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An image-driven model for pattern detection, resistant to 
Birdsall linearisation 

Joshua A. Solomon 
Centre for Applied Vision Research, City, University of London, EC1V 0HB, United Kingdom  

A B S T R A C T   

If detection were governed by an isolated (and possibly nonlinear) transducer, then a linearisation of the psychometric function (d-prime vs target amplitude) must 
accompany any threshold elevation due to the addition of external noise. This is the Birdsall theorem. From the fact that noise can elevate threshold without lin-
earising the psychometric function, we can safely infer that detection is not governed by an isolated transducer. Heretofore, image-driven models, which accept 
images or numerical descriptions thereof as input, have proven incompatible with this failure of Birdsall linearisation, unless they incorporate the principle of 
intrinsic uncertainty, which asserts that detection is governed by the maximum activity in several independent (noisy) sensors. One image-driven model incompatible 
with the failure of Birdsall linearisation is Watson and Solomon’s (J. Opt. Soc. Am. A, 14 (1997), 2379) model of visual contrast gain control and pattern masking. 
Here I report a simple modification – pooling sensor outputs before, instead of after the comparison of input images – allowing that model to predict curved psy-
chometric functions, even when external noise elevates threshold by more than 20 dB, without any detrimental effect to the quality of its fit to pattern-masking 
thresholds in the absence of noise. The failure of Birdsall linearisation, therefore, does not necessarily imply independent samples of performance-limiting noise 
in multiple visual sensors. Instead, performance-limiting noise may arise after the visual system combines output from mutually inhibitory sensors.   

1. Introduction 

The comparison between candidate explanations for visual sensi-
tivity has been greatly facilitated by examining the effects of random 
perturbations in the visual stimuli (Pelli & Farell, 1999). In the absence 
of any such external noise, psychometric functions of d′ vs target 
contrast curve upwards (Nachmias & Sansbury, 1974; Stromeyer & 
Klein, 1974). An isolated transduction mechanism could produce curvy 
functions like this, but once external noise had sufficient contrast to 
impair performance, the psychometric function would have to 
straighten out. The necessity of this linearisation has been proven 
mathematically (Lasley & Cohn, 1981). It is known as The Birdsall 
Theorem.1 

When replotted as probability correct vs log contrast, linear func-
tions of d′ vs target contrast are well-fit by the relatively shallow Weibull 
distribution having a shape parameter β = 1.3, compressed to span the 
range (1/m, 1), where m is the number of alternatives in a multiple- 
alternative, forced-choice (mAFC) task (May & Solomon, 2013). 
Despite this specificity, Baker and Meese’s (2012) meta-analysis of 

Birdsall linearisation revealed a wide range of psychometric slopes, 
when detection was limited by noise whose spatiotemporal frequency 
spectra were broader than that of the target. It is noteworthy that some 
of these noises with broad spatiotemporal frequency spectra were 
nonetheless quite circumscribed in space and time. Indeed, in some 
cases, the noise’s spatial and/or temporal window was identical to that 
of the target. In such cases the presence of noise can reduce the ob-
server’s “intrinsic uncertainty” regarding when and where the target 
might appear. Although uncertainty reduction can linearise psycho-
metric functions of d′ vs target contrast (Pelli, 1985), it can be avoided 
by using full-field, dynamic noise, that is “on all the time” (Klein & Levi, 
2009). 

Solomon and Tyler (2017) measured 45 psychometric functions for 
detection in relatively long samples of wide-field dynamic noise and 
another 45 in the absence of noise. Simply put, we found no evidence for 
Birdsall linearisation. We reported Weibull fits to those 90 psychometric 
functions. In no noise, the median value of β was 4.0. In high noise the 
median value was also 4.0.2 Fig. 1 shows a new analysis that tells the 
same story. To compute these graphs, I re-fit each set of 45 psychometric 

E-mail address: J.A.Solomon@city.ac.uk.   
1 If two observation intervals generate visual signals i1 and i2 before the transducer and o1 and o2 after it, then the observer who chooses the larger of the two 

signals will always choose the same interval either before or after the transducer, since the transducer, being monotonic, cannot alter the signal ordering. Hence the 
decision on that trial, and every other trial, is unaltered by the transducer, and so performance overall is also unaltered. If enough external noise is added before any 
transducer nonlinearities, then performance must be linearised since those nonlinearities cannot alter the signal ordering.  

2 With just 88 trials each, it is extremely unlikely that the psychometric functions reported by Solomon and Tyler were artificially flattened by perceptual learning. 

Contents lists available at ScienceDirect 

Vision Research 

journal homepage: www.elsevier.com/locate/visres 

https://doi.org/10.1016/j.visres.2022.108121 
Received 13 June 2022; Received in revised form 3 September 2022; Accepted 7 September 2022   

mailto:J.A.Solomon@city.ac.uk
www.sciencedirect.com/science/journal/00426989
https://www.elsevier.com/locate/visres
https://doi.org/10.1016/j.visres.2022.108121
https://doi.org/10.1016/j.visres.2022.108121
https://doi.org/10.1016/j.visres.2022.108121
http://crossmark.crossref.org/dialog/?doi=10.1016/j.visres.2022.108121&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Vision Research 201 (2022) 108121

2

functions, assuming various fixed values of β. Fixing β necessarily re-
duces the likelihood of the fit, but for each data set, that reduction in 
likelihood was smallest when β = 4. 

If there is no Birdsall linearisation with full-field noise that is on all 
the time, then no isolated transduction mechanism should be considered 
an adequate model for detection in noise. On the other hand, if detection 
were governed by a network of multiple, interacting transduction 
mechanisms, then The Birdsall Theorem no longer applies. It is 
conceivable that a such a network could produce realistically curved 
psychometric functions for detection in noise. The remainder of this 
paper describes a test of this possibility. 

2. Model 

Watson and Solomon (1997) described a model of visual contrast 
gain control and pattern masking that was designed to predict the visi-
bility of compression artefacts in any arbitrary image. I resuscitated that 
model to see whether it could predict psychometric functions immune to 
Birdsall linearisation. 

The first stage of the model was subdivided into a global contrast 
sensitivity function (a 2-D log-parabolic filter of spatial frequency), 
followed by an array of 21, 504 sensors having Gabor-pattern receptive 
fields.3 The second stage was contrast gain control. At this stage, sensor 
outputs were subjected to a power-function transformation. Then the 
outputs were pooled and used to inhibit (or “normalise”) each other. 
Inhibition strength was defined by Gaussian functions of orientation, 
spatial frequency, and spatial location. In the third stage of the model, 
the normalised sensor outputs for one image were subtracted from the 
corresponding outputs for the other image. These differences were then 
subjected to Minkowski Pooling. 

When the two input images were identical, the Minkowski sum 
would be zero. Whenever there was a large difference between the two 
images, the Minkowski sum would be large. “Threshold” image differ-
ences could be defined as those for which the Minkowski sum would 
reliably exceed a random sample from the standard normal distribution. 
In other words, performance-limiting noise was effectively added at the 

final, “decision” stage of the model. 
To calibrate our model, we used data from Foley and Boynton 

(1994). In each of the 8 conditions illustrated in Fig. 2, their observers 
performed a 2-alternative, forced-choice task, in which they had to 
detect the addition of a low-contrast Gabor pattern to an image con-
taining a Gabor and/or cosine mask. Within each condition Foley and 
Boynton reported the 92 %-correct detection thresholds for 11 levels of 
masking contrast (including zero). 

3. Model behaviour 

Foley and Boynton (1994) reported thresholds for two observers, 
KMF and JYS. They did not report psychometric slopes, and Watson and 
Solomon (1997) made no attempt to produce reasonable values for slope 
when calibrating their model. Nonetheless, computation of those values 
(i.e., the model’s predictions for slope) is straightforward, and those for 
unmasked detection are far too shallow. Specifically, using the optimal 
(minimum root-mean-squared error) parameter values for observer 
KMF’s 92 %-correct thresholds, the Weibull distribution best-fitting the 
psychometric function for unmasked detection has a shape parameter of 
β = 2.4. For observer JYS, it has a shape parameter of β = 2.0. On the 
other hand, as discussed in the Introduction, psychometric functions for 
detection are typically well-fit when β is closer to 4. 

3.1. New fits 1 

Given this restriction (β = 4) on the psychometric functions for 
detection, I simultaneously re-fit Watson and Solomon’s (1997) model 
to the 92 %-correct thresholds Foley and Boynton (1994) did report, as 
well as the (six, unmasked) 58 %-correct thresholds they did not report, 
which should have been 5.1 dB lower (i.e., 0.255 base-10 log units). 
Optimal parameter values (New fits 1 in Table 1) were obtained using 
Mathematica’s FINDMINIMUM routine, with a desired accuracy of 2 sig-
nificant digits. Addition of these estimated 58 %-correct thresholds 
effectively penalises shallow psychometric functions for unmasked 
detection. Consequently, the predicted psychometric slopes increased to 

β = 2.7 and β = 2.5, when using the New-fits-1 parameter values for 
observers KMF and JYS, respectively. 

Two problems arise when attempting to derive the model’s pre-
dictions for detection in dynamic noise. The first problem is that this 
model has no temporal components. Consequently, all the simulations 
reported here were conducted with static stimuli. The second problem 
arises when the two input images contain different samples of noise. In 
that case, all the sensor outputs would be different, and the Minkowski 

Fig. 1. Reductions in goodness-of-fit to the detection data from Solomon & Tyler (2017). In each condition (no noise and high noise), the Weibull distribution was 
separately fit to 45 (88-trial) psychometric functions (5 functions/observer × 9 observers) of probability correct vs log contrast. Maximum, joint (base-10) log 
likelihoods were –295 (no noise) and –199 (high noise). Fixing the Weibull shape parameter β caused likelihoods to fall by the amounts indicated. In both conditions 
the reduction in likelihood was minimal when β was fixed at the value of 4. 

3 Images were 32 × 32 pixels. 16 Gabor-pattern receptive fields (8 orienta-
tions × 2 quadrature phases) were centred on each pixel. The carrier grating in 
these Gabor patterns had twice the target’s spatial frequency. There was an 
additional array of 16 × 16 × 16 Gabor patterns with carrier gratings matching 
the target’s spatial frequency. Finally (at “the top of the pyramid”), there was 
an array of 8 × 8 × 16 Gabor patterns with carrier gratings one-half the target’s 
spatial frequency. 
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sum could be large even in the absence of any target. My first strategy for 
dealing with this second problem was to force the two images to have 
identical samples of noise. Even though I did not have any data on how 
much this “twinned” noise should elevate threshold, I expected that 
psychometric functions would remain steep.4 

3.2. New fits 2 

To penalise parameter values that produce shallow psychometric 
functions, the model’s predicted 92 %-correct and 58 %-correct 

thresholds were calculated for detection in 6 samples of noise at 8 
logarithmically spaced contrasts (root-mean-square values ranging from 
0.32 % to 7.9 %). The log-ratio between each pair of thresholds was then 
subtracted from the predicted value of 0.255. Consequently, each root- 
mean-squared error quoted for New fits 2 at the bottom of Table 1 was 
calculated using these 48 error terms in addition to the 88 differences 
between the model’s predicted thresholds and each observer’s data, as 
reported by Foley and Boynton (1994), plus the six additional error 
terms for unmasked detection described in New fits 1. The 6 samples of 
noise were held constant, thereby eliminating stochastic fluctuation 
from the parameter-optimisation routine. 

Once the optimal parameters were found, the model was tested with 
a different sample of twinned noise in a series of 4,096-trial QUEST+

(Watson, 2017) experiments, one for each of 10 logarithmically spaced 
noise contrasts. Maximum-likelihood values for threshold and psycho-
metric slope are shown in Fig. 3a and b, respectively. These illustrations 
were assembled using the optimal parameters for observer KMF. The 
corresponding illustrations (see Supplementary Analyses) for observer 
JYS were similar. The best fit to data from either observer was obtained 
when the noise did not elevate threshold until its contrast exceeded 

Fig. 2. Example stimuli from Foley and Boynton (1994). The first row shows a Gabor target added to cosine masks at orientations of 0, 11.25, 22.5, 45, and 90 deg. 
Detection thresholds were reported with each of these masks at 10 logarithmically spaced levels of contrast (plus zero). The second row shows the same target added 
to an identical Gabor mask, whose contrast was similarly manipulated. The last two panels contain an additional, fixed (at 10 %) contrast cosine mask, at 45 and 
90 deg. 

Table 1 
Estimated Model Parameters and RMS Error for the Two Observers in Foley and Boynton (1994).1   

New fits 1: Six 58 %-correct 
thresholds for detection 

New fits 2: 48 psychometric slopes for 
detection in noise 

New fits 3: optimal sensor 
only 

New fits 4: pooling before 
comparison 

Parameter KMF JYS KMF JYS KMF JYS KMF JYS 

CSF peak amplitude 39.58 40.63 42.74 42.76 116.3 116.3 49.33 44.00 
CSF peak frequency 3.292 4.923 0.982 0.982 0.313 0.324 1.064 1.003 
CSF log10 bandwidth* 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 
Excitatory exponent 2.312 2.292 2.256 2.272 2.423 2.425 2.314 2.304 
Inhibitory exponent* 2 2 2 2 2 2 2 2 
Saturation constant 0.0210 0.0171 0.0785 0.0785 0.363 0.337 0.0408 0.0518 
Pooling width in × or y2 1.55 1.56 0.6846 0.5402 0.5230 0.5300 3.487 3.058 
Pooling width in orientation 89.84 deg 81.84 deg 95.89 deg 89.55 deg 91.41 deg 86.86 deg 46.53 deg 41.65 deg 
Pooling width in frequency* 0 0 0 0 0 0 0 0 
Octave bandwidth of Gabor filters 0.9002 1.065 0.8740 0.8750 0.6994 0.713 2.00 2.00 
Minkowski exponent 5.552 5.048 5.493 5.486 N/A N/A 9.356 9.000 
RMS error (original 88 thresholds) 1.6473 dB 2.040 dB 1.886 dB 2.381 dB 2.030 dB 2.806 dB 1.792 dB 1.955 dB 
RMS error (all thresholds) 1.689 dB 2.025 dB 2.510 dB 2.882 dB 2.276 dB 2.656 dB 1.759 dB 1.861 dB  

1 Parameters with asterisks were fixed, as in Watson and Solomon’s (1997) calibration. 
2 x and y have units equivalent to nearest-neighbour separation of low-frequency sensors, as in Watson and Solomon’s Table 2. 
3 This value is 1.26% lower than that (1.668) reported by Watson and Solomon. 

4 Twinned noise has been used in several detection experiments (Swift & 
Smith, 1983; Burgess & Colborne, 1988; Ahumada & Beard, 1997; Watson, 
Borthwick, & Taylor, 1997; Beard & Ahumada, 1999; and Solomon, 2002). 
Some authors (Swift & Smith; Burgess & Colborne; Watson, et al.; cf. Ahumada 
& Beard) found no appreciable difference between performance with twinned 
noise and ‘random’ noise, independently sampled for each interval. None of 
these authors reported empirical estimates of psychometric slope with twinned 
noise. 
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about –18 dB, which corresponds to a root-mean-squared contrast of 12 
%. However, at even lower contrasts, psychometric slope plummeted to 
where Weibull β was less than 2. 

3.3. New fits 3 

Dao, Lu, and Dosher (2006) described a gain-controlled perceptual- 
template model for pattern detection. Although it shares many features 
with Watson and Solomon’s (1997) model, it has at least one notable 
difference: no Minkowski summation. Instead, all its decisions are based 
on the normalised output from a single visual sensor. Inspired by this 
notable difference, I modified Watson and Solomon’s decision rule to 
ignore output from all sensors except the one best-matched to the target. 
Optimal parameter values for this modified model were then determined 
in the same way (i.e., by fitting Foley and Boynton’s data with penalties 
for shallow psychometric functions) they had been determined in New 
fits 2. 

This optimal-sensor-only version of Watson and Solomon’s (1997) 
gain-control model proved no more compatible with the failure of 
Birdsall linearisation than the original version with Minkowski sum-
mation. Predicted values of threshold and psychometric slope for 
observer KMF are shown in Fig. 3c and d, respectively. The corre-
sponding values (see Supplementary Analyses) for observer JYS were 
similar. Threshold elevation from twinned noise was accompanied by a 
collapse in psychometric slope. 

3.4. New fits 4 

An alternative modification of Watson and Solomon’s (1997) gain- 
control model did prove to be somewhat resistant to Birdsall linearisa-
tion. This modification was motivated by my desire to make the model 
compatible with independent samples of noise in the two images. Quite 
simply, I swopped the subtraction of visual signals with the Minkowski 
summation; so that the latter came first. More formally, whereas Watson 
and Solomon’s decision statistic can be formulated as. 

d =
(∑

| 1rθ − 2rθ|
M
)1/M

(1) 

(cf. their Equation 3), the modified decision statistic can be formu-
lated as. 

d =
(∑

| 1rθ|
M
)1/M

−
(∑

| 2rθ|
M
)1/M

. (2) 

In each of the previous expressions, 1rθ and 2rθ denote (normalised) 
outputs to the two images from the visual sensor whose preference for 
spatial frequency, orientation, horizontal position, vertical position, and 
phase is indexed by the vector θ. The Minkowski exponent is M. Watson 
and Solomon’s model selected the target image with probability 
Φ(1.4d), where Φ(x) denotes the standard normal (cumulative) distri-
bution of x. When the first image contains the target, the modified model 
also will be correct with probability Φ(1.4d). When the second image 
contains the target, it will be correct with probability Φ( − 1.4d). 

Optimal parameter values for this modified model were determined 
in the same way (i.e., with twinned noise) they had been determined in 
New fits 2 and New fits 3. Thresholds and psychometric slopes for Gabor- 
pattern detection in twinned noise are shown in Fig. 3e–h. Predictions 
for detection with independent samples of noise (see Supplementary 
Analyses) were similar. Note that the modified model simultaneously 
predicts a plausible threshold elevation from external noise, without a 
complete collapse in psychometric slope. As the variance of external 
noise increases from zero, Weibull β increases to a value just above 3 
before decreasing to a value just below 3. Thresholds for detection with 
Gabor and cosine masks are shown in Fig. 4. The fit isn’t perfect, but it is 
pretty satisfying. In particular, the modified model fits the 88 thresholds 
Foley and Boynton (1994) reported for their observer JYS better than the 
unmodified model, while simultaneously producing plausibly steep 
psychometric functions for detection in noise. 

It isn’t entirely clear why the modified decision rule helps the Wat-
son and Solomon (1997) model to resist Birdsall linearisation. In low-to- 
moderate levels of external noise, decision statistics in both the original 
(New fits 2) and the variant (New fits 4) models are dominated by 

Fig. 3. Simulated detection thresholds and psychometric slopes for a Gabor target in twinned noise. Watson and Solomon’s (1997) model (panels a and b) and 
various modifications thereof (panels c – h) were optimised with data from Foley and Boynton’s observers KMF (panels a – f) and JYS (panels g and h), with a penalty 
for shallow psychometric functions. In all panels, each filled symbol (and error bar) illustrates the maximum-likelihood estimate (and 95% credible interval) derived 
from a 4,096-trial simulated experiment. In the top row (panels a, c, e, and g) most error bars are smaller than symbol size. 
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(“relevant”) sensors tuned to the target.5 These sensors continue to 
dominate the original model’s decisions when large quantities of twin-
ned noise are added to the Gabor-pattern target. In this case, divisive 
inhibition is responsible for threshold elevation. In the variant model, on 
the other hand, many decision statistics in external noise are dominated 
by arguably irrelevant sensors, tuned to higher frequencies. (See the 
Supplementary Analyses for illustrations.) Generally speaking, these 
irrelevant sensors play a greater role in the variant model, making it 
more similar to intrinsic-uncertainty theory than the original model. In 
intrinsic-uncertainty theory, psychometric slope is fully determined by 
the ratio of irrelevant:relevant sensors (Pelli, 1985). 

4. Discussion 

It does seem sort of embarrassing that, as a field, Psychophysics still 
hasn’t established a generally accepted explanation for the limits of 
pattern detection. There seems to be two schools of thought regarding 
why observers make errors in mAFC detection tasks. Either they hallu-
cinate targets, and those hallucinations are more intense than the actual 
targets, or they don’t see anything, guess, and guess wrong. Signal- 
detection theory (Green & Swets, 1966) aligns itself with the first 
school of thought, but the psychometric functions (probability correct vs 
log contrast) predicted by simple versions of the theory are too shallow. 
More complicated alternatives include intrinsic uncertainty, non-linear 
transduction, and the sensory thresholds favoured by the second 
school of thought (Solomon, 2007). Of these three alternatives, only 
intrinsic uncertainty can confer immunity from Birdsall linearisation. 
The key to this immunity lies in a number of independent detection 
mechanisms, which I’m calling “sensors” (a.k.a. “micro-analysers”). 
Closed-form equations can be used to predict mAFC performance when 
sensors are independent (e.g., Solomon & Tyler, 2017). However, many 
authors have found the requisite number of putatively independent 
sensors to be implausibly large (>1000), especially if psychometric 
slope is to remain steep in the presence of external noise. Such Birdsall 
immunity would require the number of independent sensors to remain 

Fig. 4. Thresholds and New fits 4 for Foley and Boynton’s observers KMF (panels a – h) and JYS (panels i – p). The same parameter values were used for Fig. 3e–h. For 
each observer, the panel layout corresponds to Fig. 2. Threshold with zero mask contrast ( − ∞ dB) is plotted on the vertical axis and the model’s prediction for this 
condition is indicated by the horizontal line. 

5 Even in the absence of noise and pattern masks, these models behave 
differently. In the original model, inhibitory signals in or near the sensors best- 
tuned to the target are greater than those in other sensors. In the variant model, 
the greatest inhibitory signals are found in sensors tuned to twice the target’s 
frequency. This difference is directly attributable to the variant’s relatively 
large sensor bandwidth. This difference, but not the variant’s resistance to 
Birdsall linearisation, disappears when sensor bandwidth is halved and the 
other parameters are held constant. 
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unaffected by the introduction of external noise, and that could happen 
only if all their receptive fields were mutually orthogonal. 

Multiple-sensor models become less implausible when receptive 
fields are not required to be mutually orthogonal. However, in such 
cases, no closed-form equations exist that can be used to make quanti-
tative predictions of model performance. Consequently, in this paper, I 
have examined the behaviour of an image-based model, using Monte 
Carlo simulations. There would be little reason to struggle with some-
thing this complicated if it wasn’t potentially immune to Birdsall 
linearisation. 

5. Conclusion 

With one small modification to the decision rule, Watson and Solo-
mon’s (1997) model of contrast gain control and pattern masking also 
produces plausible psychometric functions for detection in noise. Of 
course, this in no way invalidates other models for detection in noise. 
Solomon and Tyler (2017) championed a model in which detection was 
always limited by an early source of noise, independently added to the 
output of each sensor. Indeed, parsimony would suggest early and late 
noises are present whenever sensor outputs are combined. It may prove 
possible to deduce the relative dominance of these two noises from 
manipulations of target extent and/or uncertainty. 
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