordingly before computing the consistency loss. The regularization
loss is defined as:

(𝐱; 𝑓𝜃 ,  ) = (𝑓𝜃(𝐱),  −1
𝐭 (𝑓𝜃( (𝐱; 𝐭)))). (15)

3 We apply bilinear upsampling to 𝐯′ to obtain 𝐯.
6

Here  −1
𝐭 denote the inverse transformation for  (⋅; 𝐭). The inverse

ransformations for the two types of geometric transformations are easy
o compute:

• Inverse affine transformation  −1
aff ine: Since the affine transfor-

mation is parameterized by a homogeneous transformation ma-
trix, its inverse transformation matrix can be directly computed
via:  −1

aff ine = 𝑆−1𝑅−1𝑇 −1;
• Inverse deformation  −1

morph: The inverse deformation 𝛷−1
morph is

obtained by integrating the negative velocity field (−𝐯) backward:
 −1
morph = ∫ −1

𝑡=0 (−𝐯)(𝛷
(𝑡))𝑑𝑡 (Ashburner, 2007).

.4.3. Consistency loss function for a chained transformation
For a chained transformation 1◦2◦...◦𝑚 ∶ 1◦2◦...𝑚 including both

photometric and geometric transformations, we employ Eqs. (13) and
(15) to compute the consistency loss between the original prediction
and the perturbed prediction:

𝑐ℎ𝑎𝑖𝑛
 = (𝐱; 𝑓𝜃 , 1◦2◦...◦𝑚). (16)

This means one needs to transform the perturbed prediction back to the
coordinates of the original image if there is any geometric transforma-
tion involved. For instance, given a chain of transformation functions
aff ine ◦ noise : aff ine◦noise, the loss function is defined as follows:

𝑐ℎ𝑎𝑖𝑛
 (𝐱; 𝑓𝜃 , aff ine ◦ noise) = (𝐩,  −1

aff ine(𝐩
′)) (17)

where 𝐩 = 𝑓𝜃(𝐱),𝐩′ = 𝑓𝜃(aff ine ◦ noise(𝐱)).

4. Experiments settings

4.1. Datasets

4.1.1. Cardiac MR dataset
The cardiac dataset is provided by The Automated Cardiac Diagno-

sis Challenge (ACDC) (Bernard et al., 2018),4 which is a public dataset
for cardiac MR image segmentation. The left ventricular cavity (LV),
the left ventricular myocardium (MYO), and the right ventricular cavity
(RV) in end-diastolic and end-systolic frames were manually labeled by
experts. The original in-plane pixel spacing ranges from 1.37×1.37 mm2

to 1.68 × 1.68 mm2.
We preprocessed images to have the same in-plane pixel spacing:

1.37×1.37 mm2, following Chaitanya et al. (2019). After that, all images
were centrally cropped to 192 × 192 in order to save computational
cost. We used the same data setting as in Chaitanya et al. (2019),
splitting the dataset (100 subjects in total) into 4 subsets: an unlabeled
set for semi-supervised learning (𝑀=25), a validation set (5 subjects),
and a test set (20 subjects). The rest 50 subjects were used as the labeled
training pool. We selected 𝑁 subjects from the rest to form a labeled
set for training, simulating a low-data learning regime. Specifically,
we evaluated one-shot learning (𝑁=1) and three-shot learning (𝑁=3)
in both supervised (using the labeled set only) and semi-supervised
(using both labeled and unlabeled sets) settings. We also trained the
segmentation with different numbers of labeled subjects from the pool
(N=10, N=25) to test the performance improvements against different
settings. In all settings, we trained the network five times, each time
with a different, randomly selected labeled set to alleviate the dataset
selection bias, and reported the mean performance.

4 https://www.creatis.insa-lyon.fr/Challenge/acdc/databases.html

https://www.creatis.insa-lyon.fr/Challenge/acdc/databases.html
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4.1.2. Prostate MR dataset
The prostate dataset is provided by the Medical Segmentation De-

cathlon Challenge (Antonelli et al., 2022),5 which consists of 32 sub-
jects. The peripheral zone (PZ) and the central zone (CZ) of the prostate
have been manually labeled and verified by an expert human rater.
We performed segmentation on T2 images, where all images have
been resampled to have the same pixel spacing (0.625 × 0.625 mm2,
the median value of pixel spacings in this dataset) and then centrally
cropped to 224 × 224 to reduce computational cost.

To train and evaluate the proposed method, we split the dataset
into 22/4/6 for training/validation/testing. The training set was further
divided into two subsets (11 subjects each). We randomly selected
𝑁 (with 𝑁 ≤ 11) subjects from the first set to form a small labeled
set while all subjects in the second one were used to construct the
unlabeled set (𝑀 = 11) for semi-supervised learning. We trained the
network three times, each time with a different, randomly selected
labeled set and reported the mean performance.

4.2. Implementation details

4.2.1. Default data augmentation
For all experiments, we applied a random data augmentation pipe-

line as a default setting. This augmentation pipeline includes random
affine transformation (i.e. scaling, rotation, translation), image flipping,
random global intensity transformation (brightness and contrast), and
elastic transformation. Detailed configurations of these random trans-
formations can be found in Chaitanya et al. (2019). After random data
augmentation, the image intensity was rescaled to [0, 1].

4.2.2. Training details
The proposed method is independent of the network structures. For

ease of comparison, we adopted the commonly-used 2D U-net (Ron-
neberger et al., 2015) as our segmentation network, which has been
demonstrated its superiority across various medical image segmenta-
tion datasets (Isensee et al., 2021). The Adam optimizer was used to
update network parameters with a batch size of 20. To accelerate train-
ing, we first trained the network with the default data augmentation for
1,000 epochs (learning rate=10−3) to get a pre-trained segmentation
etwork. We then fine-tuned the network with the proposed data
ugmentation method. We applied a small learning rate (10−5) and

trained the network for 600 epochs. Following previous work on semi-
supervised learning (Berthelot et al., 2019; Tarvainen and Valpola,
2017; Li et al., 2020), we evaluated the segmentation model using an
exponential moving average of model parameters with a decay rate of
0.999.

Loss configuration: For the supervised loss 𝑠, we used a combi-
nation of a weighted cross entropy loss function and a soft Dice loss
function (Baumgartner et al., 2018), to alleviate the class imbalance
problem in data. Empirically, for cardiac segmentation, class weights
for background (BG), LV, MYO, RV were set to 0.01:0.33:0.33:0.33
respectively to give equal weights to foreground classes; for prostate
segmentation, weights for BG, PZ, CZ were set to 0.01:0.66:0.33. We
set a higher weight to the PZ class, as it has significantly fewer number
of pixels in each image, compared to the CZ class. Regarding the
consistency regularization loss , the weighting parameters for the
contour loss term 𝑤 was empirically set to 0.5. Since the prediction
for images 𝑓𝜃(𝐱) can be very noisy at the beginning of the training,
t can produce incorrect supervision signals to misguide the training.
his is a common issue in consistency-regularized methods Li et al.
2020), Berthelot et al. (2019). Similar to Li et al. (2020), Berthelot
t al. (2019), we started the training with a small weight 𝜆 for 
nd slowly increased it in the first 𝑒𝑟𝑎𝑚𝑝 epochs until it reached to its
aximum 𝜆𝑚𝑎𝑥. The value of 𝜆 was linearly increased with the number

5 http://medicaldecathlon.com/
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Table 1
Configurations for image transformations.

Transformation Parameter constraints

noise noise ∥ 𝐫 ∥2≤ 𝜖noise = 1

bias Control points 𝐜 ∈ R𝑏×𝑏; 𝑏 = 4, 𝜖bias = 0.3

aff ine
Translation: −0.1 ≤ 𝑡𝑥 , 𝑡𝑦 ≤ 0.1
Rotation: − 30◦

180◦
≤ 𝑟 ≤ 30◦

180◦
Scaling: −0.2 ≤ 𝑠𝑥 , 𝑠𝑦 ≤ 0.2

morph 𝐯′ ∈ R
𝐻
𝑑𝑠

× 𝑊
𝑑𝑠

×2, 𝑑𝑠 = 16, ‖𝐯′‖2 ≤ 𝜖morph = 1.5

of training epochs: 𝜆 = min(𝜆𝑚𝑎𝑥 × 𝑒∕𝑒𝑟𝑎𝑚𝑝, 𝜆𝑚𝑎𝑥). 𝑒 is the number of
the current epoch and 𝑒𝑟𝑎𝑚𝑝 = 200. We empirically set 𝜆𝑚𝑎𝑥 = 1.0
so that in the later stage the supervised loss 𝑠 and the consistency
regularization loss  share the same weight to balance the training.
Ideally, the two losses are expected to be zero when the network
reaches its optimum, suggesting that the network not only produces
correct segmentations on original images but also produces consistent
predictions on adversarially augmented images.

Adversarial data augmentation configuration: For bias field con-
truction, we adopted the B-spline convolution kernel provided by the
irLab library to interpolate the control points (Sandkühler et al.,
018). To ensure the generated variations are realistic, one has to
pecify the magnitude constraints for each transformation. For sim-
licity, one can reuse the magnitude constraints specified in existing
and-crafted random data augmentation works or empirically set up
he range based on visual inspection, which is a common practice
n most data augmentation frameworks. Specifically, in this work,
he constraints for noise, bias field, rotation, and translation were
irectly taken from our previous work (Chen et al., 2020) and Ran-
Augment (Cubuk et al., 2020), whereas for our proposed novel image
eformation model, the velocity magnitude constraint was set based
n visual inspection. We provide an interactive Jupyter notebook for
eaders’ interest to visualize the augmented images with different trans-
ormation configurations in our code repository.6 Table 1 lists the
etailed configurations for the employed transformations in our work.
he probability of selecting each transformation 𝑝 is set to 0.5 for
implicity. For the optimization of the underlying transformation pa-
ameters, we first randomly sampled the parameters from the specified
ange for initialization and then applied projected gradient descent to
nsure the updated transformations are still within the search space.
pecifically, for noise 𝐫 and velocity fields 𝐯 with 𝑙2 norm constraints,
imilar to (Miyato et al., 2018), we normalized and re-scaled the up-
ated parameters to meet the magnitude constraints specified in Eq. (5)
nd Eq. (12), respectively. For the bias field, we clipped the values of
enerated bias field to meet the criterion specified in Eq. (7). For affine
ransformation, we applied the element-wise HardTanh activation func-
ion to the transformation parameters (rotation, translation, scaling)
nd re-scaled them to meet the criterion specified in Eq. (10). We used
he same step size (𝛼𝑖 = 1) and performed only a one-step (𝑘 = 1) search
or simplicity and training efficiency, similar to Miyato et al. (2018).
etailed implementation can be found in our code repository.7 We
sed the same configuration for both cardiac and prostate segmentation
asks to test the generality. Results show that it can yield substantial
mprovements for both applications. The full code implementation
or AdvChain is based on PyTorch and is available at GitHub.8 All

® ®
xperiments were performed on an Nvidia GeForce 2080 Ti.

http://medicaldecathlon.com/
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Table 2
Comparison between the proposed method (AdvChain) against high-performing consistency regularized semi-supervised learning methods on the cardiac, and prostate segmentation
datasets.

Task Cardiac Prostate
Dataset setting N = 1, M = 25 N = 3, M = 25 N = 3, M = 11 N = 11, M = 11
Method LV MYO RV AVG LV MYO RV AVG PZ CZ AVG PZ CZ AVG
Pretrained 0.5155 0.4290 0.2201 0.3882 (0.2353) 0.8269 0.7905 0.6288 0.7487 (0.1154) 0.3897 0.7075 0.5486 (0.1034) 0.5077 0.8019 0.6548 (0.0934)
MixMatch (Berthelot et al., 2019) 0.6611 0.5415 0.3547 0.5191 (0.1913) 0.8406 0.8203 0.6849 0.7819 (0.1050) 0.4770 0.7505 0.6137 (0.0701) 0.5893 0.8220 0.7057 (0.0566)
FixMatch (Sohn et al., 2020) 0.6437 0.5496 0.3666 0.5200 (0.1675) 0.8370 0.8119 0.6461 0.7650 (0.1029) 0.4243 0.7327 0.5785 (0.0756) 0.5439 0.8107 0.6773 (0.0726)
TCSM (Li et al., 2020) 0.6391 0.5491 0.3369 0.5084 (0.2283) 0.8442 0.8179 0.6816 0.7812 (0.1047) 0.4740 0.7512 0.6126 (0.0753) 0.5986 0.8248 0.7117 (0.0613)
VAT (Miyato et al., 2018) 0.6729 0.5228 0.3400 0.5119 (0.2218) 0.8598 0.8353 0.6646 0.7866 (0.0999) 0.4571 0.7565 0.6068 (0.0763) 0.5436 0.8106 0.6771 (0.0648)
FixMatch+VAT (Wang et al., 2021a) 0.6675 0.5778 0.3715 0.5389 (0.1666) 0.8396 0.8121 0.6504 0.7674 (0.1006) 0.4254 0.7175 0.5715 (0.0886) 0.5576 0.8226 0.6901 (0.0642)
AdvChain (proposed) 0.7151 0.6369 0.4064 0.5861 (0.1939) 0.8708 0.8469 0.7072 0.8083 (0.0849) 0.5243 0.7742 0.6492 (0.0789) 0.6245 0.8405 0.7325 (0.0474)

Upperbounda 0.8963 0.8553 0.7419 0.8312 (0.0730) 0.8951 0.8627 0.7654 0.8411 (0.0600) 0.5930 0.7960 0.6945 (0.0666) 0.6298 0.8280 0.7288 (0.0648)

Reported values are mean Dice scores for each class. We also report the mean and standard deviation of average Dice scores over all foreground classes (AVG) for each task. N: # of labeled images, M: # of unlabeled
images. LV: left ventricle; MYO: left ventricular myocardium; RV: right ventricle; PZ: peripheral zone; CZ: central zone.
aUpperbound performance of the segmentation network (U-net) when trained using labeled images (N + M) from both the labeled set and the unlabeled set.
Fig. 3. Visualization of the segmentation results on the (a) cardiac and (b) prostate test data with U-net trained using different consistency regularization-based semi-supervised
methods. The proposed method (AdvChain) consistently outperforms the other competing methods in both tasks, producing more anatomically correct segmentation results. GT:
manual labels.
5. Results

5.1. Comparison study

We compared our method (AdvChain) to several high-performing
consistency-regularization-based semi-supervised methods powered by
different data augmentation techniques, which are mostly related to
ours:

• MixMatch (Berthelot et al., 2019)9 is a semi-supervised learning
method based on Mixup (Zhang et al., 2018) Mixmatch performs
linear interpolation to mix both labeled examples and unlabeled
examples to get augmented image-label pairs;

• FixMatch (Sohn et al., 2020)10 enhances regularization by en-
forcing the prediction consistency between weakly augmented

6 https://github.com/cherise215/advchain/tree/master/example
7 https://github.com/cherise215/advchain/tree/master/advchain/

augmentor
8 https://github.com/cherise215/advchain
9 https://github.com/google-research/mixmatch

10 https://github.com/google-research/fixmatch
8

images (i.e., flip, shifts) and strongly augmented images with
RandAugment (Cubuk et al., 2020);

• TCSM (Li et al., 2020)11 is an enhanced Mean-Teacher based
semi-supervised learning method (Cui et al., 2019) It enhances
the consistency regularization by extending the noise perturba-
tion with random geometric transformations including scaling and
rotation;

• VAT (Miyato et al., 2018)12 is an adversarial noise-based semi-
supervised learning method. Unlike the proposed method, it in-
jects only adversarial noise to clean data for consistency regular-
ization and use confidence thresholding to obtain pseudo labels
for reliable regularization.

• FixMatch+VAT (Wang et al., 2021a) is a semi-supervised learning
method combining FixMatch (Sohn et al., 2020) and VAT (Miyato
et al., 2018), which has achieved state-of-the-art performance in
some large-scale medical image classification tasks.

11 https://github.com/xmengli999/TCSM
12 https://github.com/takerum/vat_tf

https://github.com/cherise215/advchain/tree/master/example
https://github.com/cherise215/advchain/tree/master/advchain/augmentor
https://github.com/cherise215/advchain/tree/master/advchain/augmentor
https://github.com/cherise215/advchain
https://github.com/google-research/mixmatch
https://github.com/google-research/fixmatch
https://github.com/xmengli999/TCSM
https://github.com/takerum/vat_tf
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For all methods, we adopted their official implementation13 and trained
the same network with the same training setup (e.g. using the same pre-
trained models) for fair comparison. Quantitative results in Table 2 and
qualitative results in Fig. 3 show that the proposed approach achieves
the highest performance on the two segmentation tasks. Surprisingly,
one interesting finding from Table 2 is that when we have the same
number of labeled and unlabeled images (i.e. N=11, M=11) to train the
prostate segmentation network, the proposed method even exceeds the
upper-bound performance, e.g., 0.7325 vs 0.7288 in terms of average
Dice score. This may be due to the presence of noisy labels in the
prostate dataset (see the top-right block in Fig. 3 for reference), which
can affect the learning in a fully supervised setting. As semi-supervised
learning does not fully rely on manual labels on the training dataset, it
can therefore be more robust against noisy labels.

We further compared our data augmentation with the state-of-
the-art random composite data augmentation method: RandAugment
(Cubuk et al., 2020) adopted in FixMatch (Sohn et al., 2020), which
employs a wide collection of image transformations including color
inversion, translation, contrast adjustment.14 As shown in Fig. 4 when

e replaced our proposed data augmentation with RandAugment in
ur consistency-regularized method, the segmentation performance de-
lines with lower average Dice scores on the cardiac segmentation task.
he segmentation performance on the prostate segmentation tasks does
ot significantly outperform ours although RandAugment employs a
arger number of image processing functions (autoContrast, equalize, so-
arize, color, posterize, contrast, brightness, sharpness, rotation, translation
nd shearing (Cubuk et al., 2020)).

We found that compared to AdvChain, RandAugment focuses more
on modifying the style of images. The geometric variations are quite
limited compared to ours. In fact, RandAugment only considers basic
spatial augmentation operations (e.g., rotation, translation) without ap-
plying any local deformations (Cubuk et al., 2020). Such a limitation is
also shared in the other semi-supervised learning frameworks compared
in our study, such as TCSM (Li et al., 2020). By contrast, our proposed
method supports to generate diffeomorphic transformations to account
for realistic morphological variations. The generated transformations
are reversible, which allows to measure the prediction inconsistency
in the original image space for ease of optimization. With adversarial
training, AdvChain observes the image content and takes the segmen-
ation model’s prediction to identify and deform the local structures
f interest with increased variations (see Fig. 5), which helps the seg-
entation model to better generalize across different populations with

aried morphology. Of note, different from AdvChain, RandAugment
does not support adversarial training to optimize the transformation
parameters as the underlying image transformation functions in Python
Image Library (PIL)15 do not support automatic differentiation.

We attribute the efficacy of our method against other baseline meth-
ods mainly to (1) the increased data diversity and effectiveness with
adversarial training applied to dynamic image transformations, see Sec-
tions 5.2.1 and 5.2.2 and (2) the enhanced consistency regularization
loss with a contour-based loss term, see Section 5.2.3.

5.2. Ablation studies

5.2.1. Effects of adversarial training w/ individual augmentation and dy-
namically chained composite data augmentation

To understand the effects of individual data augmentations and
the importance of the chain strategy for improved data diversity used

13 For VAT, MixMatch, FixMatch, we re-implemented them in PyTorch as
he original code repositories are based on Tensorflow.
14 We adopted the implementation of RandAugment provided in the official
yTorch website with its recommended set-up: https://pytorch.org/vision/
table/generated/torchvision.transforms.RandAugment.html.
15
9

Python Image Library: https://pillow.readthedocs.io/en/stable/.
in AdvChain, we investigate the performance of our framework when
applying augmentations individually with a fixed type of transforma-
tion or with dynamic augmentation chains. Specifically, we trained
the same network with each of the four transformations separately in
the semi-supervised setting, and compared the results to their random
counterparts (i.e. without adversarial training). Table 3 shows the
obtained results.

In Table 3, we observe that individual data augmentations with
adversarial training consistently outperform those corresponding ones
without adversarial training, see row 1 vs. row 2, row 3 vs. row 4.
Another finding is that adversarial training with morphological trans-
formations always outperforms the other three individual data augmen-
tations, highlighting the importance of introducing local anatomical
variations to enhance the data variety.

In both cardiac and prostate segmentation tasks, the proposed com-
posite adversarial augmentation (AdvChain) achieves the highest Dice
scores on both tasks. By contrast, the random-based composite data
augmentation: chain w/o adversarial training does not always outper-
form other random individual data augmentations. For example, on
the cardiac segmentation performance, the average Dice score slightly
drops from 0.7857 to 0.7802, compared to the one with random bias
field augmentation. This highlights the importance of applying ad-
versarial training to optimizing dynamically chained transformations,
which increases both the diversity and effectiveness of augmented data
points to improve the network generalization for the downstream tasks.

5.2.2. The generality of AdvChain with different chained transformations
of varied lengths and different orders

To verify the generality of AdvChain with different types of chained
transformations, we apply AdvChain to optimizing chained transfor-
mations of different lengths, i.e. the maximum number of sampled
transformations in a chain are fixed to a certain number (1/2/3/4)
during the course of training in each experiment. Fig. 6 plots the results
on the cardiac test set using the same data setting (N=3, M=25) and
prostate test set using the similar setting (N=3, M=11), respectively. We
also plot the results with its downgraded variant (RandChain), i.e., Ad-
vChain without applying the adversarial optimization on the transfor-
mation parameters for comparison. Results show that AdvChain consis-
tently provides segmentation performance improvements regardless the
change of chained lengths.

We also applied AdvChain to optimizing the same set of transfor-
mations but chained in different orders. Since there are 24 different
arrangements with the four transformations, we selected the two most
common ones as a proof of concept: (a) 𝑇𝑎𝑓𝑓𝑖𝑛𝑒◦𝑚𝑜𝑟𝑝ℎ◦𝑏𝑖𝑎𝑠◦𝑛𝑜𝑖𝑠𝑒: first
apply photo-metric transformations and then geometric transforma-
tions from local perturbations to global perturbations, similar to Chen
et al. (2019a), Zhao et al. (2019); (b) 𝑇𝑛𝑜𝑖𝑠𝑒◦𝑏𝑖𝑎𝑠◦𝑚𝑜𝑟𝑝ℎ◦𝑎𝑓𝑓𝑖𝑛𝑒: the one
chained in the opposite direction. Results shown in Fig. 7 confirm
that AdvChain provides consistent improvements with composite trans-
formations chained in different orders, indicating the generality of
AdvChain with composite transformations chained in random orders for
improved segmentation model performance.

Fig. 8 visualizes the data augmentation optimization process with
the chain 𝑇𝑎𝑓𝑓𝑖𝑛𝑒◦𝑚𝑜𝑟𝑝ℎ◦𝑏𝑖𝑎𝑠◦𝑛𝑜𝑖𝑠𝑒 and network predictions before and after
augmentations. From Fig. 8, we can clearly see that after applying
adversarial optimization, the optimized data augmentations (see the
bottom row in each block) are more effective at perturbing network
predictions compared to those with random initialization (the top
row in each block). This is because adversarial data augmentation
takes both model information and image content into account to aug-
ment images, which produces more informative, challenging samples
to regularize the network. It is particularly evident when we com-
pare adversarial noise (𝐫𝑎𝑑𝑣) and adversarial deformation (𝛷𝑎𝑑𝑣

morph) to
their random initialized counterparts (𝐫𝑟𝑎𝑛𝑑 , 𝛷𝑟𝑎𝑛𝑑

morph). We can see that
adversarial data augmentation can identify and focus more on attack-

ing/deforming local target structures in images to fool the network to

https://pytorch.org/vision/stable/generated/torchvision.transforms.RandAugment.html
https://pytorch.org/vision/stable/generated/torchvision.transforms.RandAugment.html
https://pillow.readthedocs.io/en/stable/
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Fig. 4. Boxplots of average Dice scores evaluated on the (a, b) cardiac and (c, d) prostate test sets using different composite data augmentation methods for consistency regularization:
RandAugment (Cubuk et al., 2020) and ours: AdvChain. For ease of comparison, in AdvChain, we limit the maximum number of selected transformations to 2, making it aligned
with the recommended set-up in RandAugment. We trained the networks using different numbers of labeled (N) and unlabeled images (M). Compared to RandAugment, our
proposed method AdvChain achieves higher average Dice scores (see white numbers) in most cases even with a smaller set of transformations, especially when labeled data is
extremely limited.
Table 3
Random vs adversarial data augmentation with individual image transformations and chained transformations for consistency
regularization.

Cardiac

Adversarial training Noise Bias Affine Morph Chain

✗ 0.7706 (0.1066) 0.7857 (0.0994) 0.7704 (0.1123) 0.7836 (0.0940) 0.7802 (0.1035)
✓ 0.7864 (0.0976) 0.7955 (0.1013) 0.7885 (0.1033) 0.8014 (0.0861) 0.8083 (0.0849)

Prostate

Adversarial training Noise Bias Affine Morph Chain

✗ 0.5880 (0.1016) 0.6093 (0.0817) 0.6268 (0.0912) 0.6104 (0.0813) 0.6270 (0.0872)
✓ 0.6211 (0.0951) 0.6123 (0.0811) 0.6294 (0.0897) 0.6408 (0.0784) 0.6492 (0.0789)

Experiments were performed on cardiac segmentation and prostate segmentation datasets in the semi-supervised setting.
For both tasks, we use only three labeled subjects. Reported values are mean (std) of average Dice scores across foreground
classes over multiple runs (5 runs for cardiac, 3 runs for prostate).
Fig. 5. An input image (a) and (b) augmented images generated using RandAug-
ment (Cubuk et al., 2020) and (c) augmented images using our proposed adversarial
data augmentation AdvChain.

make inconsistent predictions. Augmenting images with these adversar-
ial transformations contribute to stronger consistency regularization to
enforce the network to be invariant under photometric transformations
and equivariant under geometric transformations.

In Fig. 7, it is interesting to notice that AdvChain with
𝑇𝑛𝑜𝑖𝑠𝑒◦𝑏𝑖𝑎𝑠◦𝑚𝑜𝑟𝑝ℎ◦𝑎𝑓𝑓𝑖𝑛𝑒 yields slightly better performance compared to
the one with 𝑇𝑎𝑓𝑓𝑖𝑛𝑒◦𝑚𝑜𝑟𝑝ℎ◦𝑏𝑖𝑎𝑠◦𝑛𝑜𝑖𝑠𝑒 on the cardiac segmentation task.
For the prostate segmentation, AdvChain w/ 𝑇𝑎𝑓𝑓𝑖𝑛𝑒◦𝑚𝑜𝑟𝑝ℎ◦𝑏𝑖𝑎𝑠 achieves
higher segmentation. Similarity, AdvChain achieves slightly better per-
formance when the maximum chained length is fixed to 1 for cardiac
segmentation and 2 for prostate segmentation, respectively, as shown
in Fig. 6. We also found that the optimum maximum chain length
depends on not only the task but also the selection of the training
set, see Fig. A.1 in the appendix. It is possible that better performance
10
Fig. 6. Boxplots of average Dice scores between the results of RandChain and
AdvChain for cardiac segmentation (a) and prostate segmentation (b). AdvChain provides
consistent improvements with chained transformations of different maximum lengths
(1–4). White circles with numbers show the mean value of Dice scores across the test
tests.
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Table 4
Effect of different distance functions for consistency loss function .

Consistency loss functions Cardiac (N = 3, M = 25) Prostate (N = 3, M = 11)

LV MYO RV AVG PZ CZ AVG

𝐾𝐿
0.8635 0.8429 0.6747 0.7937 0.5053 0.7663 0.6358

𝐾𝐿+𝐶𝑜𝑛𝑡𝑜𝑢𝑟
0.8655 0.8445 0.6744 0.7948 0.4989 0.7729 0.6359

𝑀𝑆𝐸
0.8660 0.8450 0.7043 0.8051 0.5156 0.7744 0.6450

𝑀𝑆𝐸+𝐶𝑜𝑛𝑡𝑜𝑢𝑟
(proposed) 0.8708 0.8469 0.7072 0.8083 0.5243 0.7742 0.6492

Reported scores are average Dice scores over segmented structures. We also report the mean Dice scores over all
foreground classes (AVG) for each task. N: number of labeled subjects, M: number of unlabeled subjects.
Fig. 7. Boxplots of average Dice scores between the results of RandChain and AdvChain
with transformations chained in different orders. Compared to RandChain, AdvChain
boosts the segmentation performance with improved mean Dice scores and reduced
outliers. White circles with numbers show the mean value of Dice scores across the
test tests.

can be further achieved by identifying the optimum maximum length
and the optimum arrangement (taking the validation set performance
into account) to improve segmentation performance for a specific task.
Yet since the search space can be extremely large and the policy
optimization requires extraordinary high computational costs (Cubuk
et al., 2019), we randomly generate arbitrarily chained transformations
to explore all different kinds of possibilities as a trade-off between
efficiency and effectiveness for general segmentation tasks.

5.2.3. Effect of different consistency loss functions
We further compared the proposed with the other three different

distance functions to highlight the superiority of the proposed inconsis-
tency regularization . The three different distance functions have been
commonly used in the literature for semi-supervised learning, which
are:

• 𝐾𝐿
, the regularization loss used in VAT (Miyato et al., 2018)

and FixMatch (Sohn et al., 2020), FixMatch+VAT (Wang et al.,
2021a), where 𝐾𝐿 is Kullback–Leibler divergence (KL) loss:
𝐾𝐿

= 𝐾𝐿(𝐩,𝐩′) = 1∕𝑛
∑𝑛

𝑖=1
∑𝐶

𝑐=1 𝐩(𝑖)
(𝑐) log 𝐩(𝑖)(𝑐)

𝐩′(𝑖)(𝑐) where 𝑛 is the
number of pixels in the image;
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• 𝑀𝑆𝐸
, the regularization loss used in TCSM (Li et al., 2020)

and MixMatch (Berthelot et al., 2019), where 𝑀𝑆𝐸 is the mean
squared loss;

• 𝐾𝐿+𝐶𝑜𝑛𝑡𝑜𝑢𝑟
, where 𝐾𝐿+𝐶𝑜𝑛𝑡𝑜𝑢𝑟 consists of the 𝐾𝐿 loss and the

contour-based loss 𝐶𝑜𝑛𝑡𝑜𝑢𝑟 used in our previous work (Chen et al.,
2020).

And the proposed one is denoted as 𝑀𝑆𝐸+𝐶𝑜𝑛𝑡𝑜𝑢𝑟
for clarity. We ran

experiments on the two tasks. Results are shown in Table 4. Com-
pared to the other three loss functions, the proposed one 𝑀𝑆𝐸+𝐶𝑜𝑛𝑡𝑜𝑢𝑟
outperforms the other three in most cases and achieves the highest
average Dice scores in both segmentation tasks. Adding contour-based
loss (𝐾𝐿+𝐶𝑜𝑛𝑡𝑜𝑢𝑟

, 𝑀𝑆𝐸+𝐶𝑜𝑛𝑡𝑜𝑢𝑟
) in general provides better performance

than their corresponding standalone counterpart (i.e. 𝑀𝑆𝐸
,𝐾𝐿

),
highlighting the benefits of taking additional boundary information for
consistency regularization.

5.2.4. Effect of number of labeled images
In Fig. 9, we report the segmentation performance of our methods

under different data settings on the cardiac segmentation task. Net-
works were trained with a different number of labeled subjects and
the same unlabeled dataset (𝑀 = 25). As expected, the performance of
semi-supervised learning improves when more labeled training images
are included. Compared to standard training (trained without con-
sistency regularization), the proposed method (AdvChain) consistently
provides significant performance improvement across all settings. The
performance gain is particularly evident in the extremely one-shot
setting (N=1). The performance gap between the standard training and
ours narrows when adding more labeled images into training, which is
consistent with the finding reported in other semi-supervised learning
frameworks (Li et al., 2020).

5.3. Supervised learning with extremely low data settings

We evaluate the performance of the proposed method under ex-
tremely low data settings, where there is no unlabeled data available
(𝑀 = 0). Results are shown in Table 5. It is clear that the proposed
AdvChain consistently outperforms the competitive baseline method
RandChain on the two tasks by a large margin. The results confirm that
in the scenario where training data is limited, the proposed method still
enhances model training significantly. This indicates the great potential
of the proposed method to alleviate the data scarcity problem.

6. Discussion

In this work, we have presented a novel adversarial data augmenta-
tion method, which is capable of introducing both realistic photometric
and geometric transformations to improve the generalization capability
for neural network-based medical image segmentation of MR images.
The proposed method enhances several aspects of previous data aug-
mentation and regularization schemes. Compared to VAT (Miyato et al.,
2018), RandAugment (Cubuk et al., 2020) and the data augmentation
in TCSM (Li et al., 2020), the proposed method provides counterpart
samples with more realistic variations in medical imaging, including
challenging local intensity variations (bias fields) and morphological



Medical Image Analysis 82 (2022) 102597C. Chen et al.
Fig. 8. Optimizing a chain of data transformation parameters produces effective adversarial samples, which greatly alter the network’s predictions for (a) the cardiac segmentation
task and (b) the prostate segmentation task, respectively. Here, the order of chained transformations is: noise → bias → morph → aff ine (aff ine◦morph◦bias◦noise). Before/After: predictions
before/after data augmentation. After∗: perturbed predictions which have been transformed back to the original image coordinates for consistency measurement.
Table 5
Results of low-shot supervised learning on the cardiac and prostate datasets.

Cardiac Prostate

N = 1, M = 0 N = 3, M = 0 N = 3, M = 0 N = 11, M = 0

LV MYO RV LV MYO RV PZ CZ PZ CZ
Standard training 0.5155 0.4290 0.2201 0.8269 0.7905 0.6288 0.3017 0.6278 0.5057 0.8091
RandChain 0.5581 0.4570 0.2699 0.8183 0.7857 0.6123 0.3962 0.7570 0.5641 0.8385
AdvChain 0.6093 0.5022 0.3079 0.8435 0.8122 0.6473 0.4192 0.7600 0.5720 0.8450

Reported values are average Dice scores.
Fig. 9. Semi-supervised learning results on the cardiac test set with networks trained
using different numbers of labeled subjects and the same unlabeled set (25 subjects).
Standard training: supervised training using only labeled images.

changes (diffeomorphic deformations). Compared to data-mixing-based
methods such as Mixmatch (Berthelot et al., 2019), which generates
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unrealistic mixed images with linear interpolation to ensure the ‘lin-
earity’ of the network, the proposed method applies physics-based
transformation models to generate a diverse set of extrapolated data
points around each input, which can be viewed as a way to encourage
the ‘local smoothness’ under various local perturbations. We believe
that local smoothness is a better regularization for segmentation tasks,
as it encourages the network to incorporate human perception, clus-
tering perceptually similar images for decision making. In particular,
it strengthens the network’s invariance against photometric transforma-
tions and equivariance under geometric transformations, where the two
properties are highly desirable for model generalization. On the seg-
mentation tasks for cardiac and prostate MR images, we demonstrated
that the proposed method has great potential to reduce the annotation
effort, outperforming competitive baseline methods in both low-shot
supervised settings and semi-supervised settings.

We notice that there are concurrent works using GAN (Chaitanya
et al., 2019) and adversarial training (Gao et al., 2021) to find effective
photometric and geometric transformations for data augmentation.
These methods cannot be directly compared to ours as they require
training additional neural networks. Since GANs are essentially large
neural networks, they still require a large number of training images
to avoid over-fitting. And their methods cannot be applied to optimize
dynamically chained transformations as it suffers from the training
instability problem with a set of randomly stacked GANs. Our method,
by contrast, is more flexible and data efficient, as it only employs a small
set of explainable and controllable parameters and can be used even in
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extremely low data settings (e.g., only 1 or 3 labeled subjects, no access
to unlabeled subjects). Also, training GAN requires considerable com-
putational resources and expertise to tune hyperparameters and can be
very unstable (Gulrajani et al., 2017). The proposed adversarial data
augmentation by contrast can be directly used as a plug-in lightweight
module to support training segmentation pipelines.

Limitations: One limitation of the proposed method is that it still
requires expertise to explicitly specify the magnitude constraints for the
employed parameters to ensure the naturalism of augmented images.
Yet, how to automatically find optimal data augmentation policy (data
augmentation operations and associated probabilities, magnitudes, the
order of chained transformations, the optimum chain length) is still an
active research area (Cubuk et al., 2019; Zhang et al., 2020; Shorten
and Khoshgoftaar, 2019). In recent years, there has been an emerging
research topic focusing on automatic data augmentation (Auto DA),
which in general requires an external RNN controller to find optimal
probabilities and magnitudes for a group of image transformations for
a particular dataset (Cubuk et al., 2019; Shorten and Khoshgoftaar,
2019). Combining Auto DA with the proposed method may further
automate the process with higher accuracy.

To further enhance the effectiveness of the proposed method for
medical image segmentation tasks, one can also consider employing
more advanced segmentation network architectures to increase its rep-
resentation learning capacity for improved segmentation accuracy and
integrating AdvChain with other advanced techniques to solve potential
additional challenges. For example, medical image segmentation often
suffers from class imbalance (long-tail problem), which may skew the
performance of the segmentation model. In this work, we applied
weighted supervised loss, as a common practice. It is worthwhile to
explore more advanced class-imbalance invariant techniques, e.g., sup-
pressed consistency loss (Hyun et al., 2020) for further improvements.
On the other hand, medical images are typically grayscale images
with poor image contrast where the anatomical structures may have
very blurry contours. This increases the burden of producing reliable
predictions (pseudo labels) on unlabeled images before applying per-
turbations for consistency regularization. To improve the reliability of
pseudo labels, one can adopt an iterative training procedure, which dis-
tills previously learned knowledge into a neural network with an equal
or larger capacity to boost model performance on label estimation (Xie
et al., 2020c; Zoph et al., 2020). Also, it is interesting to introduce a
pseudo label assessment module to select high quality pseudo labels for
more effective uncertainty-aware consistency regularization (Xia et al.,
2020a,b; Liu and Tan, 2021; Wang et al., 2021b; Yu et al., 2019). We
will explore these extensions in future work.

7. Conclusion

This work tackles the challenging task of multi-class segmenta-
tion on MR images, given very limited number of labeled subjects.
A novel adversarial data augmentation method has been presented,
which jointly optimizes a dynamic data augmentation module and the
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segmentation network to better leverage labeled and unlabeled data
for improved model generalization. The proposed data augmentation
method is capable of improving both data effectiveness and diversity
with challenging complex data variations based on photometric and
geometric transformations (Section 5.2.1, Section 5.2.2), simulating
realistic image appearance and anatomical variations that could exist in
MR imaging. Our work also highlights the importance of (1) introduc-
ing adversarial diffeomorphic deformations for improved data diversity
and effectiveness (Section 5.2.1), which has not been explored in prior
consistency regularization-based methods. We have also demonstrated
the effectiveness of adding the contour-based consistency loss for a
more comprehensive inconsistency measurement to inform network
training, see Section 5.2.3.

The whole framework can be used as a plug-in module to facil-
itate supervised and semi-supervised learning and is generic for MR
image segmentation tasks. With only four types of photo-metric and
geometric transformations, we have demonstrated its great data effi-
ciency on two different tasks in challenging low-shot semi-supervised
settings, outperforming several strong consistency-regularized methods
in different scenarios. The proposed method even outperforms the state-
of-the-art composite data augmentation method (RandAugment (Cubuk
et al., 2020)) in most cases. The flexibility and the generic nature of
AdvChain open the door to incorporate more image transformations
to better reflect the imaging variations in the real world and thus
AdvChain has the potential to be applied to different imaging modalities
and different data-driven medical imaging applications, such as image
registration (Uzunova et al., 2017) and image reconstruction (Cheng
et al., 2020). We leave that for future work.
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Appendix

See Fig. A.1.
Fig. A.1. Optimal maximum chain length of AdvChain depends on the selection of training set, training set size, and the segmentation task. Here, we plot boxplots of
average Dice scores with the segmentation network trained with AdvChain using different selections of labeled sets across different tasks. We varied the maximum chain lengths
(1–4) to search for the optimum setting that achieves the highest average Dice scores on the test set. A yellow star in each group indicates the optimum chain length for a specific
setting. We find that the optimum value varies across different tasks and different labeled set selections, which can be observed on the cardiac and prostate segmentation tasks,
see (a), (c), respectively. This phenomenon still exists even when we increased the number of labeled subjects from 3 to 25 for the cardiac segmentation task (b). There is no
consensus on the optimum maximum chain length across different selections of labeled sets. N: number of labeled images, M: number of unlabeled images.
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